WO2023248504A1 - Power transmission device, wireless power transmission system, and control method - Google Patents

Power transmission device, wireless power transmission system, and control method Download PDF

Info

Publication number
WO2023248504A1
WO2023248504A1 PCT/JP2022/048643 JP2022048643W WO2023248504A1 WO 2023248504 A1 WO2023248504 A1 WO 2023248504A1 JP 2022048643 W JP2022048643 W JP 2022048643W WO 2023248504 A1 WO2023248504 A1 WO 2023248504A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
signal
antenna
vector
Prior art date
Application number
PCT/JP2022/048643
Other languages
French (fr)
Japanese (ja)
Inventor
克敏 河合
裕也 田中
敦也 横井
朋之 中舎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023248504A1 publication Critical patent/WO2023248504A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H04B5/48

Definitions

  • the present application relates to a power transmission device, a wireless power transmission system, and a control method.
  • a retrodirective method is sometimes used for wireless power feeding using an array antenna.
  • the retrodirective method transmits a pilot signal from the power receiving device prior to power transmission, estimates the radio wave propagation channel characteristics of the pilot signal on the power transmitting device side, and controls antenna directivity by generating transmission weights based on this.
  • Patent Document 1 discloses a wireless power feeding device that calculates a propagation coefficient between a plurality of antenna elements and an antenna of a power feeding target device, and adjusts the phase and amplitude of a feeding signal for each of the plurality of antenna elements based on the propagation coefficient. Disclosed.
  • the pilot signal transmitted by the power receiving device will be greatly attenuated by the human body, so antenna directivity is controlled based on the radio wave propagation channel characteristics of the pilot signal. This weakens the intensity of the radio waves emitted from the power transmission device toward the human body, making it highly safe for the human body.
  • antenna directivity is controlled based on the radio wave propagation channel characteristics of the pilot signal.
  • a power transmitting device includes a transmitting/receiving unit that transmits a transmitting signal to a power receiving device and receives a receiving signal transmitted from the power receiving device using an antenna, and an object different from the received signal and the power receiving device. and a weight generation unit that controls the directivity of an antenna that transmits the transmission signal based on information regarding the transmission signal so that the intensity of the radio wave that transmits the transmission signal to the object is equal to or less than a predetermined value.
  • a wireless power transmission system includes a power receiving device, a transmitting/receiving unit that receives a received signal transmitted from the power receiving device and transmits a transmitted signal using an antenna, and a communication between the received signal and the power receiving device.
  • a power transmission device including a weight generation unit that controls the directivity of an antenna that transmits the transmission signal, based on information regarding different objects, so that the intensity of radio waves that transmit the transmission signal to the object is equal to or less than a predetermined level; and.
  • a control method includes a transmission/reception step of transmitting a transmission signal to a power reception device and receiving a reception signal transmitted from the power reception device using an antenna, and information regarding the reception signal and an object different from the power reception device. and a weight generation step of controlling the directivity of the antenna that transmits the transmission signal, based on the above, so that the intensity of the radio wave that transmits the transmission signal to the object is equal to or less than a predetermined value.
  • FIG. 1 is a diagram for explaining an overview of a wireless power transmission system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by a reference power transmission device using a conventional retrodirective method using a computer simulation.
  • FIG. 3 is a diagram illustrating an example of the configuration of the power transmission device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 5 is a diagram showing an example of an adaptive array antenna and directivity.
  • FIG. 6 is a diagram illustrating an example of the configuration of the power receiving device according to the first embodiment.
  • FIG. 7 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG.
  • FIG. 8 is a diagram for explaining the data flow of the power transmission device shown in FIG. 7.
  • FIG. 9 is a diagram for explaining an example of the operation of the power transmission device according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device shown in FIG. 9 by computer simulation.
  • FIG. 11 is a diagram illustrating an example of a directivity pattern of radio waves of the power transmission device according to the first embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the first embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the first embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of a power transmission device according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 16 is a diagram showing an example of an adaptive array antenna and directivity.
  • FIG. 17 is a diagram illustrating an example of vectorization during differential coefficient constraint.
  • FIG. 18 is a diagram illustrating an example of the configuration of a power receiving device according to the second embodiment.
  • FIG. 19 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG.
  • FIG. 20 is a diagram for explaining the data flow of the power transmission device shown in FIG. 19.
  • FIG. 21 is a diagram for explaining an example of the operation of the power transmission device according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 16 is a diagram showing an example of an adaptive array antenna and directivity.
  • FIG. 22 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device shown in FIG. 21 by computer simulation.
  • FIG. 23 is a diagram illustrating an example of a directivity pattern of radio waves of a power transmission device.
  • FIG. 24 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the second embodiment.
  • FIG. 25 is a diagram illustrating an example of another configuration of a power transmission device according to a modification of the second embodiment.
  • FIG. 26 is a diagram for explaining a data flow of a power transmission device according to a modification of the second embodiment.
  • FIG. 27 is a diagram illustrating an example of the configuration of a power transmission device according to Embodiment 3.
  • FIG. 23 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device shown in FIG. 21 by computer simulation.
  • FIG. 23 is a diagram illustrating an example of a directivity pattern of radio
  • FIG. 28 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 29 is a diagram showing an example of an adaptive array antenna and directivity.
  • FIG. 30 is a diagram illustrating an example of vectorization using the multi-point null constraint method.
  • FIG. 31 is a diagram illustrating an example of vectorization using the differential coefficient constraint method.
  • FIG. 32 is a diagram illustrating an example of null depth processing by the preprocessing unit.
  • FIG. 33 is a diagram illustrating another example of processing of the null depth by the preprocessing section.
  • FIG. 34 is a diagram illustrating an example of the configuration of a power receiving device according to Embodiment 3.
  • FIG. 35 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG.
  • FIG. 36 is a diagram for explaining an example of the data flow of the power transmission device shown in FIG. 35.
  • FIG. 37 is a diagram for explaining another example of the data flow of the power transmission device shown in FIG. 35.
  • FIG. 38 is a diagram for explaining an example of the operation of the power transmission device according to the third embodiment.
  • FIG. 39 is a diagram illustrating an example of a directivity pattern of radio waves of the power transmission device according to the third embodiment.
  • FIG. 40 is a diagram illustrating another example of the radio wave directivity pattern of the power transmission device according to the third embodiment.
  • FIG. 41 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3.
  • FIG. 42 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3.
  • FIG. 43 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3.
  • FIG. 44 is a top view showing the simulation arrangement according to the first embodiment.
  • FIG. 45 is a side view showing the simulation arrangement according to the first embodiment.
  • FIG. 46 is a diagram showing main specifications of simulation according to the first embodiment.
  • FIG. 47 is a diagram showing power distributions according to different methods according to the first embodiment.
  • FIG. 48 is a diagram showing the power distribution according to the MR method of the pseudo human body on two surfaces near the power transmission device.
  • FIG. 49 is a diagram showing the power distribution of the pseudo human body on two surfaces near the power transmission device using the LCR method.
  • FIG. 50 is a graph of the cumulative relative power of the pseudo human body shown in FIGS. 48 and 49.
  • FIG. FIG. 51 is a diagram illustrating an example of movement of an object in the simulation according to the first embodiment.
  • FIG. 54 is a table showing the relationship between the y-coordinate and the number of elementary waves reflected by the pseudo-human body.
  • FIG. 1 is a diagram for explaining an overview of a wireless power transmission system according to an embodiment.
  • a system 1 shown in FIG. 1 includes, for example, a wireless power transmission system capable of microwave transmission type (space transmission type) wireless power transmission.
  • Wireless power transmission is a mechanism that allows power to be transmitted without using cables or plugs, for example.
  • the microwave transmission type system 1 can use a retrodirective method.
  • the microwave transmission type system 1 uses radio waves (microwaves) for energy transmission.
  • a plurality of frequency bands are available for the frequency of radio waves used in the microwave transmission system 1, and for example, in Japan, they include a 920 MHz band, a 2.4 GHz band, a 5.7 GHz band, and the like.
  • the system 1 makes it possible to improve power supply efficiency suitable for the situation and ensure safety at the same time.
  • the system 1 can also be applied to, for example, space solar power generation.
  • System 1 uses a multipath retrodirective method.
  • System 1 includes a power transmitting device 10 and a power receiving device 20.
  • System 1 transmits power from power transmitting device 10 to power receiving device 20 using multiple paths (propagation channels).
  • the power transmission device 10 is a transmission device that transmits power wirelessly in the system 1, and is a device that can transmit radio waves for power feeding.
  • the power transmission device 10 includes a sensor unit 15 that can detect an object such as a human body in the vicinity of the array antenna 11. In the following description, the power transmission device 10 may be referred to as "own device".
  • the power receiving device 20 is a power-supplied device in the system 1 that receives electric waves for power supply and obtains power.
  • the power receiving device 20 includes, for example, a smartphone, a tablet terminal, an IoT (Internet of Things) sensor, a notebook personal computer, a drone, an electric vehicle, an electric bicycle, a game console, and the like. In this way, the power receiving device of the present disclosure may be a movable device.
  • the power receiving device 20 can transmit the specified signal 1000 determined with the power transmitting device 10.
  • the regulation signal 1000 includes, for example, a beacon, a pilot signal, and the like.
  • the power receiving device 20 can transmit the prescribed signal 1000 at a transmission cycle, for example.
  • the power receiving device 20 can transmit the prescribed signal 1000 by emitting radio waves containing the prescribed signal 1000.
  • the power transmitting device 10 estimates characteristic values (array response vectors) of multiple paths from the power receiving device 20 to the power transmitting device 10 based on the specified signal 1000.
  • the power transmitting device 10 calculates a weighting coefficient for transmission using the estimated array response vector for the power receiving device 20.
  • the power transmission device 10 performs directivity control by multiplying each antenna by a weighting coefficient, and radiates radio waves including the transmission signal 2000 for power feeding.
  • Directivity control means, for example, controlling the relationship between the radiation direction and radiation intensity of radio waves. If the frequencies of the specified signal 1000 and the transmitted signal 2000 are the same and time fluctuations in the propagation path are ignored, the characteristics of the multiple paths from the power transmitting device 10 to the power receiving device 20 match the characteristics from the power receiving device 20 to the power transmitting device 10. . Thereby, the radio waves 2000 W radiated from the power transmitting device 10 have a radiation pattern that takes advantage of not only the path toward the power receiving device 20 but also the path toward the direction different from the power receiving device 20.
  • FIG. 2 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the reference power transmission device 100A using the conventional retrodirective method using a computer simulation.
  • the intensity distribution 3000 shown in FIG. 2 is transmitted from the reference power transmitting device 100A using a retrodirective method by placing the reference power transmitting device 100A and the power receiving device 20 in a room 4000, and placing an object 5000 with physical properties similar to the human body. It shows the intensity distribution when a radio wave of 2000 W including a signal of 2000 W is radiated.
  • the reference power transmitting device 100A estimates characteristic values of multiple paths from the power receiving device 20 to the power transmitting device 10 based on the specified signal 1000, and uses the characteristic values to adjust the antenna. It has a configuration that can control the directivity and transmit 2000 W of radio waves including a transmission signal 2000 for power feeding.
  • Room 4000 is a 3m x 3m x 3m room with walls made of concrete.
  • the object 5000 is placed between the reference power transmitting device 100A and the power receiving device 20 at a position shifted to the left from the straight line connecting the reference power transmitting device 100A and the power receiving device 20.
  • the object 5000 has physical properties such as a dielectric constant of 35.4 and a conductivity of 5.17, for example.
  • the intensity distribution 3000 shows that the intensity of the radio wave 2000W-1 going directly from the reference power transmitting device 100A to the power receiving device 20 and the radio wave 2000W-2 going directly from the reference power transmitting device 100A to the object 5000 are stronger. There is. That is, the intensity distribution 3000 is considered to indicate that the reference power transmitting device 100A receives the specified signal 1000 directly from the power receiving device 20 and also receives the specified signal 1000 reflected by the object 5000.
  • system 1 provides a technology that reduces the impact on the human body when a prescribed signal 1000 from power receiving device 20 is reflected by the human body and reaches power transmitting device 10 compared to the conventional multipath retrodirective method. do.
  • FIG. 3 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 5 is a diagram showing an example of an adaptive array antenna and directivity.
  • the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, A multiplication unit 18 is provided.
  • the array antenna 11 has a configuration that allows directivity control (beamforming).
  • the array antenna 11 includes a plurality of antenna elements 11A.
  • each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction.
  • the configuration is such that this is possible.
  • Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 .
  • Array antenna 11 supplies the received signal to transmitter/receiver 13 .
  • the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this.
  • the transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20.
  • the transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power.
  • the transmission signal 2000 may be a baseband signal.
  • the transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period.
  • the transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000.
  • the transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
  • the transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11.
  • the transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like.
  • the transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14.
  • the transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18.
  • the transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable.
  • the transmitting/receiving unit 13 simultaneously radiates 2000 W of radio waves including the transmission signal 2000 multiplied by the transmission weight (complex amplitude) from the plurality of antenna elements 11A, so that the power transmission device 10 radiates 2000 W of radio waves with controlled directivity. .
  • the estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A.
  • the propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics.
  • the array response vector indicates, for example, channel characteristics for the number of antennas.
  • the array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged.
  • the array response vector in reception processing is also referred to as a reception response vector.
  • the estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995.
  • the estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
  • the sensor unit 15 can acquire information that can detect the presence or absence, direction, etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10.
  • the radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20.
  • the sensor unit 15 exists in a radio wave propagation environment using, for example, a camera, LIDAR (Laser Imaging Detection and Ranging), radar such as millimeter wave radar, ToF (Time of Flight) sensor, infrared sensor, human sensor, etc. Information regarding object 5000 is acquired.
  • the sensor unit 15 may be provided outside the power transmission device 10.
  • the sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect the direction of the object 5000 in the radio wave propagation environment to the detection section 16.
  • the sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image.
  • the detection unit 16 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding the position of an object 5000 that is different from the power receiving device 20 in the radio wave propagation environment.
  • the objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like.
  • the detection unit 16 detects the direction of the object 5000 from the array antenna 11. For example, the detection unit 16 detects the direction of the object 5000 from the array antenna 11 based on the direction, position, etc. of the object 5000 indicated by the sensor information and the relative positional relationship between the sensor unit 15 and the array antenna 11. If a plurality of objects 5000 exist, the detection unit 16 detects the positions of the plurality of objects 5000.
  • the detection unit 16 is electrically connected to the weight generation unit 17 and supplies direction information indicating the direction of the object 5000 from the array antenna 11 to the weight generation unit 17.
  • the direction information includes, for example, information indicating the direction of the object 5000 from the array antenna 11.
  • the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
  • the weight generation unit 17 generates power transmission weights based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the object 5000 from the detection unit 16.
  • a weight generation method for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used.
  • the weight generation section 17 is electrically connected to the multiplication section 18 and supplies weight information indicating power transmission weights to the multiplication section 18.
  • a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
  • the analytical array antenna characteristics are referred to as array response values AR.
  • the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (
  • 2 1) so that the total transmission power is constant. .
  • the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d can be regarded as the array response vector from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal shall have the same frequency as the radio waves used during power transmission.
  • the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and does not require information such as the direction of the reception point 200P.
  • Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero.
  • of the array response vector V d is maximized.
  • K is the number of antenna elements 11A.
  • M is the number of nulls. Since the degree of freedom is K-1, M ⁇ K.
  • argmax (argument of the maximum) means a set of values that achieves the maximum value.
  • Formula 15) is a formula for determining the optimal weight vector W opt where
  • A is a matrix shown in Equation 18 in which array response vectors V 1 , V 2 , . . . , VM, which are M complex column vectors, are arranged.
  • a + is the Moore-Penrose general inverse of A.
  • a + (A H A) ⁇ 1 A H.
  • V' d (I-AA + )V d as in (Equation 16)
  • 2
  • 2 1 is satisfied.
  • 1/
  • the array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000.
  • the array response vector can be estimated using another method. need to be calculated.
  • an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of avoiding radio waves that go directly from the power transmission device 10 toward the target to which the null is directed.
  • a far field is radiated in a direction rotated clockwise by ⁇ (- ⁇ /2 ⁇ /2) from the broadside.
  • the array response vector at is given as shown below (Equation 19).
  • the broadside is perpendicular to the direction in which the antenna elements 11A are arranged, and is upward in FIG.
  • the inter-element distance from the #0 antenna element 11A to the #k antenna element 11A at the reference point 200B is kd.
  • the inter-element distance from the antenna element 11A of the reference point 200B #0 to the antenna element 11A of #K-1 is (K-1)d.
  • the impulse response Z is expressed as (Equation 20).
  • the array response vector V i can be calculated as shown in (Equation 21).
  • the impulse response Z i can be obtained by (Equation 22).
  • the weight generation unit 17 derives the array response vector V i corresponding to the null from the direction ⁇ i of the null object using (Equation 21) and (Equation 22), and then derives the matrix (I ⁇ AA + ).
  • the weight generation unit 17 generates an optimal weight that maximizes the magnitude of the array response value
  • the vector W opt is determined, but generally the timings at which the matrix (I-AA + ) and the array response vector V d are calculated are different. Therefore, the weight generation section 17 can store the matrix (I-AA + ) in the storage section 17D.
  • the storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device.
  • the storage unit 17D may include a storage device such as a RAM used as a temporary storage area.
  • the storage unit 17D may be provided outside the weight generation unit 17.
  • the multiplication unit 18 multiplies the transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation unit 17.
  • the multiplication unit 18 includes, for example, a multiplier.
  • the multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
  • the functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 3 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example.
  • the functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
  • FIG. 6 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the first embodiment.
  • the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24.
  • the power receiving device 20 of the present disclosure may be a movable device.
  • such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position.
  • the power receiving device 20 may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc.
  • the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
  • the antenna 21 is electrically connected to the transmitting/receiving section 22.
  • the antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10.
  • the antenna 21 for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used.
  • the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10.
  • the antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
  • the transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24.
  • the transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 .
  • the transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
  • the signal generating section 23 generates a regulation signal 1000.
  • the signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 .
  • the signal generator 23 can generate the regulation signal 1000 based on the transmission cycle.
  • the signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
  • the power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current.
  • the power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit.
  • the power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply).
  • the loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
  • the functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 6 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example.
  • the functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
  • FIG. 7 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG.
  • FIG. 8 is a diagram for explaining the data flow of the power transmission device 10 shown in FIG. 7.
  • the power receiving device 20 sends out a regulation signal 1000.
  • the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111).
  • the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do.
  • the power transmitting device 10 advances the process to step S131.
  • the power transmitting device 10 uses the detection unit 16 to detect the direction of the object 5000 that is different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 8, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions ⁇ 1 , ⁇ 2 , ..., ⁇ of the plurality of objects 5000. M is detected and supplied to the weight generation section 17.
  • the power transmitting device 10 advances the process to step S122.
  • the weight generation unit 17 performs array response vectorization and matrix calculation corresponding to nulls (step S122). For example, as shown in FIG. 8, in the power transmission device 10, the weight generation unit 17 calculates the directions ⁇ 1 , ⁇ 2 , ..., ⁇ M of the object 5000 based on (Equation 21) and (Equation 22) described above. , array response vectorization (V 1 , V 2 , . . . , V M ) corresponding to the null is performed (step S171). In the power transmission device 10, the weight generation unit 17 subsequently performs matrix calculation (step S172).
  • the power transmitting device 10 advances the process to step S131.
  • the power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 8, the power transmission device 10 performs matrix and vector multiplication (step S173). Specifically, in the power transmission device 10, the weight generation unit 17 calculates the product of the array response vector V d estimated by the estimation unit 14 and (I-AA + ) of the matrix in the storage unit 17D, and calculates the array response vector V Calculate d '. The power transmission device 10 normalizes the array response vector V d ′ calculated by the weight generation unit 17 using (Equation 17), and generates an optimal weight vector W opt (Step S174). Returning to FIG. 7, when the process of step S131 is completed, the power transmitting device 10 advances the process to step S132.
  • the power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, since the power transmitting device 10 directs the null toward the object 5000, the radio waves 2000 W are combined in a constructive manner at the power receiving device 20, but are combined in a destructive manner at the object 5000.
  • the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
  • the power transmitting device 10 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
  • the processing procedure of the power transmission device 10 shown in FIG. 7 includes estimation of the array response vector V d according to the specified signal 1000 (step S111), calculation of the array response vector V i according to the direction of the object 5000, and matrix calculation (step S122). ) does not need to be synchronized. For example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction of the object 5000, the power transmission device 10 may use the past array response vector V i .
  • FIG. 9 is a diagram for explaining an example of the operation of the power transmission device 10 according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device 10 shown in FIG. 9 by computer simulation.
  • FIG. 11 is a diagram illustrating an example of a directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the first embodiment.
  • a power transmitting device 10 and a power receiving device 20 are arranged in a room 4000, and an object 5000 having the same physical properties as a human body is present.
  • Room 4000 is a 3m x 3m x 3m room with walls made of concrete.
  • the object 5000 is placed between the power transmitting device 10 and the power receiving device 20 at a position offset from the straight line connecting the power transmitting device 10 and the power receiving device 20. That is, the measurement environment shown in FIG. 10 is the same as the environment shown in FIG. 2.
  • the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can.
  • the power receiving device 20 emits a radio wave including the prescribed signal 1000
  • the main paths are a path directly toward the power transmitting device 10 and a path reflected by an object 5000 and directed toward the power transmitting device 10.
  • the power transmission device 10 estimates the propagation channel characteristics of the radio wave including the prescribed signal 1000 received by the array antenna 11, and estimates the array response vector V d .
  • the reference power transmitting device 100A in FIG. The directions ⁇ 1 , ⁇ 2 , . . . , ⁇ M are detected.
  • the power transmission device 10 calculates the array response vector V i corresponding to the null from the direction of the object 5000, and generates the optimal weight vector W opt using the array response vector V i and the array response vector V d .
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the power transmitting device 10 can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20.
  • radiation of radio waves of 2000 W toward the object 5000 can be suppressed.
  • the power transmitting device 10 can suppress the 2000 W of radio waves directed toward the human body even in an environment where radio waves including the specified signal 1000 from the power receiving device 20 reach the human body after being reflected, thereby realizing safe wireless power transmission. be able to.
  • the power transmission device 10 can detect the directions of the plurality of objects 5000 and generate the weight vector W opt so as to direct a null to each of the plurality of objects 5000.
  • the weight generation unit 17 may generate transmission weights such that the gain in the object direction is within a predetermined gain range from null. For example, if the weight generation unit 17 generates transmission weights such that the gain in the direction of the object is within the gain range from the null A [dB] to B [dB], when the null is A [dB]. good.
  • the value of B may be a predetermined multiple of A, such as 0.9A, 0.8A, 0.7A, 0.98A, 0.99A, 1.1A, and 1.01A.
  • the graph shown in FIG. 11 shows, for example, a directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 according to the first embodiment when two objects 5000 are present.
  • the vertical axis shows the power (square of the absolute value) [dB] of the array response value
  • the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W.
  • the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is ⁇ /2, and the antenna arrangement is a uniformly spaced linear array. ⁇ represents wavelength.
  • the power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects ⁇ 10° and ⁇ 45° in the radiation direction as the directions of the two objects 5000.
  • the power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the ⁇ 10° direction, and an array response vector V 1 corresponding to the null in the ⁇ 45° direction.
  • a weight vector W opt is generated based on the array response vector V 2 .
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the power of the array response value becomes large near the direction where the radiation direction is 30°, and the power of the array response value becomes large near the direction D1 of -10° and the direction D2 of -45°. is getting smaller.
  • the power transmitting device 10 detects a plurality of objects 5000, it is possible to direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and suppress the emission of the radio waves of 2000 W directed toward the plurality of objects 5000.
  • the array response vector V d for the power receiving device 20 in a multipath environment generally does not follow a specific direction in the directivity pattern, but in the example of FIG. 11, the array response vector is set in a 30° direction for ease of understanding. .
  • the power transmission device 10 is described as a case where the plurality of antenna elements 11A of the array antenna 11 are a linear array with equal intervals, but the present invention is not limited to this. As long as the power transmission device 10 can calculate the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
  • the power transmission device 10 may include the sensor section 15 and the detection section 16 in an electronic device 30 outside the power transmission device 10.
  • the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30.
  • the power transmission device 10 may include only the sensor section 15 outside the device. In this case, the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
  • FIG. 14 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the second embodiment.
  • FIG. 15 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 16 is a diagram showing an example of an adaptive array antenna and directivity.
  • FIG. 17 is a diagram illustrating an example of vectorization during differential coefficient constraint.
  • the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, A multiplication unit 18 is provided.
  • the array antenna 11 has a configuration that allows directivity control (beamforming).
  • the array antenna 11 includes a plurality of antenna elements 11A.
  • each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction.
  • the configuration is such that this is possible.
  • Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 .
  • Array antenna 11 supplies the received signal to transmitter/receiver 13 .
  • the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this.
  • the transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20.
  • the transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power.
  • the transmission signal 2000 may be a baseband signal.
  • the transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period.
  • the transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000.
  • the transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
  • the transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11.
  • the transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like.
  • the transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14.
  • the transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18.
  • the transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable.
  • the transmitting/receiving unit 13 simultaneously radiates 2000 W of radio waves including the transmission signal 2000 multiplied by the transmission weight (complex amplitude) from the plurality of antenna elements 11A, so that the power transmission device 10 radiates 2000 W of radio waves with controlled directivity. .
  • the estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A.
  • the propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics.
  • the array response vector indicates, for example, channel characteristics for the number of antennas.
  • the array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged.
  • the array response vector in reception processing is also referred to as a reception response vector.
  • the estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995.
  • the estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
  • the sensor unit 15 can acquire information that can detect the presence, direction, area, etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10.
  • the radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20.
  • the area of the object 5000 includes, for example, information regarding the area of the object 5000 in the radio wave propagation environment and the angular spread of the object 5000 from the own aircraft.
  • the sensor unit 15 uses, for example, a camera, a radar such as a millimeter wave radar, a LIDAR (Laser Imaging Detection and Ranging), a ToF (Time of Flight) sensor, an infrared sensor, a human sensor, a depth sensor, etc. to detect the radio wave propagation environment. Obtain information regarding object 5000 present in .
  • the sensor unit 15 may be provided outside the power transmission device 10.
  • the sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect the direction and area of the object 5000 in the radio wave propagation environment to the detection section 16.
  • the sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image.
  • the detection unit 16 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding the position and area of an object 5000 that is different from the power receiving device 20 in the radio wave propagation environment.
  • the objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like.
  • the detection unit 16 executes a known object recognition process on the image indicated by the sensor information, and detects the area and shape of the object 5000, the area where the object exists in the radio wave propagation environment, and the direction and area of the object 5000 from the own device. Detect etc. For example, the detection unit 16 detects the direction, position, area, etc. of the object 5000 from the array antenna 11 based on the direction, position, area, etc.
  • the detection unit 16 detects the positions and regions of the plurality of objects 5000.
  • the detection unit 16 is electrically connected to the weight generation unit 17, and supplies the direction, area, etc. of the object 5000 from the array antenna 11 to the weight generation unit 17 as identifiable direction information.
  • the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
  • the direction information includes, for example, information indicating the direction, area, etc. of the object 5000 from the array antenna 11.
  • the direction information includes identifiable information such as a region 151 including the object 5000 and a size 152.
  • the direction information can be information that allows identification of the size of the object 5000 set according to the arrangement of the plurality of antenna elements 11A. For example, when the plurality of antenna elements 11A are arranged in a matrix, the vertical and horizontal lengths, position, shape of the object 5000, etc. can be set for the region 151 of the object 5000.
  • the size 152 of the object 5000 includes the length and distance in one direction such as width and height, the angular range from the own aircraft, etc. Can be set.
  • the region 151 of the object 5000 may be a spatial region according to the outer shape of the object 5000, etc.
  • the weight generation unit 17 generates power transmission weights based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the object 5000 from the detection unit 16.
  • a weight generation method for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used.
  • the weight generation section 17 is electrically connected to the multiplication section 18 and supplies the multiplication section 18 with weight information indicating power transmission weights.
  • a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
  • the analytical array antenna characteristics are referred to as array response values AR.
  • the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (
  • 2 1) so that the total transmission power is constant. .
  • the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d can be regarded as the array response vector from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal shall have the same frequency as the radio waves used during power transmission.
  • the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and does not require information such as the direction of the reception point 200P.
  • Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero.
  • of the array response vector V d is maximized.
  • K is the number of antenna elements 11A.
  • M is the number of nulls. Since the degree of freedom is K-1, M ⁇ K.
  • argmax (argument of the maximum) means a set of values that achieves the maximum value.
  • Formula 215) is a conditional expression for determining the optimal weight vector W opt where
  • A is a matrix shown in (Equation 218) in which array response vectors V 1 , V 2 , . . . , VM , which are M complex column vectors, are arranged.
  • a + is the Moore-Penrose general inverse of A.
  • a + (A H A) ⁇ 1 A H.
  • V' d (I-AA + )V d as in (Equation 216)
  • 2
  • 2 1 is satisfied.
  • 1/
  • the array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000.
  • the array response vector can be estimated using another method. need to be calculated.
  • an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of avoiding radio waves that go directly from the power transmission device 10 toward the target to which the null is directed.
  • a far field is radiated in a direction rotated clockwise by ⁇ (- ⁇ /2 ⁇ /2) from the broadside.
  • the array response vector at is given as (Equation 219) below.
  • the broadside is perpendicular to the direction in which the antenna elements 11A are arranged, and is upward in FIG. 16.
  • the inter-element distance from the #0 antenna element 11A to the #K antenna element 11A at the reference point 200B is kd.
  • the inter-element distance from the #0 antenna element 11A to the #K-1 antenna element 11A at the reference point 200B is (K-1)d.
  • the impulse response Z is expressed as (Equation 220).
  • the impulse response Z i can be obtained by (Equation 222).
  • the weight generation unit 17 derives the array response vector V i corresponding to the null from the direction ⁇ i of the null object using (Equation 221) and (Equation 222), and then derives the matrix (I ⁇ AA + ).
  • the weight generation unit 17 generates an optimal weight vector that maximizes the magnitude of the array response value
  • W opt is determined, but generally the timing at which the matrix (I-AA + ) and the array response vector V d are calculated is different. Therefore, the weight generation section 17 can store the matrix (I-AA + ) in the storage section 17D.
  • the storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device.
  • the storage unit 17D may include a storage device such as a RAM used as a temporary storage area.
  • the storage unit 17D may be provided outside the weight generation unit 17.
  • the object 5000 to be nulled has an expanse, and it is desirable to widen the angle of the null according to the area of the object 5000. Multiple methods can be used to widen the null. In this disclosure, a case will be described in which derivative constraints are used.
  • the array response value of the K element equally spaced linear array in the ⁇ direction is obtained by (Formula 223).
  • D( ⁇ ) is called an array response function or array factor.
  • D( ⁇ ) is a continuous function of ⁇ and is differentiable with respect to ⁇ .
  • is the directivity pattern of the array antenna.
  • K is the number of antenna elements 11A
  • M is the number of nulls.
  • the number of nulls is the number of objects 5000 detected by the detection unit 16.
  • the weight generation unit 17 generates transmission weights such that the null points toward the direction and area of the object 5000 based on the propagation channel characteristics of the prescribed signal 1000 and the detection result of the direction and area of the object 5000 detected by the detection unit 16. .
  • the weight generation unit 17 determines the wide angle L i .
  • the weight generation unit 17 calculates the array response vector V i from the direction ⁇ i using (Equation 221) and (Equation 222). For example, as shown in FIG. 17, the weight generation unit 17 applies information indicating the direction ⁇ i and the region ⁇ i of the null target to the table 170 to obtain the wide angle L i .
  • the area ⁇ i includes information regarding the area, size, etc. of the object 5000.
  • the widening angle L i is a widening parameter and depends not only on the area ⁇ i of the object 5000 but also on the direction ⁇ i , so it may be determined using the table 170 or using machine learning or the like. good.
  • the table 170 is stored in the storage unit 17D and is a lookup table that derives the wide angle L i from the direction ⁇ i and the area ⁇ i .
  • the weight generation unit 17 uses the constraint vector V i (l) to determine the optimal weight vector W opt that maximizes the magnitude
  • the power transmission device 10 can set the wide angle L i for each null target.
  • the power transmission device 10 can independently calculate a matrix calculated from the direction and region in which the null is directed and the propagation channel characteristics of the prescribed signal 1000.
  • the multiplication section 18 multiplies the transmission signal 2000 from the transmission signal generation section 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation section 17.
  • the multiplication unit 18 includes, for example, a multiplier.
  • the multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
  • the functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 14 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example.
  • the functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
  • FIG. 18 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the second embodiment.
  • the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24.
  • the power receiving device 20 of the present disclosure may be a movable device.
  • such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position.
  • the power receiving device 20 may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc.
  • the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
  • the antenna 21 is electrically connected to the transmitting/receiving section 22.
  • the antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10.
  • the antenna 21 for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used.
  • the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10.
  • the antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
  • the transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24.
  • the transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 .
  • the transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
  • the signal generating section 23 generates a regulation signal 1000.
  • the signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 .
  • the signal generator 23 can generate the regulation signal 1000 based on the transmission cycle.
  • the signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
  • the power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current.
  • the power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit.
  • the power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply).
  • the loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
  • the functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 18 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example.
  • the functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
  • FIG. 19 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG.
  • FIG. 20 is a diagram for explaining the data flow of power transmission device 10 shown in FIG. 19.
  • the power receiving device 20 sends out a regulation signal 1000.
  • the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111).
  • the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do.
  • the power transmission device 10 advances the process to step S131.
  • the detection unit 16 detects the direction and area of the object 5000 that is different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 20, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions ⁇ 1 , ⁇ 2 , ..., ⁇ of the plurality of objects 5000. Detect M. Then, the power transmission device 10 detects regions ⁇ 1 , ⁇ 2 , . . . , ⁇ M of the plurality of objects 5000.
  • the power transmission device 10 supplies the directions ⁇ 1 , ⁇ 2 , ..., ⁇ M and the regions ⁇ 1 , ⁇ 2 , ..., ⁇ M of the detected object 5000 to the weight generation unit 17 .
  • the power transmission device 10 advances the process to step S122.
  • the power transmission device 10 performs a matrix calculation of (I-AA + ) using the constraint vector V i (l) corresponding to the null, and stores the calculation result in the storage unit 17D.
  • A [V 1 (0) ,..., V 1 (L1) , V 2 (0) ,..., V 2 (L2) ,..., V M (0) ,... , V M (LM) ].
  • the power transmitting device 10 advances the process to step S131.
  • the power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 20, the power transmission device 10 performs matrix and vector multiplication (step S173). Specifically, in the power transmission device 10, the weight generation unit 17 calculates the product of the array response vector V d estimated by the estimation unit 14 and (I ⁇ AA + ) in the storage unit 17D, and generates the array response vector V d ′. Calculate. Then, the power transmission device 10 performs normalization (step S174). Specifically, the power transmission device 10 normalizes the array response vector V d ' calculated by the weight generation unit 17 using (Equation 217), and generates the optimal weight vector W opt .
  • the power transmitting device 10 advances the process to step S132.
  • the power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, since the power transmitting device 10 directs the null toward the region of the object 5000, the radio waves 2000 W are combined in a constructive manner in the power receiving device 20, but are combined in a destructive manner in the object 5000.
  • the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
  • the power transmitting device 10 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
  • the processing procedure of the power transmission device 10 shown in FIG. 19 includes estimating the array response vector V d according to the specified signal 1000 (step S111), calculating the constraint vector V i (l) according to the direction and area of the object 5000, and The matrix calculation (step S122) does not need to be synchronized. Therefore, for example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction and area of the object 5000, the power transmission device 10 may use the past constraint vector V i (l) .
  • FIG. 21 is a diagram for explaining an example of the operation of the power transmission device 10 according to the second embodiment.
  • FIG. 22 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device 10 shown in FIG. 21 by computer simulation.
  • FIG. 23 is a diagram illustrating an example of a directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the second embodiment.
  • the system 1 has a power transmitting device 10 and a power receiving device 20 arranged in a room 4000, and an object 5000 having the same physical properties as a human body is present.
  • Room 4000 is a 3m x 3m x 3m room with walls made of concrete.
  • the object 5000 is placed between the power transmitting device 10 and the power receiving device 20 at a position offset from the straight line connecting the power transmitting device 10 and the power receiving device 20. That is, the measurement environment shown in FIG. 22 is the same as the environment shown in FIG. 2.
  • the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can.
  • the power receiving device 20 emits a radio wave including the prescribed signal 1000
  • the main paths are a path directly toward the power transmitting device 10 and a path reflected by an object 5000 and directed toward the power transmitting device 10.
  • the power transmission device 10 estimates the propagation channel characteristics of the radio wave including the prescribed signal 1000 received by the array antenna 11, and estimates the array response vector V d .
  • the power transmission device 10 calculates an array response vector V i corresponding to the direction of the object 5000, that is, a null, and also calculates a constraint vector V i (l) based on the area of the object 5000, and uses it as a constraint vector.
  • An optimal weight vector W opt is generated using the constraint vector V i (l) and the array response vector V d .
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the power transmitting device 10 can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20. Furthermore, by forming a wide-angle null in the area of the object 5000, radiation of the radio wave 2000W toward the object 5000 can be suppressed. As a result, even in an environment where the prescribed signal 1000 from the power receiving device 20 reaches the human body after being reflected, the power transmitting device 10 can suppress the 2000 W of radio waves directed toward the human body, making it possible to realize safe wireless power transmission. .
  • the power transmission device 10 detects the directions and regions of the plurality of objects 5000 and generates a weight vector W opt so as to direct a null to each of the plurality of objects 5000. be able to.
  • the graph shown in FIG. 23 shows an example of the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 according to the second embodiment when two objects 5000 are present, for example.
  • the vertical axis shows the power (square of the absolute value) [dB] of the array response value
  • the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W.
  • the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is ⁇ /2, and the antenna arrangement is a uniformly spaced linear array. ⁇ represents wavelength.
  • the power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects ⁇ 10° and ⁇ 45° in the radiation direction as the directions of the two objects 5000.
  • the power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the ⁇ 10° direction, and an array response vector V 1 corresponding to the null in the ⁇ 45° direction.
  • Generate a weight vector W opt based on the array response vector V 2 and the wide angle of each null.
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the power of the array response value becomes large near the direction where the radiation direction is 30°, and the power of the array response value becomes large near the direction D1 of -10° and the direction D2 of -45°. is getting smaller.
  • the power transmitting device 10 detects a plurality of objects 5000, it is possible to direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and suppress the emission of the radio waves of 2000 W directed toward the plurality of objects 5000.
  • the array response vector V d for the power receiving device 20 in a multipath environment generally does not have a specific direction in the directivity pattern, in the example of FIG. 23, the array response vector is set in a 30° direction for ease of understanding.
  • the power transmission device 10 has been described as a case where the plurality of antenna elements 11A of the array antenna 11 are a linear array with equal intervals, but the present invention is not limited to this. As long as the power transmission device 10 can calculate the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
  • FIG. 24 is a diagram illustrating an example of the configuration of a power transmission device 10 according to a modification of the second embodiment.
  • FIG. 25 is a diagram illustrating an example of another configuration of the power transmission device 10 according to a modification of the second embodiment.
  • the power transmission device 10 may include the sensor section 15 and the detection section 16 in an electronic device 30 outside the power transmission device 10.
  • the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30.
  • the power transmission device 10 may include only the sensor section 15 outside the device.
  • the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
  • V d is in the same direction as the optimal weight in the retrodirective method
  • the matrix (I-AA + ) is a projection matrix of the subspace spanned by the column vectors of matrix A onto the orthogonal subspace. be.
  • the elements of the subspace spanned by the column vectors of matrix A are given by Ax.
  • FIG. 26 is a diagram for explaining a data flow of a power transmission device according to a modification of the second embodiment. Note that a certain condition includes a plurality of conditions that are generalized based on the direction and area of the object 5000.
  • ) (step S176). However, A [V 1 (0) ,..., V 1 (L1) , V 2 (0) ,..., V 2 (L2) ,..., V M (0) ,... , V M (LM) ]. The power transmission device 10 multiplies the transmission weight in step S132 described above.
  • the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A.
  • the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A.
  • the power transmitting device 10 since the power transmitting device 10 directs the null toward the region of the object 5000, the radio waves of 2000 W are directed toward the power receiving device 20, but the radiation directed toward the object 5000 can be reduced. In this way, the power transmission device 10 can obtain the above-mentioned effects even if the configuration is changed.
  • the weight generation unit 17 determines the minimum value ⁇ min i and the maximum value ⁇ max i in the direction from the direction ⁇ i and the area ⁇ i of the object 5000 to be nulled.
  • the weight generation unit 17 determines directions ⁇ i (0) , ⁇ i (1) , . . . , ⁇ i (Li) that cover from ⁇ min to ⁇ max in predetermined steps.
  • the step width may be constant regardless of the direction ⁇ i of the object 5000, or may be changed for each direction ⁇ i of the object 5000.
  • a method of setting nulls across the region of the object 5000 is referred to as a retrodirective method with multi-point null constraints. Both the retrodirective method with multi-point null constraint and the retrodirective method with differential coefficient constraint use (Equation 231). Therefore, in null widening, the retrodirective method with multi-point null constraint that sets a plurality of nulls and the retrodirective method with differential coefficient constraint that sets a plurality of constraint vectors according to the wide angle may be combined.
  • the direction and area of object 5000 may be limited by specific conditions.
  • the detection unit 16 may limit the direction and area to the human head by performing a known object recognition process on the image indicated by the sensor information.
  • the direction and area of the object 5000 may be limited to the direction and area in which the specified signal 1000 arrives by performing a known arrival direction estimation process on the specified signal 1000 received by the power transmission device 10.
  • the area of the object 5000 may be divided, and the null target area may be limited to the divided area. At this time, the divided regions may be switched over in time.
  • (Formula 2D6) includes the Vandermonde determinant, and since the Vandermonde determinant is the following (Formula 2D61), the following (Formula 2D62) is obtained.
  • Q l ' can be expressed by the following (Formula 2E4).
  • c l,1 , . . . , c l,l are constants.
  • FIG. 27 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the third embodiment.
  • FIG. 28 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna.
  • FIG. 29 is a diagram showing an example of an adaptive array antenna and directivity.
  • the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, It includes a multiplication section 18 and a preprocessing section 19.
  • the array antenna 11 has a configuration that allows directivity control (beamforming).
  • the array antenna 11 includes a plurality of antenna elements 11A.
  • each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction.
  • the configuration is such that this is possible.
  • Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 .
  • Array antenna 11 supplies the received signal to transmitter/receiver 13 .
  • the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this.
  • Array antenna 11 is an example of an antenna.
  • the transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20.
  • the transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power.
  • the transmission signal 2000 may be a baseband signal.
  • the transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period.
  • the transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000.
  • the transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
  • the transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11.
  • the transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like.
  • the transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14.
  • the transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18.
  • the transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable.
  • the transmitting/receiving unit 13 causes the plurality of antenna elements 11A to simultaneously radiate radio waves including a transmission signal 2000 multiplied by a transmission weight (complex amplitude), so that the power transmission device 10 emits radio waves 2000 W with controlled directivity. Note that the power transmitting device 10 may not include the multiplier 18 when the transmission signal is a non-modulated wave.
  • the estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A.
  • the propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics.
  • the array response vector indicates, for example, channel characteristics for the number of antennas.
  • the array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged.
  • the array response vector in reception processing is also referred to as a reception response vector.
  • the estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995.
  • the estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
  • the sensor unit 15 can acquire detectable information such as the presence or absence, position, area, distance (depth), etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10.
  • the radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20.
  • the area of the object 5000 includes, for example, information regarding the area of the object 5000 in the radio wave propagation environment, the angle of the object 5000 from the own aircraft, and the angular spread.
  • the sensor unit 15 uses, for example, a camera, LIDAR (Laser Imaging Detection and Ranging), radar such as a millimeter wave radar, ToF (Time of Flight) sensor, infrared sensor, human sensor, depth sensor, etc. to monitor the radio wave propagation environment. Obtain information regarding object 5000 present in .
  • the sensor unit 15 may be provided outside the power transmission device 10.
  • the sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect at least the direction and distance of the object 5000 in the radio wave propagation environment to the detection section 16.
  • the sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image.
  • the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
  • the detection unit 16 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding, for example, the position, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment.
  • the objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like.
  • the detection unit 16 executes a known object recognition process on the image indicated by the sensor information, and determines the presence or absence of the object 5000, its shape, the area where the object exists in the radio wave propagation environment, and the direction and distance of the object 5000 from the own device. Detect etc. For example, the detection unit 16 detects the direction, position, area, etc.
  • the detection unit 16 detects the position, distance, etc. of each of the plurality of objects 5000.
  • the detection unit 16 is electrically connected to the preprocessing unit 19, and supplies the direction, area, distance, etc. of the object 5000 from the array antenna 11 to the preprocessing unit 19 as identifiable direction information.
  • the direction information includes, for example, information indicating the direction, area, distance, etc. of the object 5000 from the array antenna 11.
  • the direction information includes identifiable information such as a region 151 including the object 5000, a size 152, and a distance 153.
  • the direction information can be information that allows identification of the size of the object 5000 set according to the arrangement of the plurality of antenna elements 11A. For example, when the plurality of antenna elements 11A are arranged in a matrix, the vertical and horizontal lengths, position, shape of the object 5000, etc. can be set for the region 151 of the object 5000.
  • the size 152 of the object 5000 includes the length and distance in one direction such as width and height, the angular range from the own aircraft, etc. Can be set.
  • the distance 153 of the object 5000 the shortest, longest, average distance, depth, etc. from the sensor unit 15 to the object 5000 can be set.
  • the region 151 of the object 5000 may be a spatial region according to the outer shape of the object 5000, etc.
  • the preprocessing unit 19 Based on the direction information from the detection unit 16, the preprocessing unit 19 performs processing to generate vectorization and the size of the null depth as identifiable information. When widening the null to match the size of the object 5000, the preprocessing unit 19 can perform vectorization using at least one of a multipoint null constraint method and a differential coefficient constraint method, for example. The processing of the preprocessing section 19 will be described later.
  • the preprocessing unit 19 performs preprocessing related to weight generation, and supplies the processing results to the weight generation unit 17.
  • the weight generation unit 17 generates power transmission weights from the results of the calculation performed by the preprocessing unit 19 based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the detection unit 16.
  • a weight generation method for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used.
  • the weight generation section 17 is electrically connected to the multiplication section 18 and supplies the multiplication section 18 with weight information indicating power transmission weights.
  • a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
  • the analytical array antenna characteristics are referred to as array response values AR.
  • the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (
  • 2 1) so that the total transmission power is constant. .
  • the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d at the time of reception can be regarded as the array response vector at the time of transmission from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal during reception shall have the same frequency as the radio waves during power transmission.
  • the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and information such as the direction of the receiving point 200P is not required.
  • Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero.
  • of the array response vector V d is maximized.
  • K is the number of antenna elements 11A.
  • M is the number of nulls. Since the degree of freedom is K-1, M ⁇ K.
  • argmax (argument of the maximum) means a set of values that achieves the maximum value.
  • Formula 315) is a formula for determining the optimal weight vector W opt where
  • A is a matrix shown in (Equation 318) in which array response vectors V 1 , V 2 , . . . , VM , which are M complex column vectors, are arranged.
  • a + is the Moore-Penrose general inverse of A.
  • a + (A H A) ⁇ 1 A H.
  • V' d (I-AA + )V d as in (Equation 316)
  • 2
  • 2 1 is satisfied.
  • 1/
  • the array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000.
  • the array response vector can be estimated using another method. need to be calculated.
  • an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of setting the path directly from the power transmission device 10 to the target to which the null is directed. .
  • the impulse response Z is given by the following (Equation 320).
  • the impulse response Z i can be obtained by the following (Equation 322).
  • the weight generation unit 17 derives the array response vector V i corresponding to the null from the direction ⁇ i of the null object using (Equation 321) and (Equation 322), and then derives the matrix (I ⁇ AA + ).
  • the weight generation unit 17 generates an optimal weight that maximizes the magnitude of the array response value
  • the storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device.
  • the storage unit 17D may include a storage device such as a RAM used as a temporary storage area.
  • the storage unit 17D may be provided outside the weight generation unit 17.
  • the object 5000 to be nulled has an expanse, and it is desirable to widen the angle of the null according to the area of the object 5000.
  • Multiple methods can be used to widen the null.
  • a multiple null constraint method, a derivative constraint method, or the like can be used.
  • the multi-point null constraint method is a method of widening the angle of the null by forming the null not in one direction but in multiple directions in the vicinity according to the size of the null target.
  • the array response vector V i in (Equation 315) above is calculated from ⁇ i , which is the direction of the null object, using (Equation 321) and (Equation 322).
  • a wide angle is achieved by giving multiple nearby directions as null target directions.
  • the differential coefficient constraint method is a method that uses the continuity of array response values in the ⁇ direction to achieve flattening based on the differential coefficient. The details of the differential coefficient constraint method will be explained below.
  • the array response value for the array response vector V( ⁇ ) in the ⁇ direction of a linear array in which K antenna elements 11A are equally spaced is a function of ⁇ , and this is defined as D( ⁇ ).
  • D( ⁇ ) is given by the following (Formula 323).
  • D( ⁇ ) is called an array response function or array factor.
  • D( ⁇ ) is a continuous function of ⁇ and is differentiable with respect to ⁇ . Note that this absolute value
  • V i (l) Q l V i as the array response vector V i in (Equation 315) described above, widening of the null angle due to the differential coefficient constraint can be realized.
  • l 1, . . . , Li . V i (l) is not correctly an array response vector, and it is inappropriate to call V i in (Equation 315) an array response vector in this case. Therefore, as a vector that provides a constraint condition, V i in (Equation 315) may be hereinafter referred to as a constraint vector.
  • K is the number of antenna elements 11A
  • M is the number of nulls.
  • the number M of nulls corresponds to the area of the object 5000 detected by the detection unit 16.
  • the optimal weight vector W opt in (Formula 328) is given by the following (Formula 329) using the above-mentioned (Formula 316).
  • A is a matrix in which M complex column constraint vectors V 1 , V 2 , . . . , V M are arranged, and A + is a Moore-Penrose general inverse matrix of A.
  • [ ⁇ 1 ⁇ 2 ... ⁇ M ] T
  • of ⁇ i is given by (Equation 328).
  • T when "T" is written on the right shoulder of a character, such as (.) T , it means transposition.
  • the optimal weight vector W opt of (Formula 331) is given by the following (Formula 333) when the following (Formula 332) is defined. Note that null depth control using an approximate solution will be described later.
  • A' is a matrix in which M complex column vectors ⁇ 1 V 1 , ⁇ 2 V 2 , ... , ⁇ M V M are arranged. ⁇ M VM ].
  • FIG. 30 is a diagram illustrating an example of vectorization using the multi-point null constraint method.
  • the weight generation unit 17 determines directions ⁇ (0) i , . . .
  • the order L i of the approximate expression in the differential coefficient constraint method is referred to as a wide angle as a measure representing the degree of widening, but the L i in the multi-point null constraint method may also be referred to as a wide angle.
  • FIG. 31 is a diagram illustrating an example of vectorization using the differential coefficient constraint method.
  • the preprocessing unit 19 determines the wide angle L i from the direction ⁇ i and the area ⁇ i of the object 500.
  • the wide angle L i depends not only on the area ⁇ i but also on the direction ⁇ i . Therefore, the preprocessing unit 19 calculates the wide angle L i by using a table, machine learning, etc. that derives the wide angle L i from this information.
  • the preprocessing unit 19 applies information indicating the direction ⁇ i and the area ⁇ i to the table 170 to obtain the wide angle L i .
  • the area ⁇ i includes information regarding the area, distance, etc. of the object 5000, for example.
  • the table 170 is stored in the storage unit 17D and is a lookup table for deriving the wide angle L i from the direction ⁇ i and the area ⁇ i .
  • V i (0) V i .
  • FIG. 32 is a diagram illustrating an example of null depth processing by the preprocessing unit 19.
  • An example shown in FIG. 32 shows a processing example when the preprocessing unit 19 uses the above-mentioned (Formula 328).
  • the preprocessing unit 19 can perform processing regarding the size of the null depth, as shown in FIG. 32.
  • the amount of attenuation of the intensity of the radio wave 2000 W can be estimated from the distance d i to the null target.
  • the preprocessing unit 19 calculates the absolute value
  • may be changed for each direction ⁇ i of the object 5000, for example, taking into account the directivity of the antenna element itself.
  • a process is performed to obtain a vector P1 indicating the magnitude of the null depth with the same value for the same null target.
  • the vector P1 is, for example, [
  • the magnitude of the null depth corresponding to V i (0) be
  • the vector P2 is, for example, [
  • the preprocessing unit 19 uses the obtained constraint vector V i (l) to perform matrix operations such as (I-AA + ), A +, etc.
  • Vectors P1 and P2 indicating the magnitude of the depth are calculated, and the calculation results are stored in the storage section 17D and supplied to the weight generation section 17.
  • FIG. 33 is a diagram showing another example of processing of the null depth by the preprocessing unit 19.
  • An example shown in FIG. 33 shows a processing example when the preprocessing unit 19 uses the above-mentioned (Formula 331).
  • the preprocessing unit 19 can perform processing regarding the size of the null depth, as shown in FIG. 33.
  • the preprocessing unit 19 calculates the weighting coefficient ⁇ i using a table of the distance d i and the weighting coefficient ⁇ i based on the results measured in advance.
  • the weighting coefficient ⁇ i may be changed for each direction ⁇ i of the object 5000, for example, taking into account the directivity of the antenna element itself.
  • a process is executed to obtain a vector P3 indicating the magnitude of the null depth with the same value for the same null target.
  • the vector P3 is, for example, [ ⁇ 1 , ⁇ 1 , ..., ⁇ 1 , ⁇ 2 , ⁇ 2 , ..., ⁇ 2 , ... ⁇ M , ⁇ M , ..., ⁇ M ] T .
  • ⁇ i be the size of the null depth corresponding to V i (0)
  • the vector P4 is, for example, [ ⁇ 1 , ⁇ 0 , ..., ⁇ 0 , ⁇ 2 , ⁇ 0 , ..., ⁇ 0 , .... ⁇ M , ⁇ 0 , ..., ⁇ 0 ] T .
  • the preprocessing unit 19 uses the obtained constraint vector V i (l) and vectors P3 and P4 indicating the magnitude of the null depth to calculate (IA' A matrix calculation of (I+A' H A') -1 A' H ) is performed, and the calculation result is stored in the storage section 17D and supplied to the weight generation section 17.
  • the weight generation unit 17 uses the array response vector V d for the power receiving device 20, which is the estimation result of the estimation unit 14, and the information stored in the storage unit 17D to generate the optimal weight vector W opt as described above (Equation 329 ) or (Equation 333).
  • the weight generation unit 17 can store weight information that allows identification of a weight vector suitable for the generated direction, area, and distance in the storage unit 17D.
  • the power transmission device 10 can set the wide angle L i for each null target.
  • the power transmission device 10 can independently calculate the matrix or vector calculated from the direction, area, and distance in which the null is directed, and the propagation channel characteristics of the specified signal 1000.
  • the multiplication section 18 multiplies the transmission signal 2000 from the transmission signal generation section 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation section 17.
  • the multiplication unit 18 includes, for example, a multiplier.
  • the multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
  • the functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 27 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example.
  • the functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
  • FIG. 34 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the third embodiment.
  • the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24.
  • the power receiving device 20 of the present disclosure may be a movable device.
  • such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position.
  • the power receiving device 20 may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc.
  • the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
  • the antenna 21 is electrically connected to the transmitting/receiving section 22.
  • the antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10.
  • the antenna 21 for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used.
  • the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10.
  • the antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
  • the transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24.
  • the transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 .
  • the transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
  • the signal generating section 23 generates a regulation signal 1000.
  • the signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 .
  • the signal generator 23 can generate the regulation signal 1000 based on the transmission cycle.
  • the signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
  • the power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current.
  • the power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit.
  • the power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply).
  • the loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
  • the functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 34 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example.
  • the functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
  • FIG. 35 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG.
  • FIG. 36 is a diagram for explaining an example of the data flow of the power transmission device 10 shown in FIG. 35.
  • FIG. 36 shows a case where the power transmission device 10 uses the above-mentioned (Formula 328).
  • the power receiving device 20 emits radio waves including a prescribed signal 1000.
  • the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111).
  • the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do.
  • the power transmission device 10 advances the process to step S131.
  • the power transmitting device 10 uses the detection unit 16 to detect the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 36, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions ⁇ 1 , ⁇ 2 , ..., ⁇ of the plurality of objects 5000. Detect M. The power transmission device 10 detects regions ⁇ 1 , ⁇ 2 , . . . , ⁇ M of the plurality of objects 5000. The power transmission device 10 detects distances d 1 , d 2 , . . .
  • the power transmission device 10 detects the detected object 5000 in directions ⁇ 1 , ⁇ 2 , ..., ⁇ M , areas ⁇ 1 , ⁇ 2 , ..., ⁇ M and distances d 1 , d 2 , ..., d M is supplied to the preprocessing section 19.
  • the power transmitting device 10 advances the process to step S122.
  • the power transmission device 10 performs preprocessing (step S122). For example, when using the differential coefficient constraint method, as shown in FIG. 36, the power transmission device 10 performs vectorization in the preprocessing unit 19 (step S191). For example, the power transmission device 10 applies information indicating the direction ⁇ i and the region ⁇ i to the table 170 to obtain the wide angle L i , and vectorizes the wide angle L i and the array response vector V i .
  • the preprocessing unit 19 calculates the size of the null depth (step S193). Specifically, the power transmission device 10 sets the portion corresponding to the differential coefficient constraint to zero based on the distance d i from the detection unit 16 and the wide angle L i determined in step S191, and indicates the size of the null depth. A vector P2 is obtained and stored in the storage section 17D. Returning to FIG. 35, when the process of step S122 is completed, the power transmitting device 10 advances the process to step S131.
  • the power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 36, in the power transmission device 10, the weight generation unit 17 performs matrix and vector integration (step S171). Specifically, in the power transmission device 10, the weight generation unit 17 integrates the calculation result (I-AA + ) and the array response vector V d . For example, the power transmission device 10 calculates the vector V d ′ by integrating the calculation result of (I ⁇ AA + ) in the storage unit 17D and the array response vector V d from the estimation unit 14.
  • the weight generation unit 17 performs matrix and vector multiplication (step S172). Specifically, in the power transmission device 10, the weight generation unit 17 integrates the calculation result (A + ) and the array response vector V d (step S172). For example, the power transmission device 10 calculates a vector (A + V d ) by integrating the calculation result of (A + ) in the storage unit 17D and the array response vector V d from the estimation unit 14. In the power transmission device 10, the weight generation unit 17 generates a vector ⁇ (step S173). For example, the power transmission device 10 generates the vector ⁇ based on the vector P2 indicating the magnitude of the null depth in the storage unit 17D and the vector (A + V d ) in step S172.
  • the weight generation unit 17 generates a vector V ⁇ (step S174). For example, the power transmission device 10 generates the vector V ⁇ based on the calculation result of (A + ) in the storage unit 17D and the vector ⁇ in step S173. In the power transmission device 10, the weight generation unit 17 performs coefficient calculation (step S175). For example, the power transmission device 10 calculates the coefficient ⁇ based on the vector V d ′ in step S171 and the vector V ⁇ in step S174.
  • the weight generation unit 17 generates a weight vector W opt (step S176).
  • the power transmitting device 10 advances the process to step S132.
  • the power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, the power transmitting device 10 directs the null toward the area of the object 5000 considering the amount of attenuation of the intensity of the radio wave 2000W from the distance d i to the object 5000 to be nulled. They are combined so that they match each other, but in the case of the object 5000, they are combined so that they weaken each other.
  • the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
  • the power transmitting device 10 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
  • FIG. 37 is a diagram for explaining another example of the data flow of the power transmission device 10 shown in FIG. 35.
  • FIG. 37 shows a case where the power transmission device 10 uses the above-mentioned (Formula 331). Note that the power transmission device 10 executes the same processing procedure as the processing procedure shown in FIG. 35 described above.
  • the power receiving device 20 emits radio waves including a prescribed signal 1000.
  • the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111).
  • the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do.
  • the power transmission device 10 advances the process to step S131.
  • the power transmitting device 10 uses the detection unit 16 to detect the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 37, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions ⁇ 1 , ⁇ 2 , ..., ⁇ of the plurality of objects 5000. Detect M. The power transmission device 10 detects regions ⁇ 1 , ⁇ 2 , . . . , ⁇ M of the plurality of objects 5000. The power transmission device 10 detects distances d 1 , d 2 , . . .
  • the power transmission device 10 detects the detected object 5000 in directions ⁇ 1 , ⁇ 2 , ..., ⁇ M , areas ⁇ 1 , ⁇ 2 , ..., ⁇ M and distances d 1 , d 2 , ..., d M is supplied to the preprocessing section 19.
  • the power transmitting device 10 advances the process to step S122.
  • the power transmission device 10 performs preprocessing (step S122). For example, when using the differential coefficient constraint method, as shown in FIG. 37, the power transmission device 10 performs vectorization in the preprocessing unit 19 (step S194). For example, the power transmission device 10 applies information indicating the direction ⁇ i and the region ⁇ i to the table 170 to obtain the wide angle L i , and vectorizes the wide angle L i and the array response vector V i .
  • the preprocessing unit 19 calculates the size of the null depth (step S195). Specifically, the power transmission device 10 uses a vector P4 that indicates the magnitude of the null depth as a fixed value for the differential coefficient constraint, based on the distance d i from the detection unit 16 and the wide angle L i obtained in step S194. seek.
  • the power transmitting device 10 advances the process to step S131.
  • the power transmission device 10 normalizes the array response vector V d '' calculated by the weight generation unit 17 (step S178). For example, the power transmission device 10 generates the optimal weight vector W opt using (Equation 333).
  • the power transmitting device 10 advances the process to step S132.
  • the power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, the power transmitting device 10 directs the null toward the area of the object 5000 considering the amount of attenuation of the intensity of the radio wave 2000W from the distance d i to the object 5000 to be nulled. They are combined so that they match each other, but in the case of the object 5000, they are combined so that they weaken each other.
  • the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
  • the power transmitting device 10 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
  • the estimation of the array response vector V d according to the specified signal 1000 (step S111) and the preprocessing according to the direction, area, and distance of the object 5000 (step S122) are synchronized. There's no need. Therefore, for example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction, area, and distance of the object 5000, the power transmission device 10 uses the past constraint vector V i (l) , the past restraint vector V i (l) under a similar environment, etc. You can.
  • FIG. 38 is a diagram for explaining an operation example of the power transmission device 10 according to the third embodiment.
  • FIG. 39 is a diagram illustrating an example of the result of calculating the directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the third embodiment by computer simulation.
  • FIG. 40 is a diagram showing another example of the result of calculating the directivity pattern of the radio wave 2000 W of the power transmission device 10 according to the third embodiment by computer simulation.
  • the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can.
  • the radio wave including the prescribed signal 1000 emitted by the power receiving device 20 has a path that goes directly to the power transmitting device 10 and a path that is reflected by an object 5000 and goes to the power transmitting device 10 .
  • the power transmitting device 10 estimates the propagation channel characteristics of the radio wave including the specified signal 1000 received by the array antenna 11 and estimates the array response vector V d . It includes the path and the characteristics of the path toward the object 5000.
  • the power transmitting device 10 detects the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15, and determines the directions ⁇ 1 , ⁇ 2 , ..., ⁇ M , areas ⁇ 1 , ⁇ 2 , ..., ⁇ M and distances d 1 , d 2 , ..., d M are detected.
  • the power transmission device 10 calculates the array response vector V i corresponding to the direction of the object 5000, that is, the null target, and also calculates the constraint vector V i (l) based on the area and distance of the object 5000, and calculates the constraint vector V i (l) based on the area and distance of the object 5000.
  • An optimal weight vector W opt that reduces the radio field intensity in the direction of the object 5000 is generated using i (l) and the array response vector V d . From the power transmission device 10, a radio wave of 2000 W of the transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the power transmitting device 10 can suppress 2000 W of radio waves directed toward the human body, etc., thereby realizing safe wireless power transmission. Can be done.
  • the power transmission device 10 detects the direction, area, and distance of the plurality of objects 5000, and sets the weight vector W opt so as to direct a null to each of the plurality of objects 5000. can be generated.
  • the graph shown in FIG. 39 shows, for example, the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 when the multi-point null restraint method is used in the power transmission device 10 according to the third embodiment when two objects 5000 are present.
  • An example is shown.
  • the vertical axis shows the power (square of the absolute value) [dB] of the array response value
  • the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W.
  • the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is ⁇ /2, and the antenna arrangement is a uniformly spaced linear array. ⁇ represents wavelength.
  • the power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects ⁇ 10° and ⁇ 45° in the radiation direction as the directions of the two objects 5000.
  • the power transmission device 10 calculates the null depth in the -10° direction as 0.001 and the null depth in the -45° direction as 0.01.
  • the power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the ⁇ 10° direction region, and an array response vector V 1 corresponding to the null in the ⁇ 45° direction region.
  • a weight vector W opt is generated based on the array response vector V 2 corresponding to the null.
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the array response value becomes high near the direction where the radiation direction is 30°, and the array response value becomes low near the direction D1 of -10° and the direction D2 of -45°.
  • the depth of the null is -60 dB in direction D1 and -40 dB in direction D2.
  • the graph shown in FIG. 40 shows, for example, the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 when the differential coefficient constraint method is used in the power transmission device 10 according to the third embodiment when two objects 5000 exist.
  • An example is shown.
  • the vertical axis shows the power (square of the absolute value) [dB] of the array response value
  • the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W.
  • the graph shown in FIG. 40 is the same as the measurement conditions shown in FIG. 39.
  • the power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects ⁇ 10° and ⁇ 45° in the radiation direction as the directions of the two objects 5000.
  • the power transmission device 10 calculates the null depth in the -10° direction as 0.001 and the null depth in the -45° direction as 0.01.
  • the power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the ⁇ 10° direction region, and an array response vector V 1 corresponding to the null in the ⁇ 45° direction region.
  • a weight vector W opt is generated based on the array response vector V 2 corresponding to the null.
  • a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
  • the array response value becomes high near the direction where the radiation direction is 30°, and the array response value becomes low near the direction D1 of -10° and the direction D2 of -45°.
  • the depth of the null is -60 dB in direction D3 and -40 dB in direction D4.
  • the power transmission device 10 can obtain similar effects whether using the multi-point null constraint method or the differential coefficient constraint method. As a result, in the system 1, the power transmitting device 10 can improve safety even if the antenna directivity is controlled based on the identification result of the radio wave propagation channel of the prescribed signal 1000 from the power receiving device 20.
  • the array response vector V d for the power receiving device 20 in a multipath environment does not have a specific direction in the directivity pattern, but in the examples of FIGS. And so.
  • the power transmission device 10 is described as being a linear array in which the plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals, but the power transmission device 10 is not limited to this. If the power transmission device 10 is capable of calculating the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
  • the power transmission device 10 may include the sensor section 15 , the detection section 16 , and the preprocessing section 19 in an electronic device 30 outside the power transmission device 10 .
  • the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30.
  • the power transmission device 10 may have only the sensor section 15 provided outside the device.
  • the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
  • the power transmission device 10 described above may combine a multi-point null constraint method and a differential coefficient constraint method for null widening.
  • the power transmission device 10 described above may be configured to use at least one of a multi-point null constraint method and a differential coefficient constraint method for null widening.
  • the above-described power transmission device 10 may combine a method of setting a plurality of nulls over a region to be nulled and a method using differential coefficient constraint to widen the null angle.
  • W ⁇ V d may be replaced with W ⁇ W 0 . That is, it means that it can also be applied to the transmission weight W 0 derived under certain conditions.
  • the transmission weight W 0 derived under certain conditions includes a plurality of weights that do not form a null.
  • the above-mentioned (Formula 332) may be replaced with the following (Formula 334).
  • the power transmission device 10 can reduce the influence on the human body with a transmission weight W close to 0 .
  • FIG. 43 is a diagram illustrating an example of the configuration of the power transmission device 10 according to a modification of the third embodiment.
  • the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, a sensor section 15, a detection section 16, a weight generation section 17, a multiplication section 18, It includes a preprocessing section 19 and a generation section 10A.
  • the generation unit 10A generates the transmission weight W 0 under certain conditions.
  • the generation unit 10A supplies the generated transmission weight W 0 to the weight generation unit 17.
  • the transmission weight W 0 under certain conditions may be a weight stored in the storage unit 17D.
  • the weight generation unit 17 applies the transmission weight W 0 to (Equation 334) to generate a weight vector W opt .
  • the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A.
  • the radio waves of 2000 W are not directed toward the region of the object 5000, so that the radiation directed toward the object 5000 can be reduced. In this way, the power transmission device 10 can obtain the above-mentioned effects even if the configuration is changed to use the transmission weight W 0 .
  • the above-described power transmission device 10 may be configured to classify the detected object 5000 into categories such as human body, animal, plant, etc., and adjust the null depth for each category.
  • the power transmission device 10 may be controlled to increase the null depth when the object 5000 is a human body, an animal, etc., and to decrease the null depth when the object 5000 is a plant or the like.
  • V' d (I-AA + )V d
  • V ⁇ (A + ) H ⁇ .
  • A is a matrix in which M complex column constraint vectors V 1 , V 2 , . . . , V M are arranged, and A + is a Moore-Penrose general inverse matrix of A.
  • [ ⁇ 1 ⁇ 2 ... ⁇ M ] T
  • the argument angle of ⁇ i has the same value as each element of A + V d .
  • satisfies (Equation 330) described above.
  • Form D10 The following (Formula D10) may be selected as ⁇ that satisfies (Formula D91).
  • A' is the following (Formula E3) in which M complex column vectors ⁇ 1 V 1 , ⁇ 2 V 2 , ..., ⁇ M V M are arranged, and the following (Formula E4) is the weight It is a coefficient.
  • FIG. 44 is a top view showing the simulation arrangement according to the first embodiment.
  • FIG. 45 is a side view showing the simulation arrangement according to the first embodiment.
  • FIG. 46 is a diagram showing main specifications of simulation according to the first embodiment.
  • FIG. 47 is a diagram showing power distributions according to different methods according to the first embodiment.
  • the antenna (Tx) of the power transmitting device 10 and the antenna (Rx) of the power receiving device 20 are installed in the center of a concrete room with a width of 3.0 m x depth of 4.0 m x height of 3.0 m. are placed 3.0 m apart.
  • the height of the center of the antenna is 0.8 m from the floor surface for both power transmitting and receiving devices.
  • An object 5000 which is a pseudo human body, is placed in this multipath environment.
  • the position of the object 5000 is expressed by coordinates on the xy plane.
  • the coordinate origin is set at the center of the antenna (Tx) as shown in FIGS. 44 and 45.
  • the object 5000 is a rectangular parallelepiped.
  • the results may change depending on the shape of the object 5000, but studies using other shapes will be left as future work.
  • the main specifications of the simulation are shown in FIG.
  • the relative permittivity and conductivity of the simulated human body shown in (*) in Figure 46 are based on the "Method for measuring specific absorption rate for wireless equipment, etc. used in close proximity to the human body, excluding the temporal region" (Information and Communications Council, Reference is made to Partial Report of Consultation No. 118, ⁇ Measurement method of specific absorption rate for mobile phone terminals, etc.'' (October 2011).
  • the simulation is performed using two methods for comparison: a multipath retrodirective method (MR method) and a retrodirective method with linear constraints (LCR method). The two methods are the same until the pilot signal is sent from the antenna (Rx) and the array response vector V d is extracted on the antenna (Tx) side.
  • MR method multipath retrodirective method
  • LCR method retrodirective method with linear constraints
  • the power is the received power when a 0 dBi omnidirectional antenna is placed at each observation point.
  • FIG. 47 it can be confirmed that in the MR method, radio waves are emitted toward the object 5000, but in the LCR method, the radiation directed toward the object 5000 is suppressed.
  • FIGS. 48 and 49 show power distributions on the A side and B side of the object 5000, which is a pseudo human body, in FIG. 44.
  • FIG. 48 is a diagram showing the power distribution of the two surfaces of the pseudo human body near the power transmission device 10 according to the MR method.
  • FIG. 49 is a diagram showing the power distribution of the two surfaces of the pseudo human body near the power transmission device 10 according to the LCR method. Note that the color bars in FIGS. 48 and 49 are the same as in FIG. 47.
  • the LCR method does not use the human body as a reflector, it is thought that the radiation to the human body is reduced and the received power at the antenna (Rx) is also reduced. Therefore, the ratio of "received power at the antenna (Rx)" to "power at the simulated human body” is used as an evaluation index of the human body radiation avoidance effect.
  • the "power in the pseudo human body” is the median value of the power distributions in FIGS. 48 and 49.
  • FIG. 50 is a graph of the cumulative relative power of the pseudo human body shown in FIGS. 48 and 49.
  • FIG. 50 the power at which the cumulative relative frequency is 50% is defined as "power in the pseudo human body.”
  • “power ratio of LCR method (dB)” - “power ratio of MR method (dB)” is called method gain, and this is finally evaluated.
  • FIG. 51 is a diagram showing an example of movement of the object 5000 in the simulation according to the first embodiment.
  • the y-coordinate of the object 5000 is fixed at 1.5 m, and the x-coordinate is changed from 0.6 m to 1.4 m.
  • the result at this time is shown in FIG.
  • the center of the object 5000 is on the bisector of the antenna (Tx) and the antenna (Rx), and the object 5000 is a reflecting plate in both cases.
  • the method gain when moving in the x direction is 2.2 to 6.2 dB, and radiation to the human body is suppressed accordingly.
  • the x-coordinate of the object 5000 is fixed at 1.0m, and the y-coordinate is changed from 1.1m to 1.9m.
  • the result at this time is shown in FIG.
  • the method gain sometimes reached 2.0 dB, it never became negative.
  • the reason why the method gain decreases when moving in the y direction is considered to be that the object 5000 does not play the role of a reflector when the y coordinate is 1.2 m or less or 1.8 m or more.
  • FIG. 54 is a table showing the relationship between the y-coordinate and the number of elementary waves reflected by the pseudo-human body.
  • the y-coordinate becomes zero when it is 1.2 m or less or 1.8 m or more, and this is because the propagation path of the antenna (Tx) - pseudo human body - antenna (Rx) is due to the geometric positional relationship. means it doesn't exist.
  • the system gain was 4.0, as shown in FIG. This case is considered to be due to the influence of the propagation path from the antenna (Tx) to the pseudo human body, multiple reflections on walls, etc., and reaching the antenna (Rx), and the LCR method suppresses this radiation.
  • each functional unit, each means, each step, etc. may be added to other embodiments so as not to be logically contradictory, or each functional unit, each means, each step, etc.
  • each embodiment it is possible to combine or divide a plurality of functional units, means, steps, etc. into one. Further, each embodiment of the present disclosure described above is not limited to being implemented faithfully to each described embodiment, but may be implemented by combining each feature or omitting a part as appropriate. You can also do that.

