WO2023248288A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2023248288A1
WO2023248288A1 PCT/JP2022/024516 JP2022024516W WO2023248288A1 WO 2023248288 A1 WO2023248288 A1 WO 2023248288A1 JP 2022024516 W JP2022024516 W JP 2022024516W WO 2023248288 A1 WO2023248288 A1 WO 2023248288A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
length
cross
sectional shape
line
Prior art date
Application number
PCT/JP2022/024516
Other languages
French (fr)
Japanese (ja)
Inventor
智紀 淡路川
隆義 加茂前
富巳明 田口
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2022/024516 priority Critical patent/WO2023248288A1/en
Publication of WO2023248288A1 publication Critical patent/WO2023248288A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements

Definitions

  • the present invention relates to an endoscope having a nozzle for discharging fluid on the distal end surface of the insertion section.
  • Endoscopes that are widely used in the medical field and the like have an elongated insertion section that is inserted into a subject.
  • the endoscope has an observation window for an imaging unit disposed on the distal end surface of the insertion section.
  • a nozzle for discharging fluid for removing dirt adhering to the observation window is provided near the observation window on the distal end surface.
  • the nozzle discharges the fluid supplied from the flow path in the longitudinal direction of the insertion section (perpendicular to the distal end surface) in a direction parallel to the surface of the observation window, that is, the distal end surface.
  • Japanese Patent Application Laid-open No. 2013-220179 discloses an endoscope in which a nozzle having an opening serving as a discharge port is disposed in a notch in the side surface of a rigid tip member.
  • the flow velocity of the fluid discharged from the opening of the nozzle toward the center of the observation window is slowed down. For this reason, the nozzle disclosed in the above publication may not be able to efficiently clean the observation window.
  • Japanese Patent Application Publication No. 2012-90884 discloses a nozzle having a curved flow path.
  • nozzles with curved flow paths are not easy to fabricate.
  • Embodiments of the present invention aim to provide an endoscope that is easy to manufacture and has a nozzle that can efficiently clean the observation window.
  • An endoscope includes an observation window and a nozzle on a distal end surface of an insertion section, and the nozzle has an irregularly shaped flow channel and a discharge flow channel into which fluid flows from the irregularly shaped flow channel.
  • the irregularly shaped flow path is provided in a direction perpendicular to the tip surface, a first flow path, and a second flow path communicating with the first flow path over the entire length;
  • the discharge flow path is provided in a direction parallel to the distal end surface and has an opening for discharging the fluid toward the observation window, and the first flow path is closer to the second flow path than the second flow path.
  • the first length which is the maximum length in the direction perpendicular to the line of symmetry
  • the second length which is the maximum length in the direction, of the cross-sectional shape of the second flow path.
  • an endoscope that is easy to manufacture and has a nozzle that can efficiently clean the observation window.
  • FIG. 1 is a perspective view of an endoscope system including an endoscope according to an embodiment.
  • FIG. 2 is a sectional view of the distal end portion of the endoscope according to the first embodiment.
  • 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line IV-IV in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line VV in FIG. 2.
  • FIG. FIG. 2 is a top view of the distal end surface showing the flow of fluid in a conventional endoscope.
  • FIG. 3 is a top view of the distal end surface showing the flow of fluid in the endoscope of the embodiment. It is a top view showing the opening of the nozzle of the endoscope of an embodiment.
  • FIG. 1 is a perspective view of an endoscope system including an endoscope according to an embodiment.
  • FIG. 2 is a sectional view of the distal end portion of the endoscope according to the first embodiment.
  • FIG. 7 is a sectional view of a nozzle of an endoscope according to Modification 1 of the embodiment.
  • FIG. 7 is a sectional view of a nozzle of an endoscope according to a second modification of the embodiment.
  • FIG. 7 is a cross-sectional view of a nozzle of an endoscope according to modification 3 of the embodiment.
  • the endoscope 9 of the embodiment includes a processor 5A, a monitor 5B, and an endoscope system 6.
  • the endoscope 9 includes an insertion section 3, a grip section 4 disposed at the base end of the insertion section 3, a universal cord 4B extending from the grip section 4, and a universal cord 4B disposed at the base end of the universal cord 4B. and a connector 4C.
  • the insertion portion 3 includes a distal end portion 3A, a curved portion 3B extending from the distal end portion 3A, and a flexible portion 3C extending from the curved portion 3B.
  • the curved portion 3B for changing the direction of the tip portion 3A is bendable.
  • An angle knob 4A is provided on the grip portion 4 for the operator to operate the bending portion 3B.
  • the universal cord 4B is connected to the processor 5A by a connector 4C.
  • the processor 5A controls the entire endoscope system 6, performs signal processing on the imaging signal, and outputs an image signal.
  • the monitor 5B displays the image signal output by the processor 5A as an endoscopic image.
  • the endoscope 9 may be a rigid scope with a rigid insertion section. Furthermore, the endoscope 9 may be used for medical purposes or industrial purposes.
  • FIG. 2 is a sectional view of the distal end portion 3A of the endoscope 9.
  • an observation window 20SA of an imaging unit that outputs an imaging signal is disposed on the distal end surface 3SA.
  • the optical axis OA of the optical system 20 including a plurality of lenses is located at the center O of the observation window 20SA.
  • the subject image focused by the optical system 20 is converted into an image signal by an image sensor such as a CCD (not shown), and is transmitted to the processor 5A.
  • the observation window 20SA is parallel to the tip surface 3SA and perpendicular to the optical axis OA. That is, in the XYZ orthogonal coordinate system shown in FIG. 2 and the like, the observation window 20SA located on the XY plane is parallel to the X axis and the Y axis, and perpendicular to the Z axis.
  • the nozzle 10 is connected via a pipe 14 to an air/water supply tube 15 inserted through the insertion section 3.
  • the nozzle 10 sprays fluid to clean the observation window 20SA.
  • the fluid is, for example, water or air.
  • the nozzle 10 is made of metal or hard resin.
  • the nozzle 10 is manufactured, for example, by using a metal cylinder as a base material and forming a flow path by cutting.
  • the nozzle 10 may be manufactured by injection molding or using a 3D printer. Further, the nozzle 10 may be configured by combining a plurality of members. A through hole in the rigid tip member 31 forming the tip portion 3A may be used as a part of the nozzle 10.
  • the nozzle 10 has a cylindrical tube 11, an irregularly shaped tube 12, and a discharge tube 13.
  • the cylindrical tube 11 has a circular flow path FA.
  • the irregularly shaped tube 11 has an irregularly shaped flow path FB.
  • the discharge pipe 13 has a discharge flow path FC. The fluid supplied from the circular flow path FA is discharged toward the observation window 20SA via the irregularly shaped flow path FB and the discharge flow path FC.
  • the axis AC of the circular flow path FA of the nozzle 10 is parallel to the optical axis OA (Z-axis direction) and perpendicular to the tip surface 3SA (XY plane).
  • the irregularly shaped flow path FB is also perpendicular to the tip surface 3SA (XY plane).
  • the discharge flow path FC is parallel to the tip surface 3SA (XY plane).
  • the irregularly shaped flow path FB and the discharge flow path FC are orthogonal to each other.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. That is, FIG. 3 is a cross-sectional view of the cylindrical tube 11 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 3 is a cross-sectional view of the cylindrical tube 11 in a cross section parallel to the distal end surface 3SA.
