WO2023246669A1 - 一种燃料电池发电系统及其控制方法 - Google Patents

一种燃料电池发电系统及其控制方法 Download PDF

Info

Publication number
WO2023246669A1
WO2023246669A1 PCT/CN2023/100917 CN2023100917W WO2023246669A1 WO 2023246669 A1 WO2023246669 A1 WO 2023246669A1 CN 2023100917 W CN2023100917 W CN 2023100917W WO 2023246669 A1 WO2023246669 A1 WO 2023246669A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
ammonia
gas
outlet
Prior art date
Application number
PCT/CN2023/100917
Other languages
English (en)
French (fr)
Inventor
江莉龙
杨天颖
罗宇
陈崇启
林立
Original Assignee
福州大学
福大紫金氢能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学, 福大紫金氢能科技股份有限公司 filed Critical 福州大学
Publication of WO2023246669A1 publication Critical patent/WO2023246669A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/222Fuel cells in which the fuel is based on compounds containing nitrogen, e.g. hydrazine, ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, and in particular to a fuel cell power generation system and a control method thereof.
  • a fuel cell is a chemical device that directly converts the chemical energy of the fuel into electrical energy. It mainly performs electrochemical reactions with oxygen or other oxidants and fuel. In the fuel cell, the fuel and air are fed into the anode and the fuel cell respectively. cathode, electricity will be produced.
  • Hydrogen fuel is currently the most ideal fuel in fuel cell applications. It has high efficiency. The fuel product is water, has no ash and waste gas, and will not pollute the environment. However, hydrogen storage is difficult. At present, ammonia, an alternative fuel to hydrogen, is generally used. Ammonia has high hydrogen content and has the advantages of easy liquefaction, high energy density, no carbon emissions, high safety, and low fuel cost.
  • Proton exchange membrane fuel cell is the current mainstream technology.
  • the irreversible degradation of proton exchange membrane fuel cell performance requires the coupling of a series of component devices such as ammonia decomposition, ammonia removal, and hydrogen fuel cells.
  • the efficient integration of these component devices involves complex energy management and system control strategies, which can easily lead to ammonia fuel cell failure.
  • the battery system operates unstable and consumes high energy.
  • Chinese patent document CN110277578A discloses an ammonia fuel cell system and an electric device, including an ammonia decomposition reaction device, a heating device, a hydrogen fuel cell, a DC/DC converter and an inverter, a battery pack and a heat exchanger connected in sequence. Long-term stable operation and recycling, it has the advantages of high flexibility, low energy consumption and high system utilization. This patented technology has solved the first problem problem, but the second problem above needs to be solved urgently.
  • the present invention aims to solve the problem that when the proton membrane of the existing fuel cell stack is thick, the anode side of the fuel cell is prone to drying up. To this end, the present invention provides a fuel cell power generation system and its Control Method.
  • the present invention provides a fuel cell power generation system, including:
  • An ammonia decomposition device and a heating device provided inside the ammonia decomposition device The heating device is used to heat the gas and catalyst entering the ammonia decomposition device.
  • the ammonia decomposition device is used to decompose ammonia gas into hydrogen nitrogen gas;
  • An ammonia removal device which is connected with the outlet of the ammonia decomposition device and is used to remove undecomposed ammonia;
  • a fuel cell which is connected to the ammonia removal device and uses hydrogen as fuel for oxidation to generate electrical energy
  • a conversion device connected to the fuel cell to boost the voltage of the fuel cell
  • a battery pack for storing electrical energy generated by the fuel cell
  • the system also includes a first membrane humidifier, a second membrane humidifier, a first gas-water separator and an air compressor; the first membrane humidifier is connected between the ammonia decomposition device and the fuel cell. between the anodes, the second membrane humidifier is connected between the air compressor and the cathode of the fuel cell, and the air compressor is used to send compressed air into the cathode of the fuel cell;
  • the first outlet of the fuel cell is connected to the anode of the fuel cell, the second outlet of the fuel cell is connected to the inlet of the first gas-water separator, and the first outlet of the first gas-water separator is connected to the anode of the fuel cell.
  • the first membrane humidifier is connected to the second membrane humidifier, and the second outlet of the first gas-water separator is connected to the second membrane humidifier.
  • the system further includes a membrane separation device and a pressure swing adsorption separation device, the inlet of the pressure swing adsorption separation device is connected with the outlet of the membrane separation device, and the outlet of the ammonia removal device is connected with the outlet of the membrane separation device.
  • the inlet is connected, and the outlet of the pressure swing adsorption separation device passes through the third
  • a membrane humidifier is connected to the anode of the fuel cell.
  • system further includes a hydrogen boosting pump connected between the outlet of the ammonia removal device and the inlet of the membrane separation device.
  • the system further includes an ejector, the inlet of the ejector is connected to the first outlet of the fuel cell, and the first outlet of the ejector is connected to the outlet of the pressure swing adsorption separation device and the outlet of the pressure swing adsorption separation device respectively.
  • the inlet of the ammonia decomposition device is connected, and the second outlet of the ejector is connected with the anode of the fuel cell.
  • the heating device includes an electric heater and a tail gas combustion device.
  • the ammonia decomposition device is internally isolated from two first decomposition spaces and a second decomposition space that can conduct heat.
  • the tail gas combustion device is installed on the first decomposition space.
  • Decomposition space the electric heater is installed in the second decomposition space; the first decomposition space is connected to the first inlet of the ammonia decomposition device and the first outlet of the ejector respectively, and the second The decomposition space is connected to the second inlet of the ammonia decomposition device, ammonia gas enters the second decomposition space, and both the first decomposition space and the second decomposition space are connected to the outlet of the ammonia decomposition device.
  • the second decomposition space is filled with two catalysts along the flow direction of the ammonia gas.
  • the proportion of the first catalyst arranged near the upstream side of the ammonia gas gradually increases, and the proportion of the second catalyst arranged near the downstream side of the ammonia gas gradually increases. ratio gradually increases.
  • the first catalyst adopts a Ru-based catalyst
  • the second catalyst adopts a Ni-based catalyst
  • the catalyst range distribution of each catalyst is filled in a gradient manner
  • the catalyst particle size is 0.5mm-3mm.
  • the present invention also provides a fuel cell power generation system, including:
  • An ammonia decomposition device and a heating device provided inside the ammonia decomposition device The heating device is used to heat the gas and catalyst entering the ammonia decomposition device.
  • the ammonia decomposition device is used to decompose ammonia gas into hydrogen nitrogen gas;
  • An ammonia removal device which is connected with the outlet of the ammonia decomposition device and is used to remove undecomposed ammonia;
  • a fuel cell which is connected to the ammonia removal device and uses hydrogen as fuel for oxidation to generate electrical energy
  • a conversion device connected to the fuel cell to boost the voltage of the fuel cell
  • a battery pack for storing electrical energy generated by the hydrogen fuel cell
  • the system also includes a booster pump, a hydrogen circulation pump, a third membrane humidifier, a second gas-water separator and an air compressor.
  • the inlet of the booster pump is connected to the outlet of the ammonia removal device.
  • the outlet of the pressure pump is connected to the anode of the fuel cell, and the air compressor is used to send compressed air into the booster pump;
  • the third membrane humidifier is connected between the booster pump and the cathode of the fuel cell; the first outlet of the fuel cell is connected with the inlet of the hydrogen circulation pump, and the first outlet of the hydrogen circulation pump The outlet is connected to the inlet of the ammonia decomposition device, the second outlet of the hydrogen circulation pump is connected to the anode of the fuel cell, and the second outlet of the fuel cell is connected to the inlet of the second gas-water separator. The outlet of the second gas-water separator is connected to the third membrane humidifier.
  • the system further includes a hydrogen boosting pump and a membrane separation device.
  • the first outlet of the membrane separation device 7 is connected to the first outlet of the hydrogen circulation pump.
  • the second outlet of the membrane separation device is connected to the first outlet of the hydrogen circulation pump.
  • the booster pump is connected, the hydrogen booster pump inlet is connected with the ammonia removal device outlet, and the hydrogen booster pump outlet is connected with the membrane separation device inlet.
  • the invention also provides a control method for a fuel cell power generation system, which includes the following steps:
  • S101 Start the heating device.
  • the inside of the ammonia decomposition device reaches the preset temperature, send the ammonia gas into the ammonia decomposition device to decompose the ammonia gas into hydrogen and nitrogen gas;
  • S104 The pressurized hydrogen and nitrogen gas enters the membrane separation device for the first separation of hydrogen, and the hydrogen and nitrogen gas after membrane separation enters the pressure swing adsorption separation device for the second separation of hydrogen;
  • S106 The conversion device boosts the voltage of the fuel cell and stores the generated electric energy in the battery pack.
  • the invention also provides a control method for a fuel cell power generation system, which includes the following steps:
  • S201 Start the heating device.
  • the inside of the ammonia decomposition device reaches the preset temperature, send ammonia gas into the ammonia decomposition device to decompose the ammonia gas into hydrogen and nitrogen gas;
  • S203 The deaminated hydrogen and nitrogen gas enters the hydrogen booster pump to boost the hydrogen and nitrogen gas to the preset pressure;
  • the pressurized hydrogen and nitrogen gas enters the membrane separation device to separate the hydrogen gas.
  • the membrane-separated hydrogen and nitrogen gas is pressurized by the booster pump and sent to the anode of the fuel cell; the compressed air is sent to the anode of the fuel cell after being pressurized by the booster pump.
  • the three-membrane humidifier enters the cathode of the fuel cell after adjusting the humidity by the third membrane humidifier; the gas generated by the anode of the fuel cell flows back to the ammonia decomposition device, the membrane separation device and the anode of the fuel cell under the action of the hydrogen circulation pump.
  • the gas generated by the cathode of the fuel cell is separated into air and water through the second gas-water separator, and the second gas-water separator sends the separated water to the third membrane humidifier;
  • S205 The conversion device boosts the voltage of the fuel cell and stores the generated electric energy in the battery pack.
  • membrane humidifiers are respectively provided at the anode and cathode of the hydrogen fuel cell, which can humidify the anode and cathode of the fuel cell respectively, solving the problem that in the prior art, only the anode and the cathode of the fuel cell are humidified.
  • the cathode of the fuel cell is humidified.
  • the first membrane humidifier, the second membrane humidifier and the third membrane humidifier used in the present invention all use Nafion membranes to unidirectionally send water obtained from the first gas-water separator on the cathode side of the fuel cell.
  • the side of the first membrane humidifier on the anode side of the fuel cell because the Nafion membrane is water on one side and hydrogen on the other side, the hydrogen will not penetrate out.
  • the fuel cell power generation system can not only reduce the system volume, but also fundamentally solve the problem of membrane drying on the anode side of the fuel cell.
  • Figure 1 is a composition diagram of a fuel cell power generation system provided by Embodiment 1 of the present invention.
  • Figure 2 is a composition diagram of a fuel cell power generation system provided by Embodiment 2 of the present invention.
  • Figure 3 is a flow chart of a control method for the fuel cell power generation system provided in Embodiment 1;
  • Figure 4 is a flow chart of a control method for the fuel cell power generation system provided in Embodiment 2.
  • the markings in the attached picture are as follows: 1-Ammonia decomposition device; 2-Heating device; 3-First control valve; 4-Ammonia removal device 5-Second control valve; 6-Hydrogen booster pump; 7-Membrane separation device; 8-Third control valve 9-Pressure swing adsorption separation device; 10-Fourth control valve; 11-First membrane humidifier; 12-ejector; 13-fuel cell; 14-first gas-water separator; 15-second membrane humidifier 16-Air compressor; 17-DC/DC converter; 18-Battery pack; 19-Capacitor; 20-DC load 21-AC load; 22-Boost pump; 23-Hydrogen circulation pump; 24-Third membrane humidifier 25-Second air-water separator.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the present invention provides a fuel cell power generation system, including: an ammonia decomposition device 1, a heating device 2, an ammonia removal device 4, a fuel cell 13, a conversion device, a battery pack 18, and a first membrane humidification device. 11, the second membrane humidifier 15, the first gas-water separator 14 and the air compressor 16, etc.
  • the heating device 2 is located in the ammonia decomposition device 1 and is used to heat the gas and the catalyst.
  • the ammonia decomposition device 1 is used to decompose ammonia gas into hydrogen nitrogen gas;
  • the inlet of the ammonia removal device 4 is connected with the outlet of the ammonia decomposition device 1 for removing undecomposed ammonia;
  • the fuel cell 13 is connected with the ammonia removal device 4 and uses hydrogen as fuel for oxidation to generate electricity;
  • the conversion device is connected to the fuel cell 13 connected to boost the voltage of the fuel cell 13;
  • the battery pack 18 is used to store the electrical energy generated by the fuel cell 13;
  • the first membrane humidifier 11 is connected between the ammonia decomposition device 1 and the anode of the fuel cell 13;
  • the second membrane The humidifier 15 is connected between the air compressor 16 and the cathode of the fuel cell 13.
  • the air compressor 16 is used to send compressed air into the cathode of the fuel cell 13; the first outlet of the fuel cell 13 is connected with the anode of the fuel cell 13. , the second outlet of the fuel cell 13 is connected to the inlet of the first gas-water separator 14 , the first outlet of the first gas-water separator 14 is connected to the first membrane humidifier 11 , and the first outlet of the first gas-water separator 14 is connected to The second outlet is connected to the second membrane humidifier 15 .
  • the above-mentioned fuel cell power generation system is equipped with membrane humidifiers on the anode and cathode of the hydrogen fuel cell respectively.
  • the Nafion membrane is used to solve the problem of humidifying only the cathode of the fuel cell in the existing technology.
  • the proton membrane of the fuel cell stack is thicker At this time, the anode side of the fuel cell is prone to membrane drying.
  • the present invention humidifies the anode of a hydrogen fuel cell by unidirectionally sending water obtained from the first gas-water separator 14 on the cathode side of the fuel cell 13 to the first membrane humidifier 11 on the anode side of the fuel cell 13.
