WO2023248514A1 - Detection system and detection device - Google Patents

Detection system and detection device Download PDF

Info

Publication number
WO2023248514A1
WO2023248514A1 PCT/JP2023/002707 JP2023002707W WO2023248514A1 WO 2023248514 A1 WO2023248514 A1 WO 2023248514A1 JP 2023002707 W JP2023002707 W JP 2023002707W WO 2023248514 A1 WO2023248514 A1 WO 2023248514A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
detection
particles
detected
section
Prior art date
Application number
PCT/JP2023/002707
Other languages
French (fr)
Japanese (ja)
Inventor
修一 畠山
雄一郎 上野
孝広 田所
徹 渋谷
敬介 佐々木
湧希 小泉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023248514A1 publication Critical patent/WO2023248514A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present disclosure relates to a detection system and a detection device.
  • liquid scintillators for example, liquid scintillators, ionization chambers, solid scintillators, etc. are known as methods for measuring radiation generated from nuclides in liquids such as water.
  • beta rays produced from tritium have low energy (maximum 18.6 keV) and short maximum range in liquid (approximately 6 ⁇ m). For this reason, badge measurement is performed by sampling.
  • technologies that can continuously measure radiation are being considered.
  • Patent Document 1 states, ⁇ Tritiated water, which is a sample to be measured, is introduced into a thin hollow sampling container 3 with a large sensitive area on the detection surface, and the sample is placed on both sides (detection surface) with the sampling container 3 in between.
  • the configuration is such that two systems of detection sections, a first detection section 1a and a second detection section 1b, are disposed close to each other and facing each other.Each detection section (1a or 1b) is disposed close to the sampling container 3.
  • the scintillator is equipped with a solid scintillator (2a or 2b) other than a plastic scintillator.
  • a solid scintillator (2a or 2b) other than a plastic scintillator.
  • the tritium concentration is measured by spraying a sample to be measured onto a single flat plate (claim 4, etc.). Since scintillation light is generated on the surface of the flat plate, the amount of scintillation light generated is small and the detection sensitivity is low.
  • the problem to be solved by the present disclosure is to provide a detection system and a detection device that have excellent detection sensitivity.
  • the detection device of the present disclosure includes an aggregate of particles including a phosphor that generates photons upon incidence of radiation in a liquid to be detected, and a holding unit that holds the aggregate so that the liquid to be detected can come into contact with the particles. and a detection unit that detects photons generated by the particles.
  • a detection system and a detection device having excellent detection sensitivity can be provided.
  • FIG. 1 is a schematic diagram of a detection device of the present disclosure.
  • FIG. 2 is a diagram illustrating the generation of photons when radiation is incident on particles.
  • FIG. 1 is a block diagram of a detection device of the present disclosure. This is the content of the database and is a graph showing the relationship between count rate and dose rate.
  • FIG. 2 is a block diagram of an analysis device. It is a graph regarding the electric pulse signal measured when it is assumed that the output of the detection part is measured.
  • It is a system diagram showing a detection system of the present disclosure, and is a diagram in which a liquid to be detected flows in one direction with respect to a detection device.
  • FIG. 2 is a system diagram showing the detection system of the present disclosure, and is a diagram in which the liquid to be detected flows in the other direction with respect to the detection device.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 3 is a schematic diagram of a detection device according to another embodiment.
  • FIG. 1 is a schematic diagram of a detection device 1 of the present disclosure.
  • the detection device 1 is capable of continuously measuring the dose of radiation 27 (FIG. 2) in the detection liquid 25, for example, on-line.
  • the liquid to be detected 25 flows through a forming member 26 that forms a flow path for the liquid to be detected 25 .
  • the detection device 1 detects radiation 27 in the liquid to be detected 25 flowing through the forming member 26 .
  • the forming member 26 is a member that forms a flow path for the liquid to be detected 25, and is, for example, a pipe.
  • the liquid to be detected 25 usually contains a nuclide 9 (FIG. 2) that generates radiation 27 (FIG. 2).
  • the nuclide 9 is, for example, tritium, although it is not particularly limited.
  • the generated radiation 27 includes, but is not particularly limited to, particle beams such as ⁇ rays, ⁇ rays, and neutron beams, and electromagnetic waves such as X rays and ⁇ rays. Among them, ⁇ rays and ⁇ rays are preferable.
  • the detection liquid 25 usually contains the nuclide 9 in a dissolved or dispersed state.
  • the portion of the liquid to be detected 25 excluding the nuclide 9 is not particularly limited as long as it is a liquid, and for example, it may be an aqueous solution such as seawater or brackish water (brine, etc.), but it may also be fresh water.
  • the detection device 1 includes a generation section 2 and a detection section 5.
  • the generation section 2 includes an aggregate 31 of particles 3 and a holding section 4 .
  • the particles 3 include a phosphor (described later) that generates photons 10 (FIG. 2) upon incidence of radiation 27 (FIG. 2) in the detection liquid 25.
  • all of the particles 3 are particles of phosphor, but in addition to the phosphor, they may also include transparent particles such as glass or resin.
  • the holding unit 4 holds the aggregate 31 so that the liquid to be detected 25 can come into contact with the particles 3.
  • the holding part 4 can be configured by, for example, a housing including a liquid passage part 41 (described later).
  • the housing can shield the interior from light, allowing external light to be distinguished from photons 10 generated by particles 3.
  • the housing may not be provided, and the holding portion 4 may be formed by partitioning the inside of the forming member 26 with a liquid passage portion 41.
  • the housing is a container that accommodates the aggregate 31 and the liquid to be detected 25.
  • the material constituting the housing is not particularly limited as long as it can reflect light and accommodate the liquid to be detected 25, and for example, metals such as aluminum and stainless steel, light shielding materials such as resins, plastics, and ceramics are used. can.
  • the generation unit 2 of the detection device 1 is arranged so as to straddle the entire interior of the forming member 26.
  • the generating section 2 may straddle only part of the internal region of the forming member 26. Therefore, the liquid to be detected 25 flows through the forming member 26 via the inside of the detection device 1 (specifically, the inside of the generation section 2).
  • FIG. 2 is a diagram illustrating the generation of photons 10 when radiation 27 is incident on particle 3.
  • Radiation 27 for example, ⁇ -rays
  • the nuclide 9 for example, ⁇ -ray emitting nuclide contained in the liquid to be detected 25 .
  • the emitted radiation 27 causes an interaction with the particles 3.
  • a single photon 10 (single photon) is generated.
  • a single photon 10 is generated usually inside the particle 3.
  • a single photon 10 refers to each photon 10 generated by the interaction of the radiation 27 and the particle 3. Only one photon 10 is not necessarily generated by one incidence of radiation (one electron in the case of beta rays).
  • photon 10 is simply referred to, it means a "single photon” unless otherwise specified.
  • the photon 10 is detected by the detection unit 5 (FIG. 1), details of which will be described later.
  • the aggregate 31 of particles 3 has, for example, a powder form in a dry state, and changes into, for example, a slurry form upon contact with the detection liquid 25.
  • the particle size of the particles 3 is not limited to this numerical range, it is, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the particles 3 can typically include particles 3 falling within this numerical range, for example, but the sizes of all the particles 3 do not necessarily have to be the same.
  • Particle size can be controlled using, for example, a sieve with a predetermined mesh size.
  • the particle size is 1 ⁇ m or more and 10 ⁇ m or less, particles that do not pass through a sieve with a mesh size of 1 ⁇ m but pass through a sieve with a mesh size of 10 ⁇ m are considered as particles 3 that can be used in the detection device 1 of the present disclosure.
  • the particle size can also be controlled by, for example, agglomeration, multi-element co-precipitation, and the like.
  • the phosphor constituting the particles 3 generates light with an intensity corresponding to the dose rate of the incident radiation 27 (FIG. 2).
  • the phosphor is not particularly limited as long as it is a powdery composition that exhibits luminescence.
  • Examples of the phosphor include photoluminescence caused by light such as ultraviolet rays, radioluminescence caused by radiation 27, cathodoluminescence caused by an electron beam, electroluminescence caused by an electric field, chemiluminescence caused by a chemical reaction, and the like.
  • the phosphor includes, for example, NaI, CsI, LiI, SrI 2 , Bi 4 Ge 3 O 12 , Bi 4 Si 3 O 12 , CdWO 4 , PbWO 4 , ZnS, CaF 2 , LuAG, LuAP, Lu2O3 , Y3Al5O12 , YAlO3 , Lu2SiO5 , LYSO , Y2SiO5 , Gd2SiO5 , BaF2, CeF3 , CeBr3 , CsF , LiF , Gd2O 2S , LaBr3 , CeBr3 , Gd3Al2Ga3O12 , Cs2LiYCl6 , Cs2HfI6 , ScTaO4 , LaTaO4 , LuTaO4 , GdTaO4 , YTaO4 , InBO3 , Y2 O2 A light transmitting material such as
  • the valence of the elemental ions contained in the phosphor is not particularly limited as long as it can be used for light emission, and for example, monovalent, divalent, trivalent, quadrivalent, etc. can be used.
  • an organic phosphor such as a complex, an organic compound, etc. can be used.
  • the method for producing the phosphor is not particularly limited as long as the composition exhibits luminescence, and examples include floating zone method, Czochralski method (pulling method), micro-pulling method, Bridgman method, Bernoulli method, organic synthesis, etc. can be adopted. Further, the method for manufacturing the phosphor is not particularly limited as long as it allows for miniaturization, and for example, machining, chemical reaction, etc. can be employed.
  • the detection device 1 can increase the surface area of the particles 3 that come into contact with the liquid to be detected 25, and increase the probability of reaction with the radiation 27 (FIG. 2). Thereby, detection sensitivity can be improved.
  • the particles 3 include first particles having a first particle size and second particles having a second particle size that is 20 times or more the first particle size.
  • first particles having a first particle size
  • second particles having a second particle size that is 20 times or more the first particle size.
  • the generation section 2 (specifically, the holding section 4) includes a liquid passage section 41 having an opening 42 smaller than the particle size of the particles 3.
  • the liquid to be detected 25 comes into contact with the particles 3 by passing through the openings 42 .
  • the radiation dose can be measured by introducing the detection liquid 25 existing outside the detection device 1 into the detection device 1 and bringing it into contact with the particles 3.
  • the openings 42 are smaller in diameter than the particles 3, leakage of the particles 3 through the openings 42 can be suppressed, and the state in which the particles 3 are held in the holding part 4 can be maintained.
  • the liquid passing portions 41 are provided with the assembly 31 sandwiched therebetween.
  • the liquid passage parts 41 By arranging the liquid passage parts 41 in this manner, the liquid to be detected 25 that has flowed in from one liquid passage part 41 and has come into contact with the aggregate 31 can flow out from the other liquid passage parts 41 to the outside of the detection device 1. .
  • the liquid to be detected 25 can be easily flowed, and the time responsiveness of detection can be improved.
  • the liquid passing portion 41 is, for example, a filter. Further, in the example shown in FIG. 1, the liquid passing portions 41 are arranged to face each other.
  • the liquid passage part 41 is not particularly limited as long as it is made of a material that allows the liquid to be detected 25 to flow into the holding part 4 and can suppress leakage of the particles 3 from the holding part 4, such as metal mesh, sponge, or porous material. , ceramics, zeolite, ore, resin, etc.
  • At least the surface (inner surface) of the generation section 2 facing the particles 3 is constituted by a light reflecting member.
  • the photons 10 (FIG. 2) generated in the generation section 2 can be reflected by the light reflecting member and can be suppressed from going outside the generation section 2.
  • the number of photons 10 leaking to the outside is reduced, and the number of photons 10 directed toward the detection unit 5 is increased, thereby improving detection sensitivity. That is, by confining the photons 10 inside the holding section 4, detection sensitivity can be improved.
  • the light reflecting member is not limited as long as it is a member (for example, a plate material) that can reflect light, and for example, a metal mesh or the like can be used.
  • the light reflecting member is provided on at least a portion other than the portion connected to the detection unit 5 (surface 29). This makes it possible to confine the photons 10 and to make it easier for the photons 10 to reach the detection unit 5 .
  • the light reflecting member can be arranged, for example, at least on the inner surface of the liquid passage section 41.
  • the detection unit 5 detects photons 10 generated by the particles 3.
  • the detection unit 5 is connected to the generation unit 2 via a member (light-transmissive member) that allows photons 10 to pass therethrough. That is, the surface 29 of the generating section 2 on the side of the detecting section 5 is made of a light-transmitting member. Examples of the light-transmitting member include quartz, plastic, resin, and the like.
  • At least two detection units 5 are provided. Thereby, the detection probability of the photon 10 by the detection unit 5 can be improved, and the detection sensitivity can be improved.
  • two detection units 5 are provided so as to face each other.
  • the detection unit 5 converts each of the photons 10 generated by the generation unit 2 into an electric pulse signal. By providing such a detection unit 5, generation of photons 10 can be detected by detecting an electric pulse signal.
  • the detection unit 5 is, for example, a photomultiplier tube, an avalanche photodiode, etc., although it is not particularly limited. By using these, each photon 10 can be detected as a single current-amplified electric pulse signal.
  • the electric pulse signal generated by the conversion in the detection unit 5 is input to the counter 6 (FIG. 3).
  • FIG. 3 is a block diagram of the detection device 1 of the present disclosure. In FIG. 3, only one detection unit 5 is illustrated for simplicity of illustration.
  • the detection unit 5 is connected to the counter 6 by, for example, an electric signal line.
  • the counter 6 is connected to the analysis device 7 by, for example, an electric signal line.
  • the analysis device 7 is connected to the display device 8 by, for example, an electric signal line.
  • the counter 6 counts the electrical pulse signals input from the detection unit 5.
  • the counter 6 is not particularly limited as long as it can count electrical pulse signals, and examples thereof include a digital signal processor, a multichannel analyzer, a pulse counter, and the like.
  • the display device 8 displays the dose rate of the radiation 27 (FIG. 2) converted by the calculation unit 72 (described later).
  • the display device 8 is, for example, a display, a monitor, or the like.
  • the analysis device 7 (described later) and the display device 8 can be configured by, for example, a personal computer or the like.
  • FIG. 4 shows the contents of the database 711 and is a graph showing the relationship between the count rate and the dose rate.
  • the count value of photons 10 (FIG. 2) and the energy imparted to the phosphor constituting the particles 3 exhibit a proportional relationship. Therefore, as shown in FIG. 4, if the counting rate calculated from the measured value of each generated photon 10 can be measured, the dose rate of the radiation 27 can be determined based on the database 711. By using such a relationship, the dose rate of the radiation 27 can be converted from the calculated counting rate of the photons 10.
  • Single photon measurement can be performed by attenuating the countless photons 10 generated in the phosphor and measuring the single photon 10 that remains.
  • the photon 10 is detected by the detection unit 5 as a steep electric pulse having a time width of, for example, 2 nanoseconds.
  • the fluorescence lifetime (attenuation time constant) of the phosphor constituting the particles 3 is a time that allows the photons 10 generated by the generation unit 2 (FIG. 1) to be separated into individual photons 10.
  • the amount of light is large (ie, when the number of photons 10 is large)
  • a continuous waveform is observed as shown by signal 12.
  • the amount of attenuation is increased, the amount of light resulting from the attenuation will be observed as intermittent pulses as shown by signal 11.
  • the photons 10 can be measured by measuring the signal 11, so the generation probability of the photons 10 can be increased and the detection sensitivity can be improved.
  • the detection system 100 may include a pump (not shown) that increases the pressure of the liquid to be detected 25 on the upstream side of the detection device 1. By providing the pump, the liquid to be detected 25 can be easily circulated through the detection device 1 .
  • the pump may be placed in the main pipe 261 or in the sampling pipe 262.
  • One detection unit 5 is provided at a position opposite to the forming member 26 when viewed from the generation unit 2. By providing only one detection unit 5, the installation space of the detection device 1 can be reduced.
  • the detection unit 5 and the forming member 26 face each other with the generation unit 2 interposed therebetween.
  • the surface 30, which is a portion other than the portion connected to the detecting section 5 is preferably constituted by the above-mentioned light reflecting member. Thereby, the photons 10 can be confined inside the generation section 2. Further, it is also preferable that the surface 30 is constituted by a light shielding member. Thereby, the influence of external light can be suppressed. As the light shielding member, the matters explained in connection with the housing can be similarly applied.
  • the transmission section 20 is not particularly limited as long as it can transmit the photons 10 to the detection section 5, and examples thereof include a light guide, a lens, an optical fiber, a light pipe, an optical waveguide, and the like. Further, the surface 29 of the generating section 2 on the detecting section 5 side may be constituted by the transmitting section 20. In the example of FIG. 10, the transmission section 20 has a tapered shape that narrows from the generation section 2 toward the detection section 5. Although only one transmission section 20 is provided in the example of FIG. 10, two or more transmission sections 20 may be provided.
  • FIG. 11 is a schematic diagram of a detection device 1 according to another embodiment.
  • the detection device 1 shown in FIG. 11 is the same as the detection device 1 shown in FIG. 9 described above, but includes at least two detection units 5. By providing at least two detection units 5, detection sensitivity can be improved.
  • the detection section 5 is opposed to the generation section 2 via the generation section 2 .
  • the detection unit 5 is arranged along the direction in which the forming member 26 extends.
  • a transmission section 20 (FIG. 10) may be provided between each detection section 5 and generation section 2. Further, it is preferable that the surface 30 is formed of at least one of a light reflecting member and a light blocking member.
  • FIG. 12 is a schematic diagram of a detection device 1 according to another embodiment.
  • the detection device 1 shown in FIG. 12 includes only one detection section 5 in the detection device 1 shown in FIG. 1 above. According to the detection device 1 shown in FIG. 12, since the entire amount of the liquid to be detected 25 is passed through the generation section 2, the response sensitivity can be improved. Furthermore, since only one detection unit 5 is provided, the installation space for the detection device 1 can be reduced.
  • FIG. 14 is a schematic diagram of a detection device 1 according to another embodiment.
  • the detection device 1 shown in FIG. 14 is the same as the detection device 1 shown in FIG. 1 described above, and further includes a stirring mechanism 21 shown in FIG. 13 described above.
  • detection sensitivity can be improved and clogging of the liquid passage section 41 can be suppressed.
  • the entire amount of the liquid to be detected 25 flowing through the forming member 26 flows through the generating section 2. Therefore, by suppressing clogging of the liquid passage section 41, the pressure loss of the liquid to be detected 25 in the generation section 2 can be reduced.
  • the vibration mechanism 22 is arranged inside the generation section 2 in contact with the liquid passage section 41.
  • the location of the vibration mechanism 22 is not limited to the illustrated position as long as it can vibrate the liquid passage part 41; It may be the inside of the above-mentioned housing (not shown), etc.
  • the vibration mechanism 22 is not particularly limited as long as it can vibrate the liquid passing portion 41, and examples thereof include a motor type, an ultrasonic type, and the like.
  • the driving source for the vibration mechanism 22 is usually electricity, but for example, the liquid flow of the liquid to be detected 25 flowing through the forming member 26 may be used as the driving source.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