  • the circular flow path FA of the cylindrical tube 11 has a circular cross-sectional shape.
  • the straight line L is parallel to the X-axis that connects the axis AC of the nozzle 10 and the center O of the observation window 20SA (the intersection of the optical axis OA and the observation window 20SA) in the cross-sectional view. It is a straight line.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2. That is, FIG. 4 is a cross-sectional view of the irregularly shaped tube 12 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 4 is a cross-sectional view of the irregularly shaped tube 12 in a cross section parallel to the distal end surface 3SA.
  • the cross-sectional shape of the irregularly shaped flow path FB of the irregularly shaped tube 12 is different from the cross-sectional shape of a general flow path (for example, circular or rectangular). This is because the irregularly shaped flow path FB consists of a first flow path F1 and a second flow path F2 that communicates with the first flow path over its entire length.
  • the irregularly shaped tube 12 has an irregularly shaped flow path FB, its outer shape is a cylinder that is the same as the shape of the cylindrical tube 11.
  • the cylindrical tube 11 and the irregularly shaped tube 12 have different shapes of internal flow paths, but as shown in FIG. 2, the outer shape is a single cylinder.
  • the first flow path F1 of the irregularly shaped flow path FB is located closer to the opening of the nozzle 10 (on the right side in FIG. 4) than the second flow path F2.
  • the boundary surface between the first flow path F1 and the second flow path F2 is a plane.
  • the first flow path F1 has a first wall surface F1SA perpendicular to the tip surface 3SA on the opening side.
  • the cross-sectional shape of the first flow path F1 is the shape of an athletics track (approximately track shape), consisting of two straight lines L1 and L2 with parallel outer edges and two circular arcs.
  • the first straight line L1 on the opening side of the cross-sectional shape (substantially track-shaped) of the first flow path F1 is a cross-sectional line of the first wall surface F1SA.
  • the other second straight line L2 in the cross-sectional shape of the first flow path F1 is a cross-sectional line of the interface with the second flow path F2.
  • the cross-sectional shape of the second flow path F2 is approximately semicircular with an outer edge having a second straight line L2 and one circular arc continuous with both ends of the second straight line L2.
  • Both the cross-sectional shape of the first flow path F1 and the cross-sectional shape of the second flow path F2 are symmetrical with respect to the straight line L.
  • the straight line L is a line of symmetry of the cross-sectional shape of the first flow path F1 and a line of symmetry of the second flow path F2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 2. That is, FIG. 5 is a cross-sectional view of the irregularly shaped tube 12 and the discharge tube 13 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 5 is a sectional view of the irregularly shaped tube 12 and the discharge tube 13 in a cross section parallel to the distal end surface 3SA.
  • the discharge channel FC into which the fluid flows from the irregularly shaped channel FB is provided in a direction parallel to the tip surface 3SA, and the opening A10 discharges the fluid toward the observation window 20SA. have.
  • the width (long axis length described later) WL1 of the opening A10 is larger than the first length D1.
  • FIG. 6 is a top view of the distal end surface showing the flow of fluid F in an endoscope 109 having a conventional nozzle 110.
  • the region illustrated as fluid F is a region where the flow velocity exceeds a predetermined value.
  • the cross section of the nozzle 110 is approximately semicircular with a wall surface perpendicular to the tip surface 3SA.
  • a vortex is generated in the fluid F flowing in from the Z-axis direction along the wall surface on the side far from the opening A10 (left side in the figure). Due to this vortex, the fluid F discharged from the opening A10 bifurcates, and the flow velocity toward the center O of the observation window 20SA becomes slower than the flow velocity toward the outer periphery of the observation window 20SA. For this reason, the endoscope 109 having the conventional nozzle 110 cannot efficiently clean the observation window 20SA.
  • the first length D1 which is the maximum length in the direction (Y-axis direction) perpendicular to the line of symmetry L in the cross-sectional shape of the first flow path F1
  • the second length D2 is the maximum length in the above direction of the cross-sectional shape of the second flow path F2. Therefore, in the nozzle 10, even if a vortex is generated on the wall surface of the second flow path F2, the fluid F flows toward the center O of the observation window 20SA in the first flow path F1.
  • the endoscope 9 Because the endoscope 9 has a faster flow velocity toward the center O of the observation window 20SA than the endoscope 109, it can efficiently clean the observation window 20SA.
  • first length D1 of the nozzle 10 is preferably less than 250% of the second length D2.
  • the observation window 20SA can be efficiently cleaned.
  • the third length D3 of the first flow path F1 in the straight line L that is the line of symmetry may be more than 50% and less than 250% of the fourth length D4 of the second flow path F2. preferable.
  • the observation window 20SA can be efficiently cleaned.
  • the cross-sectional shape of the discharge flow path F3 of the nozzle 10 is approximately track-shaped.
  • the short axis length SL does not change toward the opening A10, but the long axis length WL increases.
  • the major axis length WL1 of the opening A10 is larger than the major axis length WL2 of the rear end surface of the discharge flow path F3.
  • the major axis length WL increases in a curved manner toward the opening A10.
  • the nozzle 10 Compared to a nozzle having a discharge flow path in which the major axis length WL does not change or the major axis length WL increases linearly, the nozzle 10 has a faster flow velocity toward the center O of the observation window 20SA. Therefore, the observation window 20SA can be cleaned more efficiently.
  • the nozzle 10 is also easier to manufacture than a nozzle with a curved flow path.
  • endoscopes 9A-9C of modification 1-3 of the embodiment will be described.
  • the endoscopes 9A to 9C are similar to the endoscope 9 and have the same effects, so components with the same functions are given the same reference numerals and explanations will be omitted.
  • FIGS. 9 to 11 are cross-sectional views of the irregularly shaped tube 12 and the discharge tube 13 in a cross section parallel to the distal end surface 3SA.
  • the cross section of the first flow path F1 is approximately track-shaped, and the cross section of the second flow path F2 is approximately track-shaped.
  • the shape is a substantially triangular shape connected to the long axis of the first flow path F1.
  • the length of the long axis of the first flow path F1 is D1
  • the length of one side of the substantially triangular triangle of the second flow path F2 is DMX.
  • the irregularly shaped flow path FB of the nozzle 10B has a cross-sectional shape of the first flow path F1, and a corner on the second flow path side is chamfered in a curved line. It is a substantially rectangular shape with a long axis having a first length D1.
  • the cross-sectional shape of the second flow path F2 is a rectangle with the second length D2 of the long axis, and a substantially triangular shape continuous with the long axis of the rectangle.
  • the cross-sectional shape of the first flow path F1 of the irregularly shaped flow path of the nozzle 10C is the same as the cross-sectional shape of the nozzle 10B.
  • the cross-sectional shape of the second flow path F2 is approximately rectangular with a major axis having a second length D2.
  • the first length D1 of the first flow path F1 is larger than the second length D2 of the second flow path F2. Therefore, in the endoscopes 9A-9C, the flow velocity toward the center of the observation window 20SA becomes faster, so that the observation window 20SA can be efficiently cleaned.
  • the axis AC of the circular flow path FA is located on the boundary line between the first flow path F1 and the second flow path F2.
  • the position of the axis AC is not limited to the illustrated form.

