WO2023248533A1 - Film deposition condition generation device, film deposition device, film deposition condition generation method, film deposition method, and film deposition condition generation program - Google Patents

Film deposition condition generation device, film deposition device, film deposition condition generation method, film deposition method, and film deposition condition generation program Download PDF

Info

Publication number
WO2023248533A1
WO2023248533A1 PCT/JP2023/006271 JP2023006271W WO2023248533A1 WO 2023248533 A1 WO2023248533 A1 WO 2023248533A1 JP 2023006271 W JP2023006271 W JP 2023006271W WO 2023248533 A1 WO2023248533 A1 WO 2023248533A1
Authority
WO
WIPO (PCT)
Prior art keywords
predicted value
film thickness
film
thermal spray
spray gun
Prior art date
Application number
PCT/JP2023/006271
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 妻鹿
裕貴 小室
紀幸 榊原
泰治 鳥越
芳史 岡嶋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023248533A1 publication Critical patent/WO2023248533A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the present disclosure relates to a film formation condition generation device, a film formation apparatus, a film formation condition generation method, a film formation method, and a film formation condition generation program.
  • Patent Document 1 discloses a method for predicting the coating film thickness based on the spray film thickness, the spray distance, the moving speed of the spray gun, and the angle between the spray gun and the workpiece.
  • the present disclosure has been made in view of the above, and provides a film thickness condition generating apparatus, a film forming apparatus, a film forming condition generating method, a film forming method, and a film forming condition generating apparatus capable of suppressing non-uniform film thickness.
  • the purpose is to provide programs.
  • the film forming condition generation device includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun.
  • a predicted value calculation unit that calculates a predicted value of the thickness of a coating to be thermally sprayed on the workpiece using the thermal spray gun, based on parameters including; , setting film forming conditions based on the parameters used to calculate the predicted value, and updating the parameters by optimization calculation of the film thickness if the predicted value of the film thickness is outside the allowable range.
  • the parameter setting unit and the predicted value calculation unit recalculate the predicted value of the film thickness using the updated parameters.
  • the film forming condition generation method includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun.
  • the predicted value of the film thickness is calculated again using the updated parameters.
  • a film forming condition generation program includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun.
  • the parameter setting step and the predicted value calculation step cause the computer to calculate the predicted value of the film thickness again using the updated parameters.
  • FIG. 1 is a schematic configuration diagram showing a film forming system of this embodiment.
  • FIG. 2 is a schematic block diagram of the film forming apparatus.
  • FIG. 3 is a diagram showing an example of a film forming method.
  • FIG. 4 is a diagram showing an example of a film forming method.
  • FIG. 5 is a block diagram of the film forming condition generation device.
  • FIG. 6 is a schematic diagram for explaining parameters.
  • FIG. 7 is a flowchart showing the processing of the film forming condition generation device.
  • FIG. 8 is a schematic diagram showing an example of coating construction.
  • FIG. 9 is a schematic diagram showing an example of coating when a workpiece has a protrusion.
  • FIG. 1 is a schematic configuration diagram showing the film forming system of this embodiment.
  • the film forming system 1 includes a film forming apparatus 10, a film forming condition generating apparatus 11, a robot 12, a thermal spray gun 14, and a turntable 18.
  • the film-forming device 10 is a device that applies a coating to a work W, which is a member to be coated, by controlling a robot 12 and a thermal spray gun 14 based on film-forming conditions set by a film-forming condition generating device 11. It is.
  • the film forming apparatus 10 controls the robot 12 and the thermal spray gun 14 to spray the thermal spray material 20 onto the construction surface Wa of the workpiece W, and coats the construction surface Wa by solidifying the thermal spray material 20. Let it form.
  • FIG. 2 is a schematic block diagram of the film deposition apparatus.
  • the film forming apparatus 10 is, for example, a computer, and as shown in FIG. 2, has a storage section 10A and a control section 10B.
  • the storage unit 10A is a memory that stores calculation contents and program information of the control unit 10B, and includes, for example, a main storage device such as a RAM (Random Access Memory), a ROM (Read ONly Memory), and an HDD (Hard Disk).
  • the storage device includes at least one external storage device such as a drive.
  • the control unit 10B is an arithmetic device and includes an arithmetic circuit such as a CPU (Central Processing Unit).
  • the control section 10B includes a film formation condition acquisition section 10B1 and a film formation section 10B2.
  • the control unit 10B reads and executes a program (software) from the storage unit 10A, thereby realizing a film-forming condition acquisition unit 10B1 and a film-forming unit 10B2, and executes these processes.
  • the control unit 10B may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs.
  • at least a portion of the film forming condition acquisition section 10B1 and the film forming section 10B2 may be realized by a hardware circuit.
  • the program for the control unit 10B stored in the storage unit 10A may be stored in a storage medium readable by the film forming apparatus 10.
  • the film-forming condition acquisition unit 10B1 acquires the film-forming conditions set by the film-forming condition generation device 11.
  • the film-forming conditions refer to conditions controlled by the film-forming unit 10B2 when coating the workpiece W.
  • the film forming conditions in this embodiment include, for example, the moving speed of the thermal spray gun 14 with respect to the work W and the moving path of the thermal spray gun 14.
  • the film-forming condition acquisition unit 10B1 may acquire the film-forming conditions set by the film-forming condition generating device 11 via a communication unit (not shown), or may acquire the film-forming conditions set by the film-forming condition generating device 11.
  • the film forming conditions may be acquired by inputting the film conditions to an input unit (not shown). Setting of film forming conditions by the film forming condition generation device 11 will be described later.
  • the film forming unit 10B2 applies a thermal spray material 20 to the construction surface Wa of the workpiece W based on the film forming conditions acquired by the film forming condition acquiring unit 10B1 (the film forming conditions set by the film forming condition generating device 11).
  • a coating is applied on the construction surface Wa by thermal spraying.
  • the film forming unit 10B2 controls the robot 12, the thermal spray gun 14, and the turntable 18 based on the film forming conditions to spray the thermal spray material 20 onto the construction surface Wa of the workpiece W. .
  • the robot 12 is a mechanism that changes at least one of the position and orientation of the thermal spray gun 14 under the control of the film forming apparatus 10 (film forming section 10B2). In this embodiment, the robot 12 changes both the position and orientation of the thermal spray gun 14. change.
  • the robot 12 may be any mechanism capable of changing at least one of the position and orientation of the thermal spray gun 14, but is, for example, a vertically articulated six-axis robot, with the thermal spray gun 14 attached to the top.
  • the thermal spray gun 14 is a device that injects a thermal spray material 20 under the control of the film forming apparatus 10 (film forming section 10B2).
  • the thermal spray gun 14 sprays the thermal spray material 20 onto the construction surface Wa of the workpiece W, which is placed at a position facing the thermal spray port 16 (see FIGS. 3 and 4) that injects the thermal spray material 20. Create a coating on Wa.
  • the turntable 18 is a mechanism that supports the workpiece W.
  • the turntable 18 is a mechanism that changes at least one of the position and orientation of the instructed workpiece W under the control of the film-forming apparatus 10 (film-forming section 10B2), and in this embodiment, both the position and orientation of the workpiece W are changed. change.
  • the turntable 18 may be any mechanism that changes at least one of the position and orientation of the workpiece W, but in the example of this embodiment, the construction surface Wa is directed to a position facing the thermal spraying port 16 of the thermal spraying gun 14. It is a table that rotates like this.
  • (Film forming method) 3 and 4 are diagrams showing an example of a film forming method.
  • the thermal spray gun 14 has a base 15 and a thermal spray port 16 provided at the tip of the base 15 to inject the thermal spray material 20.
  • the film forming apparatus 10 film forming section 10B2 sprays the thermal spray material 20 while moving the thermal spray gun 14 according to the moving path and moving speed indicated by the acquired film forming conditions.
  • the moving route is set in a ladder shape as shown in FIG. 4, so the thermal spray gun 14 sprays the spray material 20 while moving in a ladder shape along the moving route. More specifically, in the example of FIG. 4, the movement path is a ladder that moves in one direction along the Y direction, then moves in the X direction by the length of pitch P, and then moves in the other direction along the Y direction.
  • the trajectory is not limited to this, the movement route may be any trajectory.
  • FIG. 5 is a block diagram of the film forming condition generation device.
  • the film forming condition generation device 11 is, for example, a computer, and includes an input section 40, an output section 42, a storage section 44, and a control section 46, as shown in FIG.
  • the input unit 40 is a mechanism that accepts operations by the user, and may be, for example, a mouse, a keyboard, a touch panel, etc. Alternatively, the parameters stored in the storage unit 44 may be read and automatically input.
  • the output unit 42 includes a display device such as a display that displays images, and outputs processed information to the control unit 46 by the output control unit 52.
  • the storage unit 44 is a memory that stores various information such as calculation contents and programs of the control unit 46, and includes at least one of a RAM, a main storage device such as a ROM, and an external storage device such as an HDD. including.
  • the program for the control unit 46 stored in the storage unit 44 may be stored in a storage medium that can be read by the film forming condition generation device 11.
  • the control unit 46 is a calculation device that sets film forming conditions, and includes a calculation circuit such as a CPU, for example.
  • the control section 46 includes a predicted value calculation section 48, a parameter setting section 50, and an output control section 52.
  • the control unit 46 reads a program (software) from the storage unit 44 and executes it to realize a predicted value calculation unit 48, a parameter setting unit 50, and an output control unit 52, and executes the processing thereof. .
  • the control unit 46 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Further, at least a part of the processing of the predicted value calculation section 48, the parameter setting section 50, and the output control section 52 may be realized by a hardware circuit.
  • the predicted value calculation unit 48 calculates a predicted value of the film thickness of the coating formed by thermal spraying from the thermal spray gun 14 onto the workpiece W, based on parameters for calculating the predicted value. Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness by executing an analysis (robot simulation) that simulates the operation of the thermal spray gun 14 using parameters for calculating the predicted value. do.
  • an analysis robot simulation
  • FIG. 6 is a schematic diagram for explaining parameters.
  • the predicted value calculation unit 48 acquires parameters for calculating the predicted value.
  • the predicted value calculation unit 48 obtains the relative angle ⁇ , the distance D, the moving speed V, and the moving route as parameters.
  • the relative angle ⁇ refers to the angle formed between the workpiece W and the thermal spraying gun 14 in analysis, for example, the angle formed between the central axis of the thermal spraying port 16 of the thermal spraying gun 14 and the axis perpendicular to the construction surface Wa of the workpiece W. It can be an angle.
  • the distance D refers to the distance from the thermal spray gun 14 to the workpiece W in analysis, and may be, for example, the shortest distance from the thermal spraying port 16 of the thermal spraying gun 14 to the construction surface Wa of the workpiece W.
  • the moving speed V refers to the moving speed of the thermal spray gun 14 with respect to the workpiece W in analysis.
  • the moving route refers to information on the route along which the thermal spray gun 14 moves in analysis, and may be information indicating the position (coordinates) of the thermal spray gun 14 at each timing, for example.
  • the predicted value calculation unit 48 acquires the moving speed V and the moving route set by the parameter setting unit 50, which will be described later. Further, the predicted value calculation section 48 sets the relative angle ⁇ and the distance D for each position of the thermal spray gun 14 along the movement path based on the movement path set by the parameter setting section 50. Specifically, the predicted value calculation unit 48 calculates the relationship between the thermal spray gun 14 and the workpiece W in the analysis for each position of the thermal spray gun 14 along the movement path based on the movement path and the position of the workpiece W in the analysis. determine whether it interferes.
  • the predicted value calculation unit 48 calculates a case where the thermal spraying gun 14 and the workpiece W interfere when the thermal spraying gun 14 is moved along a set movement route while setting the relative angle ⁇ and the distance D to predetermined values. In this case, it is determined that the thermal spray gun 14 and the work W will interfere, and if the thermal spray gun 14 and the work W do not interfere at that time, it is determined that the thermal spray gun 14 and the work W do not interfere. When the predicted value calculation unit 48 determines that the thermal spray gun 14 and the workpiece W do not interfere, the predicted value calculation unit 48 sets the relative angle ⁇ and the distance D to predetermined values.
  • the predicted value calculation unit 48 determines that the thermal spray gun 14 and the workpiece W will interfere, it changes at least one of the relative angle ⁇ and the distance D from a predetermined value. In other words, the predicted value calculation unit 48 maintains the relative angle ⁇ and the distance D at predetermined values at the position of the thermal spray gun 14 that does not interfere with the work W, and maintains the relative angle ⁇ and the distance D at predetermined values at the position of the thermal spray gun 14 that interferes with the work W. The angle ⁇ and the distance D are made different from predetermined values.
  • the predetermined value may be any predetermined value, but in this case, when it is assumed that there will be no interference, the relative angle ⁇ and the distance D are kept at predetermined values, and it is assumed that there will be interference. In this case, by shifting from the predetermined value, the actual operation of the thermal spray gun 14 can be simulated with high precision, and the predicted value of the film thickness can be calculated with high precision.
  • the predetermined values for the relative angle ⁇ and the distance D may be any predetermined values, and are preferably constant for each position of the thermal spray gun 14, for example.
  • the predetermined value of the relative angle ⁇ is preferably 20 degrees to 30 degrees, but can be up to 45 degrees.
  • the predicted value calculation unit 48 calculates the relative angle It is preferable to set ⁇ and distance D. In other words, the predicted value calculation unit 48 preferably limits the degree of freedom between the relative angle ⁇ and the distance D.
  • the predetermined range here may be set arbitrarily, but for example, for the predetermined range of the relative angle ⁇ , a value that is shifted by a maximum of 45 degrees in one direction with respect to the predetermined value may be shifted by a maximum of 45 degrees in the other direction.
  • the range may be up to the specified value.
  • the predetermined range of the distance D may range from a value 5% shorter than the predetermined value to a value 11% longer than the predetermined value.
  • the moving speed V set by the parameter setting unit 50 be set within a predetermined range with respect to a predetermined value.
  • the predetermined range here may be set arbitrarily, and may range from a value 33% lower than the predetermined value to a value 33% higher than the predetermined value, for example.
  • the degree of freedom of the moving speed V By restricting the degree of freedom of the moving speed V in this manner, the actual operation of the thermal spray gun 14 can be simulated with high precision, and the predicted value of the film thickness can be calculated with high precision.
  • the movement path (pitch P) among the parameters the influence on the film thickness is close and easy to understand between the actual machine and the simulation, so there is no need to set it so that it falls within a predetermined range for a predetermined value. In other words, there is no need to set any particular restrictions.
  • the predicted value calculation unit 48 calculates the predicted value of the film thickness based on the parameters acquired as described above. That is, the predicted value calculation unit 48 executes an analysis simulating the thermal spraying gun 14 spraying the workpiece W according to the relative angle ⁇ , distance D, moving speed V, and moving route indicated by the acquired parameters. Then, a predicted value of the coating thickness is calculated for each position on the construction surface Wa of the workpiece W. Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness when the thermal spray gun 14 is stopped based on the obtained parameters using a film thickness prediction formula that predicts the film thickness when the thermal spray gun 14 is stopped. calculate.
