WO2023244279A1 - Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac - Google Patents

Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac Download PDF

Info

Publication number
WO2023244279A1
WO2023244279A1 PCT/US2022/080205 US2022080205W WO2023244279A1 WO 2023244279 A1 WO2023244279 A1 WO 2023244279A1 US 2022080205 W US2022080205 W US 2022080205W WO 2023244279 A1 WO2023244279 A1 WO 2023244279A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment system
emission treatment
catalyst
scr
scr catalyst
Prior art date
Application number
PCT/US2022/080205
Other languages
English (en)
Inventor
Shiang Sung
Pushkaraj R. PATWARDHAN
Original Assignee
Basf Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/807,392 external-priority patent/US11890575B2/en
Application filed by Basf Corporation filed Critical Basf Corporation
Publication of WO2023244279A1 publication Critical patent/WO2023244279A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure is directed to compositions, components, emission treatment systems, and methods suitable for treating the exhaust gas stream of an ammonia-fueled internal combustion engine to reduce emissions of nitrogen oxides (N0 x ).
  • One of the least intrusive ways to achieve reduction in greenhouse gas is to change fuel from gasoline/diesel to ammonia, a non-hydrocarbon fuel.
  • Ammonia is one of only a few compounds that is liquid at room temperature, rapidly releases energy upon combustion, and which provides a high energy density by volume.
  • Ammonia is comprised of only hydrogen and nitrogen atoms. Thus, when burned, ammonia will not release carbon dioxide, carbon monoxide, or other greenhouse pollutants.
  • the emissions from the burned ammonia are typically nitrogen and water vapor. More particularly, complete combustion of ammonia can be described by the following equation:
  • ammonia has about 20% less heating value (energy content) than diesel on a volume-basis, more ammonia fuel is necessary to generate the same power as a diesel-fueled vehicle.
  • an emission treatment system that provides, for example, effective NOx reduction for ammonia-fueled engines.
  • the present disclosure is directed to emission treatment systems and methods for NOx abatement in an exhaust stream of an ammonia-fueled engine.
  • such systems can be effective to not only abate NO X emissions associated with such engines, but also to adsorb certain gaseous components of exhaust streams emitted by such engines in order to enhance the effectiveness of the system.
  • the emission treatment systems of the disclosure can combine a selective catalytic reduction (SCR) catalyst with an oxidation catalyst positioned either upstream or downstream of the SCR catalyst.
  • the emission treatment systems of the disclosure can combine a selective catalytic reduction (SCR) catalyst and an oxidation catalyst with one or more adsorption components chosen from low temperature NO X adsorbers (LT-NA), low temperature ammonia adsorbers (LT-AA), and low temperature water vapor adsorbers (LT-WA).
  • Embodiment 1 An emission treatment system for NOx abatement in an exhaust stream of an ammonia-fueled engine, the emission treatment system comprising: a selective catalytic reduction (SCR) catalyst disposed on a substrate in fluid communication with the exhaust stream of the ammonia-fueled engine; and an oxidation catalyst disposed on a substrate positioned upstream and/or downstream of the SCR catalyst and in fluid communication with the exhaust stream and the SCR catalyst.
  • SCR selective catalytic reduction
  • Embodiment 2 The emission treatment system of embodiment 1, wherein the oxidation catalyst comprises a refractory metal oxide support impregnated with a platinum group metal (PGM).
  • PGM platinum group metal
  • Embodiment 3 The emission treatment system of embodiment 2, wherein the PGM comprises platinum, palladium, rhodium, or a combination thereof.
  • Embodiment 4 The emission treatment system of any one of embodiments 2 to 3, wherein the oxidation catalyst further comprises a refractory metal oxide support impregnated with a non-PGM transition metal, an alkaline earth metal, or a combination thereof.
  • Embodiment 5 The emission treatment system of embodiment 4, wherein the non- PGM transition metal comprises manganese.
  • Embodiment 6 The emission treatment system of any one of embodiments 4 to 5, wherein the alkaline earth metal comprises barium
  • Embodiment 7 The emission treatment system of any one of embodiments 1 to 6, wherein the oxidation catalyst is selected from a diesel oxidation catalyst (DOC) and a selective ammonia oxidation catalyst (AMOx).
  • DOC diesel oxidation catalyst
  • AMOx selective ammonia oxidation catalyst
  • Embodiment 8 The emission treatment system of any one of embodiments 1 to 7, wherein the SCR catalyst comprises a metal-promoted molecular sieve, a vanadia-based composition, or a combination thereof.
  • Embodiment 9 The emission treatment system of any one of embodiments 1 to 8, wherein the SCR catalyst is a copper-, an iron-, or a manganese-containing zeolite.
  • Embodiment 10 The emission treatment system of embodiment 9, wherein the zeolite has a framework type chosen from LEV, CHA, AEI, MEI, FER, *BEA, FAU, or a combination thereof.
  • Embodiment 11 The emission treatment system of any one of embodiments 1 to 10, wherein the SCR catalyst and the oxidation catalysts are present in the form of an SCR/ AMOx catalyst.
  • Embodiment 12 The emission treatment system of any one of embodiments 1 to 11, further comprising one or more adsorption components chosen from a low-temperature NOx adsorber (LT-NA), a low temperature ammonia adsorber (LT-AA), a low temperature water vapor adsorber (LT-WA), or a combination thereof.
  • LT-NA low-temperature NOx adsorber
  • LT-AA low temperature ammonia adsorber
  • LT-WA low temperature water vapor adsorber
  • Embodiment 13 The emission treatment system of embodiment 12, wherein the one or more adsorption components are arranged in any order and combination.
  • Embodiment 14 The emission treatment system of any one of embodiments 12 to
  • each of the one or more adsorption components is disposed on a substrate, positioned upstream or downstream of the SCR catalyst, and in fluid communication with the exhaust stream and the SCR catalyst.
  • Embodiment 15 The emission treatment system of any one of embodiments 12 to
  • each of the one or more adsorption components are disposed on the same substrate as a mixture, in a zoned configuration, or in a layered configuration.
  • Embodiment 16 The emission treatment system of any one of embodiments 12 to
  • Embodiment 17 The emission treatment system of any one of embodiments 12 to
  • the one or more adsorption components and a DOC are disposed on the same substrate as a mixture, in a zoned configuration, or in a layered configuration.
  • Embodiment 18 The emission treatment system of any one of embodiments 1 to
  • Embodiment 19 The emission treatment system of embodiment 18, comprising, in order, beginning with the emission treatment component closest to the engine, one of the following arrangements:
  • Embodiment 20 The emission treatment system of any one of embodiments 12 to
  • the LT-NA is present and comprises a molecular sieve, impregnated with at least one platinum group metal component, or a metal organic framework (MOF).
  • MOF metal organic framework
  • Embodiment 21 The emission treatment system of any one of embodiments 12 to
  • the LT-AA is present and comprises a molecular sieve or a MOF.
  • Embodiment 22 The emission treatment system of any one of embodiments 12 to
  • Embodiment 23 The emission treatment system of any one of embodiments 12 to
  • one or more of the SCR catalyst, the one or more adsorption components, and the oxidation catalyst are disposed on a flow-through substrate in the form of a honeycomb having a plurality of longitudinally-extending gas flow passages extending from an inlet to an outlet, and/or wherein one or more of the SCR catalyst, the one or more adsorption components, and the oxidation catalyst are disposed on a wall-flow substrate or optionally on a metal substrate with flow-through channels wherein a part of the exhaust gas is in fluid communication between channels.
  • Embodiment 24 A method for abating NOx in an exhaust stream from an ammonia-fueled engine, the method comprising contacting the exhaust gas stream with the emission treatment system of any one of embodiments 1 to 23.
  • FIG. 1A depicts a perspective view of an exemplary honeycomb-type substrate, which may comprise a composition washcoat in accordance with some exemplary embodiments.
  • FIG. IB depicts a partial cross-sectional view enlarged relative to FIG. 1 A and taken along a plane parallel to the end faces of the substrate of FIG. 1A, which shows an enlarged view of a plurality of the gas flow passages shown in FIG. 1A, in an exemplary embodiment wherein the substrate is a flow-through substrate.
  • FIG. 2 depicts a cutaway view of a section enlarged relative to FIG. 1A, wherein the honeycomb-type substrate in FIG. 1 A represents an exemplary wall-flow filter.
  • FIG. 3 depicts a schematic depiction of an exemplary embodiment of an emission treatment system.
  • FIG. 4 depicts traces of DOC inlet temperature, DOC outlet temperature, SCR inlet temperature, and Space Velocity (SV) under various scenarios for one exemplary embodiment of an exhaust treatment system of the present disclosure.
  • FIG. 5 depicts inlet NOx traces for the exemplary embodiment of FIG. 4.
  • FIG. 6 depicts NOx conversion, under various scenarios, after either a DOC or after the exemplary embodiment of FIG. 4.
  • FIG. 7 depicts NOx conversion, under various scenarios, after either a zoned LTNA- DOC or a layered LTNA-DOC or after exemplary embodiments of exhaust treatment systems of the present disclosure.
  • FIG. 8 depicts cumulative NOx emission after exemplary embodiments of exhaust treatment systems of the present disclosure.
  • FIG. 9 depicts NOx conversion after exemplary embodiments of exhaust treatment systems of the present disclosure.
  • FIG. 10 depicts traces of inlet temperature, outlet temperature, and Space Velocity (SV) under various scenarios for exemplary embodiments of an exhaust treatment system of the present disclosure.
  • FIG 11 depicts the overall NOx conversion for exemplary embodiments of an exhaust treatment system of the present disclosure.
  • FIG. 12 depicts the inlet NOx and outlet N0 x emission profiles for exemplary embodiments of an exhaust treatment system of the present disclosure.
  • FIG. 13 depicts the inlet NOx and outlet NOx emission profiles for exemplary embodiments of an exhaust treatment system of the present disclosure.
  • FIG. 14 depicts the cumulative NOx emissions for embodiments of an exhaust treatment system of the present disclosure with an inset depicting the air to fuel ratio (X) with a visual cutoff of 2.00.
  • a and “an” entity refers to one more of that entity, e.g., “a compound” refers to one or more compounds or at least one compound unless stated otherwise.
  • a compound refers to one or more compounds or at least one compound unless stated otherwise.
  • the terms “a” (or “an”), “one or more”, and “at least one” are used interchangeably herein.
  • any ranges cited herein are inclusive.
  • the term “about” used throughout is used to describe and account for small variations. For instance, “about” may mean the numeric value may be modified by ⁇ 5%, ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, ⁇ 0.5%, ⁇ 0.4%, ⁇ 0.3%, ⁇ 0.2%, ⁇ 0.1%, or ⁇ 0.05%. Numeric values modified by the term “about” include the specific identified value. For example, “about 5.0” includes 5.0.
  • abatement means a decrease in the amount, caused by any means.
  • adsorbent refers to a material that adsorbs and/or absorbs a desired substance. Adsorbents may advantageously adsorb and/or absorb (store) a substance at a certain temperature and desorb (release) the substance at a higher temperature.
  • ammonia-fueled engine as used in the description and claims is an engine capable of converting ammonia into its final oxidized product and by doing so, releases its latent heat energy (i.e., converting chemical energy into mechanical (work) energy).
  • This engine is therefore capable of operating with any mixed fuels such as a blended fuel including gasoline and ammonia, or diesel with ammonia, or a mixture of 10% alcohol (ethanol) in gasoline and ammonia, or a mixture of ammonia with any biofuels, as long as the fuel comprises ammonia.
  • association means for instance “equipped with”, “connected to” or in “communication with”, for example “electrically connected” or in “fluid communication with” or otherwise connected in a way to perform a function.
  • association may mean directly associated with or indirectly associated with, for instance through one or more other articles or elements.
  • the term “catalyst” refers to a material that promotes a chemical reaction.
  • the catalyst comprises the “catalytically active species” and the “support” that carries or supports the active species.
  • zeolites may be a support for palladium active catalytic species.
  • refractory metal oxide particles may be a support for platinum group metal catalytic species.
  • the catalytically active species are also termed “promoters” as they promote chemical reactions.
  • the term “catalytic article” in the disclosure means an article comprising a substrate having a catalyst coating composition.
  • the term “effective” means, for example, from about 35% to 100% effective, for instance from about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%, regarding the defined catalytic activity or storage/release activity, by weight or by moles.
  • exhaust stream or “exhaust gas stream” refers to any combination of flowing gas that may contain solid or liquid particulate matter.
  • the stream comprises gaseous components and may be, for example, exhaust of a lean bum engine, which may contain certain non-gaseous components such as liquid droplets, solid particulates and the like.
  • the exhaust gas stream of a combustion engine can further comprise, for example, combustion products (CO2 and H2O), products of incomplete combustion (carbon monoxide (CO) and hydrocarbons), oxides of nitrogen (N0 x ), combustible and/or carbonaceous particulate matter (soot), and un-reacted oxygen and nitrogen.
  • the exhaust stream may consist of nitrogen, water vapor, and small amounts of NOx in certain embodiments.
  • some of the other materials noted above may be present, although in smaller amounts as compared to conventional engines.