  • the present invention adopts the former humidification method mentioned above.
  • the combined use of the above two methods is the optimal method proposed in this implementation. It can not only reduce the volume of the system, but also fundamentally solve the problem of easy access to the anode side of the fuel cell 13. There is a problem with the membrane drying up.
  • the humidity control range is 10-90% RH, and the temperature control range is 10°C-45°C.
  • the system also includes a membrane separation device 7 and a pressure swing adsorption separation device 9.
  • the outlet of the membrane separation device 7 is connected to the inlet of the pressure swing adsorption separation device 9.
  • the inlet of the membrane separation device 7 is connected to the ammonia removal device.
  • the outlet of 4 is connected, and the outlet of the pressure swing adsorption separation device 9 is connected with the inlet of the first membrane humidifier 11.
  • the volume ratio of hydrogen and nitrogen in the deamination hydrogen and nitrogen gas is 3:1.
  • the membrane separation device 7 and the pressure swing adsorption separation device 9 are coupled to separate and purify the deamination hydrogen nitrogen gas.
  • the gas first enters the membrane separation device 7 Then it enters the pressure swing adsorption separation device 9, and the circulating gas separated by the pressure swing adsorption is returned to the membrane separation device 7 for recirculation.
  • the order of the membrane separation device 7 and the pressure swing adsorption separation device 9 cannot be exchanged, because the upper limit of the concentration of hydrogen separated by the membrane separation device 7 is 95%.
  • the cost is low and the performance is good in all working conditions, hydrogen with this concentration is not suitable for the fuel cell 13 system. It does not meet the demand; the upper limit of the hydrogen concentration separated by the pressure swing adsorption separation device 9 can reach 99.97%-99.999%, which can achieve high purity, but the cost is high and it cannot adapt to changes in working conditions.
  • the yield is very low. Low.
  • the inventor found through research that after combining membrane separation with pressure swing adsorption separation, it can cope with both low and high working conditions at the same time, and both can obtain extremely high yields. Therefore, the sequence of membrane separation device 7 and pressure swing adsorption separation device 9 cannot be exchanged, and the design can be adapted to a variety of hydrogen concentrations at the same time, because The yield is guaranteed from the purification method, and the fuel cell 13 performance is guaranteed from the humidification and equivalence ratio.
  • the membrane separation device 7 can use polymer membranes such as polysulfone, 2,6-dimethylphenylene ether (PPO), aromatic polyamide, polyimide, modified polycarbonate, cellulose acetate, etc.
  • the operating temperature is between 20°C and 140°C, and the pressure difference on both sides is between 0.1 and 3.2MPa for hydrogen permeation and separation of hydrogen and nitrogen.
  • the upper limit of hydrogen concentration can reach 95%, and the upper limit of yield can reach 95%.
  • the purity of the hydrogen reaches 99.97%-99.999%, and the desorbed gas is returned to the membrane separation place for circulation.
  • the existing PEMFC stack system cannot operate stably under hydrogen-nitrogen mixture.
  • the coupling of the above-mentioned membrane separation device 7 and pressure swing adsorption separation device 9 makes stable operation possible.
  • a hydrogen boosting pump 6 is further provided.
  • the hydrogen boosting pump 6 is connected between the ammonia removal device 4 and the membrane separation device 7 for boosting hydrogen and nitrogen gas.
  • the ammonia decomposition reaction is a reaction in which the balance moves in the opposite direction as the pressure increases; at the same time, for the fuel cell 13, if the hydrogen and nitrogen pressure is low, the required pressure of the fuel cell 13 stack of 0.15-0.2MPa (1.5- 2.0bar), so the hydrogen booster pump 6 is used to pressurize the deaminated hydrogen and nitrogen gas to meet the needs of the fuel cell 13 .
  • an ejector 12 is also provided in the system.
  • the inlet of the ejector 12 is connected to the first outlet of the fuel cell 13 .
  • the first outlet of the ejector 12 is connected to the outlet of the pressure swing adsorption separation device 9 respectively. It is connected with the inlet of the ammonia decomposition device 1 , and the second outlet of the ejector 12 is connected with the anode of the fuel cell 13 .
  • the ejector 12 can return the gas generated by the anode of the fuel cell 13 to the anode of the fuel cell 13, allowing hydrogen to circulate and oxidize, and also play a certain humidifying effect on the hydrogen; on the other hand, the ejector 12 can also reflux the gas generated by the anode of the fuel cell 13
  • the gas corresponding to the anode 13 flows back to the pressure swing adsorption device, and then enters the anode of the fuel cell 13 after passing through the first membrane humidifier 11; on the other hand, the gas corresponding to the anode of the fuel cell 13 can also flow back to the ammonia decomposition device. 1.
  • Use the heat of the exhaust gas to maintain the internal temperature of the ammonia decomposition device 1, and at the same time allow hydrogen to be recycled.
  • the heating device 2 includes an electric heater and a tail gas combustion device.
  • the ammonia decomposition device 1 includes two decomposition spaces that are both isolated and capable of heat conduction.
  • the first decomposition space passes through the third decomposition space of the ammonia decomposition device 1.
  • An inlet is connected to the first outlet of the ejector 12, and the exhaust gas combustion device The device is installed in the first decomposition space; ammonia gas can enter the second decomposition space through the second inlet of the ammonia decomposition device 1, and the electric heater is installed in the second decomposition space; the first decomposition space and the second decomposition space are both equal to the ammonia decomposition device 1 exit is connected.
  • the second decomposition space is filled with two types of catalysts along the direction of ammonia flow.
  • the proportion of the first catalyst arranged near the upstream side of ammonia gradually increases, and the proportion of the second catalyst arranged near the downstream side of ammonia gradually increases. .
  • the exhaust gas combustion device mainly has a heating function, and the electric heater has a temperature control function.
  • the combustion device is a microchannel reactor that performs catalytic oxidation and heat release on the tail gas, in which the hydrogen concentration of the tail gas is 20%-70%.
  • the electric heater plays the role of temperature control and supplementary heat, including but not limited to the use of surrounding fin contact, and the fins are additionally One side is embedded in the inner tube catalyst bed to enhance heat exchange; the electric heater can provide additional thermal power to the downstream side of the gas according to the temperature control instructions to ensure the performance of Ni-based and other catalysts under a pressure of 0.4Mpa; the microchannel reactor has The heat exchange function between the low-temperature gas and the high-temperature gas entering the device realizes the low-temperature gas inlet temperature -5°C-45°C, the arrival temperature of the catalyst bed is 450°C-600°C, and the high-temperature gas temperature after decomposition is less than 150°C when leaving the ammonia decomposition reactor .
  • the first catalyst is preferably a Ru-based catalyst
  • the second catalyst is preferably a Ni-based catalyst.
  • Ru-based and Ni-based catalysts are loaded from top to bottom.
  • the distribution of the catalyst range is gradient filling.
  • the catalyst particle size is 0.5mm-3mm.
  • the shape is not limited to spherical porous particles and elongated porous particles; the operating temperature of the upstream part is 480°C, the downstream part can operate at 500-650°C according to instructions; the tail gas combustion device uses hydrogen catalytic oxidation, with a working concentration range of 20%-70%.
  • the spatial distribution of the components of the two catalysts includes but is not limited to free mixing. , linear distribution and other component proportioning methods; the bed ammonia decomposition temperature reaches 99.8% decomposition rate at 480°C, and has the method of using temperature gradient to increase the temperature at 0.4Mpa pressure and 10000mL (gcat ⁇ h) air velocity to reach 99.8 % decomposition rate; the above decomposition rate refers to the single-pass conversion rate of ammonia decomposition to hydrogen production.
  • the ammonia decomposition reaction is a reaction in which the equilibrium moves in the opposite direction as the pressure increases, pressurization poses a great challenge to the catalyst.
  • the industrial solution is to increase the temperature.
  • the Ru-based catalyst cannot be used at too high a temperature. Otherwise, the carrier will be dissociated and pulverized in terms of structural mechanics, and dynamically it will cause the system to absorb heat violently at the air inlet end, causing the heat exchange clamp to The point temperature cannot be effectively controlled, and the heat transfer efficiency drops sharply. This is why we adopt a gradient distribution arrangement of the upper and lower layers of Ru-based and Ni-based catalysts, so that the heat dissipation can be evenly distributed over the entire tube.
  • the Ru-based catalyst has a low activation temperature and a high conversion rate, but the carrier is not heat-resistant. If the temperature needs to be raised during high-pressure operation, it will cause rapid heat absorption in the front section of the tube, causing a significant drop in heat exchange efficiency. , while the temperature at the rear end of the tube is high and the catalyst is pulverized. Ni-based catalysts have a high activation temperature and require higher temperatures. If only Ni-based catalysts are used, the temperature in the front section of the tube will be low, the heat exchange efficiency will be greatly reduced, and the system volume will be greatly increased, making it a design that is achievable but difficult to apply in practice. , so it is necessary to integrate the two.
  • the ammonia decomposition device 1 is provided with a first inlet, a second inlet and an outlet.
  • the first inlet of the ammonia decomposition device 1 is connected to the ejector 12.
  • the second inlet of the ammonia decomposition device 1 passes through a flow meter and The ammonia storage tank is connected, and the outlet of the ammonia decomposition device 1 is connected with the ammonia removal device 4.
  • the first decomposition space and the second decomposition space are separated by a thermally conductive metal structure inside the ammonia decomposition device 1.
  • the thermally conductive metal structure is a thermally conductive metal plate, and the first decomposition space and the second decomposition space are separated from each other. spaced apart; as another implementation method, the thermally conductive metal structure is a tubular structure, the exhaust gas enters the first decomposition space inside the tube, and the ammonia gas enters the second decomposition space outside the tube; compared with the thermally conductive metal plate, the tubular structure can Let the heat of exhaust gas combustion better heat the second decomposition space and improve the exhaust heat utilization efficiency.
  • the first membrane humidifier 11 and the ejector 12 are combined to control the humidity of hydrogen entering the anode of the fuel cell 13, and the second membrane humidifier 15 and the air compressor 16 are combined to control the hydrogen entering the cathode of the fuel cell 13.
  • the air humidity is controlled, so that the first membrane humidifier 11, the second membrane humidifier 15, the ejector 12 and the air compressor 16 are used in combination to control the hydrogen humidity of the fuel cell 13.
  • the ejector 12 is used to return the tail gas generated by the anode of the fuel cell 13 to the ammonia decomposition device 1 to effectively utilize the heat of the tail gas.
  • a tail gas combustion device is used to provide heat and an electric heater is used to control the temperature, thereby achieving the use of the ejector 12 and tail gas combustion.
  • the device 2 is used in combination with an electric heater to control the hydrogen temperature of the fuel cell 13 .
  • the hydrogen pressurized by the hydrogen booster pump 6 enters the anode of the fuel cell 13 from the first inlet of the fuel cell 13.
  • the ejector 12 returns the exhaust gas of the fuel cell 13 to the anode of the fuel cell 13 through the first inlet of the fuel cell 13.
  • the air is compressed by Machine 16 after compression from the fuel cell
  • the second inlet 13 enters the cathode of the fuel cell 13, thereby achieving a pressure dynamic balance with the exhaust gas outlet of the anode of the fuel cell 13.
  • the temperature, humidity, and pressure of the hydrogen at the first inlet of the fuel cell 13 are controlled, and the stack anode exhaust at the first inlet of the fuel cell 13 is coupled to control the gas equivalence ratio, humidity, and pressure leaving the first outlet of the fuel cell 13.
  • the pressure, humidity and temperature of the air at the second inlet of the fuel cell 13 are controlled, and a pressure dynamic balance is achieved between the air at the second inlet of the fuel cell 13 and the gas at the first outlet of the fuel cell 13 .
  • the exhaust gas pressure control at the first outlet of the fuel cell 13 includes a hydrogen booster pump 6 using a compressed air source based on Pascoe's principle.
  • the compressed air entering through the second inlet of the coupled fuel cell 13 is the first outlet of the fuel cell 13.
  • gas boost; the pressure control range is 0.1MPa-0.4MPa; the absolute value of the gas boost at the first outlet of the fuel cell 13 is 1-4 times the compressed air pressure drop value, and the pressure collaborative control is realized through the controller, and the fuel cell
  • the numerical difference between the first outlet pressure of 13 and the second outlet pressure of fuel cell 13 is controlled at 0-0.08MPa.
  • the gas equivalence ratio control of the first outlet of the fuel cell 13 in this embodiment is based on the set purity parameters of the membrane separation device 7 and the pressure swing adsorption separation device 9, the humidification part strategy and the stack operation conditions.
  • the gas equivalence ratio is adjusted; the equivalence ratio is calculated based on the hydrogen consumption of the fuel cell 13 stack, and the control range is 1.2-1.6.
  • the pressure at the front end of the ejector 12 is controlled at 1.35-1.5MPa.
  • the stack exhaust gas utilization of the fuel cell 13 is controlled, and the ejector 12 is used to pump the anode exhaust gas to the first inlet of the fuel cell 13.
  • the rotation speed of the ejector 12 is controlled to achieve equivalence ratio and humidity control, and gas back pressure adjustment is performed; using
  • the first membrane humidifier 11 and the second membrane humidifier 15 reversely permeate the gas water vapor from the cathode of the fuel cell 13 back to the second inlet of the fuel cell 13 .
  • the fuel cell 13 uses a proton exchange membrane, that is, a PEMFC stack using a perfluorosulfonic acid membrane and its modified membrane as an electrolyte, or a HT-PEMFC stack using a phosphoric acid-PBI doped or PBI/SiO2 composite membrane as an electrolyte.
  • a proton exchange membrane that is, a PEMFC stack using a perfluorosulfonic acid membrane and its modified membrane as an electrolyte, or a HT-PEMFC stack using a phosphoric acid-PBI doped or PBI/SiO2 composite membrane as an electrolyte.
  • PEMFC stack operating temperature is 50-90°C, applicable gas is 75%-99.999% purity hydrogen, ammonia concentration is less than 0.1ppm, operating humidity range is 10%-95%RH, operating pressure range is 0.1MPa-0.4MPa; HT -PEMFC stack, applicable gas is 75%-99.999% purity hydrogen and ammonia
  • concentration is less than 100ppm
  • the operating humidity range is 60%-99.9%RH
  • the operating pressure range is 0.1MPa-0.3MPa.
