WO2023246596A1 - 调度方法及其装置、计算机可读存储介质 - Google Patents

调度方法及其装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2023246596A1
WO2023246596A1 PCT/CN2023/100235 CN2023100235W WO2023246596A1 WO 2023246596 A1 WO2023246596 A1 WO 2023246596A1 CN 2023100235 W CN2023100235 W CN 2023100235W WO 2023246596 A1 WO2023246596 A1 WO 2023246596A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
speed limit
transmission
limit value
terminal
Prior art date
Application number
PCT/CN2023/100235
Other languages
English (en)
French (fr)
Inventor
王子晟
黄启圣
李炎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023246596A1 publication Critical patent/WO2023246596A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • Embodiments of the present application relate to but are not limited to the field of information processing technology, and in particular, to a scheduling method and device thereof, and a computer-readable storage medium.
  • WLAN Wireless Local Area Network
  • AP Access Point
  • AP Access Point
  • the air interface competition strategy is used for data forwarding. Frequent preemption of the air interface by low-rate users will lead to a decrease in the throughput of high-rate users.
  • the traditional air interface fairness algorithm will try to ensure that each user has the same air interface.
  • the transmission time especially the air interface occupancy of low-rate users, will be reduced as much as possible, allowing high-rate users to seize more air interfaces to improve the overall multi-user performance of WLAN; however, some low-rate users have lower rates and the AP It is not provided with a sufficient sending window, causing the device to disconnect or lose packets, giving users a poor user experience.
  • Embodiments of the present application provide a scheduling method, device, and computer-readable storage medium.
  • embodiments of the present application provide a scheduling method, including: obtaining transmission information corresponding to a terminal, wherein the transmission information includes at least one of uplink transmission information and downlink transmission information; according to the transmission information Obtain information characteristics; determine the information transmission speed limit value of the terminal according to the information characteristics; and schedule the transmission information according to the information transmission speed limit value.
  • embodiments of the present application also provide a scheduling device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the computer program, the above is implemented. The scheduling method described.
  • embodiments of the present application further provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the scheduling method as described above.
  • Figure 1 is a schematic diagram of a device architecture for executing a scheduling method provided by an embodiment of the present application
  • Figure 2 is a flow chart of a scheduling method provided by an embodiment of the present application.
  • Figure 3 is a flow chart for obtaining information features provided by an embodiment of the present application.
  • Figure 4 is a flow chart for determining the information transmission speed limit value provided by an embodiment of the present application.
  • Figure 5 is a specific flow chart for determining the information transmission speed limit value provided by an embodiment of the present application.
  • Figure 6 is a specific flow chart for determining the information transmission speed limit value provided by another embodiment of the present application.
  • Figure 7 is a specific flow chart for determining the information transmission speed limit value provided by another embodiment of the present application.
  • Figure 8 is a flow chart of speed limit prediction provided by an embodiment of the present application.
  • Figure 9 is a flow chart for scheduling transmission information provided by an embodiment of the present application.
  • Figure 10 is a specific flow chart for scheduling transmission information provided by an embodiment of the present application.
  • Figure 11 is a specific flow chart for scheduling transmission information provided by another embodiment of the present application.
  • Figure 12 is a specific flow chart for speed-limiting scheduling of transmission information provided by an embodiment of the present application.
  • Figure 13 is a specific flow chart for rate-limiting scheduling of transmission information provided by another embodiment of the present application.
  • Figure 14 is a specific flow chart for rate-limiting scheduling of transmission information provided by another embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a scheduling device provided by an embodiment of the present application.
  • the present application provides a scheduling method, device, and computer-readable storage medium to obtain transmission information corresponding to the terminal, where the transmission information includes at least one of uplink transmission information and downlink transmission information; and then obtains information according to the transmission information characteristics; then determine the information transmission speed limit value of the terminal according to the information characteristics; and finally schedule the transmission information according to the information transmission speed limit value.
  • the information transmission rate limit value can be determined according to the information characteristics corresponding to the terminal, and finally the transmission information is scheduled and processed according to the information transmission rate limit value, bringing a better user experience to the user.
  • Figure 1 is a schematic diagram of a device architecture for executing a scheduling method provided by an embodiment of the present application.
  • the device architecture includes at least one access point (AP) and several terminals, where the terminals in the device architecture all have data connections with the AP.
  • AP provides Internet access for terminals, and one AP can serve one or multiple terminals at the same time.
  • an access point refers to a device through which user terminals in a Wireless Local Area Network (WLAN) access the network.
  • WLANs are widely equipped with APs, and users access the WLAN APs through network cards.
  • wireless AP is the access point for wireless device users to enter the wired network. It is mainly used in broadband homes, inside buildings, campuses, parks, warehouses, factories and other places that require wireless monitoring. Typical distances cover tens of meters to hundreds of meters. Meters, some can also be used for long-distance transmission, the farthest can reach about 30KM, the main technology is IEEE802.11 series.
  • Most wireless APs also have access point client mode, which can connect wirelessly to other APs to extend the coverage of the network.
  • the AP may include routers, gateways, and other devices with data forwarding functions that enable terminals to access external networks, and are not limited here.
  • the terminal can be a mobile phone, computer, Internet of Things device or other AP, and the mobile phone can Connect to the AP wirelessly.
  • Computers and IoT devices can connect to the AP wirelessly or wiredly.
  • the Internet of Things devices can be home appliances such as refrigerators, air conditioners, and washing machines. These home appliances only need to have network connection functions to be recognized as terminals in the embodiments of this application.
  • the data sent by the AP to the terminal is regarded as downlink data
  • the data sent by the terminal to the AP is regarded as uplink data.
  • the communication between the AP and the terminal is based on but not limited to the IEEE802.11 series protocols; it is worth noting that in the embodiment of this application, the downlink is represented by Tx and the uplink is represented by Rx.
  • the AP in the embodiment of this application generally includes a radio frequency module, a physical link layer and a media access control layer.
  • the radio frequency module and physical link layer demodulate the signals transmitted by the terminal and send them to the media access control layer.
  • the media access control layer extracts specific message data, where the message data is the information sent by the device to the Internet.
  • the device architecture and application scenarios described in the embodiments of the present application are for the purpose of explaining the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • Those skilled in the art will know that with the device architecture With the evolution of technology and the emergence of new application scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • the device architecture shown in Figure 1 does not limit the embodiments of the present application, and may include more or less components than shown, or combine certain components, or different components. layout.
  • Figure 2 is a flow chart of a scheduling method provided by an embodiment of the present application. This includes but is not limited to step S100, step S200, step S300 and step S400.
  • Step S100 Obtain transmission information corresponding to the terminal, where the transmission information includes at least one of uplink transmission information and downlink transmission information.
  • Step S200 Obtain information characteristics according to the transmission information.
  • Step S300 Determine the information transmission rate limit value of the terminal according to the information characteristics.
  • Step S400 Schedule the transmission of information according to the information transmission speed limit value.
  • this scheduling method can be applied to the AP, and the AP obtains information characteristics according to the transmission information, where the transmission information can include at least one of uplink transmission information and downlink transmission information; and the uplink transmission information in this application is The transmission information sent by the terminal to the AP.