In order to solve the problem of providing a detection system that has excellent detection sensitivity, the present invention comprises a formation member (26) that forms a flow channel for a liquid (25) to be detected, and a detection device (1) for detecting radiation in the liquid (25) to be detected that flows through the formation member (26), the detection device (1) being provided with: a generating part (2) provided with an aggregate (31) of phosphor particles (3) that generate photons in response to incidence of radiation in the liquid (25) to be detected, and a holding part (4) that accommodates the aggregate (31) and through which the liquid (25) to be detected can pass; and a detection part for detecting photons generated from the particles (3). The holding part (4) is provided with liquid passage parts (41) having openings (42) that are smaller than the diameter of the particles (3), and the liquid (25) to be detected comes in contact with the particles (3) by passing through the openings (42).

Description

検出システム及び検出装置Detection system and detection device
 本開示は、検出システム及び検出装置に関する。 The present disclosure relates to a detection system and a detection device.
 例えば水中等の液体中で核種から生成される放射線の測定方法として、液体シンチレータ、電離箱、固体シンチレータ等が知られている。例えば、トリチウムから生成されるβ線のエネルギは低く(最大18.6keV)、液体中での最大飛程が短い(約6μm)。このため、サンプリングによるバッジ測定が行われる。しかし、バッジ測定では連続的な測定が難しいため、放射線を連続測定可能な技術が検討されている。 For example, liquid scintillators, ionization chambers, solid scintillators, etc. are known as methods for measuring radiation generated from nuclides in liquids such as water. For example, beta rays produced from tritium have low energy (maximum 18.6 keV) and short maximum range in liquid (approximately 6 μm). For this reason, badge measurement is performed by sampling. However, since it is difficult to measure continuously with badge measurements, technologies that can continuously measure radiation are being considered.
 特許文献1の要約書には「被検出面の有感面積が広く、薄い中空のサンプリング容器3に被測定試料であるトリチウム水を導入し、サンプリング容器3を挟んで両側面(被検出面)に第一の検出部1aと第二の検出部1bの、2系統の検出部を近接して対向配置させる構成とする。それぞれの検出部(1aまたは1b)は、サンプリング容器3に近接配置されるプラスチックシンチレータ以外の固体シンチレータ(2aまたは2b)を備えている。一方の固体シンチレータにおいて、トリチウム水から生成されたベータ線の入射を受けてシンチレーション光が発光されると、そのシンチレーション光は全方向に広がり、2つの検出部1a、1bの、両方の光電子増倍管7a、7bに伝搬される。」ことが記載される。 The abstract of Patent Document 1 states, ``Tritiated water, which is a sample to be measured, is introduced into a thin hollow sampling container 3 with a large sensitive area on the detection surface, and the sample is placed on both sides (detection surface) with the sampling container 3 in between. The configuration is such that two systems of detection sections, a first detection section 1a and a second detection section 1b, are disposed close to each other and facing each other.Each detection section (1a or 1b) is disposed close to the sampling container 3. The scintillator is equipped with a solid scintillator (2a or 2b) other than a plastic scintillator.When one solid scintillator receives incident beta rays generated from tritiated water and emits scintillation light, the scintillation light is emitted in all directions. and is propagated to both photomultiplier tubes 7a and 7b of the two detection units 1a and 1b.''
特開2007-178336号公報Japanese Patent Application Publication No. 2007-178336
 特許文献1に記載の技術では、1枚の平板に被測定試料を吹き掛けることで、トリチウム濃度が測定される(請求項4等)。シンチレーション光は平板表面で発生するため、発生量が少なく、検出感度が低い。
 本開示が解決しようとする課題は、優れた検出感度を有する検出システム及び検出装置の提供である。
In the technique described in Patent Document 1, the tritium concentration is measured by spraying a sample to be measured onto a single flat plate (claim 4, etc.). Since scintillation light is generated on the surface of the flat plate, the amount of scintillation light generated is small and the detection sensitivity is low.
The problem to be solved by the present disclosure is to provide a detection system and a detection device that have excellent detection sensitivity.
 本開示の検出装置は、被検出液中の放射線の入射により光子を生成する蛍光体を含む粒子の集合体と、前記被検出液を前記粒子に接触可能に、前記集合体を保持する保持部と、を備える生成部と、前記粒子で生成した光子を検出する検出部と、を備える。その他の解決手段は発明を実施するための形態において後記する。 The detection device of the present disclosure includes an aggregate of particles including a phosphor that generates photons upon incidence of radiation in a liquid to be detected, and a holding unit that holds the aggregate so that the liquid to be detected can come into contact with the particles. and a detection unit that detects photons generated by the particles. Other solutions will be described later in the detailed description.
 本開示によれば、優れた検出感度を有する検出システム及び検出装置を提供できる。 According to the present disclosure, a detection system and a detection device having excellent detection sensitivity can be provided.
本開示の検出装置の模式図である。FIG. 1 is a schematic diagram of a detection device of the present disclosure. 放射線が粒子に入射した際の光子の生成を説明する図である。FIG. 2 is a diagram illustrating the generation of photons when radiation is incident on particles. 本開示の検出装置のブロック図である。FIG. 1 is a block diagram of a detection device of the present disclosure. データベースの内容であり、計数率と線量率との関係を示すグラフである。This is the content of the database and is a graph showing the relationship between count rate and dose rate. 解析装置のブロック図である。FIG. 2 is a block diagram of an analysis device. 検出部の出力を計測したと仮定した場合に測定される電気パルス信号に関するグラフである。It is a graph regarding the electric pulse signal measured when it is assumed that the output of the detection part is measured. 本開示の検出システムを示す系統図であり、検出装置に対して被検出液を一方向に流す図である。It is a system diagram showing a detection system of the present disclosure, and is a diagram in which a liquid to be detected flows in one direction with respect to a detection device. 本開示の検出システムを示す系統図であり、検出装置に対して被検出液を他方向に流す図である。FIG. 2 is a system diagram showing the detection system of the present disclosure, and is a diagram in which the liquid to be detected flows in the other direction with respect to the detection device. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment. 別の実施形態に係る検出装置の模式図である。FIG. 3 is a schematic diagram of a detection device according to another embodiment.
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。 Hereinafter, modes for implementing the present disclosure (referred to as embodiments) will be described with reference to the drawings. In the following description of one embodiment, other embodiments applicable to the one embodiment will also be described as appropriate. The present disclosure is not limited to the following embodiments, and different embodiments can be combined or arbitrarily modified without significantly impairing the effects of the present disclosure. Further, the same members will be given the same reference numerals, and redundant explanations will be omitted. Furthermore, items having the same function shall be given the same name. The content shown in the drawings is merely schematic, and for convenience of illustration, the actual configuration may be changed to the extent that the effects of the present disclosure are not significantly impaired, or some members may be omitted or modified between drawings. Sometimes I do something.
 図1は、本開示の検出装置1の模式図である。検出装置1は、例えば被検出液25中の放射線27(図2)の線量を連続的にオンラインで測定可能なものである。被検出液25は、被検出液25の流路を形成する形成部材26を流れる。検出装置1は、形成部材26を流れる被検出液25中の放射線27を検出する。形成部材26は被検出液25の流路を形成する部材であり、例えば配管である。 FIG. 1 is a schematic diagram of a detection device 1 of the present disclosure. The detection device 1 is capable of continuously measuring the dose of radiation 27 (FIG. 2) in the detection liquid 25, for example, on-line. The liquid to be detected 25 flows through a forming member 26 that forms a flow path for the liquid to be detected 25 . The detection device 1 detects radiation 27 in the liquid to be detected 25 flowing through the forming member 26 . The forming member 26 is a member that forms a flow path for the liquid to be detected 25, and is, for example, a pipe.
 被検出液25は、通常は、放射線27(図2)を発生する核種9(図2)を含む。核種9は、特に制限されないが、例えばトリチウムである。発生する放射線27としては、特に制限されないが、α線、β線、中性子線等の粒子線、X線、γ線等の電磁波等が挙げられ、中でも、α線、β線が好ましい。被検出液25は、通常は、核種9を、溶解又は分散した状態で含む。被検出液25のうちの核種9を除く部分は、液体であれば特に制限されないが、例えば、海水、汽水等の水溶液等(かん水等)であるが、淡水でもよい。 The liquid to be detected 25 usually contains a nuclide 9 (FIG. 2) that generates radiation 27 (FIG. 2). The nuclide 9 is, for example, tritium, although it is not particularly limited. The generated radiation 27 includes, but is not particularly limited to, particle beams such as α rays, β rays, and neutron beams, and electromagnetic waves such as X rays and γ rays. Among them, α rays and β rays are preferable. The detection liquid 25 usually contains the nuclide 9 in a dissolved or dispersed state. The portion of the liquid to be detected 25 excluding the nuclide 9 is not particularly limited as long as it is a liquid, and for example, it may be an aqueous solution such as seawater or brackish water (brine, etc.), but it may also be fresh water.
 検出装置1は、生成部2と、検出部5とを備える。生成部2は、粒子3の集合体31と、保持部4とを備える。粒子3は、被検出液25中の放射線27(図2)の入射により光子10(図2)を生成する蛍光体(後記)を含む。本開示の例では、粒子3は、全て蛍光体の粒子であるが、蛍光体以外に例えばガラス、樹脂等の透明な粒子を含んでもよい。 The detection device 1 includes a generation section 2 and a detection section 5. The generation section 2 includes an aggregate 31 of particles 3 and a holding section 4 . The particles 3 include a phosphor (described later) that generates photons 10 (FIG. 2) upon incidence of radiation 27 (FIG. 2) in the detection liquid 25. In the example of the present disclosure, all of the particles 3 are particles of phosphor, but in addition to the phosphor, they may also include transparent particles such as glass or resin.