  • the air compressor 16 outputs 0.1-0.4MPa compressed air according to the controller, the flow rate matches the stack power of the fuel cell 13, and the adjustment range is 1.5-2.2 according to the equivalence ratio of air entering the fuel cell 13; the air compressor 16
  • the air suction inlet is equipped with an air filter to filter particles in the environment.
  • multiple groups of ammonia removal devices are included.
  • the ammonia removal device adsorbs ammonia in the hydrogen-nitrogen mixed gas coming out of the ammonia decomposition device through physical adsorption.
  • the working pressure range of the adsorbent is 0.1-0.4Mpa.
  • the temperature is 30°C-110°C, the ammonia content of the gas adsorbed from the device is less than 0.1ppm, and the temperature is less than 45°C.
  • the conversion device uses a DC/DC converter 17 to transport the electricity generated by the fuel cell 13 to the output end according to the CC, CV or CP mode, and communicate with the battery pack 18 and the external DC load 20 or AC load 21 connected.
  • the capacitor 19 and the battery pack 18 have their own BMS system, which can respond to external demand changes with a discharge rate of 0.1-10C, and can adapt to the DC bus load with the DC/DC output voltage.
  • the hydrogen fuel cell power generation system of this embodiment has the advantages of high hydrogen energy storage density, high energy conversion efficiency, and low power generation cost.
  • a generator set it can be used in mines, construction sites, islands, oil field exploration, etc. that are far away from the power grid or where the power load is large. Data centers, offshore platforms and other scenarios have great application prospects.
  • the use cost of ammonia-hydrogen fuel cells 13 is 1.6 yuan/kWh, and the system noise is smaller.
  • There is no pollutant emission which also has great application advantages in some biomedical parks and hospital scenarios. Its application scenarios include generator sets, electric vehicles, electric ships, etc.
  • the heating device 2 composed of an electric heater and a tail gas combustion device provides heat, heats the ammonia gas and the catalyst, and decomposes the ammonia gas into hydrogen and nitrogen gas; specifically, during startup, the two After starting, the electric heating system only plays a temperature control role, causing ammonia to decompose into hydrogen and nitrogen in the catalyst bed.
  • the decomposition rate reaches more than 99.8%.
  • the decomposition pressure can be increased to 0.5MPa according to the back-end demand. , and cooperate with the back-end electric heater and Ni-based catalyst content High bed level achieved.
  • the decomposed hydrogen nitrogen gas passes through the first control valve 3 and then enters the ammonia removal device 4 to remove undecomposed ammonia gas to obtain hydrogen nitrogen gas with an ammonia content of less than 0.1ppm;
  • the deamination hydrogen nitrogen gas passes through the second control valve 5 Entering the hydrogen booster pump 6, the pressurized hydrogen and nitrogen gas enters the membrane separation device 7, and then passes through the third control valve 8 and enters the pressure swing adsorption separation device 9.
  • the separated high-purity hydrogen (concentration up to 99.97% or more) passes through the fourth control valve 10 and then enters the first membrane humidifier 11.
  • the separated desorbed gas returns to the membrane separation device 7 through the fourth control valve 10; the separated high-purity hydrogen passes through After the first membrane humidifier 11 adjusts the humidity, it enters the anode side of the fuel cell 13 together with the hydrogen returned by the ejector 12; the air compressor 16 compresses the air and adjusts the humidity through the second membrane humidifier 15 before sending the fuel
  • the cathode side of the battery 13 after the anode gas of the fuel cell 13 passes through the fuel cell 13, the tail gas is discharged from the first outlet of the fuel cell 13 and flows back through the ejector 12, and the cathode gas of the fuel cell 13 is discharged from the second outlet of the fuel cell 13 through the first gas
  • the water separator 14 discharges non-polluted air and water; the first air-water separator 14 pumps the collected liquid water to the first membrane humidifier 11 and the second membrane humidifier 15 respectively to maintain one side of the membrane. water pressure; the electric energy output by the fuel cell 13 is connected to the battery pack 18 and the capacitor 19 through the DC
  • control method of the fuel cell power generation system includes the following steps:
  • S101 Start the heating device.
  • the inside of the ammonia decomposition device 1 reaches the preset temperature (the temperature of the upstream part of the ammonia decomposition device 1 reaches 480°C and the temperature of the downstream part reaches 500°C-650°C), send ammonia gas into the ammonia decomposition device 1, and Ammonia decomposes into hydrogen nitrogen;
  • S104 The pressurized hydrogen and nitrogen gas enters the membrane separation device 7 for the first separation of hydrogen, and the membrane-separated hydrogen and nitrogen gas enters the pressure swing adsorption separation device 9 for the second separation of hydrogen;
  • S106 The conversion device boosts the voltage of the fuel cell 13 and stores the generated electric energy in the battery pack 18.
  • the beneficial effects of the fuel cell power generation system of this embodiment also include:
  • the energy efficiency of the ammonia decomposition hydrogen production catalyst below 500°C used in the present invention is higher; compared with a single ammonia decomposition catalyst filling device with a similar reaction temperature, the present invention can also adjust the relationship between the catalyst ratio and temperature of the catalyst bed, Achieve hydrogen production from ammonia decomposition at higher pressure at the same decomposition rate.
  • This embodiment provides the possibility to adjust the anode gas pressure, humidity and equivalence ratio, suppresses the negative impact of nitrogen components on fuel cell performance, and achieves reduced pressure swing adsorption after membrane separation provides 95% pure hydrogen. Dual advantages in equipment investment and fuel cell performance temperature.
  • This embodiment uses compressed air from an air compressor to pressurize hydrogen, thereby achieving temperature control of the pressure difference between hydrogen and air.
  • the ammonia fuel cell system since the present invention fully utilizes the combustion heat exchange of the hydrogen tail gas, the ammonia fuel cell system does not need to consume other additional fuels, nor does it need to use a higher proportion of electric energy to heat the ammonia decomposition hydrogen production device.
  • the present invention also provides another fuel cell power generation system, including: ammonia decomposition device 1, heating device 2, ammonia removal device 4, fuel cell 13, conversion device, battery pack 18, third membrane Humidifier 24, hydrogen circulation pump 23, booster pump 22, second gas-water separator 25 and air compressor 16.
  • the heating device 2 is installed inside the ammonia decomposition device 1.
  • the heating device 2 is used to heat the gas and the catalyst.
  • the ammonia decomposition device 1 is used to decompose ammonia gas into hydrogen nitrogen gas.
  • the ammonia removal device 4 is connected to the outlet of the ammonia decomposition device 1 for removing undecomposed ammonia; the fuel cell 13 is connected to the ammonia removal device 4 and uses hydrogen as fuel to oxidize and generate electricity.
  • the conversion device is connected to the fuel cell 13 to boost the voltage of the fuel cell 13; the battery pack 18 is used to store the electrical energy generated by the hydrogen fuel cell 13.
  • the booster pump 22 is connected between the ammonia decomposition device 1 and the fuel cell 13 between the anodes; the air compressor 16 is used to send compressed air into the booster pump 22, and the third membrane humidifier 24 is connected between the booster pump 22 and the cathode of the fuel cell 13; the first outlet of the fuel cell 13 It is connected with the inlet of the hydrogen circulation pump 23.
  • the first outlet of the hydrogen circulation pump 23 is connected with the inlet of the ammonia decomposition device 1.
  • the second outlet of the hydrogen circulation pump 23 is connected with the anode of the fuel cell 13.
  • the second outlet of the fuel cell 13 is connected with the inlet of the hydrogen circulation pump 23.
  • the inlet of the third gas-water separator is connected, and the outlet of the third gas-water separator is connected with the third membrane humidifier 24 .
  • a hydrogen boosting pump 6 and a membrane separation device 7 are further installed in the system.
  • the hydrogen boosting pump 6 and the membrane separation device 7 are connected in sequence between the ammonia removal device 4 and the boosting pump 22, and the membrane separation
  • the outlet of the device 7 is also connected with the first outlet of the hydrogen circulation pump 23 .
  • the exhaust gas generated by the anode of the fuel cell 13 is sent to the anode of the fuel cell 13 through the hydrogen circulation pump 23, and the anode exhaust of the fuel cell 13 is used for humidification.
  • the anode exhaust of the fuel cell 13 is used for humidification.
  • the anode of the fuel cell 13 before the hydrogen enters the fuel cell 13, that is, the anode of the fuel cell 13, it is pressurized to 0.2-0.3MPa through the booster pump 22; at the cathode of the fuel cell 13, it is also It is the pressure reduction side and is connected to the air compressor 16.
  • the booster side outlet of the booster pump 22 is connected to the return pipeline of the hydrogen circulation pump 23. It is controlled according to specific working conditions and uses the hydrogen circulation pump 23 to recover moisture.
  • the humidity is controlled at 10 %-90%RH; the third membrane humidifier 24 realizes the humidity exchange between the cathode exhaust gas of the fuel cell 13 and the outlet gas of the air compressor 16 of the fuel cell 13 .
  • the concentration of hydrogen in the anode of fuel cell 13 is above 99.97%, and in Embodiment 2, the concentration of hydrogen in the anode of fuel cell 13 ranges from 90 to 95% purity.
  • the solution of Embodiment 2 can also be used to solve the problem that when the proton membrane of the fuel cell 13 stack is relatively thick, the anode side of the fuel cell 13 is prone to drying up the membrane.
  • the pressure entering the stack of the fuel cell 13 is controlled at 0.2-0.3MPa.
  • the air compressor 16 provides air with an excess ratio of 1.6-1.8, and the pressure is reduced to 0.12-0.22MPa after passing through the pressure reduction side of the booster pump 22.
  • the second gas-water separator 25 separates gas and water on the cathode side of the fuel cell 13, thereby controlling the humidity of the cathode inlet air.
  • the ammonia gas enters the ammonia decomposition device 1 after passing through the flow meter. It is heated by an electric heater and a tail gas combustion device to heat the ammonia gas and the catalyst to decompose the ammonia gas into hydrogen and nitrogen gas; specifically, during startup, the two After starting, the electric heating system only plays a temperature control role, causing ammonia to decompose into hydrogen and nitrogen in the catalyst bed.
  • the decomposition rate reaches more than 99.8%.
  • the decomposition pressure can be increased to 0.5MPa according to the back-end demand. , and is realized by cooperating with the back-end electric heater and the bed with high Ni-based catalyst content.
  • the decomposed hydrogen nitrogen gas passes through the first control valve 3 and then enters the ammonia removal device 4 to remove undecomposed ammonia gas to obtain hydrogen nitrogen gas with an ammonia content of less than 0.1ppm; the deamination hydrogen nitrogen gas passes through the second control valve 5 Entering the hydrogen boosting pump 6, the supercharged hydrogen and nitrogen gas enters the membrane separation device 7, and the hydrogen with a purity of 90-95% directly enters the boosting pump 22, and the hydrogen is increased according to 1-4 times of the decompression value on the other side.
  • the gas that has not penetrated the membrane of the membrane separation device 7 returns to the electric heater and the combustion device for combustion and heat supply; after the hydrogen gas is adjusted by the booster pump 22 to adjust the pressure, it enters the anode side of the fuel cell 13 together with the hydrogen gas returned by the hydrogen circulation pump 23 , the hydrogen circulation pump 23 controls the returned humidity and the equivalence ratio entering the stack according to the instructions, and intermittently passes the excluded hydrogen from the bypass to the electric heater and combustion device for combustion and heating; the cathode side gas supply of the fuel cell 13 Then it is obtained after being pumped from the air compressor 16 through the third membrane humidifier 24; after the anode gas passes through the fuel cell 13, the hydrogen circulation pump 23 returns, and the cathode gas passes through the second gas-water separator 25 and then is discharged into pollution-free air and water; the second gas-water separator 25 separates gas and water to ensure humidity control of the air entering the stack; the electric energy output by the fuel cell 13 is connected to the lithium battery pack 18 and the capacitor 19 through the DC/
  • control method of the fuel cell power generation system includes the following steps:
  • S201 Start the heating device.
  • the inside of the ammonia decomposition device 1 reaches the preset temperature (the temperature of the upstream part of the ammonia decomposition device 1 reaches 480°C and the temperature of the downstream part reaches 500°C-650°C), send ammonia gas into the ammonia decomposition device 1, and Ammonia decomposes into hydrogen nitrogen;
  • S203 The deaminated hydrogen and nitrogen gas enters the hydrogen boosting pump 6, which pressurizes the hydrogen and nitrogen gas to a preset pressure (0.1MPa-0.4MPa);
  • the pressurized hydrogen and nitrogen gas enters the membrane separation device 7 to perform membrane separation of the hydrogen gas.
  • the membrane-separated hydrogen and nitrogen gas is pressurized by the booster pump 22 and then sent to the anode of the fuel cell 13; the compressed air is pressurized by the booster pump 22. Then it is sent to the third membrane humidifier 24, and the humidity is adjusted by the third membrane humidifier 24 before entering the cathode of the fuel cell 13; the gas generated by the anode of the fuel cell 13 is circulated by the hydrogen circulation pump 23 It flows back to the ammonia decomposition device 1, the membrane separation device 7 and the anode of the fuel cell 13. The gas generated by the cathode of the fuel cell 13 is separated into air and water through the second gas-water separator 25. The second gas-water separator 25 separates The water is sent to the third membrane humidifier 24;
  • the conversion device boosts the voltage of the fuel cell 13 and stores the generated electric energy in the battery pack 18 .
  • This embodiment has the advantages of high hydrogen energy storage density, high energy conversion efficiency, low investment cost, and low power generation cost. Since there is no need for a pressure swing adsorption separation device, the initial investment and volume of the system can be greatly reduced, and membrane separation is used to provide 90-95% pure hydrogen, combined with the temperature, humidity, pressure, and equivalence ratio coupling control of the hydrogen booster pump and circulation pump, effectively solves the negative performance impact caused by nitrogen accumulation in the existing fuel cell system, and utilizes air pressure The energy recovery of the machine is used as a hydrogen side booster, which also effectively solves the problem of insufficient hydrogen and nitrogen pressure in the ammonia decomposition hydrogen production system. This design method will play a more important role in embodiments without a membrane separation device. .
  • This embodiment has the advantages of cross-season and long-term energy storage in application scenarios such as base station power supplies, generator sets, power station peak shaving, mining trucks, heavy trucks, and electric ships. It has high power generation efficiency, low kWh cost, small initial investment, and low operation and maintenance costs. It has the advantages of low pressure and no pollutant emissions.