  • the downlink transmission information in this application is the transmission information sent by the AP to the terminal.
  • the information characteristics obtained according to the transmission information can be used to characterize the characteristics of the transmission information, and the characteristics can be used to quantify the user experience; then the information transmission speed limit value of the terminal is determined according to the information characteristics, and the information transmission limit value is determined. The speed value can recommend the information transmission rate of the terminal. Finally, the transmission information is scheduled according to the information transmission speed limit value and the actual transmission information.
  • the transmission information can be scheduled according to the information characteristics of the transmission information corresponding to the terminal. It brings a good user experience to users.
  • the AP can use the information characteristics of the video information transmitted by the mobile phone.
  • the information characteristics here can specifically be the delay characteristics of the video data packet transmission.
  • the air interface fairness method of this application does not rely on the parameters of the communication system, such as packet loss rate, etc., to calculate the user speed limit.
  • This application proposes to quantify the user experience, adjust the user's uplink and downlink speed limits according to the information transmission speed limit value, and ultimately achieve an air interface fairness method with optimal user experience.
  • the transmission information includes multiple data packets, and the above-mentioned step S200 includes but is not limited to step S210.
  • Step S210 Obtain the size information and time information of the data packets based on multiple data packets to obtain information characteristics.
  • the user experience in WLAN mainly depends on whether the service is smooth or whether the download and upload speed of the service is fast enough.
  • the indicator for quantifying service fluency is mainly the time between two adjacent packets of the service data flow. Among them, if the average time is large, users will experience service delays. If the maximum time within a period of time is larger, users will experience service lags. Therefore, in order to quantify the user experience, the user analysis module adds a timestamp to each message sent and received. Statistics are made for each data flow and the characteristics of the user's data flow within a period of time (T) are collected.
  • the data flow characteristics can be: maximum packet, minimum packet and average packet size (p max , p min , p avr ), the unit is bytes.
  • Variance of message size The maximum message exchange time, the minimum message exchange time and the average message exchange time (t max , t min , t avr ), the unit is milliseconds.
  • Variance of message exchange time The total downlink packet size p tx,total and the upstream total packet size p rx,total are in bytes; the collection time of data flow characteristics is 1 second.
  • step S300 includes but is not limited to step S310 and step S320.
  • Step S310 Compare the information features at the current time with the information features at the previous time to obtain a first comparison result.
  • the information characteristics at the current moment can be compared with the information characteristics at the previous moment to obtain the first comparison result; and then the determination can be made based on the first comparison result.
  • the information transmission speed limit value of the terminal can be compared with the information characteristics at the previous moment to obtain the first comparison result; and then the determination can be made based on the first comparison result.
  • the first comparison result can be obtained, and then the information transmission rate limit value of the terminal is determined based on the first comparison result obtained above.
  • the transmission information corresponds to a preset initial speed limit value
  • the above-mentioned step S320 includes but is not limited to step S321.
  • Step S321 When the first comparison result is that the information characteristics at the current moment are better than the information characteristics at the previous moment, the initial speed limit value is accumulated by the preset speed limit step value to obtain the information transmission speed limit value of the terminal.
  • the initial speed limit value when the first comparison result is that the information feature at the current moment is better than the information feature at the previous moment, The initial speed limit value will be cumulatively reduced by the preset speed limit step value, thereby obtaining the information transmission speed limit value of the terminal; it can be understood that when the first comparison result is that the information characteristics of the current moment are better than those of the previous moment Information characteristics represent that the information transmission rate at the current moment is better than the previous moment. You can subtract the speed limit step value from the preset initial speed limit value and lower the preset initial speed limit value to This enables the information transmission rate limit value to better adapt to the current air interface competition method.
  • the transmission information corresponds to a preset initial speed limit value
  • the above step S320 includes but is not limited to step S322.
  • Step S322 When the first comparison result is that the information characteristics at the current moment are worse than the information characteristics at the previous moment, the initial speed limit value is accumulated by the preset speed limit step value to obtain the information transmission speed limit value of the terminal.
  • the initial speed limit value when the first comparison result is that the information characteristics at the current moment are worse than the information characteristics at the previous moment, the initial speed limit value will be accumulated by the preset speed limit step value, thereby obtaining the information transmission of the terminal.
  • Speed limit value it can be understood that when the first comparison result is that the information characteristics at the current moment are worse than the information characteristics at the previous moment, which means that the information transmission rate at the current moment is worse than the previous moment, the preset value can be The initial speed limit value is increased by the speed limit step value, and the preset initial speed limit value is increased so that the information transmission speed limit value can better adapt to the current air interface competition method.
  • the existing air interface fairness algorithm determines the user's speed limit value based on communication indicators, such as packet loss rate and user speed. This method does not directly improve the user experience.
  • This application proposes a dynamic speed limit analysis method based on user experience. The principle is to set the speed limit values l i,tx and l o,rx respectively for the i-th user's uplink and downlink; obtain the quantitative indicators of user experience through the user analysis module; if the quantitative indicators of user experience deteriorate, increase the corresponding speed limit value. Otherwise, reduce the speed limit value; keep repeating the above steps until the user experience is stable.
  • the speed limit values l i,tx and l i,rx are set to an integer, and the unit is Mbps.
  • S tx and S rx as speed limit step parameters.
  • s as the user quantified parameter
  • s′ as the user quantified parameter at the previous moment, where the user quantified parameter is the information feature; since there are multiple user quantified parameters, s and s′ are vectors, then if ⁇ s ⁇ -
  • step S300 includes but is not limited to step S330.
  • Step S330 Input the information characteristics into the speed limit prediction model to perform speed limit prediction, and obtain the information transmission speed limit value of the terminal.
  • reinforcement learning mainly consists of an agent, environment, state, action, and reward; after the agent performs an action, the environment will transition to a new state, and rewards will be given for the new state. Signal (positive reward or negative reward); then, the agent performs new actions according to a certain strategy based on the new state and the rewards fed back by the environment; the above process is the way in which the agent and the environment interact through states, actions, and rewards.
  • step S330 includes but is not limited to step S331, step S332, step S333 and step S334.
  • Step S331 Calculate cost parameters based on information features at the current moment.
  • Step S332 Calculate the loss parameter based on the information characteristics at the current moment, the information characteristics at the previous moment and the cost parameter.
  • Step S333 Update the speed limit prediction model according to the loss parameters.
  • Step S334 Input the information features at the current moment into the updated speed limit prediction model to perform speed limit prediction.
  • the speed limit prediction model in the process of using the speed limit prediction model to predict the speed limit, first according to the current time
  • the information features calculate the cost parameters; then the loss parameters are calculated based on the information features at the current moment, the information features at the previous moment and the cost parameters; then the speed limit prediction model is updated based on the loss parameters; finally the information features at the current moment are input to
  • the updated speed limit prediction model can be used to predict the speed limit of the terminal to obtain the information transmission speed limit value of the terminal.
  • the speed limit prediction model is a reinforcement learning model
  • the reinforcement learning model uses an online deep reinforcement learning network (Deep Q Learning, DQN) to calculate the optimal information transmission speed limit value.