 保持部4は、被検出液25を粒子3に接触可能に、集合体31を保持する。保持部4は、例えば、通液部41(後記)を備えるハウジングにより構成できる。ハウジングにより、内部を遮光でき、外来光と、粒子3で生成した光子10とを区別できる。ただし、形成部材26が遮光性を有する場合には、ハウジングは備えられなくてもよく、形成部材26の内部を通液部41で仕切ることで保持部4を形成してもよい。 The holding unit 4 holds the aggregate 31 so that the liquid to be detected 25 can come into contact with the particles 3. The holding part 4 can be configured by, for example, a housing including a liquid passage part 41 (described later). The housing can shield the interior from light, allowing external light to be distinguished from photons 10 generated by particles 3. However, if the forming member 26 has a light-shielding property, the housing may not be provided, and the holding portion 4 may be formed by partitioning the inside of the forming member 26 with a liquid passage portion 41.
 ハウジングを備える場合、ハウジングは、集合体31及び被検出液25を収容する容器である。ハウジングを構成する材料としては、光を反射及び被検出液25を収容可能なものであれば特に限定されず、例えば、アルミニウム、ステンレス鋼等の金属、樹脂、プラスチック、セラミックス等の遮光部材を採用できる。 When a housing is provided, the housing is a container that accommodates the aggregate 31 and the liquid to be detected 25. The material constituting the housing is not particularly limited as long as it can reflect light and accommodate the liquid to be detected 25, and for example, metals such as aluminum and stainless steel, light shielding materials such as resins, plastics, and ceramics are used. can.
 検出装置1の生成部2は、図1の例では、形成部材26の内部全域に跨るように配置される。ただし、生成部2は、形成部材26の内部領域のうちの一部のみに跨ってもよい。従って、被検出液25は、検出装置1の内部(具体的には生成部2の内部)を経由して、形成部材26を流れる。 In the example of FIG. 1, the generation unit 2 of the detection device 1 is arranged so as to straddle the entire interior of the forming member 26. However, the generating section 2 may straddle only part of the internal region of the forming member 26. Therefore, the liquid to be detected 25 flows through the forming member 26 via the inside of the detection device 1 (specifically, the inside of the generation section 2).
 図2は、放射線27が粒子3に入射した際の光子10の生成を説明する図である。被検出液25に含まれる核種9(例えばβ線放出核種)から放射線27(例えばβ線)が放出される。放出された放射線27は、粒子3との間で相互作用を生じる。この相互作用に伴い、単一の光子10(単一光子)が生成する。単一の光子10は、粒子3の通常は内部で生成する。単一の光子10は、放射線27と粒子3との相互作用により生成された一つ一つの光子10をいう。光子10は、必ずしも、1回の放射線入射(β線であれば1個の電子)により、1つのみ生成するというわけではない。以下、単に光子10という場合には、特に断らない限り、「単一光子」を意味する。光子10は、詳細は後記するが、検出部5(図1)において検出される。 FIG. 2 is a diagram illustrating the generation of photons 10 when radiation 27 is incident on particle 3. Radiation 27 (for example, β-rays) is emitted from the nuclide 9 (for example, β-ray emitting nuclide) contained in the liquid to be detected 25 . The emitted radiation 27 causes an interaction with the particles 3. As a result of this interaction, a single photon 10 (single photon) is generated. A single photon 10 is generated usually inside the particle 3. A single photon 10 refers to each photon 10 generated by the interaction of the radiation 27 and the particle 3. Only one photon 10 is not necessarily generated by one incidence of radiation (one electron in the case of beta rays). Hereinafter, when photon 10 is simply referred to, it means a "single photon" unless otherwise specified. The photon 10 is detected by the detection unit 5 (FIG. 1), details of which will be described later.
 図1に戻って、粒子3の集合体31は、乾燥状態では例えば粉末状を有し、被検出液25との接触により例えばスラリー状に変化する。粒子3の粒径は、この数値範囲に限定されないが、例えば1μm以上10μm以下である。粒子3は、通常は、例えばこの数値範囲に含まれる粒子3を含むことができるが、必ずしも全ての粒子3の大きさが同じである必要はない。粒径は、例えば、所定のメッシュ径を有する篩を用いて制御できる。例えば粒径が1μm以上10μm以下の場合、例えば1μmのメッシュ径を有する篩を通らず、かつ、10μmのメッシュ径を有する篩を通る粒子を、本開示の検出装置1において使用可能な粒子3として使用できる。また、例えば、粒径は、例えば凝集、複数元素共沈等によっても制御できる。 Returning to FIG. 1, the aggregate 31 of particles 3 has, for example, a powder form in a dry state, and changes into, for example, a slurry form upon contact with the detection liquid 25. Although the particle size of the particles 3 is not limited to this numerical range, it is, for example, 1 μm or more and 10 μm or less. The particles 3 can typically include particles 3 falling within this numerical range, for example, but the sizes of all the particles 3 do not necessarily have to be the same. Particle size can be controlled using, for example, a sieve with a predetermined mesh size. For example, if the particle size is 1 μm or more and 10 μm or less, particles that do not pass through a sieve with a mesh size of 1 μm but pass through a sieve with a mesh size of 10 μm are considered as particles 3 that can be used in the detection device 1 of the present disclosure. Can be used. For example, the particle size can also be controlled by, for example, agglomeration, multi-element co-precipitation, and the like.
 粒子3を構成する蛍光体は、入射した放射線27(図2)の線量率に対応する強度の光を生成するものである。蛍光体は、ルミネッセンスを示す粉末状の組成物であれば特に限定されない。蛍光体としては、紫外線等の光による光ルミネッセンス、放射線27によるラジオルミネッセンス、電子ビームによるカソードルミネッセンス、電場によるエレクトロルミネッセンス、化学反応による化学ルミネッセンス等が挙げられる。具体的には、蛍光体は、例えば、母材としてNaI、CsI、LiI、SrI、BiGe12、BiSi12、CdWO、PbWO、ZnS、CaF、LuAG、LuAP、Lu、YAl12、YAlO、LuSiO、LYSO、YSiO、GdSiO、BaF、CeF、CeBr、CsF、LiF、GdS、LaBr、CeBr、GdAlGa12、CsLiYCl、CsHfI、ScTaO、LaTaO、LuTaO、GdTaO、YTaO、InBO、YS、ZnSiO、サイアロン蛍光体等の光透過性材料、あるいは、この光透過性材料中にLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y等の希土類元素、又はTl、Na、Ag、W、Cu、Al、Au、Mn、CO等の元素又はイオン、蛍光材料が含有された光透過性材料が挙げられる。より具体的には、InBO:Tb、InBO:Eu、ZnS:Cu、ZnS:Al、ZnS:Au、YS:Eu、YS:Tb、ZnSiO:Mn等が挙げられる。また、蛍光体に含有される元素イオンの価数は、発光に利用可能なものであれば特に限定されず、例えば、1価、2価、3価、4価等を利用できる。更に、蛍光体としては、例えば、錯体等の有機蛍光体、有機化合物等も利用できる。 The phosphor constituting the particles 3 generates light with an intensity corresponding to the dose rate of the incident radiation 27 (FIG. 2). The phosphor is not particularly limited as long as it is a powdery composition that exhibits luminescence. Examples of the phosphor include photoluminescence caused by light such as ultraviolet rays, radioluminescence caused by radiation 27, cathodoluminescence caused by an electron beam, electroluminescence caused by an electric field, chemiluminescence caused by a chemical reaction, and the like. Specifically, the phosphor includes, for example, NaI, CsI, LiI, SrI 2 , Bi 4 Ge 3 O 12 , Bi 4 Si 3 O 12 , CdWO 4 , PbWO 4 , ZnS, CaF 2 , LuAG, LuAP, Lu2O3 , Y3Al5O12 , YAlO3 , Lu2SiO5 , LYSO , Y2SiO5 , Gd2SiO5 , BaF2, CeF3 , CeBr3 , CsF , LiF , Gd2O 2S , LaBr3 , CeBr3 , Gd3Al2Ga3O12 , Cs2LiYCl6 , Cs2HfI6 , ScTaO4 , LaTaO4 , LuTaO4 , GdTaO4 , YTaO4 , InBO3 , Y2 O2 A light transmitting material such as S, ZnSiO 4 , Sialon phosphor, or a light transmitting material such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Examples include light-transmitting materials containing rare earth elements such as Lu and Y, elements or ions such as Tl, Na, Ag, W, Cu, Al, Au, Mn, and CO 3 , and fluorescent materials. More specifically, InBO3 :Tb, InBO3 :Eu, ZnS :Cu, ZnS:Al, ZnS:Au, Y2O2S :Eu, Y2O2S :Tb, ZnSiO4 : Mn , etc. Can be mentioned. Further, the valence of the elemental ions contained in the phosphor is not particularly limited as long as it can be used for light emission, and for example, monovalent, divalent, trivalent, quadrivalent, etc. can be used. Further, as the phosphor, for example, an organic phosphor such as a complex, an organic compound, etc. can be used.
 蛍光体の製造方法としては、ルミネッセンスを示す組成物であれば特に限定されず、例えば、フローティングゾーン法、チョクラルスキー法(引き上げ法)、マイクロ引下げ法、ブリッジマン法、ベルヌーイ法、有機合成等を採用できる。また、蛍光体の製造方法としては、微細化可能な方法であれば特に限定されず、例えば、機械加工、化学反応等を採用できる。検出装置1は、蛍光体の粒子3を使用することで、被検出液25と接触する粒子3の表面積を大きくでき、放射線27(図2)との反応確率を増加できる。これにより、検出感度を向上できる。 The method for producing the phosphor is not particularly limited as long as the composition exhibits luminescence, and examples include floating zone method, Czochralski method (pulling method), micro-pulling method, Bridgman method, Bernoulli method, organic synthesis, etc. can be adopted. Further, the method for manufacturing the phosphor is not particularly limited as long as it allows for miniaturization, and for example, machining, chemical reaction, etc. can be employed. By using the fluorescent particles 3, the detection device 1 can increase the surface area of the particles 3 that come into contact with the liquid to be detected 25, and increase the probability of reaction with the radiation 27 (FIG. 2). Thereby, detection sensitivity can be improved.
 別の実施形態では、粒子3は、第1粒径を有する第1粒子と、前記第1粒径の20倍以上の第2粒径を有する第2粒子とを含む。少なくとも第1粒子及び第2粒子を含むことで、保持部4の内部で粒子3が過度に密に充填されることを抑制でき、近接する粒子3間に適度な隙間を形成できる。これにより、被検出液25が生成部2を流れるときの圧力損失を低減でき、被検出液25を流し易くできる。これにより、検出の時間応答性を向上できる。 In another embodiment, the particles 3 include first particles having a first particle size and second particles having a second particle size that is 20 times or more the first particle size. By including at least the first particles and the second particles, it is possible to prevent the particles 3 from being excessively densely packed inside the holding part 4, and it is possible to form an appropriate gap between adjacent particles 3. Thereby, the pressure loss when the liquid to be detected 25 flows through the generation section 2 can be reduced, and the liquid to be detected 25 can be made to flow easily. Thereby, the time responsiveness of detection can be improved.
 図1に戻って、生成部2(具体的には保持部4)は、粒子3の粒径よりも小さな開口42を有する通液部41を備える。被検出液25は、開口42を通ることで粒子3と接触する。通液部41を備えることで、検出装置1の外部に存在する被検出液25を検出装置1に導入し、粒子3と接触させることで、放射線量を測定できる。また、開口42は粒子3の粒径よりも小さいため、開口42を通って粒子3が漏出することを抑制でき、保持部4に粒子3を保持した状態を維持できる。 Returning to FIG. 1, the generation section 2 (specifically, the holding section 4) includes a liquid passage section 41 having an opening 42 smaller than the particle size of the particles 3. The liquid to be detected 25 comes into contact with the particles 3 by passing through the openings 42 . By providing the liquid passage portion 41, the radiation dose can be measured by introducing the detection liquid 25 existing outside the detection device 1 into the detection device 1 and bringing it into contact with the particles 3. Further, since the openings 42 are smaller in diameter than the particles 3, leakage of the particles 3 through the openings 42 can be suppressed, and the state in which the particles 3 are held in the holding part 4 can be maintained.