Abstract

本发明公开了一种燃料电池发电系统及其控制方法,系统包括氨分解装置、氨脱除装置、燃料电池、第一膜增湿器、第二膜增湿器、第一气水分离器和空压机,第一膜增湿器连通在氨分解装置和燃料电池的阳极之间,第二膜增湿器连通在空压机和燃料电池的阴极之间,空压机将压缩空气送入燃料电池的阴极;燃料电池的第一出口和燃料电池的阳极连通,燃料电池的第二出口和第一气水分离器的进口连通,第一气水分离器的第一出口和第一膜增湿器连通,第一气水分离器的第二出口和第二膜增湿器连通。本发明通过第一气水分离器将燃料电池阴极侧得到的水单向送到燃料电池阳极侧的第一膜增湿器,不仅降低系统体积,且从根源上解决了燃料电池的阳极侧容易出现膜干涸的问题。

Description

一种燃料电池发电系统及其控制方法 技术领域
本发明涉及燃料电池技术领域,具体涉及一种燃料电池发电系统及其控制方法。
背景技术
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,主要是通过氧或其他氧化剂和燃料进行电化学反应,在燃料电池中燃料和空气分别进行送进燃料电池的阳极和阴极,电就会被生产出来。氢燃料是目前燃料电池应用中最理想的燃料,效率高,燃料产物为水,没有灰渣和废气,不会污染环境。但氢的存储难度大,目前一般是采用氢气的替代性燃料氨,氨的含氢量高,且具有易液化、能量密度高、无碳排放、安全性高、燃料成本低等优势。
质子交换膜燃料电池PEMFC是目前的主流技术,在应用过程中主要存在两个问题,一个是质子交换膜燃料电池中的全氟磺酸隔膜中的质子会与高浓度氨反应生成NH4+离子,易导致质子交换膜燃料电池性能的不可逆衰减,需要耦合氨分解、氨脱除、氢燃料电池等一系列部件装置,这些部件装置的高效集成涉及了复杂的能量管理和系统控制策略,易导致氨燃料电池系统运行不稳定、能耗高。另一个是现有技术一般只对燃料电池的阴极加湿,当燃料电池电堆质子膜较厚时,燃料电池的阳极侧容易出现膜干涸。
中国专利文献CN110277578A公开了一种氨燃料电池系统及电动装置,包括氨分解反应装置、加热装置、氢燃料电池、依次连接的DC/DC变换器和逆变器、电池组和换热器,可以长期稳定运行、形成循环利用,具有灵活性高、能耗低、系统利用率高的优点。该专利技术已经解决了第一个问 题,但上述第二个问题亟待解决。
发明内容
针对现有技术的不足,本发明旨在解决现有燃料电池电堆质子膜较厚时,燃料电池阳极侧容易出现膜干涸的问题,为此,本发明提供了一种燃料电池发电系统及其控制方法。
本发明采用如下技术方案:
一方面,本发明提供了一种燃料电池发电系统,包括:
氨分解装置和设置于其内部的加热装置,所述加热装置用于对进入所述氨分解装置中的气体和催化剂加热,所述氨分解装置用于将氨气分解为氢氮气;
氨脱除装置,其与所述氨分解装置的出口连通,用于脱除未分解的氨气;
燃料电池,其与所述氨脱除装置连通,以氢气为燃料氧化产生电能;
转换装置,其与所述燃料电池连接,对所述燃料电池的电压进行升压;
电池组,用于储存所述燃料电池产生的电能;
所述系统还包括第一膜增湿器、第二膜增湿器、第一气水分离器和空压机;所述第一膜增湿器连通在所述氨分解装置和所述燃料电池的阳极之间,所述第二膜增湿器连通在所述空压机和所述燃料电池的阴极之间,所述空压机用于将压缩空气送入所述燃料电池的阴极;所述燃料电池的第一出口和所述燃料电池的阳极连通,所述燃料电池的第二出口和所述第一气水分离器的进口连通,所述第一气水分离器的第一出口和所述第一膜增湿器连通,所述第一气水分离器的第二出口和所述第二膜增湿器连通。
进一步地,所述系统还包括膜分离装置和变压吸附分离装置,所述变压吸附分离装置进口与所述膜分离装置出口连通,所述氨脱除装置的出口与所述膜分离装置的进口连通,所述变压吸附分离装置的出口通过所述第 一膜增湿器与所述燃料电池的阳极连通。
进一步地,所述系统还包括氢气增压泵,所述氢气增压泵连接在所述氨脱除装置出口与所述膜分离装置的进口之间。
进一步地,所述系统还包括引射器,所述引射器的进口和所述燃料电池第一出口连通,所述引射器第一出口分别与所述变压吸附分离装置出口和所述氨分解装置进口连通,所述引射器第二出口与所述燃料电池的阳极连通。
优选地,所述加热装置包括电加热器和尾气燃烧装置,所述氨分解装置内部隔离开两个可以导热的第一分解空间和第二分解空间,所述尾气燃烧装置安装在所述第一分解空间,所述电加热器安装在所述第二分解空间;所述第一分解空间分别与所述氨分解装置的第一进口和所述引射器的第一出口连通,所述第二分解空间与所述氨分解装置的第二进口连通,氨气进入所述第二分解空间中,所述第一分解空间和所述第二分解空间均和所述氨分解装置的出口连通。
优选地,所述第二分解空间内沿氨气流动方向填装有两种催化剂,靠近氨气上游侧布置的第一种催化剂占比逐渐增高,靠近氨气下游侧布置的第二种催化剂占比逐渐增高。
进一步优选地,所述第一种催化剂采用Ru基催化剂,所述第二种催化剂采用Ni基催化剂,各所述的催化剂程分布呈梯度装填,催化剂粒径0.5mm-3mm。
另一方面,本发明还提供了一种燃料电池发电系统,包括:
氨分解装置和设置于其内部的加热装置,所述加热装置用于对进入所述氨分解装置中的气体和催化剂加热,所述氨分解装置用于将氨气分解为氢氮气;
氨脱除装置,其与所述氨分解装置的出口连通,用于脱除未分解的氨气;
燃料电池,其与所述氨脱除装置连通,以氢气为燃料氧化产生电能;
转换装置,其与所述燃料电池连接,对所述燃料电池的电压进行升压;
电池组,用于储存所述氢燃料电池产生的电能;
所述系统还包括增压泵、氢气循环泵、第三膜增湿器、第二气水分离器和空压机,所述增压泵进口与所述氨脱除装置出口连接,所述增压泵出口与所述燃料电池的阳极连通,所述空压机用于将压缩空气送入所述增压泵中;
所述第三膜增湿器连通在所述增压泵和所燃料电池的阴极之间;所述燃料电池的第一出口与所述氢气循环泵的进口连通,所述氢气循环泵的第一出口与所述氨分解装置的进口连通,所述氢气循环泵的第二出口与所述燃料电池的阳极连通,所述燃料电池的第二出口和所述第二气水分离器的进口连通,所述第二气水分离器的出口与所述第三膜增湿器连通。
进一步地,所述系统还包括氢气增压泵和膜分离装置,所述膜分离装置7的第一出口与所述氢气循环泵的第一出口连通,所述膜分离装置的第二出口与所述增压泵连通,所述氢气增压泵进口与所述氨脱除装置出口连接,所述氢气增压泵出口与所述膜分离装置进口连通。
本发明还提供了一种燃料电池发电系统的控制方法,包括以下步骤:
S101:启动加热装置,当氨分解装置内部达到预设温度,将氨气送入氨分解装置,将氨气分解为氢氮气;
S102:分解后的氢氮气进入氨脱除装置,脱除未分解的氨气;
S103:脱氨后的氢氮气进入氢气增压泵,对氢氮气增压到预设压强;
S104:增压后的氢氮气进入膜分离装置对氢气进行第一次分离,膜分离后的氢氮气进入变压吸附分离装置对氢气进行第二次分离;
S105:分离后的氢氮气经第一膜增湿器调节湿度后进入燃料电池的阳极,压缩空气经第二膜增湿器调节湿度后进入燃料电池的阴极;燃料电池阳极产生的气体在引射器的作用下回流到氨分解装置、变压吸附分离装置和燃料电池的阳极,燃料电池阴极产生的气体经第一气水分离器分离为空 气和水,第一气水分离器将分离的水分别送入第一膜增湿器和第二膜增湿器;
S106:转换装置对燃料电池电压进行升压,并将产生的电能存储到电池组。
本发明还提供了一种燃料电池发电系统的控制方法,包括以下步骤:
S201:启动加热装置,当氨分解装置内部达到预设温度,将氨气送入氨分解装置,将氨气分解为氢氮气;
S202:分解后的氢氮气进入氨脱除装置,脱除未分解的氨气;
S203:脱氨后的氢氮气进入氢气增压泵,将氢氮气增压到预设压强;
S204:增压后的氢氮气进入膜分离装置对氢气进行膜分离,膜分离后的氢氮气经过增压泵增压后送入燃料电池的阳极;压缩空气经过增压泵增压后送入第三膜增湿器,经第三膜增湿器调节湿度后进入燃料电池的阴极;燃料电池阳极产生的气体在氢气循环泵的作用下回流到氨分解装置、膜分离装置和燃料电池的阳极,燃料电池阴极产生的气体经第二气水分离器分离为空气和水,第二气水分离器将分离的水送入第三膜增湿器;
S205:转换装置对燃料电池电压进行升压,并将产生的电能存储到电池组。
本发明技术方案,具有如下优点:
A.本发明所提供的燃料电池发电系统,在氢燃料电池的阳极和阴极处分别设置了膜增湿器,可以分别为燃料电池的阳极和阴极进行增湿,解决了现有技术中只对燃料电池的阴极加湿,当燃料电池电堆质子膜较厚时,燃料电池的阳极侧容易出现膜干涸的问题。
B.本发明中所采用第一膜增湿器、第二膜增湿器和第三膜增湿器均采用Nafion膜,将燃料电池阴极侧第一气水分离器得到的水单向送到燃料电池阳极侧的第一膜增湿器的一侧,因为Nafion膜在一侧是水和另一侧是氢气情况下,氢气不会渗透出来,相比于采用湿空气对氢燃料电池的阳极增 湿,该燃料电池发电系统不仅能够降低系统体积,而且从根源性解决了燃料电池的阳极侧容易出现膜干涸的问题。
附图说明
为了更清楚地说明本发明具体实施方式,下面将对具体实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一所提供的燃料电池发电系统组成图;
图2是本发明实施例二所提供的一种燃料电池发电系统组成图;
图3是对实施例一所提供的燃料电池发电系统的控制方法流程图;
图4是对实施例二所提供的燃料电池发电系统的控制方法流程图。
附图中的标识如下:
1-氨分解装置;2-加热装置;3-第一控制阀;4-氨脱除装置
5-第二控制阀;6-氢气增压泵;7-膜分离装置;8-第三控制阀
9-变压吸附分离装置;10-第四控制阀;11-第一膜增湿器;
12-引射器;13-燃料电池;14-第一气水分离器;15-第二膜增湿器
16-空压机;17-DC/DC转换器;18-电池组;19-电容;20-直流负载
21-交流负载;22-增压泵;23-氢气循环泵;24-第三膜增湿器
25-第二气水分离器。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电性连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1所示,本发明提供了一种燃料电池发电系统,包括:氨分解装置1、加热装置2、氨脱除装置4、燃料电池13、转换装置、电池组18、第一膜增湿器11、第二膜增湿器15、第一气水分离器14和空压机16等。
加热装置2设于氨分解装置1内,用于对气体和催化剂进行加热,氨分解装置1用于将氨气分解为氢氮气;
氨脱除装置4进口与氨分解装置1的出口连通,用于脱除未分解的氨气;燃料电池13和氨脱除装置4连通,以氢气为燃料氧化产生电能;转换装置与燃料电池13连接,对燃料电池13的电压进行升压;电池组18用于储存燃料电池13产生的电能;第一膜增湿器11连通在氨分解装置1和燃料电池13的阳极之间;第二膜增湿器15连通在空压机16和燃料电池13的阴极之间,空压机16用于将压缩空气送入燃料电池13的阴极;燃料电池13的第一出口和燃料电池13的阳极连通,燃料电池13的第二出口和第一气水分离器14的进口连通,第一气水分离器14的第一出口和第一膜增湿器11连通,第一气水分离器14的第二出口和第二膜增湿器15连通。