  • the reinforcement learning model in the i-th Tx direction randomly initializes a convolutional neural network Q i,tx (s
  • ⁇ ) is the information feature in the above embodiment.
  • the output of the convolutional neural network is an integer from 0 to 4095, which represents the user's optimal speed limit value in Mbps; define D i,tx as the output result.
  • Parameter ⁇ is the hyperparameter of the convolutional neural network Q i,tx (s
  • the reinforcement learning module triggers an optimization of the neural network every time it receives information features.
  • s′ is the input of the last neural network optimization
  • ⁇ ′ is the hyperparameter of the last iteration
  • r tx is the cost.
  • the cost function represents the impact of the current operation on the user experience. When r tx >0, it means that the recent user experience has been good, otherwise it means that the user experience has been poor. For each user, the cost is calculated as follows:
  • t avr is the average delay
  • t max is the maximum delay jitter
  • w 1 represents the average delay weight
  • w 2 represents the maximum delay jitter weight
  • p tx total represents the total downlink packet size
  • T represents the sampling time
  • Step S410 Update the preset speed limit trigger parameter according to the information transmission speed limit value every preset time interval.
  • Step S420 Each time a data packet in the transmission information is obtained, the current speed limit trigger parameter is compared with the preset threshold to obtain a second comparison result.
  • Step S430 Schedule the transmission of information according to the second comparison result and the information transmission rate limit value.
  • the judgment condition in this application is to compare the current speed limit trigger parameter with the preset threshold, and then the second comparison result can be obtained. Finally, according to The second comparison result and the information transmission speed limit value perform scheduling processing on the transmission information.
  • step S430 includes but is not limited to step S431.
  • Step S431 When the second comparison result is that the current speed limit trigger parameter is less than or equal to the preset threshold, speed limit scheduling is performed on the transmission information according to the information transmission speed limit value.
  • the transmission information when the second comparison result is that the current speed limit trigger parameter is less than or equal to the preset threshold, it will be determined that the transmission information needs to be speed limited and scheduled, and then the transmission will be performed according to the information transmission speed limit value.
  • the information is processed through speed limit scheduling.
  • step S430 includes but is not limited to step S432.
  • Step S432 When the second comparison result is that the current speed limit trigger parameter is greater than the preset threshold, the transmission information is not processed. Perform rate limiting scheduling and subtract the packet size of the data packet from the current rate limiting trigger parameter.
  • the transmission information when the second comparison result is that the current speed limit trigger parameter is greater than the preset threshold, it will be determined that the transmission information does not need to be subjected to speed limit scheduling processing, and the transmission information will be processed according to the original data transmission rate. Scheduling processing, and subtracting the packet size of the data packet from the current rate limit trigger parameter to prepare for subsequent rate limit judgments.
  • step S431 includes but is not limited to step S4311.
  • Step S4311 Discard the current data packet.
  • the transmission information when the transmission information is downlink transmission information, during the process of speed-limiting scheduling of the transmission information, the current data packet can be discarded, so that the speed-limiting scheduling process will not affect other terminals occupying the air interface. Perform information transmission and processing to improve the overall service performance of the AP.
  • step S431 includes but is not limited to step S4312.
  • Step S4312 Buffer the current data packet until the speed limit trigger parameter is greater than the preset threshold.
  • the transmission information when the transmission information is downlink transmission information, during the process of rate-limiting scheduling of the transmission information, the current data message can be cached until the rate-limiting trigger parameter is greater than the preset threshold.
  • the transmission of messages prevents terminals from affecting other terminals occupying air interfaces for information transmission and processing during the speed limit scheduling process, and can also improve the overall service performance of the AP.
  • a variable di ,tx (di ,rx ) is maintained during the process of limiting the downlink or uplink TX (RX) speed of the terminal, and its initial value is 0. Every time T F , D i,tx T F (D i, rx T F ) is added to di ,tx (d i,rx ). Whenever a message is sent or received, it is judged whether the current di ,tx (di ,rx ) is less than 0; if it is less than 0, the Tx and Rx speed limits are triggered. If greater than 0, subtract the size of the message from d i,tx (d i,rx ). After traffic monitoring triggers rate limiting, two methods can be used to limit the rate in the Tx direction: directly discarding the packets, or buffering the packets until di ,tx is greater than 0.
  • step S431 includes but is not limited to step S4313.
  • Step S4313 Send a trigger frame including the target minimum contention window parameter and the target maximum contention window parameter to the terminal, so that the terminal sends subsequent transmission information according to the target minimum contention window parameter and the target maximum contention window parameter.
  • the AP since the uplink cannot directly use the terminal to request data packets for rate limiting, when the transmission information is uplink transmission information, the AP will send the target minimum contention window parameters and the target maximum contention to the terminal.
  • the trigger frame of the window parameters enables the terminal to send subsequent transmission information according to the target minimum competition window parameters and the target maximum competition window parameters to achieve rate-limiting scheduling processing of transmission information.
  • the values of the target minimum competition window parameter and the target maximum competition window parameter are both maximum. It is worth noting that the values of the target minimum contention window parameter and the target maximum contention window parameter are set to the maximum, so that the corresponding terminal cannot seize the air interface and is therefore actively speed-limited.
  • the Rx direction cannot directly require the terminal to limit the rate of data packets, so it is necessary to use the Multi-User Enhanced Distribution Channel Access (MUEDCA) mechanism stipulated in the 802.11 protocol to indirectly Requires the terminal to lose packets.
  • MUEDCA Multi-User Enhanced Distribution Channel Access
  • the Enhanced Distribution Channel Access (EDCA) mechanism defines how APs and users access wireless channels. It requires that when the air interface is idle and the terminal is about to send a data message, it must wait for a period of time before sending it. The EDCA mechanism reduces the probability of collisions between terminals.
  • EDCA defines 4 sending queues, each queue has 4 parameters, namely: CWmin is the minimum competition window, the smaller the CWmin, the higher the priority; CWmax is the maximum competition window, the smaller the CWmax has a higher priority; TXOP is the transmission opportunity, and the parameter value is TXOPlimit, which represents the longest time to occupy the channel; AIFS is the channel idle time that users in EDCA mode must wait to get a transmission opportunity.
  • CWmin and CWmax determine the waiting time of the terminal. Therefore, if CWmin and CWmax are set to a large value, the terminal cannot send messages.
  • the terminal's channel access uses a similar EDCA mechanism, but a new set of MUEDCA parameters sent by the AP is forced to be used. Therefore, the MUEDCA mechanism can be used to achieve packet loss in the RX direction.
  • AP requires all terminals to use the MUEDCA mechanism for Rx air interface competition; AP adds quality of service capability elements to the beacon frame but does not include MUEDCA parameters; after receiving the beacon frame, the terminal must send a message to the AP
  • the probe request frame determines the modified MUEDCA parameters; when the AP receives the probe request frame, it determines whether the terminal needs rate limiting based on the above traffic monitoring method. If necessary, the AP sends a trigger frame through the protocol specified Set new MUEDCA parameters, in which CWmin and CWmax are all configured to the maximum.
