WO2023246484A1 - 电机控制方法、装置及车辆 - Google Patents

电机控制方法、装置及车辆 Download PDF

Info

Publication number
WO2023246484A1
WO2023246484A1 PCT/CN2023/098260 CN2023098260W WO2023246484A1 WO 2023246484 A1 WO2023246484 A1 WO 2023246484A1 CN 2023098260 W CN2023098260 W CN 2023098260W WO 2023246484 A1 WO2023246484 A1 WO 2023246484A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
cycle
duty cycle
current
previous
Prior art date
Application number
PCT/CN2023/098260
Other languages
English (en)
French (fr)
Inventor
赵慧超
李伟亮
李芝炳
刘亚川
李帅
冉再庆
徐泽绪
刘静东
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023246484A1 publication Critical patent/WO2023246484A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of motor control technology, for example, to a motor control method, device and vehicle.
  • IGBT insulated gate bipolar transistor
  • CPLD Complex Programmable Logic Device
  • the Digital Signal Processor (DSP) software forces the Pulse Width Modulation (PWM) module to output 100% or 0% when the duty cycle is less than or greater than the duty cycle corresponding to the minimum pulse width.
  • Duty cycle when the duty cycle is 100% or 0%, the output pulse width is half of the maximum pulse width of the two pulses in the preceding and following cycles, and the output pulse width is still less than the minimum pulse width recommended by the manufacturer;
  • DSP software control is required to filter out twice The duty cycle value corresponding to the minimum pulse width filters out large pulse widths, which affects the inverter performance; and Texas Instruments (TI) C2000 series digital signal processor cannot output 100% or 0% duty cycle impact Implementation of software control.
  • TI Texas Instruments
  • This application provides a motor control method, device and vehicle.
  • a motor control method which method includes:
  • pulse width modulation signal waveform of two consecutive periods narrow pulses in the pulse width modulation signal are filtered out.
  • a motor device includes: an acquisition module configured to acquire the torque command obtained on the communication bus;
  • a voltage vector command determination module configured to determine the voltage vector command according to the torque command and the three-phase current of the motor
  • a waveform determination module configured to determine the pulse width modulation signal waveform according to the voltage vector instruction
  • a processing module configured to filter out narrow pulses in the pulse width modulation signal according to the pulse width modulation signal waveforms of two consecutive periods.
  • a vehicle which vehicle is equipped with the above-mentioned motor device.
  • Figure 1 is a schematic structural diagram of a vehicle motor system provided in Embodiment 1 of the present application.
  • Figure 2 is a flow chart of a motor control method provided in Embodiment 1 of the present application.
  • Figure 3 is a schematic diagram of a three-phase bridge circuit provided in Embodiment 2 of the present application.
  • Figure 4 is a flow chart of a motor control method provided in Embodiment 2 of the present application.
  • Figures 5A-5E are pulse width modulation command interval diagrams provided in Embodiment 2 of the present application.
  • Figures 6A-6H are schematic diagrams comparing before and after narrow pulse suppression in the pulse width modulation signal provided by Embodiment 2 of the present application;
  • FIG. 7 is a schematic structural diagram of a motor device provided in Embodiment 3 of the present application.
  • Embodiment 1 of the present application provides a motor control method, which can be executed by a motor device, and the motor device can be installed in a vehicle.
  • FIG. 1 is a schematic structural diagram of a vehicle motor system provided in Embodiment 1 of the present application.
  • the vehicle motor control system includes the following parts: motor controller 1, motor under test equipped with a resolver 2 (resolver) as a position sensor 3, high-voltage power supply 4, low-voltage power supply 5. Controller Area Network (CAN) control instructions 6, ignition (Ignition, IG) signals, etc. 7. Among them, the motor controller is composed of a control board, a drive board and an IGBT, which is connected to all other parts; the high-voltage power supply 4 provides high-voltage power supply for the entire system and is used to control the rotation of the motor 3 under test; the low-voltage control power supply 5 is the motor controller 1.
  • CAN Controller Area Network
  • IG ignition
  • the motor controller is composed of a control board, a drive board and an IGBT, which is connected to all other parts;
  • the high-voltage power supply 4 provides high-voltage power supply for the entire system and is used to control the rotation of the motor 3 under test;
  • the low-voltage control power supply 5 is the motor controller 1.
  • the internal control board supplies power, performs signal calculations, and provides corresponding drive signals;
  • CAN control command 6 refers to the CAN signal from other controllers in the vehicle.
  • this part can also refer to the CAN signal from the upper level.
  • the control instructions of the machine; IG signals, etc. 7 refer to all other signals required for the operation of other motor systems such as IG switch signals from the vehicle, airbag collision signals, etc.
  • Figure 2 is a flow chart of a motor control method provided in Embodiment 1 of the present application.
  • the motor control method provided by the embodiment of the present application includes the following steps:
  • the communication bus can be a CAN bus
  • the control board on the motor controller obtains the torque command signal on the CAN bus.
  • the three-phase current of the motor is obtained from actual measurements.
  • the motor controller works in the non-field weakening zone, At this time, the maximum torque per ampere (MTPA) control method is used.
  • MTPA maximum torque per ampere
  • the id and iq commands are obtained by looking up the table, and closed-loop control is performed respectively.
  • the control mode is switched from MTPA current control to voltage vector control.
  • the voltage vector command amplitude set by the inverter is the bus voltage/sqrt(3), and the phase angle of the voltage vector command is obtained according to the closed-loop control of the command torque and the actual torque.
  • the actual torque used in closed-loop control is calculated based on the motor's three-phase current, rotor position angle, and motor parameters.
  • control board calculates six pulse width modulation signal waveform signals according to the voltage vector instructions and transmits them to the driving board.
  • the driving board performs level conversion and necessary signal processing on the 6-channel pulse width modulation signal waveform signal output by the control board for two consecutive periods, and uses it to drive the IGBT, so that the output waveform of the IGBT is consistent with the output waveform of the control board.
  • the pulse width modulation signal waveform is consistent, thereby filtering out the narrow pulses in the pulse width modulation signal.