  • upstream and downstream refer to relative directions according to the flow of an engine exhaust gas stream from an engine towards a tailpipe, with the engine in an upstream location and the tailpipe and any pollution abatement articles, such as filters and catalysts, being downstream from the engine.
  • the inlet end of a substrate is synonymous with the “upstream” end or “front” end.
  • the outlet end is synonymous with the “downstream” end or “rear” end.
  • An upstream zone is upstream of a downstream zone.
  • An upstream zone may be closer to the engine or manifold, and a downstream zone may be further away from the engine or manifold.
  • in fluid communication is used to refer to articles positioned on the same exhaust line, i.e., a common exhaust stream passes through articles that are in fluid communication with each other. Articles in fluid communication may be adjacent to each other in the exhaust line. Alternatively, articles in fluid communication may be separated by one or more articles, also referred to as “washcoated monoliths.”
  • imppregnated or “impregnation” refers to permeation of the catalytic material into the porous structure of the support material.
  • the terms “on” and “over” and “overlapping” in reference to a coating layer may be used synonymously.
  • the term “directly on” means in direct contact with.
  • the disclosed articles are referred to in certain embodiments as comprising one coating layer “on” a second coating layer, and such language is intended to encompass embodiments with intervening layers, where direct contact between the coating layers is not required (i.e. , “on” is not equated with “directly on”).
  • nitrogen oxides and “N0 x ” designate the oxides of nitrogen, such as NO, NO2, or N2O.
  • substantially free means “little or no” or “no intentionally added” and also permits having only trace and/or inadvertent amounts. For instance, in certain embodiments, “substantially free” means less than 2 wt% (weight %), less than 1.5 wt%, less than 1.0 wt%, less than 0.5 wt%, less than 0.25 wt%, or less than 0.01 wt%, based on the weight of the indicated total composition.
  • washcoat has its usual meaning in the art of a thin, adherent coating of a catalytic or other material applied to a substrate material, such as a honeycomb-type substrate, which is sufficiently porous to permit the passage of the gas stream being treated.
  • a washcoat layer comprises s a compositionally distinct layer of material disposed on the surface of a monolithic substrate or an underlying washcoat layer.
  • a substrate can contain one or more washcoat layers, and each washcoat layer can be different in some way (e.g., may differ in physical properties thereof such as, for example particle size or crystallite phase) and/or may differ in the chemical catalytic functions.
  • a washcoat is, for example, formed by preparing a slurry containing a specified solids content (e.g., 30-90% by weight) of catalyst in a liquid, which is then coated onto a substrate and dried to provide a washcoat layer.
  • Weight percent (wt%) if not otherwise indicated, is based on an entire composition free of any volatiles, that is, based on dry solids content. Unless otherwise indicated, all parts and percentages are by weight. [0071] All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the materials and methods and does not pose a limitation on the scope unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosed materials and methods. All U.S. patent applications, Pre-Grant publications, and patents referred to herein are hereby incorporated by reference in their entireties.
  • an emission treatment system may be adapted for use with ammonia- fueled internal combustion engines, which includes dual-fuel systems.
  • Engine systems that combust ammonia are known in the art and shown, for example, in U.S. Pat. Nos. 8,464,515; 8,904,994; and 9,341,111, as well as in U.S. Publ. Nos. 2011/0265463; 2011/0283684; and 2018/0100469, all of which are incorporated by reference herein.
  • Such engines are similar to other types of combustion engines, and can comprise an engine body, a cylinder block, one or more cylinder heads, one or more pistons, one or more combustion chambers, one or more spark plugs (e.g., plasma jet spark plugs) arranged at the top surface of each combustion chamber, intake valves, intake ports, exhaust valves, and exhaust ports.
  • Each intake port can be in fluid communication with an ammonia injector for injecting ammonia, and in dual -fuel systems sometimes used to enhance the ignition properties of ammonia-fueled engines, the intake port may also be in fluid communication with a secondary combustible fuel, such as a hydrocarbon fuel or hydrogen.
  • ammonia-fueled engines In certain ammonia-fueled engines, exhaust from the combustion chamber containing ammonia passes through a reforming or cracking catalyst in order to produce hydrogen gas, which is then fed back to the intake port for enhancing the ignition properties of the engine.
  • the ammonia-fueled engine can utilize ammonia only as the combustion fuel.
  • the ammonia-fueled engine is a dual-fuel engine that utilizes ammonia and one or more additional combustion fuel (e.g., hydrogen or hydrocarbon fuel).
  • the emission treatment system combines an SCR catalyst for abatement of NOx in the exhaust stream with one or more adsorbent adapted to adsorb one or more of water, NOx, and NEE.
  • the SCR catalyst is needed to abate NOx that can result from combustion of ammonia under certain operating conditions.
  • the emission treatment system further comprises an oxidation catalyst.
  • the oxidation catalyst is an ammonia oxidation catalyst (AMOx) to oxidize any residual ammonia in the exhaust stream (or trace amounts of CO or hydrocarbon fuel in a dual-fuel engine).
  • AMOx ammonia oxidation catalyst
  • the oxidation catalyst is a diesel oxidation catalyst to oxidize CO and/or hydrocarbon species, such as from a dual-fuel engine, into carbon dioxide and water vapor.
  • a DOC catalyst may be incorporated in the emission treatment system to oxidize trace amounts of hydrocarbon species, such as engine lubricants or feedstock impurities, that may further comprise the exhaust gas stream.
  • the emission treatment system may comprise one or more oxidation catalyst, such as a DOC and an AMOx.
  • a water adsorbent is useful during low temperature (e.g., cold start) conditions to prevent water condensation within the emission treatment system that can impair catalyst function and/or hinder NOx adsorption.
  • the water adsorbent is advantageously located upstream of the NOx adsorbent in order to enhance the effectiveness of the NOx adsorption.
  • the NOx adsorbent and the NHs adsorbent are useful during low temperature conditions to sequester NOx or NHs. respectively, until the exhaust temperature is sufficiently high for effective SCR catalyst performance.
  • FIG. 3 depicts a schematic representation of a non-limiting exhaust gas treatment system in accordance with exemplary embodiments of the present disclosure.
  • the emission treatment system 20 can comprise a plurality of components in series downstream of an engine 22, such as an ammonia-fueled engine.
  • FIG. 3 illustrates five components, 24, 26, 28, 30, 32 in series; however, the total number of components can vary and five components is merely one example.
  • FIG. 3 describes each component as a “catalyst component” for the sake of simplicity, not every component must comprise a catalyst. For example, some components may consist of adsorption compositions.
  • Table 1 presents various exhaust gas treatment system configurations of one or more exemplary embodiments. It is noted that each component is connected to the next component via exhaust conduits such that the engine is upstream of component A, which is upstream of component B, which is upstream of component C, which is upstream of component D, which is upstream of component E (when present).
  • the reference to components A-E in the table can be cross-referenced with the same designations in FIG. 3.
  • Table 1 is a non-exhaustive listing of configurations and any one or more of components A, B, C, D, or E can be disposed on the same or different substrate, such as a particulate filter, such as a wall flow filter, or on a flow- through honeycomb substrate.
  • a particulate filter such as a wall flow filter
  • a flow- through honeycomb substrate such as a particulate filter, such as a wall flow filter
  • each of the components of the engine exhaust system are on the same substrate.
  • more than one substrate may be used for the components of the engine exhaust system.
  • an engine exhaust system comprises one or more components mounted in a position near the engine (in a close-coupled position, CC), with additional components in a position underneath the vehicle body (in an underfloor position, UF).
  • the reductant used herein for the SCR catalysts comprises ammonia.
  • the ammonia can be provided through a separate injection line in front of the SCR catalyst, or the ammonia can be provided through the release of the stored ammonia in the LT-AA, or combination of the above.
  • the exhaust gas treatment system may further comprise an ammonia or ammonia precursor injection component, for example, placed upstream of any SCR catalyst present in the system.
  • adsorption components may comprise a low temperature NOx adsorber (LT-NA), a low temperature NFL adsorber (LT-AA), a low temperature H2O (water vapor) adsorber (LT-WA), or a combination thereof.
  • SCR refers to a selective catalytic reduction catalyst
  • DOC refers to a diesel oxidation catalyst
  • AMOx refers to an ammonia oxidation catalyst, all of which are described in greater detail hereinbelow.
  • the adsorption components may be in any order and in any combination.
  • the adsorption components of the emission treatment system of the present disclosure may be LT-AA; LT-WA; LT-NA; LT-AA, LT-WA; LT-AA, LT-NA; LT-WA, LT-NA; LT- WA, LT-NA, LT-AA; LT-NA, LT-WA, LT-AA; LT-WA, LT- A, LT-NA; LT-AA, LT-NA, LT-WA.
  • the adsorption components may be disposed on the same or different substrates.
  • the emission treatment system of the present disclosure may comprise LT-AA, LT-NA, and LT-WA on the same substrate; LT-NA and LT-WA disposed on the same substrate and LT-AA on a different substrate; and LT-NA and LT-AA disposed on the same substrate.
  • the SCR catalyst composition comprises a metal -promoted molecular sieve, a vanadia-based composition, or a combination thereof.
  • the SCR catalyst composition comprises a metal-promoted (e.g., Cu-promoted, Fe-promoted, or Cu/Fe-promoted) molecular sieve.
  • metal-promoted e.g., Cu-promoted, Fe-promoted, or Cu/Fe-promoted
  • molecular sieve refers to framework materials such as zeolites and other framework materials (e.g. isomorphously substituted materials), which may be used, e.g., in particulate form, in combination with one or more promoter metals, as catalysts.
  • Molecular sieves are materials based on an extensive three-dimensional network of oxygen ions containing generally tetrahedral type sites and having a substantially uniform pore distribution, with the average pore size being no larger than 20 A. The pore sizes are defined by the ring size.
  • zeolite refers to a specific example of a molecular sieve, further including silicon and aluminum atoms. According to one or more embodiments, it will be appreciated that defining the molecular sieves by their structure type is intended to comprise both molecular sieves having that structure type and any and all isotypic framework materials such as SAPO, A1PO, and MeAPO materials having the same structure type.
  • aluminosilicate zeolite structure type limits the material to molecular sieves that do not purposely include phosphorus or other metals substituted in the framework.
  • aluminosilicate zeolite excludes aluminophosphate materials such as SAPO, A1PO, and MeAPO materials, and the broader term “zeolite” is intended to include aluminosilicates and aluminophosphates.
  • Zeolites are crystalline materials, understood to be aluminosilicates with open 3-dimensional framework structures composed of comer-sharing TO4 tetrahedra, where T is Al or Si.
  • Zeolites generally comprise silica to alumina (SAR) molar ratios of 2 or greater.
  • Zeolites for use in the disclosed catalyst compositions are not particularly limited in terms of SAR values, although the particular SAR value associated with a zeolite may, in some embodiments, affect the SCR performance of the catalyst composition into which it is incorporated (e.g., particularly after aging).
  • the SAR values of the zeolites are from about 5 to about 100 or from about 5 to about 50.
  • the SAR is from about 5 to about 20 and, in other embodiments, the SAR is from about 20 to about 50.
  • Cations that balance the charge of the anionic framework are loosely associated with the framework oxygens, and the remaining pore volume may be potentially filled with water molecules.
  • the non-framework cations are generally exchangeable, and the water molecules removable.
  • Zeolites can have rather uniform pore sizes that, depending upon the type of zeolite and the type and amount of cations included in the zeolite lattice, range from about 3 Angstroms to about 10 Angstroms in diameter.
  • Molecular sieves can be classified by means of the framework topology by which the structures are identified.
  • any structure type of zeolite can be used, such as structure types of ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ASV, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BCT, *BEA, BEC, BIK, BOG, BPH, BRE, CAN, CAS, SCO, CFI, SGF, CGS, CHA, CHI, CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EON, EPI, ERI, ESV, ETR, EUO, FAU, FER, FRA, GIS, GIU, GME,
  • the structure type is chosen from AEI, AFT, AFV, AFX, AVL, CHA, DDR, EAB, EEI, ERI, IFY, IRN, KFI, LEV, LTA, LTN, MER, MWF, NPT, PAU, RHO, RTE, RTH, SAS, SAT, SAV, SFW, TSC, UFI, and combinations thereof.
  • AEI-CHA a framework type chosen from LEV, CHA, AEI, MEI, FER, or a combination thereof.
  • Zeolites are comprised of secondary building units (SBU) and composite building units (CBU), and appear in many different framework structures. Secondary building units contain up to 16 tetrahedral atoms and are non-chiral. Composite building units are not required to be achiral, and cannot necessarily be used to build the entire framework. For example, a group of zeolites may have a single 4-ring (s4r) composite building unit in their framework structure. In the 4-ring, the “4” denotes the positions of tetrahedral silicon and aluminum atoms, and the oxygen atoms are located between tetrahedral atoms.
  • SBU secondary building units
  • CBU composite building units