上述燃料电池发电系统,在氢燃料电池的阳极和阴极分别设置了膜增湿器,采用Nafion膜,解决了现有技术中只对燃料电池的阴极加湿问题,当燃料电池电堆质子膜较厚时,燃料电池的阳极侧容易出现膜干涸的问题。本发明对氢燃料电池的阳极进行增湿,一种是将燃料电池13阴极侧第一气水分离器14得到的水单向送到燃料电池13阳极侧的第一膜增湿器11的一侧,因为Nafion膜在一侧是水和另一侧是氢气情况下,氢气不会渗透出来;另一种采用燃料电池13阳极排气进行增湿,同时也可以保证阳极氢气纯度,但燃料电池13阳极排气增湿存在不足。本发明采用上述其中前一种增湿方式,当然,上述两种相结合使用是本实施中提出的最优的方式,不仅能够降低系统体积,而且从根源性解决了燃料电池13的阳极侧容易出现膜干涸的问题。若采用湿空气对燃料电池13阳极增湿,会导致氢气穿透,由于系统用的氢氮气,这将进一步导致氢气浓度降低至无法工作。运行过程中依据电堆内工作参数反馈进行增湿量调节控制,湿度控制范围10-90%RH,温度控制范围为10℃-45℃。
本实施例中,在系统中还包括膜分离装置7和变压吸附分离装置9,膜分离装置7的出口与变压吸附分离装置9的进口连接,膜分离装置7的进口与氨脱除装置4的出口连接,变压吸附分离装置9的出口与第一膜增湿器11进口连通。脱氨后的氢氮气中氢气和氮气的体积比为3:1,采用膜分离装置7和变压吸附分离装置9耦合来对脱氨后的氢氮气进行分离纯化,气体先进入膜分离装置7再进入变压吸附分离装置9,并将变压吸附分离的循环气体返回膜分离装置7中再次循环。膜分离装置7和变压吸附分离装置9的顺序不能调换,因为膜分离装置7分离氢气浓度的上限是95%,虽然成本低,全工况表现好,但是这个浓度的氢气对于燃料电池13系统是不满足需求的;变压吸附分离装置9分离氢气浓度的上限可达99.97%-99.999%,能达到高纯度,但是成本高,并且不能适应工况变动,在低工况时,收率很低。经过发明人研究发现,膜分离与变压吸附分离结合以后,能同时应对低工况和高工况,都能得到极高的收率,因此膜分离装置7和变压吸附分离装置9的顺序不能调换,且该设计可以同时适配多种氢气浓度,因为 从提纯方式上保证了收率,从增湿和当量比上保证了燃料电池13性能。
具体实施时,膜分离装置7可以采用聚砜、2,6-二甲基苯醚(PPO)、芳族聚酰胺、聚酰亚胺、改性聚碳酸酯、醋酸纤维素等聚合物膜,使用温度在20℃~140℃,两侧压差在0.1~3.2MPa条件下对氢氮气进行氢气渗透分离;膜分离后氢气浓度上限可以达到95%,收率上限可以达到95%。变压吸附分离装置9吸附分离后氢气纯度达到99.97%-99.999%,解吸气打回膜分离处循环。
另外,现有的PEMFC电堆系统,都是不能在氢氮混合气下稳定运行的,采用了上述膜分离装置7和变压吸附分离装置9耦合使用,使得稳定运行成为了可能。
本实施例中,进一步设置了氢气增压泵6,氢气增压泵6连接在氨脱除装置4和膜分离装置7之间,用于对氢氮气进行增压。氨分解反应是一个随着压力增大,平衡逆向移动的反应;同时,对于燃料电池13来说,如果氢氮气压力低,就无法达到燃料电池13电堆的需求压力0.15-0.2MPa(1.5-2.0bar),故采用氢气增压泵6对脱氨后的氢氮气进行增压以满足燃料电池13的需求。
本实施例中,还在系统中设置了引射器12,引射器12的进口和燃料电池13的第一出口连通,引射器12的第一出口分别与变压吸附分离装置9的出口和氨分解装置1的进口连通,引射器12第二出口和燃料电池13的阳极连通。引射器12一方面可以将燃料电池13阳极对应产生的气体回流到燃料电池13阳极,可以让氢循环氧化,还可以对氢气起到一定的增湿作用;另一方面,也可以将燃料电池13阳极对应产生的气体回流到变压吸附装置,经过第一膜增湿器11后再进入燃料电池13阳极;再另一方面,还可以将燃料电池13阳极对应产生的气体回流到氨分解装置1,利用尾气热量保持氨分解装置1内部温度,同时还可以让氢气循环使用。
本实施例中,加热装置2包括电加热器和尾气燃烧装置,氨分解装置1内部包括两个既实现隔离,又可以进行导热的两个分解空间,第一分解空间通过氨分解装置1的第一进口和引射器12的第一出口连通,尾气燃烧装 置安装在第一分解空间;氨气可经过氨分解装置1的第二进口进入第二分解空间,电加热器安装在第二分解空间;第一分解空间和第二分解空间均和氨分解装置1出口连通。第二分解空间内沿氨气流动方向填装有两种催化剂,临近靠近氨气上游侧布置的第一种催化剂占比逐渐增高,临近靠近氨气下游侧布置的第二种催化剂占比逐渐增高。
其中,尾气燃烧装置主要是供热功能,电加热器是控温功能。燃烧装置为微通道反应器对尾气进行催化氧化放热,其中尾气氢气浓度为20%-70%,电加热器起到控温补充热量作用,包括但不限于利用环绕翅片接触,翅片另一侧嵌入内管催化剂床层等方式进行强化换热;电加热器可以根据控温指令,额外给予靠近气体下游侧热功率,保证0.4Mpa压力下Ni基等催化剂的性能;微通道反应器具备进入装置的低温气体与高温气体换热功能,实现低温气体进气温度-5℃-45℃,抵达催化剂床层温度为450℃-600℃,分解后高温气体温度小于150℃离开氨分解反应器。
其中,第一种催化剂优选采用Ru基催化剂,第二种催化剂优选采用Ni基催化剂。沿氨气流经方向,从上往下装填Ru基和Ni基催化剂,催化剂程分布梯度装填,催化剂粒径0.5mm-3mm,形状不限于球状多孔颗粒和长条形多孔颗粒;其中上游部分工作温度480℃,下游部分可以根据指令在500-650℃下运行;尾气燃烧装置采用氢气催化氧化,工作浓度范围20%-70%。
而且越靠近气体上游侧布置的Ru基多相催化剂占比越高,越靠近气体下游侧布置的Ni基催化剂占比越高,两种催化剂的组分占比在空间分布包括但不限于自由混杂、线性分布等多种组分配比方式;床层氨分解温度在480℃下达到99.8%分解率,并具备在0.4Mpa压力和10000mL(gcat·h)空速下利用温度梯度提高的方法达到99.8%分解率;以上分解率指氨分解制氢单程转化率。由于氨分解反应是一个随着压力增大,平衡逆向移动的反应,所以增压对于催化剂的考验很大,工业上处理的思路是提高温度,但是Ru基催化剂由于某些原因,不能在过高的温度下进行,否则在结构力学上载体会解离粉化,动力学上会导致系统在进气端剧烈吸热,使得换热夹 点温度无法有效控制,换热效率剧烈下降,这就是为什么我们采用了Ru基和Ni基催化剂上下层梯度分布的布置,这样才能将散热量均摊到整个管程上。
针对催化剂的作用进一步说明,Ru基催化剂起活温度低,转化率高,但是载体不耐热,如果采用高压运行时需要提高温度,那会导致管程前段快速吸热,使得换热效率大幅下降,而管程后端温度高,催化剂粉化。Ni基催化剂的起活温度高,需要较高温度,如果只用Ni基催化剂,会导致管程前段温度偏低,换热效率大幅下降,系统体积大幅增加,成为可实现但实际应用困难的设计,所以进行两者融合使用是必需的。
上述燃料电池发电系统中,氨分解装置1设有第一进口、第二进口和出口,氨分解装置1的第一进口和引射器12连通,氨分解装置1的第二进口通过流量计和储氨罐连通,氨分解装置1的出口和氨脱除装置4连通。具体实施时,氨分解装置1内部由导热金属结构隔离出第一分解空间和第二分解空间,作为一种实施方式,导热金属结构为一块导热金属板,第一分解空间和第二分解空间左右间隔开;作为另一种实施方式,导热金属结构为管状结构,尾气进入管状内的第一分解空间,氨气则进入管状外的第二分解空间;相比于导热金属板,采用管状结构可以让尾气燃烧的热量更好地为第二分解空间加热,提高尾气热量利用效率。
上述燃料电池发电系统,第一膜增湿器11和引射器12结合对进入燃料电池13阳极的氢气湿度进行控制,第二膜增湿器15和空压机16结合对进入燃料电池13阴极的空气湿度进行控制,从而达到采用第一膜增湿器11、第二膜增湿器15、引射器12和空压机16结合使用,对燃料电池13氢气湿度进行控制。采用引射器12将燃料电池13阳极产生的尾气回流到氨分解装置1,让尾气热量有效利用,同时采用尾气燃烧装置提供热量,电加热器控温,从而达到采用引射器12、尾气燃烧装置2和电加热器结合使用,对燃料电池13氢气温度进行控制。经氢气增压泵6增压的氢气从燃料电池13第一进口进入燃料电池13阳极,引射器12将燃料电池13尾气经燃料电池13第一进口回流到燃料电池13阳极,空气经空压机16压缩后从燃料电池 13第二进口进入燃料电池13阴极,从而实现与燃料电池13阳极尾气出口的压力动态平衡。进而达到对燃料电池13第一进口的氢气实现温度、湿度、压力控制,对燃料电池13第一进口电堆阳极排气耦合控制从燃料电池13第一出口离开的气体当量比、湿度和压力,对燃料电池13第二进口的空气进行压力、湿度和温度控制,并实现与燃料电池13第一出口的气体之间的压力动态平衡。
其中,燃料电池13第一出口的尾气压力控制,包括基于帕斯科原理的利用压缩空气源的氢气增压泵6,通过耦合燃料电池13第二进口进入的压缩空气为燃料电池13第一出口的气体增压;压力控制范围为0.1MPa-0.4MPa;燃料电池13第一出口的气体增压绝对数值为1-4倍的压缩空气压降数值,通过控制器实现压力协同控制,将燃料电池13第一出口压力与燃料电池13第二出口压力的数值差控制在0-0.08MPa。
其中,由于氨分解制氢得到的是氢氮混合气,这导致一般用于纯氢的燃料电池13系统不能接受它,因为引射器12会直接停止工作,循环泵也会导致氮气累积,其关键问题在于当量比和湿度。本实施例的燃料电池13第一出口的气体当量比控制,根据膜分离装置7和变压吸附分离装置9的设定纯度参数、增湿部分策略和电堆运行情况对进入燃料电池13系统的气体当量比进行调节;当量比是基于燃料电池13电堆消耗氢气计算的当量比,控制范围为1.2-1.6。引射器12前端压强控制在1.35-1.5MPa。
其中,燃料电池13电堆尾气利用控制,利用引射器12将阳极尾气泵送到燃料电池13第一进口,控制引射器12转速实现当量比和湿度控制,并进行气体背压调节;利用第一膜增湿器11和第二膜增湿器15对来自燃料电池13阴极的气体水蒸气反渗透回燃料电池13的第二进口。
本实施例中,燃料电池13采用质子交换膜,即以全氟磺酸膜及其改性膜为电解质的PEMFC电堆,或者以磷酸-PBI掺杂或PBI/SiO2复合膜为电解质的HT-PEMFC电堆,工作温度为50-90℃,适用气体为75%-99.999%纯度氢气,氨气浓度小于0.1ppm,使用湿度范围10%-95%RH,使用气压范围0.1MPa-0.4MPa;HT-PEMFC电堆,适用气体为75%-99.999%纯度氢气,氨气 浓度小于100ppm,使用湿度范围60%-99.9%RH,使用气压范围0.1MPa-0.3MPa。