  • the width of a narrow pulse is less than or equal to 2 ⁇ s.
  • the torque command obtained on the communication bus is obtained; the voltage vector command is determined based on the torque command and the three-phase current of the motor; the pulse width modulation signal waveform is determined based on the voltage vector command; and the pulse width of two consecutive cycles is determined. Modulate the signal waveform and filter out the narrow pulses in the pulse width modulated signal. Without increasing the hardware cost, the narrow pulses in all periodic pulse width modulation signals are filtered out, which reduces the power loss of the motor drive system, avoids large surge voltage spikes and oscillations, and thereby increases the life of the motor.
  • FIG 3 is a schematic diagram of a three-phase bridge circuit provided in Embodiment 2 of the present application.
  • the three-phase bridge circuit is installed in the vehicle motor system in Embodiment 1, where A, B, and C represent three-phase power supplies, and VT represents a thyristor.
  • PMSM represents the motor and U d represents the voltage.
  • the three-phase bridge circuit includes an upper bridge arm and a lower bridge arm.
  • Figure 4 is a flow chart of a motor control method provided in Embodiment 2 of the present application. Based on the above embodiment, an exemplary pulse width modulation signal waveform based on two consecutive cycles is shown. Embodiment for filtering out narrow pulses in pulse width modulated signals.
  • the motor control method provided by the embodiment of the present application includes the following steps:
  • Figures 5A-5E are pulse width modulation command interval diagrams provided in Embodiment 2 of the present application, in which H and L respectively represent the high level and the low level. In one embodiment, H and L represent the first level and the second level respectively. Two levels.
  • Dt represents the first level duty cycle of the upper arm
  • Db represents the first level duty cycle of the lower arm
  • Dm represents the duty cycle command from the space vector pulse width modulation module
  • Dd represents the dead time
  • Dp Represents narrow pulse time.
  • the width of the dead time is 2 ⁇ s ⁇ 5 ⁇ s.
  • Pulse width modulation instructions can be understood as pulse width modulation signals.
  • Figures 6A-6H are schematic diagrams comparing before and after narrow pulse suppression in a pulse width modulated signal provided in Embodiment 2 of the present application, where H and L respectively represent the first level (high level) and the second level (low level). level).
  • the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the first interval or the previous week
  • the period duty cycle is in the first interval and the current cycle duty cycle is in the second interval or the previous cycle duty cycle is in the first interval and the current cycle duty cycle is in the third interval or the previous cycle duty cycle is in the second interval
  • the duty cycle of the current cycle is in the first interval, or the duty cycle of the previous cycle is in the second interval, and the duty cycle of the current cycle is in the second interval, or the duty cycle of the previous cycle is in the second interval, and the duty cycle of the current cycle is in the second interval.
  • Three intervals or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the first interval or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the second interval or the duty cycle of the previous cycle is in the second interval
  • the duty cycle is in the third interval and the duty cycle of the current cycle is in the third interval and Db1+Db2 ⁇ 2Dp or the duty cycle of the previous cycle is in the fifth interval and the duty cycle of the current cycle is in the fourth interval and 1-Dm2 ⁇ Dp or
  • Db1 represents the duty cycle of the first level of the lower arm in the previous cycle
  • Db2 represents the duty cycle of the first level of the lower arm in the current cycle
  • the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the fourth interval, or the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the fifth interval or above
  • the duty cycle of one cycle is in the second interval and the duty cycle of the current cycle is in the fourth interval or the duty cycle of the previous cycle is in the second interval and the duty cycle of the current cycle is in the fifth interval or the duty cycle of the previous cycle is in the third interval interval and the duty cycle of the current cycle is in the fourth interval and 1-Dm1-Dd1 ⁇ 2Dp or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the fifth interval and 1-Dm1-Dd1 ⁇ 2Dp or above
  • the duty cycle of one cycle is in the fourth interval and the duty cycle of the current cycle is in the fourth interval and 2-Dm1-Dm2 ⁇ Dp or the duty cycle of the previous cycle is in the fourth interval and the duty cycle of the current cycle is in the fifth interval and 1-D
  • Dm1 represents the duty cycle command of the previous cycle
  • Dm2 represents the duty cycle command of the current cycle
  • Dd1 represents the dead time of the previous cycle
  • Dd2 represents the dead time of the current cycle
  • the method when determining the voltage vector command according to the torque command and the three-phase current of the motor, the method further includes: performing data processing on the torque command.
  • data processing of the torque command includes but is not limited to debounce, slope limit and smooth switching between different control modes of the torque command.
  • the embodiment of the present application obtains the torque command obtained on the communication bus, determines the voltage vector command according to the torque command and the three-phase current of the motor, determines the pulse width modulation signal waveform according to the voltage vector command, and determines the pulse width modulation signal waveform according to the pulse width modulation signal of each cycle.
  • Waveform determine the first waveform corresponding to the upper arm and the second waveform corresponding to the lower arm. According to the first waveform and the second waveform, determine the interval where the pulse width modulation instruction is located. According to the pulse width modulation of the previous cycle and the current cycle The interval where the command is located and the preset duty cycle condition filter out the narrow pulses in the pulse width modulation signal.
  • Narrow pulses reduce the power loss of the motor drive system, avoid large surge voltage spikes and oscillations, and thereby increase the life of the motor.
  • FIG. 7 is a schematic structural diagram of a motor device provided in Embodiment 3 of the present application. As shown in Figure 7, the device 10 includes:
  • the acquisition module 11 is configured to acquire the torque command obtained on the communication bus
  • the voltage vector command determination module 12 is configured to determine the voltage vector command according to the torque command and the three-phase current of the motor
  • the waveform determination module 13 is configured to determine the pulse width modulation signal waveform according to the voltage vector instruction
  • the processing module 14 is configured to filter out the narrow pulses in the pulse width modulation signal according to the pulse width modulation signal waveforms of two consecutive periods.
  • the device further includes an interval determination module configured to determine the interval in which the pulse width modulation instruction is located based on the first waveform and the second waveform.
