WO2023248303A1 - Control system - Google Patents

Control system Download PDF

Info

Publication number
WO2023248303A1
WO2023248303A1 PCT/JP2022/024566 JP2022024566W WO2023248303A1 WO 2023248303 A1 WO2023248303 A1 WO 2023248303A1 JP 2022024566 W JP2022024566 W JP 2022024566W WO 2023248303 A1 WO2023248303 A1 WO 2023248303A1
Authority
WO
WIPO (PCT)
Prior art keywords
held
information
machine
holding
workpiece
Prior art date
Application number
PCT/JP2022/024566
Other languages
French (fr)
Japanese (ja)
Inventor
伸悟 川内
孝輔 ▲辻▼川
宗洋 村田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/024566 priority Critical patent/WO2023248303A1/en
Priority to CN202280073536.9A priority patent/CN118202310A/en
Priority to JP2022554614A priority patent/JP7209906B1/en
Publication of WO2023248303A1 publication Critical patent/WO2023248303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • the present disclosure relates to a control system that controls industrial machinery such as machine tools.
  • Control devices that control the operation of industrial machinery such as machine tools generally employ a feedback control method.
  • the control device can stably follow the target value sent from the host controller and can also cope with the influence of disturbances.
  • the resonant frequency also changes as the characteristics of the object to be held, such as its structure and material, and whether or not the object is being held, that is, the state in which it is held, change. Therefore, the method of determining the cutoff frequency in advance using a dedicated measuring instrument may not be able to sufficiently suppress the above phenomenon.
  • Patent Document 1 discloses that the resonant frequency, which changes depending on the characteristics and state of the object to be held, is calculated using current commands in the control loop, position and current feedback obtained from sensors, etc. A control system that estimates from information is disclosed. The control system described in Patent Document 1 determines the estimated resonance frequency as the cutoff frequency of the notch filter, thereby making it possible to suppress vibration even when the controlled object changes.
  • the present disclosure has been made in view of the above, and is intended to be used to estimate the resonant frequency of mechanical resonance that occurs in accordance with the natural frequency that changes depending on the state of industrial machines such as machine tools.
  • the present invention aims to provide a control system that can suppress mechanical resonance in industrial machinery without requiring operations that generate mechanical resonance.
  • the control system of the present disclosure includes a data acquisition section and an analysis section.
  • the data acquisition unit acquires held object information indicating information on the held object held in the holding device of the industrial machine, the holding state of the held object in the holding device, and machine information indicating information on the industrial machine. do.
  • the analysis section calculates the cutoff frequency set by filtering processing in a motor control device that controls a controlled object installed in an industrial machine, including the controlled object and the holding device when the held object is held in the holding device. It is derived as the natural frequency of the mechanical configuration that occurs in the mechanical configuration consisting of .
  • the analysis unit analyzes the machine configuration that occurs when processing is performed with the held object held in the holding device of the industrial machine, based on the held object information, holding state, and machine information acquired by the data acquisition unit. Derive the natural frequency of.
  • the control system according to the present disclosure is an operation that actually causes mechanical resonance in an industrial machine such as a machine tool in order to estimate the resonance frequency of machine resonance that occurs according to the natural frequency that changes depending on the state of the industrial machine. This has the effect of suppressing mechanical resonance in industrial machinery without requiring any.
  • Flowchart showing an example of a processing procedure in a filter generation unit in the control system according to Embodiment 1 A diagram illustrating an example of the configuration of a processing circuit according to Embodiment 1.
  • a diagram schematically showing another example of the configuration of the control system according to Embodiment 1. A block diagram showing an example of the configuration of a computer system that implements the arithmetic unit of the control system according to Embodiment 1.
  • FIG. 1 is a diagram schematically showing an example of the configuration of a control system according to the first embodiment.
  • the control system 20 of the first embodiment includes a motor control device 1 and a higher-level controller 2 that controls the motor control device 1.
  • Control system 20 controls machine tool 30.
  • the machine tool 30 that is the control target of the control system 20 is a machine tool that performs cutting, but the control target of the control system 20 is not limited to a machine tool that performs cutting. Any industrial machine may be used as long as it is capable of holding the workpiece 6 to be processed.
  • the machine tool 30 includes a motor 3, a reduction gear 8, a chuck device 5, and a cutting tool 7.
  • the machine tool 30 can hold the workpiece 6.
  • the workpiece 6 is an example of an object that can be held by the machine tool 30.
  • the workpiece 6 is a target to be processed by the machine tool 30.
  • the chuck device 5 is an example of a holding device for the machine tool 30.
  • the machine tool 30 fixes the workpiece 6 using the chuck device 5.
  • the chuck device 5 fixes the work 6 when receiving a chuck signal from the host controller 2 indicating that the work 6 is to be held.
  • the motor 3 is controlled by a motor control device 1.
  • the rotational motion of the motor 3 is transmitted to the chuck device 5 via a speed reducer 8.
  • the workpiece 6 rotates together with the chuck device 5.
  • the workpiece 6 is machined by the cutting tool 7 while rotating.
  • the position of the motor 3, that is, the rotational position of the motor 3 is detected by the detector 4.
  • the position of the motor 3 detected by the detector 4 is input to the motor control device 1.
  • the motor control device 1 directly controls the motor 3 and indirectly controls the reducer 8 that converts the rotational motion of the motor 3, and the motor 3 and the reducer 8 are controlled by the motor control device 1.
  • the objects to be controlled by the motor control device 1 may include not only the motor 3 and the speed reducer 8, but also a member that transmits the driving force of the motor 3, such as a ball screw (not shown).
  • the chuck device 5 is an example in which the workpiece 6 is held by a chuck mechanism, but the chuck device 5 is not limited to the chuck mechanism, and may be a holding device that holds the workpiece 6 by another mechanism. . Further, in the example shown in FIG. 1, the chuck device 5 holds one end of the work 6 extending in one direction, but may hold the work 6 at any position.
  • the machine tool 30 has one set of machining parts including the motor 3, the reducer 8, the chuck device 5, and the cutting tool 7; It may have a part.
  • the processing section including the motor 3, reducer 8, chuck device 5, and cutting tool 7 may be arranged symmetrically. As a result, a state where both processing sections hold the workpiece 6 may change to a state where one processing section holds the workpiece 6 and the other processing section does not hold the workpiece 6. In such a case, the resonant frequency of the entire machine tool 30 will change.
  • the upper controller 2 generates commands, control signals, control information, etc. for controlling the machining of the machine tool 30.
  • the host controller 2 generates a position command, which is a command regarding the position of the motor 3, and outputs it to the motor control device 1.
  • the host controller 2 generates commands, control signals, control information, etc. for controlling machining of the machine tool 30 according to a machining program.
  • the motor control device 1 generates a current for controlling the motor 3 based on the position command received from the host controller 2 and the position of the motor 3 input from the detector 4, and outputs it to the motor 3. do.
  • the host controller 2 generates a control signal indicating whether the chuck device 5 fixes or releases the workpiece 6 and outputs it to the chuck device 5.
  • the control signal indicating whether to fix or release the workpiece 6 is a chuck signal that is output while the workpiece 6 is being fixed.
  • the chuck device 5 performs an operation of fixing the workpiece 6 while receiving a chuck signal from the host controller 2, and performs an operation of releasing the workpiece 6 when not receiving a chuck signal.
  • control signal indicating whether to fix or release the workpiece 6 is not limited to this example, and may be a signal output at the start and end of the workpiece 6, or may be a signal outputted at the start and end of the workpiece 6, or may be a signal outputted when the workpiece 6 is fixed or released depending on the voltage value of the signal, etc. It may also indicate the fixation and release of. Further, although an example in which the workpiece 6 is fixed by the chuck device 5 has been shown, any fixing method may be used as long as the host controller 2 can grasp whether or not the workpiece 6 is fixed to the machine tool 30. .
  • the host controller 2 knows the holding state of the workpiece 6.
  • the holding state is, for example, information indicating whether the workpiece 6 is fixed to the machine tool 30 or not.
  • the holding state is, for example, whether the workpiece 6 is fixed to the chuck device 5 or not.
  • this holding state is designated by a machining program.
  • the host controller 2 can determine the holding state of the workpiece 6 based on the machining program.
  • the holding state may be inputtable by the operator of the machine tool 30.
  • the operator inputs the holding state of the workpiece 6 using an input means (not shown) of the host controller 2 .
  • the motor control device 1 may include an input means, and the operator may input the holding state of the workpiece 6 to the motor control device 1.
  • the upper controller 2 controls machining by the machine tool 30 based on machining conditions.
  • the workpiece information includes the holding position, structure, and material of the workpiece 6.
  • the workpiece information corresponds to the held object information.
  • the holding position is information indicating the length from the end of the workpiece 6 to the holding location of the workpiece 6 held by the chuck device 5. In the example shown in FIG. 1, the holding position is the length from the end where the work 6 is not held to the end where the work 6 is held by the chuck device 5.
  • the structure is information indicating the shape of the workpiece 6.
  • the material is information indicating the material that constitutes the workpiece 6.
  • the machine information is information about the machine tool 30, and includes the inertia and structure of the motor 3 that is controlled by the motor control device 1, the reducer 8 that changes the rotational speed of the motor 3, and the chuck device 5 that holds the workpiece 6.
  • the host controller 2 outputs the holding state of the workpiece 6, workpiece information that is information about the workpiece 6, and machine information that is information about the machine tool 30 to the motor control device 1. Workpiece information and machine information may also be determined based on the machining program, or may be inputtable by the operator.
  • the held object information is information indicating information about the held object such as the work 6.
  • the machine information is information indicating information on an industrial machine such as the machine tool 30.
  • the motor control device 1 includes a position control section 11, a speed control section 12, a filter generation section 13, a current control section 14, and a speed conversion section 15.
  • the position control unit 11 calculates a speed command based on the position command received from the host controller 2 and the position input from the detector 4, and outputs the speed command to the speed control unit 12. Specifically, the speed command is calculated based on the difference between the position command and the position input from the detector 4.
  • the speed converter 15 calculates the speed by differentiating the position input from the detector 4, and outputs the calculated speed to the speed controller 12.
  • the speed control unit 12 calculates a current command based on the speed command and the speed input from the speed conversion unit 15, and outputs the current command to the filter generation unit 13. Specifically, the speed control section 12 calculates the current command based on the difference between the speed command and the speed input from the speed conversion section 15. That is, the speed control section 12 is a command generation section that generates a command for controlling the machine tool 30 through feedback control. Specifically, this command is a command for controlling the motor 3 of the machine tool 30 by feedback control.
  • a filter generation unit 13 (described later) performs filtering processing on a current command for controlling the motor 3.
  • the target of the filtering process in the first embodiment may be any command to control a motor provided in the machine tool 30, and is not limited to a current command.
  • the filter generation unit 13 performs filtering processing on a command for controlling the machine tool 30 by feedback control, in this example a current command, and outputs the current command after the filtering processing to the current control unit 14.
  • the filtering process in the filter generation unit 13 is a filtering process that attenuates a component of a cutoff frequency that is a specific frequency, that is, blocks a component of a cutoff frequency.
  • Machine resonance can be suppressed by setting the cutoff frequency cut off by the filter generation unit 13 to the frequency at which resonance occurs in the machine tool 30, that is, the resonance frequency.
  • the frequency at which mechanical resonance is generated changes depending on the natural frequency of the mechanical configuration of the machine tool 30, which includes the control target of the motor control device 1 and the chuck device 5.
  • the filter generation unit 13 determines the cutoff frequency to be removed by filtering processing based on the work information, holding state, and machine information received from the host controller 2. As a result, in the first embodiment, the cutoff frequency can be determined by reflecting the holding state of the work 6, the structure and material of the work 6, and the like.
  • the filter generation unit 13 when the holding state of the workpiece 6 changes, from a state in which the workpiece 6 is held in each of two processing sections, the workpiece 6 is removed from one processing section, and the workpiece 6 is removed from the other processing section.
  • An example of this is when the state changes to a state where it is held.
  • the current control unit 14 controls the current output to the motor 3 based on the current command output from the filter generation unit 13.
  • the current command output from the filter generation unit 13 is a current command obtained by removing the cutoff frequency from the current command output from the speed control unit 12 by the filter generation unit 13.
  • the motor 3 performs rotational motion according to the current output from the current control section 14.
  • the filter generation unit 13 obtains a vibration frequency using information including workpiece information, holding state, and machine information, and performs filtering processing on the current command according to the vibration frequency.