 通液部41は、例えば、集合体31を挟んで少なくとも2つ備えられる。通液部41をこのように配置することで、一の通液部41から流入して集合体31に接触した被検出液25を、他の通液部41から検出装置1の外部に流出できる。これにより、被検出液25を流し易くでき、検出の時間応答性を向上できる。本開示の例では、通液部41は、例えばフィルタである。また、通液部41は、図1に示す例では、対向するように配置される。 For example, at least two liquid passing portions 41 are provided with the assembly 31 sandwiched therebetween. By arranging the liquid passage parts 41 in this manner, the liquid to be detected 25 that has flowed in from one liquid passage part 41 and has come into contact with the aggregate 31 can flow out from the other liquid passage parts 41 to the outside of the detection device 1. . Thereby, the liquid to be detected 25 can be easily flowed, and the time responsiveness of detection can be improved. In the example of the present disclosure, the liquid passing portion 41 is, for example, a filter. Further, in the example shown in FIG. 1, the liquid passing portions 41 are arranged to face each other.
 通液部41は、被検出液25を保持部4に流入でき、かつ、粒子3の保持部4の漏出を抑制できる素材であれば特に制限されず、例えば、金属メッシュ、スポンジ、多孔質材、セラミックス、ゼオライト、鉱石、樹脂等により構成できる。 The liquid passage part 41 is not particularly limited as long as it is made of a material that allows the liquid to be detected 25 to flow into the holding part 4 and can suppress leakage of the particles 3 from the holding part 4, such as metal mesh, sponge, or porous material. , ceramics, zeolite, ore, resin, etc.
 生成部2は、少なくとも粒子3に臨む側の面(内面)が光反射部材により構成されることが好ましい。これにより、生成部2で生成した光子10(図2)を光反射部材で反射し、生成部2の外部に向かうことを抑制できる。この結果、外部に漏れる光子10を減らすとともに検出部5に向かう光子10を増やし、検出感度を向上できる。即ち、光子10を保持部4の内部に閉じ込めることで、検出感度を向上できる。光反射部材は、光を反射可能な部材(例えば板材)であれば制限されず、例えば、金属メッシュ等を使用できる。 It is preferable that at least the surface (inner surface) of the generation section 2 facing the particles 3 is constituted by a light reflecting member. Thereby, the photons 10 (FIG. 2) generated in the generation section 2 can be reflected by the light reflecting member and can be suppressed from going outside the generation section 2. As a result, the number of photons 10 leaking to the outside is reduced, and the number of photons 10 directed toward the detection unit 5 is increased, thereby improving detection sensitivity. That is, by confining the photons 10 inside the holding section 4, detection sensitivity can be improved. The light reflecting member is not limited as long as it is a member (for example, a plate material) that can reflect light, and for example, a metal mesh or the like can be used.
 光反射部材は、検出部5に繋がる部分(面29)以外の少なくとも一部に備えられることが好ましい。これにより、光子10を閉じ込めることができるとともに、検出部5に光子10を到達し易くできる。光反射部材は、例えば、通液部41の少なくとも内面に配置できる。 It is preferable that the light reflecting member is provided on at least a portion other than the portion connected to the detection unit 5 (surface 29). This makes it possible to confine the photons 10 and to make it easier for the photons 10 to reach the detection unit 5 . The light reflecting member can be arranged, for example, at least on the inner surface of the liquid passage section 41.
 検出部5は、粒子3で生成した光子10を検出するものである。検出部5は、生成部2に対して、光子10を透過させる部材(光透過性部材)を介して接続される。即ち、検出部5側の生成部2の面29は、光透過性部材により構成される。光透過性部材としては、例えば、石英、プラスチック、樹脂等が挙げられる。 The detection unit 5 detects photons 10 generated by the particles 3. The detection unit 5 is connected to the generation unit 2 via a member (light-transmissive member) that allows photons 10 to pass therethrough. That is, the surface 29 of the generating section 2 on the side of the detecting section 5 is made of a light-transmitting member. Examples of the light-transmitting member include quartz, plastic, resin, and the like.
 検出部5は、少なくとも2つ備えられる。これにより、検出部5による光子10の検出確率を向上でき、検出感度を向上できる。図1の例では、検出部5は、対向するように、2つ備えられる。 At least two detection units 5 are provided. Thereby, the detection probability of the photon 10 by the detection unit 5 can be improved, and the detection sensitivity can be improved. In the example of FIG. 1, two detection units 5 are provided so as to face each other.
 検出部5は、生成部2で生成した光子10のそれぞれを電気パルス信号に変換する。このような検出部5を備えることで、電気パルス信号を検出することで、光子10の生成を検出できる。検出部5は、特に制限されないが、例えば、光電子増倍管、アバランシェフォトダイオード等である。これらを使用することで、それぞれの光子10を電流増幅された一つの電気パルス信号として検出できる。検出部5での変換により生成した電気パルス信号はカウンタ6(図3)に入力される。 The detection unit 5 converts each of the photons 10 generated by the generation unit 2 into an electric pulse signal. By providing such a detection unit 5, generation of photons 10 can be detected by detecting an electric pulse signal. The detection unit 5 is, for example, a photomultiplier tube, an avalanche photodiode, etc., although it is not particularly limited. By using these, each photon 10 can be detected as a single current-amplified electric pulse signal. The electric pulse signal generated by the conversion in the detection unit 5 is input to the counter 6 (FIG. 3).
 図3は、本開示の検出装置1のブロック図である。図3では、図示の簡略化のために、1つの検出部5のみが図示される。検出部5は、例えば電気信号線により、カウンタ6に接続される。カウンタ6は、例えば電気信号線により、解析装置7に接続される。解析装置7は、例えば電気信号線により、表示装置8に接続される FIG. 3 is a block diagram of the detection device 1 of the present disclosure. In FIG. 3, only one detection unit 5 is illustrated for simplicity of illustration. The detection unit 5 is connected to the counter 6 by, for example, an electric signal line. The counter 6 is connected to the analysis device 7 by, for example, an electric signal line. The analysis device 7 is connected to the display device 8 by, for example, an electric signal line.
 カウンタ6は、検出部5から入力された電気パルス信号を計数する。カウンタ6としては、電気パルス信号を計数可能であれば特に限定されず、例えば、デジタルシグナルプロセッサ、マルチチャネルアナライザ、パルスカウンタ等が挙げられる。 The counter 6 counts the electrical pulse signals input from the detection unit 5. The counter 6 is not particularly limited as long as it can count electrical pulse signals, and examples thereof include a digital signal processor, a multichannel analyzer, a pulse counter, and the like.
 表示装置8は、演算部72(後記)により換算された放射線27(図2)の線量率を表示する。表示装置8は、例えばディスプレイ、モニタ等である。解析装置7(後記)及び表示装置8は、例えば、パーソナルコンピュータ等により構成できる。 The display device 8 displays the dose rate of the radiation 27 (FIG. 2) converted by the calculation unit 72 (described later). The display device 8 is, for example, a display, a monitor, or the like. The analysis device 7 (described later) and the display device 8 can be configured by, for example, a personal computer or the like.
 解析装置7は、カウンタ6で計数された電気パルス信号の計数率を、放射線27の線量率に換算するものである。「電気パルス信号の計数率」は、単位時間あたりに測定された電気パルス信号の数である。解析装置7は、記憶部71と、演算部72とを備える。記憶部71はデータベース711を備え、データベース711は、電気パルス信号の計数率と放射線27の線量率とを対応関係を有する。データベース711を用いて、電気パルス信号の計数率から放射線27の線量率が換算される。 The analyzer 7 converts the count rate of the electric pulse signals counted by the counter 6 into the dose rate of the radiation 27. "Counting rate of electrical pulse signals" is the number of electrical pulse signals measured per unit time. The analysis device 7 includes a storage section 71 and a calculation section 72. The storage unit 71 includes a database 711, and the database 711 has a correspondence relationship between the count rate of the electric pulse signal and the dose rate of the radiation 27. Using the database 711, the dose rate of the radiation 27 is converted from the count rate of the electric pulse signal.
 図4は、データベース711の内容であり、計数率と線量率との関係を示すグラフである。通常は、光子10(図2)の計数値と粒子3を構成する蛍光体に付与されるエネルギとは、比例関係を示す。従って、図4に示すように、生成したそれぞれの光子10を計測値から算出される計数率を計測できれば、データベース711に基づき、放射線27の線量率を決定できる。このような関係を用いることで、算出した光子10の計数率から放射線27の線量率を換算できる。 FIG. 4 shows the contents of the database 711 and is a graph showing the relationship between the count rate and the dose rate. Usually, the count value of photons 10 (FIG. 2) and the energy imparted to the phosphor constituting the particles 3 exhibit a proportional relationship. Therefore, as shown in FIG. 4, if the counting rate calculated from the measured value of each generated photon 10 can be measured, the dose rate of the radiation 27 can be determined based on the database 711. By using such a relationship, the dose rate of the radiation 27 can be converted from the calculated counting rate of the photons 10.
 図5は、解析装置7のブロック図である。解析装置7、例えばCPU(Central Processing Unit)1011、RAM(Random Access Memory)1012、ROM(Read Only Memory)1013等を備えて構成される。解析装置7は、ROM1013に格納されている所定の制御プログラム(例えば解析方法)がRAM1012に展開され、CPU1011によって実行されることにより具現化される。 FIG. 5 is a block diagram of the analysis device 7. The analysis device 7 is configured to include, for example, a CPU (Central Processing Unit) 1011, a RAM (Random Access Memory) 1012, a ROM (Read Only Memory) 1013, and the like. The analysis device 7 is realized by loading a predetermined control program (for example, an analysis method) stored in the ROM 1013 into the RAM 1012 and executing it by the CPU 1011.
 図6は、検出部5の出力を計測したと仮定した場合に測定される、電気パルス信号に関するグラフである。通常、粒子3(図2)に一つの放射線27(図2)が入射すると、複数の光子10(図2)が生成する。本開示の例では、検出部5は、一つの電気パルスである信号11として、光子10を検出する。即ち、単一光子が計測され、具体的には、放射線27と粒子3との相互作用により生成した一つ一つの光子10が検出部5で測定される。光子10は、複数の光子10(2つ以上の単一の光子10の集合体)に含まれる光子10でもよい。 FIG. 6 is a graph regarding the electric pulse signal measured when the output of the detection unit 5 is measured. Typically, when a single radiation 27 (FIG. 2) is incident on a particle 3 (FIG. 2), a plurality of photons 10 (FIG. 2) are generated. In the example of the present disclosure, the detection unit 5 detects the photon 10 as a signal 11 that is one electric pulse. That is, a single photon is measured, and specifically, each photon 10 generated by the interaction between the radiation 27 and the particle 3 is measured by the detection unit 5. The photon 10 may be a photon 10 included in a plurality of photons 10 (an aggregate of two or more single photons 10).