  • the pulse width modulation command is in the first interval
  • Dt represents the first level duty cycle of the upper arm
  • Db represents the first level duty cycle of the lower arm
  • Dm represents the duty cycle command from the space vector pulse width modulation module
  • Dd represents the dead time
  • Dp Represents narrow pulse time.
  • the processing module 14 may also be configured to filter out narrow pulses in the pulse width modulation signal according to the interval where the pulse width modulation instructions of the previous cycle and the current cycle are located and the preset duty cycle condition.
  • the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the first interval or the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the second interval or the duty cycle of the previous cycle ratio is in the first interval and the duty cycle of the current cycle is in the third interval or the duty cycle of the previous cycle is in the second interval and the duty cycle of the current cycle is in the first interval or the duty cycle of the previous cycle is in the second interval and the current cycle
  • the duty cycle is in the second interval or the duty cycle of the previous cycle is in the second interval and the duty cycle of the current cycle is in the third interval or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the first interval or
  • the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the second interval or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the third interval and Db1+Db2 ⁇ 2Dp or the previous Cycle duty
  • the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the fourth interval or the duty cycle of the previous cycle is in the first interval and the duty cycle of the current cycle is in the fifth interval or the duty cycle of the previous cycle is in The second interval and the duty cycle of the current cycle is in the fourth interval or the duty cycle of the previous cycle is in the second interval and the duty cycle of the current cycle is in the fifth interval or the duty cycle of the previous cycle is in the third interval and the current cycle is on duty
  • the ratio is in the fourth interval and 1-Dm1-Dd1 ⁇ 2Dp or the duty cycle of the previous cycle is in the third interval and the duty cycle of the current cycle is in the fifth interval and 1-Dm1-Dd1 ⁇ 2Dp or the duty cycle of the previous cycle is in When the fourth interval and the current cycle duty cycle is in the fourth interval and 2-Dm1-Dm2 ⁇ Dp or the previous cycle duty cycle is in the fourth interval and the current cycle duty cycle is in the fifth interval and 1-Dm1 ⁇ Dp, After adding
  • the duty cycle of the previous cycle is in the fourth interval and the duty cycle of the current cycle is in the first interval or the duty cycle of the previous cycle is in the fourth interval and the duty cycle of the current cycle is in the second interval or the duty cycle of the previous cycle is in The fourth interval and the duty cycle of the current cycle is in the third interval and 1-Dm2-Dd2 ⁇ 2Dp or the duty cycle of the previous cycle is in the fifth interval and the duty cycle of the current cycle is in the first interval or the duty cycle of the previous cycle is When the fifth interval and the duty cycle of the current cycle is in the second interval or the duty cycle of the previous cycle is in the fifth interval and the duty cycle of the current cycle is in the third interval and 1-Dm2-Dd2 ⁇ 2Dp, the upper value of the previous cycle is The turn-off time of the bridge arm is advanced by a dead time, and the upper bridge arm outputs the second level starting from the dead time.