  • the rate-limited terminal cannot seize the air interface and is actively rate-limited; after receiving the probe request frame from the terminal that does not need to be rate-limited, the AP sends a set of original MUEDCA parameters through a trigger frame. The terminal's sending and receiving still proceeds normally. When the rate limit is lifted, the AP again modifies the MUEDCA parameters sent in the beacon frame and changes them to the default MUEDCA parameters for all terminals.
  • the scheduling device 700 includes: a memory 720, a processor 710, and a program stored in the memory 720 and capable of running on the processor 710. Computer program.
  • the processor 710 and the memory 720 may be connected through a bus or other means.
  • scheduling device 700 in this embodiment and the scheduling method in the above embodiments belong to the same inventive concept, so these embodiments have the same implementation principles and technical effects, which will not be described in detail here.
  • the non-transitory software programs and instructions required to implement the scheduling method of the above embodiment are stored in the memory 720.
  • the scheduling method in the above embodiment is executed, for example, the above described FIG. 2 is executed.
  • Method steps S331 to S334 in Figure 9 method steps S410 to S430 in Figure 9, method step S431 in Figure 10, method step S432 in Figure 11, method step S4311 in Figure 12, method step S4312 in Figure 13, Method step S4313 in Figure 14.
  • one embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor 710, for example, by the above-mentioned scheduling device.
  • the execution of a processor 710 in the 700 embodiment can cause the above-mentioned processor 710 to execute the scheduling method in the above embodiment, for example, execute the above-described method steps S100 to S400 in Figure 2, method steps S210 in Figure 3, Method steps S310 to S320 in Figure 4, method step S321 in Figure 5, method step S322 in Figure 6, method step S330 in Figure 7, method steps S331 to S334 in Figure 8, method steps in Figure 9 S410 to S430, method step S431 in Figure 10, method step S432 in Figure 11, method step S4311 in Figure 12, method step S4312 in Figure 13, and method step S4313 in Figure 14.
  • Embodiments of the present application include: obtaining transmission information corresponding to the terminal, where the transmission information includes at least one of uplink transmission information and downlink transmission information; then obtaining information characteristics according to the transmission information; and then determining the information transmission limit of the terminal according to the information characteristics. speed value; finally, the transmission information is scheduled according to the information transmission speed limit value.
  • the information transmission rate limit value can be determined according to the information characteristics corresponding to the terminal, and finally the transmission information is scheduled and processed according to the information transmission rate limit value, bringing a better user experience to the user.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and may include any information delivery media.

Abstract

本申请提供了一种调度方法及其装置、计算机可读存储介质。调度方法包括:获取与终端对应的传输信息,其中,传输信息包括上行传输信息和下行传输信息中的至少一种(S100);根据传输信息获取信息特征(S200);根据信息特征确定终端的信息传输限速值(S300);根据信息传输限速值对传输信息进行调度(S400)。

Description

调度方法及其装置、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202210706882.8、申请日为2022年6月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于信息处理技术领域,尤其涉及一种调度方法及其装置、计算机可读存储介质。
背景技术
在无线局域网(Wireless Local Area Network,WLAN)中,多个用户需要连接到接入点(Access Point,AP);当AP同时服务多个信号质量不同的用户的时候,多个用户需要采用抢占式的空口竞争策略来进行数据转发,低速率用户对空口进行频繁抢占就会导致高速率用户的吞吐量下降;为了解决这一问题,传统的空口公平算法会尽可能的保证各个用户具有相同的空口发送时间,特别是低速率用户的空口占用会被尽量地降低,使得高速率用户更多地抢占空口,以提升WLAN的整体多用户性能;然而,部分的低速率用户由于其速率较低,AP并未向其提供足够的发送窗口,导致设备断线或者丢包,使得用户具有不良好的使用体验。
