WO2023247092A1 - Conception d'un système de commande de conduite automatique dans des simulations massivement parallèles - Google Patents
Conception d'un système de commande de conduite automatique dans des simulations massivement parallèles Download PDFInfo
- Publication number
- WO2023247092A1 WO2023247092A1 PCT/EP2023/060623 EP2023060623W WO2023247092A1 WO 2023247092 A1 WO2023247092 A1 WO 2023247092A1 EP 2023060623 W EP2023060623 W EP 2023060623W WO 2023247092 A1 WO2023247092 A1 WO 2023247092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving control
- data
- control system
- road users
- automatic driving
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 41
- 238000010200 validation analysis Methods 0.000 claims abstract description 29
- 238000012549 training Methods 0.000 claims abstract description 15
- 230000007774 longterm Effects 0.000 claims description 9
- 238000010206 sensitivity analysis Methods 0.000 claims description 8
- 230000006978 adaptation Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 25
- 238000013528 artificial neural network Methods 0.000 description 13
- 230000006399 behavior Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000008447 perception Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 206010001488 Aggression Diseases 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 208000012761 aggressive behavior Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011905 homologation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/012—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/008—Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/092—Reinforcement learning
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
Definitions
- the invention relates to a method for designing and validating an automatic driving control system of a vehicle.
- simulation-based development and testing of automated vehicles with an automatic driving control system in particular the validation of a driving control function of an automatic driving control system for the automatic operation of a vehicle, is only possible with the help of simulation if the respective simulation modules demonstrably produce realistic results.
- This also applies, among other things, to modeling traffic dynamics, i.e. simulating the behavior of other road users.
- a realistic representation of the environmental dynamics is therefore a key component for finding potentially critical scenarios for an automated vehicle.
- the object of the invention is to improve the design and validation of an automatic driving control system of a vehicle.
- a first aspect of the invention relates to a method for designing and validating a automatic driving control system of a vehicle, comprising the steps:
- the data of the road users observed in reality can, on the one hand, be recorded with stationary sensors, especially in particularly interesting areas such as urban intersections, but on the other hand can also be recorded from an advantageous bird's eye view, for example with a balloon, a quadrocopter or a small-scale fixed-wing aircraft or another unmanned one aircraft can be detected.
- This means that the real behavior of real road users is known and can form a realistic approach for the initial database for the simulations.
- the respective associated scenario is recorded accordingly, for example in order to provide not only the real road users but also the background scenario such as intersection data for the simulations.
- This scenario is advantageously included in the respective simulation in order to create a simulation that is as realistic as possible.
- the respective associated scenario can also include weather data, for example prevailing light intensity, wind strength, precipitation, fog, etc.;
- the trajectories of the real observing road users include a trajectory and associated time information, so that the temporally relative movement of the road users can be reproduced in the agent models of the simulations.
- Preparing the data from real road users to ensure the completeness of the data ensures that the entirety of the traffic dynamics relevant to the automated vehicle can be observed within the identified traffic sections.
- the calibration and validation of the simulation environment can then take place, which is able to model and simulate the dynamics of all relevant road users for the corresponding traffic area with sufficient validity.
- the real road users are then modeled as traffic agents so that the actually observed behavior of the real road users can be depicted in the respective simulation and the respective simulation can depict dynamic scenarios.
- the calibrated and validated simulation environment is the basis for the subsequent process step of massively parallel long-term simulation, in which the modeled traffic agents are used as the initial database with the addition of synthetic data from virtual road users.
- long-term simulations are carried out with the initial database in multiple parallelization of the simulations and with a time scale factor greater than one for real time, integrating the automatic driving control system with simulation data instead of sensor data.
- the fact that there is a time scale factor greater than one compared to real time means that the simulations are carried out significantly faster than real time and therefore huge amounts of data from very long simulated travel times can be processed in simulations in a relatively short time - hence the expression "long-term simulation” .
- the multiple parallelization also contributes to this, meaning that several simulations are carried out in parallel at the same time.
- a respective variation of the initial database or a respective set of variations is carried out with each individual simulation.
- the validation data set is used to check whether the automatic driving control system operates safely across a very large number of realistic scenarios.
- the generated validation data set defines the entire surrounding traffic dynamics relevant to the automated vehicle. Even if this methodology is particularly suitable for validating an algorithm of the driving control function of the automatic driving control system and thus for securing situational understanding, decision-making, regulation and actuation of the automatic driving control system, the use of the database to support the securing of the environment detection/perception of the automated vehicle is also possible. This can be done, for example, by combining the validation data set with a realistic visualization simulator.
- the modeling of, for example, material properties and reflections of the relevant static and dynamic objects in the environment of the automated driving function is carried out by the visualization simulator, while the varied initial database defines the relevant traffic dynamics (type of movement of the dynamic objects) in the corresponding scenario.