  • the turn-off time of the upper arm of the previous cycle is delayed, and the upper arm continues to output the first level until the current period.
  • the turn-off time of the upper arm of the current cycle is advanced, and the upper arm continues to turn off since the end of the previous cycle. Output the first level.
  • the motor device provided by the embodiments of this application can execute the motor control method provided by any embodiment of this application, and has functional modules and beneficial effects corresponding to the execution method.
  • the fourth embodiment of the present application provides a vehicle.
  • the vehicle is equipped with the motor device of the third embodiment, which can execute the motor control method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects of the execution method.
  • Embodiments of the present application provide a motor control method, device and vehicle to avoid the situation where all periodic narrow pulses cannot be suppressed without increasing hardware costs during narrow pulse suppression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开了一种电机控制方法、装置及车辆。方法包括:获取通信总线上得到的扭矩指令;根据扭矩指令以及电机的三相电流,确定电压矢量指令;根据电压矢量指令,确定脉冲宽度调制信号波形;根据两个连续周期的脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。

Description

电机控制方法、装置及车辆
本申请要求在2022年06月23日提交中国专利局、申请号为202210719059.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机控制技术领域,例如涉及一种电机控制方法、装置和车辆。
背景技术
随着电动汽车行业的快速发展,逆变器技术的日益成熟,对电驱动系统效率以及能量密度的要求也越来越高。电驱动系统的逆变器主流采用绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)模块作为开关器件。IGBT的导通过程和关闭过程都需要一定的时间,为了保护IGBT防止上下桥臂直通,通常会增加死区时间。此外,持续时间过短的导通和关闭脉冲,不仅无法产生有效的开通或关断,产生额外的功率损耗,还会造成IGBT开关器件产生较大的浪涌电压尖峰和震荡,威胁IGBT可靠运行,降低IGBT寿命,甚至直接造成电器损坏。为了保护IGBT,增加器件寿命,一般会增加窄脉冲抑制功能。
滤除窄脉冲的方法主要有以下两种:
一、使用复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)抑制窄脉冲信号,需要使用较多的CPLD资源,如果CPLD资源容量不够,无法滤除小脉冲信号,需要更换大容量CPLD芯片,增加系统成本;
二、数字信号处理器(Digital Signal Processor,DSP)软件强制脉冲宽度调制(Pulse Width Modulation,PWM)模块在占空比小于或者大于最小脉宽对应的占空比时,输出100%或者0%占空比;当占空比为100%或者0%时,输出脉冲宽度为前后周期两个脉冲中最大脉冲宽度的一半,输出脉冲宽度仍小于厂家推荐最小脉冲宽度;需要DSP软件控制滤除两倍最小脉宽对应的占空比值,滤除脉冲宽度较大,影响逆变器性能;并且德州仪器(Texas Instruments,TI)公司C2000系列数字信号处理器无法输出100%或者0%的占空比影响软件控制的实现。
发明内容
本申请提供了一种电机控制方法、装置和车辆。
根据本申请的一方面,提供了一种电机控制方法,所述方法包括:
获取通信总线上得到的扭矩指令;
根据所述扭矩指令以及电机的三相电流,确定电压矢量指令;
根据所述电压矢量指令,确定脉冲宽度调制信号波形;
根据两个连续周期的所述脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
根据本申请的另一方面,提供了一种电机装置,所述电机装置包括:获取模块,设置为获取通信总线上得到的扭矩指令;
电压矢量指令确定模块,设置为根据所述扭矩指令以及电机的三相电流,确定电压矢量指令;
波形确定模块,设置为根据所述电压矢量指令,确定脉冲宽度调制信号波形;
处理模块,设置为根据两个连续周期的所述脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
根据本申请的另一方面,提供了一种车辆,所述车辆搭载有上述电机装置。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的一种车辆电机系统的结构示意图;
图2是本申请实施例一提供的一种电机控制方法的流程图;
图3是本申请实施例二提供的一种三相桥电路示意图;
图4是本申请实施例二提供的一种电机控制方法的流程图;
图5A-5E是本申请实施例二提供的脉冲宽度调制指令区间图;
图6A-6H是本申请实施例二提供的脉冲宽度调制信号中的窄脉冲抑制前后对比示意图;
图7是本申请实施例三提供的一种电机装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