  • the filter generation unit 13 includes an arithmetic unit that derives a natural frequency from information including workpiece information, holding state, and machine information through vibration analysis using a finite element method (FEM) model. Vibration analysis using a finite element method model is a well-known technique, so its explanation will be omitted.
  • FEM finite element method
  • FIG. 2 is a diagram schematically showing an example of the configuration of a filter generation section in the control system according to the first embodiment.
  • the filter generation unit 13 includes an arithmetic unit 131 and a notch filter 132.
  • the calculation device 131 derives the natural frequency of the machine configuration by inputting the work information, holding state, and machine information received from the host controller 2.
  • the arithmetic unit 131 When deriving the natural frequency, the arithmetic unit 131 generates a shape model for the analysis target from the work information, the holding state, and the machine information, and performs vibration analysis on this shape model using an FEM model.
  • the notch filter 132 performs filtering processing on the current command using the natural frequency output by the arithmetic device 131 as a cutoff frequency.
  • the filter generation unit 13 is a functional block that causes an IC (Integrated Circuit), a microcomputer, etc. to function as the filter generation unit 13.
  • the functional block functions as a notch filter 132 by setting the cutoff frequency derived by the arithmetic unit 131.
  • FIG. 3 is a diagram schematically showing an example of the configuration of a calculation device in the control system according to the first embodiment.
  • the arithmetic device 131 includes a data acquisition section 1311 and an FEM analysis section 1312.
  • the data acquisition unit 1311 acquires work information, holding state, and machine information of the work 6 from the upper controller 2 as input data in vibration analysis using the FEM model, and inputs the input data to the FEM analysis unit 1312.
  • the FEM analysis unit 1312 calculates the cutoff frequency set by the filtering process in the motor control device 1 that controls the controlled object provided in the machine tool 30 as the natural frequency of the machine configuration that occurs when the workpiece 6 is held. Derive. Specifically, the FEM analysis unit 1312 performs processing on the workpiece 6 held in the chuck device 5 of the machine tool 30 based on the workpiece information, holding state, and machine information acquired by the data acquisition unit 1311. The natural frequency of the mechanical structure that sometimes occurs is derived as the frequency to be cut off. At this time, the FEM analysis unit 1312 derives the natural frequency by performing vibration analysis using the finite element method.
  • the FEM analysis unit 1312 derives a cutoff frequency to be applied to the notch filter 132 by performing vibration analysis on the input data input from the data acquisition unit 1311 using a FEM model using the finite element method.
  • the FEM analysis section 1312 corresponds to an analysis section.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure in the filter generation unit in the control system according to the first embodiment.
  • the data acquisition unit 1311 of the arithmetic device 131 acquires data (step S11). Specifically, the data acquisition unit 1311 of the arithmetic unit 131 acquires work information, holding state, and machine information of the workpiece 6 held in the machine tool 30 as input data for vibration analysis, and transfers the input data to the FEM analysis unit 1312. Enter.
  • the data acquisition unit 1311 acquires work information, holding state, and machine information of the work 6 from the host controller 2.
  • the FEM analysis unit 1312 derives the natural frequency, which is the vibration frequency when the workpiece 6 is held by the machine tool 30, by performing vibration analysis using the FEM model based on the input data (step S12).
  • the FEM analysis unit 1312 outputs the natural frequency derived in step S12 to the notch filter 132 (step S13).
  • the notch filter 132 performs settings according to the data output from the FEM analysis section 1312 (step S14). Specifically, the notch filter 132 sets the cutoff frequency to the natural frequency calculated by the calculation device 131, and performs filtering processing on the current command. This completes the process.
  • the filter generation unit 13 can suppress the natural frequency corresponding to the combination of workpiece information, holding state, and machine information through filtering processing. Even if at least one of them changes, mechanical resonance of the machine tool 30 can be suppressed. That is, even if the workpiece 6 is replaced or the holding of the workpiece 6 is released during machining, the workpiece information, holding state, and machine information after changes in at least one of the workpiece 6 and the holding state are changed.
  • the natural frequency corresponding to the combination of is calculated by the calculation device 131 and set in the notch filter 132. Therefore, even after the change, mechanical resonance of the machine tool 30 can be suppressed.
  • control system 20 uses the calculation device 131 to calculate the natural frequency corresponding to the combination of workpiece information, holding state, and machine information, there is no need for an operation that actually generates mechanical resonance in the machine tool 30, and there is no need to perform an operation that actually causes mechanical resonance.
  • the frequency can be derived.
  • the current control unit 14 includes a converter circuit that converts AC power to DC power or an inverter circuit that converts DC power to desired AC power, and supplies current to the motor 3 so as to follow the current command.
  • the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by a processing circuit.
  • the processing circuit may be a circuit including a processor or may be dedicated hardware.
  • FIG. 5 is a diagram illustrating an example of a configuration of a processing circuit according to the first embodiment.
  • the processing circuit 100 shown in FIG. 5 includes a processor 101 and a memory 102.
  • the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by a control circuit, these are realized by the processor 101 reading and executing a program stored in the memory 102. be done. That is, when the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by the control circuit shown in FIG. 5, these functions are realized using a program that is software.
  • Memory 102 is also used as a work area for processor 101.
  • the processor 101 is a CPU (Central Processing Unit) or the like.
  • the memory 102 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a nonvolatile or volatile semiconductor memory such as a flash memory, a magnetic disk, or the like.
  • the processing circuit is, for example, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 may be realized by combining a processing circuit including a processor and dedicated hardware.
  • the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 may be realized by a plurality of processing circuits.
  • the host controller 2 sends the filter generation unit 13 of the motor control device 1 the workpiece information and retention information about the workpiece 6 held in the chuck device 5, which is the control target of the motor control device 1. It provided status and machine information. However, the workpiece information, holding state, and machine information regarding the workpiece 6 may be input using an input means (not shown) of the motor control device 1.
  • the configuration of the control system 20 for setting the cutoff frequency includes the motor control device 1.
  • the control system 20 includes a motor control device 1 and a host controller 2, and has a configuration in which the filter generation unit 13 of the motor control device 1 includes a calculation device 131 that calculates a natural frequency.
  • the configuration of the control system 20 is not limited to this.
  • FIG. 6 is a diagram schematically showing another example of the configuration of the control system according to the first embodiment. Note that the same components as those in the above description are given the same reference numerals, and the description thereof will be omitted.
  • the filter generation unit 13 of the motor control device 1 does not have the calculation device 131, and the host controller 2 has the calculation device 21 that calculates the natural frequency. is different.
  • the configuration of the arithmetic unit 21 is similar to that shown in FIG. In this case, the data acquisition section of the arithmetic device 21 of the host controller 2 acquires work information, holding state, and machine information about the workpiece 6 held in the chuck device 5, and the FEM analysis section uses the FEM model to analyze the workpiece 6.
  • the natural frequency of the machine configuration in the machine tool 30 having the workpiece 6 determined by the information, the holding state, and the machine information is derived. Then, the calculation device 21 sets the derived natural frequency in the filter generation section 13 of the motor control device 1.
  • FIG. 7 is a diagram schematically showing another example of the configuration of the control system according to the first embodiment. Note that the same components as those in the above description are given the same reference numerals, and the description thereof will be omitted.
  • the control system 20b shown in FIG. 7 further includes a calculation device 50 in addition to the motor control device 1 and the host controller 2.
  • the motor control device 1, the host controller 2, and the arithmetic device 50 are connected via a communication line, and the arithmetic device 50 can communicate with the host controller 2 and the motor control device 1.
  • the filter generating section 13 of the motor control device 1 does not include the arithmetic device 131.
  • the configuration of the arithmetic device 50 is similar to that shown in FIG.
  • the data acquisition section of the arithmetic device 50 acquires work information, holding state, and machine information regarding the workpiece 6 held in the chuck device 5, and the FEM analysis section uses the FEM model to obtain work information, holding state, and machine information.
  • the natural frequency of the machine configuration in the machine tool 30 having the workpiece 6 defined by the state and machine information is derived.
  • the FEM analysis section of the arithmetic device 50 sets the derived natural frequency to the filter generation section 13 of the motor control device 1.
  • the arithmetic device 50 in this case is configured by a computer system, for example. That is, the computing device 50 in FIG. 7 functions as the computing device 50 by executing a program on the computer system, which is a computer program in which a process for deriving a natural frequency is described.
  • FIG. 8 is a block diagram illustrating an example of the configuration of a computer system that implements the arithmetic unit of the control system according to the first embodiment. As shown in FIG. 8, this computer system includes a control section 81, an input section 82, a storage section 83, a display section 84, a communication section 85, and an output section 86, which are connected via a system bus 87. ing.
  • control unit 81 is, for example, a processor such as a CPU, and executes a program in which processing in the arithmetic device 50 according to the first embodiment is described. Note that a part of the control unit 81 may be realized by dedicated hardware such as a GPU (Graphics Processing Unit) or FPGA.
  • the input unit 82 is composed of a keyboard, a mouse, etc., and is used by a user of the computer system to input various information.
  • the storage unit 83 includes various memories such as RAM and ROM, and storage devices such as a hard disk, and stores programs to be executed by the control unit 81, necessary data obtained in the process of processing, and the like. The storage unit 83 is also used as a temporary storage area for programs.
  • the display unit 84 is composed of a display, a liquid crystal display panel, etc., and displays various screens to the user of the computer system.
  • the communication unit 85 is a receiver and a transmitter that perform communication processing.
  • the output unit 86 is a printer, a speaker, or the like. Note that FIG. 8 is an example, and the configuration of the computer system is not limited to the example of FIG. 8.
  • a computer program is stored in a storage unit from a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or a DVD (Digital Versatile Disc)-ROM drive (not shown). Installed on 83. Then, when the program is executed, the program read from the storage section 83 is stored in the main storage area of the storage section 83. In this state, the control unit 81 executes processing as the arithmetic device 50 in FIG. 7 according to the program stored in the storage unit 83.
  • a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes processing in the arithmetic unit 50.
  • a program provided via a transmission medium such as the Internet via the communication unit 85 may be used.
  • this computer program causes a computer system to execute the processing procedure shown in FIG. 4.
  • the state in which the workpiece 6 is actually held by the machine tool 30 and the state in which the workpiece 6 is actually held are determined based on the workpiece information, holding state, and machine information of the workpiece 6.
  • machining processing is executed with the workpiece 6 held by the machine tool 30, and feedback information such as a current command and a detection result by a detector is used to determine the resonance frequency at which the machine actually resonates using feedback control.
  • the resonant frequency obtained for the notch filter 132 was set as the cutoff frequency.
  • the natural frequency is calculated without using feedback control, and the calculation result is filtered to the filter of the motor control device 1. It can be set in the generation unit 13. This eliminates the need to perform machining with the machine tool 30 holding the workpiece 6, to actually generate machine resonance, and then to suppress the machine resonance in order to find the resonant frequency. Therefore, vibrations occurring in the workpiece 6 at the natural frequency can be suppressed.
  • the mechanical resonance of the industrial machine such as the machine tool 30 is suppressed without requiring an operation for estimating the resonance frequency of the machine resonance that occurs in accordance with the natural frequency that changes depending on the state of the industrial machine. It has the effect of being able to Further, since it is not necessary to generate mechanical resonance for estimating the natural frequency after the state changes, it is possible to suppress undesirable effects of mechanical resonance on the machine tool 30.
  • the configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This control system comprises a data acquisition unit (1311) and an analysis unit. The data acquisition unit (1311) acquires to-be-held object information indicating information about a to-be-held object held by a holding device of an industrial machine, the holding state of the to-be-held object held by the holding device, and machine information indicating information about the industrial machine. The analysis unit derives the cutoff frequency to be set in a filtering process by a motor control device that controls a control target provided for the industrial machine, as the natural frequency of a machine construction that occurs in the machine construction comprising the control target and the holding device when the to-be-held object is held by the holding device. The analysis unit derives the natural frequency of the machine construction that occurs when a machining process is performed with the to-be-held object being held by the holding device of the industrial machine, from the to-be-held object information, the holding state, and the machine information acquired by the data acquisition unit (1311).