  • the predicted value calculation unit 48 calculates the predicted value of the film thickness in the stopped state on the construction surface Wa so as to simulate that the thermal spray gun 14 moves according to the moving speed V and the moving route indicated by the parameters. By overlapping each position, a predicted value of the film thickness is calculated for each position on the construction surface Wa.
  • the film thickness prediction formula may be, for example, the one shown in the following formula (1).
  • T is the predicted value of the film thickness.
  • is a value indicating the degree of influence that the amount of deviation of the relative angle ⁇ from a predetermined value has on the film thickness.
  • ⁇ D is a value indicating the degree of influence that the amount of deviation of the distance D from a predetermined value has on the film thickness, for example, based on a preset coefficient and the amount of deviation of the distance D from a predetermined value.
  • ⁇ V is a value indicating the degree of influence that the amount of deviation of the moving speed V from a predetermined value has on the film thickness.
  • T0 is a reference value of the film thickness, and is a predicted value of the film thickness when the relative angle ⁇ , the distance D, and the moving speed V are predetermined values.
  • a preset value may be used for T0.
  • the film thickness calculation formula (1) it is possible to obtain cross-sectional film thickness information of one line of film formation. Since the overall film thickness is formed by overlapping the stripes, it is calculated based on the pitch P (distance between adjacent movement paths). That is, by overlapping one line of the film-formed portion calculated using equation (1) at each pitch P, the entire film thickness can be calculated.
  • the predicted value calculation unit 48 calculates not only the predicted value of the film thickness but also the predicted value of the construction time required for coating.
  • the construction time refers to the time from the start to the end of thermal spraying, and is calculated together with the predicted value of the film thickness by the above-mentioned analysis.
  • the parameter setting unit 50 sets parameters for recalculating the predicted value of the film thickness based on the predicted value of the film thickness calculated by the predicted value calculating unit 48.
  • the parameter setting unit 50 determines whether the predicted value of the film thickness calculated by the predicted value calculation unit 48 is within the allowable range, and if it is outside the allowable range, the parameter setting unit 50 determines whether the predicted value of the film thickness calculated by the predicted value calculating unit 48 is within the allowable range.
  • Reset parameters update parameters. For example, when at least one of the film thicknesses at each position on the construction surface Wa is outside the permissible range, the parameter setting unit 50 may determine that the predicted value of the film thickness is outside the permissible range; If all of the values are within the allowable range, it may be determined that the predicted value of the film thickness is not allowable.
  • the allowable range here may be set arbitrarily.
  • the parameter setting unit 50 resets the moving speed V and the moving route among the parameters used to calculate the predicted value of the film thickness.
  • the parameter setting unit 50 uses a particle swarm optimization method as the optimization calculation. For example, the parameter setting unit 50 sets the allowable value of the film thickness as a constraint (penalty function p(x)), and sets the variation in the predicted value of the film thickness for each position as an objective function f(x), and sets an evaluation function g(x).
  • the predetermined range here may be set arbitrarily, and may be, for example, a range from a value 33% lower than the predetermined value to a value 33% higher than the predetermined value.
  • the parameter setting unit 50 does not need to set the movement path (pitch P) so that it falls within a predetermined range with respect to a predetermined value, in other words, it does not need to limit the degree of freedom.
  • the predicted value calculation unit 48 calculates the predicted value of the film thickness by performing analysis using the above-described method using the parameters reset by the parameter setting unit 50 (here, the moving speed V and the moving route). The predicted value calculation unit 48 and the parameter setting unit 50 repeat this process until the predicted value of the film thickness falls within the allowable range. Note that, for example, a predetermined value may be used as a parameter when the predicted value calculation unit 48 first calculates the predicted value of the film thickness.
  • the parameter setting unit 50 sets the film forming conditions based on the parameters used to calculate the predicted value. .
  • the parameter setting unit 50 sets the parameters themselves used to calculate the predicted value of the film thickness that falls within the allowable range as the film forming conditions.
  • the parameter setting unit 50 sets the moving path and moving speed V used to calculate the predicted value of the film thickness that is within the allowable range as the film forming conditions.
  • the present invention is not limited thereto, and a value obtained by adjusting the parameters used to calculate the predicted value of the film thickness that falls within the allowable range may be set as the film forming condition.
  • the output control unit 52 transmits information on the film forming conditions set by the parameter setting unit 50 to the film forming apparatus 10.
  • the film forming apparatus 10 performs coating based on the film forming conditions transmitted from the output control unit 52.
  • FIG. 7 is a flowchart showing the processing of the film forming condition generation device.
  • the film forming condition generation device 11 obtains parameters using the predicted value calculation unit 48 (step S12).
  • the predicted value calculation unit 48 acquires the moving speed V and the moving route set by the parameter setting unit 50, and calculates the relative angle ⁇ and distance based on the moving route set by the parameter setting unit 50. Set D.
  • the film forming condition generation device 11 uses the predicted value calculation unit 48 to calculate a predicted value of the film thickness based on the parameters (step S14). Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness and the predicted value of the construction time by performing analysis based on the parameters.
  • the film forming condition generation device 11 uses the parameter setting unit 50 to determine whether the predicted value of the film thickness is within an allowable range (step S16).
  • the allowable range may be set arbitrarily, and may be set in advance by an operator, for example.
  • the parameter setting unit 50 updates the parameters by optimization calculation (step S18). Specifically, the parameter setting unit 50 sets the moving speed V and the moving route. Thereafter, the process returns to step S12, and the predicted value calculation unit 48 uses the updated parameters to recalculate the predicted value of the film thickness.
  • the film-forming condition generation device 11 determines that the predicted value of the film thickness is within the allowable range (step S16; Yes), it sets the film-forming conditions based on the parameters used for the predicted value (step S20). ).
  • the film forming condition generating device 11 that sets film forming conditions and the film forming device 10 that performs film forming based on the film forming conditions are different devices.
  • the present invention is not limited thereto, and the film-forming condition generation device 11 and the film-forming device 10 may be the same device. That is, for example, the film forming apparatus 10 has the functions of the film forming condition generating apparatus 11, executes the processes of the predicted value calculation unit 48 and the parameter setting unit 50, sets the film forming conditions, and also sets the film forming conditions. Film formation may be performed based on the above.
  • FIG. 8 is a schematic diagram showing an example of coating construction.
  • the film forming apparatus 10 may form a coating 30a in a range of a movement path 32a, and may form a coating 30b in a range of a movement path 32b that partially overlaps the movement path 32a. .
  • the moving paths 32b overlap, there is a risk that the film thickness will become uneven due to overlapping film formation.
  • the predicted value of the film thickness is calculated By repeating optimization calculations and setting the film forming conditions, it is possible to assume in advance the case where the movement paths overlap, and to determine the film forming conditions so that the film thickness does not become non-uniform.
  • FIG. 9 is a schematic diagram showing an example of coating when the workpiece has a protrusion.
  • a workpiece W having a shape in which a protrusion 60 protrudes from the construction surface Wa may be coated.
  • the moving path becomes more complicated than when coating a flat plate as shown in FIG. 8, and the film thickness tends to become non-uniform.
  • the film thickness tends to become particularly non-uniform.
  • the film thickness is The film forming conditions can be determined so that the film does not become non-uniform.
  • the film thickness will almost double.
  • the movement path 32b accelerates from a position 32bA, decelerates from a position 32bB that passes through the area AR, and turns back outside the construction surface Wa.
  • the vehicle accelerates from position 32bB and decelerates from position 32bA.
  • the film thickness can be adjusted. The same applies to the moving route 32a.
  • the robot 12 cannot perform sudden acceleration or deceleration.
  • the robot 12 is required to move at a high speed relative to its ability, and variations in film thickness are likely to occur in areas where there is acceleration and deceleration (positions 32aA, 32bA). Therefore, if early acceleration is instructed in order to ensure the acceleration of the area AR, the area in front of the positions 32aA and 32bA becomes thinner. On the other hand, if the acceleration instruction is too slow, a thick film pressure will occur in the region AR. With the acceleration and deceleration capabilities of current industrial robots, it is almost impossible to completely equalize the film thickness using speed alone, but as in this embodiment, it is possible to optimize both the pitch P and the movement speed V. Depending on the required value, it can be placed within an acceptable error range.
  • the actual speed can be predicted based on the above-mentioned acceleration/deceleration ability, so the film thickness distribution can also be predicted based on the prediction.
  • the instruction values for the robot that will optimize the film thickness distribution are predicted. be able to.
  • the film forming condition generation device 11 determines the relative angle ⁇ between the work W and the thermal spray gun 14, the distance D from the thermal spray gun 14 to the work W, and the moving speed of the thermal spray gun 14 with respect to the work W.
  • a predicted value calculation unit 48 that calculates a predicted value of the film thickness of the coating to be thermally sprayed onto the workpiece W using the thermal spray gun 14 based on parameters including V and the movement path of the thermal spray gun 14; If the value is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range, the film forming conditions are set.
  • the parameter setting unit 50 which updates parameters through optimization calculation, and the predicted value calculation unit 48 use the updated parameters to calculate the predicted value of the film thickness again.
  • the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.
  • the thermal spray gun takes a shortcut, etc.
  • the parameters are set by analysis that takes into account the ability of the thermal spray gun, so it is possible to appropriately reflect the ability of the thermal spray gun and make the film thickness uniform.
  • the movement path of the thermal spray gun may be set so as to turn back over the processing surface, unless the turn-back time is shortened, the construction time will be extended, which may increase costs and man-hours.
  • the folding points are placed too close together in order to shorten the folding time, the film thickness at the edge of the processed surface will be affected. Therefore, it is necessary to optimize the turning point.
  • the present embodiment by setting a travel route including the turning points, it is possible to optimize the turning points as well.
  • the thicker film slightly exceeds the tolerance due to variations in film thickness, it is possible to bring it within the tolerance by polishing the exceeded portion.
  • the film thickness is thinner than the allowable value, it is necessary to perform additional film formation, but additional film formation requires more steps and costs than polishing. Therefore, even if the actual film thickness is slightly outside the allowable range, it is better to eliminate additional film formation and perform polishing.
  • the film formation conditions should be set so that at least it can be thicker than the allowable range and thinner than the allowable range. be able to. This makes it possible to suppress a significant increase in man-hours and costs.
  • the film-forming condition generating device 11 according to the second aspect of the present disclosure is the film-forming condition generating device 11 according to the first aspect, in which the parameter setting unit 50 determines the moving speed V of the parameters by optimization calculation. and a travel route. According to the present disclosure, the accuracy of making the film thickness uniform can be improved.
  • the film-forming condition generating device 11 according to the third aspect of the present disclosure is the film-forming condition generating device 11 according to the first aspect or the second aspect, and the predicted value calculation unit 48 calculates the relative angle ⁇ , the distance D, and The predicted value of the film thickness is calculated under the condition that the moving speed V falls within a predetermined range. According to the present disclosure, both the condition range to be predicted and the prediction accuracy can be improved.
  • the film-forming condition generating device 11 according to the fourth aspect of the present disclosure is the film-forming condition generating device 11 according to any of the first to third aspects, in which the predicted value calculation unit 48 For each position of the thermal spraying gun 14, it is determined whether the thermal spraying gun 14 and the workpiece W will interfere, and the relative angle ⁇ and distance D at the position where it is determined that there will be no interference are kept at predetermined values, and at the position where it is determined that there will be interference.
  • a predicted value of the film thickness is calculated under conditions in which at least one of the relative angle ⁇ and the distance D is made different from a predetermined value. According to the present disclosure, even if the projection protrudes from the construction surface, the film thickness around the joint can be made uniform. Further, even if there are obstacles that interfere with the thermal spray gun around the construction surface, the film thickness can be made uniform.
  • the film formation condition generation device 11 according to the fifth aspect of the present disclosure is the film formation condition generation device 11 according to any one of the first to fourth aspects, and the predicted value calculation unit 48 calculates the construction time required for coating. The predicted value of is also calculated. According to the present disclosure, construction time can be grasped, leading to reduction in man-hours.
  • the film-forming condition generation device 11 according to the sixth aspect of the present disclosure is the film-forming condition generation device 11 according to any of the first to fifth aspects, in which the parameter setting unit 50 performs particle Use group optimization method. According to the present disclosure, the accuracy of making the film thickness uniform can be improved.
  • the film forming apparatus 10 of the present disclosure performs film forming based on the film forming conditions set by the film forming condition generating apparatus 11 according to any one of the first to sixth aspects. According to the present disclosure, the predicted film thickness can actually be formed on the construction surface of the workpiece.
  • the film forming condition generating method of the film forming condition generating apparatus 11 of the present disclosure is based on the relative angle ⁇ between the work W and the thermal spray gun 14, the distance D from the thermal spray gun 14 to the work W, and the movement of the thermal spray gun 14 with respect to the work W.
  • a predicted value calculation step of calculating a predicted value of the thickness of the coating to be thermally sprayed onto the workpiece W using the thermal spray gun 14 based on parameters including the speed V and the movement path of the thermal spray gun 14; and a prediction of the coating thickness. If the value is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range, the film forming conditions are set. In the parameter setting step of updating parameters by optimization calculation and the predicted value calculation step, the predicted value of the film thickness is calculated again using the updated parameters.
  • the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.
  • the film forming method of the present disclosure executes film forming based on the film forming conditions set by the film forming condition generation method. According to the present disclosure, the predicted film thickness can actually be formed on the construction surface of the workpiece.
  • the film forming condition generation program of the film forming condition generating apparatus 11 of the present disclosure includes the relative angle ⁇ between the workpiece W and the thermal spraying gun 14, the distance D from the thermal spraying gun 14 to the workpiece W, and the movement of the thermal spraying gun 14 with respect to the workpiece W.
  • the parameter setting step of updating parameters by optimization calculation and the predicted value calculation step cause the computer to calculate the predicted value of the film thickness again using the updated parameters.
  • the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.