本实施例中,空压机16根据控制器输出0.1-0.4MPa的压缩空气,流量与燃料电池13电堆功率匹配,按照空气进入燃料电池13的当量比调节范围为1.5-2.2;空压机16空气吸入口装有空气滤清器对环境中的颗粒进行过滤。
本实施例中,包括多组氨脱除装置,氨脱除装置通过物理吸附方法对从氨分解装置出来的氢氮混合气中的氨进行吸附,吸附剂工作压力范围为0.1-0.4Mpa,工作温度为30℃-110℃,从装置吸附后的气体氨含量小于0.1ppm,温度小于45℃。
本实施例中,转换装置采用DC/DC转换器17,将燃料电池13发出的电按照CC、CV或CP模式,输送到输出端,并与电池组18以及外界的直流负载20或交流负载21相连。电容19与电池组18,自带BMS系统,能以放电倍率0.1-10C响应外界需求变化,能与DC/DC输出端电压实现直流母线负载适应。
本实施例的氢燃料电池发电系统,具有氢储能密度高,能量转换效率高,发电成本低的优势,作为发电机组,在远离电网的矿山、工地、海岛、油田勘探等或功率负荷较大的数据中心、海上平台等场景有很大的应用前景,相较于柴油发电机组的2.5-2.8元/kWh,氨氢燃料电池13的使用成本在1.6元/kWh,而且系统的噪音较小,没有污染物排放,这在一些生物医药园区和医院场景中也有较大应用优势,其应用场景包括发电机组、电动汽车、电动船舶等等。
上述燃料电池发电系统的工作过程如下:
氨气通过流量计后进入氨分解装置1,由电加热器和尾气燃烧装置组成的加热装置2供热,对氨气和催化剂进行加热,将氨气分解为氢氮气;具体地,启动时两种方式一同供热,启动后电加热系统仅起到控温作用,使得氨气在催化剂床层中分解为氢气和氮气,分解率达到99.8%以上,分解压力根据后端需求可提高到0.5MPa,并协同后端电加热器与Ni基催化剂含量 高的床层实现。分解后的氢氮气经过第一控制阀3后进入氨脱除装置4,脱除未分解的氨气,得到氨含量小于0.1ppm的氢氮气;脱氨后的氢氮气经过第二控制阀5后进入氢气增压泵6,增压后的氢氮气进入膜分离装置7,再经过第三控制阀8进入变压吸附分离装置9。分离后的高纯氢(浓度可达99.97%以上)经过第四控制阀10后进入第一膜增湿器11,分离的解吸气经过第四控制阀10返回膜分离装置7;分离后的高纯氢经过第一膜增湿器11调节湿度后,与引射器12回流的氢气一同进入燃料电池13的阳极侧;空压机16将空气压缩后经第二膜增湿器15调节湿度后送入燃料电池13的阴极侧;燃料电池13阳极气体经过燃料电池13以后从燃料电池13第一出口排出尾气经引射器12回流,燃料电池13阴极气体则从燃料电池13第二出口排出经过第一气水分离器14后排放无污染的空气和水;第一气水分离器14将收集的液态水分别泵送到第一膜增湿器11和第二膜增湿器15中保持一侧膜的水压;燃料电池13输出的电能经DC/DC转换器17后与电池组18以及电容19连接,并与直流负载20、逆变器及交流负载21连接。
如图3所示,燃料电池发电系统的控制方法,包括以下步骤:
S101:启动加热装置,当氨分解装置1内部达到预设温度(氨分解装置1上游部分温度达到480℃,下游部分温度达到500℃-650℃),将氨气送入氨分解装置1,将氨气分解为氢氮气;
S102:分解后的氢氮气进入氨脱除装置4,脱除未分解的氨气;
S103:脱氨后的氢氮气进入氢气增压泵6,对氢氮气增压到预设压强(0.1MPa-0.4MPa);
S104:增压后的氢氮气进入膜分离装置7对氢气进行第一次分离,膜分离后的氢氮气进入变压吸附分离装置9对氢气进行第二次分离;
S105:分离后的氢氮气经第一膜增湿器11调节湿度后进入燃料电池13的阳极,压缩空气经第二膜增湿器15调节湿度后进入燃料电池13的阴极;燃料电池13阳极产生的气体在引射器12的作用下回流到氨分解装置1、变压吸附分离装置9和燃料电池13的阳极,燃料电池13阴极产生的气体经第一气水分离器14分离为空气和水,第一气水分离器14将分离的水分别 送入第一膜增湿器11和第二膜增湿器15;
S106:转换装置对燃料电池13电压进行升压,并将产生的电能存储到电池组18。
除上述阐述的效果外,该实施例的燃料电池发电系统的有益效果还包括:
相比氨燃烧和氨直接氧化燃料电池(不包括SOFC),氨分解制氢后进入燃料电池发电效率高,得到高品位的电能;同时比其他依靠高温(800-900℃)的氨分解制氢装置或方法,本发明所用的500℃以下氨分解制氢催化剂能效更高;对比相近反应温度的单一氨分解催化剂装填装置,本发明还能通过调节催化剂床层的催化剂配比与温度的关系,实现同等分解率下,更高气压下的氨分解制氢。
本实施例提供了调节阳极气体压强、湿度和当量比的可能,抑制了氮气组分对燃料电池性能的负面影响,而且在膜分离提供95%纯度氢气后,更是实现了减小变压吸附设备投资和燃料电池性能温度的双重优势。
本实施例利用空压机的压缩空气对氢气增压,实现了对氢气与空气压差的温度控制。同时,本发明由于对氢气尾气进行了充分的燃烧换热利用,氨燃料电池系统不需要额外消耗其他燃料,也不需要将较高比例的电能用于加热氨分解制氢装置。
实施例2
如图2所示,本发明还提供了另一种燃料电池发电系统,包括:氨分解装置1、加热装置2、氨脱除装置4、燃料电池13、转换装置、电池组18、第三膜增湿器24、氢气循环泵23、增压泵22、第二气水分离器25和空压机16。加热装置2安装在氨分解装置1内部,加热装置2用于对气体和催化剂进行加热,氨分解装置1用于将氨气分解为氢氮气。
氨脱除装置4与氨分解装置1的出口连通,用于脱除未分解的氨气;燃料电池13和氨脱除装置4连通,以氢气为燃料氧化产生电能。转换装置与燃料电池13连接,对燃料电池13的电压进行升压;电池组18用于储存氢燃料电池13产生的电能。增压泵22连通在氨分解装置1和燃料电池13 的阳极之间;空压机16用于将压缩空气送入增压泵22,第三膜增湿器24连通在增压泵22和燃料电池13的阴极之间;燃料电池13的第一出口和氢气循环泵23的进口连通,氢气循环泵23的第一出口和氨分解装置1的进口连通,氢气循环泵23的第二出口和燃料电池13的阳极连通,燃料电池13的第二出口和第三气水分离器的进口连通,第三气水分离器的出口和第三膜增湿器24连通。同时,进一步在系统中设置了氢气增压泵6和膜分离装置7,氢气增压泵6和所述膜分离装置7依次连接在氨脱除装置4和增压泵22之间,且膜分离装置7的出口还和氢气循环泵23的第一出口连通。
与实施例一相比,本实施例提供的燃料电池发电系统中,通过氢气循环泵23将燃料电池13的阳极产生的尾气送入燃料电池13的阳极,采用燃料电池13阳极排气进行增湿,可以保证阳极氢气纯度,但燃料电池13阳极排气增湿存在不足。针对燃料电池13阳极氢气增湿不足的问题,氢气在进入燃料电池13之前,也就是燃料电池13的阳极,经过增压泵22进行增压到0.2-0.3MPa;在燃料电池13的阴极,也就是降压侧,与空压机16相连,增压泵22的增压侧出口与氢气循环泵23返回的管路相连,根据具体工况控制,利用氢气循环泵23回收水分,湿度控制在10%-90%RH;第三膜增湿器24实现燃料电池13阴极尾气与燃料电池13空压机16出口气体之间的湿度交换。实施例一中燃料电池13阳极氢气的浓度在99.97%以上,实施例二中燃料电池13阳极氢气的浓度范围是90-95%纯度。采用实施例二的方案也可以当燃料电池13电堆质子膜较厚时,燃料电池13的阳极侧容易出现膜干涸的问题。
其中,燃料电池13的阳极侧有氢气循环泵23,进入燃料电池13电堆的压强控制在0.2-0.3MPa。空压机16提供过量比1.6-1.8的空气,压强经过增压泵22的减压侧后降低至0.12-0.22MPa。第二气水分离器25将燃料电池13的阴极侧进行气水分离,从而实现对阴极进气湿度控制。
上述燃料电池发电系统的工作过程如下:
氨气通过流量计后进入氨分解装置1,由电加热器和尾气燃烧装置供热,对氨气和催化剂进行加热,将氨气分解为氢氮气;具体地,启动时两 种方式一同供热,启动后电加热系统仅起到控温作用,使得氨气在催化剂床层中分解为氢气和氮气,分解率达到99.8%以上,分解压力根据后端需求可提高到0.5MPa,并协同后端电加热器与Ni基催化剂含量高的床层实现。分解后的氢氮气经过第一控制阀3后进入氨脱除装置4,脱除未分解的氨气,得到氨含量小于0.1ppm的氢氮气;脱氨后的氢氮气经过第二控制阀5后进入氢气增压泵6,增压后的氢氮气进入膜分离装置7,得到纯度90-95%的氢气直接进入增压泵22,按照另一侧减压数值的1-4倍对氢气进行增压,膜分离装置7未透过膜的气体返回电加热器与燃烧装置中燃烧供热;氢气经过增压泵22调节压力后,与氢气循环泵23回流的氢气一同进入燃料电池13的阳极侧,氢气循环泵23根据指令控制返回的湿度和进入电堆的当量比,并将排除的氢气从旁路间歇式通入电加热器与燃烧装置中燃烧供热;燃料电池13的阴极侧气体供应则来自空压机16泵送经第三膜增湿器24后得到;阳极气体经过燃料电池13以后氢气循环泵23回流,阴极气体则经过第二气水分离器25后排放无污染的空气和水;第二气水分离器25将气水分离保障空气进堆的湿度控制;燃料电池13输出的电能经DC/DC转换器17后与锂电池组18以及电容19连接,并与直流负载20、逆变器及交流负载21连接。
如图4所示,燃料电池发电系统的控制方法,包括以下步骤:
S201:启动加热装置,当氨分解装置1内部达到预设温度(氨分解装置1上游部分温度达到480℃,下游部分温度达到500℃-650℃),将氨气送入氨分解装置1,将氨气分解为氢氮气;
S202:分解后的氢氮气进入氨脱除装置4,脱除未分解的氨气;
S203:脱氨后的氢氮气进入氢气增压泵6,对氢氮气增压到预设压强(0.1MPa-0.4MPa);
S204:增压后的氢氮气进入膜分离装置7对氢气进行膜分离,膜分离后的氢氮气经过增压泵22增压后送入燃料电池13的阳极;压缩空气经过增压泵22增压后送入第三膜增湿器24,经第三膜增湿器24调节湿度后进入燃料电池13的阴极;燃料电池13阳极产生的气体在氢气循环泵23的作 用下回流到氨分解装置1、膜分离装置7和燃料电池13的阳极,燃料电池13阴极产生的气体经第二气水分离器25分离为空气和水,第二气水分离器25将分离的水送入第三膜增湿器24;
S205:转换装置对燃料电池13电压进行升压,并将产生的电能存储到电池组18。
本实施例具有氢储能密度高,能量转换效率高,投资成本低,发电成本低的优势,由于不需要变压吸附分离装置,系统的初投资和体积都可以大幅减小,利用膜分离提供的90-95%纯度的氢气,结合氢气增压泵和循环泵的温度、湿度、压力、当量比耦合控制,有效解决了现有燃料电池系统中氮气积累导致的性能负面影响,而且利用空压机的能量回收作为氢气侧增压,也有效解决了氨分解制氢系统中,氢氮气压力不足的难题,若在没有膜分离装置的实施例中,该设计方法将起到更为重要的作用。该实施例在基站电源,发电机组,电站调峰,矿卡重卡和电动船舶等应用场景,具有跨季节,长时效储能的优势,发电效率高,度电成本低,初投资小,运维压力小,没有污染物排放等优势。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (11)