Description

制御システムcontrol system
 本開示は、工作機械をはじめとした産業用機械装置を制御する制御システムに関する。 The present disclosure relates to a control system that controls industrial machinery such as machine tools.
 工作機械をはじめとした産業用機械装置の動作を制御する制御装置は、一般に、フィードバック制御手法を採用している。制御装置は、フィードバック制御手法を採用することにより、上位コントローラから送られてくる目標値に安定に追従するとともに外乱の影響にも対応できる。 Control devices that control the operation of industrial machinery such as machine tools generally employ a feedback control method. By employing a feedback control method, the control device can stably follow the target value sent from the host controller and can also cope with the influence of disturbances.
 ところが、フィードバック制御手法を用いても、制御対象の剛性、質量等に依存する機械共振が発生する場合がある。機械共振が発生した際にフィードバックゲインが大きな値に設定されていると、機械共振が増大し制御系が発振してしまうことがある。このような現象を抑制するために、従来、特定の周波数成分だけを減衰させるフィルタであるノッチフィルタを、制御ループ内に設ける手法が用いられていた。しかし、減衰させるすなわち遮断する特定の周波数である遮断周波数を、ノッチフィルタに設定するためには、遮断すべき周波数を事前に実測により求めることになり、専用の計測器が必要になる。また、工作機械のなかには、ワークなどの保持対象物の保持動作を行うものがある。このような工作機械では、保持対象物の構造、材質等の特性、さらに保持対象物を保持しているか否か、すなわち保持状態が変化することに伴い、共振周波数も変化してしまう。このため、事前に専用の計測器を用いて遮断周波数を決定する方法では、上記現象を十分に抑制できない場合がある。 However, even if a feedback control method is used, mechanical resonance depending on the rigidity, mass, etc. of the controlled object may occur. If the feedback gain is set to a large value when mechanical resonance occurs, the mechanical resonance may increase and the control system may oscillate. In order to suppress such a phenomenon, conventionally, a method has been used in which a notch filter, which is a filter that attenuates only specific frequency components, is provided in the control loop. However, in order to set a cutoff frequency, which is a specific frequency to be attenuated or cut off, in a notch filter, the frequency to be cut off must be determined in advance by actual measurement, and a dedicated measuring instrument is required. Furthermore, some machine tools perform a holding operation on an object to be held, such as a workpiece. In such a machine tool, the resonant frequency also changes as the characteristics of the object to be held, such as its structure and material, and whether or not the object is being held, that is, the state in which it is held, change. Therefore, the method of determining the cutoff frequency in advance using a dedicated measuring instrument may not be able to sufficiently suppress the above phenomenon.
 上記のような問題点に対応するため、特許文献1には、保持対象物の特性および状態に応じて変化する共振周波数を、制御ループ内の電流指令、センサ等から取得した位置、電流のフィードバック情報から推定する制御システムが開示されている。特許文献1に記載の制御システムは、推定した共振周波数をノッチフィルタの遮断周波数として決定することで、制御対象が変化した場合であっても振動を抑制することが可能となる。 In order to address the above-mentioned problems, Patent Document 1 discloses that the resonant frequency, which changes depending on the characteristics and state of the object to be held, is calculated using current commands in the control loop, position and current feedback obtained from sensors, etc. A control system that estimates from information is disclosed. The control system described in Patent Document 1 determines the estimated resonance frequency as the cutoff frequency of the notch filter, thereby making it possible to suppress vibration even when the controlled object changes.
特許第6639758号公報Patent No. 6639758
 しかしながら、特許文献1に記載の方法では、共振周波数が既知でない工作機械の状態である場合には、工作機械等の産業用機械において、実際に機械共振が発生してから、機械共振した際の電流指令および検出器による検出結果を含むフィードバック情報等のデータを用いて機械共振が発生した際の共振周波数を推定する必要がある。このため、ノッチフィルタの遮断周波数を決定するためには、機械共振が発生するための動作が必要となり、産業用機械に好ましくない影響を与えてしまう場合がある。 However, in the method described in Patent Document 1, when a machine tool is in a state where the resonant frequency is not known, after mechanical resonance actually occurs in an industrial machine such as a machine tool, It is necessary to estimate the resonance frequency when mechanical resonance occurs using data such as feedback information including the current command and the detection result by the detector. Therefore, in order to determine the cutoff frequency of the notch filter, an operation for generating mechanical resonance is required, which may have an undesirable effect on industrial machinery.
 本開示は、上記に鑑みてなされたものであって、工作機械等の産業用機械の状態によって変化する固有振動数に応じて発生する機械共振の共振周波数を推定するための実際に産業用機械に機械共振を発生させる動作を必要とすることなく、産業用機械の機械共振を抑制することができる制御システムを得ることを目的とする。 The present disclosure has been made in view of the above, and is intended to be used to estimate the resonant frequency of mechanical resonance that occurs in accordance with the natural frequency that changes depending on the state of industrial machines such as machine tools. The present invention aims to provide a control system that can suppress mechanical resonance in industrial machinery without requiring operations that generate mechanical resonance.
 上述した課題を解決し、目的を達成するために、本開示の制御システムは、データ取得部と、解析部と、を備える。データ取得部は、産業用機械の保持装置に保持された保持対象物の情報を示す保持対象物情報、保持対象物の保持装置への保持状態、および産業用機械の情報を示す機械情報を取得する。解析部は、産業用機械に設けられる制御対象を制御するモータ制御装置でのフィルタリング処理で設定される遮断周波数を、保持対象物を保持装置に保持させた場合の制御対象と保持装置とを含んで構成された機械構成に発生する機械構成の固有振動数として導出する。解析部は、データ取得部によって取得された保持対象物情報、保持状態および機械情報から、保持対象物を産業用機械の保持装置に保持させた状態で加工処理を行ったときに発生する機械構成の固有振動数を導出する。 In order to solve the above-mentioned problems and achieve the objectives, the control system of the present disclosure includes a data acquisition section and an analysis section. The data acquisition unit acquires held object information indicating information on the held object held in the holding device of the industrial machine, the holding state of the held object in the holding device, and machine information indicating information on the industrial machine. do. The analysis section calculates the cutoff frequency set by filtering processing in a motor control device that controls a controlled object installed in an industrial machine, including the controlled object and the holding device when the held object is held in the holding device. It is derived as the natural frequency of the mechanical configuration that occurs in the mechanical configuration consisting of . The analysis unit analyzes the machine configuration that occurs when processing is performed with the held object held in the holding device of the industrial machine, based on the held object information, holding state, and machine information acquired by the data acquisition unit. Derive the natural frequency of.
 本開示に係る制御システムは、工作機械等の産業用機械の状態によって変化する固有振動数に応じて発生する機械共振の共振周波数を推定するための実際に産業用機械に機械共振を発生させる動作を必要とすることなく、産業用機械の機械共振を抑制することができるという効果を奏する。 The control system according to the present disclosure is an operation that actually causes mechanical resonance in an industrial machine such as a machine tool in order to estimate the resonance frequency of machine resonance that occurs according to the natural frequency that changes depending on the state of the industrial machine. This has the effect of suppressing mechanical resonance in industrial machinery without requiring any.
実施の形態1に係る制御システムの構成の一例を模式的に示す図A diagram schematically showing an example of the configuration of a control system according to Embodiment 1. 実施の形態1に係る制御システムにおけるフィルタ生成部の構成の一例を模式的に示す図A diagram schematically showing an example of the configuration of a filter generation unit in the control system according to Embodiment 1. 実施の形態1に係る制御システムにおける演算装置の構成の一例を模式的に示す図A diagram schematically showing an example of the configuration of a calculation device in the control system according to Embodiment 1. 実施の形態1に係る制御システムにおけるフィルタ生成部での処理手順の一例を示すフローチャートFlowchart showing an example of a processing procedure in a filter generation unit in the control system according to Embodiment 1 実施の形態1の処理回路の構成の一例を示す図A diagram illustrating an example of the configuration of a processing circuit according to Embodiment 1. 実施の形態1に係る制御システムの構成の他の例を模式的に示す図A diagram schematically showing another example of the configuration of the control system according to Embodiment 1. 実施の形態1に係る制御システムの構成の他の例を模式的に示す図A diagram schematically showing another example of the configuration of the control system according to Embodiment 1. 実施の形態1に係る制御システムの演算装置を実現するコンピュータシステムの構成の一例を示すブロック図A block diagram showing an example of the configuration of a computer system that implements the arithmetic unit of the control system according to Embodiment 1.
 以下に、本開示の実施の形態に係る制御システムを図面に基づいて詳細に説明する。 Below, a control system according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る制御システムの構成の一例を模式的に示す図である。実施の形態1の制御システム20は、モータ制御装置1と、モータ制御装置1を制御する上位コントローラ2と、を備える。制御システム20は、工作機械30を制御する。実施の形態1では、制御システム20の制御対象である工作機械30は、切削加工を行う工作機械であるとするが、制御システム20の制御対象は、切削加工を行う工作機械に限定されず、加工対象であるワーク6を保持する動作を行うことが可能な産業用機械であればよい。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of the configuration of a control system according to the first embodiment. The control system 20 of the first embodiment includes a motor control device 1 and a higher-level controller 2 that controls the motor control device 1. Control system 20 controls machine tool 30. In the first embodiment, it is assumed that the machine tool 30 that is the control target of the control system 20 is a machine tool that performs cutting, but the control target of the control system 20 is not limited to a machine tool that performs cutting. Any industrial machine may be used as long as it is capable of holding the workpiece 6 to be processed.
 図1に示される例では、工作機械30は、モータ3、減速機8、チャック装置5および切削工具7を備える。工作機械30は、ワーク6を保持可能である。ワーク6は、工作機械30が保持可能な保持対象物の一例である。また、ワーク6は、工作機械30での加工対象となる。チャック装置5は、工作機械30の保持装置の一例である。具体的には、工作機械30は、チャック装置5により、ワーク6を固定する。チャック装置5は、上位コントローラ2から、ワーク6を保持することを示すチャック信号を受信した場合に、ワーク6を固定する。モータ3は、モータ制御装置1により制御される。モータ3の回転運動は減速機8を介してチャック装置5に伝達される。これにより、ワーク6はチャック装置5とともに回転する。ワーク6は回転しながら切削工具7により加工される。また、モータ3の位置、すなわちモータ3の回転位置は、検出器4により検出される。検出器4により検出されたモータ3の位置は、モータ制御装置1へ入力される。モータ制御装置1は、モータ3を直接的に制御し、モータ3の回転運動を変換する減速機8を間接的に制御しており、モータ3、減速機8はモータ制御装置1により制御される制御対象の一例である。なお、モータ制御装置1の制御する制御対象は、モータ3、減速機8のほか、図示しないボールねじ等のモータ3の駆動力を伝達する部材も含み得る。 In the example shown in FIG. 1, the machine tool 30 includes a motor 3, a reduction gear 8, a chuck device 5, and a cutting tool 7. The machine tool 30 can hold the workpiece 6. The workpiece 6 is an example of an object that can be held by the machine tool 30. Further, the workpiece 6 is a target to be processed by the machine tool 30. The chuck device 5 is an example of a holding device for the machine tool 30. Specifically, the machine tool 30 fixes the workpiece 6 using the chuck device 5. The chuck device 5 fixes the work 6 when receiving a chuck signal from the host controller 2 indicating that the work 6 is to be held. The motor 3 is controlled by a motor control device 1. The rotational motion of the motor 3 is transmitted to the chuck device 5 via a speed reducer 8. As a result, the workpiece 6 rotates together with the chuck device 5. The workpiece 6 is machined by the cutting tool 7 while rotating. Further, the position of the motor 3, that is, the rotational position of the motor 3 is detected by the detector 4. The position of the motor 3 detected by the detector 4 is input to the motor control device 1. The motor control device 1 directly controls the motor 3 and indirectly controls the reducer 8 that converts the rotational motion of the motor 3, and the motor 3 and the reducer 8 are controlled by the motor control device 1. This is an example of a controlled object. Note that the objects to be controlled by the motor control device 1 may include not only the motor 3 and the speed reducer 8, but also a member that transmits the driving force of the motor 3, such as a ball screw (not shown).
 図1に示される例では、チャック装置5は、チャック機構によってワーク6を保持する例を示したが、チャック機構に限定されず、他の機構でワーク6を保持する保持装置であってもよい。また、図1に示される例では、チャック装置5は、1方向に延在するワーク6の一方の端部を保持しているが、ワーク6の任意の位置を保持してもよい。 In the example shown in FIG. 1, the chuck device 5 is an example in which the workpiece 6 is held by a chuck mechanism, but the chuck device 5 is not limited to the chuck mechanism, and may be a holding device that holds the workpiece 6 by another mechanism. . Further, in the example shown in FIG. 1, the chuck device 5 holds one end of the work 6 extending in one direction, but may hold the work 6 at any position.
 さらに、図1に示される例では、工作機械30が、モータ3、減速機8、チャック装置5および切削工具7を含む1組の加工部を有する場合を例に挙げたが、2組の加工部を有していてもよい。この場合には、モータ3、減速機8、チャック装置5および切削工具7を含む加工部は、対称に配置されていてもよい。これによって、両方の加工部がワーク6を保持している状態から、一方の加工部はワーク6を保持し、他方の加工部はワーク6を保持していない状態へと変化する場合がある。このような場合には、工作機械30全体の共振周波数が変化することになる。 Furthermore, in the example shown in FIG. 1, the machine tool 30 has one set of machining parts including the motor 3, the reducer 8, the chuck device 5, and the cutting tool 7; It may have a part. In this case, the processing section including the motor 3, reducer 8, chuck device 5, and cutting tool 7 may be arranged symmetrically. As a result, a state where both processing sections hold the workpiece 6 may change to a state where one processing section holds the workpiece 6 and the other processing section does not hold the workpiece 6. In such a case, the resonant frequency of the entire machine tool 30 will change.