 単一光子の計測は、蛍光体において無数に生じた光子10を減衰させることで残った単一の光子10を計測することで、実行できる。これにより、信号11に示されるように、光子10は、検出部5において例えば2ナノ秒の時間幅を持った急峻な電気パルスとして検出される。 Single photon measurement can be performed by attenuating the countless photons 10 generated in the phosphor and measuring the single photon 10 that remains. As a result, as shown by a signal 11, the photon 10 is detected by the detection unit 5 as a steep electric pulse having a time width of, for example, 2 nanoseconds.
 粒子3を構成する蛍光体の蛍光寿命(減衰時定数)は、生成部2(図1)で生成した光子10を、一つ一つの光子10に分離可能な時間であることが好ましい。光量が多い場合(即ち光子10の数が多い場合)、信号12で示されるように連続的な波形が観測される。しかし、減衰量を大きくすれば、減衰結果である光量は、信号11で示されるような、断続的なパルスとして観測される。このようにすることで、信号11を計測することで光子10を計測できるため、光子10の生成確率を増加でき、検出感度を向上できる。 It is preferable that the fluorescence lifetime (attenuation time constant) of the phosphor constituting the particles 3 is a time that allows the photons 10 generated by the generation unit 2 (FIG. 1) to be separated into individual photons 10. When the amount of light is large (ie, when the number of photons 10 is large), a continuous waveform is observed as shown by signal 12. However, if the amount of attenuation is increased, the amount of light resulting from the attenuation will be observed as intermittent pulses as shown by signal 11. By doing so, the photons 10 can be measured by measuring the signal 11, so the generation probability of the photons 10 can be increased and the detection sensitivity can be improved.
 このような蛍光体の蛍光寿命は、特に制限されないものの、例えば1μ秒以上にすることができる。 Although the fluorescence lifetime of such a phosphor is not particularly limited, it can be, for example, 1 μsec or more.
 一方で、例えば1μ秒未満の傾向寿命を有する場合、信号13に示されるように高い電圧を有する信号に変換され、電圧はすぐに減衰する。このため、特に連続的に光子10が生成する場合に、検出感度が低下し易い。 On the other hand, if it has a trend lifetime of, for example, less than 1 μs, it is converted into a signal with a high voltage, as shown in signal 13, and the voltage quickly decays. For this reason, especially when photons 10 are continuously generated, detection sensitivity tends to decrease.
 図7は、本開示の検出システム100を示す系統図であり、検出装置1に対して被検出液25(図1)を一方向に流す図である。図示の簡略化のために、検出装置1が簡略化して図示される。 FIG. 7 is a system diagram showing the detection system 100 of the present disclosure, in which the liquid to be detected 25 (FIG. 1) flows in one direction with respect to the detection device 1. For simplicity of illustration, the detection device 1 is shown in a simplified manner.
 被検出液25は、実線矢印の方向に流れる。従って、生成部2は、少なくとも1つの通液部41(図1)を通じて流入した被検出液25が集合体31(図1)と接触した後に、少なくとも1つの通液部41を通じて流出するように構成される。形成部材26は、主配管261及びサンプリング配管262を備える。主配管261には、被検出液25が流れる。サンプリング配管262は、起点及び終点を主配管261に接続し、主配管261を流れる被検出液25の一部を放射線計測のためにサンプリング配管262に分流する。 The liquid to be detected 25 flows in the direction of the solid arrow. Therefore, the generation section 2 is configured such that the liquid to be detected 25 that has flowed in through the at least one liquid passage section 41 (FIG. 1) flows out through the at least one liquid passage section 41 after coming into contact with the aggregate 31 (FIG. 1). configured. The forming member 26 includes a main pipe 261 and a sampling pipe 262. The liquid to be detected 25 flows through the main pipe 261 . The sampling pipe 262 connects a starting point and an end point to the main pipe 261, and diverts a part of the liquid to be detected 25 flowing through the main pipe 261 to the sampling pipe 262 for radiation measurement.
 検出システム100は、サンプリング配管262における被検出液25の流通方向を反転させる反転機構28を備える。反転機構28を備えることで、通液部41の目詰まりを抑制できる。反転機構28は、図示の例では、弁281,282,283,284を備える。ただし、反転機構28は、例えば、流通可能な方向を反転可能なポンプ等でもよい。 The detection system 100 includes a reversing mechanism 28 that reverses the flow direction of the liquid to be detected 25 in the sampling pipe 262. By providing the reversing mechanism 28, clogging of the liquid passing portion 41 can be suppressed. In the illustrated example, the reversing mechanism 28 includes valves 281, 282, 283, and 284. However, the reversing mechanism 28 may be, for example, a pump that can reverse the direction in which the fluid can flow.
 主配管261から分岐したサンプリング配管262は、弁281を備える配管263と、弁282を備える配管264とに更に分岐する。弁281,282は、並列に配置される。配管263は、更に、検出装置1を備える。配管263と配管264との合流部よりも主配管261側には、弁283が備えられる。検出装置1をバイパスするように、弁284を備える配管265が接続される。配管265は、弁283の下流側でサンプリング配管262に接続される。 The sampling pipe 262 branched from the main pipe 261 further branches into a pipe 263 equipped with a valve 281 and a pipe 264 equipped with a valve 282. Valves 281 and 282 are arranged in parallel. The piping 263 further includes the detection device 1. A valve 283 is provided closer to the main pipe 261 than the confluence of the pipes 263 and 264. A pipe 265 including a valve 284 is connected so as to bypass the detection device 1 . Piping 265 is connected to sampling piping 262 downstream of valve 283 .
 弁281,283が開弁され、弁282,284が閉弁されることで、被検出液25は、図7において紙面左から右に向かって(即ち一の方向に)、検出装置1の生成部2を流れる。 By opening the valves 281 and 283 and closing the valves 282 and 284, the liquid to be detected 25 flows from the left to the right in FIG. It flows through part 2.
 図8は、本開示の検出システム100を示す系統図であり、検出装置1に対して被検出液25(図1)を他方向に流す図である。弁281,283が閉弁され、弁282,284が開弁されることで、被検出液25は、図8において紙面右から左に向かって(即ち他の方向に)、検出装置1の生成部2を流れる。弁281,282,283,284の開閉制御により、検出装置1における被検出液25の流通方向を変えることができる。 FIG. 8 is a system diagram showing the detection system 100 of the present disclosure, and is a diagram in which the liquid to be detected 25 (FIG. 1) flows in the other direction with respect to the detection device 1. By closing the valves 281 and 283 and opening the valves 282 and 284, the liquid to be detected 25 moves from the right to the left in FIG. It flows through part 2. By controlling the opening and closing of the valves 281, 282, 283, and 284, the flow direction of the liquid to be detected 25 in the detection device 1 can be changed.
 なお、検出システム100は、検出装置1の上流側に、被検出液25を昇圧するポンプ(不図示)を備えてもよい。ポンプを備えることで、検出装置1に被検出液25を流通させ易くできる。ポンプは、主配管261に配置されてもよく、サンプリング配管262に配置されてもよい。 Note that the detection system 100 may include a pump (not shown) that increases the pressure of the liquid to be detected 25 on the upstream side of the detection device 1. By providing the pump, the liquid to be detected 25 can be easily circulated through the detection device 1 . The pump may be placed in the main pipe 261 or in the sampling pipe 262.
 図9は、別の実施形態に係る検出装置1の模式図である。上記図1に示す実施形態は、検出装置1は、形成部材26を跨ぐように配置された。従って、形成部材26を流れる被検出液25の全量が、生成部2を流れた。一方で、図9に示す検出装置1は、検出装置1は、形成部材26の側方に配置される。形成部材26の内部と、生成部2の内部とは、1つの通液部41により連通する。形成部材26を流れる被検出液25の一部が、流通方向を変えて通液部41を通り(例えば開口42を浸出し)、生成部2に至る。生成部2では、上記のように光子10(図2)が生成し、生成した光子10は、検出部5で検出される。 FIG. 9 is a schematic diagram of a detection device 1 according to another embodiment. In the embodiment shown in FIG. 1, the detection device 1 is arranged so as to straddle the forming member 26. As shown in FIG. Therefore, the entire amount of the liquid to be detected 25 flowing through the forming member 26 flowed through the generating section 2 . On the other hand, in the detection device 1 shown in FIG. 9 , the detection device 1 is arranged on the side of the forming member 26 . The inside of the forming member 26 and the inside of the generation section 2 communicate with each other through one liquid passage section 41 . A part of the liquid to be detected 25 flowing through the forming member 26 changes its flow direction, passes through the liquid passage portion 41 (for example, leaks out of the opening 42 ), and reaches the generation portion 2 . The generation unit 2 generates photons 10 (FIG. 2) as described above, and the generated photons 10 are detected by the detection unit 5.
 検出部5は、生成部2から視て形成部材26とは反対側の位置に、1つ備えられる。検出部5が1つのみ備えられることで、検出装置1の設置スペースを小さくできる。検出部5と形成部材26とは、生成部2を介して対向する。生成部2において、検出部5に繋がる部分以外の部分である面30は、上記の光反射部材により構成されることが好ましい。これにより、生成部2の内部に光子10を閉じ込めることができる。また、面30は、遮光部材により構成されることも好ましい。これにより、外来光による影響を抑制できる。遮光部材としては、上記ハウジングにおいて説明した事項を同様に適用できる。 One detection unit 5 is provided at a position opposite to the forming member 26 when viewed from the generation unit 2. By providing only one detection unit 5, the installation space of the detection device 1 can be reduced. The detection unit 5 and the forming member 26 face each other with the generation unit 2 interposed therebetween. In the generating section 2, the surface 30, which is a portion other than the portion connected to the detecting section 5, is preferably constituted by the above-mentioned light reflecting member. Thereby, the photons 10 can be confined inside the generation section 2. Further, it is also preferable that the surface 30 is constituted by a light shielding member. Thereby, the influence of external light can be suppressed. As the light shielding member, the matters explained in connection with the housing can be similarly applied.
 図10は、別の実施形態に係る検出装置1の模式図である。検出装置1は、生成部2と検出部5との間に、生成部2で生成した光子10(図2)を検出部5に伝送する伝送部20を備える。伝送部20を備えることで、光子10を検出部5に高効率に伝送でき、検出感度を向上できる。 FIG. 10 is a schematic diagram of a detection device 1 according to another embodiment. The detection device 1 includes a transmission unit 20 between the generation unit 2 and the detection unit 5, which transmits photons 10 (FIG. 2) generated by the generation unit 2 to the detection unit 5. By providing the transmission section 20, the photons 10 can be transmitted to the detection section 5 with high efficiency, and detection sensitivity can be improved.