Abstract

The present invention suppresses film thickness from becoming non-uniform. This film deposition condition generation device includes: a predicted value calculation unit that calculates a predicted value of the film thickness of a coating sprayed on a workpiece using a thermal spray gun, such prediction being on the basis of parameters including the relative angle between the workpiece and the thermal spray gun, the distance from the thermal spray gun to the workpiece, the movement speed of the thermal spray gun relative to the workpiece, and the movement route of the thermal spray gun; and a parameter setting unit that sets a film deposition condition on the basis of the parameters used for calculation of the predicted value when the predicted value of the film thickness is within an allowable range, and that updates the parameters by an optimization calculation for film thickness when the predicted value of the film thickness is outside of the allowable range. The predicted value calculation unit uses the updated parameters to re-calculate the predicted value of the film thickness.

Description

成膜条件生成装置、成膜装置、成膜条件生成方法、成膜方法及び成膜条件生成プログラムFilm-forming condition generation device, film-forming device, film-forming condition generation method, film-forming method, and film-forming condition generation program
 本開示は、成膜条件生成装置、成膜装置、成膜条件生成方法、成膜方法及び成膜条件生成プログラムに関するものである。 The present disclosure relates to a film formation condition generation device, a film formation apparatus, a film formation condition generation method, a film formation method, and a film formation condition generation program.
 製品にコーティングする技術が知られている。例えば、特許文献1には、溶射膜厚と、溶射距離と、溶射ガンの移動速度と、溶射ガンとワークとの角度とに基づき、コーティング膜厚の予測方法が開示されている。 The technology of coating products is known. For example, Patent Document 1 discloses a method for predicting the coating film thickness based on the spray film thickness, the spray distance, the moving speed of the spray gun, and the angle between the spray gun and the workpiece.
特開2011-184778号公報Japanese Patent Application Publication No. 2011-184778
 しかし、ワークの形状によっては溶射ガンのパスを重ねる必要が生じるなどの理由により、膜厚が不均一になるおそれがある。 However, depending on the shape of the workpiece, it may be necessary to overlap the passes of the thermal spray gun, which may cause the film thickness to become non-uniform.
 本開示は、上記に鑑みてなされたものであり、膜厚が不均一になることを抑制可能な膜厚条件生成装置、成膜装置、成膜条件生成方法、成膜方法及び成膜条件生成プログラムを提供することを目的とする。 The present disclosure has been made in view of the above, and provides a film thickness condition generating apparatus, a film forming apparatus, a film forming condition generating method, a film forming method, and a film forming condition generating apparatus capable of suppressing non-uniform film thickness. The purpose is to provide programs.
 本開示に係る成膜条件生成装置は、ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出部と、前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定部と、前記予測値算出部は、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出する。 The film forming condition generation device according to the present disclosure includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation unit that calculates a predicted value of the thickness of a coating to be thermally sprayed on the workpiece using the thermal spray gun, based on parameters including; , setting film forming conditions based on the parameters used to calculate the predicted value, and updating the parameters by optimization calculation of the film thickness if the predicted value of the film thickness is outside the allowable range. The parameter setting unit and the predicted value calculation unit recalculate the predicted value of the film thickness using the updated parameters.
 本開示に係る成膜条件生成方法は、ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定ステップと、前記予測値算出ステップは、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出する。 The film forming condition generation method according to the present disclosure includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation step of calculating a predicted value of a film thickness of a coating to be thermally sprayed on the workpiece using the thermal spray gun based on parameters including; and if the predicted value of the film thickness is within an allowable range; , setting film forming conditions based on the parameters used to calculate the predicted value, and updating the parameters by optimization calculation of the film thickness if the predicted value of the film thickness is outside the allowable range. In the parameter setting step and the predicted value calculation step, the predicted value of the film thickness is calculated again using the updated parameters.
 本開示に係る成膜条件生成プログラムは、ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定ステップと、前記予測値算出ステップは、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出すること、をコンピュータに実行させる。 A film forming condition generation program according to the present disclosure includes a relative angle between a workpiece and a thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation step of calculating a predicted value of a film thickness of a coating to be thermally sprayed on the workpiece using the thermal spray gun based on parameters including; and if the predicted value of the film thickness is within an allowable range; , setting film forming conditions based on the parameters used to calculate the predicted value, and updating the parameters by optimization calculation of the film thickness if the predicted value of the film thickness is outside the allowable range. The parameter setting step and the predicted value calculation step cause the computer to calculate the predicted value of the film thickness again using the updated parameters.
 本開示によれば、膜厚が不均一になることを抑制できる。 According to the present disclosure, it is possible to suppress the film thickness from becoming non-uniform.
図1は、本実施形態の成膜システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a film forming system of this embodiment. 図2は、成膜装置の模式的なブロック図である。FIG. 2 is a schematic block diagram of the film forming apparatus. 図3は、成膜方法の一例を示す図である。FIG. 3 is a diagram showing an example of a film forming method. 図4は、成膜方法の一例を示す図である。FIG. 4 is a diagram showing an example of a film forming method. 図5は、成膜条件生成装置のブロック図である。FIG. 5 is a block diagram of the film forming condition generation device. 図6は、パラメータを説明するための模式図である。FIG. 6 is a schematic diagram for explaining parameters. 図7は、成膜条件生成装置の処理を示すフローチャートである。FIG. 7 is a flowchart showing the processing of the film forming condition generation device. 図8は、コーティングの施工例を示す模式図である。FIG. 8 is a schematic diagram showing an example of coating construction. 図9は、ワークに突起部がある場合のコーティングの施工例を示す模式図である。FIG. 9 is a schematic diagram showing an example of coating when a workpiece has a protrusion.
 以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、以下に記載した実施形態における構成要素は、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。 Preferred embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to this embodiment, and if there are multiple embodiments, the present disclosure also includes a configuration in which each embodiment is combined. In addition, the components in the embodiments include those that can be easily imagined by those skilled in the art, those that are substantially the same, and those that are in the so-called equivalent range. Furthermore, the components in the embodiments described below can be omitted, replaced, or modified in various ways without departing from the gist of the present invention.
<成膜システム>
 図1は、本実施形態の成膜システムを表す概略構成図である。
<Film forming system>
FIG. 1 is a schematic configuration diagram showing the film forming system of this embodiment.
 本実施形態において、図1に示すように、成膜システム1は、成膜装置10と、成膜条件生成装置11と、ロボット12と、溶射ガン14と、ターンテーブル18とを有する。    In this embodiment, as shown in FIG. 1, the film forming system 1 includes a film forming apparatus 10, a film forming condition generating apparatus 11, a robot 12, a thermal spray gun 14, and a turntable 18.   
 (成膜装置)
 成膜装置10は、成膜条件生成装置11により設置された成膜条件に基づいて、ロボット12及び溶射ガン14を制御することで、コーティングの対象となる部材であるワークWにコーティングを施す装置である。成膜装置10は、ロボット12及び溶射ガン14を制御することで、ワークWの施工面Waに対して溶射物20を溶射させ、施工面Wa上に、溶射物20が固化することでコーティングを形成させる。
(Film forming equipment)
The film-forming device 10 is a device that applies a coating to a work W, which is a member to be coated, by controlling a robot 12 and a thermal spray gun 14 based on film-forming conditions set by a film-forming condition generating device 11. It is. The film forming apparatus 10 controls the robot 12 and the thermal spray gun 14 to spray the thermal spray material 20 onto the construction surface Wa of the workpiece W, and coats the construction surface Wa by solidifying the thermal spray material 20. Let it form.
 図2は、成膜装置の模式的なブロック図である。成膜装置10は、例えばコンピュータであり、図2に示すように、記憶部10Aと、制御部10Bとを有する。記憶部10Aは、制御部10Bの演算内容やプログラムの情報などを記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read ONlyMemory)のような主記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置とのうち、少なくとも1つを含む。 FIG. 2 is a schematic block diagram of the film deposition apparatus. The film forming apparatus 10 is, for example, a computer, and as shown in FIG. 2, has a storage section 10A and a control section 10B. The storage unit 10A is a memory that stores calculation contents and program information of the control unit 10B, and includes, for example, a main storage device such as a RAM (Random Access Memory), a ROM (Read ONly Memory), and an HDD (Hard Disk). The storage device includes at least one external storage device such as a drive.
 制御部10Bは、演算装置であり、CPU(Central Processing Unit)などの演算回路を含む。制御部10Bは、成膜条件取得部10B1と成膜部10B2とを含む。制御部10Bは、記憶部10Aからプログラム(ソフトウェア)を読み出して実行することで、成膜条件取得部10B1と成膜部10B2を実現して、それらの処理を実行する。なお、制御部10Bは、1つのCPUによって処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、成膜条件取得部10B1と成膜部10B2との少なくとも一部を、ハードウェア回路で実現してもよい。また、記憶部10Aが保存する制御部10B用のプログラムは、成膜装置10が読み取り可能な記憶媒体に記憶されていてもよい。 The control unit 10B is an arithmetic device and includes an arithmetic circuit such as a CPU (Central Processing Unit). The control section 10B includes a film formation condition acquisition section 10B1 and a film formation section 10B2. The control unit 10B reads and executes a program (software) from the storage unit 10A, thereby realizing a film-forming condition acquisition unit 10B1 and a film-forming unit 10B2, and executes these processes. Note that the control unit 10B may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs. Further, at least a portion of the film forming condition acquisition section 10B1 and the film forming section 10B2 may be realized by a hardware circuit. Further, the program for the control unit 10B stored in the storage unit 10A may be stored in a storage medium readable by the film forming apparatus 10.
 成膜条件取得部10B1は、成膜条件生成装置11により設定された成膜条件を取得する。成膜条件とは、ワークWにコーティングを施す際の、成膜部10B2による制御条件を指す。本実施形態における成膜条件としては、例えば、溶射ガン14のワークWに対する移動速度と、溶射ガン14の移動経路とが挙げられる。例えば、成膜条件取得部10B1は、図示しない通信部を介して、成膜条件生成装置11により設定された成膜条件を取得してもよいし、成膜条件生成装置11により設定された成膜条件が、図示しない入力部に入力されることで、成膜条件を取得してもよい。成膜条件生成装置11による成膜条件の設定については後述する。 The film-forming condition acquisition unit 10B1 acquires the film-forming conditions set by the film-forming condition generation device 11. The film-forming conditions refer to conditions controlled by the film-forming unit 10B2 when coating the workpiece W. The film forming conditions in this embodiment include, for example, the moving speed of the thermal spray gun 14 with respect to the work W and the moving path of the thermal spray gun 14. For example, the film-forming condition acquisition unit 10B1 may acquire the film-forming conditions set by the film-forming condition generating device 11 via a communication unit (not shown), or may acquire the film-forming conditions set by the film-forming condition generating device 11. The film forming conditions may be acquired by inputting the film conditions to an input unit (not shown). Setting of film forming conditions by the film forming condition generation device 11 will be described later.
 成膜部10B2は、成膜条件取得部10B1により取得された成膜条件(成膜条件生成装置11により設定された成膜条件)に基づいて、ワークWの施工面Waに対して溶射物20を溶射させることで、施工面Wa上にコーティングを施す。本実施形態の例では、成膜部10B2は、成膜条件に基づいて、ロボット12、溶射ガン14及びターンテーブル18を制御して、ワークWの施工面Waに対して溶射物20を溶射させる。 The film forming unit 10B2 applies a thermal spray material 20 to the construction surface Wa of the workpiece W based on the film forming conditions acquired by the film forming condition acquiring unit 10B1 (the film forming conditions set by the film forming condition generating device 11). A coating is applied on the construction surface Wa by thermal spraying. In the example of this embodiment, the film forming unit 10B2 controls the robot 12, the thermal spray gun 14, and the turntable 18 based on the film forming conditions to spray the thermal spray material 20 onto the construction surface Wa of the workpiece W. .
 ロボット12は、成膜装置10(成膜部10B2)の制御により、溶射ガン14の位置及び向きの少なくとも一方を変化させる機構であり、本実施形態では、溶射ガン14の位置及び向きの両方を変化させる。ロボット12は、溶射ガン14の位置及び向きの少なくとも一方を変化可能な任意の機構であってよいが、例えば、垂直多関節6軸のロボットであり、上部に溶射ガン14が取り付けられる。 The robot 12 is a mechanism that changes at least one of the position and orientation of the thermal spray gun 14 under the control of the film forming apparatus 10 (film forming section 10B2). In this embodiment, the robot 12 changes both the position and orientation of the thermal spray gun 14. change. The robot 12 may be any mechanism capable of changing at least one of the position and orientation of the thermal spray gun 14, but is, for example, a vertically articulated six-axis robot, with the thermal spray gun 14 attached to the top.
 溶射ガン14は、成膜装置10(成膜部10B2)の制御により、溶射物20を射出する装置である。溶射ガン14は、溶射物20を射出する溶射口16(図3、図4参照)に対向する位置に配置されたワークWの施工面Waに対して、溶射物20を溶射して、施工面Waにコーティングを生成する。 The thermal spray gun 14 is a device that injects a thermal spray material 20 under the control of the film forming apparatus 10 (film forming section 10B2). The thermal spray gun 14 sprays the thermal spray material 20 onto the construction surface Wa of the workpiece W, which is placed at a position facing the thermal spray port 16 (see FIGS. 3 and 4) that injects the thermal spray material 20. Create a coating on Wa.
 ターンテーブル18は、ワークWを支持する機構である。ターンテーブル18は、成膜装置10(成膜部10B2)の制御により、指示したワークWの位置及び向きの少なくとも一方を変化させる機構であり、本実施形態では、ワークWの位置及び向きの両方を変化させる。ターンテーブル18は、ワークWの位置及び向きの少なくとも一方を変化させる任意の機構であってよいが、本実施形態の例では、溶射ガン14の溶射口16に対向する位置に施工面Waが向くように回転するテーブルである。 The turntable 18 is a mechanism that supports the workpiece W. The turntable 18 is a mechanism that changes at least one of the position and orientation of the instructed workpiece W under the control of the film-forming apparatus 10 (film-forming section 10B2), and in this embodiment, both the position and orientation of the workpiece W are changed. change. The turntable 18 may be any mechanism that changes at least one of the position and orientation of the workpiece W, but in the example of this embodiment, the construction surface Wa is directed to a position facing the thermal spraying port 16 of the thermal spraying gun 14. It is a table that rotates like this.