本申请实施例一提供了一种电机控制方法,该方法可以由电机装置执行,该电机装置可设置于车辆中。
例如,图1是本申请实施例一提供的一种车辆电机系统的结构示意图。
如图1所示,该车辆电机控制系统包括以下几个部分:电机控制器1、装有旋变2(旋转变压器)作为位置传感器的被测电机3、高压供电电源4、低压供电电源5、控制器局域网(Controller Area Network,CAN)控制指令6、点火(Ignition,IG)信号等7。其中,电机控制器由控制板、驱动板和IGBT组成,它与其他所有部分相连;高压供电电源4为整个系统提供高压供电,用于控制被测电机3旋转;低压控制电源5为电机控制器1内部控制板供电,进行信号运算,并提供相应的驱动信号;CAN控制指令6是指来自整车其他控制器的CAN信号,当电机系统在测试台架上时,该部分也可以指来自上位机的控制指令;IG信号等7是指来自整车的IG开关信号、安全气囊碰撞信号等其他电机系统运行所需要的其他所有信号。
图2是本申请实施例一提供的一种电机控制方法的流程图。
结合图1和图2所示,本申请实施例提供的电机控制方法包括如下步骤:
S110、获取通信总线上得到的扭矩指令。
例如,通信总线可以是CAN总线,电机控制器上的控制板获取CAN总线上的扭矩指令信号。
S120、根据扭矩指令以及电机的三相电流,确定电压矢量指令。
例如,电机的三相电流由实际测量得到。当电机控制器工作在非弱磁区时, 此时采用最大转矩电流比(maximum torque per ampere,MTPA)控制方式,根据扭矩指令通过查表的方式得到id和iq指令,并分别进行闭环控制。随着电机转速的升高或扭矩指令的增大或母线电压的降低,电机的工作点会逐渐向弱磁区靠近,当计算得到的电压矢量与母线电压/sqrt(3)的差值小于一定值时(如5V,不同系统根据试验效果进行选取),控制模式由MTPA电流控制切换为电压矢量控制。当处于电压矢量控制模式时,逆变器设定的电压矢量指令幅值为母线电压/sqrt(3),电压矢量指令的相角根据指令扭矩与实际扭矩的闭环控制得到。闭环控制所用的实际扭矩根据电机三相电流、转子位置角以及电机参数等信息计算得到。
S130、根据电压矢量指令,确定脉冲宽度调制信号波形。
例如,控制板根据电压矢量指令,通过计算得到6路脉冲宽度调制信号波形信号,并传输给驱动板。
S140、根据两个连续周期的脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
例如,驱动板根据IGBT特性,将控制板输出连续两个周期的6路脉冲宽度调制信号波形信号进行电平转换和必要的信号处理,用于驱动IGBT,使IGBT的输出波形与控制板输出的脉冲宽度调制信号波形一致,从而滤除脉冲宽度调制信号中的窄脉冲。
例如,窄脉冲的宽度小于或等于2μs。
本申请实施例,通过获取通信总线上得到的扭矩指令;根据扭矩指令以及电机的三相电流,确定电压矢量指令;根据电压矢量指令,确定脉冲宽度调制信号波形;根据两个连续周期的脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。在不增加硬件成本的基础上,滤除了所有周期脉冲宽度调制信号中的窄脉冲,减少了电机驱动系统的功率损耗,避免产生较大的浪涌电压尖峰和震荡,进而增加了电机寿命。
实施例二
图3是本申请实施例二提供的一种三相桥电路示意图,该三相桥电路设置于实施例一中的车辆电机系统中,其中A、B、C表示三相电源,VT表示晶闸管,PMSM表示电机,Ud表示电压。如图3所示,该三相桥电路包括上桥臂和下桥臂。
图4是本申请实施例二提供的一种电机控制方法的流程图,在上述实施例的基础上,示例性地示出了一种根据两个连续周期的脉冲宽度调制信号波形, 滤除脉冲宽度调制信号中的窄脉冲的实施方式。
结合图3和图4所示,本申请实施例提供的电机控制方法包括如下步骤:
S210、获取通信总线上得到的扭矩指令。
S220、根据扭矩指令以及电机的三相电流,确定电压矢量指令。
S230、根据电压矢量指令,确定脉冲宽度调制信号波形。
S241、根据每个周期的脉冲宽度调制信号波形,确定上桥臂对应的第一波形和下桥臂对应的第二波形。
S242、根据第一波形和第二波形,确定脉冲宽度调制指令所在的区间。
例如,图5A-5E是本申请实施例二提供的脉冲宽度调制指令区间图,其中H、L分别表示高电平和低电平,在一实施例中,H、L分别表示第一电平和第二电平。
如图5A所示,当0≤Dm<0.5Dp时,Dt=0,Db=1,脉冲宽度调制指令处于第一区间;
如图5B所示,当0.5Dp≤Dm<Dd时,Dt=0,Db=1-2Dm,脉冲宽度调制指令处于第二区间;
如图5C所示,当Dd≤Dm<1-Dd时,Dt=Dm-Dd,Db=1-Dm-Dd,脉冲宽度调制指令处于第三区间;
如图5D所示,当1-Dd≤Dm<1时,Dt=2Dm-1,Db=0,脉冲宽度调制指令处于第四区间;
如图5E所示,当Dm=1时,Dt=1,Db=0,脉冲宽度调制指令处于第五区间;
其中,Dt表示上桥臂第一电平占空比,Db表示下桥臂第一电平占空比,Dm表示来自空间矢量脉宽调制模块的占空比指令,Dd表示死区时间,Dp表示窄脉冲时间。
例如,死区时间的宽度为2μs~5μs。
脉冲宽度调制指令可以理解为脉冲宽度调制信号。
S243、根据上一周期和当前周期的脉冲宽度调制指令所在的区间以及预设占空比条件,滤除脉冲宽度调制信号中的窄脉冲。
例如,图6A-6H是本申请实施例二提供的脉冲宽度调制信号中的窄脉冲抑制前后对比示意图,其中,H、L分别表示第一电平(高电平)和第二电平(低电平)。
当上一周期占空比处于第一区间且当前周期占空比处于第一区间或上一周 期占空比处于第一区间且当前周期占空比处于第二区间或上一周期占空比处于第一区间且当前周期占空比处于第三区间或上一周期占空比处于第二区间且当前周期占空比处于第一区间或上一周期占空比处于第二区间且当前周期占空比处于第二区间或上一周期占空比处于第二区间且当前周期占空比处于第三区间或上一周期占空比处于第三区间且当前周期占空比处于第一区间或上一周期占空比处于第三区间且当前周期占空比处于第二区间或上一周期占空比处于第三区间且当前周期占空比处于第三区间且Db1+Db2≥2Dp或上一周期占空比处于第五区间且当前周期占空比处于第四区间且1-Dm2≥Dp或上一周期占空比处于第五区间且当前周期占空比处于第五区间时,无需任何后处理,直接输出原始信号。
Db1表示上一周期的下桥臂第一电平占空比,Db2表示当前周期的下桥臂第一电平的占空比。
如图6A所示,当上一周期占空比处于第一区间且当前周期占空比处于第四区间或上一周期占空比处于第一区间且当前周期占空比处于第五区间或上一周期占空比处于第二区间且当前周期占空比处于第四区间或上一周期占空比处于第二区间且当前周期占空比处于第五区间或上一周期占空比处于第三区间且当前周期占空比处于第四区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于第三区间且当前周期占空比处于第五区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于第四区间且当前周期占空比处于第四区间且2-Dm1-Dm2≥Dp或上一周期占空比处于第四区间且当前周期占空比处于第五区间且1-Dm1≥Dp时,将当前周期上桥臂增加一个死区时间的第二电平后,再将上桥臂的电平置为第一电平。
Dm1表示上一周期的占空比指令,Dm2表示当前周期的占空比指令。
如图6B所示,当上一周期占空比处于第三区间且当前周期占空比处于第三区间且Db1+Db2<2Dp时,将下桥臂中间两个周期拼接形成的第一电平取消,下桥臂持续输出第二电平。