 上位コントローラ2は、工作機械30の加工を制御するための指令、制御信号、制御情報等を生成する。詳細には、上位コントローラ2は、モータ3の位置に関する指令である位置指令を生成し、モータ制御装置1へ出力する。上位コントローラ2は、一例では、加工プログラムに従って、工作機械30の加工を制御するための指令、制御信号、制御情報等を生成する。モータ制御装置1は、上位コントローラ2から受け取った位置指令と、検出器4から入力されたモータ3の位置と、に基づいて、モータ3を制御するための電流を生成して、モータ3へ出力する。 The upper controller 2 generates commands, control signals, control information, etc. for controlling the machining of the machine tool 30. Specifically, the host controller 2 generates a position command, which is a command regarding the position of the motor 3, and outputs it to the motor control device 1. In one example, the host controller 2 generates commands, control signals, control information, etc. for controlling machining of the machine tool 30 according to a machining program. The motor control device 1 generates a current for controlling the motor 3 based on the position command received from the host controller 2 and the position of the motor 3 input from the detector 4, and outputs it to the motor 3. do.
 また、上位コントローラ2は、チャック装置5がワーク6を固定するか解放するかを示す制御信号を生成して、チャック装置5へ出力する。ここでは、ワーク6を固定するか解放するかを示す制御信号は、ワーク6を固定している間出力されるチャック信号であるとする。チャック装置5は、チャック信号を上位コントローラ2から受け取っている間はワーク6を固定する動作を実施し、チャック信号を受け取っていないときには、ワーク6を解放する動作を実施する。なお、ワーク6を固定するか解放するかを示す制御信号は、この例に限らず、ワーク6の開始時および終了時に出力される信号であってもよいし、信号の電圧値等によりワーク6の固定および解放を示すものであってもよい。また、チャック装置5によって固定される例を示したが、上位コントローラ2が、ワーク6が工作機械30に固定されているか否かを把握できるものであればどのような固定方法であってもよい。 Additionally, the host controller 2 generates a control signal indicating whether the chuck device 5 fixes or releases the workpiece 6 and outputs it to the chuck device 5. Here, it is assumed that the control signal indicating whether to fix or release the workpiece 6 is a chuck signal that is output while the workpiece 6 is being fixed. The chuck device 5 performs an operation of fixing the workpiece 6 while receiving a chuck signal from the host controller 2, and performs an operation of releasing the workpiece 6 when not receiving a chuck signal. Note that the control signal indicating whether to fix or release the workpiece 6 is not limited to this example, and may be a signal output at the start and end of the workpiece 6, or may be a signal outputted at the start and end of the workpiece 6, or may be a signal outputted when the workpiece 6 is fixed or released depending on the voltage value of the signal, etc. It may also indicate the fixation and release of. Further, although an example in which the workpiece 6 is fixed by the chuck device 5 has been shown, any fixing method may be used as long as the host controller 2 can grasp whether or not the workpiece 6 is fixed to the machine tool 30. .
 上位コントローラ2は、ワーク6の保持状態を把握している。保持状態は、一例では、ワーク6が工作機械30に固定されているか否かを示す情報である。図1に示される構成例では、保持状態は、一例では、ワーク6が、チャック装置5に固定されているか否かである。この保持状態は、一例では加工プログラムによって指定されている。上位コントローラ2は、加工プログラムに基づいてワーク6の保持状態を判別することができる。また、保持状態は、工作機械30の操作者により入力可能であってもよい。一例では、操作者は上位コントローラ2の図示しない入力手段を用いてワーク6の保持状態を入力する。または、モータ制御装置1が入力手段を備え、操作者がモータ制御装置1にワーク6の保持状態を入力するようにしてもよい。また、工作機械30を用いて加工が行われる際には、加工条件として、ワーク6に関する情報であるワーク情報および工作機械30に関する情報である機械情報が入力される。上位コントローラ2は、加工条件に基づいて、工作機械30の加工を制御する。ワーク情報は、ワーク6の保持位置、構造および材質を含む。ワーク情報は、保持対象物情報に対応する。保持位置は、ワーク6の端部から、チャック装置5によって保持されているワーク6の保持箇所までの長さを示す情報である。図1に示される例では、保持位置は、ワーク6が保持されていない方の端部から、チャック装置5によって保持されているワーク6の保持箇所である端部までの長さが保持位置となる。構造は、ワーク6の形状を示す情報である。材質は、ワーク6を構成する材料を示す情報である。機械情報は、工作機械30に関する情報であり、モータ制御装置1が制御する対象であるモータ3、モータ3の回転速度を変速する減速機8、ワーク6を保持するチャック装置5のイナーシャおよび構造を含む。上位コントローラ2は、ワーク6の保持状態、ワーク6に関する情報であるワーク情報および工作機械30に関する情報である機械情報をモータ制御装置1に出力する。ワーク情報および機械情報についても、加工プログラムに基づいて判別されてもよいし、操作者により入力可能であってもよい。なお、保持対象物情報は、ワーク6等の保持対象物の情報を示す情報である。また、機械情報は、工作機械30等の産業用機械の情報を示す情報である。 The host controller 2 knows the holding state of the workpiece 6. The holding state is, for example, information indicating whether the workpiece 6 is fixed to the machine tool 30 or not. In the configuration example shown in FIG. 1, the holding state is, for example, whether the workpiece 6 is fixed to the chuck device 5 or not. In one example, this holding state is designated by a machining program. The host controller 2 can determine the holding state of the workpiece 6 based on the machining program. Furthermore, the holding state may be inputtable by the operator of the machine tool 30. In one example, the operator inputs the holding state of the workpiece 6 using an input means (not shown) of the host controller 2 . Alternatively, the motor control device 1 may include an input means, and the operator may input the holding state of the workpiece 6 to the motor control device 1. Further, when machining is performed using the machine tool 30, work information that is information regarding the work 6 and machine information that is information regarding the machine tool 30 are input as machining conditions. The upper controller 2 controls machining by the machine tool 30 based on machining conditions. The workpiece information includes the holding position, structure, and material of the workpiece 6. The workpiece information corresponds to the held object information. The holding position is information indicating the length from the end of the workpiece 6 to the holding location of the workpiece 6 held by the chuck device 5. In the example shown in FIG. 1, the holding position is the length from the end where the work 6 is not held to the end where the work 6 is held by the chuck device 5. Become. The structure is information indicating the shape of the workpiece 6. The material is information indicating the material that constitutes the workpiece 6. The machine information is information about the machine tool 30, and includes the inertia and structure of the motor 3 that is controlled by the motor control device 1, the reducer 8 that changes the rotational speed of the motor 3, and the chuck device 5 that holds the workpiece 6. include. The host controller 2 outputs the holding state of the workpiece 6, workpiece information that is information about the workpiece 6, and machine information that is information about the machine tool 30 to the motor control device 1. Workpiece information and machine information may also be determined based on the machining program, or may be inputtable by the operator. Note that the held object information is information indicating information about the held object such as the work 6. Further, the machine information is information indicating information on an industrial machine such as the machine tool 30.
 次に、モータ制御装置1の構成を説明する。図1に示されるように、モータ制御装置1は、位置制御部11、速度制御部12、フィルタ生成部13、電流制御部14および速度変換部15を備える。位置制御部11は、上位コントローラ2から受け取った位置指令と検出器4から入力された位置とに基づいて速度指令を算出し、速度指令を速度制御部12へ出力する。詳細には、位置指令と検出器4から入力された位置との差に基づいて速度指令を算出する。速度変換部15は、検出器4から入力された位置を微分することにより速度を算出し、算出した速度を速度制御部12へ出力する。 Next, the configuration of the motor control device 1 will be explained. As shown in FIG. 1, the motor control device 1 includes a position control section 11, a speed control section 12, a filter generation section 13, a current control section 14, and a speed conversion section 15. The position control unit 11 calculates a speed command based on the position command received from the host controller 2 and the position input from the detector 4, and outputs the speed command to the speed control unit 12. Specifically, the speed command is calculated based on the difference between the position command and the position input from the detector 4. The speed converter 15 calculates the speed by differentiating the position input from the detector 4, and outputs the calculated speed to the speed controller 12.
 速度制御部12は、速度指令と速度変換部15から入力された速度とに基づいて電流指令を算出し、電流指令をフィルタ生成部13へ出力する。詳細には、速度制御部12は、速度指令と速度変換部15から入力された速度との差に基づいて電流指令を算出する。すなわち、速度制御部12は、フィードバック制御により、工作機械30を制御するための指令を生成する指令生成部である。この指令は、詳細には、フィードバック制御により、工作機械30のモータ3を制御するための指令である。実施の形態1では、後述するフィルタ生成部13によりフィルタリング処理を、モータ3を制御するための電流指令に対して行う例を説明するが、電流指令は、保持対象物を保持可能な工作機械30をフィードバック制御により制御するための指令の一例であり、実施の形態1のフィルタリング処理の対象は、工作機械30に設けられたモータを制御する指令であればよく、電流指令に限定されない。 The speed control unit 12 calculates a current command based on the speed command and the speed input from the speed conversion unit 15, and outputs the current command to the filter generation unit 13. Specifically, the speed control section 12 calculates the current command based on the difference between the speed command and the speed input from the speed conversion section 15. That is, the speed control section 12 is a command generation section that generates a command for controlling the machine tool 30 through feedback control. Specifically, this command is a command for controlling the motor 3 of the machine tool 30 by feedback control. In the first embodiment, an example will be described in which a filter generation unit 13 (described later) performs filtering processing on a current command for controlling the motor 3. This is an example of a command for controlling by feedback control, and the target of the filtering process in the first embodiment may be any command to control a motor provided in the machine tool 30, and is not limited to a current command.
 フィルタ生成部13は、工作機械30をフィードバック制御により制御する指令、この例では電流指令にフィルタリング処理を行い、フィルタリング処理後の電流指令を電流制御部14へ出力する。フィルタ生成部13におけるフィルタリング処理は、特定の周波数である遮断周波数の成分を減衰させる、すなわち遮断周波数の成分を遮断するフィルタリング処理である。フィルタ生成部13が遮断する遮断周波数を、工作機械30で共振の発生する周波数、すなわち共振周波数とすることで、機械共振を抑制することができる。一方、機械共振を発生させる周波数は、モータ制御装置1の制御対象とチャック装置5とで構成された工作機械30の機械構成の固有振動数によって変化する。この固有振動数は、工作機械30によるワーク6の保持状態、ワーク6の構造および材質、等に依存する。このため、ワーク6の保持状態、ワーク6の構造および材質、等を反映せずに、フィルタ生成部13が除去する遮断周波数を決定すると、ワーク6の保持状態、ワーク6の構造および材質、等によっては、共振を抑制できないことがある。そこで、実施の形態1では、フィルタ生成部13は、上位コントローラ2から受け取ったワーク情報、保持状態および機械情報に基づいてフィルタリング処理で除去する遮断周波数を決定する。これにより、実施の形態1では、ワーク6の保持状態、ワーク6の構造および材質、等を反映して、遮断周波数を決定することができる。このため、ワーク6の固有振動数が変化する場合であっても、機械共振を抑制することができる。フィルタ生成部13の詳細については後述する。ワーク6の保持状態が変化する場合として、一例では、2つの加工部のそれぞれにワーク6が保持されている状態から、一方の加工部からワーク6が取り外され、他方の加工部でワーク6が保持される状態に変化する場合が挙げられる。 The filter generation unit 13 performs filtering processing on a command for controlling the machine tool 30 by feedback control, in this example a current command, and outputs the current command after the filtering processing to the current control unit 14. The filtering process in the filter generation unit 13 is a filtering process that attenuates a component of a cutoff frequency that is a specific frequency, that is, blocks a component of a cutoff frequency. Machine resonance can be suppressed by setting the cutoff frequency cut off by the filter generation unit 13 to the frequency at which resonance occurs in the machine tool 30, that is, the resonance frequency. On the other hand, the frequency at which mechanical resonance is generated changes depending on the natural frequency of the mechanical configuration of the machine tool 30, which includes the control target of the motor control device 1 and the chuck device 5. This natural frequency depends on the state in which the workpiece 6 is held by the machine tool 30, the structure and material of the workpiece 6, and the like. Therefore, if the cutoff frequency to be removed by the filter generation unit 13 is determined without reflecting the holding state of the workpiece 6, the structure and material of the workpiece 6, etc., the holding state of the workpiece 6, the structure and material of the workpiece 6, etc. In some cases, resonance may not be suppressed. Therefore, in the first embodiment, the filter generation unit 13 determines the cutoff frequency to be removed by filtering processing based on the work information, holding state, and machine information received from the host controller 2. As a result, in the first embodiment, the cutoff frequency can be determined by reflecting the holding state of the work 6, the structure and material of the work 6, and the like. Therefore, even if the natural frequency of the workpiece 6 changes, mechanical resonance can be suppressed. Details of the filter generation unit 13 will be described later. In one example, when the holding state of the workpiece 6 changes, from a state in which the workpiece 6 is held in each of two processing sections, the workpiece 6 is removed from one processing section, and the workpiece 6 is removed from the other processing section. An example of this is when the state changes to a state where it is held.