 (成膜方法)
 図3及び図4は、成膜方法の一例を示す図である。
(Film forming method)
3 and 4 are diagrams showing an example of a film forming method.
 図3に示すように、溶射ガン14は、基部15と、基部15の先端に設けられて、溶射物20を射出する溶射口16とを有する。図4に示すように、成膜装置10(成膜部10B2)は、取得した成膜条件に示される移動経路及び移動速度に従って、溶射ガン14を移動させつつ、溶射物20を溶射させる。本実施形態の例では、移動経路は、図4に示すようにラダー状に設定されるため、溶射ガン14は、移動経路に沿ってラダー状に移動しつつ、溶射物20を溶射する。より詳しくは、図4の例では、移動経路は、Y方向に沿った一方向に移動した後に、ピッチPの長さ分だけX方向に移動して、Y方向に沿った他方に移動するラダー状の軌跡であるが、それに限られず、移動経路は任意の軌跡であってよい。 As shown in FIG. 3, the thermal spray gun 14 has a base 15 and a thermal spray port 16 provided at the tip of the base 15 to inject the thermal spray material 20. As shown in FIG. 4, the film forming apparatus 10 (film forming section 10B2) sprays the thermal spray material 20 while moving the thermal spray gun 14 according to the moving path and moving speed indicated by the acquired film forming conditions. In the example of this embodiment, the moving route is set in a ladder shape as shown in FIG. 4, so the thermal spray gun 14 sprays the spray material 20 while moving in a ladder shape along the moving route. More specifically, in the example of FIG. 4, the movement path is a ladder that moves in one direction along the Y direction, then moves in the X direction by the length of pitch P, and then moves in the other direction along the Y direction. Although the trajectory is not limited to this, the movement route may be any trajectory.
 (成膜条件生成装置)
 図5は、成膜条件生成装置のブロック図である。成膜条件生成装置11は、例えばコンピュータであり、図5に示すように、入力部40と、出力部42と、記憶部44と、制御部46と、を有する。
(Film forming condition generation device)
FIG. 5 is a block diagram of the film forming condition generation device. The film forming condition generation device 11 is, for example, a computer, and includes an input section 40, an output section 42, a storage section 44, and a control section 46, as shown in FIG.
 入力部40は、ユーザによる操作を受け付ける機構であり、例えばマウス、キーボード、タッチパネルなどであってよい。また、記憶部44に記憶されているパラメータを読み出して、自動で入力してもよい。出力部42は、画像を表示するディスプレイ等の表示装置を含み、出力制御部52により、制御部46に処理された情報を出力する。 The input unit 40 is a mechanism that accepts operations by the user, and may be, for example, a mouse, a keyboard, a touch panel, etc. Alternatively, the parameters stored in the storage unit 44 may be read and automatically input. The output unit 42 includes a display device such as a display that displays images, and outputs processed information to the control unit 46 by the output control unit 52.
 記憶部44は、制御部46の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAMと、ROMのような主記憶装置と、HDDなどの外部記憶装置のうち、少なくとも1つを含む。記憶部44が記憶する制御部46用のプログラムは、成膜条件生成装置11が読み取り可能な記憶媒体に記憶されていてもよい。 The storage unit 44 is a memory that stores various information such as calculation contents and programs of the control unit 46, and includes at least one of a RAM, a main storage device such as a ROM, and an external storage device such as an HDD. including. The program for the control unit 46 stored in the storage unit 44 may be stored in a storage medium that can be read by the film forming condition generation device 11.
 制御部46は、成膜条件の設定を行う演算装置であり、例えばCPUなどの演算回路を含む。制御部46は、予測値算出部48と、パラメータ設定部50と、出力制御部52とを含む。制御部46は、記憶部44からプログラム(ソフトウェア)を読み出して実行することで、予測値算出部48と、パラメータ設定部50と、出力制御部52とを実現して、それらの処理を実行する。なお、制御部46は、1つのCPUによってこれらの処理を実行してもよいし、複数のCPUを備えてそれらの複数のCPUで、処理を実行してもよい。また、予測値算出部48と、パラメータ設定部50と、出力制御部52との処理の少なくとも一部を、ハードウェア回路で実現してもよい。 The control unit 46 is a calculation device that sets film forming conditions, and includes a calculation circuit such as a CPU, for example. The control section 46 includes a predicted value calculation section 48, a parameter setting section 50, and an output control section 52. The control unit 46 reads a program (software) from the storage unit 44 and executes it to realize a predicted value calculation unit 48, a parameter setting unit 50, and an output control unit 52, and executes the processing thereof. . Note that the control unit 46 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Further, at least a part of the processing of the predicted value calculation section 48, the parameter setting section 50, and the output control section 52 may be realized by a hardware circuit.
 (予測値算出部)
 予測値算出部48は、溶射ガン14からワークWに溶射されて形成されるコーティングの膜厚の予測値を、予測値を算出するためのパラメータに基づいて算出する。具体的には、予測値算出部48は、予測値を算出するためのパラメータを用いて、溶射ガン14の動作を模擬した解析(ロボットシミュレーション)を実行することで、膜厚の予測値を算出する。
(Predicted value calculation unit)
The predicted value calculation unit 48 calculates a predicted value of the film thickness of the coating formed by thermal spraying from the thermal spray gun 14 onto the workpiece W, based on parameters for calculating the predicted value. Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness by executing an analysis (robot simulation) that simulates the operation of the thermal spray gun 14 using parameters for calculating the predicted value. do.
 (パラメータの取得)
 図6は、パラメータを説明するための模式図である。予測値算出部48は、予測値を算出するためのパラメータを取得する。予測値算出部48は、相対角度φと距離Dと移動速度Vと移動経路とを、パラメータとして取得する。相対角度φとは、解析上でのワークWと溶射ガン14とのなす角度を指し、例えば、溶射ガン14の溶射口16の中心軸と、ワークWの施工面Waに直交する軸とのなす角度であってよい。また、距離Dとは、解析上での溶射ガン14からワークWまでの距離を指し、例えば、溶射ガン14の溶射口16からワークWの施工面Waまでの間の最短距離であってよい。また、移動速度Vとは、解析上での、溶射ガン14のワークWに対する移動速度を指す。また、移動経路とは、解析上での溶射ガン14が移動する経路の情報を指し、例えば、タイミング毎の溶射ガン14の位置(座標)を示す情報であってよい。
(obtaining parameters)
FIG. 6 is a schematic diagram for explaining parameters. The predicted value calculation unit 48 acquires parameters for calculating the predicted value. The predicted value calculation unit 48 obtains the relative angle φ, the distance D, the moving speed V, and the moving route as parameters. The relative angle φ refers to the angle formed between the workpiece W and the thermal spraying gun 14 in analysis, for example, the angle formed between the central axis of the thermal spraying port 16 of the thermal spraying gun 14 and the axis perpendicular to the construction surface Wa of the workpiece W. It can be an angle. Further, the distance D refers to the distance from the thermal spray gun 14 to the workpiece W in analysis, and may be, for example, the shortest distance from the thermal spraying port 16 of the thermal spraying gun 14 to the construction surface Wa of the workpiece W. Further, the moving speed V refers to the moving speed of the thermal spray gun 14 with respect to the workpiece W in analysis. Further, the moving route refers to information on the route along which the thermal spray gun 14 moves in analysis, and may be information indicating the position (coordinates) of the thermal spray gun 14 at each timing, for example.
 本実施形態においては、予測値算出部48は、後述のパラメータ設定部50により設定された、移動速度Vと移動経路とを取得する。また、予測値算出部48は、パラメータ設定部50により設定された移動経路に基づいて、移動経路に沿った溶射ガン14の位置毎に、相対角度φと距離Dとを設定する。具体的には、予測値算出部48は、移動経路と、解析上におけるワークWの位置とに基づいて、移動経路に沿った溶射ガン14の位置毎に、解析上において溶射ガン14とワークWが干渉するかを判断する。予測値算出部48は、相対角度φと距離Dとを予め決められた所定値としつつ、設定された移動経路で溶射ガン14を移動させた際に、溶射ガン14とワークWが干渉する場合に、溶射ガン14とワークWが干渉すると判断し、その際に溶射ガン14とワークWが干渉しない場合には、溶射ガン14とワークWが干渉しないと判断する。予測値算出部48は、溶射ガン14とワークWが干渉しないと判断した場合には、相対角度φと距離Dとを、予め決められた所定値に設定する。一方、予測値算出部48は、溶射ガン14とワークWが干渉すると判断した場合には、相対角度φと距離Dの少なくとも一方を、所定値から異ならせる。言い換えれば、予測値算出部48は、ワークWと干渉しない溶射ガン14の位置においては、相対角度φと距離Dとを所定値に保ち、ワークWと干渉する溶射ガン14の位置においては、相対角度φと距離Dとを、所定値から異ならせる。なお、所定値は、予め決められた任意の値であってよいが、このように、干渉しないと想定される場合には、相対角度φと距離Dとを所定値に保ち、干渉すると想定される場合には所定値からずらすことで、実際の溶射ガン14の動作を高精度に模擬して、膜厚の予測値を高精度に算出できる。 In the present embodiment, the predicted value calculation unit 48 acquires the moving speed V and the moving route set by the parameter setting unit 50, which will be described later. Further, the predicted value calculation section 48 sets the relative angle φ and the distance D for each position of the thermal spray gun 14 along the movement path based on the movement path set by the parameter setting section 50. Specifically, the predicted value calculation unit 48 calculates the relationship between the thermal spray gun 14 and the workpiece W in the analysis for each position of the thermal spray gun 14 along the movement path based on the movement path and the position of the workpiece W in the analysis. determine whether it interferes. The predicted value calculation unit 48 calculates a case where the thermal spraying gun 14 and the workpiece W interfere when the thermal spraying gun 14 is moved along a set movement route while setting the relative angle φ and the distance D to predetermined values. In this case, it is determined that the thermal spray gun 14 and the work W will interfere, and if the thermal spray gun 14 and the work W do not interfere at that time, it is determined that the thermal spray gun 14 and the work W do not interfere. When the predicted value calculation unit 48 determines that the thermal spray gun 14 and the workpiece W do not interfere, the predicted value calculation unit 48 sets the relative angle φ and the distance D to predetermined values. On the other hand, when the predicted value calculation unit 48 determines that the thermal spray gun 14 and the workpiece W will interfere, it changes at least one of the relative angle φ and the distance D from a predetermined value. In other words, the predicted value calculation unit 48 maintains the relative angle φ and the distance D at predetermined values at the position of the thermal spray gun 14 that does not interfere with the work W, and maintains the relative angle φ and the distance D at predetermined values at the position of the thermal spray gun 14 that interferes with the work W. The angle φ and the distance D are made different from predetermined values. Note that the predetermined value may be any predetermined value, but in this case, when it is assumed that there will be no interference, the relative angle φ and the distance D are kept at predetermined values, and it is assumed that there will be interference. In this case, by shifting from the predetermined value, the actual operation of the thermal spray gun 14 can be simulated with high precision, and the predicted value of the film thickness can be calculated with high precision.
 なお、相対角度φと距離Dについての所定値は、予め決められた任意の値であってよく、例えば溶射ガン14の位置毎に一定であることが好ましい。例えば、相対角度φの所定値は、20度から30度であることが好ましいが、最大45度までとすることができる。また、予測値算出部48は、相対角度φと距離Dとを所定値から異ならせる場合には、相対角度φと距離Dとが、所定値に対して所定範囲内に収まるように、相対角度φと距離Dとを設定することが好ましい。言い換えれば、予測値算出部48は、相対角度φと距離Dとの自由度を制限することが好ましい。ここでの所定範囲は任意に設定してよいが、例えば、相対角度φの所定範囲については、所定値に対して一方向側に最大45度ずれた値から、他方向側に最大45度ずれた値までの範囲としてよい。また例えば、距離Dの所定範囲については、所定値に対して5%短い値から、所定値に対して11%長い値までの範囲としてよい。このように相対角度φと距離Dとの自由度を制限することで、実際の溶射ガン14の動作を高精度に模擬して、膜厚の予測値を高精度に算出できる。また、所定値は、相対角度φと距離Dとを溶射ガン14がワークWのいずれにも干渉しないように予め決めておき、解析する際に移動速度Vと移動経路とを調整してよい。 Note that the predetermined values for the relative angle φ and the distance D may be any predetermined values, and are preferably constant for each position of the thermal spray gun 14, for example. For example, the predetermined value of the relative angle φ is preferably 20 degrees to 30 degrees, but can be up to 45 degrees. In addition, when the relative angle φ and the distance D are set to be different from the predetermined values, the predicted value calculation unit 48 calculates the relative angle It is preferable to set φ and distance D. In other words, the predicted value calculation unit 48 preferably limits the degree of freedom between the relative angle φ and the distance D. The predetermined range here may be set arbitrarily, but for example, for the predetermined range of the relative angle φ, a value that is shifted by a maximum of 45 degrees in one direction with respect to the predetermined value may be shifted by a maximum of 45 degrees in the other direction. The range may be up to the specified value. Further, for example, the predetermined range of the distance D may range from a value 5% shorter than the predetermined value to a value 11% longer than the predetermined value. By restricting the degrees of freedom between the relative angle φ and the distance D in this way, the actual operation of the thermal spray gun 14 can be simulated with high precision, and the predicted value of the film thickness can be calculated with high precision. Furthermore, the predetermined values may be such that the relative angle φ and the distance D are determined in advance so that the thermal spray gun 14 does not interfere with any of the work W, and the moving speed V and the moving route may be adjusted during analysis.
 また、パラメータ設定部50により設定される移動速度Vについても、所定値に対して所定範囲内に収まるように設定されることが好ましい。ここでの所定範囲は任意に設定してよいが、例えば、所定値に対して33%低い値から、所定値に対して33%高い値までの範囲としてよい。このように移動速度Vの自由度を制限することで、実際の溶射ガン14の動作を高精度に模擬して、膜厚の予測値を高精度に算出できる。なお、パラメータのうちの移動経路(ピッチP)については、実機とシミュレーションとで膜厚への影響が近く分かりやすいため、所定値に対して所定範囲内に収まるように設定しなくてよく、言い換えれば、特に制限を設けなくてよい。 It is also preferable that the moving speed V set by the parameter setting unit 50 be set within a predetermined range with respect to a predetermined value. The predetermined range here may be set arbitrarily, and may range from a value 33% lower than the predetermined value to a value 33% higher than the predetermined value, for example. By restricting the degree of freedom of the moving speed V in this manner, the actual operation of the thermal spray gun 14 can be simulated with high precision, and the predicted value of the film thickness can be calculated with high precision. Regarding the movement path (pitch P) among the parameters, the influence on the film thickness is close and easy to understand between the actual machine and the simulation, so there is no need to set it so that it falls within a predetermined range for a predetermined value. In other words, there is no need to set any particular restrictions.
 (予測値の算出)
 予測値算出部48は、以上のように取得したパラメータに基づいて、膜厚の予測値を算出する。すなわち、予測値算出部48は、取得したパラメータに示される相対角度φと距離Dと移動速度Vと移動経路とに従って、溶射ガン14がワークWに溶射を行うことを模擬した解析を実行することで、ワークWの施工面Wa上の位置毎の、コーティングの膜厚の予測値を算出する。具体的には、予測値算出部48は、溶射ガン14の停止状態での膜厚を予測する膜厚予測式を用いて、取得したパラメータに基づいて、停止状態での膜厚の予測値を算出する。そして、予測値算出部48は、溶射ガン14が、パラメータで示された移動速度Vと移動経路に従って移動したことを模擬するように、停止状態での膜厚の予測値を施工面Wa上の位置毎に重ね合わせることで、施工面Wa上の位置毎の、膜厚の予測値を算出する。なお、膜厚予測式は、例えば次の式(1)に示されたものを用いてよい。
(Calculation of predicted value)
The predicted value calculation unit 48 calculates the predicted value of the film thickness based on the parameters acquired as described above. That is, the predicted value calculation unit 48 executes an analysis simulating the thermal spraying gun 14 spraying the workpiece W according to the relative angle φ, distance D, moving speed V, and moving route indicated by the acquired parameters. Then, a predicted value of the coating thickness is calculated for each position on the construction surface Wa of the workpiece W. Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness when the thermal spray gun 14 is stopped based on the obtained parameters using a film thickness prediction formula that predicts the film thickness when the thermal spray gun 14 is stopped. calculate. Then, the predicted value calculation unit 48 calculates the predicted value of the film thickness in the stopped state on the construction surface Wa so as to simulate that the thermal spray gun 14 moves according to the moving speed V and the moving route indicated by the parameters. By overlapping each position, a predicted value of the film thickness is calculated for each position on the construction surface Wa. Note that the film thickness prediction formula may be, for example, the one shown in the following formula (1).