Abstract

A power transmission device (10) according to one of embodiments comprises: a transmission/reception unit (13) that uses an antenna to transmit a transmission signal to a power reception device and receive a reception signal transmitted from the power reception device; and a weight generation unit (17) that controls, on the basis of the reception signal and information about an object different from the power reception device, the directionality of an antenna for transmitting the transmission signal so that the intensity of a radio wave toward the object becomes a predetermined intensity or less, said radio wave transmitting the transmission signal.

Description

送電装置、ワイヤレス電力伝送システム及び制御方法Power transmission device, wireless power transmission system and control method
 本出願は、送電装置、ワイヤレス電力伝送システム及び制御方法に関する。 The present application relates to a power transmission device, a wireless power transmission system, and a control method.
 アレーアンテナを用いた無線給電では、レトロディレクティブ方式が用いられることがある。レトロディレクティブ方式は、電力伝送に先立ち受電装置からパイロット信号を送信し、送電装置側でパイロット信号の電波伝搬チャネル特性を推定し、これをもとに送信ウェイトを生成することでアンテナ指向性を制御する。特許文献1には、複数のアンテナ素子と給電対象機器のアンテナとの間の伝搬係数を計算し、伝搬係数に基づいて給電信号の位相及び振幅を複数のアンテナ素子ごとに調整する無線給電装置が開示されている。 A retrodirective method is sometimes used for wireless power feeding using an array antenna. The retrodirective method transmits a pilot signal from the power receiving device prior to power transmission, estimates the radio wave propagation channel characteristics of the pilot signal on the power transmitting device side, and controls antenna directivity by generating transmission weights based on this. do. Patent Document 1 discloses a wireless power feeding device that calculates a propagation coefficient between a plurality of antenna elements and an antenna of a power feeding target device, and adjusts the phase and amplitude of a feeding signal for each of the plurality of antenna elements based on the propagation coefficient. Disclosed.
特開2020-10485号公報JP 2020-10485 Publication
 レトロディレクティブ方式において、受電装置と送電装置の間に人間が存在する場合、受電装置が送信するパイロット信号は、人体で大きく減衰するため、パイロット信号の電波伝搬チャネル特性に基づいてアンテナ指向性を制御すると、送電装置から人体に向けて放射される電波の強度は弱くなり、人体に対する安全性が高いとされている。しかし、送電装置からの電波の適切な放射について改善の余地があった。 In the retrodirective method, if a person is present between the power receiving device and the power transmitting device, the pilot signal transmitted by the power receiving device will be greatly attenuated by the human body, so antenna directivity is controlled based on the radio wave propagation channel characteristics of the pilot signal. This weakens the intensity of the radio waves emitted from the power transmission device toward the human body, making it highly safe for the human body. However, there was room for improvement in the appropriate radiation of radio waves from the power transmission equipment.
 態様の1つに係る送電装置は、受電装置への送信信号の送信と前記受電装置から送信される受信信号の受信をアンテナにより行う送受信部と、前記受信信号と、前記受電装置とは異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成部と、を備える。 A power transmitting device according to one aspect includes a transmitting/receiving unit that transmits a transmitting signal to a power receiving device and receives a receiving signal transmitted from the power receiving device using an antenna, and an object different from the received signal and the power receiving device. and a weight generation unit that controls the directivity of an antenna that transmits the transmission signal based on information regarding the transmission signal so that the intensity of the radio wave that transmits the transmission signal to the object is equal to or less than a predetermined value.
 態様の1つに係るワイヤレス電力伝送システムは、受電装置と、前記受電装置から送信される受信信号の受信と送信信号の送信をアンテナにより行う送受信部、及び、前記受信信号と前記受電装置とは異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成部を有する送電装置と、を備える。 A wireless power transmission system according to one aspect includes a power receiving device, a transmitting/receiving unit that receives a received signal transmitted from the power receiving device and transmits a transmitted signal using an antenna, and a communication between the received signal and the power receiving device. a power transmission device including a weight generation unit that controls the directivity of an antenna that transmits the transmission signal, based on information regarding different objects, so that the intensity of radio waves that transmit the transmission signal to the object is equal to or less than a predetermined level; and.
 態様の1つに係る制御方法は、受電装置への送信信号の送信と前記受電装置から送信される受信信号の受信をアンテナにより行う送受信工程と、前記受信信号と前記受電装置と異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成工程と、を備える。 A control method according to one aspect includes a transmission/reception step of transmitting a transmission signal to a power reception device and receiving a reception signal transmitted from the power reception device using an antenna, and information regarding the reception signal and an object different from the power reception device. and a weight generation step of controlling the directivity of the antenna that transmits the transmission signal, based on the above, so that the intensity of the radio wave that transmits the transmission signal to the object is equal to or less than a predetermined value.
図1は、実施形態に係るワイヤレス電力伝送システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of a wireless power transmission system according to an embodiment. 図2は、従来のレトロディレクティブ方式で参考用送電装置が放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。FIG. 2 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by a reference power transmission device using a conventional retrodirective method using a computer simulation. 図3は、実施形態1に係る送電装置の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the configuration of the power transmission device according to the first embodiment. 図4は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。FIG. 4 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. 図5は、アダプティブアレーアンテナと指向性の一例を示す図である。FIG. 5 is a diagram showing an example of an adaptive array antenna and directivity. 図6は、実施形態1に係る受電装置の構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of the configuration of the power receiving device according to the first embodiment. 図7は、図1に示すシステムの送電装置の処理手順の一例を説明するための図である。FIG. 7 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG. 図8は、図7に示す送電装置のデータフローを説明するための図である。FIG. 8 is a diagram for explaining the data flow of the power transmission device shown in FIG. 7. 図9は、実施形態1に係る送電装置の動作例を説明するための図である。FIG. 9 is a diagram for explaining an example of the operation of the power transmission device according to the first embodiment. 図10は、図9に示す送電装置が放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。FIG. 10 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device shown in FIG. 9 by computer simulation. 図11は、実施形態1に係る送電装置の電波の指向性パターンの一例を示す図である。FIG. 11 is a diagram illustrating an example of a directivity pattern of radio waves of the power transmission device according to the first embodiment. 図12は、実施形態1の変形例に係る送電装置の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the first embodiment. 図13は、実施形態1の変形例に係る送電装置の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the first embodiment. 図14は、実施形態2に係る送電装置の構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of a power transmission device according to the second embodiment. 図15は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。FIG. 15 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. 図16は、アダプティブアレーアンテナと指向性の一例を示す図である。FIG. 16 is a diagram showing an example of an adaptive array antenna and directivity. 図17は、微係数拘束時のベクトル化の一例を示す図である。FIG. 17 is a diagram illustrating an example of vectorization during differential coefficient constraint. 図18は、実施形態2に係る受電装置の構成の一例を示す図である。FIG. 18 is a diagram illustrating an example of the configuration of a power receiving device according to the second embodiment. 図19は、図1に示すシステムの送電装置の処理手順の一例を説明するための図である。FIG. 19 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG. 図20は、図19に示す送電装置のデータフローを説明するための図である。FIG. 20 is a diagram for explaining the data flow of the power transmission device shown in FIG. 19. 図21は、実施形態2に係る送電装置の動作例を説明するための図である。FIG. 21 is a diagram for explaining an example of the operation of the power transmission device according to the second embodiment. 図22は、図21に示す送電装置が放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。FIG. 22 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device shown in FIG. 21 by computer simulation. 図23は、送電装置の電波の指向性パターンの一例を示す図である。FIG. 23 is a diagram illustrating an example of a directivity pattern of radio waves of a power transmission device. 図24は、実施形態2の変形例に係る送電装置の構成の一例を示す図である。FIG. 24 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of the second embodiment. 図25は、実施形態2の変形例に係る送電装置の他の構成の一例を示す図である。FIG. 25 is a diagram illustrating an example of another configuration of a power transmission device according to a modification of the second embodiment. 図26は、実施形態2の変形例に係る送電装置のデータフローを説明するための図である。FIG. 26 is a diagram for explaining a data flow of a power transmission device according to a modification of the second embodiment. 図27は、実施形態3に係る送電装置の構成の一例を示す図である。FIG. 27 is a diagram illustrating an example of the configuration of a power transmission device according to Embodiment 3. 図28は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。FIG. 28 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. 図29は、アダプティブアレーアンテナと指向性の一例を示す図である。FIG. 29 is a diagram showing an example of an adaptive array antenna and directivity. 図30は、多点ヌル拘束方式のベクトル化の一例を示す図である。FIG. 30 is a diagram illustrating an example of vectorization using the multi-point null constraint method. 図31は、微係数拘束方式のベクトル化の一例を示す図である。FIG. 31 is a diagram illustrating an example of vectorization using the differential coefficient constraint method. 図32は、前処理部のヌル深度の処理例を示す図である。FIG. 32 is a diagram illustrating an example of null depth processing by the preprocessing unit. 図33は、前処理部のヌル深度の他の処理例を示す図である。FIG. 33 is a diagram illustrating another example of processing of the null depth by the preprocessing section. 図34は、実施形態3に係る受電装置の構成の一例を示す図である。FIG. 34 is a diagram illustrating an example of the configuration of a power receiving device according to Embodiment 3. 図35は、図1に示すシステムの送電装置の処理手順の一例を説明するための図である。FIG. 35 is a diagram for explaining an example of a processing procedure of the power transmission device of the system shown in FIG. 図36は、図35に示す送電装置のデータフローの一例を説明するための図である。FIG. 36 is a diagram for explaining an example of the data flow of the power transmission device shown in FIG. 35. 図37は、図35に示す送電装置のデータフローの他の一例を説明するための図である。FIG. 37 is a diagram for explaining another example of the data flow of the power transmission device shown in FIG. 35. 図38は、実施形態3に係る送電装置の動作例を説明するための図である。FIG. 38 is a diagram for explaining an example of the operation of the power transmission device according to the third embodiment. 図39は、実施形態3に係る送電装置の電波の指向性パターンの一例を示す図である。FIG. 39 is a diagram illustrating an example of a directivity pattern of radio waves of the power transmission device according to the third embodiment. 図40は、実施形態3に係る送電装置の電波の指向性パターンの他の一例を示す図である。FIG. 40 is a diagram illustrating another example of the radio wave directivity pattern of the power transmission device according to the third embodiment. 図41は、実施形態3の変形例に係る送電装置の構成の一例を示す図である。FIG. 41 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3. 図42は、実施形態3の変形例に係る送電装置の構成の一例を示す図である。FIG. 42 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3. 図43は、実施形態3の変形例に係る送電装置の構成の一例を示す図である。FIG. 43 is a diagram illustrating an example of the configuration of a power transmission device according to a modification of Embodiment 3. 図44は、実施形態1に係るシミュレーションの配置を示す上面図である。FIG. 44 is a top view showing the simulation arrangement according to the first embodiment. 図45は、実施形態1に係るシミュレーションの配置を示す側面図である。FIG. 45 is a side view showing the simulation arrangement according to the first embodiment. 図46は、実施形態1に係るシミュレーションの主要諸元を示す図である。FIG. 46 is a diagram showing main specifications of simulation according to the first embodiment. 図47は、実施形態1に係る異なる方式による電力分布を示す図である。FIG. 47 is a diagram showing power distributions according to different methods according to the first embodiment. 図48は、送電装置に近い2表面の疑似人体のMR方式による電力分布を示す図である。FIG. 48 is a diagram showing the power distribution according to the MR method of the pseudo human body on two surfaces near the power transmission device. 図49は、送電装置に近い2表面の疑似人体のLCR方式による電力分布を示す図である。FIG. 49 is a diagram showing the power distribution of the pseudo human body on two surfaces near the power transmission device using the LCR method. 図50は、図48及び図49の疑似人体の電力の累積相対度数のグラフである。FIG. 50 is a graph of the cumulative relative power of the pseudo human body shown in FIGS. 48 and 49. FIG. 図51は、実施形態1に係るシミュレーションの物体の移動例を示す図である。FIG. 51 is a diagram illustrating an example of movement of an object in the simulation according to the first embodiment. 図52は、図51のx方向移動(y=1.5m)時の結果を示すグラフである。FIG. 52 is a graph showing the results when moving in the x direction (y=1.5 m) in FIG. 51. 図53は、図51のy方向移動(x=1.0m)時の結果を示すグラフである。FIG. 53 is a graph showing the results when moving in the y direction (x=1.0 m) in FIG. 51. 図54は、y座標と疑似人体で反射する素波数の関係を示す表である。FIG. 54 is a table showing the relationship between the y-coordinate and the number of elementary waves reflected by the pseudo-human body.
 本出願に係る送電装置、ワイヤレス電力伝送システム、制御方法等を実施するための複数の実施形態を、図面を参照しつつ詳細に説明する。なお、以下の説明により本発明が限定されるものではない。また、以下の説明における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。以下の説明において、同様の構成要素について同一の符号を付すことがある。さらに、重複する説明は省略することがある。 A plurality of embodiments for implementing a power transmission device, a wireless power transmission system, a control method, etc. according to the present application will be described in detail with reference to the drawings. Note that the present invention is not limited to the following explanation. Furthermore, the constituent elements in the following description include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are within the so-called equivalent range. In the following description, similar components may be denoted by the same reference numerals. Furthermore, duplicate explanations may be omitted.
 図1は、実施形態に係るワイヤレス電力伝送システムの概要を説明するための図である。図1に示すシステム1は、例えば、マイクロ波伝送型(空間伝送型)のワイヤレス電力伝送が可能なワイヤレス電力伝送システムを含む。ワイヤレス電力伝送は、例えば、ケーブルやプラグを用いることなく、電力を伝送することが可能な仕組みである。マイクロ波伝送型のシステム1は、レトロディレクティブ方式を用いることができる。マイクロ波伝送型のシステム1は、エネルギー伝送として電波(マイクロ波)を使用する。マイクロ波伝送型のシステム1において使用する電波の周波数は、複数の周波数帯が利用可能であり、例えば、日本では、920MHz帯、2.4GHz帯、5.7GHz帯等を含む。本実施形態では、システム1は、状況に適した給電効率の向上及び安全性の確保を両立することを可能とする。システム1は、例えば、宇宙太陽光発電等に適用することもできる。 FIG. 1 is a diagram for explaining an overview of a wireless power transmission system according to an embodiment. A system 1 shown in FIG. 1 includes, for example, a wireless power transmission system capable of microwave transmission type (space transmission type) wireless power transmission. Wireless power transmission is a mechanism that allows power to be transmitted without using cables or plugs, for example. The microwave transmission type system 1 can use a retrodirective method. The microwave transmission type system 1 uses radio waves (microwaves) for energy transmission. A plurality of frequency bands are available for the frequency of radio waves used in the microwave transmission system 1, and for example, in Japan, they include a 920 MHz band, a 2.4 GHz band, a 5.7 GHz band, and the like. In this embodiment, the system 1 makes it possible to improve power supply efficiency suitable for the situation and ensure safety at the same time. The system 1 can also be applied to, for example, space solar power generation.
 図1に示す一例では、システム1は、マルチパス・レトロディレクティブ方式を用いている。システム1は、送電装置10と、受電装置20と、を備える。システム1は、複数のパス(伝搬チャネル)を使って送電装置10から受電装置20に電力を伝送する。送電装置10は、システム1において、ワイヤレスにより電力を伝送する伝送装置であり、給電用の電波を伝送可能な装置である。送電装置10は、アレーアンテナ11の近傍の人体等の物体を検出可能なセンサ部15を備えている。以下の説明において、送電装置10を「自機」と表記する場合がある。 In the example shown in FIG. 1, the system 1 uses a multipath retrodirective method. System 1 includes a power transmitting device 10 and a power receiving device 20. System 1 transmits power from power transmitting device 10 to power receiving device 20 using multiple paths (propagation channels). The power transmission device 10 is a transmission device that transmits power wirelessly in the system 1, and is a device that can transmit radio waves for power feeding. The power transmission device 10 includes a sensor unit 15 that can detect an object such as a human body in the vicinity of the array antenna 11. In the following description, the power transmission device 10 may be referred to as "own device".
 受電装置20は、システム1において、給電用の電波を受信して電力を得る被給電装置である。受電装置20は、例えば、スマートフォン、タブレット端末、IoT(Internet of Things)センサ、ノート型パーソナル・コンピュータ、ドローン、電気自動車、電動自転車、ゲーム機等を含む。このように、本開示の受電装置は、移動可能な装置であるとしてよい。 The power receiving device 20 is a power-supplied device in the system 1 that receives electric waves for power supply and obtains power. The power receiving device 20 includes, for example, a smartphone, a tablet terminal, an IoT (Internet of Things) sensor, a notebook personal computer, a drone, an electric vehicle, an electric bicycle, a game console, and the like. In this way, the power receiving device of the present disclosure may be a movable device.
 場面C1では、受電装置20は、送電装置10との間で定められた規定信号1000を送信できる。規定信号1000は、例えば、ビーコン、パイロット信号等を含む。受電装置20は、例えば、送信周期で規定信号1000を送信できる。受電装置20は、規定信号1000を含む電波を放射することで、規定信号1000を送信できる。一方、送電装置10は、規定信号1000を受信すると、当該規定信号1000に基づいて受電装置20から送電装置10への複数パスの特性値(アレー応答ベクトル)を推定する。送電装置10は、推定した受電装置20に対するアレー応答ベクトルを用いて送信用の重み係数を算出する。 In scene C1, the power receiving device 20 can transmit the specified signal 1000 determined with the power transmitting device 10. The regulation signal 1000 includes, for example, a beacon, a pilot signal, and the like. The power receiving device 20 can transmit the prescribed signal 1000 at a transmission cycle, for example. The power receiving device 20 can transmit the prescribed signal 1000 by emitting radio waves containing the prescribed signal 1000. On the other hand, upon receiving the specified signal 1000, the power transmitting device 10 estimates characteristic values (array response vectors) of multiple paths from the power receiving device 20 to the power transmitting device 10 based on the specified signal 1000. The power transmitting device 10 calculates a weighting coefficient for transmission using the estimated array response vector for the power receiving device 20.
 場面C2では、送電装置10は、各アンテナに重み係数を乗算して指向性制御を行い、給電用の送信信号2000を含む電波を放射する。指向性制御は、例えば、電波の放射方向と放射強度との関係を制御することを意味する。規定信号1000と送信信号2000の周波数が同一で伝搬路の時間変動を無視すれば、送電装置10から受電装置20への複数パスの特性は、受電装置20から送電装置10への特性と一致する。これにより、送電装置10から放射される電波2000Wは、受電装置20に向かうパスだけでなく、受電装置20とは異なる方向に向かうパスも活かした放射パターンになる。 In scene C2, the power transmission device 10 performs directivity control by multiplying each antenna by a weighting coefficient, and radiates radio waves including the transmission signal 2000 for power feeding. Directivity control means, for example, controlling the relationship between the radiation direction and radiation intensity of radio waves. If the frequencies of the specified signal 1000 and the transmitted signal 2000 are the same and time fluctuations in the propagation path are ignored, the characteristics of the multiple paths from the power transmitting device 10 to the power receiving device 20 match the characteristics from the power receiving device 20 to the power transmitting device 10. . Thereby, the radio waves 2000 W radiated from the power transmitting device 10 have a radiation pattern that takes advantage of not only the path toward the power receiving device 20 but also the path toward the direction different from the power receiving device 20.
 図2は、従来のレトロディレクティブ方式で参考用送電装置100Aが放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。図2が示す強度分布3000は、部屋4000の中に参考用送電装置100Aと受電装置20を配置し、物性が人体と似た物体5000を配置し、レトロディレクティブ方式で参考用送電装置100Aから送信信号2000を含む電波2000Wを放射した場合の強度分布を示している。参考用送電装置100Aは、本実施形態に係る送電装置10と同様に、規定信号1000に基づいて受電装置20から送電装置10への複数パスの特性値を推定し、当該特性値を用いてアンテナ指向性を制御し給電用の送信信号2000を含む電波2000Wを送信可能な構成になっている。部屋4000は、3m×3m×3mの壁素材がコンクリートの部屋になっている。物体5000は、参考用送電装置100Aと受電装置20との間で、参考用送電装置100Aと受電装置20とを結ぶ直線上から左にずれた位置に配置されている。物体5000は、例えば、比誘電率が35.4、導電率が5.17の物性を有している。 FIG. 2 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the reference power transmission device 100A using the conventional retrodirective method using a computer simulation. The intensity distribution 3000 shown in FIG. 2 is transmitted from the reference power transmitting device 100A using a retrodirective method by placing the reference power transmitting device 100A and the power receiving device 20 in a room 4000, and placing an object 5000 with physical properties similar to the human body. It shows the intensity distribution when a radio wave of 2000 W including a signal of 2000 W is radiated. Similar to the power transmitting device 10 according to the present embodiment, the reference power transmitting device 100A estimates characteristic values of multiple paths from the power receiving device 20 to the power transmitting device 10 based on the specified signal 1000, and uses the characteristic values to adjust the antenna. It has a configuration that can control the directivity and transmit 2000 W of radio waves including a transmission signal 2000 for power feeding. Room 4000 is a 3m x 3m x 3m room with walls made of concrete. The object 5000 is placed between the reference power transmitting device 100A and the power receiving device 20 at a position shifted to the left from the straight line connecting the reference power transmitting device 100A and the power receiving device 20. The object 5000 has physical properties such as a dielectric constant of 35.4 and a conductivity of 5.17, for example.
 図2に示す一例では、強度分布3000は、参考用送電装置100Aから受電装置20に直接向かう電波2000W-1と、参考用送電装置100Aから物体5000に向かう電波2000W-2の強度が強くなっている。すなわち、強度分布3000は、参考用送電装置100Aが受電装置20から規定信号1000を直接受信するとともに、物体5000で反射した規定信号1000を受信していることを示していると考えられる。本開示では、システム1は、受電装置20からの規定信号1000が人体に反射し、送電装置10に到達する場合に、従来のマルチパス・レトロディレクティブ方式より人体への影響を低減する技術を提供する。 In the example shown in FIG. 2, the intensity distribution 3000 shows that the intensity of the radio wave 2000W-1 going directly from the reference power transmitting device 100A to the power receiving device 20 and the radio wave 2000W-2 going directly from the reference power transmitting device 100A to the object 5000 are stronger. There is. That is, the intensity distribution 3000 is considered to indicate that the reference power transmitting device 100A receives the specified signal 1000 directly from the power receiving device 20 and also receives the specified signal 1000 reflected by the object 5000. In the present disclosure, system 1 provides a technology that reduces the impact on the human body when a prescribed signal 1000 from power receiving device 20 is reflected by the human body and reaches power transmitting device 10 compared to the conventional multipath retrodirective method. do.
(実施形態1)
[実施形態1に係る送電装置の構成]
 図3は、実施形態1に係る送電装置10の構成の一例を示す図である。図4は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。図5は、アダプティブアレーアンテナと指向性の一例を示す図である。
(Embodiment 1)
[Configuration of power transmission device according to Embodiment 1]
FIG. 3 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the first embodiment. FIG. 4 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. FIG. 5 is a diagram showing an example of an adaptive array antenna and directivity.
 図3に示すように、送電装置10は、アレーアンテナ11と、送信信号発生部12と、送受信部13と、推定部14と、センサ部15と、検出部16と、ウェイト生成部17と、乗算部18と、を備える。 As shown in FIG. 3, the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, A multiplication unit 18 is provided.
 アレーアンテナ11は、指向性制御(ビームフォーミング)が可能な構成になっている。アレーアンテナ11は、複数のアンテナ素子11Aを備えている。アレーアンテナ11は、例えば、複数のアンテナ素子11Aのそれぞれが同じ電波を放射し、それぞれの位相と電力強度を調整することで、特定の方向では電波を強め、別の方向では打ち消し合って弱めることが可能な構成になっている。アレーアンテナ11は、送信信号2000を含む電波を放射し、受電装置20からの規定信号1000を含む電波を受信する。アレーアンテナ11は、受信した信号を送受信部13に供給する。本実施形態では、説明を簡単化するために、アレーアンテナ11は、3つ以上のアンテナ素子11Aを備える場合について説明するが、アンテナ素子11Aの数はこれに限定されない。 The array antenna 11 has a configuration that allows directivity control (beamforming). The array antenna 11 includes a plurality of antenna elements 11A. For example, in the array antenna 11, each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction. The configuration is such that this is possible. Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 . Array antenna 11 supplies the received signal to transmitter/receiver 13 . In this embodiment, in order to simplify the explanation, a case will be described in which the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this.
 送信信号発生部12は、受電装置20に送信する給電用の送信信号2000を生成する。送信信号2000は、電力を供給可能な電波2000Wを放射するための信号である。例えば、送信信号2000はベースバンド帯の信号であってもよい。送信信号2000は、例えば、無変調信号でもよいし、変調信号でもよい。無変調信号の場合、送信期間中、送信信号2000の時間変動はない。変調信号の場合、送信期間中、送信信号発生部12は送信信号2000を時間変動させる。送信信号発生部12は、例えば、規定信号1000を受信するタイミングには送信信号2000を停止することを含む。送信信号発生部12は、乗算部18と電気的に接続されており、生成した送信信号2000を乗算部18に供給する。 The transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20. The transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power. For example, the transmission signal 2000 may be a baseband signal. The transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period. The transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000. The transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
 送受信部13は、アレーアンテナ11の複数のアンテナ素子11Aの各々と電気的に接続された複数の送受信回路13Aを有する。送受信回路13Aは、推定部14、乗算部18等と電気的に接続されている。送受信回路13Aは、アンテナ素子11Aで受信した受信信号を抽出して推定部14に供給する。送受信回路13Aは、乗算部18で送信ウェイトが乗算された送信信号2000をアンテナ素子11Aから放射させる。送信ウェイトは、例えば、振幅及び位相を調整可能な重み係数を含む。送受信部13は、送信ウェイト(複素振幅)が乗算された送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから同時に放射させることで、送電装置10は指向性が制御された電波2000Wを放射する。 The transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11. The transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like. The transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14. The transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18. The transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable. The transmitting/receiving unit 13 simultaneously radiates 2000 W of radio waves including the transmission signal 2000 multiplied by the transmission weight (complex amplitude) from the plurality of antenna elements 11A, so that the power transmission device 10 radiates 2000 W of radio waves with controlled directivity. .
 推定部14は、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000から伝搬チャネル特性(インパルス応答)を推定する。伝搬チャネル特性(インパルス応答)は、例えば、振幅特性、位相特性を含む。アレー応答ベクトルは、例えば、アンテナ本数分のチャネル特性を示す。アレー応答ベクトルは、例えば、複数のアンテナ素子11Aごとの伝搬チャネル特性(インパルス応答)を並べたベクトルを含む。受信処理におけるアレー応答ベクトルは、受信応答ベクトルとも称する。推定部14は、例えば、特開2002-43995号公報に開示されているように周知のアルゴリズムを用いて受信応答ベクトルを推定する。推定部14は、アレー応答ベクトルのベクトルデータをウェイト生成部17に供給する。 The estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A. The propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics. The array response vector indicates, for example, channel characteristics for the number of antennas. The array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged. The array response vector in reception processing is also referred to as a reception response vector. The estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995. The estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
 センサ部15は、送電装置10の電波伝搬環境における物体5000の有無、方向等を検出可能な情報を取得できる。電波伝搬環境は、例えば、送電装置10と受電装置20との間で電波2000Wを伝搬する空間を含む。センサ部15は、例えば、カメラ、LIDAR(Laser Imaging Detection and Ranging)、ミリ波レーダなどのレーダ、ToF(Time of Flight)センサ、赤外線センサ、人感センサ等を用いて、電波伝搬環境に存在する物体5000に関する情報を取得する。センサ部15は、送電装置10の外部に設けられてもよい。センサ部15は、検出部16と電気的に接続されており、電波伝搬環境における物体5000の方向を検出可能なセンサ情報を検出部16に供給する。センサ情報は、例えば、物体5000の有無、距離、位置、画像等の情報を含む。 The sensor unit 15 can acquire information that can detect the presence or absence, direction, etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10. The radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20. The sensor unit 15 exists in a radio wave propagation environment using, for example, a camera, LIDAR (Laser Imaging Detection and Ranging), radar such as millimeter wave radar, ToF (Time of Flight) sensor, infrared sensor, human sensor, etc. Information regarding object 5000 is acquired. The sensor unit 15 may be provided outside the power transmission device 10. The sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect the direction of the object 5000 in the radio wave propagation environment to the detection section 16. The sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image.
 検出部16は、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の位置に関する情報を検出する。物体5000は、例えば、人間、動物、ロボット、移動体、植物、食物、電磁波を送信又は受信する機器等を含む。検出部16は、アレーアンテナ11からの物体5000の方向を検出する。例えば、検出部16は、センサ情報が示す物体5000の方向、位置等と、センサ部15とアレーアンテナ11との相対位置関係に基づいて、アレーアンテナ11からの物体5000の方向を検出する。複数の物体5000が存在する場合、検出部16は、複数の物体5000の位置を検出する。検出部16は、ウェイト生成部17と電気的に接続されており、アレーアンテナ11からの物体5000の方向を示す方向情報をウェイト生成部17に供給する。方向情報は、例えば、アレーアンテナ11からの物体5000の方向等を示す情報を含む。このように、本開示の検出部16は、センサ部15からの、物体5000のGPS情報などの位置情報、方向情報、距離情報などを含むセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の位置に関する情報を検出する。 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding the position of an object 5000 that is different from the power receiving device 20 in the radio wave propagation environment. The objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like. The detection unit 16 detects the direction of the object 5000 from the array antenna 11. For example, the detection unit 16 detects the direction of the object 5000 from the array antenna 11 based on the direction, position, etc. of the object 5000 indicated by the sensor information and the relative positional relationship between the sensor unit 15 and the array antenna 11. If a plurality of objects 5000 exist, the detection unit 16 detects the positions of the plurality of objects 5000. The detection unit 16 is electrically connected to the weight generation unit 17 and supplies direction information indicating the direction of the object 5000 from the array antenna 11 to the weight generation unit 17. The direction information includes, for example, information indicating the direction of the object 5000 from the array antenna 11. In this manner, the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
 ウェイト生成部17は、推定部14の推定結果である受電装置20に対するアレー応答ベクトルと検出部16からの物体5000の方向情報に基づいて、電力伝送用ウェイトを生成する。ウェイトの生成方法は、例えば、MIMOで用いられるZF(Zero-Forcing)アルゴリズム、MMSE(Minimum Mean Square Error)アルゴリズム等を用いることができる。ウェイト生成部17は、乗算部18と電気的に接続されており、電力伝送用ウェイトを示すウェイト情報を乗算部18に供給する。以下の説明では、説明を簡単化するために、アレーアンテナ11の複数のアンテナ素子11Aが水平方向において等間隔で並んでいる場合について説明する。 The weight generation unit 17 generates power transmission weights based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the object 5000 from the detection unit 16. As a weight generation method, for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used. The weight generation section 17 is electrically connected to the multiplication section 18 and supplies weight information indicating power transmission weights to the multiplication section 18. In the following description, in order to simplify the description, a case will be described in which a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
 図4に示すように、アダプティブアレーアンテナ送信は、送信信号2000に複素振幅w(ウェイト)の複素共役w を乗じた後、K本のアンテナ素子11Aから同時に電波2000Wを放射する。なお、本開示において、(・)のように文字の右肩に「*」を記している場合、複素共役を意味する。ウェイトwは、k=0,・・・,K-1である。受信点200Pでは、K本のアンテナ素子11Aから放射された電波2000Wの合成信号が観測される。このとき、伝搬チャネルごとに振幅・位相が変化する。そこで、#0から#K-1のアンテナ素子11Aと受信点200P間の伝搬チャネルのインパルス応答をZ(複素数)とすると、解析的なアレーアンテナ特性は、以下の(式11)で与えられる。
Figure JPOXMLDOC01-appb-M000002
As shown in FIG. 4, in the adaptive array antenna transmission, after multiplying the transmission signal 2000 by the complex conjugate w k * of the complex amplitude w k (weight), radio waves 2000 W are simultaneously radiated from the K antenna elements 11A. Note that in the present disclosure, when "*" is written on the right side of a character, such as (.) * , it means complex conjugate. The weight w k is k=0,...,K-1. At the receiving point 200P, a composite signal of 2000 W of radio waves radiated from the K antenna elements 11A is observed. At this time, the amplitude and phase change for each propagation channel. Therefore, assuming that the impulse response of the propagation channel between the antenna elements 11A from #0 to #K-1 and the receiving point 200P is Z k (complex number), the analytical array antenna characteristics are given by the following (Equation 11). .
Figure JPOXMLDOC01-appb-M000002
 本開示では、解析的なアレーアンテナ特性は、アレー応答値ARと称する。ウェイトベクトルをW、アレー応答ベクトルをVとすると、(式11)は複素ベクトルの内積として以下の(式12)で表せる。なお、本開示において、(・)のように文字の右肩に「H」を記している場合、複素共役転置(エルミート転置)を意味する。
 AR=WV ・・・(式12)
 ウェイトベクトルWとアレー応答ベクトルVを具体的な要素で表すと、以下の(式13)のようになる。
Figure JPOXMLDOC01-appb-M000003
In this disclosure, the analytical array antenna characteristics are referred to as array response values AR. When the weight vector is W and the array response vector is V, (Formula 11) can be expressed as the following (Formula 12) as an inner product of complex vectors. Note that in the present disclosure, when "H" is written on the right shoulder of a character, such as (.) H , it means complex conjugate transposition (Hermitian transposition).
AR= WHV ...(Formula 12)
When the weight vector W and the array response vector V are expressed using specific elements, they are as shown in (Equation 13) below.
Figure JPOXMLDOC01-appb-M000003
 アレー応答ベクトルVが既知であれば、適切なウェイトベクトルWを与えることで、受信点200Pでのアレー応答値ARを制御できる。なお、ウェイトベクトルWを決める際には、送信電力の合計が一定になるように、ウェイトベクトルWのノルムの2乗が1(||W||=1)という制約条件を課すものとする。 If the array response vector V is known, the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (||W|| 2 = 1) so that the total transmission power is constant. .
 レトロディレクティブ方式のシステム1では、受電装置20から送信される規定信号1000(パイロット信号)に基づいてアレー応答ベクトルVを推定し、これを利用して最適なウェイトベクトルWoptを生成する。伝搬チャネルの時間変動を無視すれば、伝搬チャネルの可逆性(相反性)によりアレー応答ベクトルVを送電装置10から受電装置20へのアレー応答ベクトルとみなせる。ただし、パイロット信号は送電時の電波と同じ周波数とする。||W||=1という条件のもとアレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptは、以下の(式14)とすることができる。
Figure JPOXMLDOC01-appb-M000004
In the retrodirective system 1, the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d can be regarded as the array response vector from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal shall have the same frequency as the radio waves used during power transmission. The optimal weight vector W opt that maximizes the magnitude of the array response value |W H V d | under the condition ||W|| 2 = 1 can be set as the following (Equation 14).
Figure JPOXMLDOC01-appb-M000004
 以上のように、レトロディレクティブ方式の送信の最適なウェイトベクトルWoptは、受信したパイロット信号のアレー応答ベクトルVだけでよく、受信点200Pの方向などの情報は不要である。 As described above, the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and does not require information such as the direction of the reception point 200P.
 次に、レトロディレクティブ方式と複数(例えばM個)のヌル形成の同時実現について説明する。 Next, the simultaneous realization of the retrodirective method and the formation of multiple (for example, M) nulls will be explained.
 ヌルは、アレーアンテナ11の指向性において、方向、点等の利得がゼロになることを意味する。アレーアンテナ11でヌルを形成するには、ヌルに対応するアレー応答ベクトルV(i=1,・・・,M)に対し、アレー応答値の大きさ|W|をゼロにすればよい。この条件のもと、アレー応答ベクトルVのアレー応答値の大きさ|W|を最大化する。これは以下のような(式15)に示す最適化問題として定式化できる。本開示では、これを線形拘束付きレトロディレクティブ方式と称する。ここで、Kはアンテナ素子11Aの数である。Mはヌルの数である。自由度はK-1であるため、M<Kとしている。argmax(argument of the maximum)は、最大値を達成する値の集合を意味する。(式15)は、ウェイトベクトルWで|W|が最大となる最適なウェイトベクトルWoptを求める式である。
Figure JPOXMLDOC01-appb-M000005
Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero. To form a null in the array antenna 11, the magnitude of the array response value |W H V i | should be set to zero for the array response vector V i (i=1,...,M) corresponding to the null. Bye. Under this condition, the magnitude of the array response value |W H V d | of the array response vector V d is maximized. This can be formulated as an optimization problem shown in (Equation 15) below. In this disclosure, this is referred to as a retrodirective method with linear constraints. Here, K is the number of antenna elements 11A. M is the number of nulls. Since the degree of freedom is K-1, M<K. argmax (argument of the maximum) means a set of values that achieves the maximum value. (Formula 15) is a formula for determining the optimal weight vector W opt where |W H V d | is maximum in the weight vector W.
Figure JPOXMLDOC01-appb-M000005
 (式15)の最適化問題は、閉形式の解が存在する。
 以下のように(式16)を定義すると、最適なウェイトベクトルWoptは(式17)で与えられる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
The optimization problem of (Equation 15) has a closed-form solution.
When (Equation 16) is defined as below, the optimal weight vector W opt is given by (Equation 17).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、AはM個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた(式18)に示す行列である。
Figure JPOXMLDOC01-appb-M000008
 Aは、Aのムーア・ペンローズ一般逆行列である。ムーア・ペンローズ一般逆行列Aは、AAA=A,AAA=A,(AA=AA,(AA)=AAを満足する。複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vが線形独立の場合は、A=(AA)-1となる。
Here, A is a matrix shown in Equation 18 in which array response vectors V 1 , V 2 , . . . , VM, which are M complex column vectors, are arranged.
Figure JPOXMLDOC01-appb-M000008
A + is the Moore-Penrose general inverse of A. The Moore-Penrose general inverse matrix A + satisfies AA + A = A, A + AA + = A + , (AA + ) H = AA + , (A + A) H = A + A. When the array response vectors V 1 , V 2 , . . . , V M , which are complex column vectors, are linearly independent, A + =(A H A) −1 A H.
 ヌルに対応するアレー応答値は、W=0(i=1,・・・・,M<K)を満足しなければならない。そこで、これらを同次連立一次方程式と考えると、M個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた行列Aを使ってAW=0のように行列とベクトルの積で表される。この一般解はムーア・ペンローズ一般逆行列Aを用いて、W=(I-AAz=(I-AA)zで与えられる。zは、任意の複素ベクトルである。最大化したいアレー応答値の大きさ|W|にW=(I-AAz=(I-AA)zを代入すると、|W|=|z(I-AA)V|が得られる。そして、コーシー・シュワルツの不等式より、|W|=|z(I-AA)V|≦||z||・||(I-AA)V||が成り立つ。|W|が最大になるのは当該不等式の等号のときであり、このとき、z=α(I-AA)Vを満たす。αは、複素定数である。 The array response value corresponding to the null must satisfy W H V i =0 (i=1, . . . , M<K). Therefore, if we consider these as homogeneous simultaneous linear equations, we can use matrix A in which array response vectors V 1 , V 2 , ..., V M , which are M complex column vectors, to calculate A H W = 0. It is expressed as a product of a matrix and a vector. This general solution is given by W=(I-AA + ) H z=(I-AA + )z using the Moore-Penrose general inverse matrix A + . z is any complex vector. By substituting W=(I-AA + ) H z=(I-AA + )z into the magnitude of the array response value to be maximized |W H V d |, |W H V d |=|z H (I −AA + )V d | is obtained. Then, from the Cauchy-Schwartz inequality, |W H V d |=|z H (I-AA + )V d |≦||z||・||(I-AA + )V d || holds true. |W H V d | becomes maximum when the inequality sign is equal, and in this case, z=α(I-AA + )V d is satisfied. α is a complex constant.
 最適なウェイトベクトルWoptは、上述したW=(I-AAz=(I-AA)zに、z=α(I-AA)Vを代入することで、Wopt=α(I-AA)Vが与えられる。ここで、(式16)のようにV’=(I-AA)Vとすると、||Wopt||=|α|||V’||=1を満足するためにはα=1/||V’||とすればよい。よって、最適なウェイトベクトルWoptは、上述した(式17)としてよいことになる。 The optimal weight vector W opt can be obtained by substituting z=α(I-AA + )V d into W=(I-AA + ) H z=(I-AA + )z described above. α(I−AA + )V d is given. Here, if V' d = (I-AA + )V d as in (Equation 16), ||W opt || 2 = |α| 2 ||V' d || 2 = 1 is satisfied. In order to do this, α=1/||V' d ||. Therefore, the optimal weight vector W opt may be the above-mentioned (Equation 17).
 次に、ヌルに対応するアレー応答ベクトルの算出方法の一例を説明する。送電装置10と受電装置20との間のアレー応答ベクトルは、規定信号1000から推定するが、ヌルを向けたい対象からは、規定信号1000が送出されないと仮定すると、別の方法でアレー応答ベクトルを算出する必要がある。本開示では、送電装置10からヌルを向けたい対象へ直接向かう電波を回避することを目的とし、センサ部15を用いて取得したヌル対象である物体5000の方向からアレー応答ベクトルを算出する。 Next, an example of a method for calculating an array response vector corresponding to a null will be described. The array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000. However, assuming that the specified signal 1000 is not sent from the target to which you want to direct the null, the array response vector can be estimated using another method. need to be calculated. In the present disclosure, an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of avoiding radio waves that go directly from the power transmission device 10 toward the target to which the null is directed.
 図5に示すように、K個のアンテナ素子11Aが等間隔に並ぶリニアアレーにおいて、ブロードサイドから時計回りにθ(-π/2<θ<π/2)だけ回転した向きに放射される遠方界でのアレー応答ベクトルは、以下の(式19)のように与えられる。ブロードサイドは、アンテナ素子11Aを並べた方向に対し垂直な向きであり、図5における上方である。基準点200Bの#0のアンテナ素子11Aから#kのアンテナ素子11Aまでの素子間距離がkdとなっている。基準点200B#0のアンテナ素子11Aから#K-1のアンテナ素子11Aまでの素子間距離が(K-1)dとなっている。
Figure JPOXMLDOC01-appb-M000009
As shown in FIG. 5, in a linear array in which K antenna elements 11A are arranged at equal intervals, a far field is radiated in a direction rotated clockwise by θ (-π/2<θ<π/2) from the broadside. The array response vector at is given as shown below (Equation 19). The broadside is perpendicular to the direction in which the antenna elements 11A are arranged, and is upward in FIG. The inter-element distance from the #0 antenna element 11A to the #k antenna element 11A at the reference point 200B is kd. The inter-element distance from the antenna element 11A of the reference point 200B #0 to the antenna element 11A of #K-1 is (K-1)d.
Figure JPOXMLDOC01-appb-M000009
 ここで、インパルス応答Zは、(式20)とする。
Figure JPOXMLDOC01-appb-M000010
 これにより、ヌル対象の方向θが分かれば、アレー応答ベクトルVを(式21)のように算出できる。なお、方向θは、θ=θであり、i=1,・・・,Mである。jは、虚数単位であり、j=-1である。ここで、インパルス応答Zは、(式22)で得ることができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Here, the impulse response Z is expressed as (Equation 20).
Figure JPOXMLDOC01-appb-M000010
As a result, if the direction θ of the null object is known, the array response vector V i can be calculated as shown in (Equation 21). Note that the direction θ is θ=θ i , and i=1, . . . , M. j is an imaginary unit and j 2 =-1. Here, the impulse response Z i can be obtained by (Equation 22).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ウェイト生成部17は、ヌル対象の方向θからヌルに対応するアレー応答ベクトルVを(式21)及び(式22)を用いて導出し、続いて(式18)を用いて行列(I-AA)を算出する。ウェイト生成部17は、算出した行列(I-AA)と、受電装置20に対応したアレー応答ベクトルVとから、アレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptを決定するが、一般的には行列(I-AA)とアレー応答ベクトルVで算出されるタイミングが異なる。そこで、ウェイト生成部17は、行列(I-AA)を記憶部17Dに記憶できる。 The weight generation unit 17 derives the array response vector V i corresponding to the null from the direction θ i of the null object using (Equation 21) and (Equation 22), and then derives the matrix (I −AA + ). The weight generation unit 17 generates an optimal weight that maximizes the magnitude of the array response value |W H V d | from the calculated matrix (I-AA + ) and the array response vector V d corresponding to the power receiving device 20. The vector W opt is determined, but generally the timings at which the matrix (I-AA + ) and the array response vector V d are calculated are different. Therefore, the weight generation section 17 can store the matrix (I-AA + ) in the storage section 17D.
 記憶部17Dは、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的な記憶媒体を含んでよい。記憶部17Dは、メモリカード、光ディスク、又は光磁気ディスク等の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。記憶部17Dは、RAMなどの一時的な記憶領域として利用される記憶デバイスを含んでよい。記憶部17Dは、ウェイト生成部17の外部に設けてもよい。 The storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device. The storage unit 17D may include a storage device such as a RAM used as a temporary storage area. The storage unit 17D may be provided outside the weight generation unit 17.
 図3に示すように、乗算部18は、ウェイト生成部17のウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの送信信号2000にウェイトを乗算する。乗算部18は、例えば、乗算器を有する。乗算部18は、アンテナ素子11Aに対応するウェイトを乗算した送信信号2000を、当該アンテナ素子11Aの送受信回路13Aに供給する。 As shown in FIG. 3, the multiplication unit 18 multiplies the transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation unit 17. The multiplication unit 18 includes, for example, a multiplier. The multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
 以上、本実施形態に係る送電装置10の機能構成例について説明した。なお、図3を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る送電装置10の機能構成は係る例に限定されない。本実施形態に係る送電装置10の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 3 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example. The functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
[実施形態1に係る受電装置]
 図6は、実施形態1に係る受電装置20の構成の一例を示す図である。図6に示すように、受電装置20は、アンテナ21と、送受信部22と、信号発生部23と、受電部24と、を備える。本開示の受電装置20は、移動可能な装置であるとしてよい。例えば、このような受電装置20として、モバイルバッテリー、スマートフォン、カメラ、振動センサ、生体センサ、温度センサ、警報などのドローンや車などの移動体に搭載される機器、自動運転車両、設置位置が可変な振動センサ、生体センサ、温度センサ、警報などとしてよい。本開示では、受電装置20は、移動可能な装置であるため、規定信号に基づく伝搬チャネルの特性が受電装置20の位置に応じて変化しうるとしてよい。
[Power receiving device according to Embodiment 1]
FIG. 6 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the first embodiment. As shown in FIG. 6, the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24. The power receiving device 20 of the present disclosure may be a movable device. For example, such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position. It may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc. In the present disclosure, since the power receiving device 20 is a movable device, the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
 アンテナ21は、送受信部22と電気的に接続されている。アンテナ21は、送電装置10からの電波2000Wを受電可能な受電アンテナである。アンテナ21は、例えば、パッチアンテナ、ダイポールアンテナ、パラボラアンテナ等を用いることができる。アンテナ21は、例えば、規定信号1000を含む電波を放射し、送電装置10からの送信信号2000を含む電波2000Wを受信する。アンテナ21は、受信した電波2000Wの受信信号を送受信部22に供給する。 The antenna 21 is electrically connected to the transmitting/receiving section 22. The antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10. As the antenna 21, for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used. For example, the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10. The antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
 送受信部22は、信号発生部23及び受電部24と電気的に接続されている。送受信部22は、信号発生部23からの規定信号1000を含む電波をアンテナ21から放射させる。送受信部22は、アンテナ21で受信した電波の受信信号を受電部24に供給する。 The transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24. The transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 . The transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