 伝送部20としては、光子10を検出部5に伝送可能なものであれば特に限定されず、例えば、光ガイド、レンズ、光ファイバ、光パイプ、光導波路等が挙げられる。また、検出部5側の生成部2の面29を伝送部20によって構成してもよい。伝送部20は、図10の例では、生成部2から検出部5に向かって窄まるテーパ状を有する。伝送部20は、図10の例では1つのみ備えられるが、2つ以上備えられてもよい。 The transmission section 20 is not particularly limited as long as it can transmit the photons 10 to the detection section 5, and examples thereof include a light guide, a lens, an optical fiber, a light pipe, an optical waveguide, and the like. Further, the surface 29 of the generating section 2 on the detecting section 5 side may be constituted by the transmitting section 20. In the example of FIG. 10, the transmission section 20 has a tapered shape that narrows from the generation section 2 toward the detection section 5. Although only one transmission section 20 is provided in the example of FIG. 10, two or more transmission sections 20 may be provided.
 図11は、別の実施形態に係る検出装置1の模式図である。図11に示す検出装置1は、上記図9に示す検出装置1において、少なくとも2つの検出部5が備えられる。少なくとも2つの検出部5を備えることで、検出感度を向上できる。検出部5は、生成部2を介して対向する。検出部5は、形成部材26の延在方向に沿って配置される。夫々の検出部5と生成部2との間には、伝送部20(図10)が備えられてもよい。また、面30は、光反射部材又は遮光部材の少なくとも一方により構成されることが好ましい。 FIG. 11 is a schematic diagram of a detection device 1 according to another embodiment. The detection device 1 shown in FIG. 11 is the same as the detection device 1 shown in FIG. 9 described above, but includes at least two detection units 5. By providing at least two detection units 5, detection sensitivity can be improved. The detection section 5 is opposed to the generation section 2 via the generation section 2 . The detection unit 5 is arranged along the direction in which the forming member 26 extends. A transmission section 20 (FIG. 10) may be provided between each detection section 5 and generation section 2. Further, it is preferable that the surface 30 is formed of at least one of a light reflecting member and a light blocking member.
 通液部41を通り生成部2に至った被検出液25は、生成部2において光子10を生成させる。生成した光子10は、形成部材26での被検出液25の流通方向(同方向でもよいし反対方向でもよい)に沿って移動し、検出部5に至る。検出部5では、光子10が検出される。図11に示す検出装置1によれば、生成部2及び検出部5を形成部材26に沿った方向に配置できるため、形成部材26から外側に張り出す方向の設置スペースを小さくできる。また、少なくとも2つの検出部5を備えることで、検出感度を向上できる。 The liquid to be detected 25 that has passed through the liquid passage section 41 and reached the generation section 2 generates photons 10 in the generation section 2 . The generated photons 10 move along the flow direction (the same direction or the opposite direction) of the detection liquid 25 in the forming member 26 and reach the detection section 5 . In the detection unit 5, photons 10 are detected. According to the detection device 1 shown in FIG. 11, since the generation section 2 and the detection section 5 can be arranged in the direction along the forming member 26, the installation space in the direction extending outward from the forming member 26 can be reduced. Moreover, by providing at least two detection units 5, detection sensitivity can be improved.
 図12は、別の実施形態に係る検出装置1の模式図である。図12に示す検出装置1は、上記図1に示す検出装置1において、検出部5が1つのみ備えられる。図12に示す検出装置1によれば、被検出液25の全量を生成部2に通すため、応答感度を向上できる。また、検出部5が1つのみ備えられるため、検出装置1の設置スペースを小さくできる。 FIG. 12 is a schematic diagram of a detection device 1 according to another embodiment. The detection device 1 shown in FIG. 12 includes only one detection section 5 in the detection device 1 shown in FIG. 1 above. According to the detection device 1 shown in FIG. 12, since the entire amount of the liquid to be detected 25 is passed through the generation section 2, the response sensitivity can be improved. Furthermore, since only one detection unit 5 is provided, the installation space for the detection device 1 can be reduced.
 図13は、別の実施形態に係る検出装置1の模式図である。図13に示す検出装置1では、検出装置1は、集合体31を保持部4で攪拌する攪拌機構21を備える。攪拌機構21を備えることで、粒子3と放射線との反応確率を向上でき、検出感度を向上できる。また、生成部2の内部で粒子3を攪拌できるため、通液部41の開口42の目詰まりを抑制できる。 FIG. 13 is a schematic diagram of a detection device 1 according to another embodiment. In the detection device 1 shown in FIG. 13, the detection device 1 includes a stirring mechanism 21 that stirs the aggregate 31 with the holding part 4. By providing the stirring mechanism 21, the probability of reaction between particles 3 and radiation can be improved, and detection sensitivity can be improved. Further, since the particles 3 can be stirred inside the generation section 2, clogging of the opening 42 of the liquid passage section 41 can be suppressed.
 攪拌機構21は、図示の例では、生成部2の内部に備えられる。攪拌機構21としては、集合体31を攪拌可能であれば特に限定されず、例えば、マグネチックスターラ等の磁気式、ミキサ等の機械式が挙げられる。攪拌機構21の駆動源は、通常は、電気であるが、例えば、形成部材26を流れる被検出液25の液流を駆動源としてもよい。液流を駆動源とする場合、例えば、形成部材26に例えば回転翼(不図示)を設け、回転翼と攪拌機構21とを接続することで、液流に起因する回転翼の回転に伴い、攪拌機構21による攪拌が行われてもよい。 In the illustrated example, the stirring mechanism 21 is provided inside the generation section 2. The stirring mechanism 21 is not particularly limited as long as it can stir the aggregate 31, and examples thereof include a magnetic type such as a magnetic stirrer, and a mechanical type such as a mixer. The driving source for the stirring mechanism 21 is usually electricity, but for example, the liquid flow of the liquid to be detected 25 flowing through the forming member 26 may be used as the driving source. When using a liquid flow as a driving source, for example, by providing a rotor blade (not shown) in the forming member 26 and connecting the rotor blade to the stirring mechanism 21, as the rotor blade rotates due to the liquid flow, Stirring may be performed by the stirring mechanism 21.
 図14は、別の実施形態に係る検出装置1の模式図である。図14に示す検出装置1は、上記図1に示す検出装置1において、更に、上記図13に示す攪拌機構21が備えられる。図14に示す検出装置1によれば、検出感度を向上できるとともに、通液部41の目詰まりを抑制できる。特に、図14に示す例では、形成部材26を流れる被検出液25の全量が生成部2を流れる。このため、通液部41の目詰まり抑制により、生成部2での被検出液25の圧力損失を低減できる。 FIG. 14 is a schematic diagram of a detection device 1 according to another embodiment. The detection device 1 shown in FIG. 14 is the same as the detection device 1 shown in FIG. 1 described above, and further includes a stirring mechanism 21 shown in FIG. 13 described above. According to the detection device 1 shown in FIG. 14, detection sensitivity can be improved and clogging of the liquid passage section 41 can be suppressed. In particular, in the example shown in FIG. 14, the entire amount of the liquid to be detected 25 flowing through the forming member 26 flows through the generating section 2. Therefore, by suppressing clogging of the liquid passage section 41, the pressure loss of the liquid to be detected 25 in the generation section 2 can be reduced.
 図15は、別の実施形態に係る検出装置1の模式図である。検出装置1は、通液部41を振動させる振動機構22を備える。振動機構22を備えることで、通液部41に付着した成分を振動によって通液部41から剥がすことができ、通液部41の開口42の目詰まりを抑制できる。通液部41に付着する成分としては、形成部材26の側では、被検出液25に含まれる塵埃等、生成部2の側では、粒子3等が挙げられる。 FIG. 15 is a schematic diagram of a detection device 1 according to another embodiment. The detection device 1 includes a vibration mechanism 22 that vibrates the liquid passage part 41. By providing the vibration mechanism 22, components attached to the liquid passage part 41 can be removed from the liquid passage part 41 by vibration, and clogging of the opening 42 of the liquid passage part 41 can be suppressed. Components that adhere to the liquid passage section 41 include dust and the like contained in the liquid to be detected 25 on the forming member 26 side, and particles 3 and the like on the generation section 2 side.
 振動機構22は、図示の例では、通液部41に接触して生成部2の内部に配置される。ただし、振動機構22の配置場所は、通液部41を振動可能な位置であれば図示の位置に限定されず、形成部材26の内部、生成部2の内部であって通液部41から離間した部位、上記のハウジング(不図示)の内部等でもよい。振動機構22としては、通液部41を振動可能であれば特に限定されず、例えば、モータ式、超音波式等が挙げられる。振動機構22の駆動源は、通常は、電気であるが、例えば、形成部材26を流れる被検出液25の液流を駆動源としてもよい。 In the illustrated example, the vibration mechanism 22 is arranged inside the generation section 2 in contact with the liquid passage section 41. However, the location of the vibration mechanism 22 is not limited to the illustrated position as long as it can vibrate the liquid passage part 41; It may be the inside of the above-mentioned housing (not shown), etc. The vibration mechanism 22 is not particularly limited as long as it can vibrate the liquid passing portion 41, and examples thereof include a motor type, an ultrasonic type, and the like. The driving source for the vibration mechanism 22 is usually electricity, but for example, the liquid flow of the liquid to be detected 25 flowing through the forming member 26 may be used as the driving source.
 図16は、別の実施形態に係る検出装置1の模式図である。図15に示す検出装置1は、上記図1に示す検出装置1において、上記図14に示す振動機構22が備えられる。従って、振動機構22は、それぞれの通液部41を振動させる。これにより、それぞれの通液部41の開口42の目詰まりを抑制できる。特に、図15に示す例では、生成部2の全体に被検出液25が流れるため、それぞれの通液部41での目詰まりを抑制できることで、生成部2での被検出液25の圧力損失の過度の増大を抑制できる。 FIG. 16 is a schematic diagram of a detection device 1 according to another embodiment. The detecting device 1 shown in FIG. 15 is the same as the detecting device 1 shown in FIG. 1 described above, and includes the vibration mechanism 22 shown in FIG. Therefore, the vibration mechanism 22 vibrates each liquid passage part 41. Thereby, clogging of the openings 42 of each liquid passage section 41 can be suppressed. In particular, in the example shown in FIG. 15, since the liquid to be detected 25 flows throughout the generation section 2, clogging in each liquid passage section 41 can be suppressed, resulting in pressure loss of the liquid to be detected 25 in the generation section 2. It is possible to suppress excessive increase in
1 検出装置
10 光子
100 検出システム
2 生成部
20 伝送部
21 攪拌機構
22 振動機構
25 被検出液
26 形成部材
261 主配管
262 サンプリング配管
263 配管
264 配管
265 配管
27 放射線
28 反転機構
281 弁
282 弁
283 弁
284 弁
29 面
30 面
3 粒子
31 集合体
4 保持部
41 通液部
42 開口
5 検出部
6 カウンタ
7 解析装置
71 記憶部
711 データベース
72 演算部
8 表示装置
9 核種
1 Detection device 10 Photon 100 Detection system 2 Generation section 20 Transmission section 21 Stirring mechanism 22 Vibration mechanism 25 Detection liquid 26 Forming member 261 Main piping 262 Sampling piping 263 Piping 264 Piping 265 Piping 27 Radiation 28 Reversing mechanism 281 Valve 282 Valve 283 Valve 284 Valve 29 Surface 30 Surface 3 Particle 31 Aggregate 4 Holding section 41 Liquid passing section 42 Opening 5 Detection section 6 Counter 7 Analyzer 71 Storage section 711 Database 72 Computing section 8 Display device 9 Nuclide