 電流制御部14は、フィルタ生成部13から出力された電流指令に基づいてモータ3へ出力する電流を制御する。フィルタ生成部13から出力された電流指令は、速度制御部12が出力した電流指令から、フィルタ生成部13によって遮断周波数が除去された電流指令である。モータ3は、電流制御部14から出力された電流に応じて回転運動を行う。以上の動作により、モータ制御装置1は、上位コントローラ2から受け取った位置指令に従った位置にモータ3を制御することができる。モータ3が位置指令に従った位置に制御されることにより、減速機8およびチャック装置5を介してワーク6を所望の位置に制御することができる。 The current control unit 14 controls the current output to the motor 3 based on the current command output from the filter generation unit 13. The current command output from the filter generation unit 13 is a current command obtained by removing the cutoff frequency from the current command output from the speed control unit 12 by the filter generation unit 13. The motor 3 performs rotational motion according to the current output from the current control section 14. Through the above operations, the motor control device 1 can control the motor 3 to the position according to the position command received from the host controller 2. By controlling the motor 3 to a position according to the position command, the workpiece 6 can be controlled to a desired position via the reducer 8 and the chuck device 5.
 次に、フィルタ生成部13の詳細について説明する。フィルタ生成部13は、ワーク情報、保持状態および機械情報を含む情報を用いて振動周波数を求め、電流指令に、振動周波数に応じたフィルタリング処理を実施する。フィルタ生成部13は、有限要素法による有限要素法(Finite Element Method:FEM)モデルを用いた振動解析によりワーク情報、保持状態および機械情報を含む情報から固有振動数を導出する演算装置を有する。有限要素法モデルを用いた振動解析は、公知の技術であるので、説明を省略する。 Next, details of the filter generation section 13 will be explained. The filter generation unit 13 obtains a vibration frequency using information including workpiece information, holding state, and machine information, and performs filtering processing on the current command according to the vibration frequency. The filter generation unit 13 includes an arithmetic unit that derives a natural frequency from information including workpiece information, holding state, and machine information through vibration analysis using a finite element method (FEM) model. Vibration analysis using a finite element method model is a well-known technique, so its explanation will be omitted.
 図2は、実施の形態1に係る制御システムにおけるフィルタ生成部の構成の一例を模式的に示す図である。フィルタ生成部13は、演算装置131およびノッチフィルタ132を備える。演算装置131は、上位コントローラ2から受け取ったワーク情報、保持状態および機械情報を入力することにより、機械構成の固有振動数を導出する。固有振動数を導出する際に、演算装置131は、ワーク情報、保持状態および機械情報から解析対象についての形状モデルを生成し、この形状モデルについてFEMモデルを用いた振動解析を行う。ノッチフィルタ132は、演算装置131によって出力された固有振動数を遮断周波数として、電流指令にフィルタリング処理を実施する。一例では、フィルタ生成部13は、IC(Integrated Circuit)、マイコン等を、フィルタ生成部13として機能させる機能ブロックである。機能ブロックが、演算装置131で導出された遮断周波数を設定することで、ノッチフィルタ132として機能する。 FIG. 2 is a diagram schematically showing an example of the configuration of a filter generation section in the control system according to the first embodiment. The filter generation unit 13 includes an arithmetic unit 131 and a notch filter 132. The calculation device 131 derives the natural frequency of the machine configuration by inputting the work information, holding state, and machine information received from the host controller 2. When deriving the natural frequency, the arithmetic unit 131 generates a shape model for the analysis target from the work information, the holding state, and the machine information, and performs vibration analysis on this shape model using an FEM model. The notch filter 132 performs filtering processing on the current command using the natural frequency output by the arithmetic device 131 as a cutoff frequency. In one example, the filter generation unit 13 is a functional block that causes an IC (Integrated Circuit), a microcomputer, etc. to function as the filter generation unit 13. The functional block functions as a notch filter 132 by setting the cutoff frequency derived by the arithmetic unit 131.
 図3は、実施の形態1に係る制御システムにおける演算装置の構成の一例を模式的に示す図である。演算装置131は、データ取得部1311およびFEM解析部1312を備える。 FIG. 3 is a diagram schematically showing an example of the configuration of a calculation device in the control system according to the first embodiment. The arithmetic device 131 includes a data acquisition section 1311 and an FEM analysis section 1312.
 データ取得部1311は、FEMモデルを用いた振動解析における入力データとして上位コントローラ2からワーク6のワーク情報、保持状態および機械情報を取得し、入力データをFEM解析部1312へ入力する。 The data acquisition unit 1311 acquires work information, holding state, and machine information of the work 6 from the upper controller 2 as input data in vibration analysis using the FEM model, and inputs the input data to the FEM analysis unit 1312.
 FEM解析部1312は、工作機械30に設けられる制御対象を制御するモータ制御装置1でのフィルタリング処理で設定される遮断周波数を、ワーク6を保持させたときに発生する機械構成の固有振動数として導出する。具体的には、FEM解析部1312は、データ取得部1311によって取得されたワーク情報、保持状態および機械情報から、ワーク6を工作機械30のチャック装置5に保持させた状態で加工処理を行ったときに発生する機械構成の固有振動数を、遮断する周波数として導出する。このとき、FEM解析部1312は、有限要素法を用いた振動解析を実施することによって、固有振動数を導出する。つまり、FEM解析部1312は、データ取得部1311から入力された入力データを有限要素法によるFEMモデルを用いた振動解析を実施することにより、ノッチフィルタ132に適用するための遮断周波数を導出する。FEM解析部1312は、解析部に対応する。 The FEM analysis unit 1312 calculates the cutoff frequency set by the filtering process in the motor control device 1 that controls the controlled object provided in the machine tool 30 as the natural frequency of the machine configuration that occurs when the workpiece 6 is held. Derive. Specifically, the FEM analysis unit 1312 performs processing on the workpiece 6 held in the chuck device 5 of the machine tool 30 based on the workpiece information, holding state, and machine information acquired by the data acquisition unit 1311. The natural frequency of the mechanical structure that sometimes occurs is derived as the frequency to be cut off. At this time, the FEM analysis unit 1312 derives the natural frequency by performing vibration analysis using the finite element method. That is, the FEM analysis unit 1312 derives a cutoff frequency to be applied to the notch filter 132 by performing vibration analysis on the input data input from the data acquisition unit 1311 using a FEM model using the finite element method. The FEM analysis section 1312 corresponds to an analysis section.
 図4は、実施の形態1に係る制御システムにおけるフィルタ生成部での処理手順の一例を示すフローチャートである。演算装置131のデータ取得部1311は、データを取得する(ステップS11)。詳細には、演算装置131のデータ取得部1311は、振動解析における入力データとして、工作機械30に保持されるワーク6のワーク情報、保持状態および機械情報を取得し、入力データをFEM解析部1312へ入力する。ここでは、データ取得部1311は、上位コントローラ2からワーク6のワーク情報、保持状態および機械情報を取得する。 FIG. 4 is a flowchart illustrating an example of a processing procedure in the filter generation unit in the control system according to the first embodiment. The data acquisition unit 1311 of the arithmetic device 131 acquires data (step S11). Specifically, the data acquisition unit 1311 of the arithmetic unit 131 acquires work information, holding state, and machine information of the workpiece 6 held in the machine tool 30 as input data for vibration analysis, and transfers the input data to the FEM analysis unit 1312. Enter. Here, the data acquisition unit 1311 acquires work information, holding state, and machine information of the work 6 from the host controller 2.
 FEM解析部1312は、入力データを基に、FEMモデルを用いた振動解析を行うことによってワーク6を工作機械30に保持させたときの振動周波数である固有振動数を導出する(ステップS12)。 The FEM analysis unit 1312 derives the natural frequency, which is the vibration frequency when the workpiece 6 is held by the machine tool 30, by performing vibration analysis using the FEM model based on the input data (step S12).
 次に、FEM解析部1312は、ステップS12で導出した固有振動数をノッチフィルタ132へ出力する(ステップS13)。ノッチフィルタ132は、FEM解析部1312から出力されたデータに応じた設定を行う(ステップS14)。詳細には、ノッチフィルタ132は、遮断周波数を、演算装置131により演算された固有振動数に設定し、電流指令にフィルタリング処理を実施する。以上で処理が終了する。 Next, the FEM analysis unit 1312 outputs the natural frequency derived in step S12 to the notch filter 132 (step S13). The notch filter 132 performs settings according to the data output from the FEM analysis section 1312 (step S14). Specifically, the notch filter 132 sets the cutoff frequency to the natural frequency calculated by the calculation device 131, and performs filtering processing on the current command. This completes the process.
 以上の動作により、フィルタ生成部13は、ワーク情報、保持状態および機械情報の組み合わせに対応する固有振動数をフィルタリング処理によって抑制することができるため、保持対象物であるワーク6および保持状態のうち少なくとも一方が変化する場合であっても、工作機械30の機械共振を抑制することができる。すなわち、加工の途中で、ワーク6が付け替えられたり、ワーク6の保持が解除されたりした場合であっても、ワーク6および保持状態のうち少なくとも一方の変化後のワーク情報、保持状態および機械情報の組み合わせに対応する固有振動数が演算装置131によって演算され、ノッチフィルタ132に設定される。このため、変化後においても工作機械30の機械共振を抑制することができる。そして、制御システム20は、ワーク情報、保持状態および機械情報の組み合わせに対応する固有振動数を演算装置131によって演算するため、工作機械30において実際に機械共振を発生させる動作を必要とせず、遮断周波数を導出することができる。 Through the above-described operation, the filter generation unit 13 can suppress the natural frequency corresponding to the combination of workpiece information, holding state, and machine information through filtering processing. Even if at least one of them changes, mechanical resonance of the machine tool 30 can be suppressed. That is, even if the workpiece 6 is replaced or the holding of the workpiece 6 is released during machining, the workpiece information, holding state, and machine information after changes in at least one of the workpiece 6 and the holding state are changed. The natural frequency corresponding to the combination of is calculated by the calculation device 131 and set in the notch filter 132. Therefore, even after the change, mechanical resonance of the machine tool 30 can be suppressed. Since the control system 20 uses the calculation device 131 to calculate the natural frequency corresponding to the combination of workpiece information, holding state, and machine information, there is no need for an operation that actually generates mechanical resonance in the machine tool 30, and there is no need to perform an operation that actually causes mechanical resonance. The frequency can be derived.
 ここで、モータ制御装置1のハードウェア構成について説明する。モータ制御装置1の各部は回路により実現される。電流制御部14は、交流電力を直流電力に変換するコンバータ回路、または直流電力を所望の交流電力に変換するインバータ回路を備えることにより電流指令に追従するようにモータ3へ電流を供給する。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、処理回路により実現される。処理回路は、プロセッサを備える回路であってもよいし、専用ハードウェアであってもよい。 Here, the hardware configuration of the motor control device 1 will be explained. Each part of the motor control device 1 is realized by a circuit. The current control unit 14 includes a converter circuit that converts AC power to DC power or an inverter circuit that converts DC power to desired AC power, and supplies current to the motor 3 so as to follow the current command. The position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by a processing circuit. The processing circuit may be a circuit including a processor or may be dedicated hardware.
 処理回路がプロセッサを備える回路である場合、処理回路は例えプロセッサとメモリで構成される制御回路である。図5は、実施の形態1の処理回路の構成の一例を示す図である。図5に示される処理回路100は、プロセッサ101およびメモリ102を備える。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が制御回路によって実現される場合、プロセッサ101が、メモリ102に格納されたプログラムを読み出して実行することにより、これらが実現される。すなわち、位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が図5に示される制御回路によって実現される場合、これらの機能は、ソフトウェアであるプログラムを用いて実現される。メモリ102はプロセッサ101の作業領域としても使用される。プロセッサ101は、CPU(Central Processing Unit)等である。メモリ102は、一例では、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の不揮発性または揮発性の半導体メモリ、磁気ディスク等が該当する。 If the processing circuit is a circuit that includes a processor, the processing circuit is a control circuit that includes a processor and a memory. FIG. 5 is a diagram illustrating an example of a configuration of a processing circuit according to the first embodiment. The processing circuit 100 shown in FIG. 5 includes a processor 101 and a memory 102. When the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by a control circuit, these are realized by the processor 101 reading and executing a program stored in the memory 102. be done. That is, when the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 are realized by the control circuit shown in FIG. 5, these functions are realized using a program that is software. . Memory 102 is also used as a work area for processor 101. The processor 101 is a CPU (Central Processing Unit) or the like. The memory 102 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a nonvolatile or volatile semiconductor memory such as a flash memory, a magnetic disk, or the like.
 位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が専用ハードウェアである場合、処理回路は、一例では、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)である。なお、位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、プロセッサを備える処理回路および専用ハードウェアを組み合わせて実現されてもよい。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、複数の処理回路により実現されてもよい。 When the position control unit 11, speed control unit 12, filter generation unit 13, and speed conversion unit 15 are dedicated hardware, the processing circuit is, for example, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). be. Note that the position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 may be realized by combining a processing circuit including a processor and dedicated hardware. The position control section 11, speed control section 12, filter generation section 13, and speed conversion section 15 may be realized by a plurality of processing circuits.