Abstract

An endoscope 9 has, at an apical surface 3SA, an observation window 20SA and a nozzle 10. The nozzle 10 has an irregular-shaped flow path FB and a discharge flow path FC. The irregular-shaped flow path FB comprises a first flow path F1 and a second flow path F2. The discharge flow path FC has an opening A10 through which fluid F is discharged toward the observation window 20SA. A first length D1 which is the maximum length of the first flow path F1 is greater than a second length D2 which is the maximum length of the second flow path F2.

Description

内視鏡Endoscope
 本発明は、挿入部の先端面に、流体を吐出するノズルを有する内視鏡に関する。 The present invention relates to an endoscope having a nozzle for discharging fluid on the distal end surface of the insertion section.
 医療分野等において広く利用されている内視鏡は、被検体内に挿入される細長な挿入部を有する。内視鏡は、挿入部の先端面に撮像ユニットの観察窓が配設されている。 Endoscopes that are widely used in the medical field and the like have an elongated insertion section that is inserted into a subject. The endoscope has an observation window for an imaging unit disposed on the distal end surface of the insertion section.
 観察窓に汚れが付着すると、撮像ユニットによる観察が阻害される。このため、先端面の観察窓近傍には、観察窓に付着した汚れを除去するための流体が吐出するノズルが配設されている。ノズルは、挿入部の長手方向(先端面に対して垂直方向)の流路から供給された流体を、観察窓の表面、すなわち、先端面に対して平行方向に吐出する。 If dirt adheres to the observation window, observation using the imaging unit will be obstructed. For this reason, a nozzle for discharging fluid for removing dirt adhering to the observation window is provided near the observation window on the distal end surface. The nozzle discharges the fluid supplied from the flow path in the longitudinal direction of the insertion section (perpendicular to the distal end surface) in a direction parallel to the surface of the observation window, that is, the distal end surface.
 例えば、日本国特開2013-220179号公報には、先端硬性部材の側面の切り欠きに、吐出口である開口を有するノズルを配設した内視鏡が開示されている。 For example, Japanese Patent Application Laid-open No. 2013-220179 discloses an endoscope in which a nozzle having an opening serving as a discharge port is disposed in a notch in the side surface of a rigid tip member.
 後述するように、先端面に対して垂直方向の流路から供給された流体が、先端面に対して平行方向の流路に流れ込むと、壁面に沿った渦を生じる。 As will be described later, when fluid supplied from a channel perpendicular to the tip surface flows into a channel parallel to the tip surface, a vortex is generated along the wall surface.
 この渦によって、ノズルの開口から吐出された流体は、観察窓の中心方向の流速が遅くなる。このため、上記公報に開示されているノズルでは、観察窓を効率的に洗浄できないことがあった。 Due to this vortex, the flow velocity of the fluid discharged from the opening of the nozzle toward the center of the observation window is slowed down. For this reason, the nozzle disclosed in the above publication may not be able to efficiently clean the observation window.
 日本国特開2012-90884号公報には、曲線的に曲がっている流路を有するノズルが開示されている。しかし、曲線流路を有するノズルは、作製が容易ではない。 Japanese Patent Application Publication No. 2012-90884 discloses a nozzle having a curved flow path. However, nozzles with curved flow paths are not easy to fabricate.
特開2013-220179号公報Japanese Patent Application Publication No. 2013-220179 特開2012-090884号公報JP2012-090884A
 本発明の実施形態は、製造が容易で、観察窓を効率的に洗浄できるノズルを有する内視鏡を提供することを目的とする。 Embodiments of the present invention aim to provide an endoscope that is easy to manufacture and has a nozzle that can efficiently clean the observation window.
 本発明の実施形態の内視鏡は、挿入部の先端面に、観察窓と、ノズルと、を有し、前記ノズルは、異形流路と、前記異形流路から流体が流入する吐出流路と、を有し、前記異形流路は、前記先端面に対して垂直方向に設けられており、第1流路と、前記第1流路と全長にわたって連通している第2流路と、からなり前記吐出流路は、前記先端面に対して平行方向に設けられ、前記観察窓に向かって前記流体を吐出する開口を有しており、前記第1流路は前記第2流路よりも、前記開口に近い位置にあり、前記第1の流路および前記第2の流路は、それぞれの断面形状が同じ対称線に対して線対称であり、前記第1の流路の断面形状の、前記対称線と直交する方向の最大長さである第1の長さは、前記第2の流路の断面形状の、前記方向の最大長さである第2の長さよりも大きい。 An endoscope according to an embodiment of the present invention includes an observation window and a nozzle on a distal end surface of an insertion section, and the nozzle has an irregularly shaped flow channel and a discharge flow channel into which fluid flows from the irregularly shaped flow channel. , the irregularly shaped flow path is provided in a direction perpendicular to the tip surface, a first flow path, and a second flow path communicating with the first flow path over the entire length; The discharge flow path is provided in a direction parallel to the distal end surface and has an opening for discharging the fluid toward the observation window, and the first flow path is closer to the second flow path than the second flow path. is also located close to the opening, and the cross-sectional shapes of the first flow path and the second flow path are line-symmetrical with respect to the same line of symmetry, and the cross-sectional shape of the first flow path is The first length, which is the maximum length in the direction perpendicular to the line of symmetry, is larger than the second length, which is the maximum length in the direction, of the cross-sectional shape of the second flow path.
 本発明の実施形態によれば、製造が容易で、観察窓を効率的に洗浄できるノズルを有する内視鏡を提供できる。 According to the embodiments of the present invention, it is possible to provide an endoscope that is easy to manufacture and has a nozzle that can efficiently clean the observation window.
実施形態の内視鏡を含む内視鏡システムの斜視図である。FIG. 1 is a perspective view of an endoscope system including an endoscope according to an embodiment. 第1実施形態の内視鏡の先端部の断面図である。FIG. 2 is a sectional view of the distal end portion of the endoscope according to the first embodiment. 図2のIII-III線に沿った断面図である。3 is a sectional view taken along line III-III in FIG. 2. FIG. 図2のIV-IV線に沿った断面図である。3 is a cross-sectional view taken along line IV-IV in FIG. 2. FIG. 図2のV-V線に沿った断面図である。3 is a cross-sectional view taken along line VV in FIG. 2. FIG. 従来の内視鏡における流体の流れを示す先端面の上面図である。FIG. 2 is a top view of the distal end surface showing the flow of fluid in a conventional endoscope. 実施形態の内視鏡における流体の流れを示す先端面の上面図である。FIG. 3 is a top view of the distal end surface showing the flow of fluid in the endoscope of the embodiment. 実施形態の内視鏡のノズルの開口を示す平面図である。It is a top view showing the opening of the nozzle of the endoscope of an embodiment. 実施形態の変形例1の内視鏡のノズルの断面図である。FIG. 7 is a sectional view of a nozzle of an endoscope according to Modification 1 of the embodiment. 実施形態の変形例2の内視鏡のノズルの断面図である。FIG. 7 is a sectional view of a nozzle of an endoscope according to a second modification of the embodiment. 実施形態の変形例3の内視鏡のノズルの断面図である。FIG. 7 is a cross-sectional view of a nozzle of an endoscope according to modification 3 of the embodiment.
 以下、図面を参照して、実施形態の内視鏡9を説明する。
 なお、各実施の形態に基づく図面は、模式的なものである。各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なる。図面の相互間においても互いの長さの関係や比率が異なる部分が含まれている。また、一部の構成要素の図示を省略する場合がある。
Hereinafter, an endoscope 9 according to an embodiment will be described with reference to the drawings.