Claims (15)

  1.  被検出液の流路を形成する形成部材と、
     前記形成部材を流れる前記被検出液中の放射線を検出する検出装置と、を備え、
     前記検出装置は、
      前記被検出液中の放射線の入射により光子を生成する蛍光体を含む粒子の集合体と、前記被検出液を前記粒子に接触可能に、前記集合体を保持する保持部と、を備える生成部と、
      前記粒子で生成した光子を検出する検出部と、を備える
     ことを特徴とする検出システム。
    a forming member that forms a flow path for the liquid to be detected;
    a detection device that detects radiation in the liquid to be detected flowing through the forming member;
    The detection device includes:
    A generation unit comprising: an aggregate of particles containing a phosphor that generates photons upon incidence of radiation in the liquid to be detected; and a holding unit that holds the aggregate so that the liquid to be detected can come into contact with the particles. and,
    A detection system comprising: a detection unit that detects photons generated by the particles.
  2.  前記保持部は、前記粒子の粒径よりも小さな開口を有する通液部を備え、
     前記被検出液は、前記開口を通ることで前記粒子と接触する
     ことを特徴とする請求項1に記載の検出システム。
    The holding part includes a liquid passage part having an opening smaller than the particle size of the particles,
    The detection system according to claim 1, wherein the liquid to be detected comes into contact with the particles by passing through the opening.
  3.  前記通液部を振動させる振動機構を備える
     ことを特徴とする請求項2に記載の検出システム。
    The detection system according to claim 2, further comprising a vibration mechanism that vibrates the liquid passage section.
  4.  前記生成部は、少なくとも前記粒子に臨む側の面が光反射部材により構成される
     ことを特徴とする請求項2に記載の検出システム。
    3. The detection system according to claim 2, wherein at least a surface of the generation section facing the particles is constituted by a light reflecting member.
  5.  前記光反射部材は、前記検出部に繋がる部分以外の少なくとも一部に備えられる
     ことを特徴とする請求項4に記載の検出システム。
    The detection system according to claim 4, wherein the light reflecting member is provided in at least a portion other than a portion connected to the detection section.
  6.  前記通液部は、前記集合体を挟んで少なくとも2つ備えられる
     ことを特徴とする請求項2に記載の検出システム。
    The detection system according to claim 2, characterized in that at least two of the liquid passage parts are provided with the aggregate sandwiched therebetween.
  7.  前記生成部と前記検出部との間に、前記生成部で生成した光子を前記検出部に伝送する伝送部を備える
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, further comprising a transmission section that transmits photons generated by the generation section to the detection section between the generation section and the detection section.
  8.  前記検出部は、前記生成部で生成した光子のそれぞれを電気パルス信号に変換する
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, wherein the detection unit converts each photon generated by the generation unit into an electric pulse signal.
  9.  前記蛍光体の蛍光寿命は、前記生成部で生成した光子を、一つ一つの光子に分離可能な時間である
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, wherein the fluorescence lifetime of the phosphor is a time period during which photons generated by the generation unit can be separated into individual photons.
  10.  前記蛍光体の蛍光寿命は1μ秒以上である
     ことを特徴とする請求項9に記載の検出システム。
    The detection system according to claim 9, wherein the fluorescence lifetime of the phosphor is 1 μsec or more.
  11.  前記検出部は、少なくとも2つ備えられる
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, wherein at least two detection units are provided.
  12.  前記集合体を前記保持部で攪拌する攪拌機構を備える
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, further comprising a stirring mechanism that stirs the aggregate in the holding section.
  13.  前記保持部は、
      前記集合体を挟んで少なくとも2つ備えられる通液部を備え、
      少なくとも1つの前記通液部を通じて流入した前記被検出液が前記集合体と接触した後に、少なくとも1つの前記通液部を通じて流出するように構成され、
     前記形成部材における前記被検出液の流通方向を反転させる反転機構を備える
     ことを特徴とする請求項1に記載の検出システム。
    The holding part is
    At least two liquid passing parts are provided with the aggregate sandwiched therebetween,
    The liquid to be detected, which has flowed in through the at least one liquid passage part, is configured to flow out through the at least one liquid passage part after contacting the aggregate,
    The detection system according to claim 1, further comprising a reversing mechanism that reverses the flow direction of the liquid to be detected in the forming member.
  14.  前記粒子は、第1粒径を有する第1粒子と、前記第1粒径の20倍以上の第2粒径を有する第2粒子とを含む
     ことを特徴とする請求項1に記載の検出システム。
    The detection system according to claim 1, wherein the particles include first particles having a first particle size and second particles having a second particle size that is 20 times or more the first particle size. .
  15.  被検出液中の放射線の入射により光子を生成する蛍光体を含む粒子の集合体と、前記被検出液を前記粒子に接触可能に、前記集合体を保持する保持部と、を備える生成部と、
     前記粒子で生成した光子を検出する検出部と、を備える
     ことを特徴とする検出装置。
    a generation unit comprising: an aggregate of particles containing a fluorescent substance that generates photons upon incidence of radiation in a liquid to be detected; and a holding unit that holds the aggregate so that the liquid to be detected can come into contact with the particles; ,
    A detection device comprising: a detection unit that detects photons generated by the particles.
PCT/JP2023/002707 2022-06-23 2023-01-27 Detection system and detection device WO2023248514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100995 2022-06-23
JP2022100995A JP2024002043A (en) 2022-06-23 2022-06-23 Detection system and detection device