  • composite building units include, for example, a single 6-ring (s6r) unit, a double 4-ring (d4r) unit, and a double 6-ring (d6r) unit.
  • the d4r unit is created by joining two s4r units.
  • the d6r unit is created by joining two s6r units. In a d6r unit, there are twelve tetrahedral atoms.
  • Zeolitic structure types that have a d6r secondary building unit include AEI, AFT, AFX, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, WEN, and combinations thereof.
  • the molecular sieves of the catalyst compositions have the CHA structure type.
  • the molecular sieves have the CHA structure type and are chosen from the group consisting of SSZ-13, SSZ-62, natural chabazite, zeolite K-G, Linde D, Linde R, LZ-218, LZ-235, LZ-236, ZK-14, SAPO-34, SAPO-44, SAPO- 47, ZYT-6, and combination thereof.
  • the zeolite of the catalyst compositions comprises a small pore zeolite.
  • a small pore zeolite contains channels defined by up to eight tetrahedral atoms.
  • 8-ring zeolite refers to a zeolite having 8-ring pore openings and in some cases the “8-ring” zeolite may also comprise double-six ring secondary building units and may have a cage like structure resulting from the connection of double six-ring building units by 4 rings.
  • Exemplary small pore zeolites include framework types ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RIH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, and mixtures or intergrowths thereof.
  • the zeolite comprises a small pore zeolite with a framework type chosen from CHA, LEV, AEI, AFT, AFX, ERI, SFW, KFI, DDR, ITE, and mixtures or intergrowths thereof.
  • a framework type chosen from CHA, LEV, AEI, AFT, AFX, ERI, SFW, KFI, DDR, ITE, and mixtures or intergrowths thereof.
  • the zeolite of the disclosed catalyst compositions comprises a medium pore zeolite.
  • a medium pore zeolite contains channels defined by ten-membered rings.
  • Exemplary medium pore zeolites include framework types AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, WEN, and mixtures or intergrowths thereof.
  • the zeolite comprises a medium pore zeolite with
  • the zeolite of the disclosed catalyst compositions comprises a large pore zeolite.
  • a large pore zeolite contains channels defined by twelve-membered rings.
  • Exemplary large pore zeolites include framework types AFI, AFR, AFS, AFY, ASV, ATO, ATS, *BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY,
  • the disclosed catalyst compositions generally comprise molecular sieves (e.g., zeolites) that are metal-promoted.
  • “promoted” refers to a molecular sieve comprising one or more components that are intentionally added, as opposed to comprising impurities that may be inherent in the molecular sieve.
  • a promoter is a component that is intentionally added to enhance the activity of a catalyst, compared to a catalyst that does not have promoter intentionally added.
  • a suitable metal is exchanged into the molecular sieves. Copper participates in the conversion of nitrogen oxides and thus may be a useful metal for exchange.
  • a catalyst composition which comprises a copper-promoted molecular sieve (e.g., zeolite), e.g., Cu-CHA.
  • a catalyst composition which comprises an iron-promoted molecular sieve (e.g., zeolite), e.g., Fe-CHA.
  • the disclosure is not intended to be limited thereto, and catalyst compositions comprising other metal-promoted molecular sieves are also encompassed hereby.
  • Promoter metals can generally be chosen from the group consisting of alkali metals, alkaline earth metals, transition metals in Groups IIIB, IVB, VB, VIB, VIIB, VIIIB, IB, and IIB; Group IIIA elements; Group IVA elements; lanthanides; actinides; and combinations thereof.
  • promoter metals that can, in various embodiments, be used to prepare metal- promoted molecular sieves include, but are not limited to, copper (Cu), cobalt (Co), nickel (Ni), lanthanum (La), manganese (Mn), iron (Fe), vanadium (V), silver (Ag), cerium (Ce), neodymium (Nd), praseodymium (Pr), titanium (Ti), chromium (Cr), zinc (Zn), tin (Sn), niobium (Nb), molybdenum (Mo), hafnium (HI), yttrium (Y), tungsten (W), and combinations thereof.
  • the promoter metal associated with the disclosed zeolite component comprises copper (e.g., as CuO), iron (e.g., as Fe2O3), or manganese (e.g., as MnCh).
  • the promoter metal content of a metal-promoted molecular sieve, calculated as the oxide, is, in one or more embodiments, at least about 0.1 wt.%, based on the total weight of the calcined molecular sieve (including promoter) and reported on a volatile-free basis.
  • the promoter metal of the zeolite component comprises Cu
  • the Cu content, calculated as CuO is in the range of about 0.1 wt.% to about 20 wt.%, such as about 0.5 wt.% to about 17 wt.%, about 2 wt.% to about 15 wt.%, and about 2 wt.% to about 10 wt.%, in each case based on the total weight of the calcined molecular sieve reported on a volatile free basis.
  • the promoter metal of the zeolite component comprises Fe, and the Fe content, calculated as FeO is in the range of about 0.1 wt.% to about 20 wt.%, such as about 0.5 wt.% to about 17 wt.%, about 2 wt.% to about 15 wt.%, and about 2 wt.% to about 10 wt.%, in each case based on the total weight of the calcined molecular sieve reported on a volatile free basis.
  • the zeolite component (including promoter metal) can be defined by the ratio of promoter metal to aluminum within the promoted zeolite.
  • the promoter metal to aluminum molar ratio is about 0.1 to about 0.5 (e.g., the Cu/Al ratio is about 0.1 to about 0.5).
  • the SCR catalyst composition comprises one or more vanadium-containing components.
  • vanadium-based compositions Such compositions are referred to herein as “vanadia-based compositions.”
  • the vanadium can be in various forms, e.g., including but not limited to, free vanadium, vanadium ion, or vanadium oxides (vanadia), such as vanadium pentoxide (V2O5).
  • vanadia or “vanadium oxide” is intended to include any oxide of vanadium, such as vanadium pentoxide.
  • a vanadia-based composition comprises a mixed oxide comprising vanadia.
  • the amount of vanadia in the mixed oxide can vary and, in some embodiments, ranges from about 1 to about 10 percent by weight based on the total weight of the mixed oxide.
  • the amount of vanadia can be at least 1 percent, at least 2 percent, at least 3 percent, at least 4 percent, at least 5 percent, or at least 6 percent, with an upper limit of about 10 percent by weight or no more than 10 percent, no more than 9 percent, no more than 8 percent, no more than 7 percent, no more than 6 percent, no more than 5 percent, or no more than 4 percent, with a lower limit of about 1 percent by weight.
  • the upstream SCR catalyst composition comprises a mixed oxide comprising vanadia/titania (V2O5/ TiCh), e.g., in the form of titania onto which vanadia has been dispersed.
  • the vanadia/titania can optionally be activated or stabilized with tungsten (e.g., WO3) to provide X ⁇ Os/TiCh/ WO3, e.g., in the form of titania onto which V2O5 and WO3 have been dispersed.
  • tungsten e.g., WO3
  • the vanadia is not truly in the form of a mixed metal oxide; rather, the metal oxide components (e.g., titania and vanadia) may be present as discrete particles.
  • the amount of tungsten in such embodiments can vary and can range, e.g., from about 0.5 to about 10 percent by weight based on the total weight of the mixed oxide.
  • the amount of tungsten can be at least 0.5 percent, at least 1 percent, at least 2 percent, at least 3 percent, at least 4 percent, at least 5 percent, or at least 6 percent, with an upper limit of about 10 percent by weight or no more than 10 percent, no more than 9 percent, no more than 8 percent, no more than 7 percent, no more than 6 percent, no more than 5 percent, or no more than 4 percent, with a lower limit of about 0.5 percent by weight.
  • Exemplary vanadia-based SCR catalyst compositions can comprise components including, but not limited to, X ⁇ Os/TiCh, X ⁇ Os/WCh/TiCh, X ⁇ O/WCh/TiCh/SiCh, or combinations thereof. Additional vanadia-based SCR catalyst compositions are described, for example, in U.S. Patent Nos. 4,782,039 to Lindsey; 8,465,713 to Schermanz et al.; and 8,975,206 to Schermanz et al., which are incorporated herein by reference in their entireties.
  • vanadia-based SCR catalyst compositions can comprise other active components (e.g., other metal oxides).
  • vanadia-based SCR compositions suitable for use in the disclosed systems comprise vanadia and antimony.
  • Such a vanadia-based SCR composition in certain embodiments, comprises a composite oxide comprising vanadium and antimony, which can be supported on a refractory metal oxide (e.g., TiCh, SiCh, WOs, AI2O3, ZrO2, or a combination thereof).
  • a refractory metal oxide e.g., TiCh, SiCh, WOs, AI2O3, ZrO2, or a combination thereof.
  • Exemplary vanadia-based SCR compositions comprising vanadia and antimony are disclosed in U.S. Patent No. 4,221,768 to Inoue et al.; and U.S. Publ. Nos. 2018/0304236 to Zhao et al. and 2019/0344247 to Zhao et al., all of which are incorporated herein
  • SCR catalyst compositions are also disclosed, for example, in U.S. Pat. Nos. 7,998,423 to Boorse et al.; 9,017,626 to Tang et al.; 9,242,238 to Mohanan et al.; and 9,352,307 to Stiebels et al., which are incorporated herein by reference.
  • the amount of SCR catalyst used on a substrate can vary, but can be loaded in an amount of about 1-10 g/in 3 , such as 1-7 g/in 3 or 2-5.5 g/in 3 .
  • a SCR catalyst composition is generally prepared by providing a metal-promoted molecular sieve material.
  • a molecular sieve having the CHA structure may be prepared according to various techniques known in the art, for example U.S. Patent Nos. 4,544,538 to Zones and 6,709,644 to Zones, as well as U.S. Patent No. 8,883,119 to Bull et al., which are herein incorporated by reference in their entireties. Methods of preparing other types of molecular sieves are known in the art and can be readily employed to provide the desired zeolite framework for inclusion within the disclosed composition.
  • a metal e.g., copper
  • a metal e.g., copper
  • Such metals can be ion exchanged into alkali metal or NH4 molecular sieves (which can be prepared by NH4 + ion exchange into an alkali metal molecular sieve by methods known in the art, e.g., as disclosed in Bleken, F. et al. Topics in Catalysis 2009, 52, 218-228, which is incorporated herein by reference).
  • Preparation of metal-promoted molecular sieves can comprise an ion-exchange process of the molecular sieves in particulate form with a metal precursor solution.
  • a metal precursor solution for example, a copper salt can be used to provide copper.
  • the copper concentration of the liquid copper solution used in the copper ion-exchange is in some embodiments in the range from about 0.01 molar to about 0.4 molar, for example in the range from about 0.05 molar to about 0.3 molar, in the range from about 0.1 molar to about 0.25 molar, in the range from about 0.125 molar to about 0.25 molar, in the range from about 0.15 molar to about 0.225 molar and at approximately about 0.2.
  • a metal such as copper, is ion exchanged into alkali metal or NH4 + -Chabazite to form Cu- Chabazite.
  • the molecular sieves can be promoted with two or more metals (e.g., copper in combination with one or more other metals). Where two or more metals are to be included in a metal ion- promoted molecular sieve material, multiple metal precursors (e.g. , copper and iron precursors) can be ion-exchanged at the same time or separately, in multiple exchange steps.
  • the second metal can be exchanged into a molecular sieve material that has first been promoted with the first metal (e.g, a second metal can be exchanged into a copper- promoted molecular sieve material).
  • the second molecular sieve material can vary and, in some embodiments, may be a transition metal (e.g, iron or manganese) or an alkaline earth or alkali metal.
  • the SCR catalyst can, in some embodiments, be in the form of an integrated SCR/AMOx catalyst.
  • Exemplary SCR/AMOx catalysts are described, for example, in U.S. Patent No. 8,524,185 to Caudle et al.; 8,283,182 to Boorse et al.; and 5,516,497 to Speronello et al., which are incorporated herein by reference.
  • Suitable SCR/AMOx catalysts may be zoned or layered, such that the SCR catalyst and the AMOx catalyst are at least partially separated.
  • an SCR/ AMOx catalyst wherein the SCR catalyst is on a substrate having an inlet end and an outlet end, wherein the SCR catalyst is located at the inlet (upstream) end and the AMOx catalyst is located at the outlet (downstream) end.
  • the SCR/ AMOx catalyst may comprise a bottom coat comprising an AMOx catalyst and a top coat with SCR functionality.
  • the AMOx catalyst composition extends less than the full length of the SCR/ AMOx catalyst, and the SCR catalyst composition extends the full length of the SCR/AMOx catalyst (e.g., as the top washcoat).
  • a LT-NA component as disclosed herein can comprise a molecular sieve comprising a platinum group metal component. Such LT-NA components can be effective for storing the NOx at temperatures below 200°C, and releasing the stored NOx at higher temperatures. Any of the molecular sieves described herein could be used in the LT-NA component. In certain embodiments, the molecular sieve may comprise a framework type chosen from CHA (chabazite), FER (ferrierite), AEI, and LEV (levyne). A LT-NA component as disclosed herein can also comprise a metal organic framework (MOF). Such LT-NA components are effective for storing the NOx at temperatures below 200°C and releasing the stored NOx at a temperature suitable for the downstream SCR catalysts.
  • MOF metal organic framework
  • the molecular sieve of the LT-NA component may be impregnated with a platinum group metal component.
  • a platinum group metal component includes all forms of association of the platinum group metal component with the molecular sieve, such as where the platinum group metal component resides either in the ion-exchange sites of the molecular sieve or other internal locations within the molecular sieve, or where the platinum group metal is present on the surface of the molecular sieve, or any combination of the above-noted locations.
  • platinum group metal component refers to any component that comprises a platinum group metal (e.g., Ru, Rh, Os, Ir, Pd, Pt). Reference to “platinum group metal component” allows for the presence of the platinum group metal in any valence state.
  • the platinum group metal may be in metallic form, with zero valence, or the platinum group metal may be in an oxide form.