 T=T0・Δφ・ΔD・ΔV ・・・(1) T=T0・Δφ・ΔD・ΔV...(1)
 ここで、Tは、膜厚の予測値である。また、Δφは、相対角度φの所定値からのずれ量が、膜厚に与える影響度合いを示す値であり、例えば、予め設定された係数と、相対角度φの所定値からのずれ量とに基づいて算出される。また、ΔDは、距離Dの所定値からのずれ量が、膜厚に与える影響度合いを示す値であり、例えば、予め設定された係数と、距離Dの所定値からのずれ量とに基づいて算出される。また、ΔVは、移動速度Vの所定値からのずれ量が、膜厚に与える影響度合いを示す値であり、例えば、予め設定された係数と、移動速度Vの所定値からのずれ量とに基づいて算出される。また、T0は、膜厚の基準値であり、相対角度φ、距離D、及び移動速度Vが所定値である場合の膜厚の予測値である。T0は、予め設定された値を用いてよい。式(1)の膜厚計算式により1筋の成膜部の断面膜厚情報を得ることができる。全体の膜厚は、筋を重ねることにより形成されるので、ピッチP(隣り合う移動経路同士の間の距離)に基づいて算出される。すなわち、式(1)で算出した1筋の成膜部を、ピッチP毎に重ね合わせることで、全体の膜厚を算出できる。 Here, T is the predicted value of the film thickness. In addition, Δφ is a value indicating the degree of influence that the amount of deviation of the relative angle φ from a predetermined value has on the film thickness. Calculated based on Further, ΔD is a value indicating the degree of influence that the amount of deviation of the distance D from a predetermined value has on the film thickness, for example, based on a preset coefficient and the amount of deviation of the distance D from a predetermined value. Calculated. Further, ΔV is a value indicating the degree of influence that the amount of deviation of the moving speed V from a predetermined value has on the film thickness. Calculated based on Further, T0 is a reference value of the film thickness, and is a predicted value of the film thickness when the relative angle φ, the distance D, and the moving speed V are predetermined values. A preset value may be used for T0. Using the film thickness calculation formula (1), it is possible to obtain cross-sectional film thickness information of one line of film formation. Since the overall film thickness is formed by overlapping the stripes, it is calculated based on the pitch P (distance between adjacent movement paths). That is, by overlapping one line of the film-formed portion calculated using equation (1) at each pitch P, the entire film thickness can be calculated.
 なお、予測値算出部48は、膜厚の予測値と共に、コーティングに要する施工時間の予測値も算出することが好ましい。ここでの施工時間とは、溶射を開始してから終了するまでの時間を指し、上述の解析により、膜厚の予測値と共に算出される。 Note that it is preferable that the predicted value calculation unit 48 calculates not only the predicted value of the film thickness but also the predicted value of the construction time required for coating. The construction time here refers to the time from the start to the end of thermal spraying, and is calculated together with the predicted value of the film thickness by the above-mentioned analysis.
 (パラメータ設定部)
 パラメータ設定部50は、予測値算出部48により算出された膜厚の予測値に基づいて、膜厚の予測値を算出し直すためのパラメータを設定する。
(Parameter setting section)
The parameter setting unit 50 sets parameters for recalculating the predicted value of the film thickness based on the predicted value of the film thickness calculated by the predicted value calculating unit 48.
 (パラメータの再設定)
 パラメータ設定部50は、予測値算出部48により算出された膜厚の予測値が、許容範囲内であるかを判断して、許容範囲外である場合には、膜厚の最適化計算により、パラメータを再設定する(パラメータを更新する)。例えば、パラメータ設定部50は、施工面Wa上の位置毎の膜厚の少なくとも1つが許容範囲外である場合に、膜厚の予測値が許容範囲外と判断してよく、位置毎の膜厚の全てが許容範囲内である場合に、膜厚の予測値が許容ないと判断してよい。ここでの許容範囲は任意に設定してよい。本実施形態では、パラメータ設定部50は、膜厚の予測値算出に用いるパラメータのうちの、移動速度Vと移動経路とを再設定する。パラメータ設定部50は、最適化計算として、粒子群最適化法を用いる。パラメータ設定部50は、例えば、膜厚の許容値を制約(ペナルティ関数p(x))とし、位置毎の膜厚の予測値のばらつきを目的関数f(x)として、評価関数g(x)=f(x)+a・p(x)が最小となる移動経路と移動速度Vとを算出して、膜厚の予測値を算出し直すための値とする。パラメータ設定部50は、移動速度Vを、所定値に対して所定範囲内に収まるように設定することが好ましい。ここでの所定範囲は任意に設定してよいが、例えば、所定値に対して33%低い値から所定値に対して33%高い値までの範囲としてよい。一方、パラメータ設定部50は、移動経路(ピッチP)については、所定値に対して所定範囲内に収まるように設定しなくてもよく、言い換えれば、自由度を制限しなくてよい。
(Resetting parameters)
The parameter setting unit 50 determines whether the predicted value of the film thickness calculated by the predicted value calculation unit 48 is within the allowable range, and if it is outside the allowable range, the parameter setting unit 50 determines whether the predicted value of the film thickness calculated by the predicted value calculating unit 48 is within the allowable range. Reset parameters (update parameters). For example, when at least one of the film thicknesses at each position on the construction surface Wa is outside the permissible range, the parameter setting unit 50 may determine that the predicted value of the film thickness is outside the permissible range; If all of the values are within the allowable range, it may be determined that the predicted value of the film thickness is not allowable. The allowable range here may be set arbitrarily. In this embodiment, the parameter setting unit 50 resets the moving speed V and the moving route among the parameters used to calculate the predicted value of the film thickness. The parameter setting unit 50 uses a particle swarm optimization method as the optimization calculation. For example, the parameter setting unit 50 sets the allowable value of the film thickness as a constraint (penalty function p(x)), and sets the variation in the predicted value of the film thickness for each position as an objective function f(x), and sets an evaluation function g(x). The moving path and moving speed V that minimize =f(x)+a·p(x) are calculated and used as values for recalculating the predicted value of the film thickness. It is preferable that the parameter setting unit 50 sets the moving speed V so that it falls within a predetermined range with respect to a predetermined value. The predetermined range here may be set arbitrarily, and may be, for example, a range from a value 33% lower than the predetermined value to a value 33% higher than the predetermined value. On the other hand, the parameter setting unit 50 does not need to set the movement path (pitch P) so that it falls within a predetermined range with respect to a predetermined value, in other words, it does not need to limit the degree of freedom.
 予測値算出部48は、パラメータ設定部50により再設定されたパラメータ(ここでは移動速度Vと移動経路)を用いて、上述の方法で解析を行うことで、膜厚の予測値を算出する。予測値算出部48及びパラメータ設定部50は、膜厚の予測値が許容範囲内となるまでこの処理を繰り返す。なお、予測値算出部48が最初に膜厚の予測値を算出する際のパラメータは、例えばあらかじめ決められた所定値を用いてよい。 The predicted value calculation unit 48 calculates the predicted value of the film thickness by performing analysis using the above-described method using the parameters reset by the parameter setting unit 50 (here, the moving speed V and the moving route). The predicted value calculation unit 48 and the parameter setting unit 50 repeat this process until the predicted value of the film thickness falls within the allowable range. Note that, for example, a predetermined value may be used as a parameter when the predicted value calculation unit 48 first calculates the predicted value of the film thickness.
 (成膜条件の設定)
 パラメータ設定部50は、予測値算出部48により算出された膜厚の予測値が、許容範囲内である場合には、その予測値の算出に用いたパラメータに基づいて、成膜条件を設定する。本実施形態では、パラメータ設定部50は、許容範囲内となった膜厚の予測値算出に用いたパラメータそのものを成膜条件として設定する。具体的には、パラメータ設定部50は、許容範囲内となった膜厚の予測値算出に用いた移動経路と移動速度Vとを、成膜条件として設定する。ただしそれに限られず、許容範囲内となった膜厚の予測値算出に用いたパラメータを調整した値を、成膜条件として設定してもよい。
(Setting film forming conditions)
If the predicted value of the film thickness calculated by the predicted value calculation unit 48 is within the allowable range, the parameter setting unit 50 sets the film forming conditions based on the parameters used to calculate the predicted value. . In this embodiment, the parameter setting unit 50 sets the parameters themselves used to calculate the predicted value of the film thickness that falls within the allowable range as the film forming conditions. Specifically, the parameter setting unit 50 sets the moving path and moving speed V used to calculate the predicted value of the film thickness that is within the allowable range as the film forming conditions. However, the present invention is not limited thereto, and a value obtained by adjusting the parameters used to calculate the predicted value of the film thickness that falls within the allowable range may be set as the film forming condition.
 (出力制御部)
 出力制御部52は、パラメータ設定部50により設定された成膜条件の情報を、成膜装置10に送信する。成膜装置10は、出力制御部52から送信された成膜条件に基づいて、コーティングを実行する。
(output control section)
The output control unit 52 transmits information on the film forming conditions set by the parameter setting unit 50 to the film forming apparatus 10. The film forming apparatus 10 performs coating based on the film forming conditions transmitted from the output control unit 52.
<処理フロー>
 次に、成膜条件生成装置11の処理の流れを、図7を用いて説明する。図7は、成膜条件生成装置の処理を示すフローチャートである。
<Processing flow>
Next, the processing flow of the film forming condition generation device 11 will be explained using FIG. 7. FIG. 7 is a flowchart showing the processing of the film forming condition generation device.
 成膜条件生成装置11は、予測値算出部48により、パラメータを取得する(ステップS12)。本実施形態では、予測値算出部48は、パラメータ設定部50により設定された移動速度Vと移動経路とを取得し、パラメータ設定部50により設定された移動経路に基づいて、相対角度φと距離Dとを設定する。 The film forming condition generation device 11 obtains parameters using the predicted value calculation unit 48 (step S12). In this embodiment, the predicted value calculation unit 48 acquires the moving speed V and the moving route set by the parameter setting unit 50, and calculates the relative angle φ and distance based on the moving route set by the parameter setting unit 50. Set D.
 成膜条件生成装置11は、予測値算出部48により、パラメータに基づいて、膜厚の予測値を算出する(ステップS14)。具体的に、予測値算出部48は、パラメータに基づいて解析を実行することで膜厚の予測値と施工時間の予測値とを算出する。 The film forming condition generation device 11 uses the predicted value calculation unit 48 to calculate a predicted value of the film thickness based on the parameters (step S14). Specifically, the predicted value calculation unit 48 calculates the predicted value of the film thickness and the predicted value of the construction time by performing analysis based on the parameters.
 成膜条件生成装置11は、パラメータ設定部50により、膜厚の予測値が、許容範囲内であるかを判断する(ステップS16)。許容範囲は任意に設定されてよく、例えばオペレータにより予め設定されてもよい。パラメータ設定部50は、膜厚の予測値が許容範囲外と判断した場合(ステップS16;No)、最適化計算によりパラメータを更新する(ステップS18)。具体的には、パラメータ設定部50は、移動速度Vと移動経路とを設定する。その後、ステップS12に戻り、予測値算出部48は、更新されたパラメータを用いて、膜厚の予測値を算出し直す。 The film forming condition generation device 11 uses the parameter setting unit 50 to determine whether the predicted value of the film thickness is within an allowable range (step S16). The allowable range may be set arbitrarily, and may be set in advance by an operator, for example. When the parameter setting unit 50 determines that the predicted value of the film thickness is outside the allowable range (step S16; No), the parameter setting unit 50 updates the parameters by optimization calculation (step S18). Specifically, the parameter setting unit 50 sets the moving speed V and the moving route. Thereafter, the process returns to step S12, and the predicted value calculation unit 48 uses the updated parameters to recalculate the predicted value of the film thickness.
 成膜条件生成装置11は、膜厚の予測値が、許容範囲内であると判断した場合(ステップS16;Yes)、その予測値に用いたパラメータに基づいて成膜条件を設定する(ステップS20)。 When the film-forming condition generation device 11 determines that the predicted value of the film thickness is within the allowable range (step S16; Yes), it sets the film-forming conditions based on the parameters used for the predicted value (step S20). ).
 なお、以上の説明では、成膜条件を設定する成膜条件生成装置11と、成膜条件に基づき成膜を実行する成膜装置10とが、別の装置であった。ただしそれに限られず、成膜条件生成装置11と成膜装置10とが、同じ装置であってよい。すなわち例えば、成膜装置10が、成膜条件生成装置11の機能を兼ね備えて、予測値算出部48及びパラメータ設定部50の処理を実行して成膜条件を設定しつつ、その成膜条件に基づいて成膜を実行してもよい。 Note that in the above description, the film forming condition generating device 11 that sets film forming conditions and the film forming device 10 that performs film forming based on the film forming conditions are different devices. However, the present invention is not limited thereto, and the film-forming condition generation device 11 and the film-forming device 10 may be the same device. That is, for example, the film forming apparatus 10 has the functions of the film forming condition generating apparatus 11, executes the processes of the predicted value calculation unit 48 and the parameter setting unit 50, sets the film forming conditions, and also sets the film forming conditions. Film formation may be performed based on the above.
 次に、施工例について説明する。図8は、コーティングの施工例を示す模式図である。 Next, construction examples will be explained. FIG. 8 is a schematic diagram showing an example of coating construction.
 図8に示すように、成膜装置10は、移動経路32aの範囲でコーティング30aを成膜し、移動経路32aと一部が重複する移動経路32bの範囲でコーティング30bを成膜する場合がある。このように、移動経路32bが重複する場合には、重複して成膜されることで膜厚が不均一になるおそれがあるが、本実施形態のように、膜厚の予測値を算出と最適化計算とを繰り返して成膜条件を設定することで、移動経路が重複するケースもあらかじめ想定して、膜厚が不均一とならないように成膜条件を決めることができる。 As shown in FIG. 8, the film forming apparatus 10 may form a coating 30a in a range of a movement path 32a, and may form a coating 30b in a range of a movement path 32b that partially overlaps the movement path 32a. . In this way, when the moving paths 32b overlap, there is a risk that the film thickness will become uneven due to overlapping film formation.However, as in this embodiment, when the predicted value of the film thickness is calculated By repeating optimization calculations and setting the film forming conditions, it is possible to assume in advance the case where the movement paths overlap, and to determine the film forming conditions so that the film thickness does not become non-uniform.
 図9は、ワークに突起部がある場合のコーティングの施工例を示す模式図である。 FIG. 9 is a schematic diagram showing an example of coating when the workpiece has a protrusion.