- the synthetic data of virtual road users are generated by completely synthetic generation without reference to the real road users.
- the synthetic data of the virtual road users are generated partly by modifying the data of the real road users and partly by completely synthetic generation without reference to the real road users.
- the variations of the initial database include a varying ratio between modeled human traffic agents and virtual traffic participants.
- Varying the relationship between the virtual road users and the modeled human traffic agents allows a sensitivity analysis regarding the degree of penetration of automated road users, especially automated vehicles.
- the free variation of this ratio is in a physically real situation not possible.
- This embodiment can advantageously be used to determine the sensitivity of the automatic driving control system to the proportion of automatically guided vehicles in the traffic area around the vehicle. This is of great interest because automatically guided vehicles behave differently than human-driven vehicles.
- the proportion of automatically driven vehicles in relation to all road users is also called the penetration level of automated vehicles.
- the number of virtual road users in the output database is greater than the number of real road users used.
- strategic and tactical, or strategic, tactical and operational simulation elements for the vehicle are carried out in the simulations carried out.
- the hybrid, varied initial database is used in particular for training at the strategic, tactical or operational level.
- An example of the strategic level is the sensible choice of route based on a defined start and destination.
- An example of the tactical level is the execution of the maneuver prediction module in the form of the future trajectories of the road users surrounding the automated vehicle in a specific traffic situation.
- the behavior/trajectories of the real road users when safely passing the respective scenario can be used as ground truth.
- the operational level relates in particular to a respective vehicle management function.
- Another obvious use case is the training of a reinforcement learning agent, which is exposed to the corresponding traffic dynamics and, depending on its reaction, is rewarded or punished for its behavior and can thus learn safe behavior across the relevant traffic scenarios.
- a sensitivity analysis is determined via the effect of variations in the output database on the respective reaction of the automatic driving control system and the result of the sensitivity analysis is used for a targeted adaptation process of parameters of a driving control function of the automatic driving control system.
- This sensitivity analysis not only looks at a single data point in the simulation space, but varies the output data base around a data point to get a sense of the impact of these changes in multiple directions on the response of the automatic driving control system. This applies in particular to the number of modeled automated road users in relation to the total number of other road users simulated in the simulation. This level of penetration is of particular interest in sensitivity analysis.
- an environment detection/perception of the automated vehicle is also validated using this embodiment.
- a sensor unit with a connected perception module is preferably considered, with the sensor unit being artificially fed data from the simulator instead of real data in order to validate the environment detection and perception of the automated vehicle.
- Material properties and reflections of the relevant static and dynamic objects in the environment of the automated driving function can also advantageously be used by a visualization module in the simulation in order to generate realistic states of detectable sensor data.
- optical material properties and/or reflections of the vehicle's surroundings are therefore simulated in the simulation.
- the variations of the initial database occur by imposing changed probability distributions of traffic agents.
- the probability distributions (such as normal distribution, binomial distribution, because Weibull distribution) are varied accordingly in order to design scenarios differently. For example, the value of a Standard deviation of random variables such as pedestrian behavior can be increased to obtain more differentiated scenarios.
- Fig. 1 A method for designing and validating an automatic driving control system of a vehicle according to an exemplary embodiment of the invention.
- SO data is provided from road users observed in reality with the help of a drone (pedestrians, cyclists, automated and non-automated cars, etc.) with assignment to the respective prevailing scenario in which the road users were observed, in particular one intersection, a highway, a highway drive, etc.;
- the data of the road users observed by the drone also includes the trajectories of the road users, ie their trajectories with time information.
- the current weather situation in the scenario under consideration is registered by the drone in order to reproduce it in the later simulations.
- step S1 the data of the real road users recorded by the drone is processed to ensure the completeness of the data, so that the data that can be recorded by it is actually made available to the automatic driving control system of the vehicle, including its sensor units in the simulation environment, without being made available by the To capture data gaps arising from the drone.
- the real road users captured by the drone are modeled as traffic agents for the simulation environment.
- step S3 several simulations are carried out with the hybrid simulation environment generated with the initial database in multiple parallelization of the simulations and with a time scale factor greater than one for real time, integrating the automatic driving control system with simulation data instead of sensor data.
- the simulation speed is significantly faster than real time, so that an enormous number of road users, scenarios and kilometers driven by the automated vehicle can be simulated with the automatic driving control system for designing and/or validating the driving control system in order to work with a quantity of data that has been obtained through practical tests (ie a real journey of the vehicle) would be practically unachievable.