  • platinum (Pt) component refers to the respective platinum group metal compound, complex, or the like which, upon calcination or use of the catalyst, decomposes or otherwise converts to a catalytically active form, usually the metal or the metal oxide.
  • platinum group metal component is palladium as the sole platinum group metal component, although mixtures of platinum group metal components could also be used.
  • the concentration of the platinum group metal component can vary, but will be, for example, from about 0.01 wt.% to about 6 wt.% relative to the total dry weight of the molecular sieve.
  • the platinum group metal component may be present in the molecular sieve, for example, from about 0.1%, about 0.2%, about 0.5%, about 0.7%, about 0.9%, or about 1.0%, to about 1.5%, about 2.0%, about 2.5%, about 3.0%, about 3.5%, about 4.0%, about 4.5%, about 5.0%, or about 6% by weight, based on the total dry weight of the molecular sieve. Weights of the platinum group metal component are measured and reported as the metal (e.g., weight of palladium).
  • the total dry weight of the molecular sieve includes any added/ exchanged metals (i.e. , palladium).
  • the amount of platinum group metal component in the LT-NA composition can be expressed as weight per unit volume of substrate.
  • the amount of platinum group metal component in the LT-NA is about 10 g/ft 3 to about 140 g/ft 3 , such as about 40 g/ft 3 to about 100 g/ft 3 (based on the volume of an underlying substrate upon which the catalyst is disposed).
  • the LT-NA components are generally present on a substrate at a concentration of, for instance, from about 0.3 g/in 3 , about 0.4 g/in 3 , about 0.5 g/in 3 , about 0.6 g/in 3 , about 0.7 g/in 3 , about 0.8 g/in 3 , about 0.9 g/in 3 , or about 1.0 g/in 3 to about 1.5 g/in 3 , about 2.0 g/in 3 , about 2.5 g/in 3 , about 3.0 g/in 3 , about 3.5 g/in 3 , about 4.0 g/in 3 , about 4.5 g/in 3 , about 5.0 g/in 3 , or about 5.5 g/in 3 , based on the volume of the substrate.
  • the LT-NA component as disclosed herein may be readily prepared by processes well known in the art.
  • the disclosed LT-NA component may, in some embodiments, be prepared via an incipient wetness impregnation method.
  • a metal precursor e.g., a platinum group metal component
  • the metal-containing solution is added to the material to be impregnated (e.g., molecular sieve), and which contains essentially the same pore volume as the volume of the solution that was added.
  • Capillary action draws the solution into the pores of the material.
  • Solution added in excess of the material pore volume causes the solution transport to change from a capillary action process to a diffusion process, which is much slower.
  • the impregnated material can then be dried and optionally calcined to remove the volatile components within the solution, depositing the metal on the surface of the material.
  • the maximum loading is limited by the solubility of the precursor in the solution.
  • the concentration profile of the impregnated material depends on the mass transfer conditions within the pores during impregnation and drying.
  • a platinum group metal component precursor such as, for example, palladium nitrate
  • a platinum group metal component precursor such as, for example, palladium nitrate
  • suitable PGM precursors include palladium nitrate, tetraammine palladium nitrate, tetraammine platinum acetate, and platinum nitrate.
  • a platinum group metal colloidal dispersions as discussed below could be used.
  • a LT-AA component as disclosed herein can comprise a molecular sieve.
  • Such LT- AA components are effective for storing the NHs at temperatures below 200°C, and releasing the stored NHs at higher temperatures when the SCR catalyst becomes functional. Any of the molecular sieves described herein could be used in the LT-AA component.
  • the LT-AA component is a zeolite, which can be a natural or synthetic, such as faujasite, chabazite, clinoptilolite, mordenite, silicalite, zeolite X, zeolite Y, ultrastable zeolite Y, ZSM-5 zeolite, offretite, or a beta zeolite.
  • a beta zeolite that can be used is disclosed in U.S. Pat. No. 6,171,556 to Burk et al., which is incorporated herein by reference in its entirety.
  • the LT-AA components are, for example, used in an amount of about 0.05 g/in 3 to about 1 g/in 3 .
  • a LT-AA component as disclosed herein can also comprise a metal organic framework (MOF).
  • MOF metal organic framework
  • Such LT-AA components are effective for storing the ammonia at temperatures below 200°C, and releasing the stored NO X at a temperature suitable for the downstream SCR catalysts.
  • the LT-AA component can be characterized as substantially free of catalytic metal, such as platinum group metal components.
  • a LT-WA component as disclosed herein may comprise a desiccant material that is thermally stable at typical operating conditions of ammonia-fueled engines. Such LT-WA components are effective for storing H2O at temperatures below 150°C, and releasing the stored H2O at higher temperatures. Any of the molecular sieves described herein could be used in the LT-WA component. Alternatively, silica, activated charcoal, activated alumina, clay materials (e.g., montmorillonite), calcium sulfate, or calcium chloride could be used. When present, the LT-WA components are for example used in an amount of about 0.05 g/in 3 to about 3 g/in 3 . In certain embodiments, the LT-WA component can be characterized as substantially free of catalytic metal, such as platinum group metal components. A LT-WA component as disclosed herein can also comprise a metal organic framework (MOF).
  • MOF metal organic framework
  • the oxidation catalyst component of the emission treatment system can be a diesel oxidation catalyst (DOC) or an ammonia oxidation catalyst (AMOx).
  • DOC diesel oxidation catalyst
  • AMOx ammonia oxidation catalyst
  • a DOC is suitable for example to oxidize NO and/or CO and/or HC components of exhaust gas.
  • a DOC unbumed gaseous and nonvolatile hydrocarbons and carbon monoxide are largely combusted to form carbon dioxide and water.
  • NO2 a proportion of the NO of the NOx component may be oxidized to NO2.
  • DOC catalysts are taught, for instance, in U.S. Publ. No. 2019/0015781 to Wei et al., which is incorporated by reference herein.
  • a DOC may be a formed in a single layer or multiple layers.
  • Suitable DOC compositions advantageously comprise one or more platinum group metal impregnated on a porous refractory metal oxide support, as disclosed herein.
  • Suitable DOC compositions may further comprise one or more non-PGM transition metal, such as Mn, or alkaline earth metal, such as Ba, impregnated on a porous refractory metal oxide support, as disclosed herein.
  • the DOC may be coated on a flow- through monolith substrate or a wall-flow filter substrate as described herein.
  • the DOC is typically located upstream from the SCR, and can be optionally placed after a close-coupled SCR.
  • the DOC is advantageously in a close-coupled position.
  • a close-coupled position is, for instance, within about 12 inches (in) from the exhaust manifold (i.e., where individual cylinder exhaust pipes join together).
  • the distance from the exhaust manifold to the upstream end of the DOC unit is from about 0.5 in to about 12 inches. In some embodiments, the distance is about 0.5 in, about 1 in, about 2 in, about 3 in, about 4 in, about 5 in, about 6 in, about 7 in, about 8 in, about 9 in, about 10 in, about 11 in or about 12 in.
  • the 5 distance is from about 0.5 in, from about 1 in, from about 2 in, from about 3 in, from about 4 in or from about 5 in to about 6 in, to about 7 in, to about 8 in, to about 9 in, to about 10 in, to about 11 in or to about 12 in, with each combination of lower endpoint and upper endpoint explicitly defining a range that is contemplated as an embodiment of the invention.
  • Ammonia oxidation generally refers to a process in which NHs is reacted with oxygen to produce NO, NO2, N2O, or N2.
  • An AMOx catalyst used in the present disclosure can comprise a platinum group metal component impregnated on a porous refractory metal oxide support.
  • the AMOx catalyst can further comprise hydrocarbon adsorbents, such as zeolites (e.g., Fe-Beta zeolites), and/or stabilizers or promoters (e.g., barium oxide).
  • zeolites e.g., Fe-Beta zeolites
  • stabilizers or promoters e.g., barium oxide.
  • AMOx catalysts are taught, for instance, in U.S. Pat. Appl. Pub. No. 2011/0271664 to Boorse et al., which is incorporated herein by reference.
  • An AMOx catalyst is typically located downstream of the SCR.
  • platinum group metal refers to platinum group metals or oxides thereof, including platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
  • the platinum group metal comprises a combination of platinum and palladium, such as in a weight ratio of about 1 : 10 to about 10: 1, such as equal to or greater than about 1.5:1, equal to or greater than about 2:1, or equal to or greater than about 5:1.
  • platinum group metal component e.g., Pt, Pd, or a mixtures thereol
  • concentrations of platinum group metal component can vary, but will be, for example, from about 0.1 wt.% to about 10 wt.% relative to the weight of the porous refractory oxide support material (e.g., about 1 wt.% to about 6 wt. % relative to the refractory oxide support).
  • the platinum group metal may further comprise rhodium.
  • porous refractory metal oxide refers to porous metal-containing oxide materials exhibiting chemical and physical stability at high temperatures, such as the temperatures associated with diesel engine exhaust.
  • Exemplary refractory oxides include alumina, silica, zirconia, titania, ceria, and combinations thereof. Combinations may be in the form of physical or chemical mixtures.
  • Exemplary refractory oxides include atomically-doped combinations and including high surface area or activated compounds such as activated alumina.
  • Exemplary combinations of metal oxides include alumina-zirconia, ceria-zirconia, alumina-ceria-zirconia, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria lanthana-alumina, baria lanthana-neodymia alumina, and alumina-ceria.
  • Exemplary aluminas include large pore boehmite, gamma-alumina, and delta/theta alumina.
  • Useful commercial aluminas include activated aluminas, such as high bulk density gamma-alumina, low or medium bulk density large pore gamma-alumina, and low bulk density large pore boehmite and gamma-alumina.
  • High surface area refractory oxide supports such as alumina support materials, also referred to as “gamma alumina” or “activated alumina,” can exhibit a BET surface area in excess of 60 m 2 /g, often up to about 200 m 2 /g or higher.
  • gamma alumina alumina support materials
  • activated alumina is usually a mixture of the gamma and delta phases of alumina, but may also contain substantial amounts of eta, kappa and theta alumina phases.
  • “BET surface area” has its usual meaning of referring to the Brunauer, Emmett, Teller method for determining surface area by N2 adsorption.
  • the active alumina has a specific surface area of 60 m 2 /g to 350 m 2 /g, such as 90 m 2 /g to 250 m 2 /g.
  • the amount of platinum group metal can vary, but in certain embodiments, the amount of platinum group metal is about 10 g/ft 3 to 100 g/ft 3 (based on the volume of an underlying substrate upon which the catalyst is disposed), including ranges such as at least about 40 g/ft 3 , at least about 45 g/ft 3 , at least about 50 g/ft 3 , at least about 55 g/ft 3 , at least about 60 g/ft 3 , at least about 65 g/ft 3 , at least about 70 g/ft 3 , at least about 75 g/ft 3 , or at least about 80 g/ft 3 .
  • Concentration of platinum group metal, or any other composition, on a substrate refers to concentration per any one three-dimensional section or zone, for instance any cross-section of a substrate or of the entire substrate, and is typically expressed as g/ft 3 or g/in 3 .
  • the overall oxidation catalyst composition is present on a substrate at a concentration of, for instance, from about 0.3 g/in 3 , about 0.4 g/in 3 , about 0.5 g/in 3 , about 0.6 g/in 3 , about 0.7 g/in 3 , about 0.8 g/in 3 , about 0.9 g/in 3 , or about 1.0 g/in 3 to about 1.5 g/in 3 , about 1.7 g/in 3 , about 1.8 g/in 3 , about 1.9 g/in 3 , about 2.0 g/in 3 , about 2.1 g/in 3 , about 2.2 g/in 3 , about 2.3 g/in 3 , or about 2.5 g/in 3 , based on the volume of the substrate.
  • Preparation of the platinum group metal-impregnated refractory oxide material can comprise impregnating the refractory oxide support material in particulate form with a platinum group metal solution, such as one or more of a platinum solution and a palladium solution.
  • a platinum group metal solution such as one or more of a platinum solution and a palladium solution.
  • Multiple platinum group metal components e.g., platinum, palladium, and/or rhodium
  • the support particles may be dry enough to absorb substantially all of the solution to form a moist solid.
  • Aqueous solutions of water soluble compounds or complexes of the platinum group metal component can be utilized, such as palladium or platinum nitrate, tetraammine palladium or platinum nitrate, or tetraammine palladium, or platinum acetate.
  • the particles are dried, such as by heat treating the particles at elevated temperature (e.g., 100- 150°C) for a period of time (e.g., 1-3 hours), and then calcining to convert the platinum group metal components to a more catalytically active form.
  • elevated temperature e.g., 100- 150°C
  • a period of time e.g., 1-3 hours
  • An exemplary calcination process involves heat treatment in air at a temperature of about 400-550°C for 1-3 hours. The above process can be repeated as needed to reach the desired level of platinum group metal impregnation.
  • the resulting material can be stored as a dry powder or in slurry form.
  • platinum group metal starting materials can be in the form of a colloidal dispersion of platinum group metal nanoparticles rather than in solution form. Such colloidal suspensions can be applied to a support in an incipient wetness technique as described above. Methods of impregnating supports with colloidal platinum group metal materials are described in U.S. Publ. Nos. 2017/0304805 to Xu et al. and 2019/0015781 to Wei et al., both of which are incorporated by reference herein in their entirety.
  • the emission treatment components can be disposed on a substrate.
  • Useful substrates may be 3-dimensional, having a length and a diameter and a volume, similar to a cylinder. The shape does not necessarily have to conform to a cylinder.
  • the length is an axial length defined by an inlet end and an outlet end.