 信号発生部23は、規定信号1000を生成する。信号発生部23は、送受信部22を介して、該規定信号1000を含む電波をアンテナ21に放射させる。信号発生部23は、送信周期に基づいて規定信号1000を生成できる。信号発生部23は、規定信号1000とは異なる信号を生成する構成としてもよい。 The signal generating section 23 generates a regulation signal 1000. The signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 . The signal generator 23 can generate the regulation signal 1000 based on the transmission cycle. The signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
 受電部24は、アンテナ21で受信した電波2000Wを直流電流に変換し、この直流電流を利用して電力を受電する。受電部24は、例えば、公知である整流回路等を用いて、電波を直流電流に変換する。受電部24は、受電した電力を、例えば、Qi(ワイヤレス給電の国際標準規格)に対応したバッテリ、負荷等に供給する。負荷は、例えば、機械設備、IoT(Internet of Things)センサ、電子機器、照明機器等を含む。 The power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current. The power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit. The power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply). The loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
 以上、本実施形態に係る受電装置20の機能構成例について説明した。なお、図6を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る受電装置20の機能構成は係る例に限定されない。本実施形態に係る受電装置20の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 6 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example. The functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
[実施形態1に係る送電装置の処理手順例]
 図7は、図1に示すシステム1の送電装置10の処理手順の一例を説明するための図である。図8は、図7に示す送電装置10のデータフローを説明するための図である。
[Example of processing procedure of power transmission device according to Embodiment 1]
FIG. 7 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG. FIG. 8 is a diagram for explaining the data flow of the power transmission device 10 shown in FIG. 7.
 図7に示すように、システム1において、受電装置20は、規定信号1000を送出する。送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、受電装置20に対応したアレー応答ベクトルVを推定する(ステップS111)。例えば、図8に示すように、送電装置10は、推定部14で、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。送電装置10は、ステップS111の処理が終了すると、処理をステップS131に進める。 As shown in FIG. 7, in the system 1, the power receiving device 20 sends out a regulation signal 1000. When the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111). For example, as shown in FIG. 8, the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do. When the process of step S111 is completed, the power transmitting device 10 advances the process to step S131.
 また、送電装置10は、検出部16で、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向を検出する(ステップS121)。例えば、図8に示すように、送電装置10は、検出部16がM個の物体5000をヌル対象と検出している場合、複数の物体5000の方向θ,θ,・・・,θを検出してウェイト生成部17に供給する。図7に戻り、送電装置10は、ステップS121の処理が終了すると、処理をステップS122に進める。 Furthermore, the power transmitting device 10 uses the detection unit 16 to detect the direction of the object 5000 that is different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 8, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions θ 1 , θ 2 , ..., θ of the plurality of objects 5000. M is detected and supplied to the weight generation section 17. Returning to FIG. 7, when the process of step S121 is completed, the power transmitting device 10 advances the process to step S122.
 送電装置10は、ウェイト生成部17で、ヌルに対応したアレー応答ベクトル化および行列演算を行う(ステップS122)。例えば、図8に示すように、送電装置10は、ウェイト生成部17が物体5000の方向θ,θ,・・・,θと上述した(式21)及び(式22)に基づいて、ヌルに対応したアレー応答ベクトル化(V,V,・・・,V)を行う(ステップS171)。送電装置10は、続いてウェイト生成部17が行列演算を行う(ステップS172)。詳細には、送電装置10は、ヌルに対応したアレー応答ベクトルV=V,V,・・・,Vを用いて(I-AA)の行列演算を行い、演算結果を記憶部17Dに記憶する。ただし、A=[V V ・・・ V]である。図7に戻り、送電装置10は、ステップS122の処理が終了すると、処理をステップS131に進める。 In the power transmission device 10, the weight generation unit 17 performs array response vectorization and matrix calculation corresponding to nulls (step S122). For example, as shown in FIG. 8, in the power transmission device 10, the weight generation unit 17 calculates the directions θ 1 , θ 2 , ..., θ M of the object 5000 based on (Equation 21) and (Equation 22) described above. , array response vectorization (V 1 , V 2 , . . . , V M ) corresponding to the null is performed (step S171). In the power transmission device 10, the weight generation unit 17 subsequently performs matrix calculation (step S172). Specifically, the power transmission device 10 performs a matrix operation of (I-AA + ) using the array response vectors V i =V 1 , V 2 , . . . , V M corresponding to the null, and stores the operation results. It is stored in section 17D. However, A=[V 1 V 2 . . . VM ]. Returning to FIG. 7, when the process of step S122 is completed, the power transmitting device 10 advances the process to step S131.
 送電装置10は、送信ウェイトを生成する(ステップS131)。例えば、図8に示すように、送電装置10は、行列とベクトルの積算を行う(ステップS173)。詳細には、送電装置10は、ウェイト生成部17が推定部14によって推定されたアレー応答ベクトルVと記憶部17Dの行列の(I-AA)との積を算出してアレー応答ベクトルV’を算出する。送電装置10は、ウェイト生成部17が算出したアレー応答ベクトルV’を、(式17)を用いて正規化し、最適なウェイトベクトルWoptを生成する(ステップS174)。図7に戻り、送電装置10は、ステップS131の処理が終了すると、処理をステップS132に進める。 The power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 8, the power transmission device 10 performs matrix and vector multiplication (step S173). Specifically, in the power transmission device 10, the weight generation unit 17 calculates the product of the array response vector V d estimated by the estimation unit 14 and (I-AA + ) of the matrix in the storage unit 17D, and calculates the array response vector V Calculate d '. The power transmission device 10 normalizes the array response vector V d ′ calculated by the weight generation unit 17 using (Equation 17), and generates an optimal weight vector W opt (Step S174). Returning to FIG. 7, when the process of step S131 is completed, the power transmitting device 10 advances the process to step S132.
 送電装置10は、送信ウェイトを乗算する(ステップS132)。例えば、送電装置10は、乗算部18が最適なウェイトベクトルWoptを示すウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの給電用の送信信号2000にウェイトを乗算し、送受信回路13Aに供給する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。この場合、送電装置10は、物体5000にヌルを向けているので、電波2000Wは受電装置20において強め合うように合成されるが、物体5000においては弱め合うように合成される。 The power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, since the power transmitting device 10 directs the null toward the object 5000, the radio waves 2000 W are combined in a constructive manner at the power receiving device 20, but are combined in a destructive manner at the object 5000.
 受電装置20は、例えば、受信した給電用の電波2000Wを直流電流に変換し、この直流電流を利用してバッテリを充電したり、充電した電力によって動作したりする。その後、受電装置20は、規定信号1000を送出する。 For example, the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
 送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、上述した処理手順を繰り返すことで、ウェイトベクトルWoptを生成して送信信号2000の電波2000Wをアレーアンテナ11から放射する。これにより、送電装置10は、受電装置20や物体5000が移動しても、電波2000Wは受電装置20において強め合うように合成され、物体5000においては弱め合うように合成されることを維持できる。 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
 図7に示す送電装置10の処理手順は、規定信号1000に応じたアレー応答ベクトルVの推定(ステップS111)と物体5000の方向に応じたアレー応答ベクトルVの算出及び行列演算(ステップS122)を同期する必要がない。例えば、規定信号1000を受信する周期と検出部16が情報を提供する周期が異なっていてもよい。また、例えば、物体5000の方向に変化がない場合、送電装置10は、過去のアレー応答ベクトルVを用いてもよい。 The processing procedure of the power transmission device 10 shown in FIG. 7 includes estimation of the array response vector V d according to the specified signal 1000 (step S111), calculation of the array response vector V i according to the direction of the object 5000, and matrix calculation (step S122). ) does not need to be synchronized. For example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction of the object 5000, the power transmission device 10 may use the past array response vector V i .
 図9は、実施形態1に係る送電装置10の動作例を説明するための図である。図10は、図9に示す送電装置10が放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。図11は、実施形態1に係る送電装置10の電波2000Wの指向性パターンの一例を示す図である。 FIG. 9 is a diagram for explaining an example of the operation of the power transmission device 10 according to the first embodiment. FIG. 10 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device 10 shown in FIG. 9 by computer simulation. FIG. 11 is a diagram illustrating an example of a directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the first embodiment.
 図9及び図10に示す場面では、システム1は、部屋4000の中に送電装置10と受電装置20を配置し、物性が人体と同じ物体5000が存在している。部屋4000は、3m×3m×3mの壁素材がコンクリートの部屋になっている。物体5000は、送電装置10と受電装置20との間で、送電装置10と受電装置20とを結ぶ直線上からずれた位置に配置されている。すなわち、図10に示す測定環境は、図2に示した環境と同一になっている。 In the scenes shown in FIGS. 9 and 10, in the system 1, a power transmitting device 10 and a power receiving device 20 are arranged in a room 4000, and an object 5000 having the same physical properties as a human body is present. Room 4000 is a 3m x 3m x 3m room with walls made of concrete. The object 5000 is placed between the power transmitting device 10 and the power receiving device 20 at a position offset from the straight line connecting the power transmitting device 10 and the power receiving device 20. That is, the measurement environment shown in FIG. 10 is the same as the environment shown in FIG. 2.
 図10に示すように、システム1は、送電装置10と受電装置20との間の近傍に物体5000が存在する場合、送電装置10がセンサ部15のセンサ情報に基づいて物体5000の方向を検出できる。受電装置20は、規定信号1000を含む電波を放射すると、送電装置10に直接向かうパスと、物体5000で反射して送電装置10に向かうパスが主要なパスとなる。この場合、送電装置10は、アレーアンテナ11で受信した規定信号1000を含む電波の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。図2の参照用送電装置100Aはこのアレー応答ベクトルVのみを用いて送信ウェイトを生成したが、送電装置10は、センサ部15からのセンサ情報に基づいて、受電装置20とは異なる物体5000の方向θ,θ,・・・,θを検出する。送電装置10は、物体5000の方向より、ヌルに対応したアレー応答ベクトルVを計算し、当該アレー応答ベクトルVとアレー応答ベクトルVと用いて最適なウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。 As shown in FIG. 10, in the system 1, when an object 5000 exists in the vicinity between the power transmitting device 10 and the power receiving device 20, the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can. When the power receiving device 20 emits a radio wave including the prescribed signal 1000, the main paths are a path directly toward the power transmitting device 10 and a path reflected by an object 5000 and directed toward the power transmitting device 10. In this case, the power transmission device 10 estimates the propagation channel characteristics of the radio wave including the prescribed signal 1000 received by the array antenna 11, and estimates the array response vector V d . Although the reference power transmitting device 100A in FIG. The directions θ 1 , θ 2 , . . . , θ M are detected. The power transmission device 10 calculates the array response vector V i corresponding to the null from the direction of the object 5000, and generates the optimal weight vector W opt using the array response vector V i and the array response vector V d . In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
 これにより、図10に示す強度分布3100に示すように、送電装置10は、物体5000の方向から規定信号1000を受信しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、物体5000に向かう電波2000Wの放射を抑制することができる。その結果、送電装置10は、受電装置20からの規定信号1000を含む電波が人体に反射して届く環境であっても、人体に向かう電波2000Wを抑制できるので、安全なワイヤレス電力伝送を実現することができる。 Thereby, as shown in the intensity distribution 3100 shown in FIG. 10, even if the power transmitting device 10 receives the specified signal 1000 from the direction of the object 5000, the power transmitting device 10 can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20. In addition, radiation of radio waves of 2000 W toward the object 5000 can be suppressed. As a result, the power transmitting device 10 can suppress the 2000 W of radio waves directed toward the human body even in an environment where radio waves including the specified signal 1000 from the power receiving device 20 reach the human body after being reflected, thereby realizing safe wireless power transmission. be able to.
 送電装置10は、伝搬環境に複数の物体5000が存在しても、複数の物体5000の方向を検出し、複数の物体5000の各々にヌルを向けるように、ウェイトベクトルWoptを生成することができる。なお、本開示において、ウェイト生成部17は、物体の方向の利得がヌルから所定以内の利得範囲となるように送信ウェイトを生成するとしてもよい。例えば、ウェイト生成部17は、ヌルをA[dB]とした場合に、物体の方向の利得がヌルA[dB]からB[dB]以内の利得範囲となるように送信ウェイトを生成するとしてもよい。ここで、Bの値は、0.9A、0.8A、0.7A、0.98A、0.99A、1.1A、1.01AなどAの所定の倍数であってもよい。 Even if a plurality of objects 5000 exist in the propagation environment, the power transmission device 10 can detect the directions of the plurality of objects 5000 and generate the weight vector W opt so as to direct a null to each of the plurality of objects 5000. can. Note that in the present disclosure, the weight generation unit 17 may generate transmission weights such that the gain in the object direction is within a predetermined gain range from null. For example, if the weight generation unit 17 generates transmission weights such that the gain in the direction of the object is within the gain range from the null A [dB] to B [dB], when the null is A [dB]. good. Here, the value of B may be a predetermined multiple of A, such as 0.9A, 0.8A, 0.7A, 0.98A, 0.99A, 1.1A, and 1.01A.
 図11に示すグラフは、例えば、2つの物体5000が存在する場合における実施形態1に係る送電装置10から放射される電波2000Wの指向性パターンを示している。図11に示すグラフは、縦軸がアレー応答値の電力(絶対値の2乗)[dB]、横軸が電波2000Wの放射方向[°]をそれぞれ示している。図11に示す一例では、送電装置10は、アンテナ素子11Aの数が8、隣り合うアンテナ素子11A同士の間隔がλ/2であり、アンテナ配置が等間隔リニアアレーになっている。λは波長を表す。送電装置10は、30°の方向が受電装置20への電波2000Wの放射方向と推定し、放射方向における-10°及び-45°が2つの物体5000の方向と検出している。送電装置10は、30°の方向の受電装置20に対応したアレー応答ベクトルVと、-10°の方向のヌルに対応したアレー応答ベクトルVと、-45°の方向のヌルに対応したアレー応答ベクトルVとに基づいてウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。図11に示す一例では、送電装置10は、放射方向が30°の方向付近でアレー応答値の電力が大きくなり、-10°の方向D1及び-45°の方向D2付近でアレー応答値の電力が小さくなっている。これにより、送電装置10は、複数の物体5000を検出しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、複数の物体5000に向かう電波2000Wの放射を抑制することができる。なお、一般にマルチパス環境における受電装置20に対するアレー応答ベクトルVは指向性パターンにおいて特定の方向にはならないが、図11の例では、理解しやすいように30°の方向のアレー応答ベクトルとした。 The graph shown in FIG. 11 shows, for example, a directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 according to the first embodiment when two objects 5000 are present. In the graph shown in FIG. 11, the vertical axis shows the power (square of the absolute value) [dB] of the array response value, and the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W. In the example shown in FIG. 11, the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is λ/2, and the antenna arrangement is a uniformly spaced linear array. λ represents wavelength. The power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects −10° and −45° in the radiation direction as the directions of the two objects 5000. The power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the −10° direction, and an array response vector V 1 corresponding to the null in the −45° direction. A weight vector W opt is generated based on the array response vector V 2 . In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11. In the example shown in FIG. 11, in the power transmission device 10, the power of the array response value becomes large near the direction where the radiation direction is 30°, and the power of the array response value becomes large near the direction D1 of -10° and the direction D2 of -45°. is getting smaller. Thereby, even if the power transmitting device 10 detects a plurality of objects 5000, it is possible to direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and suppress the emission of the radio waves of 2000 W directed toward the plurality of objects 5000. Can be done. Note that the array response vector V d for the power receiving device 20 in a multipath environment generally does not follow a specific direction in the directivity pattern, but in the example of FIG. 11, the array response vector is set in a 30° direction for ease of understanding. .
 上述した実施形態1では、送電装置10は、アレーアンテナ11の複数のアンテナ素子11Aが等間隔のリニアアレーである場合について説明したが、これに限定されない。送電装置10は、物体5000の方向からアレー応答ベクトルVを算出可能であれば、複数のアンテナ素子11Aの配置は、等間隔リニアアレーでなくてもよい。 In the above-described first embodiment, the power transmission device 10 is described as a case where the plurality of antenna elements 11A of the array antenna 11 are a linear array with equal intervals, but the present invention is not limited to this. As long as the power transmission device 10 can calculate the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
[実施形態1に係る送電装置の変形例]
 図12及び図13は、実施形態1の変形例に係る送電装置10の構成の一例を示す図である。図12に示すように、送電装置10は、センサ部15と検出部16とを、送電装置10の外部の電子機器30に設けてもよい。この場合、送電装置10は、電子機器30からデータの受信が可能な構成とし、電子機器30から物体5000の検出結果を取得してもよい。図13に示すように、送電装置10は、センサ部15のみを装置の外部に設けてもよい。この場合、送電装置10は、外部のセンサ部15からセンサ情報等を取得可能な構成とし、センサ部15からのセンサ情報等に基づいて検出部16が物体5000を検出してもよい。
[Modification of power transmission device according to Embodiment 1]
12 and 13 are diagrams illustrating an example of the configuration of the power transmission device 10 according to a modification of the first embodiment. As shown in FIG. 12, the power transmission device 10 may include the sensor section 15 and the detection section 16 in an electronic device 30 outside the power transmission device 10. In this case, the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30. As shown in FIG. 13, the power transmission device 10 may include only the sensor section 15 outside the device. In this case, the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
(実施形態2)
[実施形態2に係る送電装置の構成]
 図14は、実施形態2に係る送電装置10の構成の一例を示す図である。図15は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。図16は、アダプティブアレーアンテナと指向性の一例を示す図である。図17は、微係数拘束時のベクトル化の一例を示す図である。
(Embodiment 2)
[Configuration of power transmission device according to Embodiment 2]
FIG. 14 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the second embodiment. FIG. 15 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. FIG. 16 is a diagram showing an example of an adaptive array antenna and directivity. FIG. 17 is a diagram illustrating an example of vectorization during differential coefficient constraint.
 図14に示すように、送電装置10は、アレーアンテナ11と、送信信号発生部12と、送受信部13と、推定部14と、センサ部15と、検出部16と、ウェイト生成部17と、乗算部18と、を備える。 As shown in FIG. 14, the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, A multiplication unit 18 is provided.
 アレーアンテナ11は、指向性制御(ビームフォーミング)が可能な構成になっている。アレーアンテナ11は、複数のアンテナ素子11Aを備えている。アレーアンテナ11は、例えば、複数のアンテナ素子11Aのそれぞれが同じ電波を放射し、それぞれの位相と電力強度を調整することで、特定の方向では電波を強め、別の方向では打ち消し合って弱めることが可能な構成になっている。アレーアンテナ11は、送信信号2000を含む電波を放射し、受電装置20からの規定信号1000を含む電波を受信する。アレーアンテナ11は、受信した信号を送受信部13に供給する。本実施形態では、説明を簡単化するために、アレーアンテナ11は、3つ以上のアンテナ素子11Aを備える場合について説明するが、アンテナ素子11Aの数はこれに限定されない。 The array antenna 11 has a configuration that allows directivity control (beamforming). The array antenna 11 includes a plurality of antenna elements 11A. For example, in the array antenna 11, each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction. The configuration is such that this is possible. Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 . Array antenna 11 supplies the received signal to transmitter/receiver 13 . In this embodiment, in order to simplify the explanation, a case will be described in which the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this.
 送信信号発生部12は、受電装置20に送信する給電用の送信信号2000を生成する。送信信号2000は、電力を供給可能な電波2000Wを放射するための信号である。例えば、送信信号2000はベースバンド帯の信号であってもよい。送信信号2000は、例えば、無変調信号でもよいし、変調信号でもよい。無変調信号の場合、送信期間中、送信信号2000の時間変動はない。変調信号の場合、送信期間中、送信信号発生部12は送信信号2000を時間変動させる。送信信号発生部12は、例えば、規定信号1000を受信するタイミングには送信信号2000を停止することを含む。送信信号発生部12は、乗算部18と電気的に接続されており、生成した送信信号2000を乗算部18に供給する。 The transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20. The transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power. For example, the transmission signal 2000 may be a baseband signal. The transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period. The transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000. The transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
 送受信部13は、アレーアンテナ11の複数のアンテナ素子11Aの各々と電気的に接続された複数の送受信回路13Aを有する。送受信回路13Aは、推定部14、乗算部18等と電気的に接続されている。送受信回路13Aは、アンテナ素子11Aで受信した受信信号を抽出して推定部14に供給する。送受信回路13Aは、乗算部18で送信ウェイトが乗算された送信信号2000をアンテナ素子11Aから放射させる。送信ウェイトは、例えば、振幅及び位相を調整可能な重み係数を含む。送受信部13は、送信ウェイト(複素振幅)が乗算された送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから同時に放射させることで、送電装置10は指向性が制御された電波2000Wを放射する。 The transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11. The transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like. The transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14. The transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18. The transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable. The transmitting/receiving unit 13 simultaneously radiates 2000 W of radio waves including the transmission signal 2000 multiplied by the transmission weight (complex amplitude) from the plurality of antenna elements 11A, so that the power transmission device 10 radiates 2000 W of radio waves with controlled directivity. .
 推定部14は、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000から伝搬チャネル特性(インパルス応答)を推定する。伝搬チャネル特性(インパルス応答)は、例えば、振幅特性、位相特性を含む。アレー応答ベクトルは、例えば、アンテナ本数分のチャネル特性を示す。アレー応答ベクトルは、例えば、複数のアンテナ素子11Aごとの伝搬チャネル特性(インパルス応答)を並べたベクトルを含む。受信処理におけるアレー応答ベクトルは、受信応答ベクトルとも称する。推定部14は、例えば、特開2002-43995号公報に開示されているように周知のアルゴリズムを用いて受信応答ベクトルを推定する。推定部14は、アレー応答ベクトルのベクトルデータをウェイト生成部17に供給する。 The estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A. The propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics. The array response vector indicates, for example, channel characteristics for the number of antennas. The array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged. The array response vector in reception processing is also referred to as a reception response vector. The estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995. The estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
 センサ部15は、送電装置10の電波伝搬環境における物体5000の有無、方向、領域等を検出可能な情報を取得できる。電波伝搬環境は、例えば、送電装置10と受電装置20との間で電波2000Wを伝搬する空間を含む。物体5000の領域は、例えば、電波伝搬環境における物体5000の領域、自機からの物体5000の角度広がりに関する情報を含む。センサ部15は、例えば、カメラ、ミリ波レーダなどのレーダ、LIDAR(Laser Imaging Detection and Ranging)、ToF(Time of Flight)センサ、赤外線センサ、人感センサ、深度センサ等を用いて、電波伝搬環境に存在する物体5000に関する情報を取得する。センサ部15は、送電装置10の外部に設けられてもよい。センサ部15は、検出部16と電気的に接続されており、電波伝搬環境における物体5000の方向及び領域を検出可能なセンサ情報を検出部16に供給する。センサ情報は、例えば、物体5000の有無、距離、位置、画像等の情報を含む。 The sensor unit 15 can acquire information that can detect the presence, direction, area, etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10. The radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20. The area of the object 5000 includes, for example, information regarding the area of the object 5000 in the radio wave propagation environment and the angular spread of the object 5000 from the own aircraft. The sensor unit 15 uses, for example, a camera, a radar such as a millimeter wave radar, a LIDAR (Laser Imaging Detection and Ranging), a ToF (Time of Flight) sensor, an infrared sensor, a human sensor, a depth sensor, etc. to detect the radio wave propagation environment. Obtain information regarding object 5000 present in . The sensor unit 15 may be provided outside the power transmission device 10. The sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect the direction and area of the object 5000 in the radio wave propagation environment to the detection section 16. The sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image.
 検出部16は、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の位置及び領域に関する情報を検出する。物体5000は、例えば、人間、動物、ロボット、移動体、植物、食物、電磁波を送信又は受信する機器等を含む。検出部16は、センサ情報が示す画像に対して公知である物体認識処理を実行し、物体5000の領域、形状、電波伝搬環境における物体が存在する領域、自機からの物体5000の方向及び領域等を検出する。例えば、検出部16は、センサ情報が示す物体5000の方向、位置、領域等と、センサ部15とアレーアンテナ11との相対位置関係に基づいて、アレーアンテナ11からの物体5000の方向、領域等を検出する。複数の物体5000が存在する場合、検出部16は、複数の物体5000の位置及び領域を検出する。検出部16は、ウェイト生成部17と電気的に接続されており、アレーアンテナ11からの物体5000の方向、領域等を識別可能な方向情報としてウェイト生成部17に供給する。このように、本開示の検出部16は、センサ部15からの、物体5000のGPS情報などの位置情報、方向情報、距離情報などを含むセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の位置に関する情報を検出する。 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding the position and area of an object 5000 that is different from the power receiving device 20 in the radio wave propagation environment. The objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like. The detection unit 16 executes a known object recognition process on the image indicated by the sensor information, and detects the area and shape of the object 5000, the area where the object exists in the radio wave propagation environment, and the direction and area of the object 5000 from the own device. Detect etc. For example, the detection unit 16 detects the direction, position, area, etc. of the object 5000 from the array antenna 11 based on the direction, position, area, etc. of the object 5000 indicated by the sensor information and the relative positional relationship between the sensor unit 15 and the array antenna 11. Detect. If a plurality of objects 5000 exist, the detection unit 16 detects the positions and regions of the plurality of objects 5000. The detection unit 16 is electrically connected to the weight generation unit 17, and supplies the direction, area, etc. of the object 5000 from the array antenna 11 to the weight generation unit 17 as identifiable direction information. In this manner, the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
 方向情報は、例えば、アレーアンテナ11からの物体5000の方向、領域等を示す情報を含む。方向情報は、例えば、図14に示すように、物体5000を含む領域151、大きさ152等の識別可能な情報を含む。なお、方向情報は、複数のアンテナ素子11Aの配置に応じて設定された物体5000の大きさを識別可能な情報とすることができる。例えば、複数のアンテナ素子11Aがマトリックス状に配置されている場合、物体5000の領域151は、縦横の長さ、位置、物体5000の形状等を設定できる。例えば、複数のアンテナ素子11Aが一方の方向に並んで配置されている場合、物体5000の大きさ152は、幅、高さ等の一方の方向における長さや距離、自機からの角度範囲等を設定できる。物体5000の領域151は、物体5000の外形等に応じた空間領域としてもよい。 The direction information includes, for example, information indicating the direction, area, etc. of the object 5000 from the array antenna 11. For example, as shown in FIG. 14, the direction information includes identifiable information such as a region 151 including the object 5000 and a size 152. Note that the direction information can be information that allows identification of the size of the object 5000 set according to the arrangement of the plurality of antenna elements 11A. For example, when the plurality of antenna elements 11A are arranged in a matrix, the vertical and horizontal lengths, position, shape of the object 5000, etc. can be set for the region 151 of the object 5000. For example, when a plurality of antenna elements 11A are arranged side by side in one direction, the size 152 of the object 5000 includes the length and distance in one direction such as width and height, the angular range from the own aircraft, etc. Can be set. The region 151 of the object 5000 may be a spatial region according to the outer shape of the object 5000, etc.
 ウェイト生成部17は、推定部14の推定結果である受電装置20に対するアレー応答ベクトルと検出部16からの物体5000の方向情報に基づいて、電力伝送用ウェイトを生成する。ウェイトの生成方法は、例えば、MIMOで用いられるZF(Zero-Forcing)アルゴリズム、MMSE(Minimum Mean Square Error)アルゴリズム等を用いることができる。ウェイト生成部17は、乗算部18と電気的に接続されており、電力伝送用ウェイトを示すウェイト情報を乗算部18に供給する。以下の説明では、説明を簡単化するために、アレーアンテナ11の複数のアンテナ素子11Aが水平方向において等間隔で並んでいる場合について説明する。 The weight generation unit 17 generates power transmission weights based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the object 5000 from the detection unit 16. As a weight generation method, for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used. The weight generation section 17 is electrically connected to the multiplication section 18 and supplies the multiplication section 18 with weight information indicating power transmission weights. In the following description, in order to simplify the description, a case will be described in which a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
 図15に示すように、アダプティブアレーアンテナ送信は、送信信号2000に複素振幅w(ウェイト)の複素共役w を乗じた後、K本のアンテナ素子11Aから同時に電波2000Wを放射する。なお、本開示において、(・)のように文字の右肩に「*」を記している場合、複素共役を意味する。ウェイトwは、k=0,・・・,K-1である。受信点200Pでは、K本のアンテナ素子11Aから放射された電波2000Wの合成信号が観測される。このとき、伝搬チャネルごとに振幅・位相が変化する。そこで、#0から#K-1のアンテナ素子11Aと受信点200P間の伝搬チャネルのインパルス応答をZ(複素数)とすると、解析的なアレーアンテナ特性は、以下の(式211)で与えられる。
Figure JPOXMLDOC01-appb-M000013
As shown in FIG. 15, in adaptive array antenna transmission, after multiplying a transmission signal 2000 by a complex conjugate w k * of a complex amplitude w k (weight), radio waves 2000 W are simultaneously radiated from K antenna elements 11A. Note that in the present disclosure, when "*" is written on the right side of a character, such as (.) * , it means complex conjugate. The weight w k is k=0,...,K-1. At the receiving point 200P, a composite signal of 2000 W of radio waves radiated from the K antenna elements 11A is observed. At this time, the amplitude and phase change for each propagation channel. Therefore, if the impulse response of the propagation channel between #0 to #K-1 antenna elements 11A and receiving point 200P is Z k (complex number), the analytical array antenna characteristics are given by the following (Equation 211). .
Figure JPOXMLDOC01-appb-M000013
 本開示では、解析的なアレーアンテナ特性は、アレー応答値ARと称する。ウェイトベクトルをW、アレー応答ベクトルをVとすると、(式211)は複素ベクトルの内積として以下の(式212)で表せる。なお、本開示において、(・)のように文字の右肩に「H」を記している場合、複素共役転置(エルミート転置)を意味する。
 AR=WV ・・・(式212)
 ウェイトベクトルWとアレー応答ベクトルVを具体的な要素で表すと、以下の(式213)のようになる。
Figure JPOXMLDOC01-appb-M000014
In this disclosure, the analytical array antenna characteristics are referred to as array response values AR. When the weight vector is W and the array response vector is V, (Formula 211) can be expressed as the following (Formula 212) as an inner product of complex vectors. Note that in the present disclosure, when "H" is written on the right shoulder of a character, such as (.) H , it means complex conjugate transposition (Hermitian transposition).
AR=W H V... (Formula 212)
When the weight vector W and the array response vector V are expressed using specific elements, they are as shown in (Equation 213) below.
Figure JPOXMLDOC01-appb-M000014
 アレー応答ベクトルVが既知であれば、適切なウェイトベクトルWを与えることで、受信点200Pでのアレー応答値ARを制御できる。なお、ウェイトベクトルWを決める際には、送信電力の合計が一定になるように、ウェイトベクトルWのノルムの2乗が1(||W||=1)という制約条件を課すものとする。 If the array response vector V is known, the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (||W|| 2 = 1) so that the total transmission power is constant. .
 レトロディレクティブ方式のシステム1では、受電装置20から送信される規定信号1000(パイロット信号)に基づいてアレー応答ベクトルVを推定し、これを利用して最適なウェイトベクトルWoptを生成する。伝搬チャネルの時間変動を無視すれば、伝搬チャネルの可逆性(相反性)によりアレー応答ベクトルVを送電装置10から受電装置20へのアレー応答ベクトルとみなせる。ただし、パイロット信号は送電時の電波と同じ周波数とする。||W||=1という条件のもとアレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptは、以下の(式214)とすることができる。
Figure JPOXMLDOC01-appb-M000015
In the retrodirective system 1, the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d can be regarded as the array response vector from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal shall have the same frequency as the radio waves used during power transmission. The optimal weight vector W opt that maximizes the magnitude of the array response value |W H V d | under the condition ||W|| 2 = 1 can be set as the following (Equation 214).
Figure JPOXMLDOC01-appb-M000015
 以上のように、レトロディレクティブ方式の送信の最適なウェイトベクトルWoptは、受信したパイロット信号のアレー応答ベクトルVだけでよく、受信点200Pの方向などの情報は不要である。 As described above, the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and does not require information such as the direction of the reception point 200P.
 次に、レトロディレクティブ方式と複数(例えばM個)のヌル形成の同時実現について説明する。 Next, the simultaneous realization of the retrodirective method and the formation of multiple (for example, M) nulls will be described.
 ヌルは、アレーアンテナ11の指向性において、方向、点等の利得がゼロになることを意味する。アレーアンテナ11でヌルを形成するには、ヌルに対応するアレー応答ベクトルV(i=1,・・・,M)に対し、アレー応答値の大きさ|W|をゼロにすればよい。この条件のもと、アレー応答ベクトルVのアレー応答値の大きさ|W|を最大化する。これは以下のような(式215)に示す最適化問題として定式化できる。本開示では、これを線形拘束付きレトロディレクティブ方式と称する。ここで、Kはアンテナ素子11Aの数である。Mはヌルの数である。自由度はK-1であるため、M<Kとしている。argmax(argument of the maximum)は、最大値を達成する値の集合を意味する。(式215)は、ウェイトベクトルWで|W|が最大となる最適なウェイトベクトルWoptを求める条件式である。
Figure JPOXMLDOC01-appb-M000016
Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero. To form a null in the array antenna 11, the magnitude of the array response value |W H V i | should be set to zero for the array response vector V i (i=1,...,M) corresponding to the null. Bye. Under this condition, the magnitude of the array response value |W H V d | of the array response vector V d is maximized. This can be formulated as an optimization problem shown in (Equation 215) below. In this disclosure, this is referred to as a retrodirective method with linear constraints. Here, K is the number of antenna elements 11A. M is the number of nulls. Since the degree of freedom is K-1, M<K. argmax (argument of the maximum) means a set of values that achieves the maximum value. (Formula 215) is a conditional expression for determining the optimal weight vector W opt where |W H V d | is maximum in the weight vector W.
Figure JPOXMLDOC01-appb-M000016
 (式215)の最適化問題は、閉形式の解が存在する。
 以下のように(式216)を定義すると、最適なウェイトベクトルWoptは(式217)で与えられる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
The optimization problem of (Equation 215) has a closed-form solution.
When (Equation 216) is defined as below, the optimal weight vector W opt is given by (Equation 217).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、AはM個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた(式218)に示す行列である。
Figure JPOXMLDOC01-appb-M000019
 Aは、Aのムーア・ペンローズ一般逆行列である。ムーア・ペンローズ一般逆行列Aは、AAA=A,AAA=A,(AA=AA,(AA)=AAを満足する。複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vが線形独立の場合は、A=(AA)-1となる。
Here, A is a matrix shown in (Equation 218) in which array response vectors V 1 , V 2 , . . . , VM , which are M complex column vectors, are arranged.
Figure JPOXMLDOC01-appb-M000019
A + is the Moore-Penrose general inverse of A. The Moore-Penrose general inverse matrix A + satisfies AA + A = A, A + AA + = A + , (AA + ) H = AA + , (A + A) H = A + A. When the array response vectors V 1 , V 2 , . . . , V M , which are complex column vectors, are linearly independent, A + =(A H A) −1 A H.
 ヌルに対応するアレー応答値は、W=0(i=1,・・・・,M<K)を満足しなければならない。そこで、これらを同次連立一次方程式と考えると、M個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた行列Aを使ってAW=0にように行列とベクトルの積で表される。この一般解はムーア・ペンローズ一般逆行列Aを用いて、W=(I-AAz=(I-AA)zで与えられる。zは、任意の複素ベクトルである。最大化したいアレー応答値の大きさ|W|にW=(I-AAz=(I-AA)zを代入すると、|W|=|z(I-AA)V|が得られる。そして、コーシー・シュワルツの不等式より、|W|=|z(I-AA)V|≦||z||・||(I-AA)V||が成り立つ。|W|が最大になるのは当該不等式の等号のときであり、このとき、z=α(I-AA)Vを満たす。αは、任意の複素定数である。 The array response value corresponding to the null must satisfy W H V i =0 (i=1, . . . , M<K). Therefore, if we consider these as homogeneous simultaneous linear equations, we can use matrix A in which array response vectors V 1 , V 2 , ..., V M , which are M complex column vectors, to set A H W = 0. It is expressed as a product of a matrix and a vector. This general solution is given by W=(I-AA + ) H z=(I-AA + )z using the Moore-Penrose general inverse matrix A + . z is any complex vector. By substituting W=(I-AA + ) H z=(I-AA + )z into the magnitude of the array response value to be maximized |W H V d |, |W H V d |=|z H (I −AA + )V d | is obtained. Then, from the Cauchy-Schwartz inequality, |W H V d |=|z H (I-AA + )V d |≦||z||・||(I-AA + )V d || holds true. |W H V d | becomes maximum when the inequality sign is equal, and in this case, z=α(I-AA + )V d is satisfied. α is an arbitrary complex constant.
 最適なウェイトベクトルWoptは、上述したW=(I-AAz=(I-AA)zに、z=α(I-AA)Vを代入することで、Wopt=α(I-AA)Vが与えられる。ここで、(式216)のようにV’=(I-AA)Vとすると、||Wopt||=|α|||V’||=1を満足するためにはα=1/||V’||とすればよい。よって、最適なウェイトベクトルWoptは、上述した(式217)としてよいことになる。 The optimal weight vector W opt can be obtained by substituting z=α(I-AA + )V d into W=(I-AA + ) H z=(I-AA + )z described above. α(I−AA + )V d is given. Here, if V' d = (I-AA + )V d as in (Equation 216), ||W opt || 2 = |α| 2 ||V' d || 2 = 1 is satisfied. In order to do this, α=1/||V' d ||. Therefore, the optimal weight vector W opt may be the above-mentioned (Equation 217).
 次に、ヌルに対応するアレー応答ベクトルの算出方法の一例を説明する。送電装置10と受電装置20との間のアレー応答ベクトルは、規定信号1000から推定するが、ヌルを向けたい対象からは、規定信号1000が送出されないと仮定すると、別の方法でアレー応答ベクトルを算出する必要がある。本開示では、送電装置10からヌルを向けたい対象へ直接向かう電波を回避することを目的とし、センサ部15を用いて取得したヌル対象である物体5000の方向からアレー応答ベクトルを算出する。 Next, an example of a method for calculating an array response vector corresponding to a null will be described. The array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000. However, assuming that the specified signal 1000 is not sent from the target to which you want to direct the null, the array response vector can be estimated using another method. need to be calculated. In the present disclosure, an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of avoiding radio waves that go directly from the power transmission device 10 toward the target to which the null is directed.
 図16に示すように、K個のアンテナ素子11Aが等間隔に並ぶリニアアレーにおいて、ブロードサイドから時計回りにθ(-π/2<θ<π/2)だけ回転した向きに放射される遠方界でのアレー応答ベクトルは、以下の(式219)のように与えられる。ブロードサイドは、アンテナ素子11Aを並べた方向に対し垂直な向きであり、図16における上方である。基準点200Bの#0のアンテナ素子11Aから#Kのアンテナ素子11Aまでの素子間距離がkdとなっている。基準点200Bの#0のアンテナ素子11Aから#K-1のアンテナ素子11Aまでの素子間距離が(K-1)dとなっている。
Figure JPOXMLDOC01-appb-M000020
As shown in FIG. 16, in a linear array in which K antenna elements 11A are arranged at equal intervals, a far field is radiated in a direction rotated clockwise by θ (-π/2<θ<π/2) from the broadside. The array response vector at is given as (Equation 219) below. The broadside is perpendicular to the direction in which the antenna elements 11A are arranged, and is upward in FIG. 16. The inter-element distance from the #0 antenna element 11A to the #K antenna element 11A at the reference point 200B is kd. The inter-element distance from the #0 antenna element 11A to the #K-1 antenna element 11A at the reference point 200B is (K-1)d.
Figure JPOXMLDOC01-appb-M000020
 ここで、インパルス応答Zは、(式220)とする。
Figure JPOXMLDOC01-appb-M000021
 これにより、ヌル対象の方向θが分かれば、アレー応答ベクトルVを(式221)のように算出できる。なお、方向θは、θ=θであり、i=1,・・・,Mである。jは、虚数単位であり、j=-1である。ここで、インパルス応答Zは、(式222)で得ることができる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Here, the impulse response Z is expressed as (Equation 220).
Figure JPOXMLDOC01-appb-M000021
As a result, if the direction θ of the null object is known, the array response vector V i can be calculated as shown in (Equation 221). Note that the direction θ is θ=θ i , and i=1, . . . , M. j is an imaginary unit and j 2 =-1. Here, the impulse response Z i can be obtained by (Equation 222).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ウェイト生成部17は、ヌル対象の方向θからヌルに対応するアレー応答ベクトルVを(式221)及び(式222)を用いて導出し、続いて(式218)を用いて行列(I-AA)を算出する。ウェイト生成部17は、算出した行列(I-AA)と、受電装置20に対応したアレー応答ベクトルVから、アレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptを決定するが、一般的には行列(I-AA)とアレー応答ベクトルVでは算出されるタイミングが異なる。そこで、ウェイト生成部17は、行列(I-AA)を記憶部17Dに記憶できる。 The weight generation unit 17 derives the array response vector V i corresponding to the null from the direction θ i of the null object using (Equation 221) and (Equation 222), and then derives the matrix (I −AA + ). The weight generation unit 17 generates an optimal weight vector that maximizes the magnitude of the array response value |W H V d | from the calculated matrix (I-AA + ) and the array response vector V d corresponding to the power receiving device 20. W opt is determined, but generally the timing at which the matrix (I-AA + ) and the array response vector V d are calculated is different. Therefore, the weight generation section 17 can store the matrix (I-AA + ) in the storage section 17D.
 記憶部17Dは、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的な記憶媒体を含んでよい。記憶部17Dは、メモリカード、光ディスク、又は光磁気ディスク等の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。記憶部17Dは、RAMなどの一時的な記憶領域として利用される記憶デバイスを含んでよい。記憶部17Dは、ウェイト生成部17の外部に設けてもよい。 The storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device. The storage unit 17D may include a storage device such as a RAM used as a temporary storage area. The storage unit 17D may be provided outside the weight generation unit 17.
 次に、ヌルを広角化する一例を説明する。ヌル対象の物体5000は拡がりを持っており、物体5000の領域に応じてヌルを広角化することが望ましい。ヌルを広角化するには、複数の方法を用いることができる。本開示では、微係数拘束(Derivative Constraints)を用いる場合について説明する。上述した(式211)、(式212)に(式219)、(式220)を代入すると、θ方向のK素子等間隔リニアアレーのアレー応答値は、(式223)で得られる。
Figure JPOXMLDOC01-appb-M000024
Next, an example of widening a null will be described. The object 5000 to be nulled has an expanse, and it is desirable to widen the angle of the null according to the area of the object 5000. Multiple methods can be used to widen the null. In this disclosure, a case will be described in which derivative constraints are used. By substituting (Formula 219) and (Formula 220) into the above-mentioned (Formula 211) and (Formula 212), the array response value of the K element equally spaced linear array in the θ direction is obtained by (Formula 223).
Figure JPOXMLDOC01-appb-M000024
 WV=D(θ)とする。D(θ)は、アレー応答関数あるいはアレーファクタと呼ばれる。D(θ)は、θの連続関数であり、θで微分可能である。また、この絶対値|D(θ)|を図示したものは、アレーアンテナの指向性パターンになる。 Let W H V=D(θ). D(θ) is called an array response function or array factor. D(θ) is a continuous function of θ and is differentiable with respect to θ. Moreover, the diagram showing this absolute value |D(θ)| is the directivity pattern of the array antenna.
 (式223)にθ=θ(i=1,・・・,M)を代入したD(θ)は、θ方向のアレー応答値である。また、(式223)は、微分可能であるから、θ=θの近傍であるθ=θ+Δθのアレー応答値D(θ+Δθ)は、L次近似式を用いて以下の(式224)のように表せる。
Figure JPOXMLDOC01-appb-M000025
D(θ i ) obtained by substituting θ=θ i (i=1, . . . , M) into (Equation 223) is the array response value in the θ i direction. Furthermore, since (Equation 223) is differentiable, the array response value D(θ i +Δθ) of θ=θ i +Δθ, which is near θ= θ i , can be calculated using the following ( It can be expressed as in equation 224).
Figure JPOXMLDOC01-appb-M000025
 (式224)において、微係数D(l)(θ)(l=1,・・・,L)がゼロならば、D(θ+Δθ)≒D(θ)となり、θの近傍θ+Δθでアレー応答値を同程度にできる。これをヌル(D(θ)=0)に対して適用したものが微係数拘束によるヌルの広角化であり、近似式の次数のLにより広角化の度合いを制御できる。本開示では、文字の右肩の(l)は、微分の階数を示す。 In (Formula 224), if the differential coefficient D (l)i ) (l=1,..., L i ) is zero, D(θ i +Δθ)≈D(θ i ), and the difference of θ i The array response values can be made comparable in the vicinity θ i +Δθ. Applying this to the null (D(θ i )=0) is the widening of the null by differential coefficient constraint, and the degree of widening can be controlled by the order L i of the approximation equation. In this disclosure, the (l) on the right side of the letter indicates the order of differentiation.
 微係数拘束条件D(l)(θ)=0(l=1,・・・,L)は、以下の(式225)の等価になる。
Figure JPOXMLDOC01-appb-M000026
The differential coefficient constraint D (l)i )=0 (l=1, . . . , L i ) is equivalent to the following (Equation 225).
Figure JPOXMLDOC01-appb-M000026
 そこで、対角行列Qを以下の(式226)とすると、(式225)は以下の(式227)と表せる。なお、(式226)および(式227)は、l=1,・・・,Lである。
 Q=diag[0 1 ・・・ (K-1)]・・・(式226)
 W(Q)=0 ・・・(式227)
Therefore, if the diagonal matrix Q l is given as the following (Formula 226), then (Formula 225) can be expressed as the following (Formula 227). Note that (Formula 226) and (Formula 227) are l=1, . . . , Li .
Q l =diag[0 l 1 l ... (K-1) l ]... (Formula 226)
W H (Q l V i )=0 (Formula 227)
 以下の(式228)及び(式229)としてまとめると、l階微係数の拘束条件は、以下の(式230)で与えられる。なお、(式229)は、l=1,・・・,Lである。(式230)において、l=0,・・・,Lである。V (l)は前記アレー応答ベクトルと異なるが、(式230)より(式215)の拘束条件と同じように扱える。そこで、本開示では(式230)のV (l)を拘束ベクトルと称する。
 V (0)=V ・・・(式228)
 V (l)=Q ・・・(式229)
 W (l)=0 ・・・(式230)
When summarized as the following (Formula 228) and (Formula 229), the constraint condition of the l-th order differential coefficient is given by the following (Formula 230). Note that (Formula 229) is l=1, . . . , Li . In (Formula 230), l=0,..., Li . Although V i (l) is different from the array response vector described above, it can be handled in the same way as the constraint condition in (Formula 215) from (Formula 230). Therefore, in the present disclosure, V i (l) in (Equation 230) is referred to as a constraint vector.
V i (0) = V i ... (Formula 228)
V i (l) = Q l V i ... (Formula 229)
W H V i (l) =0 (Formula 230)
 (式230)の拘束条件のもと、アレー応答ベクトルVのアレー応答値の大きさ|W|を最大化する最適化問題は、以下の(式231)のように定式化できる。
Figure JPOXMLDOC01-appb-M000027
Under the constraint of (Equation 230), the optimization problem for maximizing the array response value |W H V d | of the array response vector V d can be formulated as shown in (Equation 231) below. .
Figure JPOXMLDOC01-appb-M000027
 ここで、Kはアンテナ素子11Aの数であり、Mはヌルの数である。ヌルの数は、検出部16が検出した物体5000の数である。L,L,・・・,Lは各ヌルの広角化の度合いを決める数であり、本開示ではこれを広角度と称する。広角度は、検出部16が検出した物体5000の領域に応じて決まり、広角度分拘束ベクトルが追加される。自由度はK-1であるため、M+L+L+・・・+L<Kとしている。また、アレー応答ベクトルV (l)(l=0,・・・,K-1)は線形独立である。 Here, K is the number of antenna elements 11A, and M is the number of nulls. The number of nulls is the number of objects 5000 detected by the detection unit 16. L 1 , L 2 , . . . , LM are numbers that determine the degree of widening of each null, and are referred to as wide angles in this disclosure. The wide angle is determined according to the area of the object 5000 detected by the detection unit 16, and a constraint vector corresponding to the wide angle is added. Since the degree of freedom is K-1, M+L 1 +L 2 +...+L M <K. Furthermore, the array response vectors V i (l) (l=0, . . . , K-1) are linearly independent.
 上記の(式215)と(式231)の比較からわかるように、線形拘束付きレトロディレクティブ方式のアルゴリズムを踏襲しつつ、ヌルを広角化することが可能である。本開示では、これを微係数拘束付きレトロディレクティブ方式と称する。 As can be seen from the comparison between (Equation 215) and (Equation 231) above, it is possible to widen the null while following the algorithm of the retrodirective method with linear constraints. In this disclosure, this is referred to as a retrodirective method with derivative constraint.
 ウェイト生成部17は、規定信号1000の伝搬チャネル特性と検出部16が検出した物体5000の方向及び領域の検出結果に基づいて、物体5000の方向及び領域にヌルが向くように送信ウェイトを生成する。前記送信ウェイトを生成するために、例えば、ウェイト生成部17は、前記広角度Lを決定する。 The weight generation unit 17 generates transmission weights such that the null points toward the direction and area of the object 5000 based on the propagation channel characteristics of the prescribed signal 1000 and the detection result of the direction and area of the object 5000 detected by the detection unit 16. . In order to generate the transmission weight, for example, the weight generation unit 17 determines the wide angle L i .