Note that the drawings based on each embodiment are schematic. The relationship between the thickness and width of each part, the ratio of the thickness of each part, the relative angle, etc. differ from reality. The drawings also include portions with different length relationships and ratios. Further, illustration of some components may be omitted in some cases.
<内視鏡>
 図1に示すように、実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと内視鏡システム6を構成している。
<Endoscope>
As shown in FIG. 1, the endoscope 9 of the embodiment includes a processor 5A, a monitor 5B, and an endoscope system 6.
 内視鏡9は、挿入部3と、挿入部3の基端部に配設された把持部4と、把持部4から延設されたユニバーサルコード4Bと、ユニバーサルコード4Bの基端に配設されたコネクタ4Cと、を具備する。挿入部3は、先端部3Aと、先端部3Aから延設された湾曲部3Bと、湾曲部3Bから延設された軟性部3Cと、を含む。先端部3Aの方向を変えるための湾曲部3Bは、湾曲自在である。把持部4には術者が湾曲部3Bを操作するためのアングルノブ4Aが配設されている。 The endoscope 9 includes an insertion section 3, a grip section 4 disposed at the base end of the insertion section 3, a universal cord 4B extending from the grip section 4, and a universal cord 4B disposed at the base end of the universal cord 4B. and a connector 4C. The insertion portion 3 includes a distal end portion 3A, a curved portion 3B extending from the distal end portion 3A, and a flexible portion 3C extending from the curved portion 3B. The curved portion 3B for changing the direction of the tip portion 3A is bendable. An angle knob 4A is provided on the grip portion 4 for the operator to operate the bending portion 3B.
 ユニバーサルコード4Bは、コネクタ4Cによってプロセッサ5Aに接続される。プロセッサ5Aは内視鏡システム6の全体を制御するとともに、撮像信号に信号処理を行い、画像信号を出力する。モニタ5Bは、プロセッサ5Aが出力する画像信号を、内視鏡画像として表示する。なお、内視鏡9は、挿入部が硬性の硬性鏡でもよい。また、内視鏡9の用途は、医療用でも工業用でもよい。 The universal cord 4B is connected to the processor 5A by a connector 4C. The processor 5A controls the entire endoscope system 6, performs signal processing on the imaging signal, and outputs an image signal. The monitor 5B displays the image signal output by the processor 5A as an endoscopic image. Note that the endoscope 9 may be a rigid scope with a rigid insertion section. Furthermore, the endoscope 9 may be used for medical purposes or industrial purposes.
<ノズル>
 図2は、内視鏡9の先端部3Aの断面図である。先端面3SAには、撮像信号を出力する撮像ユニットの観察窓20SAが配置されている先端硬性部材31に配設されている、被写体像を集光する光学系20の先端面が観察窓20SAである。複数のレンズを含む光学系20の光軸OAは、観察窓20SAの中心Oに位置する。光学系20が集光した被写体像は、図示しないCCD等の撮像素子によって撮像信号に変換され、プロセッサ5Aに伝送される。
<Nozzle>
FIG. 2 is a sectional view of the distal end portion 3A of the endoscope 9. On the distal end surface 3SA, an observation window 20SA of an imaging unit that outputs an imaging signal is disposed.The distal end surface of an optical system 20 that focuses a subject image, which is disposed on a distal rigid member 31, is an observation window 20SA. be. The optical axis OA of the optical system 20 including a plurality of lenses is located at the center O of the observation window 20SA. The subject image focused by the optical system 20 is converted into an image signal by an image sensor such as a CCD (not shown), and is transmitted to the processor 5A.
 観察窓20SAは、先端面3SAと平行であり、光軸OAと直交している。すなわち、図2等に示すXYZ直交座標系において、XY平面に位置する観察窓20SAは、X軸、Y軸に平行であり、Z軸に直交している。 The observation window 20SA is parallel to the tip surface 3SA and perpendicular to the optical axis OA. That is, in the XYZ orthogonal coordinate system shown in FIG. 2 and the like, the observation window 20SA located on the XY plane is parallel to the X axis and the Y axis, and perpendicular to the Z axis.
 ノズル10は、挿入部3を挿通する送気/送水チューブ15と、パイプ14を介して接続されている。ノズル10は流体を噴射して、観察窓20SAを洗浄する。流体は、例えば、水または空気である。 The nozzle 10 is connected via a pipe 14 to an air/water supply tube 15 inserted through the insertion section 3. The nozzle 10 sprays fluid to clean the observation window 20SA. The fluid is, for example, water or air.
 ノズル10は、金属または硬質樹脂からなる。ノズル10は、例えば、金属円柱を母材とし、切削加工によって流路を形成することで作製される。ノズル10は、射出成形法により作製してもよいし、3Dプリンタを用いて作製してもよい。また、複数の部材を組み合わせてノズル10を構成してもよい。先端部3Aを構成している先端硬性部材31の貫通孔をノズル10の一部として用いてもよい。 The nozzle 10 is made of metal or hard resin. The nozzle 10 is manufactured, for example, by using a metal cylinder as a base material and forming a flow path by cutting. The nozzle 10 may be manufactured by injection molding or using a 3D printer. Further, the nozzle 10 may be configured by combining a plurality of members. A through hole in the rigid tip member 31 forming the tip portion 3A may be used as a part of the nozzle 10.
 ノズル10は、円筒管11と異形管12と吐出管13とを有する。円筒管11は円形流路FAを有する。異形管11は異形流路FBを有する。吐出管13は、吐出流路FCを有する。円形流路FAから供給された流体は、異形流路FB、および、吐出流路FCを経由して、観察窓20SAに向けて吐出される。 The nozzle 10 has a cylindrical tube 11, an irregularly shaped tube 12, and a discharge tube 13. The cylindrical tube 11 has a circular flow path FA. The irregularly shaped tube 11 has an irregularly shaped flow path FB. The discharge pipe 13 has a discharge flow path FC. The fluid supplied from the circular flow path FA is discharged toward the observation window 20SA via the irregularly shaped flow path FB and the discharge flow path FC.
 ノズル10の円形流路FAの軸心ACは、光軸OA(Z軸方向)と平行であり、先端面3SA(XY平面)に対して垂直である。異形流路FBも先端面3SA(XY平面)に対して垂直である。これに対して、吐出流路FCは先端面3SA(XY平面)に対して平行である。異形流路FBと、吐出流路FCとは、直交している。 The axis AC of the circular flow path FA of the nozzle 10 is parallel to the optical axis OA (Z-axis direction) and perpendicular to the tip surface 3SA (XY plane). The irregularly shaped flow path FB is also perpendicular to the tip surface 3SA (XY plane). On the other hand, the discharge flow path FC is parallel to the tip surface 3SA (XY plane). The irregularly shaped flow path FB and the discharge flow path FC are orthogonal to each other.
 図3は、図2のIII-III線に沿った断面図である。すなわち、図3は、軸心AC(Z軸方向)、および、光学ユニット20の光軸OA、に直交する断面(XY平面)における、円筒管11の断面図である。図3は、言い替えれば、先端面3SAに平行な断面における、円筒管11の断面図である。 FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. That is, FIG. 3 is a cross-sectional view of the cylindrical tube 11 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 3 is a cross-sectional view of the cylindrical tube 11 in a cross section parallel to the distal end surface 3SA.
 図3に示すように、円筒管11の円形流路FAは、断面形状が円形である。なお、図3において、直線Lは、断面図において、ノズル10の軸心ACと観察窓20SAの中心O(光軸OAと観察窓20SAとの交点)とを、つないでいるX軸に平行な直線である。 As shown in FIG. 3, the circular flow path FA of the cylindrical tube 11 has a circular cross-sectional shape. In addition, in FIG. 3, the straight line L is parallel to the X-axis that connects the axis AC of the nozzle 10 and the center O of the observation window 20SA (the intersection of the optical axis OA and the observation window 20SA) in the cross-sectional view. It is a straight line.