  1. 一种燃料电池发电系统,包括:
    氨分解装置和设置于其内部的加热装置,所述加热装置用于对进入所述氨分解装置中的气体和催化剂加热,所述氨分解装置用于将氨气分解为氢氮气;
    氨脱除装置,其与所述氨分解装置的出口连通,用于脱除未分解的氨气;
    燃料电池,其与所述氨脱除装置连通,以氢气为燃料氧化产生电能;
    转换装置,其与所述燃料电池连接,对所述燃料电池的电压进行升压;
    电池组,用于储存所述燃料电池产生的电能;
    其特征在于,所述系统还包括第一膜增湿器、第二膜增湿器、第一气水分离器和空压机;所述第一膜增湿器连通在所述氨分解装置和所述燃料电池的阳极之间,所述第二膜增湿器连通在所述空压机和所述燃料电池的阴极之间,所述空压机用于将压缩空气送入所述燃料电池的阴极;所述燃料电池的第一出口和所述燃料电池的阳极连通,所述燃料电池的第二出口和所述第一气水分离器的进口连通,所述第一气水分离器的第一出口和所述第一膜增湿器连通,所述第一气水分离器的第二出口和所述第二膜增湿器连通。
  2. 根据权利要求1所述的燃料电池发电系统,其特征在于,所述系统还包括膜分离装置和变压吸附分离装置,所述变压吸附分离装置进口与所述膜分离装置出口连通,所述氨脱除装置的出口与所述膜分离装置的进口连通,所述变压吸附分离装置的出口通过所述第一膜增湿器与所述燃料电池的阳极连通。
  3. 根据权利要求2所述的燃料电池发电系统,其特征在于,所述系统还包括氢气增压泵,所述氢气增压泵连接在所述氨脱除装置出口与所述膜分离装置的进口之间。
  4. 根据权利要求3所述的燃料电池发电系统,其特征在于,所述系统还包括引射器,所述引射器的进口和所述燃料电池第一出口连通,所述引射器第一出口分别与所述变压吸附分离装置出口和所述氨分解装置进口连通,所述引射器第二出口与所述燃料电池的阳极连通。
  5. 根据权利要求4所述的燃料电池发电系统,其特征在于,所述加热装置包括电加热器和尾气燃烧装置,所述氨分解装置内部隔离开两个可以导热的第一分解空间和第二分解空间,所述尾气燃烧装置安装在所述第一分解空间,所述电加热器安装在所述第二分解空间;所述第一分解空间分别与所述氨分解装置的第一进口和所述引射器的第一出口连通,所述第二分解空间与所述氨分解装置的第二进口连通,氨气进入所述第二分解空间中,所述第一分解空间和所述第二分解空间均和所述氨分解装置的出口连通。
  6. 根据权利要求5所述的燃料电池发电系统,其特征在于,所述第二分解空间内沿氨气流动方向填装有两种催化剂,靠近氨气上游侧布置的第一种催化剂占比逐渐增高,靠近氨气下游侧布置的第二种催化剂占比逐渐增高。
  7. 根据权利要求6所述的燃料电池发电系统,其特征在于,所述第一种催化剂采用Ru基催化剂,所述第二种催化剂采用Ni基催化剂,各所述的催化剂程分布呈梯度装填,催化剂粒径0.5mm-3mm。
  8. 一种燃料电池发电系统,包括:
    氨分解装置和设置于其内部的加热装置,所述加热装置用于对进入所述氨分解装置中的气体和催化剂加热,所述氨分解装置用于将氨气分解为氢氮气;
    氨脱除装置,其与所述氨分解装置的出口连通,用于脱除未分解的氨气;
    燃料电池,其与所述氨脱除装置连通,以氢气为燃料氧化产生电能;
    转换装置,其与所述燃料电池连接,对所述燃料电池的电压进行升压;
    电池组,用于储存所述氢燃料电池产生的电能;
    其特征在于,所述系统还包括增压泵、氢气循环泵、第三膜增湿器、第二气水分离器和空压机,所述增压泵进口与所述氨脱除装置出口连接,所述增压泵出口与所述燃料电池的阳极连通,所述空压机用于将压缩空气送入所述增压泵中;
    所述第三膜增湿器连通在所述增压泵和所燃料电池的阴极之间;所述燃料电池的第一出口与所述氢气循环泵的进口连通,所述氢气循环泵的第一出口与所述氨分解装置的进口连通,所述氢气循环泵的第二出口与所述燃料电池的阳极连通,所述燃料电池的第二出口和所述第二气水分离器的进口连通,所述第二气水分离器的出口与所述第三膜增湿器连通。
  9. 根据权利要求8所述的燃料电池发电系统,其特征在于,所述系统还包括氢气增压泵和膜分离装置,所述膜分离装置的第一出口与所述氢气循环泵的第一出口连通,所述膜分离装置的第二出口与所述增压泵连通,所述氢气增压泵进口与所述氨脱除装置出口连接,所述氢气增压泵出口与所述膜分离装置进口连通。
  10. 一种燃料电池发电系统的控制方法,其特征在于,所述方法用于权利要求6所述的燃料电池发电系统,包括以下步骤:
    S101:启动加热装置,当氨分解装置内部达到预设温度,将氨气送入氨分解装置,将氨气分解为氢氮气;
    S102:分解后的氢氮气进入氨脱除装置,脱除未分解的氨气;
    S103:脱氨后的氢氮气进入氢气增压泵,对氢氮气增压到预设压强;
    S104:增压后的氢氮气进入膜分离装置对氢气进行第一次分离,膜分离后的氢氮气进入变压吸附分离装置对氢气进行第二次分离;
    S105:分离后的氢氮气经第一膜增湿器调节湿度后进入燃料电池的阳极,压缩空气经第二膜增湿器调节湿度后进入燃料电池的阴极;燃料电池阳极产生的气体在引射器的作用下回流到氨分解装置、变压吸附分离装置和燃料电池的阳极,燃料电池阴极产生的气体经第一气水分离器分离为空 气和水,第一气水分离器将分离的水分别送入第一膜增湿器和第二膜增湿器;
    S106:转换装置对燃料电池电压进行升压,并将产生的电能存储到电池组。
  11. 一种燃料电池发电系统的控制方法,其特征在于,所述方法用于权利要求9所述的燃料电池发电系统,包括以下步骤:
    S201:启动加热装置,当氨分解装置内部达到预设温度,将氨气送入氨分解装置,将氨气分解为氢氮气;
    S202:分解后的氢氮气进入氨脱除装置,脱除未分解的氨气;
    S203:脱氨后的氢氮气进入氢气增压泵,将氢氮气增压到预设压强;
    S204:增压后的氢氮气进入膜分离装置对氢气进行膜分离,膜分离后的氢氮气经过增压泵增压后送入燃料电池的阳极;压缩空气经过增压泵增压后送入第三膜增湿器,经第三膜增湿器调节湿度后进入燃料电池的阴极;燃料电池阳极产生的气体在氢气循环泵的作用下回流到氨分解装置、膜分离装置和燃料电池的阳极,燃料电池阴极产生的气体经第二气水分离器分离为空气和水,第二气水分离器将分离的水送入第三膜增湿器;
    S205:转换装置对燃料电池电压进行升压,并将产生的电能存储到电池组。
PCT/CN2023/100917 2022-06-21 2023-06-18 一种燃料电池发电系统及其控制方法 WO2023246669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210705379.0A CN115036539B (zh) 2022-06-21 2022-06-21 一种燃料电池发电系统及其控制方法
CN202210705379.0 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023246669A1 true WO2023246669A1 (zh) 2023-12-28