 例えば、ウェイト生成部17は、方向θから(式221)と(式222)を用いてアレー応答ベクトルVを算出する。例えば、ウェイト生成部17は、図17に示すように、ヌル対象の方向θと領域δとを示す情報をテーブル170に適用して広角度Lを求める。領域δは、物体5000の領域、大きさ等に関する情報を含む。広角度Lは、広角化パラメータであり、物体5000の領域δだけでなく方向θにも依存するため、テーブル170を用いて求めてもよいし、機械学習等を用いて求めてもよい。本実施形態では、テーブル170は、記憶部17Dに記憶されており、方向θと領域δから広角度Lを導き出すルックアップテーブルである。 For example, the weight generation unit 17 calculates the array response vector V i from the direction θ i using (Equation 221) and (Equation 222). For example, as shown in FIG. 17, the weight generation unit 17 applies information indicating the direction θ i and the region δ i of the null target to the table 170 to obtain the wide angle L i . The area δ i includes information regarding the area, size, etc. of the object 5000. The widening angle L i is a widening parameter and depends not only on the area δ i of the object 5000 but also on the direction θ i , so it may be determined using the table 170 or using machine learning or the like. good. In this embodiment, the table 170 is stored in the storage unit 17D and is a lookup table that derives the wide angle L i from the direction θ i and the area δ i .
 ウェイト生成部17は、求めた広角度Lとアレー応答ベクトルVとから、上記の(式226)、(式228)、(式229)を用いてベクトル化することで、拘束ベクトルV (l)(l=0,・・・,L)を求める。ウェイト生成部17は、拘束ベクトルV (l)を用いて、アレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptを、上述した(式231)によって決定する。なお、送電装置10は、広角度Lをヌル対象ごとに設定できる。送電装置10は、ヌルを向ける方向及び領域から算出する行列と、規定信号1000の伝搬チャネル特性とを独立して算出できる。 The weight generation unit 17 vectorizes the obtained wide angle L i and array response vector V i using the above (Equation 226), (Equation 228), and (Equation 229) to generate a constraint vector V i (l) Find (l=0,...,L i ). The weight generation unit 17 uses the constraint vector V i (l) to determine the optimal weight vector W opt that maximizes the magnitude |W H V d | of the array response value according to the above-mentioned (Equation 231). . Note that the power transmission device 10 can set the wide angle L i for each null target. The power transmission device 10 can independently calculate a matrix calculated from the direction and region in which the null is directed and the propagation channel characteristics of the prescribed signal 1000.
 図14に示すように、乗算部18は、ウェイト生成部17のウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの送信信号2000にウェイトを乗算する。乗算部18は、例えば、乗算器を有する。乗算部18は、アンテナ素子11Aに対応するウェイトを乗算した送信信号2000を、当該アンテナ素子11Aの送受信回路13Aに供給する。 As shown in FIG. 14, the multiplication section 18 multiplies the transmission signal 2000 from the transmission signal generation section 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation section 17. The multiplication unit 18 includes, for example, a multiplier. The multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
 以上、本実施形態に係る送電装置10の機能構成例について説明した。なお、図14を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る送電装置10の機能構成は係る例に限定されない。本実施形態に係る送電装置10の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 14 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example. The functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
[実施形態2に係る受電装置]
 図18は、実施形態2に係る受電装置20の構成の一例を示す図である。図18に示すように、受電装置20は、アンテナ21と、送受信部22と、信号発生部23と、受電部24と、を備える。本開示の受電装置20は、移動可能な装置であるとしてよい。例えば、このような受電装置20として、モバイルバッテリー、スマートフォン、カメラ、振動センサ、生体センサ、温度センサ、警報などのドローンや車などの移動体に搭載される機器、自動運転車両、設置位置が可変な振動センサ、生体センサ、温度センサ、警報などとしてよい。本開示では、受電装置20は、移動可能な装置であるため、規定信号に基づく伝搬チャネルの特性が受電装置20の位置に応じて変化しうるとしてよい。
[Power receiving device according to Embodiment 2]
FIG. 18 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the second embodiment. As shown in FIG. 18, the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24. The power receiving device 20 of the present disclosure may be a movable device. For example, such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position. It may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc. In the present disclosure, since the power receiving device 20 is a movable device, the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
 アンテナ21は、送受信部22と電気的に接続されている。アンテナ21は、送電装置10からの電波2000Wを受電可能な受電アンテナである。アンテナ21は、例えば、パッチアンテナ、ダイポールアンテナ、パラボラアンテナ等を用いることができる。アンテナ21は、例えば、規定信号1000を含む電波を放射し、送電装置10からの送信信号2000を含む電波2000Wを受信する。アンテナ21は、受信した電波2000Wの受信信号を送受信部22に供給する。 The antenna 21 is electrically connected to the transmitting/receiving section 22. The antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10. As the antenna 21, for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used. For example, the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10. The antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
 送受信部22は、信号発生部23及び受電部24と電気的に接続されている。送受信部22は、信号発生部23からの規定信号1000を含む電波をアンテナ21から放射させる。送受信部22は、アンテナ21で受信した電波の受信信号を受電部24に供給する。 The transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24. The transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 . The transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
 信号発生部23は、規定信号1000を生成する。信号発生部23は、送受信部22を介して、該規定信号1000を含む電波をアンテナ21に放射させる。信号発生部23は、送信周期に基づいて規定信号1000を生成できる。信号発生部23は、規定信号1000とは異なる信号を生成する構成としてもよい。 The signal generating section 23 generates a regulation signal 1000. The signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 . The signal generator 23 can generate the regulation signal 1000 based on the transmission cycle. The signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
 受電部24は、アンテナ21で受信した電波2000Wを直流電流に変換し、この直流電流を利用して電力を受電する。受電部24は、例えば、公知である整流回路等を用いて、電波を直流電流に変換する。受電部24は、受電した電力を、例えば、Qi(ワイヤレス給電の国際標準規格)に対応したバッテリ、負荷等に供給する。負荷は、例えば、機械設備、IoT(Internet of Things)センサ、電子機器、照明機器等を含む。 The power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current. The power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit. The power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply). The loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
 以上、本実施形態に係る受電装置20の機能構成例について説明した。なお、図18を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る受電装置20の機能構成は係る例に限定されない。本実施形態に係る受電装置20の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 18 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example. The functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
[実施形態2に係る送電装置の処理手順例]
 図19は、図1に示すシステム1の送電装置10の処理手順の一例を説明するための図である。図20は、図19に示す送電装置10のデータフローを説明するための図である。
[Example of processing procedure of power transmission device according to Embodiment 2]
FIG. 19 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG. FIG. 20 is a diagram for explaining the data flow of power transmission device 10 shown in FIG. 19.
 図19に示すように、システム1において、受電装置20は、規定信号1000を送出する。送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、受電装置20に対応したアレー応答ベクトルVを推定する(ステップS111)。例えば、図20に示すように、送電装置10は、推定部14で、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。図19に戻り、送電装置10は、ステップS111の処理が終了すると、処理をステップS131に進める。 As shown in FIG. 19, in the system 1, the power receiving device 20 sends out a regulation signal 1000. When the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111). For example, as shown in FIG. 20, the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do. Returning to FIG. 19, when the process of step S111 is completed, the power transmission device 10 advances the process to step S131.
 また、送電装置10は、検出部16で、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向及び領域を検出する(ステップS121)。例えば、図20に示すように、送電装置10は、検出部16がM個の物体5000をヌル対象と検出している場合、複数の物体5000の方向θ,θ,・・・,θを検出する。そして、送電装置10は、複数の物体5000の領域δ,δ,・・・,δを検出する。送電装置10は、検出した物体5000の方向θ,θ,・・・,θ及び領域δ,δ,・・・,δをウェイト生成部17に供給する。図19に戻り、送電装置10は、ステップS121の処理が終了すると、処理をステップS122に進める。 Furthermore, in the power transmitting device 10, the detection unit 16 detects the direction and area of the object 5000 that is different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 20, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions θ 1 , θ 2 , ..., θ of the plurality of objects 5000. Detect M. Then, the power transmission device 10 detects regions δ 1 , δ 2 , . . . , δ M of the plurality of objects 5000. The power transmission device 10 supplies the directions θ 1 , θ 2 , ..., θ M and the regions δ 1 , δ 2 , ..., δ M of the detected object 5000 to the weight generation unit 17 . Returning to FIG. 19, upon completion of the process in step S121, the power transmission device 10 advances the process to step S122.
 送電装置10は、ウェイト生成部17で、ヌルに対応した拘束ベクトル化及び行列演算を行う(ステップS122)。例えば、図20に示すように、送電装置10は、方向θと領域δとを示す情報をテーブル170に適用して広角度Lを求め、広角度Lとアレー応答ベクトルVとから、上記の(式226)、(式228)、(式229)を用いてベクトル化することで、ヌルに対応した拘束ベクトルV (l)(l=0,・・・,L)を求める(ステップS171)。送電装置10は、続いてウェイト生成部17が行列演算を行う(ステップS172)。詳細には、送電装置10は、ヌルに対応した拘束ベクトルV (l)を用いて(I-AA)の行列演算を行い、演算結果を記憶部17Dに記憶する。ただし、A=[V (0),・・・,V (L1),V (0),・・・,V (L2),・・・,VM (0),・・・,VM (LM)]である。図19に戻り、送電装置10は、ステップS122の処理が終了すると、処理をステップS131に進める。 In the power transmission device 10, the weight generation unit 17 performs constraint vectorization and matrix calculation corresponding to nulls (step S122). For example, as shown in FIG. 20, the power transmission device 10 calculates the wide angle Li by applying information indicating the direction θ i and the area δ i to the table 170, and calculates the wide angle Li and the array response vector V i . By vectorizing using the above (Formula 226), (Formula 228), and (Formula 229), the constraint vector V i (l) (l=0,...,L i ) corresponding to the null is obtained. (Step S171). In the power transmission device 10, the weight generation unit 17 subsequently performs matrix calculation (step S172). Specifically, the power transmission device 10 performs a matrix calculation of (I-AA + ) using the constraint vector V i (l) corresponding to the null, and stores the calculation result in the storage unit 17D. However, A=[V 1 (0) ,..., V 1 (L1) , V 2 (0) ,..., V 2 (L2) ,..., V M (0) ,... , V M (LM) ]. Returning to FIG. 19, when the process of step S122 is completed, the power transmitting device 10 advances the process to step S131.
 送電装置10は、送信ウェイトを生成する(ステップS131)。例えば、図20に示すように、送電装置10は、行列とベクトルの積算を行う(ステップS173)。詳細には、送電装置10は、ウェイト生成部17が推定部14によって推定されたアレー応答ベクトルVと記憶部17Dの(I-AA)との積を算出してアレー応答ベクトルV’を算出する。そして、送電装置10は、正規化を行う(ステップS174)。詳細には、送電装置10は、ウェイト生成部17が算出したアレー応答ベクトルV’を、(式217)を用いて正規化し、最適なウェイトベクトルWoptを生成する。図19に戻り、送電装置10は、ステップS131の処理が終了すると、処理をステップS132に進める。 The power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 20, the power transmission device 10 performs matrix and vector multiplication (step S173). Specifically, in the power transmission device 10, the weight generation unit 17 calculates the product of the array response vector V d estimated by the estimation unit 14 and (I−AA + ) in the storage unit 17D, and generates the array response vector V d ′. Calculate. Then, the power transmission device 10 performs normalization (step S174). Specifically, the power transmission device 10 normalizes the array response vector V d ' calculated by the weight generation unit 17 using (Equation 217), and generates the optimal weight vector W opt . Returning to FIG. 19, when the process of step S131 is completed, the power transmitting device 10 advances the process to step S132.
 送電装置10は、送信ウェイトを乗算する(ステップS132)。例えば、送電装置10は、乗算部18が最適なウェイトベクトルWoptを示すウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの給電用の送信信号2000にウェイトを乗算し、送受信回路13Aに供給する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。この場合、送電装置10は、物体5000の領域にヌルを向けているので、電波2000Wは受電装置20において強め合うように合成されるが、物体5000においては弱め合うように合成される。 The power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, since the power transmitting device 10 directs the null toward the region of the object 5000, the radio waves 2000 W are combined in a constructive manner in the power receiving device 20, but are combined in a destructive manner in the object 5000.
 受電装置20は、例えば、受信した給電用の電波2000Wを直流電流に変換し、この直流電流を利用してバッテリを充電したり、充電した電力によって動作したりする。その後、受電装置20は、規定信号1000を送出する。 For example, the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
 送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、上述した処理手順を繰り返すことで、ウェイトベクトルWoptを生成して送信信号2000の電波2000Wをアレーアンテナ11から放射する。これにより、送電装置10は、受電装置20や物体5000が移動しても、電波2000Wは受電装置20において強め合うように合成され、物体5000においては弱め合うように合成されることを維持できる。 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
 図19に示す送電装置10の処理手順は、規定信号1000に応じたアレー応答ベクトルVの推定(ステップS111)と物体5000の方向及び領域に応じた拘束ベクトルV (l)との算出及び行列演算(ステップS122)は同期する必要がない。よって、例えば、規定信号1000を受信する周期と検出部16が情報を提供する周期が異なっていてもよい。また、例えば、物体5000の方向及び領域に変化がない場合、送電装置10は、過去の拘束ベクトルV (l)を用いてもよい。 The processing procedure of the power transmission device 10 shown in FIG. 19 includes estimating the array response vector V d according to the specified signal 1000 (step S111), calculating the constraint vector V i (l) according to the direction and area of the object 5000, and The matrix calculation (step S122) does not need to be synchronized. Therefore, for example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction and area of the object 5000, the power transmission device 10 may use the past constraint vector V i (l) .
 図21は、実施形態2に係る送電装置10の動作例を説明するための図である。図22は、図21に示す送電装置10が放射した電波の強度分布を計算機シミュレーションによって計算した結果の一例を示す図である。図23は、実施形態2に係る送電装置10の電波2000Wの指向性パターンの一例を示す図である。 FIG. 21 is a diagram for explaining an example of the operation of the power transmission device 10 according to the second embodiment. FIG. 22 is a diagram showing an example of the result of calculating the intensity distribution of radio waves emitted by the power transmission device 10 shown in FIG. 21 by computer simulation. FIG. 23 is a diagram illustrating an example of a directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the second embodiment.
 図21及び図22に示す場面では、システム1は、部屋4000の中に送電装置10と受電装置20を配置し、物性が人体と同じ物体5000が存在している。部屋4000は、3m×3m×3mの壁素材がコンクリートの部屋になっている。物体5000は、送電装置10と受電装置20との間で、送電装置10と受電装置20とを結ぶ直線上からずれた位置に配置されている。すなわち、図22に示す測定環境は、図2に示した環境と同一になっている。 In the scenes shown in FIGS. 21 and 22, the system 1 has a power transmitting device 10 and a power receiving device 20 arranged in a room 4000, and an object 5000 having the same physical properties as a human body is present. Room 4000 is a 3m x 3m x 3m room with walls made of concrete. The object 5000 is placed between the power transmitting device 10 and the power receiving device 20 at a position offset from the straight line connecting the power transmitting device 10 and the power receiving device 20. That is, the measurement environment shown in FIG. 22 is the same as the environment shown in FIG. 2.
 図22に示すように、システム1は、送電装置10と受電装置20との間の近傍に物体5000が存在する場合、送電装置10がセンサ部15のセンサ情報に基づいて物体5000の方向を検出できる。受電装置20は、規定信号1000を含む電波を放射すると、送電装置10に直接向かうパスと、物体5000で反射して送電装置10に向かうパスが主要なパスとなる。この場合、送電装置10は、アレーアンテナ11で受信した規定信号1000を含む電波の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。送電装置10は、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向及び領域を検出し、複数の物体5000の方向θ,θ,・・・,θ及び領域δ,δ,・・・,δを検出する。なお、図22においてはM=1である。送電装置10は、物体5000の方向、すなわちヌルに対応したアレー応答ベクトルVを計算するとともに、物体5000の領域に基づいて拘束ベクトルV (l)を計算し、拘束ベクトルとする。当該拘束ベクトルV (l)とアレー応答ベクトルVと用いて最適なウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。 As shown in FIG. 22, in the system 1, when an object 5000 exists in the vicinity between the power transmitting device 10 and the power receiving device 20, the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can. When the power receiving device 20 emits a radio wave including the prescribed signal 1000, the main paths are a path directly toward the power transmitting device 10 and a path reflected by an object 5000 and directed toward the power transmitting device 10. In this case, the power transmission device 10 estimates the propagation channel characteristics of the radio wave including the prescribed signal 1000 received by the array antenna 11, and estimates the array response vector V d . The power transmitting device 10 detects the direction and region of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15, and detects the directions θ 1 , θ 2 , . . . of the plurality of objects 5000. . , θ M and regions δ 1 , δ 2 , . . . , δ M are detected. Note that in FIG. 22, M=1. The power transmission device 10 calculates an array response vector V i corresponding to the direction of the object 5000, that is, a null, and also calculates a constraint vector V i (l) based on the area of the object 5000, and uses it as a constraint vector. An optimal weight vector W opt is generated using the constraint vector V i (l) and the array response vector V d . In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
 これにより、図22に示す強度分布3100に示すように、送電装置10は、物体5000の方向から規定信号1000を受信しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、物体5000の領域に広角化したヌルを形成することで、物体5000に向かう電波2000Wの放射を抑制することができる。その結果、送電装置10は、受電装置20からの規定信号1000が人体に反射して届く環境であっても、人体に向かう電波2000Wを抑制できるので、安全なワイヤレス電力伝送を実現することができる。 Thereby, as shown in the intensity distribution 3100 shown in FIG. 22, even if the power transmitting device 10 receives the prescribed signal 1000 from the direction of the object 5000, it can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20. Furthermore, by forming a wide-angle null in the area of the object 5000, radiation of the radio wave 2000W toward the object 5000 can be suppressed. As a result, even in an environment where the prescribed signal 1000 from the power receiving device 20 reaches the human body after being reflected, the power transmitting device 10 can suppress the 2000 W of radio waves directed toward the human body, making it possible to realize safe wireless power transmission. .
 送電装置10は、伝搬環境に複数の物体5000が存在しても、複数の物体5000の方向及び領域を検出し、複数の物体5000の各々にヌルを向けるように、ウェイトベクトルWoptを生成することができる。 Even if a plurality of objects 5000 exist in the propagation environment, the power transmission device 10 detects the directions and regions of the plurality of objects 5000 and generates a weight vector W opt so as to direct a null to each of the plurality of objects 5000. be able to.
 図23に示すグラフは、例えば、2つの物体5000が存在する場合における実施形態2に係る送電装置10から放射される電波2000Wの指向性パターンの一例を示している。図23に示すグラフは、縦軸がアレー応答値の電力(絶対値の2乗)[dB]、横軸が電波2000Wの放射方向[°]をそれぞれ示している。図23に示す一例では、送電装置10は、アンテナ素子11Aの数が8、隣り合うアンテナ素子11A同士の間隔がλ/2であり、アンテナ配置が等間隔リニアアレーになっている。λは波長を表す。送電装置10は、30°の方向が受電装置20への電波2000Wの放射方向と推定し、放射方向における-10°及び-45°が2つの物体5000の方向と検出している。送電装置10は、30°の方向の受電装置20に対応したアレー応答ベクトルVと、-10°の方向のヌルに対応したアレー応答ベクトルVと、-45°の方向のヌルに対応したアレー応答ベクトルVとそれぞれのヌルの広角度に基づいてウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。図23に示す一例では、送電装置10は、放射方向が30°の方向付近でアレー応答値の電力が大きくなり、-10°の方向D1及び-45°の方向D2付近でアレー応答値の電力が小さくなっている。これにより、送電装置10は、複数の物体5000を検出しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、複数の物体5000に向かう電波2000Wの放射を抑制することができる。なお、一般にマルチパス環境における受電装置20に対するアレー応答ベクトルVは指向性パターンにおいて特定の方向にならないが、図23の例では、理解しやすいように30°の方向のアレー応答ベクトルとした。 The graph shown in FIG. 23 shows an example of the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 according to the second embodiment when two objects 5000 are present, for example. In the graph shown in FIG. 23, the vertical axis shows the power (square of the absolute value) [dB] of the array response value, and the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W. In the example shown in FIG. 23, the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is λ/2, and the antenna arrangement is a uniformly spaced linear array. λ represents wavelength. The power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects −10° and −45° in the radiation direction as the directions of the two objects 5000. The power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the −10° direction, and an array response vector V 1 corresponding to the null in the −45° direction. Generate a weight vector W opt based on the array response vector V 2 and the wide angle of each null. In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11. In the example shown in FIG. 23, in the power transmission device 10, the power of the array response value becomes large near the direction where the radiation direction is 30°, and the power of the array response value becomes large near the direction D1 of -10° and the direction D2 of -45°. is getting smaller. Thereby, even if the power transmitting device 10 detects a plurality of objects 5000, it is possible to direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and suppress the emission of the radio waves of 2000 W directed toward the plurality of objects 5000. Can be done. Although the array response vector V d for the power receiving device 20 in a multipath environment generally does not have a specific direction in the directivity pattern, in the example of FIG. 23, the array response vector is set in a 30° direction for ease of understanding.
 上記した実施形態2では、送電装置10は、アレーアンテナ11の複数のアンテナ素子11Aが等間隔のリニアアレーである場合について説明したが、これに限定されない。送電装置10は、物体5000の方向からアレー応答ベクトルVを算出可能であれば、複数のアンテナ素子11Aの配置は、等間隔リニアアレーでなくてもよい。 In the above-described second embodiment, the power transmission device 10 has been described as a case where the plurality of antenna elements 11A of the array antenna 11 are a linear array with equal intervals, but the present invention is not limited to this. As long as the power transmission device 10 can calculate the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
[実施形態2に係る送電装置の変形例]
 図24は、実施形態2の変形例に係る送電装置10の構成の一例を示す図である。図25は、実施形態2の変形例に係る送電装置10の他の構成の一例を示す図である。図24に示すように、送電装置10は、センサ部15と検出部16とを、送電装置10の外部の電子機器30に設けてもよい。この場合、送電装置10は、電子機器30からデータの受信が可能な構成とし、電子機器30から物体5000の検出結果を取得してもよい。図25に示すように、送電装置10は、センサ部15のみを装置の外部に設けてもよい。この場合、送電装置10は、外部のセンサ部15からセンサ情報等を取得可能な構成とし、センサ部15からのセンサ情報等に基づいて検出部16が物体5000を検出してもよい。
[Modification of power transmission device according to Embodiment 2]
FIG. 24 is a diagram illustrating an example of the configuration of a power transmission device 10 according to a modification of the second embodiment. FIG. 25 is a diagram illustrating an example of another configuration of the power transmission device 10 according to a modification of the second embodiment. As shown in FIG. 24, the power transmission device 10 may include the sensor section 15 and the detection section 16 in an electronic device 30 outside the power transmission device 10. In this case, the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30. As shown in FIG. 25, the power transmission device 10 may include only the sensor section 15 outside the device. In this case, the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
[実施形態2に係る任意の条件下で生成されたウェイトに微係数拘束を適用した例]
 微係数拘束付きレトロディレクティブ方式において、Vはレトロディレクティブ方式における最適ウェイトと同じ方向であり、行列(I-AA)は行列Aの列ベクトルが張る部分空間の直交部分空間への射影行列である。行列Aの列ベクトルが張る部分空間の要素はAxで与えられる。行列(I-AA)にベクトルAxを右から掛けると(I-AA)Ax=(I-AAA)x=(A-A)x=0となる。これは任意のベクトルに対し、当該行列を左から掛けることにより、行列Aの列ベクトルが張る部分空間と平行な成分はゼロになり、直交する成分だけ残ることを意味する。よって、行列Aの列ベクトルが張る部分空間の直交部分空間への射影行列である。
[Example of applying differential coefficient constraint to weights generated under arbitrary conditions according to Embodiment 2]
In the retrodirective method with differential coefficient constraints, V d is in the same direction as the optimal weight in the retrodirective method, and the matrix (I-AA + ) is a projection matrix of the subspace spanned by the column vectors of matrix A onto the orthogonal subspace. be. The elements of the subspace spanned by the column vectors of matrix A are given by Ax. Multiplying the matrix (I-AA + ) by the vector Ax from the right yields (I-AA + )Ax=(I-AA + A)x=(AA)x=0. This means that by multiplying an arbitrary vector by the matrix from the left, the components parallel to the subspace spanned by the column vectors of matrix A become zero, and only the orthogonal components remain. Therefore, it is a projection matrix of the subspace spanned by the column vectors of matrix A onto the orthogonal subspace.
 すなわち、送電装置10は、行列(I-AA)によりヌル方向へ向かう放射成分を取り除くことができる。これはある条件下で算出されたあらゆる送信ウェイトに適用することができることを意味する。図26は、実施形態2の変形例に係る送電装置のデータフローを説明するための図である。なお、ある条件は、物体5000の方向及び領域に基づいて一般化された複数の条件を含む。 That is, the power transmission device 10 can remove the radiation component heading in the null direction using the matrix (I-AA + ). This means that it can be applied to any transmission weight calculated under certain conditions. FIG. 26 is a diagram for explaining a data flow of a power transmission device according to a modification of the second embodiment. Note that a certain condition includes a plurality of conditions that are generalized based on the direction and area of the object 5000.
 図26に示す送電装置10は、ウェイト生成部17がある条件下で生成されたウェイトベクトルWと、記憶部17Dの(I-AA)との積を算出してウェイトベクトルW’を算出する(ステップS175)。そして、送電装置10は、ウェイト生成部17が算出したウェイトベクトルW’を正規化して最適なウェイトベクトルWopt(=W’/||W’||)を生成する(ステップS176)。ただし、A=[V (0),・・・,V (L1),V (0),・・・,V (L2),・・・,VM (0),・・・,VM (LM)]である。送電装置10は、上述したステップS132で送信ウェイトを乗算する。例えば、送電装置10は、乗算部18が最適なウェイトベクトルWoptを示すウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの給電用の送信信号2000にウェイトを乗算し、送受信回路13Aに供給する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。その結果、送電装置10は、物体5000の領域にヌルを向けているので、電波2000Wが受電装置20に向かうが、物体5000に向かう放射を減少させることができる。このように、送電装置10は、構成を変更しても、上述した作用効果を得ることができる。 The power transmission device 10 shown in FIG. 26 calculates the weight vector W′ by calculating the product of the weight vector W generated under a certain condition by the weight generation unit 17 and (I−AA + ) in the storage unit 17D. (Step S175). Then, the power transmission device 10 normalizes the weight vector W' calculated by the weight generation unit 17 to generate an optimal weight vector W opt (=W'/||W'||) (step S176). However, A=[V 1 (0) ,..., V 1 (L1) , V 2 (0) ,..., V 2 (L2) ,..., V M (0) ,... , V M (LM) ]. The power transmission device 10 multiplies the transmission weight in step S132 described above. For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. As a result, since the power transmitting device 10 directs the null toward the region of the object 5000, the radio waves of 2000 W are directed toward the power receiving device 20, but the radiation directed toward the object 5000 can be reduced. In this way, the power transmission device 10 can obtain the above-mentioned effects even if the configuration is changed.
[実施形態2に係るヌルの広角化に多点ヌル拘束方式を適用した例]
 ヌルを広角化する他の例を説明する。ヌルを広角化するために、例えば、物体5000の領域に複数のヌル点を配置してもよい。例えば、ウェイト生成部17は、ヌル対象の物体5000の方向θと領域δから当該方向の最小値θmin と最大値θmax を決定する。ウェイト生成部17は、予め定められた刻み幅でθminからθmaxをカバーする方向θ (0),θ (1),・・・,θ (Li)を決定する。なお、刻み幅は、物体5000の方向θによらず、一定でもよいし物体5000の方向θごとに変更してもよい。ウェイト生成部17は、(式221)と(式222)を用いて、θ (l)からアレー応答ベクトルV (l)(l=0,・・・,L)を算出し、これらを(式231)の拘束ベクトルV (l)としてもよい。本開示では、物体5000の領域に渡ってヌルを設定する方式を多点ヌル拘束付きレトロディレクティブ方式と称する。多点ヌル拘束付きレトロディレクティブ方式も微係数拘束付きレトロディレクティブ方式も(式231)を用いる。よって、ヌル広角化において、複数のヌルを設定する前記多点ヌル拘束付きレトロディレクティブ方式と広角度に従って複数の拘束ベクトルを設定する前記微係数拘束付きレトロディレクティブ方式を組み合わせてもよい。
[Example of applying multi-point null constraint method to widening the null according to Embodiment 2]
Another example of widening the null will be explained. In order to widen the null, for example, a plurality of null points may be placed in the area of the object 5000. For example, the weight generation unit 17 determines the minimum value θ min i and the maximum value θ max i in the direction from the direction θ i and the area δ i of the object 5000 to be nulled. The weight generation unit 17 determines directions θ i (0) , θ i (1) , . . . , θ i (Li) that cover from θ min to θ max in predetermined steps. Note that the step width may be constant regardless of the direction θ i of the object 5000, or may be changed for each direction θ i of the object 5000. The weight generation unit 17 calculates the array response vector V i (l) (l=0,..., L i ) from θ i (l) using (Equation 221) and (Equation 222), and may be taken as the constraint vector V i (l) in (Formula 231). In this disclosure, a method of setting nulls across the region of the object 5000 is referred to as a retrodirective method with multi-point null constraints. Both the retrodirective method with multi-point null constraint and the retrodirective method with differential coefficient constraint use (Equation 231). Therefore, in null widening, the retrodirective method with multi-point null constraint that sets a plurality of nulls and the retrodirective method with differential coefficient constraint that sets a plurality of constraint vectors according to the wide angle may be combined.
[実施形態2に係る物体の方向及び領域を限定した例]
 物体5000の方向及び領域は特定の条件によって限定してもよい。例えば、検出部16は、人間であれば、センサ情報が示す画像に対して公知である物体認識処理により人間に対する方向及び領域のうち頭部に限定してもよい。また、例えば、送電装置10が受信した規定信号1000に対して公知である到来方向推定処理により、物体5000の方向及び領域を規定信号1000が到来する方向及び領域に限定してもよい。また、例えば、物体5000の領域を分割し、ヌルの対象領域を分割した領域に限定してもよい。その際、分割した領域を時間的に切り替えてもよい。
[Example in which direction and area of object are limited according to Embodiment 2]
The direction and area of object 5000 may be limited by specific conditions. For example, in the case of a human being, the detection unit 16 may limit the direction and area to the human head by performing a known object recognition process on the image indicated by the sensor information. Further, for example, the direction and area of the object 5000 may be limited to the direction and area in which the specified signal 1000 arrives by performing a known arrival direction estimation process on the specified signal 1000 received by the power transmission device 10. Furthermore, for example, the area of the object 5000 may be divided, and the null target area may be limited to the divided area. At this time, the divided regions may be switched over in time.
[実施形態2に係る微係数拘束条件の変換]
 微係数拘束条件D(l)(θ)=0(l=1,・・・,L)と、上述した(式225)が等価になることを以下に証明する。
[Conversion of differential coefficient constraint according to Embodiment 2]
It will be proven below that the differential coefficient constraint D (l)i )=0 (l=1, . . . , L i ) is equivalent to the above-mentioned (Equation 225).
 まず、以下の(式2C1)が成り立つことを示す。なお、Fln(θ)はθの関数である。
Figure JPOXMLDOC01-appb-M000028
First, it will be shown that the following (Formula 2C1) holds true. Note that F ln (θ) is a function of θ.
Figure JPOXMLDOC01-appb-M000028
[2-1]l=1のときを考える。
 以下の(式2C1a)の両辺をθで微分することで(式2C1b)が得られる。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
よって、以下の(式2C2)が得られる。
Figure JPOXMLDOC01-appb-M000031
[2-1] Consider the case when l=1.
By differentiating both sides of the following (Formula 2C1a) with respect to θ, (Formula 2C1b) is obtained.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Therefore, the following (Formula 2C2) is obtained.
Figure JPOXMLDOC01-appb-M000031
 以下の(式2C2a)及び(式2C2b)とすると、(式2C3)が得られる。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
 以上のようにl=1のとき(式2C1)を満たす。
When the following (Formula 2C2a) and (Formula 2C2b) are used, (Formula 2C3) is obtained.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
As described above, when l=1, (formula 2C1) is satisfied.
[2-2]l=pのとき、(式2C1)が以下の(式2C4)のように成立しているとする。
Figure JPOXMLDOC01-appb-M000035
[2-2] When l=p, it is assumed that (Formula 2C1) holds true as in (Formula 2C4) below.
Figure JPOXMLDOC01-appb-M000035
 (式2C4)の両辺をθで微分すると、以下の(式2C5)が得られる。
Figure JPOXMLDOC01-appb-M000036
By differentiating both sides of (Formula 2C4) with respect to θ, the following (Formula 2C5) is obtained.
Figure JPOXMLDOC01-appb-M000036
 (式2C2b)の両辺をθで微分すると、以下の(式2C6)が得られる。
Figure JPOXMLDOC01-appb-M000037
By differentiating both sides of (Formula 2C2b) with respect to θ, the following (Formula 2C6) is obtained.
Figure JPOXMLDOC01-appb-M000037
 (式2C6)に(式2C5)を代入すると、以下の(式2C61)が得られる。
Figure JPOXMLDOC01-appb-M000038
By substituting (Formula 2C5) into (Formula 2C6), the following (Formula 2C61) is obtained.
Figure JPOXMLDOC01-appb-M000038
 (式2C61)の両辺を(j2πd/λ)cosθで割ると、以下の(式2C7)が得られる。
Figure JPOXMLDOC01-appb-M000039
By dividing both sides of (Formula 2C61) by (j2πd/λ)cosθ, the following (Formula 2C7) is obtained.
Figure JPOXMLDOC01-appb-M000039
 ここで、以下の(式2C8)、(式2C9)、(式2C10)とする。ただし、(式2C9)において、n=2,・・・,pである。
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Here, the following (Formula 2C8), (Formula 2C9), and (Formula 2C10) are used. However, in (Formula 2C9), n=2, . . . , p.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
 (式2C8)、(式2C9)、(式2C10)により、(式2C7)は、以下の(式2C11)となる。
Figure JPOXMLDOC01-appb-M000043
 以上により、l=pにおいて、(式2C1)が成り立てば、l=p+1の時も(式2C1)が成り立つ。
 上記の[2-1]及び[2-2]から数学的帰納法により(式2C1)は成立する。
(Formula 2C8), (Formula 2C9), and (Formula 2C10), (Formula 2C7) becomes the following (Formula 2C11).
Figure JPOXMLDOC01-appb-M000043
From the above, if (Formula 2C1) holds true when l=p, (Formula 2C1) also holds true when l=p+1.
From the above [2-1] and [2-2], (Formula 2C1) is established by mathematical induction.
 (式2C1)にθ=θ及びZ=Z(θ)を代入すると、以下の(式2C12)となる。
Figure JPOXMLDOC01-appb-M000044
When θ=θ i and Z i =Z(θ i ) are substituted into (Formula 2C1), the following (Formula 2C12) is obtained.
Figure JPOXMLDOC01-appb-M000044
 (式2C12)より、D(l)(θ)=0(l=1,・・・,L)であれば、以下の(式2C12a)となる。ただし、(式2C12a)において、l=1,・・・,Lである。
Figure JPOXMLDOC01-appb-M000045
From (Formula 2C12), if D (l)i )=0 (l=1, . . . , Li ) , the following (Formula 2C12a) is obtained. However, in (Formula 2C12a), l=1, . . . , Li .
Figure JPOXMLDOC01-appb-M000045
 逆に、(式2C12)より、以下の(式2C12b)であれば、以下の(式2C12c)となる。ただし、(式2C12c)において、l=1,・・・,Lである。
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
Conversely, from (Formula 2C12), if the following (Formula 2C12b) is satisfied, then the following (Formula 2C12c) is obtained. However, in (Formula 2C12c), l=1, . . . , Li .
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
 そこで、以下の(式2C12d)ならば、D(l)(θ)=0(l=1,・・・,L)を示す。
Figure JPOXMLDOC01-appb-M000048
Therefore, the following (Formula 2C12d) indicates D (l)i )=0 (l=1, . . . , L i ).
Figure JPOXMLDOC01-appb-M000048
[2-A]l=1のときを考える。
 F11(θ)・D’(θ)=0ならば、F11(θ)=λ/(j2πd・cosθ)≠0よりD’(θ)=0である。
[2-A] Consider the case when l=1.
If F 11i )·D'(θ i )=0, then D'(θ i )=0 since F 11 (θ i )=λ/(j2πd·cos θ )≠0.
[2-B]l=p(<L)のときD(l)(θ)=0(l=1,・・・,p)とすると、以下の(式2C12e)となる。
Figure JPOXMLDOC01-appb-M000049
[2-B] When l=p (<L i ), if D (l)i )=0 (l=1, . . . , p), the following (Formula 2C12e) is obtained.
Figure JPOXMLDOC01-appb-M000049
 上記の(式2C10)より、以下の(式2C12f)であるから、D(p+1)(θ)=0となる。
Figure JPOXMLDOC01-appb-M000050
From the above (Formula 2C10), the following (Formula 2C12f) holds, so D (p+1)i )=0.
Figure JPOXMLDOC01-appb-M000050
 よって、D(l)(θ)=0(l=1,・・・,p+1)である。
 上記の[2-A]及び[2-B]から以下の(式2C12g)ならば、D(l)(θ)=0(l=1,・・・,p+1)となる。
Figure JPOXMLDOC01-appb-M000051
Therefore, D (l)i )=0 (l=1, . . . , p+1).
From the above [2-A] and [2-B], if the following (Formula 2C12g) is used, then D (l)i )=0 (l=1, . . . , p+1).
Figure JPOXMLDOC01-appb-M000051
 よって、以下の(式2C12h)ならば、D(l)(θ)=0(l=1,・・・,L)である。以上により、題意は示された。
Figure JPOXMLDOC01-appb-M000052
Therefore, in the following (Formula 2C12h), D (l)i )=0 (l=1, . . . , L). From the above, the meaning of the title has been demonstrated.
Figure JPOXMLDOC01-appb-M000052
[実施形態2に係る微係数拘束ベクトルの独立性]
 アレー応答ベクトルV (l)(l=0,・・・,K-1)が線形独立であることを証明する。
[Independence of differential coefficient constraint vector according to Embodiment 2]
Prove that the array response vectors V i (l) (l=0, . . . , K-1) are linearly independent.
 まず、アレー応答ベクトルV (l)(l=0,・・・,K-1)が線形独立であるためには、以下の(式2D1)とすると、これが成り立つのは、a=0(l=0,・・・,K-1)の時のみであることを示せばよい。
Figure JPOXMLDOC01-appb-M000053
First, in order for the array response vectors V i (l) (l=0, . . . , K-1) to be linearly independent, the following (Equation 2D1) holds true: a l =0 It is only necessary to show that this is true only when (l=0, . . . , K-1).
Figure JPOXMLDOC01-appb-M000053
 ここで、以下の(式2D2)とすると、(式2D1)は、Aa=0となり、「a=0が唯一の解であること」と「Aの逆行列が存在すること」は等価になる。よって、Aの行列式がゼロでないことを示せばよい。
Figure JPOXMLDOC01-appb-M000054
Here, if we take the following (Formula 2D2), (Formula 2D1) becomes A i a=0, and "a=0 is the only solution" and "the inverse matrix of A i exists" are become equivalent. Therefore, it is sufficient to show that the determinant of A i is not zero.
Figure JPOXMLDOC01-appb-M000054
 上述した(式221)、(式226)、(式228)及び(式229)より、以下の(式2D3)となるので、行列式|A|は以下の(式2D4)になる。
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
From the above-mentioned (Formula 221), (Formula 226), (Formula 228), and (Formula 229), the following (Formula 2D3) is obtained, so the determinant |A i | becomes the following (Formula 2D4).
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
 (式2D4)の第1行に対して余因子展開を行うと、以下の(式2D5)になる。
Figure JPOXMLDOC01-appb-M000057
When the first row of (Formula 2D4) is subjected to cofactor expansion, the following (Formula 2D5) is obtained.
Figure JPOXMLDOC01-appb-M000057
 また、一般に、(式2D51)が成り立つので、(式2D5)は以下の(式2D6)になる。
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000059
Moreover, since (Formula 2D51) generally holds true, (Formula 2D5) becomes the following (Formula 2D6).
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000059
 また、(式2D6)はヴァンデルモンドの行列式を含み、ヴァンデルモンドの行列式は以下の(式2D61)となることから、以下の(式2D62)となる。
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000061
Further, (Formula 2D6) includes the Vandermonde determinant, and since the Vandermonde determinant is the following (Formula 2D61), the following (Formula 2D62) is obtained.
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000061
 よって、|A|≠0である。以上により、題意は示された。 Therefore, |A i |≠0. From the above, the meaning of the title has been demonstrated.
[実施形態2に係る対角行列の変更]
 上述した(式226)に示したQ=diag[0 1 ・・・ (K-1)]は、Q’=diag[ql,0 ql,1 ・・・ql,K-1]に置き換えることができる。このことを、以下に証明する。
[Change of diagonal matrix according to Embodiment 2]
Q l = diag [0 l 1 l ... (K-1) l ] shown in (Equation 226) above is Q l '= diag [q l, 0 q l, 1 ... q l, K-1 ]. This is proven below.
 ここで、ql,kを以下の(式2E1)とする。ただし、k=0,・・・,K-1である。
Figure JPOXMLDOC01-appb-M000062
Here, let q l,k be the following (Formula 2E1). However, k=0,...,K-1.
Figure JPOXMLDOC01-appb-M000062
 (式2E1)からQ’=diag[ql,0 ql,1 ・・・ql,K-1]は、以下の(式2E2)になる。
Figure JPOXMLDOC01-appb-M000063
From (Formula 2E1), Q l '=diag[q l,0 q l,1 ...q l,K-1 ] becomes the following (Formula 2E2).
Figure JPOXMLDOC01-appb-M000063
 ここで、以下の(式2E3)と置くと、Q’は以下の(式2E4)で表せる。ただし、cl,1,・・・,cl,lは定数である。
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000065
Here, if the following (Formula 2E3) is set, Q l ' can be expressed by the following (Formula 2E4). However, c l,1 , . . . , c l,l are constants.
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000065
 (式2E4)の両辺にViを右から掛けると、以下の(式2E5)及び(式2E6)により、以下の(式2E7)が与えられる。
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
When both sides of (Formula 2E4) are multiplied by Vi from the right, the following (Formula 2E7) is given by the following (Formula 2E5) and (Formula 2E6).
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
 (式2E7)を書き並べると、以下の(式2E8)になることから、V (l)(l=0,・・・,L)を横に並べた行列A=[V (0) V (1) ・・・ V (Ll)]と、V’ (l)(l=0,・・・,L)を横に並べた行列A’=[V’ (0) V’ (1) ・・・ V’ (Ll)]は、以下の(式2E9)を使ってA’=Aと表せる。ただし、V’ (0)=V=V (0)である。また、Cr,r≠0(r=1,・・・,L)により、行列Bは正則である。
Figure JPOXMLDOC01-appb-M000069
Figure JPOXMLDOC01-appb-M000070
When (Equation 2E7) is written and arranged, the following (Equation 2E8 ) is obtained. Therefore, the matrix A i = [ V i ( 0) V i (1) ...V i (Ll) ] and V' i (l) (l=0,..., L j ) are arranged horizontally A' i = [V' i (0) V' i (1) ...V' i (Ll) ] can be expressed as A' i =A i B i using the following (Formula 2E9). However, V′ i (0) = V i =V i (0) . Furthermore, the matrix B i is regular because C r,r ≠0 (r=1, . . . , L j ).
Figure JPOXMLDOC01-appb-M000069
Figure JPOXMLDOC01-appb-M000070
 以下の(式2E10)に示す行列Aと以下の(式2E11)に示す行列A’は、以下の(式2E12)に示す行列Bを使って、A’=ABと表せる。
Figure JPOXMLDOC01-appb-M000071
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000073
Matrix A shown in (Equation 2E10) below and matrix A' shown in (Equation 2E11) below can be expressed as A'=AB using matrix B shown in (Equation 2E12) below.
Figure JPOXMLDOC01-appb-M000071
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000073
 上述した行列Bが正則であるので、AB=AAAB=ABB-1AB=AB(B-1)ABとなり、(AB)=B-1である。よって、A’A’=AB(AB)=ABB-1=AAである。行列Aは、演算AAに使われ、Qを使った時のAAの演算結果と、Q’を使った時のA’A’の演算結果が等しいことから、Qの代わりにQ’を使って演算してもよいことが分かる。以上により、題意は示された。 Since the matrix B i described above is regular, AB=AA + AB=ABB −1 A + AB=AB(B −1 A + )AB, and (AB) + =B −1 A + . Therefore, A'A' + = AB (AB) + = ABB -1 A + = AA + . Matrix A is used in the operation AA + , and since the result of the operation of AA + when using Q l is the same as the result of operation of A'A' + when using Q' l , it can be used instead of Q l . It can be seen that the calculation can be performed using Q'l . From the above, the meaning of the title has been demonstrated.
[実施形態2に係るムーア・ペンローズ一般逆行列の演算]
 Aのムーア・ペンローズ一般逆行列Aは特異値分解により演算できる。また、複素列ベクトルV,V,・・・,Vが線形独立の場合は、A=(AA)-1として計算できる。ここで行列A=[V V ・・・ V]である。一方、複素列ベクトルV,V,・・・,Vの線形独立性が保証されない場合は、公知である正則化パラメータαを用いてA=(αI+AA)-1とすることで近似的に解を求めることができる。例えば、ウェイト生成部17の行列演算(ステップS172)において、正則化パラメータを使った演算を行ってもよい。
[Operation of Moore-Penrose general inverse matrix according to Embodiment 2]
The Moore-Penrose general inverse matrix A + of A can be calculated by singular value decomposition. Furthermore, when the complex column vectors V 1 , V 2 , . . . , V M are linearly independent, it can be calculated as A + =(A H A) −1 A H. Here, matrix A=[V 1 V 2 . . . VM ]. On the other hand, if the linear independence of the complex column vectors V 1 , V 2 , . By doing this, the solution can be found approximately. For example, in the matrix calculation (step S172) of the weight generation unit 17, a calculation using a regularization parameter may be performed.
(実施形態3)
[実施形態3に係る送電装置の構成]
 図27は、実施形態3に係る送電装置10の構成の一例を示す図である。図28は、アダプティブアレーアンテナの等価低域系解析モデルの一例を示す図である。図29は、アダプティブアレーアンテナと指向性の一例を示す図である。
(Embodiment 3)
[Configuration of power transmission device according to Embodiment 3]
FIG. 27 is a diagram illustrating an example of the configuration of the power transmission device 10 according to the third embodiment. FIG. 28 is a diagram illustrating an example of an equivalent low-frequency analysis model of an adaptive array antenna. FIG. 29 is a diagram showing an example of an adaptive array antenna and directivity.
 図27に示すように、送電装置10は、アレーアンテナ11と、送信信号発生部12と、送受信部13と、推定部14と、センサ部15と、検出部16と、ウェイト生成部17と、乗算部18と、前処理部19と、を備える。 As shown in FIG. 27, the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, an estimation section 14, a sensor section 15, a detection section 16, a weight generation section 17, It includes a multiplication section 18 and a preprocessing section 19.
 アレーアンテナ11は、指向性制御(ビームフォーミング)が可能な構成になっている。アレーアンテナ11は、複数のアンテナ素子11Aを備えている。アレーアンテナ11は、例えば、複数のアンテナ素子11Aのそれぞれが同じ電波を放射し、それぞれの位相と電力強度を調整することで、特定の方向では電波を強め、別の方向では打ち消し合って弱めることが可能な構成になっている。アレーアンテナ11は、送信信号2000を含む電波を放射し、受電装置20からの規定信号1000を含む電波を受信する。アレーアンテナ11は、受信した信号を送受信部13に供給する。本実施形態では、説明を簡単化するために、アレーアンテナ11は、3つ以上のアンテナ素子11Aを備える場合について説明するが、アンテナ素子11Aの数はこれに限定されない。アレーアンテナ11は、アンテナの一例である。 The array antenna 11 has a configuration that allows directivity control (beamforming). The array antenna 11 includes a plurality of antenna elements 11A. For example, in the array antenna 11, each of the plurality of antenna elements 11A emits the same radio wave, and by adjusting the phase and power intensity of each, the radio waves can be strengthened in a specific direction and canceled out and weakened in another direction. The configuration is such that this is possible. Array antenna 11 emits radio waves including transmission signal 2000 and receives radio waves including regulation signal 1000 from power receiving device 20 . Array antenna 11 supplies the received signal to transmitter/receiver 13 . In this embodiment, in order to simplify the explanation, a case will be described in which the array antenna 11 includes three or more antenna elements 11A, but the number of antenna elements 11A is not limited to this. Array antenna 11 is an example of an antenna.
 送信信号発生部12は、受電装置20に送信する給電用の送信信号2000を生成する。送信信号2000は、電力を供給可能な電波2000Wを放射するための信号である。例えば、送信信号2000はベースバンド帯の信号であってもよい。送信信号2000は、例えば、無変調信号でもよいし、変調信号でもよい。無変調信号の場合、送信期間中、送信信号2000の時間変動はない。変調信号の場合、送信期間中、送信信号発生部12は送信信号2000を時間変動させる。送信信号発生部12は、例えば、規定信号1000を受信するタイミングには送信信号2000を停止することを含む。送信信号発生部12は、乗算部18と電気的に接続されており、生成した送信信号2000を乗算部18に供給する。 The transmission signal generation unit 12 generates a transmission signal 2000 for power feeding to be transmitted to the power receiving device 20. The transmission signal 2000 is a signal for emitting radio waves of 2000 W that can supply power. For example, the transmission signal 2000 may be a baseband signal. The transmission signal 2000 may be, for example, an unmodulated signal or a modulated signal. In the case of an unmodulated signal, there is no time variation in the transmitted signal 2000 during the transmission period. In the case of a modulated signal, the transmission signal generator 12 changes the transmission signal 2000 over time during the transmission period. The transmission signal generation unit 12 includes, for example, stopping the transmission signal 2000 at the timing of receiving the specified signal 1000. The transmission signal generation section 12 is electrically connected to the multiplication section 18 and supplies the generated transmission signal 2000 to the multiplication section 18 .
 送受信部13は、アレーアンテナ11の複数のアンテナ素子11Aの各々と電気的に接続された複数の送受信回路13Aを有する。送受信回路13Aは、推定部14、乗算部18等と電気的に接続されている。送受信回路13Aは、アンテナ素子11Aで受信した受信信号を抽出して推定部14に供給する。送受信回路13Aは、乗算部18で送信ウェイトが乗算された送信信号2000をアンテナ素子11Aから放射させる。送信ウェイトは、例えば、振幅及び位相を調整可能な重み係数を含む。送受信部13は、送信ウェイト(複素振幅)が乗算された送信信号2000を含む電波を複数のアンテナ素子11Aから同時に放射させることで、送電装置10は指向性が制御された電波2000Wを放射する。なお、送電装置10は、送信信号が無変調波の場合、乗算部18を不要としてもよい。 The transmitter/receiver section 13 includes a plurality of transmitter/receiver circuits 13A electrically connected to each of the plurality of antenna elements 11A of the array antenna 11. The transmitting/receiving circuit 13A is electrically connected to the estimation section 14, the multiplication section 18, and the like. The transmitting/receiving circuit 13A extracts the received signal received by the antenna element 11A and supplies it to the estimation unit 14. The transmission/reception circuit 13A causes the antenna element 11A to radiate the transmission signal 2000 multiplied by the transmission weight by the multiplier 18. The transmission weight includes, for example, a weighting coefficient whose amplitude and phase are adjustable. The transmitting/receiving unit 13 causes the plurality of antenna elements 11A to simultaneously radiate radio waves including a transmission signal 2000 multiplied by a transmission weight (complex amplitude), so that the power transmission device 10 emits radio waves 2000 W with controlled directivity. Note that the power transmitting device 10 may not include the multiplier 18 when the transmission signal is a non-modulated wave.