 図4は、図2のIV-IV線に沿った断面図である。すなわち、図4は、軸心AC(Z軸方向)、および、光学ユニット20の光軸OA、に直交する断面(XY平面)における、異形管12の断面図である。図4は、言い替えれば、先端面3SAに平行な断面における、異形管12の断面図である。 FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2. That is, FIG. 4 is a cross-sectional view of the irregularly shaped tube 12 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 4 is a cross-sectional view of the irregularly shaped tube 12 in a cross section parallel to the distal end surface 3SA.
 図4に示すように、異形管12の異形流路FBの断面形状は、一般的な流路の断面形状(例えば、円形、または、矩形)と異なる。これは、異形流路FBは、第1流路F1と、前記第1流路と全長にわたって連通している第2流路F2と、からなるためである。 As shown in FIG. 4, the cross-sectional shape of the irregularly shaped flow path FB of the irregularly shaped tube 12 is different from the cross-sectional shape of a general flow path (for example, circular or rectangular). This is because the irregularly shaped flow path FB consists of a first flow path F1 and a second flow path F2 that communicates with the first flow path over its entire length.
 なお、異形管12は、異形流路FBを有するが、その外形は、円筒管11の形状と同じ円柱である。ノズル10では、円筒管11と異形管12とは、内部の流路の形状は異なるが、図2に示すように、外形は1本の円柱である。 Note that although the irregularly shaped tube 12 has an irregularly shaped flow path FB, its outer shape is a cylinder that is the same as the shape of the cylindrical tube 11. In the nozzle 10, the cylindrical tube 11 and the irregularly shaped tube 12 have different shapes of internal flow paths, but as shown in FIG. 2, the outer shape is a single cylinder.
 異形流路FBの第1流路F1は、第2流路F2よりも、ノズル10の開口側(図4では右側)に位置している。第1流路F1と第2流路F2との境界面は平面である。第1流路F1は、開口側に、先端面3SAに対して垂直な第1の壁面F1SAを有する。 The first flow path F1 of the irregularly shaped flow path FB is located closer to the opening of the nozzle 10 (on the right side in FIG. 4) than the second flow path F2. The boundary surface between the first flow path F1 and the second flow path F2 is a plane. The first flow path F1 has a first wall surface F1SA perpendicular to the tip surface 3SA on the opening side.
 第1流路F1の断面の形状は、外縁が平行な2本の直線L1、L2と、2つの円弧とからなる、陸上競技のトラックの形状(略トラック形)である。第1流路F1の断面形状(略トラック形)の開口側の第1の直線L1は第1の壁面F1SAの断面線である。第1流路F1の断面形状の、もう一方の第2の直線L2は、第2の流路F2との境界面の断面線である。 The cross-sectional shape of the first flow path F1 is the shape of an athletics track (approximately track shape), consisting of two straight lines L1 and L2 with parallel outer edges and two circular arcs. The first straight line L1 on the opening side of the cross-sectional shape (substantially track-shaped) of the first flow path F1 is a cross-sectional line of the first wall surface F1SA. The other second straight line L2 in the cross-sectional shape of the first flow path F1 is a cross-sectional line of the interface with the second flow path F2.
 第2の流路F2の断面形状は、外縁が第2の直線L2と、第2の直線L2の両端と連なる1つの円弧とを有する略半円形である。 The cross-sectional shape of the second flow path F2 is approximately semicircular with an outer edge having a second straight line L2 and one circular arc continuous with both ends of the second straight line L2.
 第1の流路F1の断面形状および第2の流路F2の断面形状は、ともに、直線Lに対して線対称である。言い替えれば、直線Lは、第1の流路F1の断面形状の対称線であり、かつ、第2の流路F2の対称線である。 Both the cross-sectional shape of the first flow path F1 and the cross-sectional shape of the second flow path F2 are symmetrical with respect to the straight line L. In other words, the straight line L is a line of symmetry of the cross-sectional shape of the first flow path F1 and a line of symmetry of the second flow path F2.
 図5は、図2のV-V線に沿った断面図である。すなわち、図5は、軸心AC(Z軸方向)、および、光学ユニット20の光軸OA、に直交する断面(XY平面)における、異形管12および吐出管13の断面図である。図5は、言い替えれば、先端面3SAに平行な断面における、異形管12および吐出管13の断面図である。 FIG. 5 is a cross-sectional view taken along line VV in FIG. 2. That is, FIG. 5 is a cross-sectional view of the irregularly shaped tube 12 and the discharge tube 13 in a cross section (XY plane) perpendicular to the axis AC (Z-axis direction) and the optical axis OA of the optical unit 20. In other words, FIG. 5 is a sectional view of the irregularly shaped tube 12 and the discharge tube 13 in a cross section parallel to the distal end surface 3SA.
 図2および、図5に示すように、異形流路FBから流体が流入する吐出流路FCは、先端面3SAに対して平行方向に設けられ、観察窓20SAに向かって流体を吐出する開口A10を有している。 As shown in FIGS. 2 and 5, the discharge channel FC into which the fluid flows from the irregularly shaped channel FB is provided in a direction parallel to the tip surface 3SA, and the opening A10 discharges the fluid toward the observation window 20SA. have.
 開口A10の幅(後述する長軸長さ)WL1は、第1の長さD1よりも大きい。 The width (long axis length described later) WL1 of the opening A10 is larger than the first length D1.
 図6は、従来のノズル110を有する内視鏡109における流体Fの流れを示す先端面の上面図である。流体Fとして図示されている領域は、流速が所定値超の領域である。 FIG. 6 is a top view of the distal end surface showing the flow of fluid F in an endoscope 109 having a conventional nozzle 110. The region illustrated as fluid F is a region where the flow velocity exceeds a predetermined value.
 ノズル110の断面は、先端面3SAに対して垂直な壁面を有する略半円形である。Z軸方向から流入した流体Fには、開口A10から遠い側(図の左側)で壁面に沿って渦が発生する。この渦によって、開口A10から吐出された流体Fは、二股化し、観察窓20SAの中心Oに向かう流速が、観察窓20SAの外周に向かう流速よりも遅くなる。このため、従来のノズル110を有する内視鏡109は、効率的に観察窓20SAを洗浄できない。 The cross section of the nozzle 110 is approximately semicircular with a wall surface perpendicular to the tip surface 3SA. A vortex is generated in the fluid F flowing in from the Z-axis direction along the wall surface on the side far from the opening A10 (left side in the figure). Due to this vortex, the fluid F discharged from the opening A10 bifurcates, and the flow velocity toward the center O of the observation window 20SA becomes slower than the flow velocity toward the outer periphery of the observation window 20SA. For this reason, the endoscope 109 having the conventional nozzle 110 cannot efficiently clean the observation window 20SA.
 これに対して、図7に示すように、ノズル10を有する内視鏡9では、第2流路F2の壁面で渦が発生しても、流体Fは、第1流路F1においては、観察窓20SAの中心Oに向かう流速が早くなる。これは、トラック形の第1流路F1の両端の略半円形の流路(図4参照)を上昇してくる流体Fのためと見られる。 On the other hand, as shown in FIG. 7, in the endoscope 9 having the nozzle 10, even if a vortex is generated on the wall surface of the second flow path F2, the fluid F is not observed in the first flow path F1. The flow velocity toward the center O of the window 20SA becomes faster. This appears to be due to the fluid F rising through the substantially semicircular flow paths (see FIG. 4) at both ends of the track-shaped first flow path F1.
 すなわち、図4に示すように、ノズル10は、第1の流路F1の断面形状における対称線Lと直交する方向(Y軸方向)の最大長さである第1の長さD1が、第2の流路F2の断面形状の前記方向の最大長さである第2の長さD2よりも大きい。このため、ノズル10では、第2流路F2の壁面で渦が発生しても、流体Fは、第1流路F1においては、観察窓20SAの中心Oに向かう流れとなる。 That is, as shown in FIG. 4, in the nozzle 10, the first length D1, which is the maximum length in the direction (Y-axis direction) perpendicular to the line of symmetry L in the cross-sectional shape of the first flow path F1, is The second length D2 is the maximum length in the above direction of the cross-sectional shape of the second flow path F2. Therefore, in the nozzle 10, even if a vortex is generated on the wall surface of the second flow path F2, the fluid F flows toward the center O of the observation window 20SA in the first flow path F1.