如图6C所示,当上一周期占空比处于第三区间且当前周期占空比处于第四区间且1-Dm1-Dd1<2Dp或上一周期占空比处于第三区间且当前周期占空比处于第五区间且1-Dm1-Dd1<2Dp时,将下桥臂上一周期结束位置的第一电平取消,下桥臂持续输出第二电平。
如图6D所示,当上一周期占空比处于第四区间且当前周期占空比处于第一区间或上一周期占空比处于第四区间且当前周期占空比处于第二区间或上一周期占空比处于第四区间且当前周期占空比处于第三区间且1-Dm2-Dd2≥2Dp或上一周期占空比处于第五区间且当前周期占空比处于第一区间或上一周期占空比处于第五区间且当前周期占空比处于第二区间或上一周期占空比处于第五区间且当前周期占空比处于第三区间且1-Dm2-Dd2≥2Dp时,将上一周期的上桥臂关断时间提前一个死区时间,上桥臂从所述死区时间开始输出第二电平。
Dd1表示上一周期的死区时间,Dd2表示当前周期的死区时间。
如图6E所示,当上一周期占空比处于第四区间且当前周期占空比处于第三区间且1-Dm2-Dd2<2Dp或上一周期占空比处于第五区间且当前周期占空比处于第三区间且1-Dm2-Dd2<2Dp时,将下桥臂当前周期开始位置的第一电平取消,下桥臂持续输出第二电平。
如图6F所示,当上一周期占空比处于第四区间且当前周期占空比处于第四区间且2-Dm1-Dm2<Dp时,将上桥臂中间两个周期拼接形成的第二电平取消,上桥臂持续输出第一电平。
如图6G所示,当上一周期占空比处于第四区间且当前周期占空比处于第五区间且1-Dm1<Dp时,将上一周期的上桥臂关断时间延后,上桥臂持续输出第一电平直至当前周期。
如图6H所示,当上一周期占空比处于五区间且当前周期占空比处于第四区间且1-Dm2<Dp时,将当前周期的上桥臂关断时间提前,上桥臂自上一周期结束后持续输出第一电平。
在一实施例中,在根据扭矩指令以及电机的三相电流,确定电压矢量指令时,还包括:对扭矩指令进行数据处理。其中,对扭矩指令进行数据处理包括但不限于对扭矩指令的进行去抖、斜率限制以及不同控制模式之间的平滑切换。
本申请实施例通过获取通信总线上得到的扭矩指令,根据扭矩指令以及电机的三相电流,确定电压矢量指令,根据电压矢量指令,确定脉冲宽度调制信号波形,根据每个周期的脉冲宽度调制信号波形,确定上桥臂对应的第一波形和下桥臂对应的第二波形,根据第一波形和第二波形,确定脉冲宽度调制指令所在的区间,根据上一周期和当前周期的脉冲宽度调制指令所在的区间以及预设占空比条件,滤除脉冲宽度调制信号中的窄脉冲。通过根据每个周期的脉冲宽度调制信号波形确定脉冲宽度调制指令所在的区间,不同区间按不同的规则添加死区时间,在不增加硬件成本的基础上,滤除了所有周期脉冲宽度调制信号中的窄脉冲,减少了电机驱动系统的功率损耗,避免产生较大的浪涌电压尖峰和震荡,进而增加了电机寿命。
实施例三
图7是本申请实施例三提供的一种电机装置的结构示意图。如图7所示,该装置10包括:
获取模块11,设置为获取通信总线上得到的扭矩指令;
电压矢量指令确定模块12,设置为根据扭矩指令以及电机的三相电流,确定电压矢量指令;
波形确定模块13,设置为根据电压矢量指令,确定脉冲宽度调制信号波形;
处理模块14,设置为根据两个连续周期的脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
在一实施例中,该装置还包括区间确定模块,设置为根据第一波形和第二波形,确定脉冲宽度调制指令所在的区间。
例如,当0≤Dm<0.5Dp时,Dt=0,Db=1,脉冲宽度调制指令处于第一区间;
当0.5Dp≤Dm<Dd时,Dt=0,Db=1-2Dm,脉冲宽度调制指令处于第二区间;
当Dd≤Dm<1-Dd时,Dt=Dm-Dd,Db=1-Dm-Dd,脉冲宽度调制指令处于第三区间;
当1-Dd≤Dm<1时,Dt=2Dm-1,Db=0,脉冲宽度调制指令处于第四区间;
当Dm=1时,Dt=1,Db=0,脉冲宽度调制指令处于第五区间;
其中,Dt表示上桥臂第一电平占空比,Db表示下桥臂第一电平占空比,Dm表示来自空间矢量脉宽调制模块的占空比指令,Dd表示死区时间,Dp表示窄脉冲时间。
在一实施例中,处理模块14还可设置为根据上一周期和当前周期的脉冲宽度调制指令所在的区间以及预设占空比条件,滤除脉冲宽度调制信号中的窄脉冲。
例如,当上一周期占空比处于第一区间且当前周期占空比处于第一区间或上一周期占空比处于第一区间且当前周期占空比处于第二区间或上一周期占空比处于第一区间且当前周期占空比处于第三区间或上一周期占空比处于第二区间且当前周期占空比处于第一区间或上一周期占空比处于第二区间且当前周期占空比处于第二区间或上一周期占空比处于第二区间且当前周期占空比处于第三区间或上一周期占空比处于第三区间且当前周期占空比处于第一区间或上一周期占空比处于第三区间且当前周期占空比处于第二区间或上一周期占空比处于第三区间且当前周期占空比处于第三区间且Db1+Db2≥2Dp或上一周期占空 比处于第五区间且当前周期占空比处于第四区间且1-Dm2≥Dp或上一周期占空比处于第五区间且当前周期占空比处于第五区间时,无需任何后处理,直接输出原始信号。
当上一周期占空比处于第一区间且当前周期占空比处于第四区间或上一周期占空比处于第一区间且当前周期占空比处于第五区间或上一周期占空比处于第二区间且当前周期占空比处于第四区间或上一周期占空比处于第二区间且当前周期占空比处于第五区间或上一周期占空比处于第三区间且当前周期占空比处于第四区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于第三区间且当前周期占空比处于第五区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于第四区间且当前周期占空比处于第四区间且2-Dm1-Dm2≥Dp或上一周期占空比处于第四区间且当前周期占空比处于第五区间且1-Dm1≥Dp时,将当前周期上桥臂增加一个死区时间的第二电平后,再将上桥臂的电平置为第一电平。
当上一周期占空比处于第三区间且当前周期占空比处于第三区间且Db1+Db2<2Dp时,将下桥臂中间两个周期拼接形成的第一电平取消,下桥臂持续输出第二电平。
当上一周期占空比处于第三区间且当前周期占空比处于第四区间且1-Dm1-Dd1<2Dp或上一周期占空比处于第三区间且当前周期占空比处于第五区间且1-Dm1-Dd1<2Dp时,将下桥臂上一周期结束位置的第一电平取消,下桥臂持续输出第二电平。
当上一周期占空比处于第四区间且当前周期占空比处于第一区间或上一周期占空比处于第四区间且当前周期占空比处于第二区间或上一周期占空比处于第四区间且当前周期占空比处于第三区间且1-Dm2-Dd2≥2Dp或上一周期占空比处于第五区间且当前周期占空比处于第一区间或上一周期占空比处于第五区间且当前周期占空比处于第二区间或上一周期占空比处于第五区间且当前周期占空比处于第三区间且1-Dm2-Dd2≥2Dp时,将上一周期的上桥臂关断时间提前一个死区时间,上桥臂从所述死区时间开始输出第二电平。
当上一周期占空比处于第四区间且当前周期占空比处于第三区间且1-Dm2-Dd2<2Dp或上一周期占空比处于第五区间且当前周期占空比处于第三区间且1-Dm2-Dd2<2Dp时,将下桥臂当前周期开始位置的第一电平取消,下桥臂持续输出第二电平。
当上一周期占空比处于第四区间且当前周期占空比处于第四区间且2-Dm1-Dm2<Dp时,将上桥臂中间两个周期拼接形成的第二电平取消,上桥臂持续输出第一电平。
当上一周期占空比处于第四区间且当前周期占空比处于第五区间且1-Dm1<Dp时,将上一周期的上桥臂关断时间延后,上桥臂持续输出第一电平直至当前周期。