 図9に示すように、施工面Waから突起部60が突出している形状のワークWに対して、コーティングする場合がある。このような場合には、図8に示した平板に対してコーティングを行う場合よりも、移動経路が複雑になり、膜厚が不均一になりやすい。例えば、図9の移動経路32a、32bに示すように、移動経路同士を重ねる必要性が高くなり、膜厚が特に不均一になりやすい。それに対して、本実施形態のように、膜厚の予測値を算出と最適化計算とを繰り返して成膜条件を設定することで、移動経路が複雑となるケースも予め想定して、膜厚が不均一とならないように成膜条件を決めることができる。具体的に、移動経路32aと、移動経路32bとが重なる領域ARは、同移動速度、同ピッチで成膜を行うと、膜厚がほぼ倍増する。厚くなった膜厚を均一化するために、例えば、移動経路32bは、位置32bAから加速し、領域ARを通過した位置32bBから減速して、施工面Wa外で折り返す。折り返す際には、位置32bBから加速し、位置32bAから減速する。このように領域ARで減速することで、膜厚を調整できる。移動経路32aについても同様である。ただし、ロボット12は、急な加減速ができない。特に、溶射成膜において、ロボット12の能力に対して、速い移動速度での移動が要求され、加減速がある領域(位置32aA、32bA)では、膜厚のばらつきが生じやすい。このため、領域ARの加速を確実にするため、早めの加速を指示すると、位置32aA、32bAの手前が薄くなる。一方、加速の指示が遅すぎると、領域ARに厚い膜圧が生じる。現状の産業用ロボットの加減速能力では、速度のみで完璧に膜厚を均一化することは不可能に近いが、本実施形態のように、ピッチPと移動速度Vの両方を最適化することで、要求値によっては、許容の誤差範囲に入れることができる。しかし、複雑な現象の場合には、マニュアルで制御することはほぼ不可能である。これに対し、ロボットシミュレーションでは、上述のような加減速能力を踏まえた実際の速度を予測できるため、予測に基づいた膜厚分布も予測できる。本実施形態のようなシミュレーション結果をもとに、移動速度V、ピッチPを最適方向に再設定する手順を繰り返す手法を用いることで、膜厚分布が最適となるロボットへの指示値を予測することができる。 As shown in FIG. 9, a workpiece W having a shape in which a protrusion 60 protrudes from the construction surface Wa may be coated. In such a case, the moving path becomes more complicated than when coating a flat plate as shown in FIG. 8, and the film thickness tends to become non-uniform. For example, as shown in the movement paths 32a and 32b in FIG. 9, it becomes more necessary to overlap the movement paths, and the film thickness tends to become particularly non-uniform. On the other hand, as in this embodiment, by repeatedly calculating the predicted value of the film thickness and performing optimization calculations to set the film forming conditions, the film thickness is The film forming conditions can be determined so that the film does not become non-uniform. Specifically, in the region AR where the moving path 32a and the moving path 32b overlap, if the film is formed at the same moving speed and the same pitch, the film thickness will almost double. In order to make the increased film thickness uniform, for example, the movement path 32b accelerates from a position 32bA, decelerates from a position 32bB that passes through the area AR, and turns back outside the construction surface Wa. When turning around, the vehicle accelerates from position 32bB and decelerates from position 32bA. By decelerating in the region AR in this manner, the film thickness can be adjusted. The same applies to the moving route 32a. However, the robot 12 cannot perform sudden acceleration or deceleration. Particularly, in thermal spray film formation, the robot 12 is required to move at a high speed relative to its ability, and variations in film thickness are likely to occur in areas where there is acceleration and deceleration (positions 32aA, 32bA). Therefore, if early acceleration is instructed in order to ensure the acceleration of the area AR, the area in front of the positions 32aA and 32bA becomes thinner. On the other hand, if the acceleration instruction is too slow, a thick film pressure will occur in the region AR. With the acceleration and deceleration capabilities of current industrial robots, it is almost impossible to completely equalize the film thickness using speed alone, but as in this embodiment, it is possible to optimize both the pitch P and the movement speed V. Depending on the required value, it can be placed within an acceptable error range. However, in the case of complex phenomena, manual control is almost impossible. On the other hand, in robot simulation, the actual speed can be predicted based on the above-mentioned acceleration/deceleration ability, so the film thickness distribution can also be predicted based on the prediction. Based on the simulation results as in this embodiment, by using a method of repeating the procedure of resetting the moving speed V and pitch P in the optimal direction, the instruction values for the robot that will optimize the film thickness distribution are predicted. be able to.
<効果>
 本開示の第1態様に係る成膜条件生成装置11は、ワークWと溶射ガン14との相対角度φと、溶射ガン14からワークWまでの距離Dと、溶射ガン14のワークWに対する移動速度Vと、溶射ガン14の移動経路とを含むパラメータに基づいて、溶射ガン14を用いてワークWに溶射されるコーティングの膜厚の予測値を算出する予測値算出部48と、膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、膜厚の予測値が前記許容範囲外である場合には、膜厚の最適化計算によりパラメータを更新するパラメータ設定部50と、予測値算出部48は、更新されたパラメータを用いて、膜厚の予測値を再度算出する。
<Effect>
The film forming condition generation device 11 according to the first aspect of the present disclosure determines the relative angle φ between the work W and the thermal spray gun 14, the distance D from the thermal spray gun 14 to the work W, and the moving speed of the thermal spray gun 14 with respect to the work W. a predicted value calculation unit 48 that calculates a predicted value of the film thickness of the coating to be thermally sprayed onto the workpiece W using the thermal spray gun 14 based on parameters including V and the movement path of the thermal spray gun 14; If the value is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range, the film forming conditions are set. The parameter setting unit 50, which updates parameters through optimization calculation, and the predicted value calculation unit 48 use the updated parameters to calculate the predicted value of the film thickness again.
 本開示によると、膜厚を均一化することができる。また、膜厚が局所的に薄くなることを抑制できる。 According to the present disclosure, the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.
 さらに言えば、溶射成膜では、溶射ガンを高速で動かす必要があり、加減速が必要な加工面に対する制御は、溶射ガンの能力を超える場合がある。このような場合には、移動速度が指示通り出ておらず、さらには、移動経路である教示点も指示通り動かない場合(溶射ガンが近道を通る等)が起こりうるため、マニュアルでは、溶射ガンの能力に起因するばらつきまで考慮したプログラミングはできない。そのため、例えば図9の領域ARなどの移動経路が重なる領域などにおいて、特に膜厚の不均一が発生しやすい。それに対して、本実施形態によると、溶射ガンの能力を考慮した解析によりパラメータを設定するため、溶射ガンの能力を適切に反映して、膜厚を均一化することが可能となる。 Furthermore, in thermal spray film formation, it is necessary to move the thermal spray gun at high speed, and control over the processed surface that requires acceleration and deceleration may exceed the capability of the thermal spray gun. In such a case, the movement speed may not be as instructed, and furthermore, the teaching point, which is the movement route, may not move as instructed (the thermal spray gun takes a shortcut, etc.). Programming that takes into account variations caused by the gun's capabilities is not possible. Therefore, non-uniformity in film thickness is particularly likely to occur in areas where movement paths overlap, such as the area AR in FIG. 9, for example. On the other hand, according to the present embodiment, the parameters are set by analysis that takes into account the ability of the thermal spray gun, so it is possible to appropriately reflect the ability of the thermal spray gun and make the film thickness uniform.
 また、溶射ガンは、加工面を越えて折り返すように移動経路が設定される場合があるため、折り返し時間を短くしないと、施工時間が延びてしまい、コストや工数が増加するおそれがある。一方、折り返し時間を短くするために折り返し箇所を近づけすぎると、加工面の縁の膜厚に影響が生じる。このため、折り返し箇所を最適にする必要がある。それに対して、本実施形態によると、折り返し箇所も含めて移動経路を設定することで、折り返し箇所も最適化することが可能となる。 Furthermore, since the movement path of the thermal spray gun may be set so as to turn back over the processing surface, unless the turn-back time is shortened, the construction time will be extended, which may increase costs and man-hours. On the other hand, if the folding points are placed too close together in order to shorten the folding time, the film thickness at the edge of the processed surface will be affected. Therefore, it is necessary to optimize the turning point. On the other hand, according to the present embodiment, by setting a travel route including the turning points, it is possible to optimize the turning points as well.
 また、膜厚のばらつきにより膜厚の厚い方の許容値を軽微に超えた場合には、超えた部分を研磨することで、許容値内に収めることもできる。一方、膜厚が許容値よりも薄い場合には、追加成膜を行う必要があるが、追加成膜は、研磨より工数やコストが大きい。このため、実際の膜厚が軽微な許容範囲外であっても、追加成膜をなくし、研磨を行う方が良好である。すなわち例えば、加工面が複雑で全体を許容範囲内に入れられない場合においても、少なくとも、許容範囲より厚くなることを許容しつつ許容範囲より薄くなることを許容するように成膜条件を設定することができる。これにより、工数やコストの大幅な増加を抑制できる。 Additionally, if the thicker film slightly exceeds the tolerance due to variations in film thickness, it is possible to bring it within the tolerance by polishing the exceeded portion. On the other hand, if the film thickness is thinner than the allowable value, it is necessary to perform additional film formation, but additional film formation requires more steps and costs than polishing. Therefore, even if the actual film thickness is slightly outside the allowable range, it is better to eliminate additional film formation and perform polishing. In other words, for example, even if the machined surface is complex and the entire surface cannot be kept within the allowable range, the film formation conditions should be set so that at least it can be thicker than the allowable range and thinner than the allowable range. be able to. This makes it possible to suppress a significant increase in man-hours and costs.
 本開示の第2態様に係る成膜条件生成装置11は、第1態様に係る成膜条件生成装置11であって、パラメータ設定部50は、最適化計算により、パラメータのうちの、移動速度Vと移動経路とを設定する。本開示によると、膜厚の均一化の精度を向上できる。 The film-forming condition generating device 11 according to the second aspect of the present disclosure is the film-forming condition generating device 11 according to the first aspect, in which the parameter setting unit 50 determines the moving speed V of the parameters by optimization calculation. and a travel route. According to the present disclosure, the accuracy of making the film thickness uniform can be improved.
 本開示の第3態様に係る成膜条件生成装置11は、第1態様又は第2態様に係る成膜条件生成装置11であって、予測値算出部48は、相対角度φ、距離D、及び移動速度Vが所定範囲に収まる条件下で、膜厚の予測値を算出する。本開示によると、予測したい条件範囲と予測精度の両方を向上できる。 The film-forming condition generating device 11 according to the third aspect of the present disclosure is the film-forming condition generating device 11 according to the first aspect or the second aspect, and the predicted value calculation unit 48 calculates the relative angle φ, the distance D, and The predicted value of the film thickness is calculated under the condition that the moving speed V falls within a predetermined range. According to the present disclosure, both the condition range to be predicted and the prediction accuracy can be improved.
 本開示の第4態様に係る成膜条件生成装置11は、第1態様から第3態様のいずれかに係る成膜条件生成装置11であって、予測値算出部48は、移動経路に沿った溶射ガン14の位置毎に、溶射ガン14とワークWが干渉するかを判断し、干渉しないと判断した位置における相対角度φ及び距離Dを、所定値に保ち、かつ、干渉すると判断した位置における相対角度φ及び距離Dの少なくとも一方を、所定値から異ならせる条件下で、膜厚の予測値を算出する。本開示によると、施工面から突起部が突出していても、その接合部周辺の膜厚も均一化することができる。また、施工面の周囲に溶射ガンが干渉する干渉物があっても、膜厚を均一化することができる。 The film-forming condition generating device 11 according to the fourth aspect of the present disclosure is the film-forming condition generating device 11 according to any of the first to third aspects, in which the predicted value calculation unit 48 For each position of the thermal spraying gun 14, it is determined whether the thermal spraying gun 14 and the workpiece W will interfere, and the relative angle φ and distance D at the position where it is determined that there will be no interference are kept at predetermined values, and at the position where it is determined that there will be interference. A predicted value of the film thickness is calculated under conditions in which at least one of the relative angle φ and the distance D is made different from a predetermined value. According to the present disclosure, even if the projection protrudes from the construction surface, the film thickness around the joint can be made uniform. Further, even if there are obstacles that interfere with the thermal spray gun around the construction surface, the film thickness can be made uniform.
 本開示の第5態様に係る成膜条件生成装置11は、第1態様から第4態様のいずれかに係る成膜条件生成装置11であって、予測値算出部48は、コーティングに要する施工時間の予測値も算出する。本開示によると、施工時間を把握することができ、工数の削減につながる。 The film formation condition generation device 11 according to the fifth aspect of the present disclosure is the film formation condition generation device 11 according to any one of the first to fourth aspects, and the predicted value calculation unit 48 calculates the construction time required for coating. The predicted value of is also calculated. According to the present disclosure, construction time can be grasped, leading to reduction in man-hours.
 本開示の第6態様に係る成膜条件生成装置11は、第1態様から第5態様のいずれかに係る成膜条件生成装置11であって、パラメータ設定部50は、最適化計算として、粒子群最適化法を利用する。本開示によると、膜厚の均一化の精度を向上できる。 The film-forming condition generation device 11 according to the sixth aspect of the present disclosure is the film-forming condition generation device 11 according to any of the first to fifth aspects, in which the parameter setting unit 50 performs particle Use group optimization method. According to the present disclosure, the accuracy of making the film thickness uniform can be improved.
 本開示の成膜装置10は、第1態様から第6態様のいずれかに係る成膜条件生成装置11により設定された成膜条件に基づき、成膜を実行する。本開示によると、予測した膜厚を実際にワークの施工面に成膜できる。 The film forming apparatus 10 of the present disclosure performs film forming based on the film forming conditions set by the film forming condition generating apparatus 11 according to any one of the first to sixth aspects. According to the present disclosure, the predicted film thickness can actually be formed on the construction surface of the workpiece.
 本開示の成膜条件生成装置11の成膜条件生成方法は、ワークWと溶射ガン14との相対角度φと、溶射ガン14からワークWまでの距離Dと、溶射ガン14のワークWに対する移動速度Vと、溶射ガン14の移動経路とを含むパラメータに基づいて、溶射ガン14を用いてワークWに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、膜厚の予測値が前記許容範囲外である場合には、膜厚の最適化計算によりパラメータを更新するパラメータ設定ステップと、予測値算出ステップは、更新されたパラメータを用いて、膜厚の予測値を再度算出する。 The film forming condition generating method of the film forming condition generating apparatus 11 of the present disclosure is based on the relative angle φ between the work W and the thermal spray gun 14, the distance D from the thermal spray gun 14 to the work W, and the movement of the thermal spray gun 14 with respect to the work W. a predicted value calculation step of calculating a predicted value of the thickness of the coating to be thermally sprayed onto the workpiece W using the thermal spray gun 14 based on parameters including the speed V and the movement path of the thermal spray gun 14; and a prediction of the coating thickness. If the value is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range, the film forming conditions are set. In the parameter setting step of updating parameters by optimization calculation and the predicted value calculation step, the predicted value of the film thickness is calculated again using the updated parameters.
 本開示によると、膜厚を均一化することができる。また、膜厚が局所的に薄くなることを抑制できる。 According to the present disclosure, the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.
 本開示の成膜方法は、成膜条件生成方法により設定された成膜条件に基づき、成膜を実行する。本開示によると、予測した膜厚を実際にワークの施工面に成膜できる。 The film forming method of the present disclosure executes film forming based on the film forming conditions set by the film forming condition generation method. According to the present disclosure, the predicted film thickness can actually be formed on the construction surface of the workpiece.
 本開示の成膜条件生成装置11の成膜条件生成プログラムは、ワークWと溶射ガン14との相対角度φと、溶射ガン14からワークWまでの距離Dと、溶射ガン14のワークWに対する移動速度Vと、溶射ガン14の移動経路とを含むパラメータに基づいて、溶射ガン14を用いてワークWに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、膜厚の予測値が前記許容範囲外である場合には、膜厚の最適化計算によりパラメータを更新するパラメータ設定ステップと、予測値算出ステップは、更新されたパラメータを用いて、膜厚の予測値を再度算出すること、をコンピュータに実行させる。 The film forming condition generation program of the film forming condition generating apparatus 11 of the present disclosure includes the relative angle φ between the workpiece W and the thermal spraying gun 14, the distance D from the thermal spraying gun 14 to the workpiece W, and the movement of the thermal spraying gun 14 with respect to the workpiece W. a predicted value calculation step of calculating a predicted value of the thickness of the coating to be thermally sprayed onto the workpiece W using the thermal spray gun 14 based on parameters including the speed V and the movement path of the thermal spray gun 14; and a prediction of the coating thickness. If the value is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range, the film forming conditions are set. The parameter setting step of updating parameters by optimization calculation and the predicted value calculation step cause the computer to calculate the predicted value of the film thickness again using the updated parameters.
 本開示によると、膜厚を均一化することができる。また、膜厚が局所的に薄くなることを抑制できる。 According to the present disclosure, the film thickness can be made uniform. Further, it is possible to suppress local thinning of the film thickness.
 10 成膜装置
 11 成膜条件生成装置
 14 溶射ガン
 48 予測値算出部
 50 パラメータ設定部
 D 距離
 V 移動速度
 W ワーク
 φ 相対角度
10 Film forming device 11 Film forming condition generating device 14 Thermal spray gun 48 Predicted value calculation unit 50 Parameter setting unit D Distance V Traveling speed W Workpiece φ Relative angle