 内視鏡9は、内視鏡109よりも、観察窓20SAの中心Oに向かう流速が早くなるため、効率的に観察窓20SAを洗浄できる。 Because the endoscope 9 has a faster flow velocity toward the center O of the observation window 20SA than the endoscope 109, it can efficiently clean the observation window 20SA.
 なお、ノズル10の第1の長さD1は、第2の長さD2の、250%未満であることが好ましい。 Note that the first length D1 of the nozzle 10 is preferably less than 250% of the second length D2.
 第1の長さD1が、前記範囲であれば、効率的に観察窓20SAを洗浄できる。 If the first length D1 is within the above range, the observation window 20SA can be efficiently cleaned.
 また、対称線である直線Lにおける、第1の流路F1の第3の長さD3は、第2の流路F2の第4の長さD4の、50%超250%未満であることが好ましい。 Further, the third length D3 of the first flow path F1 in the straight line L that is the line of symmetry may be more than 50% and less than 250% of the fourth length D4 of the second flow path F2. preferable.
 第3の長さD3が、前記範囲であれば、効率的に観察窓20SAを洗浄できる。 If the third length D3 is within the above range, the observation window 20SA can be efficiently cleaned.
 なお、図8に示すように、ノズル10の吐出流路F3の断面形状は、略トラック形である。吐出流路F3は、開口A10に向かって、短軸長さSLは変化しないが、長軸長さWLは大きくなる。開口A10の長軸長さWL1は、吐出流路F3の後端面の長軸長さWL2よりも大きい。図5に示したように長軸長さWLは、開口A10に向かって、曲線的に大きくなっている。 Note that, as shown in FIG. 8, the cross-sectional shape of the discharge flow path F3 of the nozzle 10 is approximately track-shaped. In the discharge flow path F3, the short axis length SL does not change toward the opening A10, but the long axis length WL increases. The major axis length WL1 of the opening A10 is larger than the major axis length WL2 of the rear end surface of the discharge flow path F3. As shown in FIG. 5, the major axis length WL increases in a curved manner toward the opening A10.
 長軸長さWLが変化しなかったり、長軸長さWLが直線的に大きくなったりする吐出流路を有するノズルに比べて、ノズル10は、観察窓20SAの中心Oに向かう流速がより早くなるため、より効率的に観察窓20SAを洗浄できる。また、ノズル10は、曲線的に曲がっている流路を有するノズルよりも製造が容易である。 Compared to a nozzle having a discharge flow path in which the major axis length WL does not change or the major axis length WL increases linearly, the nozzle 10 has a faster flow velocity toward the center O of the observation window 20SA. Therefore, the observation window 20SA can be cleaned more efficiently. The nozzle 10 is also easier to manufacture than a nozzle with a curved flow path.
<実施形態の変形例>
 次に実施形態の変形例1-3の内視鏡9A-9Cについて説明する。内視鏡9A-9Cは、内視鏡9と類似し同じ効果を有しているので、同じ機能の構成要素には同じ符号を付し説明は省略する。
<Modified example of embodiment>
Next, endoscopes 9A-9C of modification 1-3 of the embodiment will be described. The endoscopes 9A to 9C are similar to the endoscope 9 and have the same effects, so components with the same functions are given the same reference numerals and explanations will be omitted.
 図9-図11は、図5と同じように、先端面3SAに平行な断面における、異形管12および吐出管13の断面図である。 Similar to FIG. 5, FIGS. 9 to 11 are cross-sectional views of the irregularly shaped tube 12 and the discharge tube 13 in a cross section parallel to the distal end surface 3SA.
<実施形態の変形例1>
 図9に示すように、本変形例の内視鏡9Aでは、ノズル10Aの異形流路FBは、第1流路F1の断面形状は、略トラック形であり、第2の流路F2の断面形状は、第1流路F1の長軸と連なる略三角形である。第1流路F1の長軸の長さが、D1であり、第2の流路F2の略三角形の一辺の長さがDMXである。
<Modification 1 of the embodiment>
As shown in FIG. 9, in the endoscope 9A of the present modification, in the irregularly shaped flow path FB of the nozzle 10A, the cross section of the first flow path F1 is approximately track-shaped, and the cross section of the second flow path F2 is approximately track-shaped. The shape is a substantially triangular shape connected to the long axis of the first flow path F1. The length of the long axis of the first flow path F1 is D1, and the length of one side of the substantially triangular triangle of the second flow path F2 is DMX.
<実施形態の変形例2>
 図10に示すように、本変形例の内視鏡9Bでは、ノズル10Bの異形流路FBは、第1の流路F1の断面形状が、第2の流路側の角が曲線的に面取りされている長軸が第1の長さD1の略長方形である。第2の流路F2の断面形状は、長軸の第2の長さD2の長方形と、長方形の長軸と連なる略三角形である。
<Modification 2 of embodiment>
As shown in FIG. 10, in the endoscope 9B of this modification, the irregularly shaped flow path FB of the nozzle 10B has a cross-sectional shape of the first flow path F1, and a corner on the second flow path side is chamfered in a curved line. It is a substantially rectangular shape with a long axis having a first length D1. The cross-sectional shape of the second flow path F2 is a rectangle with the second length D2 of the long axis, and a substantially triangular shape continuous with the long axis of the rectangle.
<実施形態の変形例3>
 図11に示すように、本変形の内視鏡9Cでは、ノズル10Cの異形流路の第1の流路F1の断面形状は、ノズル10Bの断面形状と同じである。第2の流路F2の断面形状は、長軸が第2の長さD2の略長方形である。
<Variation 3 of the embodiment>
As shown in FIG. 11, in the endoscope 9C of this modification, the cross-sectional shape of the first flow path F1 of the irregularly shaped flow path of the nozzle 10C is the same as the cross-sectional shape of the nozzle 10B. The cross-sectional shape of the second flow path F2 is approximately rectangular with a major axis having a second length D2.
 変形例1-3では、ノズル10A-10Cは、第1の流路F1の第1の長さD1は、第2の流路F2の第2の長さD2よりも大きい。このため、内視鏡9A-9Cは、観察窓20SAの中心に向かう流速が早くなるため、効率的に観察窓20SAを洗浄できる。 In modification 1-3, in the nozzles 10A-10C, the first length D1 of the first flow path F1 is larger than the second length D2 of the second flow path F2. Therefore, in the endoscopes 9A-9C, the flow velocity toward the center of the observation window 20SA becomes faster, so that the observation window 20SA can be efficiently cleaned.
 なお、図9-図11に示したノズル10A-10Cは、円形流路FAの軸心ACが、第1の流路F1と第2の流路F2との境界線に、位置しているが、軸心ACの位置は図示した形態に限定されるものではない。 Note that in the nozzles 10A to 10C shown in FIGS. 9 to 11, the axis AC of the circular flow path FA is located on the boundary line between the first flow path F1 and the second flow path F2. , the position of the axis AC is not limited to the illustrated form.
 本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。 The present invention is not limited to the embodiments described above, and various changes and modifications can be made without departing from the gist of the present invention.
3・・・挿入部
3A・・・先端部
3SA・・・先端面
9、9A-9C・・・内視鏡
10、10A-10C・・・ノズル
11・・・円筒管
12・・・異形管
13・・・吐出管
14・・・送気/送水チューブ
20・・・光学系
20SA・・・観察窓
FA・・・円形流路
FB・・・異形流路
FC・・・吐出流路
F1・・・第1の流路
F2・・・第2の流路
3... Insertion part 3A... Tip part 3SA... Tip surface 9, 9A-9C... Endoscope 10, 10A-10C... Nozzle 11... Cylindrical tube 12... Irregular tube 13...Discharge pipe 14...Air/water supply tube 20...Optical system 20SA...Observation window FA...Circular flow path FB...Unusual flow path FC...Discharge flow path F1. ...First flow path F2...Second flow path