Family

ID=83124476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100917 WO2023246669A1 (zh) 2022-06-21 2023-06-18 一种燃料电池发电系统及其控制方法

Country Status (2)

Country Link
CN (1) CN115036539B (zh)
WO (1) WO2023246669A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036539B (zh) * 2022-06-21 2024-01-23 福州大学 一种燃料电池发电系统及其控制方法
CN115939468A (zh) * 2022-12-26 2023-04-07 上海交通大学 一种高效船用氨燃料sofc发电装置与方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013225115A1 (de) * 2013-12-06 2015-06-25 Volkswagen Ag Vorrichtung mit einem Brennstoffzellenstapel und Verfahren zum Betreiben einer solchen Vorrichtung
CN109818012A (zh) * 2019-02-21 2019-05-28 山东大学 一种燃料电池发动机系统的水热管理系统
CN110277578A (zh) * 2019-06-20 2019-09-24 福州大学 一种氨燃料电池系统及电动装置
CN111211338A (zh) * 2020-03-19 2020-05-29 吉林大学 一种高压质子交换膜燃料电池动力系统
CN112050202A (zh) * 2020-09-03 2020-12-08 福州大学化肥催化剂国家工程研究中心 一种管式氨分解反应器
CN212934680U (zh) * 2020-09-23 2021-04-09 中国第一汽车股份有限公司 一种燃料电池的增湿系统
CN113764700A (zh) * 2021-08-09 2021-12-07 东风汽车集团股份有限公司 一种燃电系统、燃电系统的控制方法及车辆
CN114430056A (zh) * 2022-01-20 2022-05-03 上海恒劲动力科技有限公司 一种质子交换膜燃料电池系统湿度控制方法
CN115036539A (zh) * 2022-06-21 2022-09-09 福州大学 一种燃料电池发电系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111742A1 (de) * 2011-08-24 2013-02-28 Daimler Ag Brennstoffzellensystem
CN103022536B (zh) * 2012-12-20 2015-07-15 上海交通大学 用于燃料电池的膜增湿器
CN111063916B (zh) * 2019-12-27 2020-08-11 电子科技大学 燃料电池阳极水管理系统与控制方法
CN212209665U (zh) * 2020-04-27 2020-12-22 上海汽车集团股份有限公司 一种燃料电池的膜增湿器和燃料电池
CN114420972A (zh) * 2022-01-25 2022-04-29 中国人民解放军海军工程大学 一种以氨分解气为原料的pemfc发电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013225115A1 (de) * 2013-12-06 2015-06-25 Volkswagen Ag Vorrichtung mit einem Brennstoffzellenstapel und Verfahren zum Betreiben einer solchen Vorrichtung
CN109818012A (zh) * 2019-02-21 2019-05-28 山东大学 一种燃料电池发动机系统的水热管理系统
CN110277578A (zh) * 2019-06-20 2019-09-24 福州大学 一种氨燃料电池系统及电动装置
CN111211338A (zh) * 2020-03-19 2020-05-29 吉林大学 一种高压质子交换膜燃料电池动力系统
CN112050202A (zh) * 2020-09-03 2020-12-08 福州大学化肥催化剂国家工程研究中心 一种管式氨分解反应器
CN212934680U (zh) * 2020-09-23 2021-04-09 中国第一汽车股份有限公司 一种燃料电池的增湿系统
CN113764700A (zh) * 2021-08-09 2021-12-07 东风汽车集团股份有限公司 一种燃电系统、燃电系统的控制方法及车辆
CN114430056A (zh) * 2022-01-20 2022-05-03 上海恒劲动力科技有限公司 一种质子交换膜燃料电池系统湿度控制方法
CN115036539A (zh) * 2022-06-21 2022-09-09 福州大学 一种燃料电池发电系统及其控制方法

Also Published As

Publication number Publication date
CN115036539A (zh) 2022-09-09
CN115036539B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
JP7352259B2 (ja) アンモニア燃料電池システムおよび電動装置
WO2023246669A1 (zh) 一种燃料电池发电系统及其控制方法
CN104577168B (zh) 一种甲醇水制氢发电系统及制氢发电方法
WO2017028616A1 (zh) 具有多组甲醇水重整制氢发电模组的移动式充电站及方法
WO2016192574A1 (zh) 一种具有多组甲醇水重整制氢发电模组的充电站及方法
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢系统及其燃料电池汽车
CN113889648B (zh) 一种mw级热电联供燃料电池电站
CN204289609U (zh) 一种氢气发电系统
CN104577163A (zh) 一种氢气发电系统及其发电方法
CN105514464A (zh) 燃料电池汽车的dc-dc升压转换器控温系统及方法
CN105329109A (zh) 一种太阳能辅助发电的燃料电池汽车
CN205292310U (zh) 一种太阳能辅助发电的燃料电池汽车
CN215070070U (zh) 一种电池阳极引射回流装置
US10017865B2 (en) Electrochemical method for producing pure-oxygen gas and oxygen-lean gas from oxygen-containing gas mixtures
CN205248374U (zh) 具有多组甲醇水重整制氢发电模组的移动式充电站
CN116779921A (zh) 一种高能效燃料电池热电联供装置和方法
CN215713422U (zh) 一种废气利用的自动化二氧化碳还原设备
CN115838937A (zh) 一种电化学技术与燃煤混氨技术联用的低碳排放系统与方法
CN105449247A (zh) 一种太阳能辅助发电的充电站
CN105070928A (zh) 一种燃料电池供氧系统及供氧方法
CN204794155U (zh) 一种具有多组甲醇水重整制氢发电模组的充电站
CN204289611U (zh) 一种甲醇水制氢发电系统
CN205429855U (zh) 一种太阳能辅助发电的充电站
CN104611719B (zh) 一种合成臭氧的纯氧气源发生器
CN204793043U (zh) 一种燃料电池供氧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826317

Country of ref document: EP

Kind code of ref document: A1