 推定部14は、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000から伝搬チャネル特性(インパルス応答)を推定する。伝搬チャネル特性(インパルス応答)は、例えば、振幅特性、位相特性を含む。アレー応答ベクトルは、例えば、アンテナ本数分のチャネル特性を示す。アレー応答ベクトルは、例えば、複数のアンテナ素子11Aごとの伝搬チャネル特性(インパルス応答)を並べたベクトルを含む。受信処理におけるアレー応答ベクトルは、受信応答ベクトルとも称する。推定部14は、例えば、特開2002-43995号公報に開示されているように周知のアルゴリズムを用いて受信応答ベクトルを推定する。推定部14は、アレー応答ベクトルのベクトルデータをウェイト生成部17に供給する。 The estimation unit 14 estimates the propagation channel characteristics (impulse response) from the prescribed signal 1000 included in the received signal received by the plurality of antenna elements 11A. The propagation channel characteristics (impulse response) include, for example, amplitude characteristics and phase characteristics. The array response vector indicates, for example, channel characteristics for the number of antennas. The array response vector includes, for example, a vector in which propagation channel characteristics (impulse responses) of each of the plurality of antenna elements 11A are arranged. The array response vector in reception processing is also referred to as a reception response vector. The estimation unit 14 estimates the reception response vector using a well-known algorithm as disclosed in, for example, Japanese Patent Laid-Open No. 2002-43995. The estimation unit 14 supplies vector data of the array response vector to the weight generation unit 17.
 センサ部15は、送電装置10の電波伝搬環境における物体5000の有無、位置、領域、距離(深度)等を検出可能な情報を取得できる。電波伝搬環境は、例えば、送電装置10と受電装置20との間で電波2000Wを伝搬する空間を含む。物体5000の領域は、例えば、電波伝搬環境における物体5000の領域、自機からの物体5000の角度、角度広がりに関する情報を含む。センサ部15は、例えば、カメラ、LIDAR(Laser Imaging Detection and Ranging)、ミリ波レーダなどのレーダ、ToF(Time of Flight)センサ、赤外線センサ、人感センサ、深度センサ等を用いて、電波伝搬環境に存在する物体5000に関する情報を取得する。センサ部15は、送電装置10の外部に設けられてもよい。センサ部15は、検出部16と電気的に接続されており、電波伝搬環境における物体5000の少なくとも方向及び距離を検出可能なセンサ情報を検出部16に供給する。センサ情報は、例えば、物体5000の有無、距離、位置、画像等の情報を含む。このように、本開示の検出部16は、センサ部15からの、物体5000のGPS情報などの位置情報、方向情報、距離情報などを含むセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の位置に関する情報を検出する。 The sensor unit 15 can acquire detectable information such as the presence or absence, position, area, distance (depth), etc. of the object 5000 in the radio wave propagation environment of the power transmission device 10. The radio wave propagation environment includes, for example, a space in which radio waves of 2000 W are propagated between the power transmitting device 10 and the power receiving device 20. The area of the object 5000 includes, for example, information regarding the area of the object 5000 in the radio wave propagation environment, the angle of the object 5000 from the own aircraft, and the angular spread. The sensor unit 15 uses, for example, a camera, LIDAR (Laser Imaging Detection and Ranging), radar such as a millimeter wave radar, ToF (Time of Flight) sensor, infrared sensor, human sensor, depth sensor, etc. to monitor the radio wave propagation environment. Obtain information regarding object 5000 present in . The sensor unit 15 may be provided outside the power transmission device 10. The sensor section 15 is electrically connected to the detection section 16, and supplies sensor information that can detect at least the direction and distance of the object 5000 in the radio wave propagation environment to the detection section 16. The sensor information includes, for example, information such as the presence or absence of the object 5000, distance, position, and image. In this manner, the detection unit 16 of the present disclosure detects the power receiving device 20 in the radio wave propagation environment based on sensor information including position information such as GPS information of the object 5000, direction information, distance information, etc. from the sensor unit 15. detects information regarding the positions of different objects 5000.
 検出部16は、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の、例えば、位置、領域及び距離に関する情報を検出する。物体5000は、例えば、人間、動物、ロボット、移動体、植物、食物、電磁波を送信又は受信する機器等を含む。検出部16は、センサ情報が示す画像に対して公知である物体認識処理を実行し、物体5000の有無、形状、電波伝搬環境における物体が存在する領域、自機からの物体5000の方向及び距離等を検出する。例えば、検出部16は、センサ情報が示す物体5000の方向、位置、領域等と、センサ部15とアレーアンテナ11との相対位置関係に基づいて、アレーアンテナ11からの物体5000の方向、領域、位置、距離等を検出する。複数の物体5000が存在する場合、検出部16は、複数の物体5000ごとの位置及び距離等を検出する。検出部16は、前処理部19と電気的に接続されており、アレーアンテナ11からの物体5000の方向、領域、距離等を識別可能な方向情報として前処理部19に供給する。 Based on the sensor information from the sensor unit 15, the detection unit 16 detects information regarding, for example, the position, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment. The objects 5000 include, for example, humans, animals, robots, moving bodies, plants, food, devices that transmit or receive electromagnetic waves, and the like. The detection unit 16 executes a known object recognition process on the image indicated by the sensor information, and determines the presence or absence of the object 5000, its shape, the area where the object exists in the radio wave propagation environment, and the direction and distance of the object 5000 from the own device. Detect etc. For example, the detection unit 16 detects the direction, position, area, etc. of the object 5000 from the array antenna 11 based on the direction, position, area, etc. of the object 5000 indicated by the sensor information and the relative positional relationship between the sensor unit 15 and the array antenna 11. Detect position, distance, etc. When a plurality of objects 5000 exist, the detection unit 16 detects the position, distance, etc. of each of the plurality of objects 5000. The detection unit 16 is electrically connected to the preprocessing unit 19, and supplies the direction, area, distance, etc. of the object 5000 from the array antenna 11 to the preprocessing unit 19 as identifiable direction information.
 方向情報は、例えば、アレーアンテナ11からの物体5000の方向、領域、距離等を示す情報を含む。方向情報は、例えば、図27に示すように、物体5000を含む領域151、大きさ152、距離153等の識別可能な情報を含む。なお、方向情報は、複数のアンテナ素子11Aの配置に応じて設定された物体5000の大きさを識別可能な情報とすることができる。例えば、複数のアンテナ素子11Aがマトリックス状に配置されている場合、物体5000の領域151は、縦横の長さ、位置、物体5000の形状等を設定できる。例えば、複数のアンテナ素子11Aが一方の方向に並んで配置されている場合、物体5000の大きさ152は、幅、高さ等の一方の方向における長さや距離、自機からの角度範囲等を設定できる。物体5000の距離153は、センサ部15から物体5000までの最短、最長、その平均等の距離、深度等を設定できる。なお、物体5000の領域151は、物体5000の外形等に応じた空間領域としてもよい。 The direction information includes, for example, information indicating the direction, area, distance, etc. of the object 5000 from the array antenna 11. For example, as shown in FIG. 27, the direction information includes identifiable information such as a region 151 including the object 5000, a size 152, and a distance 153. Note that the direction information can be information that allows identification of the size of the object 5000 set according to the arrangement of the plurality of antenna elements 11A. For example, when the plurality of antenna elements 11A are arranged in a matrix, the vertical and horizontal lengths, position, shape of the object 5000, etc. can be set for the region 151 of the object 5000. For example, when a plurality of antenna elements 11A are arranged side by side in one direction, the size 152 of the object 5000 includes the length and distance in one direction such as width and height, the angular range from the own aircraft, etc. Can be set. For the distance 153 of the object 5000, the shortest, longest, average distance, depth, etc. from the sensor unit 15 to the object 5000 can be set. Note that the region 151 of the object 5000 may be a spatial region according to the outer shape of the object 5000, etc.
 前処理部19は、検出部16からの方向情報に基づいて、ベクトル化及びヌル深度の大きさを識別可能な情報として生成する処理を行う。物体5000の大きさに合わせてヌルを広角化する場合、前処理部19は、例えば、多点ヌル拘束方式及び微係数拘束方式の少なくとも一方を用いて、ベクトル化を行うことができる。前処理部19の処理については、後述する。前処理部19は、ウェイトの生成に関する前処理を行い、処理結果をウェイト生成部17に供給する。 Based on the direction information from the detection unit 16, the preprocessing unit 19 performs processing to generate vectorization and the size of the null depth as identifiable information. When widening the null to match the size of the object 5000, the preprocessing unit 19 can perform vectorization using at least one of a multipoint null constraint method and a differential coefficient constraint method, for example. The processing of the preprocessing section 19 will be described later. The preprocessing unit 19 performs preprocessing related to weight generation, and supplies the processing results to the weight generation unit 17.
 ウェイト生成部17は、推定部14の推定結果である受電装置20に対するアレー応答ベクトルと検出部16の方向情報に基づいて前処理部19において演算した結果から、電力伝送用ウェイトを生成する。ウェイトの生成方法は、例えば、MIMOで用いられるZF(Zero-Forcing)アルゴリズム、MMSE(Minimum Mean Square Error)アルゴリズム等を用いることができる。ウェイト生成部17は、乗算部18と電気的に接続されており、電力伝送用ウェイトを示すウェイト情報を乗算部18に供給する。以下の説明では、説明を簡単化するために、アレーアンテナ11の複数のアンテナ素子11Aが水平方向において等間隔で並んでいる場合について説明する。 The weight generation unit 17 generates power transmission weights from the results of the calculation performed by the preprocessing unit 19 based on the array response vector for the power receiving device 20 that is the estimation result of the estimation unit 14 and the direction information of the detection unit 16. As a weight generation method, for example, the ZF (Zero-Forcing) algorithm used in MIMO, the MMSE (Minimum Mean Square Error) algorithm, etc. can be used. The weight generation section 17 is electrically connected to the multiplication section 18 and supplies the multiplication section 18 with weight information indicating power transmission weights. In the following description, in order to simplify the description, a case will be described in which a plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals in the horizontal direction.
 図28に示すように、アダプティブアレーアンテナ送信は、送信信号2000に複素振幅(ウェイトw)の複素共役w を乗じた後、K本のアンテナ素子11Aから同時に電波2000Wを放射する。なお、本開示において、(・)のように文字の右肩に「*」を記している場合、複素共役を意味する。ウェイトwは、k=0,・・・,K-1である。受信点200Pでは、K本のアンテナ素子11Aから放射された電波2000Wの合成信号が観測される。このとき、伝搬チャネルごとに振幅・位相が変化する。そこで、#0から#K-1のアンテナ素子11Aと受信点200P間の伝搬チャネルのインパルス応答をZ(複素数)とすると、解析的なアレーアンテナ特性は、以下の(式311)で与えられる。
Figure JPOXMLDOC01-appb-M000074
As shown in FIG. 28, in the adaptive array antenna transmission, after multiplying the transmission signal 2000 by the complex conjugate w k * of the complex amplitude (weight w k ), radio waves 2000 W are simultaneously radiated from the K antenna elements 11A. Note that in the present disclosure, when "*" is written on the right side of a character, such as (.) * , it means complex conjugate. The weight w k is k=0,...,K-1. At the receiving point 200P, a composite signal of 2000 W of radio waves radiated from the K antenna elements 11A is observed. At this time, the amplitude and phase change for each propagation channel. Therefore, assuming that the impulse response of the propagation channel between the antenna elements 11A from #0 to #K-1 and the receiving point 200P is Z k (complex number), the analytical array antenna characteristics are given by the following (Equation 311). .
Figure JPOXMLDOC01-appb-M000074
 本開示では、解析的なアレーアンテナ特性は、アレー応答値ARと称する。ウェイトベクトルをW、アレー応答ベクトルをVとすると、(式311)は複素ベクトルの内積として以下の(式312)で表せる。なお、本開示において、(・)のように文字の右肩に「H」を記している場合、複素共役転置(エルミート転置)を意味する。
 AR=WV ・・・(式312)
 ウェイトベクトルWとアレー応答ベクトルVを具体的な要素で表すと、以下の(式313)のようになる。
Figure JPOXMLDOC01-appb-M000075
In this disclosure, the analytical array antenna characteristics are referred to as array response values AR. When the weight vector is W and the array response vector is V, (Formula 311) can be expressed as the following (Formula 312) as an inner product of complex vectors. Note that in the present disclosure, when "H" is written on the right shoulder of a character, such as (.) H , it means complex conjugate transposition (Hermitian transposition).
AR= WH V...(Formula 312)
When the weight vector W and the array response vector V are expressed using specific elements, they are as shown in (Equation 313) below.
Figure JPOXMLDOC01-appb-M000075
 アレー応答ベクトルVが既知であれば、適切なウェイトベクトルWを与えることで、受信点200Pでのアレー応答値ARを制御できる。なお、ウェイトベクトルWを決める際には、送信電力の合計が一定になるように、ウェイトベクトルWのノルムの2乗が1(||W||=1)という制約条件を課すものとする。 If the array response vector V is known, the array response value AR at the reception point 200P can be controlled by providing an appropriate weight vector W. Note that when determining the weight vector W, a constraint condition is imposed that the square of the norm of the weight vector W is 1 (||W|| 2 = 1) so that the total transmission power is constant. .
 レトロディレクティブ方式のシステム1では、受電装置20から送信される規定信号1000(パイロット信号)に基づいてアレー応答ベクトルVを推定し、これを利用して最適なウェイトベクトルWoptを生成する。伝搬チャネルの時間変動を無視すれば、伝搬チャネルの可逆性(相反性)により受信時のアレー応答ベクトルVを送電装置10から受電装置20への送信時のアレー応答ベクトルとみなせる。ただし、受信時のパイロット信号は送電時の電波と同じ周波数とする。||W||=1という条件のもとアレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptは、以下の(式314)とすることができる。
Figure JPOXMLDOC01-appb-M000076
In the retrodirective system 1, the array response vector V d is estimated based on the specified signal 1000 (pilot signal) transmitted from the power receiving device 20, and is used to generate the optimal weight vector W opt . If time fluctuations in the propagation channel are ignored, the array response vector V d at the time of reception can be regarded as the array response vector at the time of transmission from the power transmitting device 10 to the power receiving device 20 due to the reversibility (reciprocity) of the propagation channel. However, the pilot signal during reception shall have the same frequency as the radio waves during power transmission. The optimal weight vector W opt that maximizes the magnitude of the array response value |W H V d | under the condition ||W|| 2 = 1 can be set as the following (Equation 314).
Figure JPOXMLDOC01-appb-M000076
 以上にように、レトロディレクティブ方式の送信の最適なウェイトベクトルWoptは、受信したパイロット信号のアレー応答ベクトルVだけでよく、受信点200Pの方向などの情報は不要である。 As described above, the optimal weight vector W opt for retrodirective transmission requires only the array response vector V d of the received pilot signal, and information such as the direction of the receiving point 200P is not required.
 次に、レトロディレクティブ方式と複数(例えばM個)のヌル形成の同時実現について説明する。 Next, the simultaneous realization of the retrodirective method and the formation of multiple (for example, M) nulls will be described.
 ヌルは、アレーアンテナ11の指向性において、方向、点等の利得がゼロになることを意味する。アレーアンテナ11でヌルを形成するには、ヌルに対応するアレー応答ベクトルV(i=1,・・・,M)に対し、アレー応答値の大きさ|W|をゼロにすればよい。この条件のもと、アレー応答ベクトルVのアレー応答値の大きさ|W|を最大化する。これは以下のような(式315)に示す最適化問題として定式化できる。本開示では、これを線形拘束付きレトロディレクティブ方式と称する。ここで、Kはアンテナ素子11Aの数である。Mはヌルの数である。自由度はK-1であるため、M<Kとしている。argmax(argument of the maximum)は、最大値を達成する値の集合を意味する。(式315)は、ウェイトベクトルWで|W|が最大となる最適なウェイトベクトルWoptを求める式である。
Figure JPOXMLDOC01-appb-M000077
Null means that the gain in direction, point, etc. in the directivity of the array antenna 11 is zero. To form a null in the array antenna 11, the magnitude of the array response value |W H V i | should be set to zero for the array response vector V i (i=1,...,M) corresponding to the null. Bye. Under this condition, the magnitude of the array response value |W H V d | of the array response vector V d is maximized. This can be formulated as an optimization problem shown in (Equation 315) below. In this disclosure, this is referred to as a retrodirective method with linear constraints. Here, K is the number of antenna elements 11A. M is the number of nulls. Since the degree of freedom is K-1, M<K. argmax (argument of the maximum) means a set of values that achieves the maximum value. (Formula 315) is a formula for determining the optimal weight vector W opt where |W H V d | is maximum in the weight vector W.
Figure JPOXMLDOC01-appb-M000077
 (式315)の最適化問題は、閉形式の解が存在する。
 (式316)を定義すると、最適なウェイトベクトルWoptは(式317)で与えられる。
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
The optimization problem of (Equation 315) has a closed-form solution.
When (Equation 316) is defined, the optimal weight vector W opt is given by (Equation 317).
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
 ここで、AはM個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた(式318)に示す行列である。
Figure JPOXMLDOC01-appb-M000080
Here, A is a matrix shown in (Equation 318) in which array response vectors V 1 , V 2 , . . . , VM , which are M complex column vectors, are arranged.
Figure JPOXMLDOC01-appb-M000080
 Aは、Aのムーア・ペンローズ一般逆行列である。ムーア・ペンローズ一般逆行列Aは、AAA=A,AAA=A,(AA=AA,(AA)=AAを満足する。複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vが線形独立の場合は、A=(AA)-1となる。 A + is the Moore-Penrose general inverse of A. The Moore-Penrose general inverse matrix A + satisfies AA + A = A, A + AA + = A + , (AA + ) H = AA + , (A + A) H = A + A. When the array response vectors V 1 , V 2 , . . . , V M , which are complex column vectors, are linearly independent, A + =(A H A) −1 A H.
 ヌルに対応するアレー応答値は、W=0(i=1,・・・・,M<K)を満足しなければならない。そこで、これらを同次連立一次方程式と考えると、M個の複素列ベクトルであるアレー応答ベクトルV,V,・・・,Vを並べた行列Aを使ってAW=0にように行列とベクトルの積で表される。この一般解はムーア・ペンローズ一般逆行列Aを用いて、W=(I-AAz=(I-AA)zで与えられる。zは、任意の複素ベクトルである。最大化したいアレー応答値の大きさ|W|にW=(I-AAz=(I-AA)zを代入すると、|W|=|z(I-AA)V|となる。そして、コーシー・シュワルツの不等式より、|W|=|z(I-AA)V|≦||z||・||(I-AA)V||が成り立つ。|W|が最大になるのは当該不等式の等号のときであり、このとき、z=α(I-AA)Vを満たす。αは、任意の複素定数である。 The array response value corresponding to the null must satisfy W H V i =0 (i=1, . . . , M<K). Therefore, if we consider these as homogeneous simultaneous linear equations, we can use matrix A in which array response vectors V 1 , V 2 , ..., V M , which are M complex column vectors, to set A H W = 0. It is expressed as a product of a matrix and a vector. This general solution is given by W=(I-AA + ) H z=(I-AA + )z using the Moore-Penrose general inverse matrix A + . z is any complex vector. By substituting W=(I-AA + ) H z=(I-AA + )z into the magnitude of the array response value to be maximized |W H V d |, |W H V d |=|z H (I -AA + )V d |. Then, from the Cauchy-Schwartz inequality, |W H V d |=|z H (I-AA + )V d |≦||z||・||(I-AA + )V d || holds true. |W H V d | becomes maximum when the inequality sign is equal, and in this case, z=α(I-AA + )V d is satisfied. α is an arbitrary complex constant.
 最適なウェイトベクトルWoptは、上述したW=(I-AAz=(I-AA)zに、z=α(I-AA)Vを代入することで、Wopt=α(I-AA)Vが与えられる。ここで、(式316)のようにV’=(I-AA)Vとすると、||Wopt||=|α|||V’||=1を満足するためにはα=1/||V’||とすればよい。よって、最適なウェイトベクトルWoptは、上述した(式317)としてよいことになる。 The optimal weight vector W opt can be obtained by substituting z=α(I-AA + )V d into W=(I-AA + ) H z=(I-AA + )z described above. α(I−AA + )V d is given. Here, if V' d = (I-AA + )V d as in (Equation 316), ||W opt || 2 = |α| 2 ||V' d || 2 = 1 is satisfied. In order to do this, α=1/||V' d ||. Therefore, the optimal weight vector W opt may be the above-mentioned (Equation 317).
 次に、ヌルに対応するアレー応答ベクトルの算出方法の一例を説明する。送電装置10と受電装置20との間のアレー応答ベクトルは、規定信号1000から推定するが、ヌルを向けたい対象からは、規定信号1000が送出されないと仮定すると、別の方法でアレー応答ベクトルを算出する必要がある。本開示では、送電装置10からヌルを向けたい対象へ直接向かうパスをヌル対象とすることを目的とし、センサ部15を用いて取得したヌル対象である物体5000の方向からアレー応答ベクトルを算出する。 Next, an example of a method for calculating an array response vector corresponding to a null will be described. The array response vector between the power transmitting device 10 and the power receiving device 20 is estimated from the specified signal 1000. However, assuming that the specified signal 1000 is not sent from the target to which you want to direct the null, the array response vector can be estimated using another method. need to be calculated. In the present disclosure, an array response vector is calculated from the direction of the object 5000, which is the null target, obtained using the sensor unit 15, with the aim of setting the path directly from the power transmission device 10 to the target to which the null is directed. .
 図29に示すように、K個のアンテナ素子11Aが等間隔に並ぶリニアアレーにおいて、ブロードサイドから時計回りにθ(-π/2<θ<π/2)だけ回転した向きに放射される遠方界でのアレー応答ベクトルは、以下の(式319)のように与えられる。ブロードサイドは、アンテナ素子11Aを並べた方向に対し垂直な向きであり、図29における上方である。基準点200Bの#0のアンテナ素子11Aから#kのアンテナ素子11Aまでの素子間距離がkdとなっている。基準点200B#0のアンテナ素子11Aから#K-1のアンテナ素子11Aまでの素子間距離が(K-1)dとなっている。
Figure JPOXMLDOC01-appb-M000081
As shown in FIG. 29, in a linear array in which K antenna elements 11A are arranged at equal intervals, a far field is radiated in a direction rotated clockwise by θ (-π/2<θ<π/2) from the broadside. The array response vector at is given as (Equation 319) below. The broadside is perpendicular to the direction in which the antenna elements 11A are arranged, and is upward in FIG. 29. The inter-element distance from the #0 antenna element 11A to the #k antenna element 11A at the reference point 200B is kd. The inter-element distance from the antenna element 11A of the reference point 200B #0 to the antenna element 11A of #K-1 is (K-1)d.
Figure JPOXMLDOC01-appb-M000081
 ここで、インパルス応答Zは、以下の(式320)で与えられる。
Figure JPOXMLDOC01-appb-M000082
 これにより、ヌル対象の方向θが分かれば、アレー応答ベクトルVを以下の(式321)のように算出できる。なお、方向θは、θ=θであり、i=1,・・・,Mである。jは、虚数単位であり、j=-1である。ここで、インパルス応答Zは、以下の(式322)で得ることができる。
Figure JPOXMLDOC01-appb-M000083
Figure JPOXMLDOC01-appb-M000084
Here, the impulse response Z is given by the following (Equation 320).
Figure JPOXMLDOC01-appb-M000082
As a result, if the direction θ of the null target is known, the array response vector V i can be calculated as shown in (Equation 321) below. Note that the direction θ is θ=θ i , and i=1, . . . , M. j is an imaginary unit and j 2 =-1. Here, the impulse response Z i can be obtained by the following (Equation 322).
Figure JPOXMLDOC01-appb-M000083
Figure JPOXMLDOC01-appb-M000084
 ウェイト生成部17は、ヌル対象の方向θからヌルに対応するアレー応答ベクトルVを(式321)及び(式322)を用いて導出し、続いて(式318)を用いて行列(I-AA)を算出する。ウェイト生成部17は、算出した行列(I-AA)と、受電装置20に対応したアレー応答ベクトルVとから、アレー応答値の大きさ|W|を最大にする最適なウェイトベクトルWoptを決定する。 The weight generation unit 17 derives the array response vector V i corresponding to the null from the direction θ i of the null object using (Equation 321) and (Equation 322), and then derives the matrix (I −AA + ). The weight generation unit 17 generates an optimal weight that maximizes the magnitude of the array response value |W H V d | from the calculated matrix (I-AA + ) and the array response vector V d corresponding to the power receiving device 20. Determine the vector W opt .
 記憶部17Dは、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的な記憶媒体を含んでよい。記憶部17Dは、メモリカード、光ディスク、又は光磁気ディスク等の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。記憶部17Dは、RAMなどの一時的な記憶領域として利用される記憶デバイスを含んでよい。記憶部17Dは、ウェイト生成部17の外部に設けてもよい。 The storage unit 17D may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium. The storage unit 17D may include a combination of a storage medium such as a memory card, an optical disk, or a magneto-optical disk, and a storage medium reading device. The storage unit 17D may include a storage device such as a RAM used as a temporary storage area. The storage unit 17D may be provided outside the weight generation unit 17.
 次に、ヌルを広角化する一例を説明する。ヌル対象の物体5000は拡がりを持っており、物体5000の領域に応じてヌルを広角化することが望ましい。ヌルを広角化するには、複数の方法を用いることができる。ヌルの広角化には、例えば、多点ヌル拘束(Multiple Null Constraints)方式、微係数拘束(Derivative Constraints)方式等を用いることができる。 Next, an example of widening the null will be described. The object 5000 to be nulled has an expanse, and it is desirable to widen the angle of the null according to the area of the object 5000. Multiple methods can be used to widen the null. To widen the angle of the null, for example, a multiple null constraint method, a derivative constraint method, or the like can be used.
 多点ヌル拘束方式は、ヌル対象の大きさに合わせ、一方向ではなく、その近傍の複数の方向にヌルを形成することで、ヌルの広角化を図る方法である。例えば、上述した(式315)のアレー応答ベクトルVは、ヌル対象の方向であるθから(式321)と(式322)を用いて計算されるが、ヌル対象の大きさに合わせヌル近傍の複数方向もヌル対象の方向として与えることで広角化を実現する。 The multi-point null constraint method is a method of widening the angle of the null by forming the null not in one direction but in multiple directions in the vicinity according to the size of the null target. For example, the array response vector V i in (Equation 315) above is calculated from θ i , which is the direction of the null object, using (Equation 321) and (Equation 322). A wide angle is achieved by giving multiple nearby directions as null target directions.
 微係数拘束方式は、θ方向のアレー応答値の連続性を用いて、微係数より平坦化を図る方法である。以下に、微係数拘束方式の詳細を説明する。 The differential coefficient constraint method is a method that uses the continuity of array response values in the θ direction to achieve flattening based on the differential coefficient. The details of the differential coefficient constraint method will be explained below.
 K個のアンテナ素子11Aが等間隔リニアアレーのθ方向のアレー応答ベクトルV(θ)に対するアレー応答値は、θの関数であり、これをD(θ)とする。上述した(式311)、(式312)に(式319)、(式320)を代入すると、D(θ)は、以下の(式323)で与えられる。
Figure JPOXMLDOC01-appb-M000085
The array response value for the array response vector V(θ) in the θ direction of a linear array in which K antenna elements 11A are equally spaced is a function of θ, and this is defined as D(θ). By substituting (Formula 319) and (Formula 320) into (Formula 311) and (Formula 312) described above, D(θ) is given by the following (Formula 323).
Figure JPOXMLDOC01-appb-M000085
 D(θ)は、アレー応答関数、あるいはアレーファクタと呼ばれる。D(θ)は、θの連続関数であり、θで微分可能である。なお、この絶対値|D(θ)|を図示したものは、アレーアンテナの指向性パターンになる。 D(θ) is called an array response function or array factor. D(θ) is a continuous function of θ and is differentiable with respect to θ. Note that this absolute value |D(θ)| is illustrated as the directivity pattern of the array antenna.
 (式323)にθ=θ(i=1,・・・,M)を代入したD(θ)は、θ方向のアレー応答値である。また、(式323)は、微分可能であるから、θ=θの近傍であるθ=θ+Δθのアレー応答値D(θ+Δθ)は、L次近似式を用いて以下の(式324)のように表せる。
Figure JPOXMLDOC01-appb-M000086
D(θ i ) obtained by substituting θ=θ i (i=1, . . . , M) into (Equation 323) is the array response value in the θ i direction. Furthermore, since (Equation 323) is differentiable, the array response value D( θ i + Δθ) of θ=θ i +Δθ which is near θ=θ i can be calculated using the following ( It can be expressed as Equation 324).
Figure JPOXMLDOC01-appb-M000086
 (式324)において、微係数D(l)(θ)(l=1,・・・,L)がゼロならば、D(θ+Δθ)≒D(θ)となり、θの近傍θ+Δθでアレー応答値を同程度にできる。これをヌル(D(θ)=0)に対して適用したものが微係数拘束によるヌルの広角化であり、近似式の次数のLにより広角化の度合いを制御できる。本開示ではLを広角度と称する。本開示では、微係数D(l)(θ)の右肩の(l)は、微分の階数を示す。 In (Equation 324), if the differential coefficient D (l)i ) (l=1,..., L i ) is zero, D(θ i +Δθ)≈D(θ i ), and the difference of θ i The array response values can be made comparable in the vicinity θ i +Δθ. Applying this to the null (D(θ i )=0) is the widening of the null by differential coefficient constraint, and the degree of widening can be controlled by the order L i of the approximation equation. In this disclosure, L i is referred to as wide angle. In the present disclosure, (l) on the right shoulder of the differential coefficient D (l)i ) indicates the order of differentiation.
 ヌルの方向をθ(i=1,・・・,M)、近似式の次数をLとすると、微係数拘束条件は、以下の(式325)となる。ただし、(式325)は、l=1,・・・,Lである。なお、V (l)の右肩の(l)は、微分の階数ではなく、インデックスに過ぎない。
 D(l))=W(l))=0 ・・・(式325)
Assuming that the direction of the null is θ i (i=1, . . . , M) and the order of the approximate expression is L i , the differential coefficient constraint condition is the following (Equation 325). However, in (Formula 325), l=1, . . . , Li . Note that (l) on the right shoulder of V i (l ) is not the order of differentiation but only an index.
D (l)i )=W H V (l)i )=0 (Formula 325)
 (式325)は、以下の(式326)と等価である。ただし、(式326)は、l=1,・・・,Lである。ここでQは対角行列であり、以下の(式327)で与えられる。なお、微係数拘束条件の変換については、後述する。
 W(Q)=W(QV(θ))=0 ・・・(式326)
 Q=diag[0 1 ・・・ (K-1)]・・・(式327)
(Formula 325) is equivalent to (Formula 326) below. However, in (Formula 326), l=1, . . . , Li . Here, Q l is a diagonal matrix and is given by the following (Equation 327). Note that the conversion of the differential coefficient constraint condition will be described later.
W H (Q l V i ) = W H (Q l V (θ i )) = 0 (Formula 326)
Q l =diag[0 l 1 l ... (K-1) l ]... (Formula 327)
 よって、上述した(式315)のアレー応答ベクトルVとしてV (l)=Qを追加することで、微係数拘束によるヌルの広角化を実現できる。ここでl=1,・・・,Lである。V (l)は正しくはアレー応答ベクトルではなく、この場合(式315)のVをアレー応答ベクトルと呼ぶのは不適切である。そこで、拘束条件を与えるベクトルとして、以降では、(式315)のVを拘束ベクトルと称することがある。 Therefore, by adding V i (l) = Q l V i as the array response vector V i in (Equation 315) described above, widening of the null angle due to the differential coefficient constraint can be realized. Here, l=1, . . . , Li . V i (l) is not correctly an array response vector, and it is inappropriate to call V i in (Equation 315) an array response vector in this case. Therefore, as a vector that provides a constraint condition, V i in (Equation 315) may be hereinafter referred to as a constraint vector.
 上述したようにヌルを広角化するには、拘束ベクトル数を増やさなければならない。これにより、ウェイトベクトルWの制約が厳しくなり、受電装置20のアレー応答値|W|が小さくなる可能性がある。その一方で、送電装置10と物体5000との距離が離れている場合、深いヌルを形成する必要がなく、ヌル深度を制御することで、受電装置20への電力供給を改善することが見込まれる。以下では、ヌル深度の制御方法の一例について説明する。 As mentioned above, in order to widen the null, the number of constraint vectors must be increased. As a result, restrictions on the weight vector W become stricter, and the array response value |W H V d | of the power receiving device 20 may become smaller. On the other hand, if the distance between the power transmitting device 10 and the object 5000 is large, there is no need to form a deep null, and by controlling the null depth, it is expected that the power supply to the power receiving device 20 will be improved. . An example of a method for controlling the null depth will be described below.
 上述した(式315)の拘束条件の一部を変更した最適化問題を、以下の条件式の(式328)のように定式化できる。詳細には、(式328)は、(式315)のW=0を、|W=|εに変更している。
Figure JPOXMLDOC01-appb-M000087
An optimization problem in which a part of the constraint condition in (Formula 315) described above is changed can be formulated as in the following conditional expression (Formula 328). Specifically, in (Formula 328), W H V i =0 in (Formula 315) is changed to |W H V i | 2 = |ε i | 2 .
Figure JPOXMLDOC01-appb-M000087
 ここで、Kはアンテナ素子11Aの数であり、Mはヌルの数である。ヌルの数Mは、検出部16が検出した物体5000の領域に応じた数である。 Here, K is the number of antenna elements 11A, and M is the number of nulls. The number M of nulls corresponds to the area of the object 5000 detected by the detection unit 16.
 (式328)の最適なウェイトベクトルWoptは、上述した(式316)を用いて以下の(式329)で与えられる。
Figure JPOXMLDOC01-appb-M000088
The optimal weight vector W opt in (Formula 328) is given by the following (Formula 329) using the above-mentioned (Formula 316).
Figure JPOXMLDOC01-appb-M000088
 ここで、V’=(I-AA)V、Vε=(Aεである。Aは、M個の複素列の拘束ベクトルV,V,・・・,Vを並べた行列であり、Aは、Aのムーア・ペンローズ一般逆行列である。また、ε=[ε ε ・・・ εであり、εの絶対値|ε|は、(式328)により与えられる。本開示において、(・)のように文字の右肩に「T」を記している場合、転置を意味する。εの偏角は、ベクトル(A)の各要素と同じ値とすることで、アレー応答値|W|を最大化できる。なお、(式329)におけるαは、以下の(式330)で与えられる。
Figure JPOXMLDOC01-appb-M000089
Here, V' d = (I-AA + )V d and V ε = (A + ) H ε. A is a matrix in which M complex column constraint vectors V 1 , V 2 , . . . , V M are arranged, and A + is a Moore-Penrose general inverse matrix of A. Further, ε=[ε 1 ε 2 ... ε M ] T , and the absolute value |ε i | of ε i is given by (Equation 328). In the present disclosure, when "T" is written on the right shoulder of a character, such as (.) T , it means transposition. By setting the argument angle of ε i to the same value as each element of the vector (A + V d ), the array response value |W H V d | can be maximized. Note that α in (Formula 329) is given by (Formula 330) below.
Figure JPOXMLDOC01-appb-M000089
 (式329)及び(式330)によってウェイトベクトルWと拘束ベクトルVの内積の大きさ|W|を|ε|にできるが、上述した(式316)及び(式317)に比べ、Vεとαの演算が必要な分、複雑になる。 (Formula 329) and (Formula 330) allow the size of the inner product of the weight vector W and the constraint vector V i to be |W H V i |, but the above-mentioned (Formula 316) and (Formula 317) In comparison, it becomes more complicated as calculations for V ε and α are required.
 上述した(式328)は、近似解にすることで、処理を簡単化できる。以下に、近似解の求め方の一例について説明する。 The processing of (Equation 328) described above can be simplified by using an approximate solution. An example of how to obtain an approximate solution will be described below.
 ウェイトベクトルWのノルムの2乗が1(||W||=1)であり、||V||は既知であるので、|W|を最大化することは、|W|/(||W||・||V||)を1に近づけることと等価である。これは、W/||W||≒V/||V||と考えることができる。すなわち、W≒γVとなる。γは、比例定数である。また、|W=|εをW≒0に変更する。これにより、(式328)の最適化問題は、近似的に以下の条件式の(式331)ように考えることができる。(式331)において≒は左辺の値と右辺の値をできるだけ近づけることを意味する。
Figure JPOXMLDOC01-appb-M000090
Since the square of the norm of the weight vector W is 1 (||W||=1) and ||V d || is known, maximizing |W H V d | means |W H This is equivalent to bringing V d |/(||W||·||V d ||) closer to 1. This can be considered as W/||W||≈V d /||V d ||. That is, W≒γV d . γ is a proportionality constant. Also, |W H V i | 2 = |ε i | 2 is changed to W H V i ≈0. As a result, the optimization problem of (Equation 328) can be approximately considered as the following conditional expression (Equation 331). In (Equation 331), ≈ means that the value on the left side and the value on the right side are made as close as possible.
Figure JPOXMLDOC01-appb-M000090
 (式331)の最適なウェイトベクトルWoptは、以下の(式332)を定義すると、以下の(式333)で与えられる。なお、近似解によるヌル深度制御については、後述する。
Figure JPOXMLDOC01-appb-M000091
Figure JPOXMLDOC01-appb-M000092
The optimal weight vector W opt of (Formula 331) is given by the following (Formula 333) when the following (Formula 332) is defined. Note that null depth control using an approximate solution will be described later.
Figure JPOXMLDOC01-appb-M000091
Figure JPOXMLDOC01-appb-M000092
 ここで、A’は、M個の複素列ベクトルα,α,・・・,αを並べた行列A’=[α α ・・・ α]である。α(i=1,・・・,M)は、Vに対する重み係数である。上述した絶対値|ε|の代わりにαを用いることで、ヌル深度を制御できる。このように、ヌル深度を制御するアルゴリズムは、厳密解から求めてもよいし、近似解を用いてもよい。また、ヌル深度を制御するアルゴリズムは、厳密解から求めても、近似解を用いて求めても、いずれもヌル広角化に対応できる。 Here , A' is a matrix in which M complex column vectors α 1 V 1 , α 2 V 2 , ... , α M V M are arranged. α M VM ]. α i (i=1, . . . , M) is a weighting coefficient for V i . By using α i instead of the above-mentioned absolute value |ε i |, the null depth can be controlled. In this way, the algorithm for controlling the null depth may be obtained from an exact solution or may use an approximate solution. Further, the algorithm for controlling the null depth can handle widening of the null angle, whether it is determined from an exact solution or using an approximate solution.
 ウェイト生成部17は、規定信号1000の伝搬チャネル特性と、検出部16が検出した物体5000の方向、領域及び距離を識別可能な方向情報に基づいて前処理部19において演算した結果から、物体5000の領域にヌルが向くように送信ウェイトを生成する。領域にヌルを向ける場合、拘束ベクトルVはV (l)(l=0,・・・,L)となる。 The weight generation unit 17 calculates the object 5000 based on the propagation channel characteristics of the prescribed signal 1000 and the result of calculation in the preprocessing unit 19 based on the direction information that can identify the direction, area, and distance of the object 5000 detected by the detection unit 16. Generate transmission weights so that nulls are directed to the region of . When pointing a null to a region, the constraint vector V i becomes V i (l) (l=0, . . . , L i ).
 図30は、多点ヌル拘束方式のベクトル化の一例を示す図である。多点ヌル拘束方式を用いる場合、前処理部19は、図30に示すように、ヌル対象の物体5000の方向θと領域δから(式321)と(式322)を用いてアレー応答ベクトルV (l)(l=0,・・・,L)を求める。詳細には、前処理部19は、物体5000の方向θと領域δから当該方向の最小値θmin と最大値θmax を決定する。ウェイト生成部17は、予め定められた刻み幅でθminからθmaxをカバーする方向θ(0) ,・・・,θ(Li) を決定する。なお、刻み幅は、物体5000の方向θによらず一定でもよいし、物体5000の方向θごとに変更してもよい。前処理部19は、方向θ(0) ,・・・,θ(Li) から(式321)と(式322)を用いて、拘束ベクトルV (l)(l=0,・・・,L)を求める。本開示では、微係数拘束方式において近似式の次数Lを広角化の度合いを表す尺度として広角度と称したが、多点ヌル拘束方式における前記Lも広角度と称することがある。 FIG. 30 is a diagram illustrating an example of vectorization using the multi-point null constraint method. When using the multi-point null constraint method, the preprocessing unit 19 calculates the array response using (Equation 321) and (Equation 322) from the direction θ i and area δ i of the object 5000 to be nulled, as shown in FIG. Find the vector V i (l) (l=0, . . . , L i ). Specifically, the preprocessing unit 19 determines the minimum value θ min i and the maximum value θ max i in the direction from the direction θ i and the area δ i of the object 5000. The weight generation unit 17 determines directions θ (0) i , . . . , θ (Li) i that cover the range from θ min to θ max in predetermined steps. Note that the step width may be constant regardless of the direction θ i of the object 5000, or may be changed for each direction θ i of the object 5000. The preprocessing unit 19 uses (Formula 321 ) and ( Formula 322 ) to calculate the constraint vector V i (l) (l=0,...・, L i ). In the present disclosure, the order L i of the approximate expression in the differential coefficient constraint method is referred to as a wide angle as a measure representing the degree of widening, but the L i in the multi-point null constraint method may also be referred to as a wide angle.
 図31は、微係数拘束方式のベクトル化の一例を示す図である。微係数拘束方式を用いる場合、前処理部19は、図31に示すように、方向θと領域δから(式321)と(式322)等を用いてアレー応答ベクトルV (l)(l=0,・・・,L)を求める。詳細には、前処理部19は、方向θと物体500の領域δから広角度Lを求める。広角度Lは、領域δだけではなく方向θにも依存する。このため、前処理部19は、これらの情報から広角度Lを導き出すテーブル、機械学習等を用いることで、広角度Lを求める。 FIG. 31 is a diagram illustrating an example of vectorization using the differential coefficient constraint method. When using the differential coefficient constraint method, the preprocessing unit 19 calculates the array response vector V i (l ) from the direction θ i and the area δ i using (Equation 321) and (Equation 322), etc., as shown in FIG. Find (l=0,...,L i ). Specifically, the preprocessing unit 19 determines the wide angle L i from the direction θ i and the area δ i of the object 500. The wide angle L i depends not only on the area δ i but also on the direction θ i . Therefore, the preprocessing unit 19 calculates the wide angle L i by using a table, machine learning, etc. that derives the wide angle L i from this information.
 図31に示す一例では、前処理部19は、方向θと領域δとを示す情報をテーブル170に適用して広角度Lを求める。領域δは、例えば、物体5000の領域、距離等に関する情報を含む。テーブル170は、記憶部17Dに記憶されており、方向θと領域δから広角度Lを導き出すルックアップテーブルである。前処理部19は、求めた広角度Lとアレー応答ベクトルVとから、上記の(式325)、(式326)、(式327)を用いてベクトル化することで、拘束ベクトルV (l)(l=0,・・・,L)を求める。ここでV (0)=Vとする。 In the example shown in FIG. 31, the preprocessing unit 19 applies information indicating the direction θ i and the area δ i to the table 170 to obtain the wide angle L i . The area δ i includes information regarding the area, distance, etc. of the object 5000, for example. The table 170 is stored in the storage unit 17D and is a lookup table for deriving the wide angle L i from the direction θ i and the area δ i . The preprocessing unit 19 vectorizes the obtained wide angle L i and array response vector V i using the above (Equation 325), (Equation 326), and (Equation 327) to obtain a constraint vector V i (l) Find (l=0,...,L i ). Here, it is assumed that V i (0) = V i .
 図32は、前処理部19のヌル深度の処理例を示す図である。図32に示す一例は、前処理部19が上述した(式328)を用いる場合の処理例を示している。前処理部19は、図32に示すように、ヌル深度の大きさについての処理を行うことができる。上述した(式328)の場合、ヌル対象までの距離dから電波2000Wの強度の減衰量が推定できる。前処理部19は、事前に測定した結果に基づく距離dと絶対値|ε|のテーブルを用いて、絶対値|ε|を求める。絶対値|ε|は、例えば、アンテナ素子自体の指向性を考慮し、物体5000の方向θごとに変更してもよい。 FIG. 32 is a diagram illustrating an example of null depth processing by the preprocessing unit 19. An example shown in FIG. 32 shows a processing example when the preprocessing unit 19 uses the above-mentioned (Formula 328). The preprocessing unit 19 can perform processing regarding the size of the null depth, as shown in FIG. 32. In the case of (Equation 328) described above, the amount of attenuation of the intensity of the radio wave 2000 W can be estimated from the distance d i to the null target. The preprocessing unit 19 calculates the absolute value |ε i | using a table of distances d i and absolute values |ε i | based on the results measured in advance. The absolute value |ε i | may be changed for each direction θ i of the object 5000, for example, taking into account the directivity of the antenna element itself.
 図32の19Aに示す多点ヌル拘束方式の場合、前処理部19は、距離d,d,・・・,dと、広角度L,L,・・・,Lとを用いて、例えば、同一のヌル対象に対して全て同じ値でヌル深度の大きさを示すベクトルP1を求める処理を実行する。ベクトルP1は、例えば、[|ε|,|ε|,・・・,|ε|,|ε|,|ε|,・・・,|ε|,・・・.|ε|,|ε|,・・・,|ε|]である。 In the case of the multi- point null constraint method shown in 19A of FIG . For example, a process is performed to obtain a vector P1 indicating the magnitude of the null depth with the same value for the same null target. The vector P1 is, for example, [|ε 1 |, |ε 1 |, ..., |ε 1 |, |ε 2 |, |ε 2 |, ..., |ε 2 |, .... |ε M |, |ε M |, ..., |ε M |] T.
 図32の19Bに示す微係数拘束方式の場合、前処理部19は、距離d,d,・・・,dと、広角度L,L,・・・,Lを用いて、V (0)に対応するヌル深度の大きさを|ε|とし、V (l)(l=1,・・・,L)に対応するヌル深度の大きさをゼロとし、ヌル深度の大きさを示すベクトルP2を求める処理を実行する。ベクトルP2は、例えば、[|ε|,0,・・・,0,|ε|,0,・・・,0,・・・.|ε|,0,・・・,0]である。 In the case of the differential coefficient constraint method shown in 19B of FIG . Let the magnitude of the null depth corresponding to V i (0) be |ε i |, and let the magnitude of the null depth corresponding to V i (l) (l=1,...,L i ) be zero. , executes processing to obtain a vector P2 indicating the magnitude of the null depth. The vector P2 is, for example, [|ε 1 |,0,...,0, |ε 2 |,0,...,0,... |ε M |, 0, ..., 0] T.
 送電装置10が上述した(式328)を用いる場合、前処理部19は、求めた拘束ベクトルV (l)を用いて、(I-AA)、A等の行列演算を行い、ヌル深度の大きさを示すベクトルP1,P2の演算を行い、演算結果を記憶部17Dに記憶してウェイト生成部17に供給する。 When the power transmission device 10 uses the above-mentioned (Equation 328), the preprocessing unit 19 uses the obtained constraint vector V i (l) to perform matrix operations such as (I-AA + ), A +, etc. Vectors P1 and P2 indicating the magnitude of the depth are calculated, and the calculation results are stored in the storage section 17D and supplied to the weight generation section 17.
 図33は、前処理部19のヌル深度の他の処理例を示す図である。図33に示す一例は、前処理部19が上述した(式331)を用いる場合の処理例を示している。前処理部19は、図33に示すように、ヌル深度の大きさについての処理を行うことができる。上述した(式331)の場合、前処理部19は、事前に測定した結果に基づく距離dと重み係数αのテーブルを用いて、重み係数αを求める。重み係数αは、例えば、アンテナ素子自体の指向性を考慮し、物体5000の方向θごとに変更してもよい。 FIG. 33 is a diagram showing another example of processing of the null depth by the preprocessing unit 19. An example shown in FIG. 33 shows a processing example when the preprocessing unit 19 uses the above-mentioned (Formula 331). The preprocessing unit 19 can perform processing regarding the size of the null depth, as shown in FIG. 33. In the case of (Equation 331) described above, the preprocessing unit 19 calculates the weighting coefficient α i using a table of the distance d i and the weighting coefficient α i based on the results measured in advance. The weighting coefficient α i may be changed for each direction θ i of the object 5000, for example, taking into account the directivity of the antenna element itself.
 図33の19Cに示す多点ヌル拘束方式の場合、前処理部19は、距離d,d,・・・,dと、広角度L,L,・・・,Lを用いて、同一のヌル対象に対して同じ値でヌル深度の大きさを示すベクトルP3を求める処理を実行する。ベクトルP3は、例えば、[α,α,・・・,α,α,α,・・・,α,・・・.α,α,・・・,αである。 In the case of the multi- point null constraint method shown in 19C of FIG . Then, a process is executed to obtain a vector P3 indicating the magnitude of the null depth with the same value for the same null target. The vector P3 is, for example, [α 1 , α 1 , ..., α 1 , α 2 , α 2 , ..., α 2 , ... α M , α M , ..., α M ] T .
 図33の19Dに示す微係数拘束方式の場合、前処理部19は、距離d,d,・・・,dと、広角度L,L,・・・,Lを用いて、V (0)に対応するヌル深度の大きさをαとし、V (l)(l=1,・・・,L)に対応するヌル深度の大きさを固定値(α>>1)とし、ヌル深度の大きさを示すベクトルP4を求める処理を実行する。ベクトルP4は、例えば、[α,α,・・・,α,α,α,・・・,α,・・・.α,α,・・・,αである。 In the case of the differential coefficient constraint method shown in 19D in FIG . Let α i be the size of the null depth corresponding to V i (0) , and let the size of the null depth corresponding to V i (l) (l=1,...,L i ) be a fixed value (α 0 >> 1) and executes processing to obtain a vector P4 indicating the magnitude of the null depth. The vector P4 is, for example, [α 1 , α 0 , ..., α 0 , α 2 , α 0 , ..., α 0 , .... α M , α 0 , ..., α 0 ] T .
 送電装置10が上述した(式331)を用いる場合、前処理部19は、求めた拘束ベクトルV (l)とヌル深度の大きさを示すベクトルP3,P4を用いて、(I-A’(I+A’A’)-1A’)の行列演算を行い、演算結果を記憶部17Dに記憶してウェイト生成部17に供給する。 When the power transmission device 10 uses the above-mentioned (Equation 331), the preprocessing unit 19 uses the obtained constraint vector V i (l) and vectors P3 and P4 indicating the magnitude of the null depth to calculate (IA' A matrix calculation of (I+A' H A') -1 A' H ) is performed, and the calculation result is stored in the storage section 17D and supplied to the weight generation section 17.
 ウェイト生成部17は、推定部14の推定結果である受電装置20に対するアレー応答ベクトルVと、記憶部17Dに記憶された情報を用いて、最適なウェイトベクトルWoptを、上述した(式329)または(式333)によって求める。 The weight generation unit 17 uses the array response vector V d for the power receiving device 20, which is the estimation result of the estimation unit 14, and the information stored in the storage unit 17D to generate the optimal weight vector W opt as described above (Equation 329 ) or (Equation 333).
 ウェイト生成部17は、生成した方向、領域及び距離に適したウェイトベクトルを識別可能なウェイト情報を記憶部17Dに記憶できる。なお、送電装置10は、広角度Lをヌル対象ごとに設定できる。送電装置10は、ヌルを向ける方向、領域及び距離から算出する行列やベクトルと、規定信号1000の伝搬チャネル特性とを独立して算出できる。 The weight generation unit 17 can store weight information that allows identification of a weight vector suitable for the generated direction, area, and distance in the storage unit 17D. Note that the power transmission device 10 can set the wide angle L i for each null target. The power transmission device 10 can independently calculate the matrix or vector calculated from the direction, area, and distance in which the null is directed, and the propagation channel characteristics of the specified signal 1000.
 図27に示すように、乗算部18は、ウェイト生成部17のウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの送信信号2000にウェイトを乗算する。乗算部18は、例えば、乗算器を有する。乗算部18は、アンテナ素子11Aに対応するウェイトを乗算した送信信号2000を、当該アンテナ素子11Aの送受信回路13Aに供給する。 As shown in FIG. 27, the multiplication section 18 multiplies the transmission signal 2000 from the transmission signal generation section 12 by a weight for each of the plurality of antenna elements 11A based on the weight information of the weight generation section 17. The multiplication unit 18 includes, for example, a multiplier. The multiplier 18 supplies the transmission signal 2000 multiplied by the weight corresponding to the antenna element 11A to the transmitting/receiving circuit 13A of the antenna element 11A.