- variations of the initial database are carried out in order to use a sensitivity analysis to determine the respective reaction of the automatic driving control system to the variations in the hybrid simulation environment. Based on these variations and the results, a training data set and a validation data set are generated in order to single out particularly critical and safety-relevant situations.
- an adaptation process S5 of parameters of a driving control function of the automatic driving control system can be carried out on the basis of the training data set. This particularly affects parameters of an artificial neural network that can be adjusted multiple times using supervised learning methods.
- S6 a validation of the automatic driving control system is carried out based on the validation data set, with at least one algorithm of the driving control function of the automatic driving control system being validated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Robotics (AREA)
- Traffic Control Systems (AREA)
Abstract
La présente invention concerne un procédé de conception et de validation d'un système de commande de conduite automatique. Les étapes consistent à : fournir (S0) les données des usagers de la route observés dans la réalité, avec leurs trajectoires, préparer (S1) des données et la modélisation des usagers de la route réels en tant qu'agents de circulation, créer (S2) un environnement de simulation hybride avec ajout de données synthétiques d'usagers de la route virtuels en tant que base de données initiale, réaliser (S3) des simulations dans une parallélisation multiple des simulations avec l'implication du système de conduite automatique à l'aide de données de simulation au lieu de données de capteur, des variations de la base de données initiale étant effectuées dans la simulation, générer (S4) un enregistrement de données d'apprentissage et un enregistrement de données de validation à partir de la base de données initiale modifiée, et réaliser (S5) un processus d'ajustement de paramètres d'une fonction de commande de conduite, et, à l'issue de tous les processus d'ajustement de la fonction de commande de conduite : exécuter (S6) une validation du système de commande de conduite automatique sur la base de l'enregistrement de données de validation, au moins un algorithme de la fonction de commande de conduite du système de commande de conduite automatique étant validé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022206238.8A DE102022206238A1 (de) | 2022-06-22 | 2022-06-22 | Auslegen eines automatischen Fahrsteuersystems in massiv parallelen Simulationen |
DE102022206238.8 | 2022-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023247092A1 true WO2023247092A1 (fr) | 2023-12-28 |
Family
ID=86329133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/060623 WO2023247092A1 (fr) | 2022-06-22 | 2023-04-24 | Conception d'un système de commande de conduite automatique dans des simulations massivement parallèles |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022206238A1 (fr) |
WO (1) | WO2023247092A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210294944A1 (en) * | 2020-03-19 | 2021-09-23 | Nvidia Corporation | Virtual environment scenarios and observers for autonomous machine applications |
WO2021204983A1 (fr) | 2020-04-09 | 2021-10-14 | Siemens Aktiengesellschaft | Dispositif de commande pour commander un système technique et procédé pour configurer le dispositif de commande |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017007136A1 (de) | 2017-07-27 | 2019-01-31 | Opel Automobile Gmbh | Verfahren und Vorrichtung zum Trainieren selbstlernender Algorithmen für ein automatisiert fahrbares Fahrzeug |
DE102019206908B4 (de) | 2019-05-13 | 2022-02-17 | Psa Automobiles Sa | Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt, Kraftfahrzeug sowie System |
DE102019219241A1 (de) | 2019-12-10 | 2021-06-10 | Psa Automobiles Sa | Verfahren zum Erstellen eines Verkehrsteilnehmeralgorithmus zur Computersimulation von Verkehrsteilnehmern, Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug |
-
2022
- 2022-06-22 DE DE102022206238.8A patent/DE102022206238A1/de active Pending
-
2023
- 2023-04-24 WO PCT/EP2023/060623 patent/WO2023247092A1/fr unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210294944A1 (en) * | 2020-03-19 | 2021-09-23 | Nvidia Corporation | Virtual environment scenarios and observers for autonomous machine applications |
WO2021204983A1 (fr) | 2020-04-09 | 2021-10-14 | Siemens Aktiengesellschaft | Dispositif de commande pour commander un système technique et procédé pour configurer le dispositif de commande |
Non-Patent Citations (4)
Title |
---|