Claims (12)

  1.  挿入部の先端面に、観察窓と、ノズルと、を有し、
     前記ノズルは、
     異形流路と、前記異形流路から流体が流入する吐出流路と、を有し、
     前記異形流路は、前記先端面に対して垂直方向に設けられており、第1流路と、前記第1流路と全長にわたって連通している第2流路と、からなり
     前記吐出流路は、前記先端面に対して平行方向に設けられ、前記観察窓に向かって前記流体を吐出する開口を有しており、
     前記第1流路は前記第2流路よりも、前記開口に近い位置にあり、
     前記第1の流路および前記第2の流路は、それぞれの断面形状が同じ対称線に対して線対称であり、
     前記第1の流路の断面形状の、前記対称線と直交する方向の最大長さである第1の長さは、前記第2の流路の断面形状の、前記方向の最大長さである第2の長さよりも大きいことを特徴とする内視鏡。
    It has an observation window and a nozzle on the distal end surface of the insertion section,
    The nozzle is
    comprising an irregularly shaped channel and a discharge channel into which fluid flows from the irregularly shaped channel,
    The irregularly shaped flow path is provided in a direction perpendicular to the tip surface, and includes a first flow path and a second flow path that communicates with the first flow path over the entire length. The discharge flow path is provided in a direction parallel to the tip surface and has an opening that discharges the fluid toward the observation window,
    The first flow path is located closer to the opening than the second flow path,
    The first flow path and the second flow path have cross-sectional shapes that are line symmetrical with respect to the same line of symmetry,
    The first length, which is the maximum length of the cross-sectional shape of the first channel in the direction perpendicular to the line of symmetry, is the maximum length of the cross-sectional shape of the second channel in the direction. An endoscope having a length greater than the second length.
  2.  前記第1の長さは、前記第2の長さの、250%未満であることを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the first length is less than 250% of the second length.
  3.  前記第1の流路の断面形状の、前記対称線における第3の長さは、前記第2の流路の断面形状の、前記対称線における第4の長さの、50%超250%未満であることを特徴とする請求項1に記載の内視鏡。 The third length of the cross-sectional shape of the first flow path in the line of symmetry is more than 50% and less than 250% of the fourth length of the cross-sectional shape of the second flow path in the line of symmetry. The endoscope according to claim 1, characterized in that:
  4.  前記第1の流路は、開口側に、前記先端面に対して垂直な第1の壁面を有することを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the first flow path has a first wall surface perpendicular to the distal end surface on the opening side.
  5.  前記第1の流路の断面形状は、略トラック形であり、前記略トラック形の開口側の第1の直線は前記第1の壁面の断面線であり、もう一方の第2の直線は、前記第2の流路との境界面の断面線であることを特徴とする請求項4に記載の内視鏡。 The cross-sectional shape of the first flow path is approximately track-shaped, the first straight line on the opening side of the approximately track-shaped is the cross-sectional line of the first wall surface, and the other second straight line is: The endoscope according to claim 4, wherein the line is a cross-sectional line of an interface with the second flow path.
  6.  前記第2の流路の断面形状は、前記第2の直線と、前記第2の直線の両端と連なる1つの曲線とを有する略半円形であることを特徴とする請求項5に記載の内視鏡。 6. The cross-sectional shape of the second flow path is a substantially semicircular shape having the second straight line and one curved line continuous with both ends of the second straight line. Endoscope.
  7.  前記第2流路の前記第2の長さは、前記第2の直線の長さであることを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the second length of the second flow path is the length of the second straight line.
  8.  前記吐出流路は、流路に直交する断面形状が略トラック形であり、前記異形流路との境界から前記開口に向かって、長軸長さが、曲線的に大きくなることを特徴とする請求項1に記載の内視鏡。 The discharge flow path is characterized in that a cross-sectional shape perpendicular to the flow path is approximately track-shaped, and the length of the long axis increases in a curved manner from the boundary with the irregularly shaped flow path toward the opening. The endoscope according to claim 1.
  9.  前記吐出流路の前記開口における前記長軸長さは、前記第1の長さよりも大きいことを特徴とする請求項8に記載の内視鏡。 The endoscope according to claim 8, wherein the long axis length of the opening of the discharge flow path is larger than the first length.
  10.  前記第1の流路の断面形状は、長軸が前記第1の長さの略トラック形状であり、
     前記第2の流路の断面形状は、長軸が前記第2の長さの略長方形と、略三角形とからなることを特徴とする請求項1に記載の内視鏡。
    The cross-sectional shape of the first flow path is approximately a track shape with a major axis having the first length;
    The endoscope according to claim 1, wherein the cross-sectional shape of the second flow path is a substantially rectangular shape whose long axis has the second length, and a substantially triangular shape.
  11.  前記第1の流路の断面形状は、長軸が前記第1の長さの略長方形であり、
     前記第2の流路の断面形状は、長軸が前記第2の長さの略長方形と略三角形とからなることを特徴とする請求項1に記載の内視鏡。
    The cross-sectional shape of the first flow path is approximately rectangular with a long axis having the first length,
    The endoscope according to claim 1, wherein the cross-sectional shape of the second flow path is a substantially rectangular shape whose long axis has the second length and a substantially triangular shape.
  12.  前記異形管の外形は、円柱であることを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the irregularly shaped tube has a cylindrical outer shape.
PCT/JP2022/024516 2022-06-20 2022-06-20 Endoscope WO2023248288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024516 WO2023248288A1 (en) 2022-06-20 2022-06-20 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024516 WO2023248288A1 (en) 2022-06-20 2022-06-20 Endoscope