 以上、本実施形態に係る送電装置10の機能構成例について説明した。なお、図27を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る送電装置10の機能構成は係る例に限定されない。本実施形態に係る送電装置10の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power transmission device 10 according to the present embodiment has been described above. Note that the above configuration described using FIG. 27 is just an example, and the functional configuration of the power transmission device 10 according to the present embodiment is not limited to the example. The functional configuration of the power transmission device 10 according to this embodiment can be flexibly modified according to specifications and operation.
[実施形態3に係る受電装置]
 図34は、実施形態3に係る受電装置20の構成の一例を示す図である。図34に示すように、受電装置20は、アンテナ21と、送受信部22と、信号発生部23と、受電部24と、を備える。本開示の受電装置20は、移動可能な装置であるとしてよい。例えば、このような受電装置20として、モバイルバッテリー、スマートフォン、カメラ、振動センサ、生体センサ、温度センサ、警報などのドローンや車などの移動体に搭載される機器、自動運転車両、設置位置が可変な振動センサ、生体センサ、温度センサ、警報などとしてよい。本開示では、受電装置20は、移動可能な装置であるため、規定信号に基づく伝搬チャネルの特性が受電装置20の位置に応じて変化しうるとしてよい。
[Power receiving device according to Embodiment 3]
FIG. 34 is a diagram illustrating an example of the configuration of the power receiving device 20 according to the third embodiment. As shown in FIG. 34, the power receiving device 20 includes an antenna 21, a transmitting/receiving section 22, a signal generating section 23, and a power receiving section 24. The power receiving device 20 of the present disclosure may be a movable device. For example, such a power receiving device 20 may include a mobile battery, a smartphone, a camera, a vibration sensor, a biological sensor, a temperature sensor, a device mounted on a mobile body such as a drone or a car, such as an alarm, an automatic driving vehicle, and a variable installation position. It may be used as a vibration sensor, biological sensor, temperature sensor, alarm, etc. In the present disclosure, since the power receiving device 20 is a movable device, the characteristics of the propagation channel based on the prescribed signal may change depending on the position of the power receiving device 20.
 アンテナ21は、送受信部22と電気的に接続されている。アンテナ21は、送電装置10からの電波2000Wを受電可能な受電アンテナである。アンテナ21は、例えば、パッチアンテナ、ダイポールアンテナ、パラボラアンテナ等を用いることができる。アンテナ21は、例えば、規定信号1000を含む電波を放射し、送電装置10からの送信信号2000を含む電波2000Wを受信する。アンテナ21は、受信した電波2000Wの受信信号を送受信部22に供給する。 The antenna 21 is electrically connected to the transmitting/receiving section 22. The antenna 21 is a power receiving antenna that can receive 2000 W of radio waves from the power transmitting device 10. As the antenna 21, for example, a patch antenna, a dipole antenna, a parabolic antenna, etc. can be used. For example, the antenna 21 emits a radio wave containing the prescribed signal 1000, and receives a radio wave 2000W containing the transmission signal 2000 from the power transmission device 10. The antenna 21 supplies the received signal of 2000 W of radio waves to the transmitting/receiving section 22 .
 送受信部22は、信号発生部23及び受電部24と電気的に接続されている。送受信部22は、信号発生部23からの規定信号1000を含む電波をアンテナ21から放射させる。送受信部22は、アンテナ21で受信した電波の受信信号を受電部24に供給する。 The transmitting/receiving section 22 is electrically connected to the signal generating section 23 and the power receiving section 24. The transmitter/receiver 22 causes the antenna 21 to radiate radio waves containing the prescribed signal 1000 from the signal generator 23 . The transmitter/receiver 22 supplies the received radio signal received by the antenna 21 to the power receiver 24 .
 信号発生部23は、規定信号1000を生成する。信号発生部23は、送受信部22を介して、該規定信号1000を含む電波をアンテナ21に放射させる。信号発生部23は、送信周期に基づいて規定信号1000を生成できる。信号発生部23は、規定信号1000とは異なる信号を生成する構成としてもよい。 The signal generating section 23 generates a regulation signal 1000. The signal generator 23 causes the antenna 21 to radiate radio waves containing the specified signal 1000 via the transmitter/receiver 22 . The signal generator 23 can generate the regulation signal 1000 based on the transmission cycle. The signal generating section 23 may be configured to generate a signal different from the prescribed signal 1000.
 受電部24は、アンテナ21で受信した電波2000Wを直流電流に変換し、この直流電流を利用して電力を受電する。受電部24は、例えば、公知である整流回路等を用いて、電波を直流電流に変換する。受電部24は、受電した電力を、例えば、Qi(ワイヤレス給電の国際標準規格)に対応したバッテリ、負荷等に供給する。負荷は、例えば、機械設備、IoT(Internet of Things)センサ、電子機器、照明機器等を含む。 The power receiving unit 24 converts the 2000 W radio wave received by the antenna 21 into a direct current, and receives power using this direct current. The power receiving unit 24 converts the radio waves into direct current using, for example, a known rectifier circuit. The power receiving unit 24 supplies the received power to, for example, a battery, a load, etc. compatible with Qi (an international standard for wireless power supply). The loads include, for example, mechanical equipment, IoT (Internet of Things) sensors, electronic equipment, lighting equipment, and the like.
 以上、本実施形態に係る受電装置20の機能構成例について説明した。なお、図34を用いて説明した上記の構成はあくまで一例であり、本実施形態に係る受電装置20の機能構成は係る例に限定されない。本実施形態に係る受電装置20の機能構成は、仕様や運用に応じて柔軟に変形可能である。 The functional configuration example of the power receiving device 20 according to the present embodiment has been described above. Note that the above configuration described using FIG. 34 is just an example, and the functional configuration of the power receiving device 20 according to the present embodiment is not limited to the example. The functional configuration of the power receiving device 20 according to the present embodiment can be flexibly modified according to specifications and operation.
[実施形態3に係る送電装置の処理手順例]
 図35は、図1に示すシステム1の送電装置10の処理手順の一例を説明するための図である。図36は、図35に示す送電装置10のデータフローの一例を説明するための図である。図36は、送電装置10が上述した(式328)を用いる場合を示している。
[Example of processing procedure of power transmission device according to Embodiment 3]
FIG. 35 is a diagram for explaining an example of a processing procedure of the power transmission device 10 of the system 1 shown in FIG. FIG. 36 is a diagram for explaining an example of the data flow of the power transmission device 10 shown in FIG. 35. FIG. 36 shows a case where the power transmission device 10 uses the above-mentioned (Formula 328).
 図35に示すように、システム1において、受電装置20は、規定信号1000を含む電波を放射する。送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、受電装置20に対応したアレー応答ベクトルVを推定する(ステップS111)。例えば、図36に示すように、送電装置10は、推定部14で、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。図35に戻り、送電装置10は、ステップS111の処理が終了すると、処理をステップS131に進める。 As shown in FIG. 35, in the system 1, the power receiving device 20 emits radio waves including a prescribed signal 1000. When the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111). For example, as shown in FIG. 36, the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do. Returning to FIG. 35, upon completion of the process in step S111, the power transmission device 10 advances the process to step S131.
 また、送電装置10は、検出部16で、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向、領域及び距離を検出する(ステップS121)。例えば、図36に示すように、送電装置10は、検出部16がM個の物体5000をヌル対象と検出している場合、複数の物体5000の方向θ,θ,・・・,θを検出する。送電装置10は、複数の物体5000の領域δ,δ,・・・,δを検出する。送電装置10は、複数の物体5000の距離d,d,・・・,dを検出する。送電装置10は、検出した物体5000の方向θ,θ,・・・,θ、領域δ,δ,・・・,δ及び距離d,d,・・・,dを前処理部19に供給する。図35に戻り、送電装置10は、ステップS121の処理が終了すると、処理をステップS122に進める。 Furthermore, the power transmitting device 10 uses the detection unit 16 to detect the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 36, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions θ 1 , θ 2 , ..., θ of the plurality of objects 5000. Detect M. The power transmission device 10 detects regions δ 1 , δ 2 , . . . , δ M of the plurality of objects 5000. The power transmission device 10 detects distances d 1 , d 2 , . . . , d M of the plurality of objects 5000. The power transmission device 10 detects the detected object 5000 in directions θ 1 , θ 2 , ..., θ M , areas δ 1 , δ 2 , ..., δ M and distances d 1 , d 2 , ..., d M is supplied to the preprocessing section 19. Returning to FIG. 35, when the process of step S121 is completed, the power transmitting device 10 advances the process to step S122.
 送電装置10は、前処理を実行する(ステップS122)。例えば、微係数拘束方式を用いる場合、図36に示すように、送電装置10は、前処理部19で、ベクトル化を行う(ステップS191)。例えば、送電装置10は、方向θと領域δとを示す情報をテーブル170に適用して広角度Lを求め、広角度Lとアレー応答ベクトルVとからベクトル化することで、ヌルに対応した拘束ベクトルV (l)(l=0,・・・,L)を求める。 The power transmission device 10 performs preprocessing (step S122). For example, when using the differential coefficient constraint method, as shown in FIG. 36, the power transmission device 10 performs vectorization in the preprocessing unit 19 (step S191). For example, the power transmission device 10 applies information indicating the direction θ i and the region δ i to the table 170 to obtain the wide angle L i , and vectorizes the wide angle L i and the array response vector V i . A constraint vector V i (l) (l=0, . . . , L i ) corresponding to the null is determined.
 送電装置10は、前処理部19が行列演算を行う(ステップS192)。詳細には、送電装置10は、ヌルに対応した拘束ベクトルV (l)を用いて(I-AA)、Aの行列演算を行い、演算結果を記憶部17Dに記憶する。ただし、A=[V(0) ,・・・,V(L1) ,V(0) ,・・・,V(L2) ,・・・,V(0) M,・・・,V(LM) M]である。 In the power transmission device 10, the preprocessing unit 19 performs matrix calculation (step S192). Specifically, the power transmission device 10 performs a matrix operation of A + (I-AA + ) using the constraint vector V i (l) corresponding to the null, and stores the operation result in the storage unit 17D. However, A=[V (0) 1 ,..., V (L1) 1 , V (0) 2 ,..., V (L2) 2 ,..., V (0) M ,... , V (LM) M ].
 送電装置10は、前処理部19がヌル深度の大きさを算出する(ステップS193)。詳細には、送電装置10は、検出部16からの距離dとステップS191で求めた広角度Lとに基づいて、微係数拘束に対応する箇所をゼロとし、ヌル深度の大きさを示すベクトルP2を求めて記憶部17Dに記憶する。図35に戻り、送電装置10は、ステップS122の処理が終了すると、処理をステップS131に進める。 In the power transmission device 10, the preprocessing unit 19 calculates the size of the null depth (step S193). Specifically, the power transmission device 10 sets the portion corresponding to the differential coefficient constraint to zero based on the distance d i from the detection unit 16 and the wide angle L i determined in step S191, and indicates the size of the null depth. A vector P2 is obtained and stored in the storage section 17D. Returning to FIG. 35, when the process of step S122 is completed, the power transmitting device 10 advances the process to step S131.
 送電装置10は、送信ウェイトを生成する(ステップS131)。例えば、図36に示すように、送電装置10は、ウェイト生成部17が行列とベクトルの積算を行う(ステップS171)。詳細には、送電装置10は、ウェイト生成部17が演算結果(I-AA)とアレー応答ベクトルVの積算を行う。例えば、送電装置10は、記憶部17Dの(I-AA)の演算結果と推定部14からのアレー応答ベクトルVを積算してベクトルV’を求める。 The power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 36, in the power transmission device 10, the weight generation unit 17 performs matrix and vector integration (step S171). Specifically, in the power transmission device 10, the weight generation unit 17 integrates the calculation result (I-AA + ) and the array response vector V d . For example, the power transmission device 10 calculates the vector V d ′ by integrating the calculation result of (I−AA + ) in the storage unit 17D and the array response vector V d from the estimation unit 14.
 送電装置10は、ウェイト生成部17が行列とベクトルの積算を行う(ステップS172)。詳細には、送電装置10は、ウェイト生成部17が演算結果(A)とアレー応答ベクトルVの積算を行う(ステップS172)。例えば、送電装置10は、記憶部17Dの(A)の演算結果と推定部14からのアレー応答ベクトルVを積算してベクトル(A)を求める。送電装置10は、ウェイト生成部17がベクトルεの生成を行う(ステップS173)。例えば、送電装置10は、記憶部17Dのヌル深度の大きさを示すベクトルP2とステップS172のベクトル(A)とに基づいて、ベクトルεを生成する。 In the power transmission device 10, the weight generation unit 17 performs matrix and vector multiplication (step S172). Specifically, in the power transmission device 10, the weight generation unit 17 integrates the calculation result (A + ) and the array response vector V d (step S172). For example, the power transmission device 10 calculates a vector (A + V d ) by integrating the calculation result of (A + ) in the storage unit 17D and the array response vector V d from the estimation unit 14. In the power transmission device 10, the weight generation unit 17 generates a vector ε (step S173). For example, the power transmission device 10 generates the vector ε based on the vector P2 indicating the magnitude of the null depth in the storage unit 17D and the vector (A + V d ) in step S172.
 送電装置10は、ウェイト生成部17がベクトルVεの生成を行う(ステップS174)。例えば、送電装置10は、記憶部17Dの(A)の演算結果とステップS173のベクトルεとに基づいてベクトルVεを生成する。送電装置10は、ウェイト生成部17が係数演算を行う(ステップS175)。例えば、送電装置10は、ステップS171のベクトルV’とステップS174のベクトルVεとに基づいて係数αの演算を行う。 In the power transmission device 10, the weight generation unit 17 generates a vector V ε (step S174). For example, the power transmission device 10 generates the vector V ε based on the calculation result of (A + ) in the storage unit 17D and the vector ε in step S173. In the power transmission device 10, the weight generation unit 17 performs coefficient calculation (step S175). For example, the power transmission device 10 calculates the coefficient α based on the vector V d ′ in step S171 and the vector V ε in step S174.
 送電装置10は、ウェイト生成部17がウェイトベクトルWoptの生成を行う(ステップS176)。例えば、送電装置10は、ステップS171のV’とステップS174のVεとステップS175のαとに基づいて、(式328)を用いた最適なウェイトベクトルWopt=αV’+Vεを生成する。図35に戻り、送電装置10は、ステップS131の処理が終了すると、処理をステップS132に進める。 In the power transmission device 10, the weight generation unit 17 generates a weight vector W opt (step S176). For example, the power transmission device 10 generates the optimal weight vector W opt =αV d ′+V ε using (Equation 328) based on V d ′ in step S171, V ε in step S174, and α in step S175. do. Returning to FIG. 35, when the process of step S131 is completed, the power transmitting device 10 advances the process to step S132.
 送電装置10は、送信ウェイトを乗算する(ステップS132)。例えば、送電装置10は、乗算部18が最適なウェイトベクトルWoptを示すウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの給電用の送信信号2000にウェイトを乗算し、送受信回路13Aに供給する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。この場合、送電装置10は、ヌル対象の物体5000までの距離dから電波2000Wの強度の減衰量を考慮して物体5000の領域にヌルを向けているので、電波2000Wは受電装置20において強め合うように合成されるが、物体5000においては弱め合うように合成される。 The power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, the power transmitting device 10 directs the null toward the area of the object 5000 considering the amount of attenuation of the intensity of the radio wave 2000W from the distance d i to the object 5000 to be nulled. They are combined so that they match each other, but in the case of the object 5000, they are combined so that they weaken each other.
 受電装置20は、例えば、受信した給電用の電波2000Wを直流電流に変換し、この直流電流を利用してバッテリを充電したり、充電した電力によって動作したりする。その後、受電装置20は、規定信号1000を送出する。 For example, the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
 送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、上述した処理手順を繰り返すことで、ウェイトベクトルWoptを生成して送信信号2000の電波2000Wをアレーアンテナ11から放射する。これにより、送電装置10は、受電装置20や物体5000が移動しても、電波2000Wは受電装置20において強め合うように合成され、物体5000においては弱め合うように合成されることを維持できる。 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
[実施形態3に係る送電装置の処理手順の他の例]
 図37は、図35に示す送電装置10のデータフローの他の一例を説明するための図である。図37は、送電装置10が上述した(式331)を用いる場合を示している。なお、送電装置10は、上述した図35に示した処理手順と同一の処理手順を実行する。
[Other examples of processing procedures of power transmission device according to Embodiment 3]
FIG. 37 is a diagram for explaining another example of the data flow of the power transmission device 10 shown in FIG. 35. FIG. 37 shows a case where the power transmission device 10 uses the above-mentioned (Formula 331). Note that the power transmission device 10 executes the same processing procedure as the processing procedure shown in FIG. 35 described above.
 図35に示すように、システム1において、受電装置20は、規定信号1000を含む電波を放射する。送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、受電装置20に対応したアレー応答ベクトルVを推定する(ステップS111)。例えば、図37に示すように、送電装置10は、推定部14で、複数のアンテナ素子11Aで受信した受信信号に含まれる規定信号1000の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定する。図35に戻り、送電装置10は、ステップS111の処理が終了すると、処理をステップS131に進める。 As shown in FIG. 35, in the system 1, the power receiving device 20 emits radio waves including a prescribed signal 1000. When the power transmitting device 10 receives the radio wave including the prescribed signal 1000 through the array antenna 11, it estimates the array response vector V d corresponding to the power receiving device 20 (step S111). For example, as shown in FIG. 37, the power transmission device 10 uses the estimation unit 14 to estimate the propagation channel characteristics of the specified signal 1000 included in the received signals received by the plurality of antenna elements 11A, and estimates the array response vector V d . do. Returning to FIG. 35, upon completion of the process in step S111, the power transmission device 10 advances the process to step S131.
 また、送電装置10は、検出部16で、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向、領域及び距離を検出する(ステップS121)。例えば、図37に示すように、送電装置10は、検出部16がM個の物体5000をヌル対象と検出している場合、複数の物体5000の方向θ,θ,・・・,θを検出する。送電装置10は、複数の物体5000の領域δ,δ,・・・,δを検出する。送電装置10は、複数の物体5000の距離d,d,・・・,dを検出する。送電装置10は、検出した物体5000の方向θ,θ,・・・,θ、領域δ,δ,・・・,δ及び距離d,d,・・・,dを前処理部19に供給する。図35に戻り、送電装置10は、ステップS121の処理が終了すると、処理をステップS122に進める。 Furthermore, the power transmitting device 10 uses the detection unit 16 to detect the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15 (step S121). For example, as shown in FIG. 37, when the detection unit 16 detects M objects 5000 as null targets, the power transmission device 10 detects the directions θ 1 , θ 2 , ..., θ of the plurality of objects 5000. Detect M. The power transmission device 10 detects regions δ 1 , δ 2 , . . . , δ M of the plurality of objects 5000. The power transmission device 10 detects distances d 1 , d 2 , . . . , d M of the plurality of objects 5000. The power transmission device 10 detects the detected object 5000 in directions θ 1 , θ 2 , ..., θ M , areas δ 1 , δ 2 , ..., δ M and distances d 1 , d 2 , ..., d M is supplied to the preprocessing section 19. Returning to FIG. 35, when the process of step S121 is completed, the power transmitting device 10 advances the process to step S122.
 送電装置10は、前処理を実行する(ステップS122)。例えば、微係数拘束方式を用いる場合、図37に示すように、送電装置10は、前処理部19で、ベクトル化を行う(ステップS194)。例えば、送電装置10は、方向θと領域δとを示す情報をテーブル170に適用して広角度Lを求め、広角度Lとアレー応答ベクトルVとからベクトル化することで、ヌルに対応した拘束ベクトルV (l)(l=0,・・・,L)を求める。 The power transmission device 10 performs preprocessing (step S122). For example, when using the differential coefficient constraint method, as shown in FIG. 37, the power transmission device 10 performs vectorization in the preprocessing unit 19 (step S194). For example, the power transmission device 10 applies information indicating the direction θ i and the region δ i to the table 170 to obtain the wide angle L i , and vectorizes the wide angle L i and the array response vector V i . A constraint vector V i (l) (l=0, . . . , L i ) corresponding to the null is determined.
 送電装置10は、前処理部19がヌル深度の大きさを算出する(ステップS195)。詳細には、送電装置10は、検出部16からの距離dとステップS194で求めた広角度Lとに基づいて、微係数拘束に対して固定値としてヌル深度の大きさを示すベクトルP4を求める。 In the power transmission device 10, the preprocessing unit 19 calculates the size of the null depth (step S195). Specifically, the power transmission device 10 uses a vector P4 that indicates the magnitude of the null depth as a fixed value for the differential coefficient constraint, based on the distance d i from the detection unit 16 and the wide angle L i obtained in step S194. seek.
 送電装置10は、前処理部19が行列演算を行う(ステップS196)。詳細には、送電装置10は、ヌルに対応した拘束ベクトルV (l)とステップS195のベクトルP4を用いて、(I-A’(I+A’A’)-1A’)の行列演算を行い、演算結果を記憶部17Dに記憶する。ただし、A’=[α(0) α(1) ・・・α(L1)  α(0) α(1) ・・・α(L2)  ・・・ α(0) α(1) ・・・α(LM) ]である。図35に戻り、送電装置10は、ステップS122の処理が終了すると、処理をステップS131に進める。 In the power transmission device 10, the preprocessing unit 19 performs matrix calculation (step S196). Specifically, the power transmission device 10 uses the constraint vector V i (l) corresponding to the null and the vector P4 of step S195 to create a matrix of (IA'(I+A' H A') -1 A' H ). The calculation is performed and the calculation result is stored in the storage section 17D. However, A'=[α 1 V (0) 1 α 0 V (1) 1 ...α 0 V (L1) 1 α 2 V (0) 1 α 0 V (1) 2... α 0 V (L2) 2 ... α MV (0) M α 0 V (1) M ... α 0 V (LM) M ]. Returning to FIG. 35, when the process of step S122 is completed, the power transmitting device 10 advances the process to step S131.
 送電装置10は、送信ウェイトを生成する(ステップS131)。例えば、図37に示すように、送電装置10は、ウェイト生成部17が行列とベクトルの積算を行う(ステップS177)。詳細には、送電装置10は、ウェイト生成部17が演算結果(I-A’(I+A’A’)-1A’)とアレー応答ベクトルVの積算を行う。例えば、送電装置10は、記憶部17Dの(I-A’(I+A’A’)-1A’)の演算結果と推定部14からのアレー応答ベクトルVを積算してアレー応答ベクトルV’’=(I-A’(I+A’A’)-1A’)Vを求める。 The power transmission device 10 generates transmission weights (step S131). For example, as shown in FIG. 37, in the power transmission device 10, the weight generation unit 17 performs matrix and vector integration (step S177). Specifically, in the power transmission device 10, the weight generation unit 17 integrates the calculation result (I−A′(I+ A′H A′) −1 A′H ) and the array response vector V d . For example, the power transmission device 10 integrates the calculation result of (IA'(I+A' H A') -1 A' H ) in the storage unit 17D and the array response vector V d from the estimation unit 14 to obtain the array response vector. V d ''=(I-A'(I+A' H A') -1 A' H ) Find V d .
 送電装置10は、ウェイト生成部17が算出したアレー応答ベクトルV’’を正規化する(ステップS178)。例えば、送電装置10は、(式333)を用いて最適なウェイトベクトルWoptを生成する。図35に戻り、送電装置10は、ステップS131の処理が終了すると、処理をステップS132に進める。 The power transmission device 10 normalizes the array response vector V d '' calculated by the weight generation unit 17 (step S178). For example, the power transmission device 10 generates the optimal weight vector W opt using (Equation 333). Returning to FIG. 35, when the process of step S131 is completed, the power transmitting device 10 advances the process to step S132.
 送電装置10は、送信ウェイトを乗算する(ステップS132)。例えば、送電装置10は、乗算部18が最適なウェイトベクトルWoptを示すウェイト情報に基づいて、複数のアンテナ素子11Aごとに、送信信号発生部12からの給電用の送信信号2000にウェイトを乗算し、送受信回路13Aに供給する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。この場合、送電装置10は、ヌル対象の物体5000までの距離dから電波2000Wの強度の減衰量を考慮して物体5000の領域にヌルを向けているので、電波2000Wは受電装置20において強め合うように合成されるが、物体5000においては弱め合うように合成される。 The power transmission device 10 multiplies the transmission weight (step S132). For example, in the power transmission device 10, the multiplication unit 18 multiplies the power feeding transmission signal 2000 from the transmission signal generation unit 12 by a weight for each of the plurality of antenna elements 11A based on the weight information indicating the optimal weight vector W opt. and supplies it to the transmitter/receiver circuit 13A. Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. In this case, the power transmitting device 10 directs the null toward the area of the object 5000 considering the amount of attenuation of the intensity of the radio wave 2000W from the distance d i to the object 5000 to be nulled. They are combined so that they match each other, but in the case of the object 5000, they are combined so that they weaken each other.
 受電装置20は、例えば、受信した給電用の電波2000Wを直流電流に変換し、この直流電流を利用してバッテリを充電したり、充電した電力によって動作したりする。その後、受電装置20は、規定信号1000を送出する。 For example, the power receiving device 20 converts the received electric wave of 2000 W for power feeding into a direct current, uses this direct current to charge a battery, and operates using the charged power. After that, the power receiving device 20 sends out the regulation signal 1000.
 送電装置10は、アレーアンテナ11で規定信号1000を含む電波を受信すると、上述した処理手順を繰り返すことで、ウェイトベクトルWoptを生成して送信信号2000の電波2000Wをアレーアンテナ11から放射する。これにより、送電装置10は、受電装置20や物体5000が移動しても、電波2000Wは受電装置20において強め合うように合成され、物体5000においては弱め合うように合成されることを維持できる。 When the power transmitting device 10 receives a radio wave including the prescribed signal 1000 at the array antenna 11, it repeats the above-described processing procedure to generate a weight vector W opt and radiates the radio wave 2000 W of the transmission signal 2000 from the array antenna 11. As a result, even if the power receiving device 20 or the object 5000 moves, the power transmitting device 10 can maintain that the radio waves 2000 W are constructively combined in the power receiving device 20 and destructively combined in the object 5000.
 図35に示す送電装置10の処理手順は、規定信号1000に応じたアレー応答ベクトルVの推定(ステップS111)と物体5000の方向、領域及び距離に応じた前処理(ステップS122)は同期する必要がない。よって、例えば、規定信号1000を受信する周期と検出部16が情報を提供する周期が異なっていてもよい。また、例えば、物体5000の方向、領域及び距離に変化がない場合、送電装置10は、過去の拘束ベクトルV (l)、類似した環境下の過去の拘束ベクトルV (l)等を用いてもよい。 In the processing procedure of the power transmission device 10 shown in FIG. 35, the estimation of the array response vector V d according to the specified signal 1000 (step S111) and the preprocessing according to the direction, area, and distance of the object 5000 (step S122) are synchronized. There's no need. Therefore, for example, the cycle at which the regulation signal 1000 is received and the cycle at which the detection unit 16 provides information may be different. Further, for example, when there is no change in the direction, area, and distance of the object 5000, the power transmission device 10 uses the past constraint vector V i (l) , the past restraint vector V i (l) under a similar environment, etc. You can.
 図38は、実施形態3に係る送電装置10の動作例を説明するための図である。図39は、実施形態3に係る送電装置10の電波2000Wの指向性パターンを計算機シミュレーションによって計算した結果の一例を示す図である。図40は、実施形態3に係る送電装置10の電波2000Wの指向性パターンを計算機シミュレーションによって計算した結果の他の一例を示す図である。 FIG. 38 is a diagram for explaining an operation example of the power transmission device 10 according to the third embodiment. FIG. 39 is a diagram illustrating an example of the result of calculating the directivity pattern of 2000 W of radio waves of the power transmission device 10 according to the third embodiment by computer simulation. FIG. 40 is a diagram showing another example of the result of calculating the directivity pattern of the radio wave 2000 W of the power transmission device 10 according to the third embodiment by computer simulation.
 図38に示すように、システム1は、送電装置10と受電装置20との間の近傍に物体5000が存在する場合、送電装置10がセンサ部15のセンサ情報に基づいて物体5000の方向を検出できる。受電装置20が放射した規定信号1000を含む電波は、送電装置10に直接向かうパスと、物体5000で反射して送電装置10に向かうパスが存在する。送電装置10は、アレーアンテナ11で受信した規定信号1000を含む電波の伝搬チャネル特性を推定し、アレー応答ベクトルVを推定するが、当該アレー応答ベクトルVには、受電装置20に直接向かうパスと、物体5000に向かうパスの特性を含む。 As shown in FIG. 38, in the system 1, when an object 5000 exists in the vicinity between the power transmitting device 10 and the power receiving device 20, the power transmitting device 10 detects the direction of the object 5000 based on sensor information of the sensor unit 15. can. The radio wave including the prescribed signal 1000 emitted by the power receiving device 20 has a path that goes directly to the power transmitting device 10 and a path that is reflected by an object 5000 and goes to the power transmitting device 10 . The power transmitting device 10 estimates the propagation channel characteristics of the radio wave including the specified signal 1000 received by the array antenna 11 and estimates the array response vector V d . It includes the path and the characteristics of the path toward the object 5000.
 送電装置10は、センサ部15からのセンサ情報に基づいて、電波伝搬環境における受電装置20とは異なる物体5000の方向、領域及び距離を検出し、複数の物体5000の方向θ,θ,・・・,θ、領域δ,δ,・・・,δ及び距離d,d,・・・,dを検出する。送電装置10は、物体5000の方向、すなわちヌル対象に対応したアレー応答ベクトルVを計算するとともに、物体5000の領域および距離に基づいて拘束ベクトルV (l)を計算し、当該拘束ベクトルV (l)とアレー応答ベクトルVと用いて物体5000の方向の電波強度を低減する最適なウェイトベクトルWoptを生成する。送電装置10からは、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。 The power transmitting device 10 detects the direction, area, and distance of an object 5000 different from the power receiving device 20 in the radio wave propagation environment based on the sensor information from the sensor unit 15, and determines the directions θ 1 , θ 2 , ..., θ M , areas δ 1 , δ 2 , ..., δ M and distances d 1 , d 2 , ..., d M are detected. The power transmission device 10 calculates the array response vector V i corresponding to the direction of the object 5000, that is, the null target, and also calculates the constraint vector V i (l) based on the area and distance of the object 5000, and calculates the constraint vector V i (l) based on the area and distance of the object 5000. An optimal weight vector W opt that reduces the radio field intensity in the direction of the object 5000 is generated using i (l) and the array response vector V d . From the power transmission device 10, a radio wave of 2000 W of the transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
 これにより、送電装置10は、物体5000の方向から規定信号1000を受信しても、放射する電波2000Wを受電装置20において強め合うようにでき、かつ、物体5000の領域及び距離に応じて広角化およびヌル深度を制御したヌルを形成することで、物体5000に向かう電波2000Wの放射を抑制することができる。その結果、送電装置10は、受電装置20からの規定信号1000が人体等に反射して届く環境であっても、人体等に向かう電波2000Wを抑制できるので、安全なワイヤレス電力伝送を実現することができる。 Thereby, even if the power transmitting device 10 receives the prescribed signal 1000 from the direction of the object 5000, the radiated radio waves of 2000 W can be reinforced at the power receiving device 20, and the angle can be widened according to the area and distance of the object 5000. By forming a null with a controlled null depth, it is possible to suppress radiation of the radio wave of 2000 W toward the object 5000. As a result, even in an environment where the specified signal 1000 from the power receiving device 20 is reflected by a human body, etc., the power transmitting device 10 can suppress 2000 W of radio waves directed toward the human body, etc., thereby realizing safe wireless power transmission. Can be done.
 送電装置10は、伝搬環境に複数の物体5000が存在しても、複数の物体5000の方向、領域及び距離を検出し、複数の物体5000の各々にヌルを向けるように、ウェイトベクトルWoptを生成することができる。 Even if a plurality of objects 5000 exist in the propagation environment, the power transmission device 10 detects the direction, area, and distance of the plurality of objects 5000, and sets the weight vector W opt so as to direct a null to each of the plurality of objects 5000. can be generated.
 図39に示すグラフは、例えば、2つの物体5000が存在する場合における実施形態3に係る送電装置10に多点ヌル拘束方式を用いた場合の送電装置10から放射される電波2000Wの指向性パターンの一例を示している。図39に示すグラフは、縦軸がアレー応答値の電力(絶対値の2乗)[dB]、横軸が電波2000Wの放射方向[°]をそれぞれ示している。図39に示す一例では、送電装置10は、アンテナ素子11Aの数が8、隣り合うアンテナ素子11A同士の間隔がλ/2であり、アンテナ配置が等間隔リニアアレーになっている。λは波長を表す。送電装置10は、30°の方向が受電装置20への電波2000Wの放射方向と推定し、放射方向における-10°及び-45°が2つの物体5000の方向と検出している。送電装置10は、-10°の方向のヌル深度を0.001、-45°の方向のヌル深度を0.01と算出している。送電装置10は、30°の方向の受電装置20に対応したアレー応答ベクトルVと、-10°の方向の領域のヌルに対応したアレー応答ベクトルVと、-45°の方向の領域のヌルに対応したアレー応答ベクトルVとに基づいてウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。 The graph shown in FIG. 39 shows, for example, the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 when the multi-point null restraint method is used in the power transmission device 10 according to the third embodiment when two objects 5000 are present. An example is shown. In the graph shown in FIG. 39, the vertical axis shows the power (square of the absolute value) [dB] of the array response value, and the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W. In the example shown in FIG. 39, the power transmission device 10 has eight antenna elements 11A, the interval between adjacent antenna elements 11A is λ/2, and the antenna arrangement is a uniformly spaced linear array. λ represents wavelength. The power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects −10° and −45° in the radiation direction as the directions of the two objects 5000. The power transmission device 10 calculates the null depth in the -10° direction as 0.001 and the null depth in the -45° direction as 0.01. The power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the −10° direction region, and an array response vector V 1 corresponding to the null in the −45° direction region. A weight vector W opt is generated based on the array response vector V 2 corresponding to the null. In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
 図39に示す一例では、送電装置10は、放射方向が30°の方向付近でアレー応答値が高くなり、-10°の方向D1及び-45°の方向D2付近でアレー応答値が低くなっており、ヌルの深さが方向D1で-60dB、方向D2で-40dBになっている。これにより、送電装置10は、複数の物体5000の方向から規定信号1000を受信しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、複数の物体5000に向かう電波2000Wの放射を抑制することができる。 In the example shown in FIG. 39, in the power transmission device 10, the array response value becomes high near the direction where the radiation direction is 30°, and the array response value becomes low near the direction D1 of -10° and the direction D2 of -45°. The depth of the null is -60 dB in direction D1 and -40 dB in direction D2. As a result, even if the power transmitting device 10 receives the specified signal 1000 from the direction of the plurality of objects 5000, the power transmitting device 10 can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and the 2000 W radio waves directed toward the plurality of objects 5000. radiation can be suppressed.
 図40に示すグラフは、例えば、2つの物体5000が存在する場合における実施形態3に係る送電装置10に微係数拘束方式を用いた場合の送電装置10から放射される電波2000Wの指向性パターンの一例を示している。図40に示すグラフは、縦軸がアレー応答値の電力(絶対値の2乗)[dB]、横軸が電波2000Wの放射方向[°]をそれぞれ示している。図40に示すグラフは、図39に示した測定条件と同一である。送電装置10は、30°の方向が受電装置20への電波2000Wの放射方向と推定し、放射方向における-10°及び-45°が2つの物体5000の方向と検出している。送電装置10は、-10°の方向のヌル深度を0.001、-45°の方向のヌル深度を0.01と算出している。送電装置10は、30°の方向の受電装置20に対応したアレー応答ベクトルVと、-10°の方向の領域のヌルに対応したアレー応答ベクトルVと、-45°の方向の領域のヌルに対応したアレー応答ベクトルVとに基づいてウェイトベクトルWoptを生成する。送電装置10は、最適なウェイトベクトルWoptを乗算した送信信号2000の電波2000Wがアレーアンテナ11の複数のアンテナ素子11Aから放射される。 The graph shown in FIG. 40 shows, for example, the directivity pattern of 2000 W of radio waves emitted from the power transmission device 10 when the differential coefficient constraint method is used in the power transmission device 10 according to the third embodiment when two objects 5000 exist. An example is shown. In the graph shown in FIG. 40, the vertical axis shows the power (square of the absolute value) [dB] of the array response value, and the horizontal axis shows the radiation direction [°] of the radio wave of 2000 W. The graph shown in FIG. 40 is the same as the measurement conditions shown in FIG. 39. The power transmitting device 10 estimates that the direction of 30° is the radiation direction of the radio wave 2000W to the power receiving device 20, and detects −10° and −45° in the radiation direction as the directions of the two objects 5000. The power transmission device 10 calculates the null depth in the -10° direction as 0.001 and the null depth in the -45° direction as 0.01. The power transmitting device 10 has an array response vector V d corresponding to the power receiving device 20 in the 30° direction, an array response vector V 1 corresponding to the null in the −10° direction region, and an array response vector V 1 corresponding to the null in the −45° direction region. A weight vector W opt is generated based on the array response vector V 2 corresponding to the null. In the power transmission device 10, a radio wave of 2000 W of a transmission signal 2000 multiplied by the optimal weight vector W opt is radiated from the plurality of antenna elements 11A of the array antenna 11.
 図40に示す一例では、送電装置10は、放射方向が30°の方向付近でアレー応答値が高くなり、-10°の方向D1及び-45°の方向D2付近でアレー応答値が低くなっており、ヌルの深さが方向D3で-60dB、方向D4で-40dBになっている。これにより、送電装置10は、複数の物体5000の方向から規定信号1000を受信しても、放射する電波2000Wを受電装置20の方向に向けることができ、かつ、複数の物体5000に向かう電波2000Wの放射を抑制することができる。 In the example shown in FIG. 40, in the power transmission device 10, the array response value becomes high near the direction where the radiation direction is 30°, and the array response value becomes low near the direction D1 of -10° and the direction D2 of -45°. The depth of the null is -60 dB in direction D3 and -40 dB in direction D4. As a result, even if the power transmitting device 10 receives the specified signal 1000 from the direction of the plurality of objects 5000, the power transmitting device 10 can direct the emitted radio waves of 2000 W in the direction of the power receiving device 20, and the 2000 W radio waves directed toward the plurality of objects 5000. radiation can be suppressed.
 以上により、送電装置10は、多点ヌル拘束方式を用いても、微係数拘束方式を用いても、同様の作用効果を得ることができる。その結果、システム1において、送電装置10は、受電装置20からの規定信号1000の電波伝搬チャネルの特定結果に基づいてアンテナ指向性を制御しても、安全性を向上させることができる。なお、一般にマルチパス環境における受電装置20に対するアレー応答ベクトルVは指向性パターンにおいて特定の方向にならないが、図39および図40の例では、理解しやすいように30°の方向のアレー応答ベクトルとした。 As described above, the power transmission device 10 can obtain similar effects whether using the multi-point null constraint method or the differential coefficient constraint method. As a result, in the system 1, the power transmitting device 10 can improve safety even if the antenna directivity is controlled based on the identification result of the radio wave propagation channel of the prescribed signal 1000 from the power receiving device 20. Generally, the array response vector V d for the power receiving device 20 in a multipath environment does not have a specific direction in the directivity pattern, but in the examples of FIGS. And so.
 上記した実施形態3では、送電装置10は、アレーアンテナ11の複数のアンテナ素子11Aが等間隔のリニアアレーである場合について説明したが、これに限定されない。送電装置10は、物体5000の方向からアレー応答ベクトルVを算出可能であれる場合、複数のアンテナ素子11Aの配置は、等間隔リニアアレーでなくてもよい。 In the above-mentioned third embodiment, the power transmission device 10 is described as being a linear array in which the plurality of antenna elements 11A of the array antenna 11 are arranged at equal intervals, but the power transmission device 10 is not limited to this. If the power transmission device 10 is capable of calculating the array response vector V i from the direction of the object 5000, the arrangement of the plurality of antenna elements 11A does not need to be an equally spaced linear array.
[実施形態3に係る送電装置の変形例]
 図41及び図42は、実施形態3の変形例に係る送電装置10の構成の一例を示す図である。図41に示すように、送電装置10は、センサ部15と検出部16と前処理部19とを、送電装置10の外部の電子機器30に設けてもよい。この場合、送電装置10は、電子機器30からデータの受信が可能な構成とし、電子機器30から物体5000の検出結果を取得してもよい。図42に示すように、送電装置10は、センサ部15のみを装置の外部に設けてもよい。この場合、送電装置10は、外部のセンサ部15からセンサ情報等を取得可能な構成とし、センサ部15からのセンサ情報等に基づいて検出部16が物体5000を検出してもよい。
[Modification of power transmission device according to Embodiment 3]
41 and 42 are diagrams illustrating an example of a configuration of a power transmission device 10 according to a modification of the third embodiment. As shown in FIG. 41 , the power transmission device 10 may include the sensor section 15 , the detection section 16 , and the preprocessing section 19 in an electronic device 30 outside the power transmission device 10 . In this case, the power transmission device 10 may be configured to be able to receive data from the electronic device 30 and obtain the detection result of the object 5000 from the electronic device 30. As shown in FIG. 42, the power transmission device 10 may have only the sensor section 15 provided outside the device. In this case, the power transmission device 10 may be configured to be able to acquire sensor information etc. from the external sensor section 15, and the detection section 16 may detect the object 5000 based on the sensor information etc. from the sensor section 15.
 上述した送電装置10は、ヌル広角化を多点ヌル拘束方式と微係数拘束方式とを組み合わせてもよい。上述した送電装置10は、ヌル広角化を多点ヌル拘束方式と微係数拘束方式との少なくとも一方を用いる構成としてもよい。上述した送電装置10は、ヌル広角化を、ヌル対象の領域に渡って複数のヌルを設定する方法と微係数拘束による方法とを組み合わせてもよい。 The power transmission device 10 described above may combine a multi-point null constraint method and a differential coefficient constraint method for null widening. The power transmission device 10 described above may be configured to use at least one of a multi-point null constraint method and a differential coefficient constraint method for null widening. The above-described power transmission device 10 may combine a method of setting a plurality of nulls over a region to be nulled and a method using differential coefficient constraint to widen the null angle.
 上述した送電装置10は、(式331)の場合、W≒γVをW≒Wと置き換えてもよい。すなわち、ある条件下で導出した送信ウェイトWにも適用できることを意味する。ある条件下で導出した送信ウェイトWは、ヌルを形成していないなどの複数のウェイトを含む。このとき、上述した(式332)は、以下の(式334)に置き換えればよい。これにより、送電装置10は、送信ウェイトWに近いウェイトで、人体への影響を低減することができる。
Figure JPOXMLDOC01-appb-M000093
In the above-described power transmission device 10, in the case of (Formula 331), W≒γV d may be replaced with W≒W 0 . That is, it means that it can also be applied to the transmission weight W 0 derived under certain conditions. The transmission weight W 0 derived under certain conditions includes a plurality of weights that do not form a null. At this time, the above-mentioned (Formula 332) may be replaced with the following (Formula 334). Thereby, the power transmission device 10 can reduce the influence on the human body with a transmission weight W close to 0 .
Figure JPOXMLDOC01-appb-M000093
 図43は、実施形態3の変形例に係る送電装置10の構成の一例を示す図である。図43に示すように、送電装置10は、アレーアンテナ11と、送信信号発生部12と、送受信部13と、センサ部15と、検出部16と、ウェイト生成部17と、乗算部18と、前処理部19と、生成部10Aと、を備える。 FIG. 43 is a diagram illustrating an example of the configuration of the power transmission device 10 according to a modification of the third embodiment. As shown in FIG. 43, the power transmission device 10 includes an array antenna 11, a transmission signal generation section 12, a transmission/reception section 13, a sensor section 15, a detection section 16, a weight generation section 17, a multiplication section 18, It includes a preprocessing section 19 and a generation section 10A.
 生成部10Aは、ある条件下で送信ウェイトWを生成する。生成部10Aは、生成した送信ウェイトWをウェイト生成部17に供給する。例えば、ある条件下での送信ウェイトWは記憶部17Dに記憶されたウェイトでもよい。ウェイト生成部17は、送信ウェイトWを(式334)に適用してウェイトベクトルWoptを生成する。これにより、送電装置10は、給電用の送信信号2000を含む電波2000Wを複数のアンテナ素子11Aから放射させる。その結果、送電装置10は、物体5000の領域に電波2000Wが向かわないので、物体5000に向かう放射を減少させることができる。このように、送電装置10は、送信ウェイトWを用いる構成に変更しても、上述した作用効果を得ることができる。 The generation unit 10A generates the transmission weight W 0 under certain conditions. The generation unit 10A supplies the generated transmission weight W 0 to the weight generation unit 17. For example, the transmission weight W 0 under certain conditions may be a weight stored in the storage unit 17D. The weight generation unit 17 applies the transmission weight W 0 to (Equation 334) to generate a weight vector W opt . Thereby, the power transmitting device 10 radiates a radio wave of 2000 W including a transmission signal 2000 for power feeding from the plurality of antenna elements 11A. As a result, in the power transmission device 10, the radio waves of 2000 W are not directed toward the region of the object 5000, so that the radiation directed toward the object 5000 can be reduced. In this way, the power transmission device 10 can obtain the above-mentioned effects even if the configuration is changed to use the transmission weight W 0 .
 上述した送電装置10は、検出した物体5000を、例えば人体、動物、植物等のカテゴリ分けすることで、カテゴリごとにヌル深度を調整する構成としてもよい。送電装置10は、物体5000が人体、動物等の場合にヌル深度を深くし、植物等の場合にヌル深度を浅くするように制御してもよい。 The above-described power transmission device 10 may be configured to classify the detected object 5000 into categories such as human body, animal, plant, etc., and adjust the null depth for each category. The power transmission device 10 may be controlled to increase the null depth when the object 5000 is a human body, an animal, etc., and to decrease the null depth when the object 5000 is a plant or the like.
[実施形態3に係る微係数拘束条件の変換]
 上述した(式325)のD(l))=W(l))=0は、上述した(式326)のW(Q)=W(QV(θ))=0と等価になることを以下に証明する。ただし、(式325)及び(式326)は、l=1,・・・,Lである。ここで、Q=diag[0 1 ・・・ (K-1)]である。
[Conversion of differential coefficient constraint according to Embodiment 3]
D (l)i )=W H V (l)i )=0 in (Equation 325) described above is equivalent to W H (Q l V i )=W H (Q It will be proven below that it is equivalent to l V (θ i ))=0. However, in (Formula 325) and (Formula 326), l=1, . . . , Li . Here, Q l =diag[0 l 1 l ... (K-1) l ].
 まず、以下の(式3C1)、(式3C2)となるθの関数Fl,n(θ)が存在することを示す。(式3C1)を満たせば、以下の(式3C3)となる。
Figure JPOXMLDOC01-appb-M000094
 Fl,l(θ)≠0 ・・・(式3C2)
Figure JPOXMLDOC01-appb-M000095
First, it will be shown that there is a function F l,n (θ) of θ that satisfies the following (Formula 3C1) and (Formula 3C2). If (Formula 3C1) is satisfied, the following (Formula 3C3) is obtained.
Figure JPOXMLDOC01-appb-M000094
F l,l (θ)≠0...(Formula 3C2)
Figure JPOXMLDOC01-appb-M000095
 (式3C3)と(式3C2)にθ=θを代入すると、以下の(式3C31)、(式3C32)が得られる。
Figure JPOXMLDOC01-appb-M000096
 Fl,l(θ)≠0 ・・・(式3C32)
By substituting θ=θ i into (Formula 3C3) and (Formula 3C2), the following (Formula 3C31) and (Formula 3C32) are obtained.
Figure JPOXMLDOC01-appb-M000096
F l,li )≠0...(Formula 3C32)
 これらを利用して数学的帰納法により、以下の(式3C33)を示す。
Figure JPOXMLDOC01-appb-M000097
Using these, the following (Formula 3C33) is shown by mathematical induction.
Figure JPOXMLDOC01-appb-M000097
[3-1]l=1のときを考える。
 (式320)をθで微分すると、以下の(式3C4)になる。
Figure JPOXMLDOC01-appb-M000098
[3-1] Consider the case when l=1.
When (Formula 320) is differentiated by θ, the following (Formula 3C4) is obtained.
Figure JPOXMLDOC01-appb-M000098
 ここで、以下の(式3C5)とおくと、(式3C5)は(式3C2)を満足する。
Figure JPOXMLDOC01-appb-M000099
Here, if we set the following (Formula 3C5), (Formula 3C5) satisfies (Formula 3C2).
Figure JPOXMLDOC01-appb-M000099
 そして、(式3C4)は、以下の(式3C6)のように表せる。
Figure JPOXMLDOC01-appb-M000100
Then, (Formula 3C4) can be expressed as (Formula 3C6) below.
Figure JPOXMLDOC01-appb-M000100
 (式319)をθで微分すると、(式3C6)により以下の(式3C7)で表せる。よって、l=1の時は、(式3C1)を満足する。
Figure JPOXMLDOC01-appb-M000101
When (Formula 319) is differentiated with respect to θ, it can be expressed as the following (Formula 3C7) using (Formula 3C6). Therefore, when l=1, (Formula 3C1) is satisfied.
Figure JPOXMLDOC01-appb-M000101
 ここで、(式3C7)にθ=θを代入すると、V’(θ)=F1.1(θ)・QV(θ)となる。よって、D’(θ)=WV’(θ)=F1.1(θ)・WV(θ)となる。(式3C5)より、F1.1(θ)≠0から、以下の(式3C71)が成立する。
Figure JPOXMLDOC01-appb-M000102
Here, when θ=θ i is substituted into (Formula 3C7), V'(θ i )=F 1.1i )·Q 1 V(θ i ). Therefore, D'(θ i )=W H V'(θ i )=F 1.1i )·W H Q 1 V(θ i ). From (Formula 3C5), since F1.1(θ i )≠0, the following (Formula 3C71) holds true.
Figure JPOXMLDOC01-appb-M000102
[3-2]l=p(<L)のとき、(式3C1)及び(式3C2)が、以下の(式3C8)及び(式3C9)のように成立しているとする。
Figure JPOXMLDOC01-appb-M000103
 Fp,p(θ)≠0 ・・・(式3C9)
[3-2] When l=p (<L i ), it is assumed that (Formula 3C1) and (Formula 3C2) are established as in (Formula 3C8) and (Formula 3C9) below.
Figure JPOXMLDOC01-appb-M000103
F p,p (θ)≠0...(Formula 3C9)
 (式3C8)をθで微分し、(式3C7)により以下の(式3C81)となる。
Figure JPOXMLDOC01-appb-M000104
(Formula 3C8) is differentiated by θ, and (Formula 3C7) becomes the following (Formula 3C81).
Figure JPOXMLDOC01-appb-M000104
 定義によりQ=Qn+1となることから、以下の(式3C82)となる。
Figure JPOXMLDOC01-appb-M000105
Since Q n Q 1 =Q n+1 by definition, the following (Formula 3C82) is obtained.
Figure JPOXMLDOC01-appb-M000105
 ここで、以下の(式3C83)とすると、(式3C5)及び(式3C9)より、以下の(式3C10)となる。
 Fp+1,1(θ)=F’ p,1(θ)
 Fp+1,n(θ)=F’ p,n(θ)+Fp,n-1(θ)F1,1(θ)
                       (n=2,・・・,p)
 Fp+1,p+1(θ)=Fp,p(θ)F1,1(θ) ・・・(式3C83)
 