  • the substrate for the disclosed component(s) may be constructed of any material typically used for preparing automotive catalysts and can comprise a metal or ceramic honeycomb structure.
  • the substrate provides a plurality of wall surfaces upon which the washcoat composition is applied and adhered, thereby acting as a substrate for the catalyst composition.
  • the substrate comprises a honeycomb substrate in the form of a wall-flow filter or a flow-through substrate.
  • Ceramic substrates may be made of any suitable refractory material, e.g. cordierite, cordierite-a-alumina, aluminum titanate, silicon titanate, silicon carbide, silicon nitride, zircon mullite, spodumene, alumina-silica-magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, a-alumina, an aluminosilicate, and the like.
  • suitable refractory material e.g. cordierite, cordierite-a-alumina, aluminum titanate, silicon titanate, silicon carbide, silicon nitride, zircon mullite, spodumene, alumina-silica-magnesia, zircon silicate, sillimanite, a magnesium silicate, zircon, petalite, a-alumina, an aluminosilicate, and the like.
  • Substrates may also be metallic, comprising one or more metals or metal alloys.
  • a metallic substrate may include any metallic substrate, such as those with openings or “punch- outs” in the channel walls.
  • the metallic substrates may be employed in various shapes such as pellets, corrugated sheet, or monolithic foam. Examples of metallic substrates include heat- resistant, base-metal alloys, especially those in which iron is a substantial or major component.
  • Such alloys may contain one or more of nickel, chromium, and aluminum, and the total of these metals may advantageously comprise at least about 15 wt% (weight percent) of the alloy, for instance, about 10 wt% to about 25 wt% chromium, about 1 wt% to about 8 wt% of aluminum, and from 0 wt% to about 20 wt% of nickel, in each case based on the weight of the substrate.
  • metallic substrates include those having straight channels; those having protruding blades along the axial channels to disrupt gas flow and to open communication of gas flow between channels; and those having blades and also holes to enhance gas transport between channels allowing for radial gas transport throughout the monolith.
  • Metallic substrates may be advantageously employed in certain embodiments in a close-coupled position, allowing for fast heat-up of the substrate and, correspondingly, fast heat up of a catalyst composition coated therein.
  • any suitable substrate for the articles disclosed herein may be employed, such as a monolithic substrate of the type having fine, parallel gas flow passages extending there through from an inlet or an outlet face of the substrate such that passages are open to fluid flow there through (“flow-through substrate”).
  • Another suitable substrate is of the type have a plurality of fine, substantially parallel gas flow passages extending along the longitudinal axis of the substrate where each passage may be blocked at one end of the substrate body, with alternate passages blocked at opposite end-faces (“wall-flow filter”).
  • Flow-through and wall-flow substrates are also taught, for example, in U.S. Publ. Nos. 2017/0333883 to Mohanan et al., which is incorporated herein by reference in its entirety.
  • the substrate is a flow-through substrate (e.g., a monolithic flow-through substrate, including a monolithic flow-through honeycomb substrate).
  • Flow- through substrates have fine, parallel gas flow passages extending from an inlet end to an outlet end of the substrate such that passages are open to fluid flow.
  • the passages which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls on which a coating (e.g., a catalytic coating) is disposed so that gases flowing through the passages contact the coating material.
  • the flow passages of the flow-through substrate are thin-walled channels, which can be of any suitable cross-sectional shape and size such as trapezoidal, rectangular, square, sinusoidal, hexagonal, oval, circular, etc.
  • the flow-through substrate can be ceramic or metallic as described above.
  • Flow-through substrates can, for example, have a volume of from about 50 in 3 to about 1200 in 3 , a cell density (inlet openings) of from about 60 cells per square inch (cpsi) to about 500 cpsi or up to about 900 cpsi, for example from about 200 cpsi to about 400 cpsi and a wall thickness of from about 50 microns to about 200 microns or about 400 microns.
  • cpsi cells per square inch
  • FIGs. 1A and IB illustrate an exemplary substrate 2 in the form of a flow-through substrate coated with a coating composition as described herein.
  • the exemplary substrate 2 has a cylindrical shape and a cylindrical outer surface 4, an upstream end face 6 and a corresponding downstream end face 8, which is identical to end face 6.
  • Substrate 2 has a plurality of fine, parallel gas flow passages 10 formed therein.
  • flow passages 10 are formed by walls 12 and extend through carrier 2 from upstream end face 6 to downstream end face 8, the passages 10 being unobstructed so as to permit the flow of a fluid, e.g., a gas stream, longitudinally through substrate 2 via flow passages 10 thereof.
  • a fluid e.g., a gas stream
  • a coating composition consists of both a discrete bottom layer 14 (e.g., a LT-NA component) adhered to the walls 12 of the carrier member and a second discrete top layer 16 (e.g., an LT-WA component) coated over the bottom layer 14.
  • a discrete bottom layer 14 e.g., a LT-NA component
  • a second discrete top layer 16 e.g., an LT-WA component
  • the present disclosure can be practiced with one or more (e.g., two, three, or four or more) composition layers and is not limited to the two-layer embodiment illustrated in FIG. IB.
  • the substrate is a wall-flow filter, which has a plurality of fine, substantially parallel gas flow passages extending along the longitudinal axis of the substrate. Each passage may be blocked at one end of the substrate body, with alternate passages blocked at opposite end-faces.
  • Such monolithic wall-flow filter substrates may contain up to about 900 or more flow passages (or “cells”) per square inch of cross-section, although far fewer may be used.
  • the substrate may have from about 7 to 600, more usually from about 100 to 400, cells per square inch (“cpsi”).
  • the cells can have cross-sections that are rectangular, square, circular, oval, triangular, hexagonal, or are of other polygonal shapes.
  • FIG. 2 A cross-section view of a monolithic wall-flow filter substrate section is illustrated in FIG. 2, showing alternating blocked/ plugged and open passages (cells).
  • Blocked or plugged ends 100 alternate with open passages 101, with each opposing end open and blocked, respectively.
  • the filter has an inlet end 102 and outlet end 103.
  • the arrows crossing porous cell walls 104 represent exhaust gas flow entering the open cell ends, diffusing through the porous cell walls 104 and exiting the open outlet cell ends. Plugged ends 100 prevent gas flow and encourage diffusion through the cell walls.
  • Each cell wall will have an inlet side 104a and outlet side 104b.
  • the passages are enclosed by the cell walls.
  • the wall-flow filter article substrate may have a volume of, for instance, from about 50 cm 3 , about 100 cm 3 , about 200 cm 3 , about 300 cm 3 , about 400 cm 3 , about 500 cm 3 , about 600 cm 3 , about 700 cm 3 , about 800 cm 3 , about 900 cm 3 , or about 1000 cm 3 to about 1500 cm 3 , about 2000 cm 3 , about 2500 cm 3 , about 3000 cm 3 , about 3500 cm 3 , about 4000 cm 3 , about 4500 cm 3 , or about 5000 cm 3 .
  • Wall-flow filter substrates can have a wall thickness from about 50 microns to about 2000 microns, for example from about 50 microns to about 450 microns or from about 150 microns to about 400 microns.
  • the walls of the wall-flow filter are porous and may have a wall porosity of at least about 50% or at least about 60% with an average pore size of at least about 5 microns prior to disposition of the functional coating.
  • the wall-flow filter substrate in some embodiments will have a porosity of > 50%, > 60%, > 65%, or > 70%.
  • the wallflow filter article substrate will have a wall porosity of from about 50%, about 60%, about 65%, or about 70% to about 75%, about 80%, or about 85% and an average pore size of from about 5 microns, about 10 microns, about 20 microns, about 30 microns, about 40 microns, or about 50 microns to about 60 microns, about 70 microns, about 80 microns, about 90 microns, or about 100 microns prior to disposition of a catalytic coating.
  • the terms “wall porosity” and “substrate porosity” are interchangeable. Porosity is the ratio of void volume divided by the total volume of a substrate.
  • Pore size may be determined according to ISO15901-2 (static volumetric) procedure for nitrogen pore size analysis. Nitrogen pore size may be determined on Micromeritics TRISTAR 3000 series instruments. Nitrogen pore size may be determined using BJH (Barrett-Joyner-Halenda) calculations and 33 desorption points. Useful wall-flow filters have high porosity, allowing high loadings of catalyst compositions without excessive backpressure during operation.
  • Coatings [00146] The compositions as disclosed herein are coated on a substrate, such as the substrates noted herein.
  • the coatings may comprise one or more thin, adherent coating layers disposed on and in adherence to least a portion of a substrate.
  • the coatings may be on the substrate wall surfaces and/or in the pores of the substrate walls, that is “in” and/or “on” the substrate walls.
  • the phrase “a coating disposed on the substrate” means on any surface, for example on a wall surface and/or on a pore surface.
  • compositions are can be applied in the form of a washcoat.
  • a washcoat is formed by preparing a slurry containing a specified solids content (e.g., about 10% to about 60% by weight) in a liquid vehicle, which is then applied to a substrate and dried and calcined to provide a coating layer. If multiple coating layers are applied, the substrate can be dried and calcined after each layer is applied and/or after the number of desired multiple layers are applied.
  • a specified solids content e.g., about 10% to about 60% by weight
  • the washcoat slurries may optionally contain a binder (e.g., alumina, silica), water- soluble or water-dispersible stabilizers, promoters, associative thickeners, and/or surfactants (including anionic, cationic, non-ionic or amphoteric surfactants).
  • a washcoat can comprise a ZrCh binder derived from a suitable precursor such as zirconyl acetate, zirconium acetate, or any other suitable zirconium precursor such as zirconyl nitrate, and zirconium nitrate.
  • Zirconyl acetate binder provides a coating that remains homogeneous and intact after thermal aging.
  • binders include, but are not limited to, alumina and silica.
  • Alumina binders include aluminum oxides, aluminum hydroxides and aluminum oxyhydroxides. Aluminum salts and colloidal forms of alumina many also be used.
  • Silica binders include various forms of SiO2, including silicates and colloidal silica. Binder compositions may comprise any combination of zirconia, alumina and silica. When present, the binder can be used in an amount of about 1-5 wt% of the total washcoat loading.
  • the pH range for the slurry can be about 3 to about 6. Addition of acidic or basic species to the slurry can be carried out to adjust the pH accordingly. For example, in some embodiments, the pH of the slurry is adjusted by the addition of ammonium hydroxide or aqueous nitric acid.
  • the slurry can be milled to enhance mixing of the particles and formation of a homogenous material.
  • the milling can be accomplished in a ball mill, continuous mill, or other similar equipment, and the solids content of the slurry may be, e.g., about 20-60 wt%, such as about 20-40 wt%.
  • the post-milling slurry is characterized by a D90 particle size of about 10 microns to about 40 microns, such as about 10 microns to about 30 microns or about 10 microns to about 15 microns.
  • the slurry is then coated on the substrate using any washcoat technique known in the art.
  • the substrate is dipped one or more times in the slurry or otherwise coated with the slurry. Thereafter, the coated substrate is dried at an elevated temperature (e.g., 100-150°C) for a period of time (e.g., 10 min - 3 hours) and then calcined by heating, e.g., at 400-600°C, for about 10 minutes to about 3 hours.
  • the final washcoat coating layer can be viewed as essentially solvent-free.
  • the washcoat loading obtained by the above described washcoat technique can be determined through calculation of the difference in coated and uncoated weights of the substrate. As will be apparent to those of skill in the art, the loading can be modified by altering the slurry rheology. In addition, the coating/drying/calcining process to generate a washcoat can be repeated as needed to build the coating to the desired loading level or thickness, meaning more than one washcoat may be applied.
  • the washcoat(s) can be applied such that different coating layers may be in direct contact with the substrate.
  • one or more “undercoats” may be present, so that at least a portion of a catalytic or sorbent coating layer or coating layers are not in direct contact with the substrate (but rather, are in contact with the undercoat).
  • One or more “overcoats” may also be present, so that at least a portion of the coating layer or layers are not directly exposed to a gaseous stream or atmosphere (but rather, are in contact with the overcoat).
  • Different coating layers may be in direct contact with each other. Alternatively, different coating layers may not be in direct contact.
  • Various coating layers can be viewed as an undercoat, an overcoat, or an interlayer.
  • An undercoat is a layer “under” a coating layer
  • an overcoat is a layer “over” a coating layer
  • an interlayer is a layer “between” two coating layers.
  • the interlayer(s), undercoat(s) and overcoat(s) may contain one or more functional compositions or may be free of functional compositions.
  • the various coatings may advantageously be “zoned”, comprising zoned layers. This may also be described as “laterally zoned”.
  • a layer may extend from the inlet end towards the outlet end extending about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90% of the substrate length.
  • Another layer may extend from the outlet end towards the inlet end extending about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90% of the substrate length.
  • Different coating layers may be adjacent to each other and not overlay each other. Alternatively, different layers may overlay a portion of each other, providing a third “middle” zone.
