WO2023243837A1 - Apparatus and method for controlling driving of electrochromic device - Google Patents

Apparatus and method for controlling driving of electrochromic device Download PDF

Info

Publication number
WO2023243837A1
WO2023243837A1 PCT/KR2023/004766 KR2023004766W WO2023243837A1 WO 2023243837 A1 WO2023243837 A1 WO 2023243837A1 KR 2023004766 W KR2023004766 W KR 2023004766W WO 2023243837 A1 WO2023243837 A1 WO 2023243837A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
electrochromic device
electrical characteristics
test
voltage
Prior art date
Application number
PCT/KR2023/004766
Other languages
French (fr)
Korean (ko)
Inventor
박민정
김정필
안병욱
나용상
오승배
이성환
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220071743A external-priority patent/KR20230171315A/en
Priority claimed from KR1020220071741A external-priority patent/KR20230171313A/en
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Publication of WO2023243837A1 publication Critical patent/WO2023243837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/19Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using electrochromic devices

Definitions

  • One embodiment of the present invention relates to an electrochromic device driving control device and method, and in particular, to quickly identify external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device. It relates to an electrochromic device driving control device and method that can control the driving of the device.
  • Another embodiment of the present invention relates to an electrochromic device driving control device and method.
  • an electrochromic device driving control device and method when driving the electrochromic device, based on data that previously measured the electrical characteristics of the electrochromic device according to external environmental conditions, It relates to an electrochromic device driving control device and method that can feedback control the operation of an electrochromic device from the electrical characteristics of the electrochromic device measured over a time interval.
  • Electrochromism is a phenomenon in which color changes reversibly depending on the direction of the electric field when voltage is applied. Devices with this characteristic are called electrochromic devices.
  • An electrochromic device has no color when there is no external electron movement, but becomes colored when electrons are supplied and reduced or oxidized by losing electrons, or, conversely, when there is no external electron supply, it takes on color and then becomes electrochromic. When supplied and reduced or oxidized by losing electrons, the color disappears.
  • Electrochromic devices are used to control the light transmittance or reflectivity of architectural window glass or automobile mirrors, and as it has recently become known that they not only change color in the visible light region but also have an infrared blocking effect, their potential application as energy-saving products has increased. It is also receiving great attention.
  • An electrochromic device consists of an electrode layer, an electrochromic layer, and an electrolyte layer sequentially stacked between transparent substrates at predetermined intervals, and the electrochromic layer changes color when an external power supply is supplied.
  • This electrochromic layer changes color through oxidation and reduction reactions, and color change performance, such as color change response speed and color change range, is limited depending on the color change material used.
  • various sensors such as optical sensors, temperature sensors, and illuminance sensors were used to determine the external environmental conditions of electrochromic devices.
  • the information obtained from the sensors was reflected in changes to driving parameters such as the size of the driving voltage for the electrochromic device and the driving voltage application time, and was used to control the electrochromic device.
  • the present invention was created in consideration of the above-described circumstances, and one object of the present invention is to quickly determine external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device.
  • the object is to provide an electrochromic device driving control device and method capable of controlling driving.
  • another object of the present invention is to measure changes in the electrical characteristics of the test device without the need to use various sensors such as optical sensors, temperature sensors, and illuminance sensors to identify external environmental conditions that affect the operation of the electrochromic device,
  • the object is to provide an electrochromic device driving control device and method that can precisely control the electrochromic device to a desired color change level.
  • the present invention was created in consideration of the above circumstances, and another object of the present invention is to determine the external environmental conditions and drive the electrochromic device by measuring the electrical characteristics of the electrochromic device without adding a separate sensor. To provide an electrochromic device driving control device and method capable of controlling.
  • another object of the present invention is to provide an electrochromic device that can precisely control the electrochromic device to a desired color change level by directly using the electrical characteristics measured when driving the electrochromic device for feedback control of the electrochromic device. To provide a driving control device and method.
  • the electrochromic device driving control device is a device that controls the operation of the electrochromic device by measuring the electrical characteristics of the test device, and the electrical characteristics of the electrochromic device and the test device according to external environmental conditions.