 なお、図1に示される例では、上位コントローラ2が、モータ制御装置1のフィルタ生成部13に、モータ制御装置1の制御対象であるチャック装置5に保持されるワーク6についてのワーク情報、保持状態および機械情報を提供するものであった。しかし、モータ制御装置1の図示しない入力手段を用いて、ワーク6についてのワーク情報、保持状態および機械情報が入力されるようにしてもよい。この場合、遮断周波数を設定するための制御システム20の構成としては、モータ制御装置1を含むものとなる。 In the example shown in FIG. 1, the host controller 2 sends the filter generation unit 13 of the motor control device 1 the workpiece information and retention information about the workpiece 6 held in the chuck device 5, which is the control target of the motor control device 1. It provided status and machine information. However, the workpiece information, holding state, and machine information regarding the workpiece 6 may be input using an input means (not shown) of the motor control device 1. In this case, the configuration of the control system 20 for setting the cutoff frequency includes the motor control device 1.
 また、図1に示される例では、制御システム20は、モータ制御装置1と上位コントローラ2とを備え、モータ制御装置1のフィルタ生成部13が固有振動数を演算する演算装置131を有する構成であったが、制御システム20の構成は、これに限定されるものではない。 In the example shown in FIG. 1, the control system 20 includes a motor control device 1 and a host controller 2, and has a configuration in which the filter generation unit 13 of the motor control device 1 includes a calculation device 131 that calculates a natural frequency. However, the configuration of the control system 20 is not limited to this.
 図6は、実施の形態1に係る制御システムの構成の他の例を模式的に示す図である。なお、上記した説明と同一の構成要素には同一の符号を付して、その説明を省略する。図6に示される制御システム20aにおいて、モータ制御装置1のフィルタ生成部13は、演算装置131を有さず、上位コントローラ2が固有振動数を演算する演算装置21を有する点が、図1とは異なる。演算装置21の構成は、図3に示されるものと同様である。この場合、上位コントローラ2の演算装置21のデータ取得部が、チャック装置5に保持されるワーク6についてのワーク情報、保持状態および機械情報を取得し、FEM解析部が、FEMモデルを用いてワーク情報、保持状態および機械情報で定められるワーク6を有する工作機械30における機械構成の固有振動数を導出する。そして、演算装置21は、導出した固有振動数をモータ制御装置1のフィルタ生成部13に設定する。 FIG. 6 is a diagram schematically showing another example of the configuration of the control system according to the first embodiment. Note that the same components as those in the above description are given the same reference numerals, and the description thereof will be omitted. In the control system 20a shown in FIG. 6, the filter generation unit 13 of the motor control device 1 does not have the calculation device 131, and the host controller 2 has the calculation device 21 that calculates the natural frequency. is different. The configuration of the arithmetic unit 21 is similar to that shown in FIG. In this case, the data acquisition section of the arithmetic device 21 of the host controller 2 acquires work information, holding state, and machine information about the workpiece 6 held in the chuck device 5, and the FEM analysis section uses the FEM model to analyze the workpiece 6. The natural frequency of the machine configuration in the machine tool 30 having the workpiece 6 determined by the information, the holding state, and the machine information is derived. Then, the calculation device 21 sets the derived natural frequency in the filter generation section 13 of the motor control device 1.
 図7は、実施の形態1に係る制御システムの構成の他の例を模式的に示す図である。なお、上記した説明と同一の構成要素には同一の符号を付して、その説明を省略する。図7に示される制御システム20bは、モータ制御装置1および上位コントローラ2のほかに、演算装置50をさらに備える。モータ制御装置1、上位コントローラ2および演算装置50は、通信線を介して接続され、演算装置50は、上位コントローラ2およびモータ制御装置1と通信可能である。また、モータ制御装置1のフィルタ生成部13は、演算装置131を有さない。演算装置50の構成は、図3に示されるものと同様である。この例では、演算装置50のデータ取得部が、チャック装置5に保持されるワーク6についてのワーク情報、保持状態および機械情報を取得し、FEM解析部が、FEMモデルを用いてワーク情報、保持状態および機械情報で定められるワーク6を有する工作機械30における機械構成の固有振動数を導出する。そして、演算装置50のFEM解析部は、導出した固有振動数をモータ制御装置1のフィルタ生成部13に設定する。 FIG. 7 is a diagram schematically showing another example of the configuration of the control system according to the first embodiment. Note that the same components as those in the above description are given the same reference numerals, and the description thereof will be omitted. The control system 20b shown in FIG. 7 further includes a calculation device 50 in addition to the motor control device 1 and the host controller 2. The motor control device 1, the host controller 2, and the arithmetic device 50 are connected via a communication line, and the arithmetic device 50 can communicate with the host controller 2 and the motor control device 1. Furthermore, the filter generating section 13 of the motor control device 1 does not include the arithmetic device 131. The configuration of the arithmetic device 50 is similar to that shown in FIG. In this example, the data acquisition section of the arithmetic device 50 acquires work information, holding state, and machine information regarding the workpiece 6 held in the chuck device 5, and the FEM analysis section uses the FEM model to obtain work information, holding state, and machine information. The natural frequency of the machine configuration in the machine tool 30 having the workpiece 6 defined by the state and machine information is derived. Then, the FEM analysis section of the arithmetic device 50 sets the derived natural frequency to the filter generation section 13 of the motor control device 1.
 この場合の演算装置50は、一例では、コンピュータシステムによって構成される。すなわち、図7の演算装置50は、コンピュータシステム上で、固有振動数を導出する処理が記述されたコンピュータプログラムであるプログラムが実行されることにより、コンピュータシステムが演算装置50として機能する。図8は、実施の形態1に係る制御システムの演算装置を実現するコンピュータシステムの構成の一例を示すブロック図である。図8に示されるように、このコンピュータシステムは、制御部81と入力部82と記憶部83と表示部84と通信部85と出力部86とを備え、これらはシステムバス87を介して接続されている。 The arithmetic device 50 in this case is configured by a computer system, for example. That is, the computing device 50 in FIG. 7 functions as the computing device 50 by executing a program on the computer system, which is a computer program in which a process for deriving a natural frequency is described. FIG. 8 is a block diagram illustrating an example of the configuration of a computer system that implements the arithmetic unit of the control system according to the first embodiment. As shown in FIG. 8, this computer system includes a control section 81, an input section 82, a storage section 83, a display section 84, a communication section 85, and an output section 86, which are connected via a system bus 87. ing.
 図8において、制御部81は、例えば、CPU等のプロセッサであり、実施の形態1に係る演算装置50における処理が記述されたプログラムを実行する。なお、制御部81の一部が、GPU(Graphics Processing Unit)、FPGAなどの専用ハードウェアにより実現されてもよい。入力部82は、キーボード、マウスなどで構成され、コンピュータシステムの使用者が、各種情報の入力を行うために使用する。記憶部83は、RAM,ROMなどの各種メモリおよびハードディスクなどのストレージデバイスを含み、上記制御部81が実行すべきプログラム、処理の過程で得られた必要なデータ、などを記憶する。また、記憶部83は、プログラムの一時的な記憶領域としても使用される。表示部84は、ディスプレイ、液晶表示パネル等で構成され、コンピュータシステムの使用者に対して各種画面を表示する。通信部85は、通信処理を実施する受信機および送信機である。出力部86は、プリンタ、スピーカなどである。なお、図8は、一例であり、コンピュータシステムの構成は図8の例に限定されない。 In FIG. 8, the control unit 81 is, for example, a processor such as a CPU, and executes a program in which processing in the arithmetic device 50 according to the first embodiment is described. Note that a part of the control unit 81 may be realized by dedicated hardware such as a GPU (Graphics Processing Unit) or FPGA. The input unit 82 is composed of a keyboard, a mouse, etc., and is used by a user of the computer system to input various information. The storage unit 83 includes various memories such as RAM and ROM, and storage devices such as a hard disk, and stores programs to be executed by the control unit 81, necessary data obtained in the process of processing, and the like. The storage unit 83 is also used as a temporary storage area for programs. The display unit 84 is composed of a display, a liquid crystal display panel, etc., and displays various screens to the user of the computer system. The communication unit 85 is a receiver and a transmitter that perform communication processing. The output unit 86 is a printer, a speaker, or the like. Note that FIG. 8 is an example, and the configuration of the computer system is not limited to the example of FIG. 8.
 ここで、上記したプログラムが実行可能な状態になるまでのコンピュータシステムの動作例について説明する。上述した構成をとるコンピュータシステムには、たとえば、図示しないCD(Compact Disc)-ROMドライブまたはDVD(Digital Versatile Disc)-ROMドライブにセットされたCD-ROMまたはDVD-ROMから、コンピュータプログラムが記憶部83にインストールされる。そして、プログラムの実行時に、記憶部83から読み出されたプログラムが記憶部83の主記憶領域に格納される。この状態で、制御部81は、記憶部83に格納されたプログラムに従って、図7の演算装置50としての処理を実行する。 Here, an example of the operation of the computer system until the above program becomes executable will be described. In a computer system having the above configuration, for example, a computer program is stored in a storage unit from a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or a DVD (Digital Versatile Disc)-ROM drive (not shown). Installed on 83. Then, when the program is executed, the program read from the storage section 83 is stored in the main storage area of the storage section 83. In this state, the control unit 81 executes processing as the arithmetic device 50 in FIG. 7 according to the program stored in the storage unit 83.
 なお、上記の説明においては、CD-ROMまたはDVD-ROMを記録媒体として、演算装置50における処理を記述したプログラムを提供しているが、これに限らず、コンピュータシステムの構成、提供するプログラムの容量などに応じて、たとえば、通信部85を経由してインターネットなどの伝送媒体により提供されたプログラムを用いることとしてもよい。 In the above description, a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes processing in the arithmetic unit 50. Depending on the capacity, for example, a program provided via a transmission medium such as the Internet via the communication unit 85 may be used.
 このコンピュータプログラムは、一例では、コンピュータシステムに、図4に示した処理手順を実行させる。 In one example, this computer program causes a computer system to execute the processing procedure shown in FIG. 4.
 以上のように、実施の形態1に係る制御システム20,20a,20bでは、ワーク6のワーク情報、保持状態および機械情報から、工作機械30で実際にワーク6が保持される状態と、ワーク6の形状および材質と、工作機械30の機械情報を示す形状モデルを用いて、ワーク6の保持状態を反映した工作機械30の機械構成がどのような振動をするのかを演算で求めることができる。従来の技術では、工作機械30にワーク6を保持させた状態で加工処理を実行し、フィードバック制御で、実際に機械共振している共振周波数を電流指令や検出器による検出結果を含むフィードバック情報等のデータを用いて求め、ノッチフィルタ132に求めた共振周波数を遮断周波数として設定していた。しかし、実施の形態1では、上記したように、実際に工作機械30で加工処理を実行する前に、フィードバック制御を用いずに、固有振動数を演算し、演算結果をモータ制御装置1のフィルタ生成部13に設定することができる。これによって、ワーク6を保持させた工作機械30で加工処理を実施させて、実際に機械共振を発生させてから機械共振を抑えるという共振周波数を求めるための動作が不要になり、加工処理の最初から、ワーク6に生じる固有振動数での振動を抑えることができる。つまり、工作機械30等の産業用機械の状態によって変化する固有振動数に応じて発生する機械共振の共振周波数について推定するための動作を必要とすることなく、産業用機械の機械共振を抑制することができるという効果を有する。また、状態が変化した後に、固有振動数を推定するための機械共振を発生させる必要がないので、機械共振による好ましくない影響を工作機械30に与えてしまうことを抑制することができる。 As described above, in the control systems 20, 20a, and 20b according to the first embodiment, the state in which the workpiece 6 is actually held by the machine tool 30 and the state in which the workpiece 6 is actually held are determined based on the workpiece information, holding state, and machine information of the workpiece 6. Using a shape model showing the shape and material of the machine tool 30 and mechanical information of the machine tool 30, it is possible to calculate how the mechanical configuration of the machine tool 30 that reflects the holding state of the workpiece 6 vibrates. In the conventional technology, machining processing is executed with the workpiece 6 held by the machine tool 30, and feedback information such as a current command and a detection result by a detector is used to determine the resonance frequency at which the machine actually resonates using feedback control. The resonant frequency obtained for the notch filter 132 was set as the cutoff frequency. However, in the first embodiment, as described above, before actually performing machining processing on the machine tool 30, the natural frequency is calculated without using feedback control, and the calculation result is filtered to the filter of the motor control device 1. It can be set in the generation unit 13. This eliminates the need to perform machining with the machine tool 30 holding the workpiece 6, to actually generate machine resonance, and then to suppress the machine resonance in order to find the resonant frequency. Therefore, vibrations occurring in the workpiece 6 at the natural frequency can be suppressed. In other words, the mechanical resonance of the industrial machine, such as the machine tool 30, is suppressed without requiring an operation for estimating the resonance frequency of the machine resonance that occurs in accordance with the natural frequency that changes depending on the state of the industrial machine. It has the effect of being able to Further, since it is not necessary to generate mechanical resonance for estimating the natural frequency after the state changes, it is possible to suppress undesirable effects of mechanical resonance on the machine tool 30.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and it is possible to combine it with another known technology, and a part of the configuration can be omitted or changed without departing from the gist. It is possible.
 1 モータ制御装置、2 上位コントローラ、3 モータ、4 検出器、5 チャック装置、6 ワーク、7 切削工具、8 減速機、11 位置制御部、12 速度制御部、13 フィルタ生成部、14 電流制御部、15 速度変換部、20,20a,20b 制御システム、21,50,131 演算装置、30 工作機械、132 ノッチフィルタ、1311 データ取得部、1312 FEM解析部。 1 Motor control device, 2 Upper controller, 3 Motor, 4 Detector, 5 Chuck device, 6 Workpiece, 7 Cutting tool, 8 Reducer, 11 Position control section, 12 Speed control section, 13 Filter generation section, 14 Current control section , 15 Speed conversion unit, 20, 20a, 20b Control system, 21, 50, 131 Arithmetic unit, 30 Machine tool, 132 Notch filter, 1311 Data acquisition unit, 1312 FEM analysis unit.