发明内容
本申请实施例提供了一种调度方法及其装置、计算机可读存储介质。
第一方面,本申请实施例提供了一种调度方法,包括:获取与终端对应的传输信息,其中,所述传输信息包括上行传输信息和下行传输信息中的至少一种;根据所述传输信息获取信息特征;根据所述信息特征确定所述终端的信息传输限速值;根据所述信息传输限速值对所述传输信息进行调度。
第二方面,本申请实施例还提供了一种调度装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的调度方法。
第三方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的调度方法。
附图说明
图1是本申请一个实施例提供的用于执行调度方法的装置架构的示意图;
图2是本申请一个实施例提供的调度方法的流程图;
图3是本申请一个实施例提供的获取信息特征的流程图;
图4是本申请一个实施例提供的确定信息传输限速值的流程图;
图5是本申请一个实施例提供的确定信息传输限速值的具体流程图;
图6是本申请另一个实施例提供的确定信息传输限速值的具体流程图;
图7是本申请另一个实施例提供的确定信息传输限速值的具体流程图;
图8是本申请一个实施例提供的限速预测的流程图;
图9是本申请一个实施例提供的对传输信息进行调度的流程图;
图10是本申请一个实施例提供的对传输信息进行调度的具体流程图;
图11是本申请另一个实施例提供的对传输信息进行调度的具体流程图;
图12是本申请一个实施例提供的对传输信息进行限速调度的具体流程图;
图13是本申请另一个实施例提供的对传输信息进行限速调度的具体流程图;
图14是本申请另一个实施例提供的对传输信息进行限速调度的具体流程图;
图15是本申请一个实施例提供的调度装置的构造示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种调度方法及其装置、计算机可读存储介质,获取与终端对应的传输信息,其中,传输信息包括上行传输信息和下行传输信息中的至少一种;接着根据传输信息获取信息特征;接着根据信息特征确定终端的信息传输限速值;最后根据信息传输限速值对传输信息进行调度处理。根据本申请实施例提供的技术方案,可以根据终端对应的信息特征确定信息传输限速值,最后根据信息传输限速值对传输信息进行调度处理,给用户带来了更加良好的使用体验。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行调度方法的装置架构的示意图。在图1的示例中,该装置架构包括至少一个接入点(Access Point,AP)和若干个终端,其中,装置架构中的终端均与AP进行数据连接。AP为终端提供互联网接入,一个AP可以同时为一个或者多个终端进行服务。
在本申请的一些实施例中,接入点是指无线局域网(Wireless Local Area Network,WLAN)中的用户终端接入网络的设备,WLAN广泛设有AP,用户通过网卡接入WLAN的AP,就可以接入有线网络。其中,无线AP是使用无线设备用户进入有线网络的接入点,主要用于宽带家庭、大楼内部、校园内部、园区内部以及仓库、工厂等需要无线监控的地方,典型距离覆盖几十米至上百米,也有可以用于远距离传送,最远的可以达到30KM左右,主要技术为IEEE802.11系列。大多数无线AP还带有接入点客户端模式,可以和其它AP进行无线连接,延展网络的覆盖范围。其中,AP可以包括路由器和网关等能够供终端接入外部网络的具有数据转发功能的设备,此处不作限定。
在本申请的一些实施例中,终端可以为手机、电脑、物联网设备或者其他AP,手机可以 通过无线方式与AP连接,电脑和物联网设备可以通过无线或者有线方式与AP连接,此处不作限定。其中,物联网设备可以为冰箱、空调和洗衣机等家电设备,只需要使得这些家电设备具有网络连接功能就可以被认定为本申请实施例中的终端。
值得注意的是,AP与终端之间存在着下行链路和上行链路,在本申请实施例中,将AP向终端发送的数据认定为下行数据,将终端向AP发送的数据认定为上行数据。其中,AP与终端之间的通信基于但不限于IEEE802.11系列协议;值得注意的是,本申请的实施例的下行链路表示为Tx,上行链路表示为Rx。
值得注意的是,本申请实施例中的AP一般包含射频模块,物理链路层和媒体接入控制层。射频模块和物理链路层对终端传输的信号进行解调,并送入媒体接入控制层。媒体接入控制层则提取具体的报文数据,其中,报文数据即为设备向互联网发送的信息。
本申请实施例描述的装置架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着装置架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1中示出的装置架构并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述装置架构的结构,提出本申请的调度方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的调度方法的流程图。该包括但不限于有步骤S100、步骤S200、步骤S300和步骤S400。
步骤S100,获取与终端对应的传输信息,其中,传输信息包括上行传输信息和下行传输信息中的至少一种。
步骤S200,根据传输信息获取信息特征。
步骤S300,根据信息特征确定终端的信息传输限速值。
步骤S400,根据信息传输限速值对传输信息进行调度。
在本申请的实施例中,在调度的过程中,首先获取与终端对应的传输信息,其中,传输信息包括上行传输信息和下行传输信息中的至少一种;接着根据传输信息获取信息特征;接着根据信息特征确定终端的信息传输限速值;最后根据信息传输限速值对传输信息进行调度处理。根据本申请实施例提供的技术方案,可以根据终端对应的信息特征确定信息传输限速值,最后根据信息传输限速值对传输信息进行调度处理,给用户带来了更加良好的使用体验。
值得注意的是,该调度方法可以应用于AP,AP根据传输信息获取信息特征,其中,传输信息可以包括上行传输信息和下行传输信息中的至少一种;而本申请中的上行传输信息即为终端向AP发送的传输信息,本申请中的下行传输信息即为AP向终端发送的传输信息。
可以理解的是,根据传输信息获取得到的信息特征可以用于表征传输信息的特征,该特征可以用于对用户体验进行量化处理;接着根据信息特征确定终端的信息传输限速值,信息传输限速值可以对终端的信息传输速率进行建议,最后根据信息传输限速值和实际传输信息的情况而对传输信息进行调度处理,能够根据终端对应的传输信息的信息特征而对传输信息进行调度,给用户带来了良好的使用体验。在一些示例中,用户利用手机观看视频,AP就可以根据手机所传输的视频信息的信息特征,此处的信息特征具体可以为视频数据包传输的时延特征,为了使得用户观看视频的时候感觉不卡顿,因此视频数据包的传输时延必定要不大 于某一设定值,因此根据视频信息的信息特征而确定手机的信息传输限速值,使得手机与AP传输信息的过程可以根据上述确定的信息传输限速值而进行空口竞争实现数据调度,使得用户在观看视频的过程中都不会觉得卡顿,给用户使用带来了更加良好的体验。
值得注意的是,本申请的空口公平方法不依赖于通信系统的参数,比如丢包率等,进行用户限速的计算。本申请提出对用户体验进行量化,根据信息传输限速值调整用户的上下行限速,最终实现用户体验最优的空口公平方法。
如图3所示,传输信息包括多个数据报文,上述步骤S200包括但不限于有步骤S210。
步骤S210,根据多个数据报文获取数据报文的大小信息和时间信息,得到信息特征。
本申请一实施例中,为了从传输信息中获取信息特征,只需要根据多个数据报文获取数据报文的大小信息和时间信息,进而就可以得到信息特征。
本申请一实施例中,数据报文的大小信息可以包括最大报文、最小报文、平均报文大小和报文大小的方差,其中,最大报文、最小报文和平均报文大小的单位是字节;时间信息可以包括最大报文交换时间、最小报文交换时间、平均报文交换时间和报文交换时间的方差,其中,最大报文交换时间、最小报文交换时间和平均报文交换时间的单位是毫秒。其中,数据报文的大小信息还可以包括下行总报文大小和上行总报文大小,单位也是字节。可以理解的是,最大报文交换时间和报文交换时间的方差决定了用户的体验,总报文大小决定了当前用户的数据流量。
在一些示例中,WLAN中的用户体验主要为业务是否流畅或者业务下载上传速度是否足够快。量化业务流畅度的指标主要为该业务数据流两个相邻报文之间的时间。其中,平均时间大,用户会体验到业务有延迟。而一段时间内的最大时间较大,用户会体验到业务有卡顿。因此,为了量化用户体验,用户分析模块对于发送和接收的每一个报文增加时间戳。对于每一个数据流进行统计,收集用户一段时间之内(T)的数据流特征。其中,数据流特征可以为:最大报文、最小报文和平均报文大小(pmax,pmin,pavr),单位是字节。报文大小的方差最大报文交换时间、最小报文交换时间和平均报文交换时间(tmax,tmin,tavr),单位是毫秒。报文交换时间的方差下行总报文大小ptx,total和上行总报文大小prx,total,单位是字节;数据流特征的收集时间是1秒种。