  • a data storage unit that stores data matching the changes, a sensing unit that measures the electrical characteristics of the test element, and an external environmental condition is analyzed from the electrical characteristics of the test element measured by the sensing unit, and the electrochromic element is It includes a control unit that adjusts the magnitude of the applied driving voltage or the voltage application time.
  • the data storage unit includes data on changes in electrical characteristics of the electrochromic device and the test device due to changes in thermal state or optical state, and electrical information according to the ratio of the area of the electrochromic device to the area of the test device. The correlation equation of characteristics can be saved.
  • the data storage unit applies a driving voltage to the electrochromic element and the test element, respectively, under the same external environmental conditions, and changes each current value change waveform or resistance at the first set time and the second set time. Slope values of the value change waveform may be calculated, and data subsets obtained by matching the two slope values of the electrochromic device and the two slope values of the test device may be stored.
  • the area of the test element may be 100 cm 2 or less.
  • the sensing unit may detect the magnitude of the test voltage applied to the test element and a current value change waveform or a resistance value change waveform according to the application of the test voltage.
  • control unit calculates a current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform of the test element transmitted from the sensing unit, and the test element The electrical characteristics of can be determined.
  • control unit may apply an interpolation method to calculate the electrical characteristics of the test element.
  • the control unit while applying the first driving voltage to the electrochromic element, determines the magnitude or voltage application time of the second driving voltage according to the electrical characteristics of the test element transmitted from the sensing unit, It can be controlled to apply voltage to the electrochromic element.
  • a method of controlling the operation of an electrochromic device is a method of controlling the operation of an electrochromic device by measuring the electrical characteristics of the test device, which includes: (a) the electrochromic device and the test device according to external environmental conditions; A data storage unit stores data matching the changes in electrical characteristics of the test element, (b) a sensing unit measures the electrical characteristics of the test element, and (c) an external signal is obtained from the electrical characteristics of the test element measured by the sensing unit. It includes a step of the control unit adjusting the magnitude or voltage application time of the driving voltage applied to the electrochromic device by analyzing environmental conditions.
  • step (a) includes data on changes in electrical characteristics of the electrochromic device and the test device due to changes in thermal state or optical state, and the ratio of the area of the electrochromic device to the area of the test device. It may include the step of storing correlation equations of electrical characteristics.
  • step (b) may include detecting the magnitude of the test voltage applied to the test element and a current value change waveform or a resistance value change waveform according to the application of the test voltage.
  • the step (c) calculates the current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform transmitted from the sensing unit, and the test element It may include the step of determining electrical characteristics.
  • An electrochromic device driving control device includes a data storage unit that stores data on changes in electrical characteristics according to external environmental conditions of the electrochromic device, and a preset time interval during operation of the electrochromic device. a sensing unit that measures the electrical characteristics of the electrochromic device, and a control unit that feedback controls the magnitude or voltage application time of the driving voltage applied to the electrochromic device from the electrical characteristics of the electrochromic device measured by the sensing unit.
  • the data storage unit may store data that matches the hysteresis characteristics of the electrochromic device and external environmental conditions.
  • the data storage unit may store a subset of data that combines current values and resistance values measured by applying the same discrimination voltage at N specific potential differences across the electrochromic element.
  • the data storage unit may store data regarding changes in electrical characteristics of the electrochromic device due to changes in thermal state or change in optical state.
  • the data storage unit applies a driving voltage to the electrochromic element under specific external environmental conditions, and stores slope values of the current value change waveform or the resistance value change waveform at the first set time and the second set time. You can calculate and store a data subset that combines two slope values.
  • the sensing unit may detect the magnitude of the driving voltage applied to the electrochromic element, and a current value change waveform or a resistance value change waveform according to the application of the driving voltage.
  • control unit calculates a current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform of the electrochromic element transmitted from the sensing unit, and The electrical characteristics of color-changing devices can be determined.
  • control unit may apply an interpolation method to calculate the electrical characteristics of the electrochromic device. there is.