Claims (10)

  1.  ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出部と、
     前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定部と、
     前記予測値算出部は、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出する、
     成膜条件生成装置。
    The thermal spray gun is controlled based on parameters including a relative angle between the workpiece and the thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation unit that calculates a predicted value of the film thickness of the coating to be thermally sprayed on the work using the
    If the predicted value of the film thickness is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range. a parameter setting unit that updates the parameters by the film thickness optimization calculation;
    The predicted value calculation unit recalculates the predicted value of the film thickness using the updated parameters.
    Film forming condition generation device.
  2.  前記パラメータ設定部は、最適化計算により、前記パラメータのうちの、前記移動速度と前記移動経路とを設定する、
     請求項1に記載の成膜条件生成装置。
    The parameter setting unit sets the moving speed and the moving route among the parameters by optimization calculation.
    The film forming condition generation device according to claim 1.
  3.  前記予測値算出部は、前記相対角度、前記距離、及び前記移動速度が所定範囲に収まる条件下で、前記膜厚の予測値を算出する、
     請求項1又は請求項2に記載の成膜条件生成装置。
    The predicted value calculation unit calculates the predicted value of the film thickness under conditions where the relative angle, the distance, and the moving speed fall within a predetermined range.
    A film forming condition generation device according to claim 1 or claim 2.
  4.  前記予測値算出部は、
     前記溶射ガンの位置毎に、前記移動経路に沿った前記溶射ガンと前記ワークが干渉するかを判断し、
     干渉しないと判断した位置における前記相対角度及び前記距離を、所定値に保ち、かつ、干渉すると判断した位置における前記相対角度及び前記距離の少なくとも一方を、前記所定値から異ならせる条件下で、前記膜厚の予測値を算出する、
     請求項1又は請求項2に記載の成膜条件生成装置。
    The predicted value calculation unit includes:
    determining whether the thermal spraying gun and the workpiece interfere with each other along the movement path for each position of the thermal spraying gun;
    the relative angle and the distance at a position determined not to interfere are kept at predetermined values, and at least one of the relative angle and the distance at a position determined to interfere is made to differ from the predetermined value; Calculate the predicted value of film thickness,
    A film forming condition generation device according to claim 1 or claim 2.
  5.  前記予測値算出部は、コーティングに要する施工時間の予測値も算出する、
     請求項1又は請求項2に記載の成膜条件生成装置。
    The predicted value calculation unit also calculates a predicted value of the construction time required for coating.
    A film forming condition generation device according to claim 1 or claim 2.
  6.  前記パラメータ設定部は、前記最適化計算として、粒子群最適化法を利用する、
     請求項1又は請求項2に記載の成膜条件生成装置。
    The parameter setting unit uses a particle swarm optimization method as the optimization calculation.
    A film forming condition generation device according to claim 1 or claim 2.
  7.  請求項1又は請求項2に記載の成膜条件生成装置により設定された前記成膜条件に基づき、成膜を実行する、
     成膜装置。
    Performing film formation based on the film formation conditions set by the film formation condition generation device according to claim 1 or 2.
    Film deposition equipment.
  8.  ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、
     前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定ステップと、
     前記予測値算出ステップは、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出する、
     成膜条件生成方法。
    The thermal spray gun is controlled based on parameters including a relative angle between the workpiece and the thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation step of calculating a predicted value of the film thickness of the coating to be thermally sprayed on the workpiece using the method;
    If the predicted value of the film thickness is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range. a parameter setting step of updating the parameters by the film thickness optimization calculation;
    The predicted value calculation step includes recalculating the predicted value of the film thickness using the updated parameters.
    Method for generating film-forming conditions.
  9.  請求項8に記載の成膜条件生成方法により設定された前記成膜条件に基づき、成膜を実行する、
     成膜方法。
    Performing film formation based on the film formation conditions set by the film formation condition generation method according to claim 8.
    Film formation method.
  10.  ワークと溶射ガンとの相対角度と、前記溶射ガンから前記ワークまでの距離と、前記溶射ガンの前記ワークに対する移動速度と、前記溶射ガンの移動経路とを含むパラメータに基づいて、前記溶射ガンを用いて前記ワークに溶射されるコーティングの膜厚の予測値を算出する予測値算出ステップと、
     前記膜厚の予測値が許容範囲内である場合には、その予測値の算出に用いた前記パラメータに基づいて成膜条件を設定し、前記膜厚の予測値が前記許容範囲外である場合には、前記膜厚の最適化計算により前記パラメータを更新するパラメータ設定ステップと、
     前記予測値算出ステップは、更新された前記パラメータを用いて、前記膜厚の予測値を再度算出すること、
     をコンピュータに実行させる、
     成膜条件生成プログラム。
    The thermal spray gun is controlled based on parameters including a relative angle between the workpiece and the thermal spray gun, a distance from the thermal spray gun to the workpiece, a moving speed of the thermal spray gun with respect to the workpiece, and a moving path of the thermal spray gun. a predicted value calculation step of calculating a predicted value of the film thickness of the coating to be thermally sprayed on the workpiece using the method;
    If the predicted value of the film thickness is within the allowable range, the film forming conditions are set based on the parameters used to calculate the predicted value, and if the predicted value of the film thickness is outside the allowable range. a parameter setting step of updating the parameters by the film thickness optimization calculation;
    The predicted value calculation step includes recalculating the predicted value of the film thickness using the updated parameters;
    make the computer execute
    Film formation condition generation program.
PCT/JP2023/006271 2022-06-21 2023-02-21 Film deposition condition generation device, film deposition device, film deposition condition generation method, film deposition method, and film deposition condition generation program WO2023248533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022099623A JP2024000746A (en) 2022-06-21 2022-06-21 Film deposition condition generation device, film deposition apparatus, method for generating film deposition condition, method for depositing film, film deposition condition generation program
JP2022-099623 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248533A1 true WO2023248533A1 (en) 2023-12-28