 Fp+1,p+1(θ)≠0 ・・・(式3C10)
Here, when the following (Formula 3C83) is used, the following (Formula 3C10) is obtained from (Formula 3C5) and (Formula 3C9).
F p+1,1 (θ)=F' p,1 (θ)
F p+1,n (θ)=F' p,n (θ)+F p,n-1 (θ)F 1,1 (θ)
(n=2,...,p)
F p+1, p+1 (θ) = F p, p (θ) F 1,1 (θ) ... (Formula 3C83)

F p+1, p+1 (θ)≠0 ... (Formula 3C10)
 よって、l=p+1の時も(式3C2)を満足する。また、(式3C82)は(式3C83)より以下の(式3C11)となり、l=p+1の時も(式3C1)を満足する。
Figure JPOXMLDOC01-appb-M000106
Therefore, (Formula 3C2) is also satisfied when l=p+1. Further, (Formula 3C82) becomes the following (Formula 3C11) from (Formula 3C83), and (Formula 3C1) is also satisfied when l=p+1.
Figure JPOXMLDOC01-appb-M000106
 ここで、(式3C11)にθ=θを代入すると、以下の(式3C12)が得られる。
Figure JPOXMLDOC01-appb-M000107
Here, by substituting θ=θ i into (Formula 3C11), the following (Formula 3C12) is obtained.
Figure JPOXMLDOC01-appb-M000107
 (式3C12)より、W=0(l=1,・・・,p+1)ならば、D(p+1)(θ)=0となる。これにより、W=0(l=1,・・・,p)ならばD(l)(θ)=0(l=1,・・・,p)が成り立っているとすると、W=0(l=1,・・・,p+1)ならばD(l)(θ)=0(l=1,・・・,p+1)が成り立つことになる。 From (Formula 3C12), if W H Q l V i =0 (l=1, . . . , p+1), then D (p+1)i )=0. As a result, if W H Q l V i =0 (l=1,..., p), then D (l)i )=0 (l=1,..., p) holds. Then, if W H Q l V i =0 (l=1, . . . , p+1), then D (l)i )=0 (l=1, . . . , p+1) holds true.
 逆に、D(l)(θ)=0(l=1,・・・,p)ならばW=0(l=1,・・・,p)が成り立っているとすると、D(l)(θ)=0(l=1,・・・,p+1)ならば、(式3C12)より、以下の(式3C13)となる。
Figure JPOXMLDOC01-appb-M000108
Conversely, if D (l)i ) = 0 (l = 1, ..., p), W H Q l V i =0 (l = 1, ..., p) holds. Then, if D (l)i )=0 (l=1, . . . , p+1), the following (Formula 3C13) is obtained from (Formula 3C12).
Figure JPOXMLDOC01-appb-M000108
 (式3C10)より、Fp+1,p+1(θ)≠0からWp+1V(θ)=0が得られる。これにより、以下の(式3C14)が成り立つ。
Figure JPOXMLDOC01-appb-M000109
From (Formula 3C10), W H Q p+1 V(θ i )=0 is obtained from F p+1,p+1i )≠0. As a result, the following (Formula 3C14) holds true.
Figure JPOXMLDOC01-appb-M000109
 上記の[3-1]及び[3-2]から、以下の(式3C15)が成立することが証明された。
Figure JPOXMLDOC01-appb-M000110
From [3-1] and [3-2] above, it was proven that the following (Formula 3C15) holds true.
Figure JPOXMLDOC01-appb-M000110
[実施形態3に係るヌル深度制御の最適ウェイト]
 ウェイトベクトルWとヌルの拘束ベクトルVi(i=1,・・・,M<K)の内積の大きさ|W|を|εに拘束する最適化問題の最適ウェイトは以下の(式N1)としてもよいことを以下に証明する。
Figure JPOXMLDOC01-appb-M000111
[Optimal weight for null depth control according to Embodiment 3]
The size of the inner product of the weight vector W and the null constraint vector Vi (i=1,...,M<K) |W H V i | is constrained to |ε i | 2 The optimal weight for the optimization problem is as follows. It will be proven below that (Equation N1) can be used.
Figure JPOXMLDOC01-appb-M000111
 ここで、V’=(I-AA)V,Vε=(Aεである。Aは、M個の複素列の拘束ベクトルV,V,・・・,Vを並べた行列であり、Aは、Aのムーア・ペンローズ一般逆行列である。また、ε=[ε ε ・・・ εであり、εの偏角はAの各要素と同じ値とする。αは、上述した(式330)を満たす。 Here, V' d = (I-AA + )V d , V ε = (A + ) H ε. A is a matrix in which M complex column constraint vectors V 1 , V 2 , . . . , V M are arranged, and A + is a Moore-Penrose general inverse matrix of A. Further, ε=[ε 1 ε 2 ... ε M ] T , and the argument angle of ε i has the same value as each element of A + V d . α satisfies (Equation 330) described above.
 まず、条件|W=|εに対するラグランジュ乗数をλ、||W||=1に対する乗数をμとし、以下の(式N2)とおく。なお、λ、μは、実数である。
Figure JPOXMLDOC01-appb-M000112
First, let the Lagrange multiplier for the condition |W H V i | 2 = |ε i | 2 be λ i and the multiplier for ||W || Note that λ i and μ are real numbers.
Figure JPOXMLDOC01-appb-M000112
 ラグランジュの未定乗数法により、以下の(式N3)から以下の(式D1)、(式D2)、(式D3)が得られる。ただし、i=1,・・・,Mである。
Figure JPOXMLDOC01-appb-M000113
Figure JPOXMLDOC01-appb-M000114
Figure JPOXMLDOC01-appb-M000115
 WW=1 ・・・(式D3)
By Lagrange's undetermined multiplier method, the following (Formula D1), (Formula D2), and (Formula D3) are obtained from the following (Formula N3). However, i=1,...,M.
Figure JPOXMLDOC01-appb-M000113
Figure JPOXMLDOC01-appb-M000114
Figure JPOXMLDOC01-appb-M000115
W H W=1...(Formula D3)
 V W及びV Wは、複素スカラであるので、α、βを使ってV W=μα、λ W=μβとおくと、(式D1)は、以下の(式D4)となる。
Figure JPOXMLDOC01-appb-M000116
Since V H d W and V H i W are complex scalars, by using α and β i and setting V H d W=μα, λ i V H i W=μβ i , (Formula D1) becomes, The following (Formula D4) is obtained.
Figure JPOXMLDOC01-appb-M000116
 ここで、(式D4)は、A=[V V ・・・ VM]とb=[β β ・・・ βを用いて以下の(式D5)と書き換えられる。
 W=αV-Ab ・・・(式D5)
Here, (Formula D4) can be rewritten as the following (Formula D5) using A=[V 1 V 2 . . . VM ] and b=[β 1 β 2 . . . β M ] T.
W=αV d −Ab (Formula D5)
 (式D5)を(式D2)に代入すると、以下の(式D51)が得られる。よって、(式D51)は、αV -V Ab=εとしてもよい。
Figure JPOXMLDOC01-appb-M000117
By substituting (Formula D5) into (Formula D2), the following (Formula D51) is obtained. Therefore, (Formula D51) may be set as αV H i V d −V H i Ab=ε i .
Figure JPOXMLDOC01-appb-M000117
 これは、A=[V V ・・・ VM]とε=[ε ε ・・・ εを使うと、以下の(式D6)と表せる。よって、以下の(式D7)が得られる。
 αA-AAb=ε ・・・(式D6)
 AAb=αA-ε ・・・(式D7)
This can be expressed as the following (Formula D6) using A=[V 1 V 2 ... VM ] and ε=[ε 1 ε 2 ... ε M ] T . Therefore, the following (Formula D7) is obtained.
αA H V d −A H Ab=ε (Formula D6)
A H Ab=αA H V d -ε...(Formula D7)
 (式D7)より、bの一般解は、(式D71)で与えられる。なお、zは任意の複素ベクトル、Iは単位行列、()はムーア・ペンローズ一般逆行列である。
Figure JPOXMLDOC01-appb-M000118
From (Formula D7), the general solution of b is given by (Formula D71). Note that z is an arbitrary complex vector, I is an identity matrix, and () + is a Moore-Penrose general inverse matrix.
Figure JPOXMLDOC01-appb-M000118
 一般に、A=(AA)であるから、以下の(式D8)となるが、(式D8)を(式D7)に代入すると、以下の(式D81)であり、A=A(A=AA(AA)=AAAより、AA(AA)ε=εを満足する必要がある。よって、A(Aε=εとなる。
Figure JPOXMLDOC01-appb-M000119
Figure JPOXMLDOC01-appb-M000120
Generally, since A + = ( AH Since H = A H (A H ) + A H = A H A (A H A) + A H = A H AA + , it is necessary to satisfy A H A (A H A) + ε=ε. Therefore, A H (A H ) + ε=ε.
Figure JPOXMLDOC01-appb-M000119
Figure JPOXMLDOC01-appb-M000120
 これは、ε=Axのとき成り立つ。すなわち、ε=V xを満たす複素ベクトルxが存在する必要がある。Vが線形従属の場合、等式ε=Axを満たさない場合があり、そのときは解が存在しないことを意味する。 This holds true when ε=A H x. That is, there needs to be a complex vector x that satisfies ε i =V H i x. If V i is linearly dependent, the equation ε=A H x may not be satisfied, which means that there is no solution.
 ところで、(式D8)を(式D5)に代入すると、以下の(式D9)が得られる。
Figure JPOXMLDOC01-appb-M000121
By the way, by substituting (Formula D8) into (Formula D5), the following (Formula D9) is obtained.
Figure JPOXMLDOC01-appb-M000121
 (式D9)を(式D3)に代入すると、WW=|α| (I-AA)V+ε(Aε=1より、以下の(式D91)となる。
Figure JPOXMLDOC01-appb-M000122
Substituting (Formula D9) into (Formula D3), W H W=|α| 2 V H d (I-AA + )V dH A + (A + ) H ε=1, the following (Formula D91).
Figure JPOXMLDOC01-appb-M000122
 (式D91)を満足するαとして以下の(式D10)を選んでもよい。
Figure JPOXMLDOC01-appb-M000123
The following (Formula D10) may be selected as α that satisfies (Formula D91).
Figure JPOXMLDOC01-appb-M000123
 ところで、Wに(式D9)を代入すると、以下の(式D11)となる。 
Figure JPOXMLDOC01-appb-M000124
By the way, when (Formula D9) is substituted for W H V d , the following (Formula D11) is obtained.
Figure JPOXMLDOC01-appb-M000124
 複素数の三角不等式より、以下の(式D11a)という関係が成り立つ。
Figure JPOXMLDOC01-appb-M000125
From the trigonometric inequality of complex numbers, the following relationship (formula D11a) holds true.
Figure JPOXMLDOC01-appb-M000125
 等号は、εがαV (I-AA)Vの正の実数倍のときに成り立つ。(式D10)よりαは非負の実数であり、(I-AA)がエルミート行列であるから、V (I-AA)Vも非負の実数である。よって、εが非負の実数になるように複素数のベクトルεの各要素の偏角を調整すればよい。具体的には、εの各要素の偏角がAの各要素の偏角と一致するようにする。 The equality sign holds when ε H A + V d is a positive real number multiple of αV H d (I-AA + )V d . From (Formula D10), α is a non-negative real number, and since (I-AA + ) is a Hermitian matrix, V H d (I-AA + )V d is also a non-negative real number. Therefore, the argument angle of each element of the complex vector ε may be adjusted so that ε H A + V d becomes a non-negative real number. Specifically, the argument angle of each element of ε is made to match the argument angle of each element of A + V d .
 ここで、V’=(I-AA)V、Vε=(Aεとすると、(式D9)より、以下の(式D12)となる。
 Wopt=αV’+Vε ・・・(式D12)
Here, if V' d = (I-AA + )V d and V ε = (A + ) H ε, the following (Formula D12) is obtained from (Formula D9).
W opt = αV' d +V ε ... (Formula D12)
 また、(式D10)は、以下の(式D13)になる。
Figure JPOXMLDOC01-appb-M000126
Moreover, (Formula D10) becomes the following (Formula D13).
Figure JPOXMLDOC01-appb-M000126
 以下にウェイト算出手順を整理する。
(PC1)AからAを求める。
(PC2)Aから各要素の偏角を求め、この偏角と|ε|よりεを作る。
(PC3)V’=(I-AA)VとVε=(Aεを計算し、(式D13)によりαを求める。
(PC4)(式D12)を使ってαとV’とVεからWoptを算出する。
The weight calculation procedure is summarized below.
(PC1) Find A + from A.
(PC2) Find the argument of each element from A + V d , and create ε from this argument and |ε i |.
(PC3) Calculate V' d = (I-AA + ) V d and V ε = (A + ) H ε, and find α using (Formula D13).
(PC4) W opt is calculated from α, V′ d , and V ε using (formula D12).
[実施形態3に係る近似解によるヌル深度制御]
 W≒γV及びW≒0(i=1,・・・,M<K)を満足する最適なウェイトベクトルWoptは、以下の(式E1)とすると、以下の(式E2)で与えられることを以下に証明する。ただし、||W||=1である。
Figure JPOXMLDOC01-appb-M000127
Figure JPOXMLDOC01-appb-M000128
[Null depth control using approximate solution according to Embodiment 3]
The optimal weight vector W opt that satisfies W≒γV d and W H V i ≒0 (i=1,..., M<K) is given by the following (Formula E1), the following (Formula E2) We prove below that it is given by However, ||W|| 2 =1.
Figure JPOXMLDOC01-appb-M000127
Figure JPOXMLDOC01-appb-M000128
 ここで、A’はM個の複素列ベクトルα,α,・・・,αを並べた以下の(式E3)であり、以下の(式E4)は重み係数である。
Figure JPOXMLDOC01-appb-M000129
Figure JPOXMLDOC01-appb-M000130
Here, A' is the following (Formula E3) in which M complex column vectors α 1 V 1 , α 2 V 2 , ..., α M V M are arranged, and the following (Formula E4) is the weight It is a coefficient.
Figure JPOXMLDOC01-appb-M000129
Figure JPOXMLDOC01-appb-M000130
 まず、以下の(式E5)に示す評価関数J(W)を最小にすることを考える。
Figure JPOXMLDOC01-appb-M000131
First, consider minimizing the evaluation function J(W) shown in (Equation E5) below.
Figure JPOXMLDOC01-appb-M000131
 以下の(式E6)により以下の(式E7)となるので、以下の(式E8)が得られる。
Figure JPOXMLDOC01-appb-M000132
Figure JPOXMLDOC01-appb-M000133
Figure JPOXMLDOC01-appb-M000134
Since the following (Formula E6) yields the following (Formula E7), the following (Formula E8) is obtained.
Figure JPOXMLDOC01-appb-M000132
Figure JPOXMLDOC01-appb-M000133
Figure JPOXMLDOC01-appb-M000134
 (式E3)を使えば、以下の(式E9)が得られる。
 (I+A’A’)W=γV ・・・(式E9)
By using (Formula E3), the following (Formula E9) can be obtained.
(I+ A'A'H )W=γV d ...(Formula E9)
 (I+A’A’)は正定値行列であり、逆行列が存在するため、最適なウェイトベクトルWoptは、以下の(式E10)が得られる。
Figure JPOXMLDOC01-appb-M000135
(I+A'A' H ) is a positive definite matrix, and since an inverse matrix exists, the following (Formula E10) is obtained as the optimal weight vector W opt .
Figure JPOXMLDOC01-appb-M000135
 ここで、V’’=(I-A’(I+A’A’)-1A’)Vとおくと、以下の(式E11)となる。
Figure JPOXMLDOC01-appb-M000136
Here, by setting V'' d = (IA'(I+A' H A') -1 A' H )V d , the following (Formula E11) is obtained.
Figure JPOXMLDOC01-appb-M000136
 最後に||W||=|γ|||V’’||=1を満足するγとして、γ=1/||V’’||を選ぶことができる。よって(式E11)は、上述した(式E2)となる。 Finally, as γ that satisfies ||W|| 2 = |γ| 2 ||V'' d ||=1, γ=1/||V'' d || can be selected. Therefore, (Formula E11) becomes the above-mentioned (Formula E2).
[実施形態1のシミュレーションによる効果確認]
 実施形態1に係る線形拘束付きレトロディレクティブ(LCR:Linearly Constrained Retrodirective)方式の動作及び効果を、レイトレーシング法による計算機シミュレーションを用いて検証した。レイトレーシング法は、公知である電波伝搬解析のためのレイトレーシング法である。なお、レイトレーシング法によるシミュレーションでは、最大反射回数は4回、最大回析回数は2回、反射と回析の組み合わせは各1回とした。
[Effect confirmation by simulation of Embodiment 1]
The operation and effects of the linearly constrained retrodirective (LCR) method according to the first embodiment were verified using computer simulation using a ray tracing method. The ray tracing method is a well-known ray tracing method for radio wave propagation analysis. In the simulation using the ray tracing method, the maximum number of reflections was 4, the maximum number of diffraction was 2, and the combination of reflection and diffraction was 1 each.
 図44は、実施形態1に係るシミュレーションの配置を示す上面図である。図45は、実施形態1に係るシミュレーションの配置を示す側面図である。図46は、実施形態1に係るシミュレーションの主要諸元を示す図である。図47は、実施形態1に係る異なる方式による電力分布を示す図である。 FIG. 44 is a top view showing the simulation arrangement according to the first embodiment. FIG. 45 is a side view showing the simulation arrangement according to the first embodiment. FIG. 46 is a diagram showing main specifications of simulation according to the first embodiment. FIG. 47 is a diagram showing power distributions according to different methods according to the first embodiment.
 図44及び図45に示すように、幅3.0m×奥行4.0m×高さ3.0mのコンクリートの部屋の中央に、送電装置10のアンテナ(Tx)と受電装置20のアンテナ(Rx)を3.0m離して配置する。アンテナ中心の高さは、送受電装置ともに床面から0.8mである。このマルチパス環境に疑似人体である物体5000を置く。物体5000の位置は、xy平面の座標で表す。座標原点は、図44及び図45に示すようにアンテナ(Tx)の中心とする。また、物体5000は、直方体とする。物体5000の形状によって結果が変わる可能性があるが、他の形状を使った検討は今後の課題とする。シミュレーションの主要諸元は、図46に表している。図46の(※)に示す疑似人体の比誘電率及び導電率は、「人体側頭部を除く人体に近接して使用する無線機器等に対する比吸収率の測定方法」(情報通信審議会,諮問第118号一部答申「携帯電話端末等に対する比吸収率の測定法」,2011年10月)を参考にしている。シミュレーションは、比較のためマルチパス・レトロディレクティブ方式(MR方式)と線形拘束付きレトロディレクティブ方式(LCR方式)の2方式を行う。2方式は、アンテナ(Rx)からパイロット信号を送出し、アンテナ(Tx)側でアレー応答ベクトルVを抽出するまでは共通である。 As shown in FIGS. 44 and 45, the antenna (Tx) of the power transmitting device 10 and the antenna (Rx) of the power receiving device 20 are installed in the center of a concrete room with a width of 3.0 m x depth of 4.0 m x height of 3.0 m. are placed 3.0 m apart. The height of the center of the antenna is 0.8 m from the floor surface for both power transmitting and receiving devices. An object 5000, which is a pseudo human body, is placed in this multipath environment. The position of the object 5000 is expressed by coordinates on the xy plane. The coordinate origin is set at the center of the antenna (Tx) as shown in FIGS. 44 and 45. Furthermore, the object 5000 is a rectangular parallelepiped. The results may change depending on the shape of the object 5000, but studies using other shapes will be left as future work. The main specifications of the simulation are shown in FIG. The relative permittivity and conductivity of the simulated human body shown in (*) in Figure 46 are based on the "Method for measuring specific absorption rate for wireless equipment, etc. used in close proximity to the human body, excluding the temporal region" (Information and Communications Council, Reference is made to Partial Report of Consultation No. 118, ``Measurement method of specific absorption rate for mobile phone terminals, etc.'' (October 2011). The simulation is performed using two methods for comparison: a multipath retrodirective method (MR method) and a retrodirective method with linear constraints (LCR method). The two methods are the same until the pilot signal is sent from the antenna (Rx) and the array response vector V d is extracted on the antenna (Tx) side.
 その後、MR方式は以下の(式401)、LCR方式は以下の(式402)より求めたウェイトを使ってアンテナ(Tx)から送信し、アンテナ(Rx)での受信電力などを求める。このときLCR方式では物体5000の中心点から方向を計算し、A=[V]を導出する。アレー応答ベクトルVとVはともに推定誤差なしとする。
opt=αV,α=1/||V||・・・(式401)
opt=αV’,α=1/||V’||,V’=(I-AA)V・・・(式402)
Thereafter, transmission is performed from the antenna (Tx) using the weights obtained from the following (Formula 401) for the MR method and from the following (Formula 402) for the LCR method, and the received power at the antenna (Rx) is determined. At this time, in the LCR method, the direction is calculated from the center point of the object 5000, and A=[V 1 ] is derived. It is assumed that both array response vectors V d and V 1 have no estimation error.
W opt = αV d , α=1/||V d ||... (Formula 401)
W opt = αV' d , α=1/||V' d ||, V' d = (I-AA + )V d ... (Formula 402)
 疑似人体である物体5000を座標(x,y)=(1.0m,1.5m)に置き、アンテナ(Tx)から送信した時のxy平面の電力分布(z=0)を図47に示す。ただし、電力は、各観測点に0dBi無指向性アンテナを配置したときの受信電力である。図47に示すように、MR方式は、物体5000に向けて電波を放射しているが、LCR方式は、物体5000に向かう放射が抑圧されていることが確認できる。 FIG. 47 shows the power distribution (z=0) on the xy plane when an object 5000, which is a pseudo human body, is placed at the coordinates (x, y) = (1.0 m, 1.5 m) and transmitted from the antenna (Tx). . However, the power is the received power when a 0 dBi omnidirectional antenna is placed at each observation point. As shown in FIG. 47, it can be confirmed that in the MR method, radio waves are emitted toward the object 5000, but in the LCR method, the radiation directed toward the object 5000 is suppressed.
 図44の中の疑似人体である物体5000のA面・B面における電力分布を図48及び図49に示す。図48は、送電装置10に近い2表面の疑似人体のMR方式による電力分布を示す図である。図49は、送電装置10に近い2表面の疑似人体のLCR方式による電力分布を示す図である。なお、図48及び図49のカラーバーは、図47と同一である。図48では、縦軸のz=0付近の電力がA面及びB面で大きくなっている。これに対し、図49では、縦軸のz=0付近の電力が抑えられており、これからもLCR方式の効果が確認できる。 FIGS. 48 and 49 show power distributions on the A side and B side of the object 5000, which is a pseudo human body, in FIG. 44. FIG. 48 is a diagram showing the power distribution of the two surfaces of the pseudo human body near the power transmission device 10 according to the MR method. FIG. 49 is a diagram showing the power distribution of the two surfaces of the pseudo human body near the power transmission device 10 according to the LCR method. Note that the color bars in FIGS. 48 and 49 are the same as in FIG. 47. In FIG. 48, the power near z=0 on the vertical axis is large on the A side and the B side. On the other hand, in FIG. 49, the power near z=0 on the vertical axis is suppressed, and the effect of the LCR method can be confirmed from this.
 本出願の提案方式の効果を検証する。LCR方式では人体を反射板として利用しないため、人体への放射が減少するとともにアンテナ(Rx)での受信電力も減少すると考えられる。そこで、人体放射回避効果の評価指標として「アンテナ(Rx)での受信電力」と「疑似人体での電力」の比を用いる。ここで「疑似人体での電力」は、図48及び図49の電力分布の中央値とする。図50は、図48及び図49の疑似人体の電力の累積相対度数のグラフである。図50では、累積相対度数が50%になる電力を「疑似人体での電力」とする。そして、「LCR方式の電力比(dB)」-「MR方式の電力比(dB)」を方式利得と呼び、最終的にこれで評価する。 The effectiveness of the proposed method of this application will be verified. Since the LCR method does not use the human body as a reflector, it is thought that the radiation to the human body is reduced and the received power at the antenna (Rx) is also reduced. Therefore, the ratio of "received power at the antenna (Rx)" to "power at the simulated human body" is used as an evaluation index of the human body radiation avoidance effect. Here, the "power in the pseudo human body" is the median value of the power distributions in FIGS. 48 and 49. FIG. 50 is a graph of the cumulative relative power of the pseudo human body shown in FIGS. 48 and 49. FIG. In FIG. 50, the power at which the cumulative relative frequency is 50% is defined as "power in the pseudo human body." Then, "power ratio of LCR method (dB)" - "power ratio of MR method (dB)" is called method gain, and this is finally evaluated.
 図51は、実施形態1に係るシミュレーションの物体5000の移動例を示す図である。図52は、図51のx方向移動(y=1.5m)時の結果を示すグラフである。図53は、図51のy方向移動(x=1.0m)時の結果を示すグラフである。 FIG. 51 is a diagram showing an example of movement of the object 5000 in the simulation according to the first embodiment. FIG. 52 is a graph showing the results when moving in the x direction (y=1.5 m) in FIG. 51. FIG. 53 is a graph showing the results when moving in the y direction (x=1.0 m) in FIG. 51.
 まず、図51のM1のように、物体5000のy座標を1.5mに固定し、x座標を0.6m~1.4mまで変化させる。このときの結果が図52である。図52では、x方向移動時、物体5000の中心はアンテナ(Tx)とアンテナ(Rx)の二等分線上にあり、いずれも物体5000は反射板になっている。x方向移動時の方式利得は、2.2~6.2dBであり、その分人体への放射が抑えられている。 First, as shown by M1 in FIG. 51, the y-coordinate of the object 5000 is fixed at 1.5 m, and the x-coordinate is changed from 0.6 m to 1.4 m. The result at this time is shown in FIG. In FIG. 52, when moving in the x direction, the center of the object 5000 is on the bisector of the antenna (Tx) and the antenna (Rx), and the object 5000 is a reflecting plate in both cases. The method gain when moving in the x direction is 2.2 to 6.2 dB, and radiation to the human body is suppressed accordingly.
 次に、図51のM2のように、物体5000のx座標を1.0mに固定し、y座標を1.1m~1.9mまで変化させる。このときの結果が図53である。図53では、方式利得が2.0dBになることもあるが、マイナスになることはなかった。図53において、y方向移動時の方式利得が減少した原因として、y座標が1.2m以下あるいは1.8m以上では、物体5000が反射板の役目を担っていないためと考えられる。シミュレーション結果より、アンテナ(Tx)-アンテナ(Rx)間の1回反射の素波のうち物体5000で反射した素波数を確認したところ、図51のM1ではすべて64(Txのアンテナ素子数と同じ)であったが、図51のM2では図54の表に示すように、y座標によって異なった。図54は、y座標と疑似人体で反射する素波数の関係を示す表である。図54に示すように、y座標が1.2m以下あるいは1.8m以上でゼロとなっており、これは幾何学的位置関係からアンテナ(Tx)-疑似人体-アンテナ(Rx)の伝搬経路が存在していないことを意味する。一方、y座標が1.9mのときは、図53に示すように、方式利得が4.0になった。このケースは、アンテナ(Tx)-疑似人体の後、壁などに多重反射し、アンテナ(Rx)に到達する伝搬経路が影響しており、LCR方式はその放射を抑えているためと考えられる。 Next, as shown by M2 in FIG. 51, the x-coordinate of the object 5000 is fixed at 1.0m, and the y-coordinate is changed from 1.1m to 1.9m. The result at this time is shown in FIG. In FIG. 53, although the method gain sometimes reached 2.0 dB, it never became negative. In FIG. 53, the reason why the method gain decreases when moving in the y direction is considered to be that the object 5000 does not play the role of a reflector when the y coordinate is 1.2 m or less or 1.8 m or more. From the simulation results, we confirmed the number of elementary waves reflected by an object of 5000 among the elementary waves reflected once between the antenna (Tx) and the antenna (Rx), and found that for M1 in Figure 51, all 64 (same as the number of antenna elements for Tx). ), but as shown in the table of FIG. 54, M2 in FIG. 51 differed depending on the y coordinate. FIG. 54 is a table showing the relationship between the y-coordinate and the number of elementary waves reflected by the pseudo-human body. As shown in Figure 54, the y-coordinate becomes zero when it is 1.2 m or less or 1.8 m or more, and this is because the propagation path of the antenna (Tx) - pseudo human body - antenna (Rx) is due to the geometric positional relationship. means it doesn't exist. On the other hand, when the y-coordinate was 1.9 m, the system gain was 4.0, as shown in FIG. This case is considered to be due to the influence of the propagation path from the antenna (Tx) to the pseudo human body, multiple reflections on walls, etc., and reaching the antenna (Rx), and the LCR method suppresses this radiation.
 以上により、屋内有人環境での空間伝送型ワイヤレス電力伝送システムにおいて、人体での反射に着目し、レトロディレクティブ方式の課題について述べ、対策として人体方向にヌルを形成する線形拘束付きレトロディレクティブ方式を提案した。そして、計算機シミュレーションにより動作および効果を検証し、人体に向かって放射される場合、従来方式と比較して人体への放射が抑圧されることを確認した。なお、実施形態2及び実施形態3についても、同様に、計算機シミュレーションにより動作および効果を検証することができる。 Based on the above, we focus on reflections from the human body in spatial transmission type wireless power transmission systems in indoor manned environments, discuss the issues with the retrodirective method, and propose a retrodirective method with linear constraint that forms a null in the direction of the human body as a countermeasure. did. They then verified the operation and effectiveness using computer simulations and confirmed that when radiation is directed toward the human body, the radiation toward the human body is suppressed compared to conventional methods. Note that the operations and effects of Embodiments 2 and 3 can be similarly verified by computer simulation.
 添付の請求項に係る技術を完全かつ明瞭に開示するために特徴的な実施形態に関し記載してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。本開示の内容は、当業者であれば本開示に基づき種々の変形および修正を行うことができる。したがって、これらの変形および修正は本開示の範囲に含まれる。例えば、各実施形態において、各機能部、各手段、各ステップなどは論理的に矛盾しないように他の実施形態に追加し、若しくは、他の実施形態の各機能部、各手段、各ステップなどと置き換えることが可能である。また、各実施形態において、複数の各機能部、各手段、各ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。 Specific embodiments have been described to provide a complete and clear disclosure of the technology as claimed below. However, the appended claims should not be limited to the above-mentioned embodiments, but include all modifications and substitutions that can be created by a person skilled in the art within the scope of the basic matters presented in this specification. should be configured to embody a specific configuration. Those skilled in the art can make various changes and modifications to the contents of the present disclosure based on the present disclosure. Accordingly, these variations and modifications are included within the scope of this disclosure. For example, in each embodiment, each functional unit, each means, each step, etc. may be added to other embodiments so as not to be logically contradictory, or each functional unit, each means, each step, etc. of other embodiments may be added to other embodiments to avoid logical contradiction. It is possible to replace it with Further, in each embodiment, it is possible to combine or divide a plurality of functional units, means, steps, etc. into one. Further, each embodiment of the present disclosure described above is not limited to being implemented faithfully to each described embodiment, but may be implemented by combining each feature or omitting a part as appropriate. You can also do that.
 1 システム
 10 送電装置
 10A 生成部
 11 アレーアンテナ
 11A アンテナ素子
 12 送信信号発生部
 13 送受信部
 14 推定部
 15 センサ部
 16 検出部
 17 ウェイト生成部
 17D 記憶部
 18 乗算部
 19 前処理部
 20 受電装置
 21 アンテナ
 22 送受信部
 23 信号発生部
 24 受電部
 100A 従来のレトロディレクティブ方式を用いた参考用送電装置
 200B 基準点
 200P 受信点
 1000 規定信号
 2000 送信信号
 2000W 電波
 3000 参考用送電装置を用いた場合の電波の強度分布
 4000 部屋
 5000 物体
 V ヌルに対応したアレー応答ベクトル
 V 受電装置に対応したアレー応答ベクトル
 Wopt ウェイトベクトル
1 System 10 Power transmission device 10A Generation section 11 Array antenna 11A Antenna element 12 Transmission signal generation section 13 Transmission/reception section 14 Estimation section 15 Sensor section 16 Detection section 17 Weight generation section 17D Storage section 18 Multiplication section 19 Preprocessing section 20 Power reception device 21 Antenna 22 Transmitting/receiving section 23 Signal generating section 24 Power receiving section 100A Reference power transmission device using the conventional retrodirective method 200B Reference point 200P Receiving point 1000 Standard signal 2000 Transmission signal 2000W Radio wave 3000 Radio wave intensity when using the reference power transmission device Distribution 4000 Room 5000 Object V Array response vector corresponding to i null V d Array response vector corresponding to power receiving device W opt weight vector