BARBIER MATHIEU ET AL: "Classification of drivers manoeuvre for road intersection crossing with synthethic and real data", 2017 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), IEEE, 11 June 2017 (2017-06-11), pages 224 - 230, XP033133712, DOI: 10.1109/IVS.2017.7995724 * |
JASON BROWNLEE: "What is the Difference Between Test and Validation Datasets? - MachineLearningMastery.com", MACHINELEARNINGMASTERY.COM, 14 July 2017 (2017-07-14), pages 1 - 84, XP093063905, Retrieved from the Internet <URL:https%3A%2F%2Fmachinelearningmastery.com%2Fdifference-test-validation-datasets%2F> [retrieved on 20230713] * |
NICO WEBER ET AL: "A Needle in a Haystack -- How to Derive Relevant Scenarios for Testing Automated Driving Systems in Urban Areas", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 8 September 2021 (2021-09-08), XP091052412 * |
W. WACHENFELDH. WINNER: "Autonomous Driving: Technical, Legal and Social Aspects", 2016, SPRINGER, article "The release of autonomous vehicles", pages: 425 - 449 |
Also Published As
Publication number | Publication date |
---|---|
DE102022206238A1 (de) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3970077B1 (fr) | Procédé pour l'entraînement d'au moins un algorithme pour un appareil de commande d'un véhicule automobile, produit de programme informatique, véhicule automobile ainsi que système | |
DE102018128290A1 (de) | Verfahren und vorrichtung zum erzeugen von szenarien und parametrischen sweeps für die entwicklung und bewertung von autonomen antriebssystemen | |
DE102018128289B4 (de) | Verfahren und vorrichtung für eine autonome systemleistung und zur einstufung | |
DE102017213634A1 (de) | Verfahren und Vorrichtung für die Durchführung von virtuellen Tests in einer virtuellen Realitätsumgebung für ein autonom fahrendes Fahrzeug | |
DE102007053501A1 (de) | Verfahren zur Entwicklung und/oder zum Testen wenigstens eines Sicherheits- und/oder Fahrerassistenzsystems für ein Kraftfahrzeug und Simulationsumgebung | |
DE102022112059B3 (de) | Verfahren, System und Computerprogrammprodukt zur Kalibrierung und Validierung eines Fahrerassistenzsystems (ADAS) und/oder eines automatisierten Fahrsystems (ADS) | |
DE102020127107A1 (de) | Verfahren und vorrichtung zum bestimmen einer konfiguration für ein autonomes fahrzeug | |
WO2020187563A1 (fr) | Procédé pour l'entraînement d'au moins un algorithme pour un appareil de commande d'un véhicule automobile, produit de programme informatique, véhicule automobile ainsi que système | |
DE102013200116A1 (de) | Verfahren zum Entwickeln und/oder Testen eines Fahrerassistenzsystems | |
DE202022106107U1 (de) | System zur Prüfung von automatisierten Fahrsystemen der Stufe 3 (ADS) | |
AT524822A1 (de) | Verfahren zum Testen eines Fahrerassistenzsystems eines Fahrzeugs | |
DE102018207566A1 (de) | System zum Durchführen von simulierten Kollisionsszenarios von einem Kraftfahrzeug mit einem nicht-motorisierten Verkehrsteilnehmer | |
DE102022127857A1 (de) | Verfahren, System und Computerprogrammprodukt zur Sensitivitätsanalyse von Applikationsparametern für automatisierte Fahrfunktionen | |
DE102019212829A1 (de) | Automatisierte Erkennung eines anormalen Verhaltens eines Verkehrsteilnehmers | |
WO2023247092A1 (fr) | Conception d'un système de commande de conduite automatique dans des simulations massivement parallèles | |
DE102019203205A1 (de) | Verfahren zum Auswerten von Fahrzeugdaten sowie Fahrzeugdatenauswertesystem zum Durchführen eines derartigen Verfahrens | |
WO2022251890A1 (fr) | Procédé et système pour tester un système d'aide à la conduite d'un véhicule | |
DE102021202083A1 (de) | Computerimplementiertes Verfahren zum Trainieren wenigstens eines Algorithmus für eine Steuereinheit eines Kraftfahrzeugs, Computerprogrammprodukt, Steuereinheit sowie Kraftfahrzeug | |
DE102022203422A1 (de) | Test einer automatischen Fahrsteuerfunktion mittels semi-realer Verkehrsdaten | |
DE102022107338B3 (de) | Verfahren zum Testen von automatisierten Fahrzeugfunktionen | |
DE102022117841B4 (de) | Verfahren, System und Computerprogrammprodukt zur Kalibrierung und Validierung eines Fahrerassistenzsystems (ADAS) und/oder eines automatisierten Fahrsystems (ADS) unter Berücksichtigung einer subjektiven Bewertung | |
DE102021214095A1 (de) | Verfahren und System zum Erkennen von kritischen Verkehrsszenarien und/oder Verkehrssituationen | |
DE102022132917A1 (de) | Verfahren und System zur Bestimmung der Kritikalität und Kontrollierbarkeit von Szenarien für automatisierte Fahrfunktionen | |
DE102023203633A1 (de) | Hybrid-Verkehrssimulation mit Agentenmodellen zum Test teleoperierter Fahrzeuge | |
DE102023201782A1 (de) | Limitierter Agentenmodelleinsatz in Hybrid-Verkehrssimulation mit Realtrajektorien |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23721888 Country of ref document: EP Kind code of ref document: A1 |