Publications (1)

Publication Number Publication Date
WO2023248514A1 true WO2023248514A1 (en) 2023-12-28

Family

ID=89379368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002707 WO2023248514A1 (en) 2022-06-23 2023-01-27 Detection system and detection device

Country Status (2)

Country Link
JP (1) JP2024002043A (en)
WO (1) WO2023248514A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184287A (en) * 1990-11-19 1992-07-01 Aloka Co Ltd Monitor of underwater radioactive substance
JPH0875863A (en) * 1994-09-07 1996-03-22 Toshiba Corp Automatic tritium measuring device
JP2018087744A (en) * 2016-11-29 2018-06-07 東京電力ホールディングス株式会社 Detection material and method of detecting tritium
CN113671555A (en) * 2021-08-20 2021-11-19 兰州大学 Plastic scintillator microsphere, preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184287A (en) * 1990-11-19 1992-07-01 Aloka Co Ltd Monitor of underwater radioactive substance
JPH0875863A (en) * 1994-09-07 1996-03-22 Toshiba Corp Automatic tritium measuring device
JP2018087744A (en) * 2016-11-29 2018-06-07 東京電力ホールディングス株式会社 Detection material and method of detecting tritium
CN113671555A (en) * 2021-08-20 2021-11-19 兰州大学 Plastic scintillator microsphere, preparation method and application

Also Published As

Publication number Publication date
JP2024002043A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5231402B2 (en) Neutron and gamma ray monitors
Derenzo et al. Prospects for new inorganic scintillators
US10670739B2 (en) Gamma radiation and neutron radiation detector
JP2020193832A (en) Radiation monitoring device
Yanagida et al. Phosphors for radiation detectors
JP2008051626A (en) Line sensor, line sensor unit and radiation nondestructive inspection system
WO2023248514A1 (en) Detection system and detection device
US4975583A (en) Method and apparatus for detecting radioisotopes in fluids
JP2017161378A (en) Radiation monitor and radiation measuring method
JP2024074012A (en) Radiation detection device
EP3489722B1 (en) Radiation monitor
JP7117213B2 (en) Radiation monitor and radiation measurement method
Koroleva et al. New scintillation materials and scintiblocs for neutron and γ-rays registration
JP2024158476A (en) Radiation monitor
WO2019239785A1 (en) Radiation monitor
JP2023081439A (en) Radiation monitor and radiation detection method
JP7063769B2 (en) Radiation monitor
US10422888B1 (en) Scintillation detectors
CN115727908B (en) Single-light quantum energy measuring method, single-light quantum energy sensor and light quantum miscible flowmeter
CN109613603B (en) Method for measuring neutrons by using rubidium-doped glass
Glenn The Liquid Scintillation Counting Process. The Gamma Counting Process
JP2022129614A (en) Scintillator and radiation measurement device
Alimkhanov et al. The neutron detector based on cerium doped 6Li-silicate glass
CN115616648A (en) Detection device for trace radioactive elements in silicon dioxide powder
CN116047574A (en) Energy threshold selectable Cerenkov detection array screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826707

Country of ref document: EP

Kind code of ref document: A1