Claims (10)

  1.  受電装置への送信信号の送信と前記受電装置から送信される受信信号の受信をアンテナにより行う送受信部と、
     前記受信信号と、前記受電装置とは異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成部と、
    を備える、送電装置。
    a transmitting/receiving unit that transmits a transmission signal to a power receiving device and receives a reception signal transmitted from the power receiving device using an antenna;
    Based on the received signal and information about an object different from the power receiving device, the directivity of the antenna that transmits the transmitted signal is such that the intensity of the radio wave that transmits the transmitted signal to the object is equal to or less than a predetermined value. a weight generation unit that controls the
    A power transmission device comprising:
  2.  前記受電装置とは異なる前記物体の方向を検出するためセンサ部を備える、請求項1に記載の送電装置。 The power transmitting device according to claim 1, further comprising a sensor section for detecting a direction of the object different from the direction of the power receiving device.
  3.  前記ウェイト生成部は、前記送信信号を送信する電波の、前記アンテナに対する前記物体の方向である第1方向への電波強度が所定以下となるように、前記指向性を制御する、請求項2に記載の送電装置。 3. The weight generation unit controls the directivity so that the radio wave intensity of the radio waves transmitting the transmission signal in a first direction, which is the direction of the object with respect to the antenna, is equal to or less than a predetermined value. The power transmission equipment described.
  4.  前記受信信号は複数の伝搬チャネルの特性を推定するための規定信号を含み、
     前記ウェイト生成部は、前記規定信号の前記伝搬チャネルの特性と、前記第1方向とに基づいて、前記指向性を制御するための送信ウェイトを生成する、請求項3に記載の送電装置。
    The received signal includes a prescribed signal for estimating characteristics of a plurality of propagation channels,
    The power transmission device according to claim 3, wherein the weight generation unit generates a transmission weight for controlling the directivity based on characteristics of the propagation channel of the specified signal and the first direction.
  5.  前記ウェイト生成部は、前記アンテナに対する前記物体の方向の利得がヌルから所定以内の利得範囲となるように送信ウェイトを生成する、請求項2に記載の送電装置。 The power transmission device according to claim 2, wherein the weight generation unit generates transmission weights such that a gain in the direction of the object with respect to the antenna is within a predetermined gain range from null.
  6.  前記ウェイト生成部は、
     前記受電装置から送信される規定信号により生成されたアレー応答ベクトルVと、前記物体の方向のアレー応答ベクトルVとに基づいて、前記アレー応答ベクトルVのアレー応答値の大きさをゼロとし、この条件で前記アレー応答ベクトルVのアレー応答値の大きさを最大化する送信ウェイトを生成する、請求項2に記載の送電装置。
    The weight generation unit is
    Based on the array response vector V d generated by the specified signal transmitted from the power receiving device and the array response vector V i in the direction of the object, the magnitude of the array response value of the array response vector V i is set to zero. The power transmission device according to claim 2, which generates a transmission weight that maximizes the magnitude of the array response value of the array response vector Vd under this condition.
  7.  前記ウェイト生成部は、
     複数の前記アンテナを構成するアンテナ素子の数をKとし、複数の前記アンテナ素子のうちヌルを形成する数をMとし、ウェイトベクトルをWとし、前記ウェイトベクトルの複素共役転置(エルミート転置)をWとした場合に、アレー応答値の大きさ|W|を最大にするウェイトベクトルWoptを、条件式を示す下記(式1)により決定し、前記ウェイトベクトルWoptを前記送信ウェイトとして生成する、請求項6に記載の送電装置。
    Figure JPOXMLDOC01-appb-M000001
    The weight generation unit is
    The number of antenna elements constituting the plurality of antennas is K, the number of antenna elements forming a null among the plurality of antenna elements is M, the weight vector is W, and the complex conjugate transpose (Hermitian transpose) of the weight vector is W. The weight vector W opt that maximizes the magnitude of the array response value |W H V d | is determined by the conditional expression (Equation 1 ) below, and the weight vector W opt is set to the transmission weight The power transmission device according to claim 6, wherein the power transmission device generates the power as a power transmission device.
    Figure JPOXMLDOC01-appb-M000001
  8.  前記受電装置が移動可能な装置であり、規定信号に基づく伝搬チャネルの特性が前記受電装置の位置に応じて変化しうる、請求項3に記載の送電装置。 The power transmitting device according to claim 3, wherein the power receiving device is a movable device, and the characteristics of the propagation channel based on the prescribed signal can change depending on the position of the power receiving device.
  9.  受電装置と、
     前記受電装置から送信される受信信号の受信と送信信号の送信をアンテナにより行う送受信部、及び、
     前記受信信号と前記受電装置とは異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成部を有する送電装置と、
     を備えるワイヤレス電力伝送システム。
    A power receiving device;
    a transmitting/receiving unit that receives a received signal transmitted from the power receiving device and transmits a transmitted signal using an antenna;
    Based on the received signal and information about an object different from the power receiving device, the directivity of the antenna that transmits the transmitted signal is adjusted so that the intensity of the radio wave that transmits the transmitted signal to the object is equal to or less than a predetermined value. a power transmission device having a weight generation unit to control;
    A wireless power transmission system comprising:
  10.  受電装置への送信信号の送信と前記受電装置から送信される受信信号の受信をアンテナにより行う送受信工程と、
     前記受信信号と前記受電装置と異なる物体に関する情報とに基づいて、前記送信信号を送信する電波の前記物体への強度が所定以下となるように、前記送信信号を送信するアンテナの指向性を制御するウェイト生成工程と、
    を備える、制御方法。
    a transmission/reception step of transmitting a transmission signal to a power receiving device and receiving a reception signal transmitted from the power receiving device using an antenna;
    Based on the received signal and information regarding an object different from the power receiving device, the directivity of the antenna that transmits the transmitted signal is controlled so that the intensity of radio waves that transmit the transmitted signal to the object is equal to or less than a predetermined value. A weight generation process,
    A control method comprising:
PCT/JP2022/048643 2022-06-23 2022-12-28 Power transmission device, wireless power transmission system, and control method WO2023248504A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-101407 2022-06-23
JP2022101407 2022-06-23
JP2022-162297 2022-10-07
JP2022162297 2022-10-07

Publications (1)

Publication Number Publication Date
WO2023248504A1 true WO2023248504A1 (en) 2023-12-28

Family

ID=89379430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048643 WO2023248504A1 (en) 2022-06-23 2022-12-28 Power transmission device, wireless power transmission system, and control method

Country Status (2)

Country Link
JP (1) JP2024003082A (en)
WO (1) WO2023248504A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044509A1 (en) * 2016-09-02 2018-03-08 Motorola Solutions, Inc. System and method for determining a microwave beam and a power setting for wireless power transfer within a volume
JP2020005468A (en) * 2018-06-29 2020-01-09 オムロン株式会社 Wireless power supply device and wireless power supply method
JP2020048285A (en) * 2018-09-18 2020-03-26 株式会社東芝 Wireless power transmission device, wireless power transmission system, and wireless power transmission method
JP2020072492A (en) * 2018-10-29 2020-05-07 株式会社東芝 Wireless power supply device, wireless power supply system and wireless power supply method
KR20210033266A (en) * 2019-09-18 2021-03-26 한국전력공사 Method for transmitting wireless power and electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044509A1 (en) * 2016-09-02 2018-03-08 Motorola Solutions, Inc. System and method for determining a microwave beam and a power setting for wireless power transfer within a volume
JP2020005468A (en) * 2018-06-29 2020-01-09 オムロン株式会社 Wireless power supply device and wireless power supply method
JP2020048285A (en) * 2018-09-18 2020-03-26 株式会社東芝 Wireless power transmission device, wireless power transmission system, and wireless power transmission method
JP2020072492A (en) * 2018-10-29 2020-05-07 株式会社東芝 Wireless power supply device, wireless power supply system and wireless power supply method
KR20210033266A (en) * 2019-09-18 2021-03-26 한국전력공사 Method for transmitting wireless power and electronic device thereof

Also Published As

Publication number Publication date
JP2024003082A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US20150229133A1 (en) Subscription based miso and mimo wireless energy transfer
CN108390160A (en) Intelligent RF lens effects:Efficiently, dynamic and mobile wireless power transmission
US11411438B2 (en) Wireless power transmission device, electronic device capable of wirelessly receiving power, and control method thereof
Li et al. Wireless power transfer based on microwaves and time reversal for indoor environments
KR102084532B1 (en) Smart far-field wireless power transfer system and method thereof
EP3675321A1 (en) Wireless power transmission apparatus, electronic apparatus for receiving power wirelessly and operation method thereof
JP2020048285A (en) Wireless power transmission device, wireless power transmission system, and wireless power transmission method
Qi et al. Deep learning-based BackCom multiple beamforming for 6G UAV IoT networks
Fokin et al. Direction of Arrival Positioning Requirements for Location-Aware Beamforming in 5G mmWave UDN
Yang et al. Auto-tracking wireless power transfer system with focused-beam phased array
Jayaprakasam et al. A PARETO ELITE SELECTION GENETIC ALGORITHM FOR RANDOM ANTENNA ARRAY BEAMFORMING WITH LOW SIDELOBE LEVEL.
WO2023248504A1 (en) Power transmission device, wireless power transmission system, and control method
Pakdaman et al. Separable transmit beampattern design for MIMO radars with planar colocated antennas
WO2023248505A1 (en) Power transmission device, wireless power transmission system, and control method
WO2023248503A1 (en) Electricity transmission device, wireless power transmission system, and control method
Li et al. Multi-user beamforming design for integrating sensing, communications, and power transfer
Ma et al. A synthetic aperture based method for reflector positioning via moving tag in UHF RFID system
Ellahi et al. Phased array antenna for the application of device free localization in indoor environments
Peng et al. An anti-main-lobe jamming algorithm for airborne early warning radar based on APC-SVRGD joint optimization
Wang et al. Performance analysis of spectrum sensing based on distributed satellite clusters under perturbation
Park et al. Fine Beam Tracking Using Spatio–Temporal Interpolation in Wireless Power Transfer Systems
Bekkali et al. Detection probability of passive RFID systems under cascaded Rician and Rayleigh fading channel
Twigg On the Control of Robotic Parasitic Antenna Arrays
Kubina et al. A coherent multi-reader approach to increase the working range of passive RFID systems
JP7345039B2 (en) Electronic equipment, control methods and control programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948063

Country of ref document: EP

Kind code of ref document: A1