  • the middle zone may, for example, extend from about 5% to about 80% of the substrate length, for example about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, or about 70% of the substrate length.
  • a method for treating a gaseous exhaust stream comprising a mixture of nitrogen oxides (N0 x ) flowing from the exhaust manifold of an ammonia-fueled engine, such as for NOx abatement.
  • such methods may be effective to not only abate NO X emissions associated with such engines, but also to adsorb certain gaseous components of exhaust streams emitted by such engines in order to enhance the effectiveness of the system.
  • the method comprises contacting the gaseous exhaust stream with an SCR catalyst and one or more adsorption components positioned upstream of the SCR catalyst, the adsorption component being chosen from the group consisting of low temperature N0 x adsorbers (LT-NA), low temperature ammonia adsorbers (LT-AA), low temperature water vapor adsorbers (LT-WA), and combinations thereof.
  • the method may further comprise treating the exhaust stream with one or more oxidation catalysts, such as an AMOx catalyst, typically positioned downstream of the SCR catalyst.
  • the LT-NA component is effective for releasing one or both of NO and NO2 at a temperature above about 300°C. In some embodiments, the LT-NA component is effective for releasing one or both of NO and NO2 at a temperature above about 325°C.
  • the present compositions, components, systems, and methods are suitable for treatment of exhaust gas streams from mobile emissions sources such as trucks and automobiles.
  • the present compositions, components, systems, and methods are also suitable for treatment of exhaust gas streams from stationary sources such as power plants.
  • compositions, components, systems, and methods described herein can be made without departing from the scope of any embodiments or aspects thereof.
  • the compositions, components, systems, and methods provided are exemplary and are not intended to limit the scope of the claimed embodiments. All of the various embodiments, aspects, and options disclosed herein can be combined in all variations.
  • the scope of the compositions, components, systems, and methods described herein comprise all actual or potential combinations of embodiments, aspects, options, examples, and preferences herein. All patents and publications cited herein are incorporated by reference herein for the specific teachings thereof as noted, unless other specific statements of incorporation are specifically provided
  • Example 1 DOC Article
  • a bottom coat catalyst slurry containing milled alumina powder impregnated with Pd (0.5 wt.%), Ba (0.8 wt.%), and Pt (0.3 wt.%) was prepared and adjusted to a pH of 4.5 to 5.0 with nitric acid.
  • the bottom coat slurry had a solid content of 38 wt.%.
  • a topcoat slurry containing alumina, Mn (5 wt.%), and Pt-amine (3.3 wt.%) was prepared, milled, and adjusted to a pH of 4.5 to 5.0 with nitric acid.
  • the topcoat slurry had a solid concentration of 37 wt.%.
  • Zeolite beta (0.35 g/in 3 ) was added to the topcoat slurry.
  • the bottom coat slurry was applied to the entire core length of a 1” x 3”, 400 cpsi (cells per square inch) honeycomb substrate via a washcoat technique.
  • the coated substrate was air dried at 120°C and calcined at 500°C for 1 hour, providing a coating loading of 1.6 g/in 3 .
  • the top coat slurry was applied over the entire bottom coat and was dried and calcined as the bottom coat, to provide a total coating loading of 2.5 g/in 3 and a Pt/Pd weight ratio of 3/1.
  • Example 2 LT-NA-DOC Article (NOx adsorber-containing DOC, zone-design)
  • the article comprised a zoned design, where the entire core length of a 1” x 3”, 400 cpsi (cells per square inch) honeycomb substrate was coated with a Pd/ Ferrierite (FER) bottom coat containing a PGM (platinum group metal) loading of 120 g/ft 3 and a Pt/Pd weight ratio of 0/1, to serve as the NOx adsorber (LT-NA).
  • FER Ferrierite
  • the rear half of the substrate was coated with a DOC topcoat containing of a mixture of 5 wt.% Mn on alumina support and 5 wt.% Si on alumina support (1.4 g/in 3 ), the mixture impregnated with Pt and Pd (a Pt/Pd weight ratio of 9/1, with a PGM loading of 80 g/ft 3 ), and aHC-trap molecular sieve, 2 wt.% Fe/Beta (0.7 g/in 3 ).
  • the total PGM loading of this LT-NA-DOC was 160 g/ft 3 with a Pt/Pd distribution of 36/124.
  • Example 3 LT-NA-DOC Article (NOx adsorber-containing DOC, layering-design)
  • the article comprised a layered design, distinct from Example 2, where the entire core length of a 1” x 3”, 400 cpsi (cells per square inch) honeycomb substrate was coated with LT-NA-DOC article consisting of a Pd/Ferrierite (FER) bottom coat with a PGM loading of 80 g/ft 3 , to serve as aNOx adsorber (LT-NA).
  • FER Pd/Ferrierite
  • a DOC topcoat consisted of a mixture of 5 wt.% Mn on alumina support and 5 wt.% Si on alumina support (1.4 g/in 3 ), the mixture impregnated with Pt and Pd (a Pt/Pd weight ratio of 9/1, with a PGM loading of 60 g/ft 3 ).
  • the total PGM loading of this LT-NA-DOC was 140 g/ft 3 , with a Pt/Pd distribution of 54/86.
  • a catalyst slurry containing milled Cu/CHA (3.3 wt.% Cu) and 5 wt.% zirconium acetate binder was prepared and applied via a washcoat technique to a 300/12, 1" diameter x 5.5" length honeycomb substrate filter with alternate channel openings having a volume of 70.8 cm 3 .
  • the coated core was dried at 130°C and calcined at 550°C for 1 hour to provide a coating loading of 1.75 g/in 3 .
  • the coated DOC article of Example 1 was hydrothermally aged in a tube furnace at 800°C for 16 hours with a feed gas composition of 10% H2O, 10% O2, and balance N2.
  • the coated LT-NA-DOC articles of Example 2 and Example 3 were hydrothermally aged in a tube furnace at 800°C for 16 hours and at 750°C for 25 hours, respectively, with a feed gas composition of 10% H2O, 10% O2, and balance N2.
  • the SCR article was also hydrothermally aged in a tube furnace at 750°C for 16 hours with a feed gas composition of 10% H2O, 10% O2, and balance N2.
  • Samples were evaluated in a lab reactor as a system of DOC + SCR or LT-NA-DOC + SCR, where the SCR article is installed downstream of the DOC or LT-NA- DOC article.
  • the lab reactor was equipped to conduct a simulated WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) where engine out emissions of THC, CO, and NO X can be recreated with dynamic temperature and flow traces on a 1 Hz basis.
  • Two sampling lines were installed in the lab reactor to measure the effectiveness of proposed exhaust gas treatment system for the NHs-fueled scenarios. One sampling line was taken between the DOC or LT-NA-DOC article and the SCR article, and a second sampling line was taken after the combined system.
  • Experiment 3 The catalyst systems of Experiment 2 were used for the treatment of simulated NFE-fueled vehicle emissions with a higher amount of N0 x in the exhaust gas. Additional NH3 fuel was used in the cylinder to generate the same heating efficiency as diesel because NEE has a lower heating value compared to diesel on a volume basis.
  • FIG. 4 depicts temperature traces for the inlet of the DOC, after the DOC, and before the SCR, and space velocity (SV) traces that simulate various vehicle exhausts (including the diesel exhaust of Experiment 1) for systems comprising the DOC article of Example 1 in combination with the SCR article of Example 4. The averages of three replicates are depicted.
  • FIG. 5 depicts the inlet NO X profile for the experiments for exhaust treatment systems comprising the DOC article of Example 1 in combination with the SCR article of Example 4. The averages of three replicates are depicted.
  • FIG. 6 depicts NO X conversion performance under WLTC protocol for the three experiments for exhaust treatment systems comprising the DOC article of Example 1, either alone or in combination with the SCR article of Example 4.
  • Inlet NO X profiles correspond to 0.98 g and 1.26 g of NO X engine out emissions for experiments 1&2 and experiment 3, respectively.
  • FIG. 7 depicts NOx conversion under WLTC protocol for the three experiments, where the LT-NA-DOC article of Example 2, either alone or in combination with the SCR article of Example 4, under the conditions of Experiment 1, and the LT-NA-DOC article of Example 3, either alone or in combination with the SCR article of Example 4, under the conditions of Experiments 2 and 3.
  • Inlet NOx profiles correspond to 0.98 g and 1.26 g of NOx engine out emissions for Experiments 1&2 and Experiment 3, respectively.
  • FIG. 8 depicts cumulative NOx emission under the FTP cold start US06 protocol, after the DOC + SCR system of Examples 1 and 4, and after the LT-NA-DOC + SCR exhaust treatment system of Examples 3 and 4, for the first 500 seconds of the FTP cycle.
  • FIG. 9 depicts NOx conversion under the FTP cold start US06 protocol, after the DOC + SCR system of Examples 1 and 4, and after the LT-NA-DOC + SCR exhaust treatment system of Examples 3 and 4, for the first 500 seconds of the FTP cycle.
  • the results of FIGs. 8 and 9 indicate that a LT-NA-DOC + SCR exhaust treatment system can manage NFL-fueled vehicle exhausts for Euro7 applications, and further evidence that a LT-NA-DOC article can improve the overall exhaust treatment system performance for NOx abatement.
  • the NOx conversion performance for the LT-NA-DOC + SCR system suggests that the use of LT-NA-DOC article reduces more than 50% of the cold start NOx emissions for the first 500 s of the FTP cycle (FIG. 8).
  • the application of LT-NA-DOC article enhances NOx conversion for the entire exhaust treatment system by 6% (from 82% to 88%), as shown in FIG. 9 and reported in Table 6 below.
  • a catalyst slurry containing milled Cu-CHA (3.3 wt.% Cu) and 5 wt.% zirconium acetate binder was prepared and applied via a washcoat technique to a 400 cpsi, 1" diameter x 5" length honeycomb flow-through substrate having a volume of 64.4 cm 3 .
  • the coated core was dried at 130°C and calcined at 550°C for 1 hour to provide a coating loading of 2.85 g/in 3 .
  • Example 7 Selective Catalytic Reduction (Fe-CHA-SCR) Article
  • a catalyst slurry containing milled Fe-CHA (2.5 wt.% Fe) and 5 wt.% zirconium acetate binder was prepared and applied via a washcoat technique to a 600 cpsi, 1" diameter x 1.5" length flow-through honeycomb substrate having a volume of 19.3 cm 3 .
  • the coated core was dried at 130°C and calcined at 550°C for 1 hour to provide a coating loading of 2.85 g/in 3 .
  • Example 8 Ammonia Oxidation Catalyst Article
  • An AMOx catalyst article with a layered deign was prepared on a flow-through honeycomb substrate with having a volume of 12.9 cm 3 .
  • a bottom layer of Pt (2 g/ft 3 ) supported on a silica-alumina oxide (0.5 g/in 3 ) was prepared and applied via a washcoat technique to the full length of the substrate.
  • a top layer of Cu-CHA (CuO loading of 5.1 wt%) at 2.75 g/in 3 loading and contained 5 wt.% zirconium acetate binder was prepared and applied via a washcoat technique to the coated support.
  • the coated core was dried and calcined at 450°C for 1 hour.
  • Example 9 Pollution Abatement
  • the Cu-CHA SCR article of Example 6 was hydrothermally aged in a tube furnace at 750°C for 16 hours with a feed gas composition of 10% H2O, 10% O2, balance N2.
  • the Fe- CHA SCR article and AMOx article of Example 7 and Example 8 were hydrothermally aged in a tube furnace at 650°C for 100 hours with a feed gas composition of 10% H2O, 10% O2, and balance N2.
  • the SCR article was also hydrothermally aged in a tube furnace at 750°C for 16 hours with a feed gas composition of 10% H2O, 10% O2, and balance N2.
  • Samples were evaluated in a lab reactor as a system of Cu-CHA SCR + AMOx or Fe-CHA SCR + Cu-CHA SCR + AMOx.
  • the lab reactor was equipped to simulate dynamic temperature, flow, and engine-out emission conditions for a WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) on a second-by-second basis.
  • the WLTC drive cycle represents 23 km of driving under various speed and load conditions.
  • One sampling line was installed in the lab reactor to measure the effectiveness of proposed exhaust gas treatment systems for the NHs-fueled scenarios after the combined system.
  • the engine-out NOx profile for the current example correspond to 18.8 g of engine-out NOx.
  • Ammonia was injected prior to the first SCR catalyst at NHs/NOx ratio of 1.05 unless otherwise stated.
  • Experiment 8 System 2 with (i) ammonia dosing adjusted to NHs/NOX ratio of 1.25 for 1140-1260 sec and 1500-1740 sec and (ii) air to fuel ratio (X) adjusted to 1.00 when NOx emissions are 0 or 1.05 when NOx emissions are >0, for the entire WLTC cycle.
  • FIG. 10 depicts temperature traces for the inlet temperature, outlet temperature, and the space velocity (SV) for the WLTC cycle that simulates the vehicle exhausts for systems of Experiments 4 to 8. The averages of three replicates are depicted.
  • FIG 11 depicts the overall NOx conversion from Experiments 4 to 8. In all cases, the overall NOx conversion meets or surpasses the current Euro7 NOx emission regulation of 0.09 mg/km.
  • FIG. 12 depicts the inlet NOx and outlet NOx profiles for Experiments 4 and 7 over the range of 1140 to 1800 seconds.
  • FIG. 13 depicts the inlet NOx and outlet NOx profiles for Experiments 4 and 5 over the range of 1140 to 1800 seconds. The averages of three replicates are depicted.
  • FIGs. 12 and 13 reveal the benefit of adding Fe-CHA SCR to the system (Experiment 4 versus Experiment 7) by improving high temperature NOx conversion as well as reducing undesired N2O emissions (not shown).
  • FIGs. 12 and 13 also reveal the benefit of increasing NH3 dosing in the 1140-1260 sec and 1500-1740 sec sections of the drive cycle (Experiment 4 versus Experiment 5); as it leads to improved NOx conversion.
  • These results show NOx emissions from NFh-fueled engines can be further eliminated using smart NH3 dosing strategies, such as adjusting ANR based on vehicle speed, load, and exhaust temperature.
  • FIG. 14 depicts the cumulative NOx emissions for Experiments 7 and 8 with an inset depicting the air to fuel ratio (X) with a visual cutoff of 2.00.
  • adjusting air to fuel ratio (X) from >20, which is commonly observed in diesel applications, to 1.00 or 1.05, which is commonly observed in gasoline applications, based on whether NOx was present did not show significant impact on the NOx conversion efficiency or NOx emissions, indicating that the application of such technologies can encompass air to fuel ratios that are typical for gasoline or diesel engine operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