Claims (7)

  1.  産業用機械の保持装置に保持された保持対象物の情報を示す保持対象物情報、前記保持対象物の前記保持装置への保持状態、および前記産業用機械の情報を示す機械情報を取得するデータ取得部と、
     前記産業用機械に設けられる制御対象を制御するモータ制御装置でのフィルタリング処理で設定される遮断周波数を、前記保持対象物を前記保持装置に保持させた場合の前記制御対象と前記保持装置とを含んで構成された機械構成に発生する前記機械構成の固有振動数として導出する解析部と、
     を備え、
     前記解析部は、前記データ取得部によって取得された前記保持対象物情報、前記保持状態および前記機械情報から、前記保持対象物を前記産業用機械の前記保持装置に保持させた状態で加工処理を行ったときに発生する前記機械構成の前記固有振動数を導出することを特徴とする制御システム。
    Data for acquiring held object information indicating information on a held object held in a holding device of an industrial machine, a holding state of the held object in the holding device, and machine information indicating information on the industrial machine. an acquisition department;
    The cutoff frequency set by a filtering process in a motor control device that controls a controlled object provided in the industrial machine is determined by the control object and the holding device when the held object is held by the holding device. an analysis unit that derives a natural frequency of the mechanical configuration that occurs in the mechanical configuration that includes;
    Equipped with
    The analysis unit performs a processing process on the held object while it is held in the holding device of the industrial machine, based on the held object information, the holding state, and the machine information acquired by the data acquisition unit. A control system characterized by deriving the natural frequency of the mechanical configuration that occurs when the mechanical configuration is performed.
  2.  前記保持対象物は、前記産業用機械での加工対象となるワークであり、
     前記保持対象物情報は、前記保持対象物の保持位置、構造および材質を含む情報であることを特徴とする請求項1に記載の制御システム。
    The object to be held is a workpiece to be processed by the industrial machine,
    The control system according to claim 1, wherein the held object information includes a holding position, structure, and material of the held object.
  3.  前記保持位置は、前記保持対象物の端部から、前記保持装置によって保持されている前記保持対象物の保持箇所までの長さを示す情報であることを特徴とする請求項2に記載の制御システム。 The control according to claim 2, wherein the holding position is information indicating a length from an end of the holding object to a holding location of the holding object held by the holding device. system.
  4.  前記保持状態は、前記保持対象物が前記保持装置に固定されているか否かを示す情報であることを特徴とする請求項1から3のいずれか1つに記載の制御システム。 The control system according to any one of claims 1 to 3, wherein the holding state is information indicating whether the object to be held is fixed to the holding device.
  5.  前記機械情報は、前記モータ制御装置の前記制御対象に含まれるモータ、前記モータの回転速度を変速する減速機、および前記保持対象物を保持する保持装置の構造およびイナーシャを含む情報であることを特徴とする請求項1から4のいずれか1つに記載の制御システム。 The machine information is information including the structure and inertia of a motor included in the control target of the motor control device, a speed reducer that changes the rotational speed of the motor, and a holding device that holds the object to be held. A control system according to any one of claims 1 to 4.
  6.  前記解析部は、前記保持対象物情報、前記保持状態および前記機械情報を基に有限要素法を用いた振動解析を実施することによって前記固有振動数を導出することを特徴とする請求項1から5のいずれか1つに記載の制御システム。 The analysis unit derives the natural frequency by performing vibration analysis using a finite element method based on the held object information, the held state, and the machine information. 5. The control system according to any one of 5.
  7.  前記解析部で導出された前記固有振動数の振動を除去する遮断周波数として、前記産業用機械をフィードバック制御により制御する指令に前記フィルタリング処理を行うフィルタ生成部をさらに備えることを特徴とする請求項1から6のいずれか1つに記載の制御システム。 Claim further comprising: a filter generation unit that performs the filtering process on a command for controlling the industrial machine by feedback control as a cutoff frequency for removing vibrations of the natural frequency derived by the analysis unit. 7. The control system according to any one of 1 to 6.
PCT/JP2022/024566 2022-06-20 2022-06-20 Control system WO2023248303A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/024566 WO2023248303A1 (en) 2022-06-20 2022-06-20 Control system
CN202280073536.9A CN118202310A (en) 2022-06-20 2022-06-20 Control system
JP2022554614A JP7209906B1 (en) 2022-06-20 2022-06-20 control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024566 WO2023248303A1 (en) 2022-06-20 2022-06-20 Control system