  • the control unit determines the magnitude or voltage application time of the second driving voltage according to the electrical characteristics of the electrochromic device transmitted from the sensing unit.
  • the electrochromic device can be feedback controlled.
  • control unit controls the operation of a plurality of electrochromic elements, selects a specific electrochromic element among the plurality of electrochromic elements, and obtains information from the electrical characteristics of the specific electrochromic element measured by the sensing unit.
  • the magnitude of the driving voltage applied to the plurality of electrochromic elements or the voltage application time can be controlled through feedback.
  • control unit selects a first specific electrochromic device and a second specific electrochromic device among the plurality of electrochromic devices to form a first group consisting of electrochromic devices adjacent to the first specific electrochromic device. and a second group consisting of electrochromic elements adjacent to a second specific electrochromic element, and the magnitude or voltage application time of the driving voltage applied to the first group and the second group can be independently feedback controlled. there is.
  • a method of controlling the operation of an electrochromic device includes the steps of (a) a data storage unit storing data on changes in electrical characteristics according to external environmental conditions of the electrochromic device, (b) the electrochromic device During operation, a sensing unit measures the electrical characteristics of the electrochromic element during a preset time interval, and (c) measuring the driving voltage applied to the electrochromic element from the electrical characteristics of the electrochromic element measured by the sensing unit. It includes the step of the control unit feedback controlling the size or voltage application time.
  • the electrochromic device driving control device and method according to the present invention quickly determines external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device, and determines the driving voltage level or size of the electrochromic device. By controlling the driving voltage application time, etc., there is an effect of being able to flexibly respond to changes in external environmental conditions.
  • the electrochromic device drive control device and method according to the present invention does not require the use of various sensors such as optical sensors, temperature sensors, and illuminance sensors to determine external environmental conditions that affect the operation of the electrochromic device, so sensing While simplifying the structure, it is possible to precisely control the electrochromic device to the desired color removal level by measuring changes in the electrical characteristics of the test element that are correlated with changes in the electrical characteristics of the electrochromic device.
  • the electrochromic device drive control device and method according to the present invention quickly determines external environmental conditions through measurement of electrical characteristics when driving the electrochromic device, and determines the driving voltage size or driving voltage application time of the electrochromic device. By controlling the etc., there is an effect of being able to respond flexibly to changes in external environmental conditions.
  • the electrochromic device drive control device and method according to the present invention does not require the use of various sensors such as optical sensors, temperature sensors, and illuminance sensors to determine external environmental conditions that affect the operation of the electrochromic device, so sensing While simplifying the structure, it has the effect of precisely controlling the electrochromic device to the desired color removal level based on pre-stored data about changes in the electrical characteristics of the electrochromic device.
  • Figure 1 is a block diagram showing the configuration of an electrochromic device driving control device according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the arrangement of an electrochromic device and a test device according to an embodiment.
  • Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1.
  • Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device.
  • Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment.
  • Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment.
  • Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment.
  • Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment.
  • Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment.
  • Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
  • Figure 11 is a block diagram showing the configuration of an electrochromic device driving control device according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11.
  • Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment.
  • Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment.
  • Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment.
  • Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment.
  • Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of decolorization of an electrochromic device according to another embodiment.
  • Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to another embodiment.
  • Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
  • Figure 1 is a block diagram showing the configuration of an electrochromic device driving control device according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the arrangement of an electrochromic device and a test device according to an embodiment.
  • Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1.
  • Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device.
  • Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment.
  • Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment.
  • Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment.
  • Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment.
  • Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment.
  • Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
  • the electrochromic device driving control device 100 measures the electrical characteristics of the test device 20 having the same material and structure as the electrochromic device 10. It is a device that controls the operation of the electrochromic element 10 through measurement, and includes a data storage unit 110, a sensing unit 120, and a control unit 130.
  • the data storage unit 110 stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions.
  • External environmental conditions may be environmental factors such as light, heat, and humidity outside the electrochromic device 10.
  • the driving and control to change the electrochromic device 10 to the same transmittance are also subject to external environmental conditions. Minor differences may occur depending on the condition.