如图4所示,上述步骤S300包括但不限于有步骤S310和步骤S320。
步骤S310,将当前时刻的信息特征和上一时刻的信息特征进行比较,得到第一比较结果。
步骤S320,根据第一比较结果确定终端的信息传输限速值。
本申请一实施例中,在进行动态限速分析的过程中,可以将当前时刻的信息特征和上一时刻的信息特征进行比较,从而得到第一比较结果;接着就可以根据第一比较结果确定终端的信息传输限速值。
可以理解的是,将当前时刻的信息特征和上一时刻的信息特征进行比较,就可以得到第一比较结果,接着根据上述得到的第一比较结果确定得到终端的信息传输限速值。
如图5所示,传输信息对应有预设的限速初始值,上述步骤S320包括但不限于有步骤S321。
步骤S321,当第一比较结果为当前时刻的信息特征优于上一时刻的信息特征,将限速初始值累减预设的限速步进值,得到终端的信息传输限速值。
本申请一实施例中,当第一比较结果为当前时刻的信息特征优于上一时刻的信息特征, 就会将限速初始值累减预设的限速步进值,从而得到终端的信息传输限速值;可以理解的是,当第一比较结果是当前时刻的信息特征优于上一时刻的信息特征,代表着当前时刻的信息传输的速率优于上一时刻,就可以将预设的限速初始值减去限速步进值,对预设的限速初始值进行调低处理,以使得信息传输限速值可以更好地适应当前的空口竞争方法。
如图6所示,传输信息对应有预设的限速初始值,上述步骤S320包括但不限于有步骤S322。
步骤S322,当第一比较结果为当前时刻的信息特征劣于上一时刻的信息特征,将限速初始值累加预设的限速步进值,得到终端的信息传输限速值。
本申请一实施例中,当第一比较结果为当前时刻的信息特征劣于上一时刻的信息特征,就会将限速初始值累加预设的限速步进值,从而得到终端的信息传输限速值;可以理解的是,当第一比较结果是当前时刻的信息特征劣于上一时刻的信息特征,代表着当前时刻的信息传输的速率劣于上一时刻,就可以将预设的限速初始值增加限速步进值,对预设的限速初始值进行调高处理,以使得信息传输限速值可以更好地适应当前的空口竞争方法。
值得注意的是,现有的空口公平算法根据通信指标,比如丢包率和用户速率等,确定用户的限速值。这种方法并不能直接的改善用户的体验。本申请提出了一种基于用户体验的动态限速分析方法。其原理为,对于第i个用户的上行下行分别设定限速值li,tx和lo,rx;通过用户分析模块获取用户体验的量化指标;如果用户体验的量化指标恶化,则提升相应的限速值。反之则降低限速值;不断重复上述步骤直到用户体验稳定。
在一些示例中,设定限速值li,tx和li,rx为一个整数,单位为Mbps。定义Stx和Srx为限速步进参数。定义s为用户量化参数,定义s′为上一个时刻的用户量化参数,其中,用户量化参数即为信息特征;由于用户量化参数有多个,所以s和s′为向量,则如果‖s‖-||s′||>0,则li,tx=li,tx+Stx;反之li,tx=li,tx-Stx。值得注意的是,上行链路Rx方向上的实施方法同理。
如图7所示,上述步骤S300包括但不限于有步骤S330。
步骤S330,将信息特征输入至限速预测模型进行限速预测,得到终端的信息传输限速值。
本申请一实施例中,将信息特征输入到限速预测模型中进行限速预测就可以得到终端的信息传输限速值。其中,限速预测模型可以为强化学习模型。
值得注意的是,强化学习主要由智能体、环境、状态、动作、奖励组成;智能体执行了某个动作后,环境将会转换到一个新的状态,对于该新的状态环境会给出奖励信号(正奖励或者负奖励);随后,智能体根据新的状态和环境反馈的奖励,按照一定的策略执行新的动作;上述过程为智能体和环境通过状态、动作、奖励进行交互的方式。
如图8所示,上述步骤S330包括但不限于有步骤S331、步骤S332、步骤S333和步骤S334。
步骤S331,根据当前时刻的信息特征计算代价参数。
步骤S332,根据当前时刻的信息特征、上一时刻的信息特征和代价参数计算得到损失参数。
步骤S333,根据损失参数对限速预测模型进行更新。
步骤S334,将当前时刻的信息特征输入至更新后的限速预测模型进行限速预测。
本申请一实施例中,在利用限速预测模型进行限速预测的过程中,首先根据当前时刻的 信息特征计算代价参数;接着根据当前时刻的信息特征、上一时刻的信息特征和代价参数计算得到损失参数;接着根据损失参数对限速预测模型进行更新处理;最后将当前时刻的信息特征输入到更新后的限速预测模型进行限速预测就可以得到终端的信息传输限速值。
在一些示例中,限速预测模型为强化学习模型,强化学习模型采用在线深度强化学习网络(Deep Q Learning,DQN)计算最优的信息传输限速值。第i个Tx方向的强化学习模型在第一次开机后随机初始化一个卷积神经网络Qi,tx(s|θ)。卷积神经网络Qi,tx(s|θ)的输入s是上述实施例中的信息特征。卷积神经网络的输出是一个0-4095的整数,代表着该用户最优的限速值,以Mbps为单位;定义Di,tx为输出结果。参数θ是卷积神经网络Qi,tx(s|θ)的超参数,它在在线训练过程中不断地迭代。强化学习模块在每次接收到信息特征时,触发一次神经网络的优化。设定损失参数为
Li,tx(θ)=E((rtx+max(Qi,tx(s))-Qi,tx(s|θ))2)
其中,s′是上一次神经网络优化时的输入,θ‘是上一次迭代的超参数,rtx是代价。代价函数表示当前的操作对于用户体验的影响。当rtx>0代表最近用户体验良好,反之代表用户体验较差。对于每一个用户,代价的计算如下所示:
其中,tavr为平均时延,tmax为最大时延抖动,w1表示平均时延权重,w2表示最大时延抖动权重,ptx,total表示下行总报文大小,T表示采样时间;当平均时延高于50毫秒,且最大时延抖动超过100毫秒,则表示当前的参数配置是用户体验较差的,其代价为负。并且当该用户的总吞吐量不高于10M字节,可以认为用户目前没有在进行重负荷应用,此时代价都为0。在计算得出代价之后,采用设定的梯度下降的算法对于强化学习模型进行参数更新处理;值得注意的是,Rx方向的强化学习模型是相同的,将下标tx替换为rx即可。
如图9所示,传输信息包括多个数据报文,上述步骤S400包括但不限于有步骤S410、步骤S420和步骤S430。
步骤S410,每间隔预设时间,根据信息传输限速值更新预设的限速触发参数。
步骤S420,当每次获取到传输信息中的数据报文,将当前的限速触发参数和预设阈值进行比较,得到第二比较结果。
步骤S430,根据第二比较结果和信息传输限速值对传输信息进行调度。
本申请一实施例中,对传输信息进行调度的过程中,每间隔预设时间,根据信息传输限速值更新预设的限速触发参数;接着当每次获取到传输信息中的数据报文,将当前的限速触发参数和预设阈值进行比较,得到第二比较结果;最后根据第二比较结果和信息传输限速值对传输信息进行调度。
值得注意的是,在对传输信息进行限速之前还需要进行判定处理,本申请中的判定条件为将当前的限速触发参数和预设阈值进行比较,就可以得到第二比较结果,最后根据第二比较结果和信息传输限速值对传输信息进行调度处理。
如图10所示,上述步骤S430包括但不限于有步骤S431。
步骤S431,当第二比较结果为当前的限速触发参数小于或等于预设阈值,根据信息传输限速值对传输信息进行限速调度。
本申请一实施例中,在第二比较结果为当前的限速触发参数小于或等于预设阈值的情况下,就会认定传输信息需要进行限速调度处理,然后根据信息传输限速值对传输信息进行限速调度处理。
如图11所示,上述步骤S430包括但不限于有步骤S432。
步骤S432,当第二比较结果为当前的限速触发参数大于所述预设阈值,不对传输信息进 行限速调度,并将当前的限速触发参数减去数据报文的报文大小。
本申请一实施例中,在第二比较结果为当前的限速触发参数大于预设阈值的情况下,就会认定传输信息不需要进行限速调度处理,按照原来的数据传输速率对传输信息进行调度处理,并且将当前的限速触发参数减去数据报文的报文大小,为了后续的限速判断做好准备。
如图12所示,当传输信息为下行传输信息,上述步骤S431包括但不限于有步骤S4311。
步骤S4311,丢弃当前的数据报文。
本申请一实施例中,当传输信息为下行传输信息,在对传输信息进行限速调度的过程中,可以丢弃当前的数据报文,从而限速调度处理,进而不会影响到其他终端占用空口进行信息传输处理,提高AP的整体服务性能。
如图13所示,当传输信息为下行传输信息,上述步骤S431包括但不限于有步骤S4312。
步骤S4312,缓存当前的数据报文,直到限速触发参数大于预设阈值。
本申请一实施例中,当传输信息为下行传输信息,在对传输信息进行限速调度的过程中,可以缓存当前的数据报文,直到限速触发参数大于预设阈值的情况下再进行数据报文的传输,使得终端在限速调度的过程中不会影响到其他终端占用空口进行信息传输处理,也可以提高AP的整体服务性能。