当上一周期占空比处于五区间且当前周期占空比处于第四区间且1-Dm2<Dp时,将当前周期的上桥臂关断时间提前,上桥臂自上一周期结束后持续输出第一电平。
本申请实施例所提供的电机装置可执行本申请任意实施例所提供的电机控制方法,具备执行方法相应的功能模块和有益效果。
实施例四
本申请实施例四提供了一种车辆,车辆搭载有上述实施例三的电机装置,可执行本申请任意实施例所提供的电机控制方法,具备执行方法相应的功能模块和有益效果。
本申请实施例提供了一种电机控制方法、装置和车辆,以避免窄脉冲抑制时无法在不增加硬件成本的基础上抑制所有周期窄脉冲的情况。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。

Claims (10)

  1. 一种电机控制方法,包括:
    获取通信总线上得到的扭矩指令;
    根据所述扭矩指令以及电机的三相电流,确定电压矢量指令;
    根据所述电压矢量指令,确定脉冲宽度调制信号波形;
    根据两个连续周期的所述脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
  2. 根据权利要求1所述的电机控制方法,其中,电机控制器包括三相桥电路,所述三相桥电路包括上桥臂和下桥臂;
    根据两个连续周期的所述脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲包括:
    根据每个周期的所述脉冲宽度调制信号波形,确定所述上桥臂对应的第一波形和所述下桥臂对应的第二波形;
    根据所述第一波形和所述第二波形,确定脉冲宽度调制指令所在的区间;
    根据上一周期和当前周期的脉冲宽度调制指令所在的区间以及预设占空比条件,滤除脉冲宽度调制信号中的窄脉冲。
  3. 根据权利要求2所述的电机控制方法,其中,根据所述第一波形和所述第二波形,确定脉冲宽度调制指令所在的区间,包括:
    响应于0≤Dm<0.5Dp,Dt=0,Db=1,所述脉冲宽度调制指令处于第一区间;
    响应于0.5Dp≤Dm<Dd,Dt=0,Db=1-2Dm,所述脉冲宽度调制指令处于第二区间;
    响应于Dd≤Dm<1-Dd,Dt=Dm-Dd,Db=1-Dm-Dd,所述脉冲宽度调制指令处于第三区间;
    响应于1-Dd≤Dm<1,Dt=2Dm-1,Db=0,所述脉冲宽度调制指令处于第四区间;
    响应于Dm=1,Dt=1,Db=0,所述脉冲宽度调制指令处于第五区间;
    其中,Dt表示上桥臂第一电平占空比,Db表示下桥臂第一电平占空比,Dm表示来自空间矢量脉宽调制模块的占空比指令,Dd表示死区时间,Dp表示窄脉冲时间。
  4. 根据权利要求3所述的电机控制方法,其中,根据上一周期和当前周期的脉冲宽度调制指令所在的区间以及预设占空比条件,滤除脉冲宽度调制信号中的窄脉冲,包括:
    响应于上一周期占空比处于所述第一区间且当前周期占空比处于所述第一区间或上一周期占空比处于所述第一区间且当前周期占空比处于所述第二区间或上一周期占空比处于所述第一区间且当前周期占空比处于所述第三区间或上一周期占空比处于所述第二区间且当前周期占空比处于所述第一区间或上一周期占空比处于所述第二区间且当前周期占空比处于所述第二区间或上一周期占空比处于所述第二区间且当前周期占空比处于所述第三区间或上一周期占空比处于所述第三区间且当前周期占空比处于所述第一区间或上一周期占空比处于所述第三区间且当前周期占空比处于所述第二区间或上一周期占空比处于所述第三区间且当前周期占空比处于所述第三区间且Db1+Db2≥2Dp或上一周期占空比处于所述第五区间且当前周期占空比处于所述第四区间且1-Dm2≥Dp或上一周期占空比处于所述第五区间且当前周期占空比处于所述第五区间,直接输出原始信号;
    响应于上一周期占空比处于所述第一区间且当前周期占空比处于所述第四区间或上一周期占空比处于所述第一区间且当前周期占空比处于所述第五区间或上一周期占空比处于所述第二区间且当前周期占空比处于所述第四区间或上一周期占空比处于所述第二区间且当前周期占空比处于所述第五区间或上一周期占空比处于所述第三区间且当前周期占空比处于所述第四区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于所述第三区间且当前周期占空比处于所述第五区间且1-Dm1-Dd1≥2Dp或上一周期占空比处于所述第四区间且当前周期占空比处于所述第四区间且2-Dm1-Dm2≥Dp或上一周期占空比处于所述第四区间且当前周期占空比处于所述第五区间且1-Dm1≥Dp,将当前周期上桥臂增加一个死区时间的第二电平后,再将上桥臂的电平置为所述第一电平;
    响应于上一周期占空比处于所述第三区间且当前周期占空比处于所述第三区间且Db1+Db2<2Dp,将下桥臂两个周期的拼接位置形成的所述第一电平取消,下桥臂持续输出所述第二电平;
    响应于上一周期占空比处于所述第三区间且当前周期占空比处于所述第四区间且1-Dm1-Dd1<2Dp或上一周期占空比处于所述第三区间且当前周期占空比处于所述第五区间且1-Dm1-Dd1<2Dp,将下桥臂上一周期结束位置的所述第一电平取消,下桥臂持续输出所述第二电平;
    响应于上一周期占空比处于所述第四区间且当前周期占空比处于所述第一区间或上一周期占空比处于所述第四区间且当前周期占空比处于所述第二区间或上一周期占空比处于所述第四区间且当前周期占空比处于所述第三区间且 1-Dm2-Dd2≥2Dp或上一周期占空比处于所述第五区间且当前周期占空比处于所述第一区间或上一周期占空比处于所述第五区间且当前周期占空比处于所述第二区间或上一周期占空比处于所述第五区间且当前周期占空比处于所述第三区间且1-Dm2-Dd2≥2Dp,将上一周期的上桥臂关断时间提前一个死区时间,上桥臂从所述死区时间开始输出第二电平;
    响应于上一周期占空比处于所述第四区间且当前周期占空比处于所述第三区间且1-Dm2-Dd2<2Dp或上一周期占空比处于所述第五区间且当前周期占空比处于所述第三区间且1-Dm2-Dd2<2Dp,将下桥臂当前周期开始位置的所述第一电平取消,下桥臂持续输出所述第二电平;
    响应于上一周期占空比处于所述第四区间且当前周期占空比处于所述第四区间且2-Dm1-Dm2<Dp,将上桥臂两个周期的拼接位置形成的所述第二电平取消,上桥臂持续输出所述第一电平;
    响应于上一周期占空比处于所述第四区间且当前周期占空比处于所述第五区间且1-Dm1<Dp,将上一周期的上桥臂关断时间延后,上桥臂持续输出所述第一电平直至当前周期;
    响应于上一周期占空比处于所述第五区间且当前周期占空比处于所述第四区间且1-Dm2<Dp,将当前周期的上桥臂关断时间提前,上桥臂自上一周期结束后持续输出所述第一电平;
    其中,所述第一电平的电压大于所述第二电平的电压。
  5. 根据权利要求1所述的电机控制方法,在根据所述扭矩指令以及电机的三相电流,确定电压矢量指令之前,还包括:
    对所述扭矩指令进行数据处理。
  6. 根据权利要求5所述的电机控制方法,其中,对所述扭矩指令进行数据处理包括:
    对所述扭矩指令进行去抖、斜率限制以及不同控制模式之间的平滑切换。
  7. 根据权利要求1所述的电机控制方法,其中,所述窄脉冲的宽度小于或等于2μs。
  8. 根据权利要求3所述的电机控制方法,其中,所述死区时间的宽度为2μs~5μs。
  9. 一种电机装置,包括:
    获取模块,设置为获取通信总线上得到的扭矩指令;
    电压矢量指令确定模块,设置为根据所述扭矩指令以及电机的三相电流,确定电压矢量指令;
    波形确定模块,设置为根据所述电压矢量指令,确定脉冲宽度调制信号波形;