Family

ID=89379400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006271 WO2023248533A1 (en) 2022-06-21 2023-02-21 Film deposition condition generation device, film deposition device, film deposition condition generation method, film deposition method, and film deposition condition generation program

Country Status (2)

Country Link
JP (1) JP2024000746A (en)
WO (1) WO2023248533A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323244A (en) * 1994-04-04 1995-12-12 Toyota Motor Corp Apparatus for calculating thickness distribution of coating film
JP2012149342A (en) * 2010-12-21 2012-08-09 Siemens Ag Method and device for coating path generation
CN104759379A (en) * 2015-04-15 2015-07-08 重庆大学 Intelligent full-process closed-loop spray painting robot based on spray painting target three-dimensional imaging technology
CN109590139A (en) * 2018-12-19 2019-04-09 航天材料及工艺研究所 The multi-shaft interlocked spray equipment of special-shaped structure piece surface heat barrier coating and spraying method
JP2021161437A (en) * 2020-03-30 2021-10-11 三菱重工業株式会社 Construction pass determination device, construction pass determination method and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323244A (en) * 1994-04-04 1995-12-12 Toyota Motor Corp Apparatus for calculating thickness distribution of coating film
JP2012149342A (en) * 2010-12-21 2012-08-09 Siemens Ag Method and device for coating path generation
CN104759379A (en) * 2015-04-15 2015-07-08 重庆大学 Intelligent full-process closed-loop spray painting robot based on spray painting target three-dimensional imaging technology
CN109590139A (en) * 2018-12-19 2019-04-09 航天材料及工艺研究所 The multi-shaft interlocked spray equipment of special-shaped structure piece surface heat barrier coating and spraying method
JP2021161437A (en) * 2020-03-30 2021-10-11 三菱重工業株式会社 Construction pass determination device, construction pass determination method and program

Also Published As

Publication number Publication date
JP2024000746A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US11213945B2 (en) Robot simulator, robot system and simulation method
CN109689309B (en) Optimization method for a coating robot and corresponding coating system
JP5144785B2 (en) Method and apparatus for predicting interference between target region of robot and surrounding object
US20160059352A1 (en) System and Method for Determining Beam Power Level Along an Additive Deposition Path
JP7401277B2 (en) robot programming device
CN105408094A (en) Printing system for three-dimensional objects
WO2023248533A1 (en) Film deposition condition generation device, film deposition device, film deposition condition generation method, film deposition method, and film deposition condition generation program
JP2000084877A (en) Off-line teaching method of robot with traverse axis
JP7086306B2 (en) Machining program generation device, laminated modeling device, machining program generation method, laminated modeling method and machine learning device
JP2009274180A (en) Robot movement plan method and device using the same
JP2001051708A (en) Numerical control method
JPH04227506A (en) Method for controlling position determining apparatus
JPS5858609A (en) Locus interpolating method of industrial robot
Yang et al. On-line Cartesian trajectory control of mechanisms along complex curves
Jin et al. A synthetic algorithm for tracking a moving object in a multiple-dynamic obstacles environment based on kinematically planar redundant manipulators
JPH09179619A (en) Method for setting up locus of coating robot
Crivelli et al. An all-in-one robotic platform for hybrid manufacturing of large volume parts
Shembekar et al. Generating robot trajectories for conformal 3d printing using non-planar layers
JPH11226886A (en) Correcting method for robot track
JPH11198073A (en) Attitude generating method for industrial robot
JP7443441B1 (en) work system
JP7088318B2 (en) Control device
JPH11231919A (en) Method for evaluating accuracy of robot track
JP7364695B2 (en) robot programming device
US11839915B2 (en) System and method for determining beam power level along an additive deposition path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826722

Country of ref document: EP

Kind code of ref document: A1