La présente invention a pour objet un système de traitement d'émissions permettant de réduire les NOx dans un courant d'échappement d'un moteur alimenté par de l'ammoniac, le système de traitement d'émissions comprenant un catalyseur à réduction catalytique sélective (SCR) disposé sur un substrat en communication fluidique avec le courant d'échappement, un catalyseur d'oxydation disposé sur un substrat positionné soit en amont soit en aval du catalyseur SCR et en communication fluidique avec le courant d'échappement et le catalyseur SCR, et éventuellement, un ou plusieurs composants d'adsorption disposés sur un substrat positionné en amont et/ou en aval du catalyseur SCR et en communication fluidique avec le courant d'échappement et le catalyseur SCR, le composant d'adsorption étant choisi parmi des adsorbeurs de NOx à basse température (LT-NA), des adsorbeurs d'ammoniac à basse température (LT-AA), des adsorbeurs de vapeur d'eau à basse température (LT-WA) et des associations de ceux-ci. L'invention concerne en outre un procédé de traitement associé d'un gaz d'échappement.
PCT/US2022/080205 2022-06-17 2022-11-21 Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac WO2023244279A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/807,392 2022-06-17
US17/807,392 US11890575B2 (en) 2019-12-19 2022-06-17 Exhaust treatment system for ammonia-fueled vehicles