Publications (1)

Publication Number Publication Date
WO2023248303A1 true WO2023248303A1 (en) 2023-12-28

Family

ID=84974978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024566 WO2023248303A1 (en) 2022-06-20 2022-06-20 Control system

Country Status (3)

Country Link
JP (1) JP7209906B1 (en)
CN (1) CN118202310A (en)
WO (1) WO2023248303A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230234A1 (en) * 2019-05-13 2020-11-19 三菱電機株式会社 Control system and motor control device
JP6818954B1 (en) * 2020-03-17 2021-01-27 三菱電機株式会社 Control system, motor control device and machine learning device
JP2021008009A (en) * 2019-07-01 2021-01-28 株式会社ジェイテクト Vibration analysis device for machine tool system
KR20210078769A (en) * 2019-12-19 2021-06-29 두산공작기계 주식회사 Tandem control system of machine tool and method thereof
JP2021181136A (en) * 2020-05-19 2021-11-25 株式会社ジェイテクト Stability limit analyzer for machine tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983112B2 (en) * 2012-07-06 2016-08-31 株式会社ジェイテクト Machine tool dynamic characteristic calculation device and dynamic characteristic calculation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230234A1 (en) * 2019-05-13 2020-11-19 三菱電機株式会社 Control system and motor control device
JP2021008009A (en) * 2019-07-01 2021-01-28 株式会社ジェイテクト Vibration analysis device for machine tool system
KR20210078769A (en) * 2019-12-19 2021-06-29 두산공작기계 주식회사 Tandem control system of machine tool and method thereof
JP6818954B1 (en) * 2020-03-17 2021-01-27 三菱電機株式会社 Control system, motor control device and machine learning device
JP2021181136A (en) * 2020-05-19 2021-11-25 株式会社ジェイテクト Stability limit analyzer for machine tool

Also Published As

Publication number Publication date
CN118202310A (en) 2024-06-14
JP7209906B1 (en) 2023-01-20
JPWO2023248303A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP4813618B2 (en) Motor control device with function to estimate inertia and friction simultaneously
JP4565034B2 (en) Control device and control system for inertia estimation
JP4238273B2 (en) Control device
KR101528090B1 (en) Robot and robot noise removal method
JP4261470B2 (en) Control device
JP5669986B1 (en) Numerical control apparatus and numerical control method
JP6412071B2 (en) Motor control device, motor control method, and motor control program
JP2018139044A (en) Servo motor control device, servo motor control method, and servo motor control program
JP2016190276A (en) Numerical control device and control method
JP2015085395A (en) Processing error amount prediction device and processing error amount prediction program
JP5226484B2 (en) Chatter vibration suppression method
JP6893792B2 (en) Machine tools and vibration suppression methods
JP6302794B2 (en) Rotation speed display method
JP2006197726A (en) Positioning control device and method thereof
JP2008290164A (en) Vibration attenuator of machine tool
WO2023248303A1 (en) Control system
JP2004209558A (en) Method and apparatus for controlling thread cutting
WO2020230234A1 (en) Control system and motor control device
TWI765597B (en) Control system, motor control appratus and machine-learning appratus
JP4329438B2 (en) Electric motor control device
JP7058210B2 (en) Machine tools, defect detection methods, and defect detection programs
JP2005266902A (en) Position control device and method
JP4396554B2 (en) Numerical control apparatus, numerical control method, and control program
JP7433570B1 (en) Numerical control device and numerical control method
WO2024079786A1 (en) Motor control device and motor control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022554614

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947867

Country of ref document: EP

Kind code of ref document: A1