在一些示例中,对终端的下行或者上行链路TX(RX)进行限速的过程中都会维护一个变量di,tx(di,rx),其初始值为0。每隔TF的时间,向di,tx(di,rx)增加Di,txTF(Di,rxTF)。每当发送或者接收一个报文之后,判断当前di,tx(di,rx)是否小于0;如果小于0,则触发Tx和Rx限速。如果大于0,则从di,tx(di,rx)中减去报文的大小。流量监控触发限速后,Tx方向的限速可以采用两种方法进行:直接对于报文进行丢弃,或者缓存报文,直到di,tx大于0。
如图14所示,当传输信息为上行传输信息,上述步骤S431包括但不限于有步骤S4313。
步骤S4313,向终端发送包括目标最小竞争窗口参数和目标最大竞争窗口参数的触发帧,使得终端根据目标最小竞争窗口参数和目标最大竞争窗口参数发送后续的传输信息。
本申请一实施例中,由于上行链路无法直接利用终端要求数据报文进行限速,因此当传输信息为上行传输信息的时候,AP就会向终端发送包括目标最小竞争窗口参数和目标最大竞争窗口参数的触发帧,使得终端根据目标最小竞争窗口参数和目标最大竞争窗口参数发送后续的传输信息,以实现传输信息的限速调度处理。
其中,目标最小竞争窗口参数和目标最大竞争窗口参数的取值均为最大。值得注意的是,令目标最小竞争窗口参数和目标最大竞争窗口参数的取值均为最大,使得相应终端无法抢占空口,从而被主动限速。
在一些示例中,而Rx方向无法直接要求终端对于数据报文进行限速,所以需要利用802.11协议规定的多用户的增强的分布式信道访问(Multi-User Enhanced Distribution Channel Access,MUEDCA)机制,间接的要求终端丢包。增强的分布式信道访问(Enhanced Distribution Channel Access,EDCA)机制定义了AP和用户的访问无线信道的方式。它要求当空口空闲时并且终端即将发送数据报文时,进行一段时间的等待,才能进行发送。EDCA机制降低了各个终端之间碰撞的概率。具体的说,EDCA定义了4个发送队列,每个队列有4个参数,分别是:CWmin即为最小竞争窗口,越小的CWmin其优先级越高;CWmax即为最大竞争窗口,越小的CWmax其优先级越高;TXOP即为传输机会,参数值为TXOPlimit,代表占用信道最长时间;AIFS即为EDCA模式的用户要获得传输机会时,必须等待的信道空闲时间。
其中,CWmin和CWmax决定了终端等待的时间。因此,如果将CWmin和CWmax设的很大,则该终端无法发送报文。在本申请实施例中,终端的信道接入采用类似的EDCA机制,但是强制采用AP发送的一组新的MUEDCA参数,因此,可以使用MUEDCA机制,来实现RX方向的丢包,具体的说,采用如下的方法进行:AP要求所有终端采用MUEDCA机制进行Rx的空口竞争;AP在信标帧中添加服务质量能力要素但是不包含MUEDCA参数;终端接收到这个信标帧之后,必须要向AP发出探查请求帧确定修正后的MUEDCA参数;当AP接收到探查请求帧之后,根据上述的流量监控方法判断终端是否需要限速。如果需要,则AP通过协议规定的触发帧发送一 组新的MUEDCA参数,其中的CWmin和CWmax全部配置为最大。此时,被限速终端无法抢占空口,被主动限速;当接收到不需要被限速的终端的探查请求帧之后,AP通过触发帧发送一组原有的MUEDCA参数。该终端的收发仍然正常进行。当限速解除后,AP再次修改信标帧中发送的MUEDCA参数,并且为所有的终端修改为默认的MUEDCA参数。
另外,如图15所示,本申请的一个实施例还提供了一种调度装置700,该调度装置700包括:存储器720、处理器710及存储在存储器720上并可在处理器710上运行的计算机程序。
处理器710和存储器720可以通过总线或者其他方式连接。
需要说明的是,本实施例中的调度装置700和上述实施例中的调度方法属于相同的发明构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的调度方法所需的非暂态软件程序以及指令存储在存储器720中,当被处理器710执行时,执行上述实施例中的调度方法,例如,执行以上描述的图2中的方法步骤S100至S400、图3中的方法步骤S210、图4中的方法步骤S310至S320、图5中的方法步骤S321、图6中的方法步骤S322、图7中的方法步骤S330、图8中的方法步骤S331至S334、图9中的方法步骤S410至S430、图10中的方法步骤S431、图11中的方法步骤S432、图12中的方法步骤S4311、图13中的方法步骤S4312、图14中的方法步骤S4313。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器710执行,例如,被上述调度装置700实施例中的一个处理器710执行,可使得上述处理器710执行上述实施例中的调度方法,例如,执行以上描述的图2中的方法步骤S100至S400、图3中的方法步骤S210、图4中的方法步骤S310至S320、图5中的方法步骤S321、图6中的方法步骤S322、图7中的方法步骤S330、图8中的方法步骤S331至S334、图9中的方法步骤S410至S430、图10中的方法步骤S431、图11中的方法步骤S432、图12中的方法步骤S4311、图13中的方法步骤S4312、图14中的方法步骤S4313。
本申请实施例包括:获取与终端对应的传输信息,其中,传输信息包括上行传输信息和下行传输信息中的至少一种;接着根据传输信息获取信息特征;接着根据信息特征确定终端的信息传输限速值;最后根据信息传输限速值对传输信息进行调度处理。根据本申请实施例提供的技术方案,可以根据终端对应的信息特征确定信息传输限速值,最后根据信息传输限速值对传输信息进行调度处理,给用户带来了更加良好的使用体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员 公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (14)

  1. 一种调度方法,包括:
    获取与终端对应的传输信息,其中,所述传输信息包括上行传输信息和下行传输信息中的至少一种;
    根据所述传输信息获取信息特征;
    根据所述信息特征确定所述终端的信息传输限速值;
    根据所述信息传输限速值对所述传输信息进行调度。
  2. 根据权利要求1所述的调度方法,其中,所述传输信息包括多个数据报文,所述根据所述传输信息获取信息特征,包括:
    根据多个所述数据报文获取所述数据报文的大小信息和时间信息,得到信息特征。
  3. 根据权利要求1所述的调度方法,其中,所述根据所述信息特征确定所述终端的信息传输限速值,包括:
    将当前时刻的所述信息特征和上一时刻的所述信息特征进行比较,得到第一比较结果;
    根据所述第一比较结果确定所述终端的信息传输限速值。
  4. 根据权利要求3所述的调度方法,其中,所述传输信息对应有预设的限速初始值,所述根据所述第一比较结果确定所述终端的信息传输限速值,包括:
    当所述第一比较结果为当前时刻的所述信息特征优于上一时刻的所述信息特征,将所述限速初始值累减预设的限速步进值,得到所述终端的信息传输限速值。
  5. 根据权利要求3所述的调度方法,其中,所述传输信息对应有预设的限速初始值,所述根据所述第一比较结果确定所述终端的信息传输限速值,包括:
    当所述第一比较结果为当前时刻的所述信息特征劣于上一时刻的所述信息特征,将所述限速初始值累加预设的限速步进值,得到所述终端的信息传输限速值。
  6. 根据权利要求1所述的调度方法,其中,所述根据所述信息特征确定所述终端的信息传输限速值,包括:
    将所述信息特征输入至限速预测模型进行限速预测,得到所述终端的信息传输限速值。
  7. 根据权利要求6所述的调度方法,其中,所述将所述信息特征输入至限速预测模型进行限速预测,包括:
    根据当前时刻的所述信息特征计算代价参数;
    根据当前时刻的所述信息特征、上一时刻的所述信息特征和所述代价参数计算得到损失参数;
    根据所述损失参数对限速预测模型进行更新;
    将当前时刻的所述信息特征输入至更新后的所述限速预测模型进行限速预测。
  8. 根据权利要求1所述的调度方法,其中,所述传输信息包括多个数据报文,所述根据所述信息传输限速值对所述传输信息进行调度,包括:
    每间隔预设时间,根据所述信息传输限速值更新预设的限速触发参数;
    当每次获取到所述传输信息中的所述数据报文,将当前的所述限速触发参数和预设阈值进行比较,得到第二比较结果;
    根据所述第二比较结果和所述信息传输限速值对所述传输信息进行调度。
  9. 根据权利要求8所述的调度方法,其中,所述根据所述第二比较结果和所述信息传输限速值对所述传输信息进行调度,包括:
    当所述第二比较结果为当前的所述限速触发参数小于或等于所述预设阈值,根据所述信息传输限速值对所述传输信息进行限速调度;
    或者,
    当所述第二比较结果为当前的所述限速触发参数大于所述预设阈值,不对所述传输信息进行限速调度,并将当前的所述限速触发参数减去所述数据报文的报文大小。