Publications (1)

Publication Number Publication Date
WO2023248288A1 true WO2023248288A1 (en) 2023-12-28

Family

ID=89379519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024516 WO2023248288A1 (en) 2022-06-20 2022-06-20 Endoscope

Country Status (1)

Country Link
WO (1) WO2023248288A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165355A (en) * 1996-12-11 1998-06-23 Olympus Optical Co Ltd Endoscope
JP2009240596A (en) * 2008-03-31 2009-10-22 Olympus Medical Systems Corp Endoscope, endoscope with distal end cap and endoscope washing sheath
JP2009247565A (en) * 2008-04-04 2009-10-29 Olympus Medical Systems Corp Endoscope, endoscope with distal end cap, and endoscope washing sheath
WO2015045523A1 (en) * 2013-09-26 2015-04-02 オリンパスメディカルシステムズ株式会社 Endoscope nozzle
JP2020163006A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Endoscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165355A (en) * 1996-12-11 1998-06-23 Olympus Optical Co Ltd Endoscope
JP2009240596A (en) * 2008-03-31 2009-10-22 Olympus Medical Systems Corp Endoscope, endoscope with distal end cap and endoscope washing sheath
JP2009247565A (en) * 2008-04-04 2009-10-29 Olympus Medical Systems Corp Endoscope, endoscope with distal end cap, and endoscope washing sheath
WO2015045523A1 (en) * 2013-09-26 2015-04-02 オリンパスメディカルシステムズ株式会社 Endoscope nozzle
JP2020163006A (en) * 2019-03-29 2020-10-08 Hoya株式会社 Endoscope

Similar Documents

Publication Publication Date Title
US10441151B2 (en) Endoscope
JP5554153B2 (en) Endoscope
US20090253964A1 (en) Endoscope, distal end cap-equipped endoscope and endoscope cleaning sheath
WO2003071935A1 (en) Hood for endoscope
JPWO2014030385A1 (en) Endoscope
WO2023248288A1 (en) Endoscope
JPH11313795A (en) Endoscope
CN110267579B (en) Endoscope with a detachable handle
JP6653668B2 (en) Ultrasound endoscope
JPH09220192A (en) Endoscope
JP6430739B2 (en) Endoscope
JP2022128499A (en) Endoscope
JP4297484B2 (en) Endoscopy tip cleaning nozzle and endoscope
JP5395030B2 (en) Endoscope cleaning nozzle
JP2010279533A (en) Distal end structure for endoscope insertion section
JPH10151108A (en) Tip part of side view type endoscope
WO2021219826A1 (en) Endoscope with improved viewing window cleaning nozzle
JP5368380B2 (en) Endoscope
WO2015045523A1 (en) Endoscope nozzle
JP2002085339A (en) Air supply and water supply nozzle of endoscope
WO2017069007A1 (en) Tip hood for endoscope
WO2019039271A1 (en) Endoscope illumination unit and endoscope
WO2022070982A1 (en) Endoscope
JP2018094016A (en) Endoscope and lens cleaning sheath for endoscope
JP6932490B2 (en) Endoscope conduit and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947852

Country of ref document: EP

Kind code of ref document: A1