    处理模块,设置为根据两个连续周期的所述脉冲宽度调制信号波形,滤除脉冲宽度调制信号中的窄脉冲。
  10. 一种车辆,包括权利要求9所述的电机装置;所述电机装置包括三相桥电路,所述三相桥电路包括上桥臂和下桥臂。
PCT/CN2023/098260 2022-06-23 2023-06-05 电机控制方法、装置及车辆 WO2023246484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210719059.0A CN114977972A (zh) 2022-06-23 2022-06-23 一种电机控制方法、装置及车辆
CN202210719059.0 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246484A1 true WO2023246484A1 (zh) 2023-12-28

Family

ID=82966461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098260 WO2023246484A1 (zh) 2022-06-23 2023-06-05 电机控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN114977972A (zh)
WO (1) WO2023246484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114977972A (zh) * 2022-06-23 2022-08-30 中国第一汽车股份有限公司 一种电机控制方法、装置及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013875A (zh) * 2006-12-15 2007-08-08 奇瑞汽车有限公司 基于dsp的混合动力汽车用电机控制器
US20120007528A1 (en) * 2009-03-30 2012-01-12 Junnosuke Nakatsugawa Ac motor control device and ac motor driving system
CN107972529A (zh) * 2016-10-19 2018-05-01 丰田自动车株式会社 驱动设备和汽车
CN110323927A (zh) * 2018-12-14 2019-10-11 特变电工西安电气科技有限公司 一种三电平逆变器窄脉冲抑制方法及装置
CN111478613A (zh) * 2020-04-20 2020-07-31 上海正泰电源系统有限公司 一种抑制逆变器窄脉冲的dsp实现方法
CN113270996A (zh) * 2021-04-07 2021-08-17 中国第一汽车股份有限公司 一种抑制窄脉冲的pwm调制方法
CN114977972A (zh) * 2022-06-23 2022-08-30 中国第一汽车股份有限公司 一种电机控制方法、装置及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013875A (zh) * 2006-12-15 2007-08-08 奇瑞汽车有限公司 基于dsp的混合动力汽车用电机控制器
US20120007528A1 (en) * 2009-03-30 2012-01-12 Junnosuke Nakatsugawa Ac motor control device and ac motor driving system
CN107972529A (zh) * 2016-10-19 2018-05-01 丰田自动车株式会社 驱动设备和汽车
CN110323927A (zh) * 2018-12-14 2019-10-11 特变电工西安电气科技有限公司 一种三电平逆变器窄脉冲抑制方法及装置
CN111478613A (zh) * 2020-04-20 2020-07-31 上海正泰电源系统有限公司 一种抑制逆变器窄脉冲的dsp实现方法
CN113270996A (zh) * 2021-04-07 2021-08-17 中国第一汽车股份有限公司 一种抑制窄脉冲的pwm调制方法
CN114977972A (zh) * 2022-06-23 2022-08-30 中国第一汽车股份有限公司 一种电机控制方法、装置及车辆

Also Published As

Publication number Publication date
CN114977972A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US8816612B2 (en) Controller for multi-phase rotary device
EP2733844B1 (en) Vehicle and method for controlling vehicle
JP4450082B2 (ja) 電動機駆動装置およびその制御方法
US9553540B2 (en) Power converter with pre-compensation for dead-time insertion
WO2023246484A1 (zh) 电机控制方法、装置及车辆
JP2009291019A (ja) 交流モータ用インバータの制御装置
JP2009232620A (ja) 電力変換装置
US9960726B1 (en) Electric drive power converter with low distortion dead-time insertion
TW200924366A (en) Matrix converter
JP5375052B2 (ja) インバータの放電装置
CN107534397B (zh) 一种igbt参数辨识方法、死区补偿方法及逆变装置
CN110875709B (zh) 逆变器的保护方法和系统以及车辆
CN111769780B (zh) 一种电机控制器的控制方法、装置及汽车
US20230318487A1 (en) Power conversion system
CN115065295A (zh) 电机控制方法、电机控制器、电驱动系统及新能源汽车
CN105471240A (zh) 用于选择在功率半导体中的断开过程的断开速度的方法
CN112019078B (zh) 共模电压抑制方法
CN108390553B (zh) 一种电机传动pwm死区的补偿方法
EP3846332A1 (en) Inverter device
CN113411027B (zh) 一种开关频率的控制装置、电机及其开关频率的控制方法
CN110677096A (zh) 驱动控制装置、变频器及驱动控制方法
WO2023243451A1 (ja) 電力変換器の制御装置および制御方法
US20230111419A1 (en) Control device and motor drive system
CN101320950A (zh) 马达控制方法及其装置
US20220103112A1 (en) Method and device for actuating an electric machine, and electric drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826133

Country of ref document: EP

Kind code of ref document: A1