  10. 根据权利要求9所述的调度方法,其中,当所述传输信息为下行传输信息,并且当根据所述信息传输限速值对所述传输信息进行限速调度,所述限速调度包括如下之一:
    丢弃当前的所述数据报文;
    缓存当前的所述数据报文,直到所述限速触发参数大于所述预设阈值。
  11. 根据权利要求9所述的调度方法,其中,当所述传输信息为上行传输信息,并且当根据所述信息传输限速值对所述传输信息进行限速调度,所述限速调度包括:
    向所述终端发送包括目标最小竞争窗口参数和目标最大竞争窗口参数的触发帧,使得所述终端根据所述目标最小竞争窗口参数和所述目标最大竞争窗口参数发送后续的所述传输信息。
  12. 根据权利要求11所述的调度方法,其中,所述目标最小竞争窗口参数和所述目标最大竞争窗口参数的取值均为最大。
  13. 一种调度装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至12任一项所述的调度方法。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行权利要求1至12任一项所述的调度方法。
PCT/CN2023/100235 2022-06-21 2023-06-14 调度方法及其装置、计算机可读存储介质 WO2023246596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210706882.8 2022-06-21
CN202210706882.8A CN117336795A (zh) 2022-06-21 2022-06-21 调度方法及其装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023246596A1 true WO2023246596A1 (zh) 2023-12-28

Family

ID=89290678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100235 WO2023246596A1 (zh) 2022-06-21 2023-06-14 调度方法及其装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117336795A (zh)
WO (1) WO2023246596A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110815A (zh) * 2006-07-17 2008-01-23 中兴通讯股份有限公司 一种无线局域网多速率自适应传输的方法
CN102111807A (zh) * 2009-12-23 2011-06-29 北京中电华大电子设计有限责任公司 一种用于wlan系统中的发送速率自动调节方法
CN102710368A (zh) * 2012-05-09 2012-10-03 中兴通讯股份有限公司 一种调整报文最大限定发送速率的方法和系统
WO2018165924A1 (zh) * 2017-03-15 2018-09-20 华为技术有限公司 自适应传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110815A (zh) * 2006-07-17 2008-01-23 中兴通讯股份有限公司 一种无线局域网多速率自适应传输的方法
CN102111807A (zh) * 2009-12-23 2011-06-29 北京中电华大电子设计有限责任公司 一种用于wlan系统中的发送速率自动调节方法
CN102710368A (zh) * 2012-05-09 2012-10-03 中兴通讯股份有限公司 一种调整报文最大限定发送速率的方法和系统
WO2018165924A1 (zh) * 2017-03-15 2018-09-20 华为技术有限公司 自适应传输方法和装置

Also Published As

Publication number Publication date
CN117336795A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US9560548B2 (en) Dynamic adjustment of a wireless network media access control parameter
TWI248731B (en) Adaptive radio resource management for wireless local area networks
KR100995189B1 (ko) 무선 네트워크에서의 서비스 품질 차별화 방법 및 무선장치
US9125086B2 (en) Wireless LAN communication device, wireless LAN communication method and program
US8755281B2 (en) Constant window back-off method for multiple access in wireless local area networks
KR100795325B1 (ko) Wlan에서 적응형 폴링을 위한 시스템 및 방법
US11425592B2 (en) Packet latency reduction in mobile radio access networks
WO2022142573A1 (zh) 一种信道接入方法和装置
Clifford et al. On improving voice capacity in 802.11 infrastructure networks
Lee Throughput analysis model for IEEE 802.11 e EDCA with multiple access categories
Syed et al. Delay analysis of IEEE 802.11 e EDCA with enhanced QoS for delay sensitive applications
US11582772B2 (en) Advanced dual band virtual concurrent for WiFi
WO2023246596A1 (zh) 调度方法及其装置、计算机可读存储介质
CN103987136A (zh) 一种用于有线网络和无线网络交互的智能网关
Bensaou et al. A measurement-assisted, model-based admission control algorithm for IEEE 802.11 e
Wang et al. A deep learning assisted approach for minimizing the age of information in a WiFi network
Huang et al. A hierarchical deep learning approach for optimizing CCA threshold and transmit power in WiFi networks
CN105873126B (zh) 一种基于被动侦听和数据帧调度的无线多跳网络拥塞控制方法
WO2024021860A1 (zh) 数据传输方法及其装置、存储介质、程序产品
Murthy et al. Priority station based queuing approach to improve quality of service in ieee 802.11 e edcf
US20230108095A1 (en) Advanced dual band virtual concurrent for wifi
CN110113822B (zh) 面向未来无线通信的异构网络融合接入方法
Nardelli et al. Robust CSMA: Adapting to channel and traffic asymmetry
Feng et al. Optimal Contention Window Adjustment for Asymmetry Traffic in Erroneous Channels over IEEE802. 11 WLANs
Agrawal et al. Analytical modeling of saturation throughput in power save mode of an IEEE 802.11 infrastructure WLAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826245

Country of ref document: EP

Kind code of ref document: A1