Publications (1)

Publication Number Publication Date
WO2023244279A1 true WO2023244279A1 (fr) 2023-12-21

Family

ID=84829681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/080205 WO2023244279A1 (fr) 2022-06-17 2022-11-21 Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac

Country Status (1)

Country Link
WO (1) WO2023244279A1 (fr)

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010238A (en) 1973-03-26 1977-03-01 Sumitomo Chemical Company, Limited Proces for selective removal of nitrogen oxides from waste gases
US4085193A (en) 1973-12-12 1978-04-18 Mitsubishi Petrochemical Co. Ltd. Catalytic process for reducing nitrogen oxides to nitrogen
US4221768A (en) 1976-04-08 1980-09-09 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust and waste gases
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4782039A (en) 1986-05-19 1988-11-01 Johnson Matthey, Inc. Selective catalytic reduction catalyst and a process for preparing the catalyst
US5516497A (en) 1989-04-20 1996-05-14 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US6171556B1 (en) 1992-11-12 2001-01-09 Engelhard Corporation Method and apparatus for treating an engine exhaust gas stream
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US20110265463A1 (en) 2009-01-08 2011-11-03 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
US20110283684A1 (en) 2010-05-21 2011-11-24 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US8283182B2 (en) 2003-03-18 2012-10-09 Platform Diagnostics Limited Agglutination based sample testing device
US8465713B2 (en) 2009-04-23 2013-06-18 Treibacher Industrie Ag Catalyst composition for selective catalytic reduction of exhaust gases
US8464515B2 (en) 2010-05-21 2013-06-18 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US8883119B2 (en) 2009-11-24 2014-11-11 Basf Se Process for the preparation of zeolites having CHA structure
US8904994B2 (en) 2010-04-26 2014-12-09 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US8975206B2 (en) 2010-04-16 2015-03-10 Treibacher Industrie Ag Catalyst composition for selective catalytic reduction of exhaust gases
US9017626B2 (en) 2013-03-14 2015-04-28 Basf Corporation Selective catalytic reduction catalyst system
US20150273452A1 (en) * 2014-04-01 2015-10-01 Johnson Matthey Public Limited Company DIESEL OXIDATION CATALYST WITH NOx ADSORBER ACTIVITY
US9242238B2 (en) 2012-10-19 2016-01-26 Basf Corporation Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems, and methods
US9341111B2 (en) 2008-11-19 2016-05-17 Hitachi Zosen Corporation Ammonia-engine system
US9352307B2 (en) 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
US20170304805A1 (en) 2014-10-07 2017-10-26 Basf Corporation Synthesis of Colloidal Precious Metals Nanoparticles with Controlled Size And Morphology
US20170333883A1 (en) 2014-10-30 2017-11-23 Basf Corporation Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods
US20170341026A1 (en) 2016-05-31 2017-11-30 Johnson Matthey Public Limited Company Vanadium Catalysts for High Engine-Out NO2 Systems
US20180100469A1 (en) 2015-06-10 2018-04-12 Sturman Digital Systems, Llc Dual Fuel Ammonia Combustion in Diesel Engines
US20180304236A1 (en) 2015-12-17 2018-10-25 Basf Corporation Selective catalytic reduction (scr) catalyst comprising a composite oxide containing v and sb, preparation process thereof, and us thereof for nitrogen oxides removal
US20190015781A1 (en) 2016-01-06 2019-01-17 Basf Corporation Diesel oxidation catalyst comprising platinum group metal nanoparticles
JP2019167823A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
US20190344247A1 (en) 2016-12-30 2019-11-14 Basf Se An extruded honeycomb catalyst
WO2021126935A1 (fr) * 2019-12-19 2021-06-24 Basf Corporation Système de traitement d'échappement pour véhicules alimentés par ammoniac
US11125133B2 (en) * 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010238A (en) 1973-03-26 1977-03-01 Sumitomo Chemical Company, Limited Proces for selective removal of nitrogen oxides from waste gases
US4085193A (en) 1973-12-12 1978-04-18 Mitsubishi Petrochemical Co. Ltd. Catalytic process for reducing nitrogen oxides to nitrogen
US4221768A (en) 1976-04-08 1980-09-09 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust and waste gases
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4782039A (en) 1986-05-19 1988-11-01 Johnson Matthey, Inc. Selective catalytic reduction catalyst and a process for preparing the catalyst
US5516497A (en) 1989-04-20 1996-05-14 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US6171556B1 (en) 1992-11-12 2001-01-09 Engelhard Corporation Method and apparatus for treating an engine exhaust gas stream
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US8283182B2 (en) 2003-03-18 2012-10-09 Platform Diagnostics Limited Agglutination based sample testing device
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US9341111B2 (en) 2008-11-19 2016-05-17 Hitachi Zosen Corporation Ammonia-engine system
US20110265463A1 (en) 2009-01-08 2011-11-03 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US8465713B2 (en) 2009-04-23 2013-06-18 Treibacher Industrie Ag Catalyst composition for selective catalytic reduction of exhaust gases
US8883119B2 (en) 2009-11-24 2014-11-11 Basf Se Process for the preparation of zeolites having CHA structure
US9352307B2 (en) 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
US8975206B2 (en) 2010-04-16 2015-03-10 Treibacher Industrie Ag Catalyst composition for selective catalytic reduction of exhaust gases
US8904994B2 (en) 2010-04-26 2014-12-09 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US20110271664A1 (en) 2010-05-05 2011-11-10 Basf Corporation Integrated SCR and AMOX Catalyst Systems
US20110283684A1 (en) 2010-05-21 2011-11-24 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US8464515B2 (en) 2010-05-21 2013-06-18 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine
US9242238B2 (en) 2012-10-19 2016-01-26 Basf Corporation Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems, and methods
US9017626B2 (en) 2013-03-14 2015-04-28 Basf Corporation Selective catalytic reduction catalyst system
US20150273452A1 (en) * 2014-04-01 2015-10-01 Johnson Matthey Public Limited Company DIESEL OXIDATION CATALYST WITH NOx ADSORBER ACTIVITY
US20170304805A1 (en) 2014-10-07 2017-10-26 Basf Corporation Synthesis of Colloidal Precious Metals Nanoparticles with Controlled Size And Morphology
US20170333883A1 (en) 2014-10-30 2017-11-23 Basf Corporation Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods
US20180100469A1 (en) 2015-06-10 2018-04-12 Sturman Digital Systems, Llc Dual Fuel Ammonia Combustion in Diesel Engines
US20180304236A1 (en) 2015-12-17 2018-10-25 Basf Corporation Selective catalytic reduction (scr) catalyst comprising a composite oxide containing v and sb, preparation process thereof, and us thereof for nitrogen oxides removal
US20190015781A1 (en) 2016-01-06 2019-01-17 Basf Corporation Diesel oxidation catalyst comprising platinum group metal nanoparticles
US20170341026A1 (en) 2016-05-31 2017-11-30 Johnson Matthey Public Limited Company Vanadium Catalysts for High Engine-Out NO2 Systems
US20190344247A1 (en) 2016-12-30 2019-11-14 Basf Se An extruded honeycomb catalyst
US11125133B2 (en) * 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
JP2019167823A (ja) * 2018-03-21 2019-10-03 株式会社豊田中央研究所 アンモニアの燃焼により駆動力を得る内燃機関の排気浄化装置及び方法
WO2021126935A1 (fr) * 2019-12-19 2021-06-24 Basf Corporation Système de traitement d'échappement pour véhicules alimentés par ammoniac

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLEKEN, F. ET AL., TOPICS IN CATALYSIS, vol. 52, 2009, pages 218 - 228
HECK, RONALDFARRAUTO, ROBERT: "Catalytic Air Pollution Control", 2002, WILEY-INTERSCIENCE, pages: 18 - 19

Similar Documents

Publication Publication Date Title
KR102524761B1 (ko) 촉매 물품
US11890575B2 (en) Exhaust treatment system for ammonia-fueled vehicles
JP2018532573A (ja) 排気ガス処理触媒
CN117489449A (zh) 排气处理系统
US20210178380A1 (en) Advanced nox reduction catalysts
US11413607B2 (en) Diesel oxidation catalysts for ultralow NOx control
KR102524756B1 (ko) 촉매 조성물
US11125133B2 (en) Hydrogen-assisted integrated emission control system
US20220212162A1 (en) LOW TEMPERATURE NOx ADSORBER WITH ENHANCED HYDROTHERMAL STABILITY
US20200078768A1 (en) Diesel oxidation catalyst
US20220241761A1 (en) Coordinated emission control system including diesel oxidation catalyst and low temperature nox adsorber
US20230003150A1 (en) LEAN NOx TRAP PLUS LOW TEMPERATURE NOx ADSORBER SYSTEM FOR LOW TEMPERATURE NOx TRAPPING
US11865525B2 (en) Zeolite with Cu and Pd co-exchanged in a composite
US11890600B2 (en) Low temperature NOx adsorber with enhanced regeneration efficiency
WO2023244279A1 (fr) Système de traitement d'échappement pour véhicules alimentés par de l'ammoniac
KR102471292B1 (ko) 통합된 배출물 제어 시스템
WO2021142046A1 (fr) Support acide pour le stockage/la libération de nox

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22839090

Country of ref document: EP

Kind code of ref document: A1