  • the data storage unit 110 stores data regarding changes in electrical characteristics of the test element 20 due to changes in thermal or optical states.
  • the data storage unit 110 may store a correlation equation of electrical characteristics according to the area ratio of the electrochromic element 10 and the area of the test element 20.
  • the correlation equation may be configured in the form of a function or a lookup table, for example.
  • the test device 20 is made of the same material and structure as the electrochromic device 10, and has a relatively small area compared to the electrochromic device 10, so it is more resistant to changes in external environmental conditions than the electrochromic device 10. React faster.
  • the X-axis direction length (X2) and the Y-axis direction length (Y2) of the test element 20 are equal to the can be reduced by the same ratio.
  • the ratio of the lengths of the electrochromic device 10 and the test device 20 in the X-axis direction (X1:X2) and the ratio of the lengths in the Y-axis direction (Y1:Y2) may be adjusted differently. .
  • the data storage unit 110 may store data regarding the ratio of the lengths of the electrochromic element 10 and the test element 20 in the X-axis direction and the ratio of the lengths in the Y-axis direction. The correlation equation of electrical characteristics can be saved.
  • the area of the test element 20 may be 100 cm 2 or less.
  • the test element 20 may be placed at a predetermined position on the window on which the electrochromic element 10 is installed, and its size and location may be changed in consideration of the appearance of the window, wiring for window installation, etc.
  • the data storage unit 110 not only stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions, but also stores data necessary for the overall operation of the electrochromic device 10. , commands and/or software can be stored, and detailed information such as voltage, current, and application time required to change the color change level of the electrochromic element 10 can be stored.
  • the data storage unit 110 is a flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), and multimedia card micro type. micro type), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or programmable read-only memory (PROM) It may include storage media such as:
  • the sensing unit 120 measures the electrical characteristics of the test element 20.
  • the electrical characteristics may be, for example, the size of the driving voltage that drives the test element 20, the change in current value depending on the driving voltage application time, or the change in resistance value of the test element 20.
  • the control unit 130 analyzes external environmental conditions from the electrical characteristics of the test element 20 measured by the sensing unit 120 and adjusts the magnitude of the driving voltage applied to the electrochromic element 10 or the voltage application time.
  • the control unit 130 may change the magnitude of the driving voltage or the voltage application time for changing the level of color change of the electrochromic element 10.
  • the control unit 130 is hardware-wise, application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), or microprocessors. It can be implemented using microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • microprocessors microprocessors. It can be implemented using microprocessors, etc.
  • the electrochromic element 10 may have two or more color change levels, and the light transmittance of the window on which the electrochromic element 10 is installed may change depending on the color change level.
  • the transmittance of the electrochromic device 10 may be 70% at level 1, 50% at level 2, 30% at level 3, and 10% at level 4. there is.
  • the transmittance may decrease from level 1 to level 4, and when the electrochromic device 10 is discolored, the transmittance may increase from level 4 to level 1.
  • a constant voltage is applied to color the electrochromic element 10, and the voltage intensity for changing each level from level 1 to level 4 may be configured differently.
  • the constant voltage change for changing from level 1 to level 2 is 0.5V
  • the constant voltage change for changing from level 2 to level 3 may be 0.7V.
  • a reverse voltage is applied to decolorize the electrochromic element 10, and the voltage intensity for changing each level from level 4 to level 1 may be configured differently.
  • the absolute value of the constant voltage required to change from level 3 to level 4 may be larger than the absolute value of the reverse voltage required to change from level 4 to level 3.
  • the specific values of the number of color combination levels, transmittance, and voltage magnitude of the electrochromic device described in this specification are illustrative for understanding the present invention, and the spirit of the present invention is not limited thereto.
  • the color desorption level and transmittance of an electrochromic device may mean not only a specific value but also a predetermined value range.
  • the electrochromic device driving control device 100 of the present invention may further include a polarity change switch (not shown) that switches the polarity of the voltage applied to the electrochromic device 10.
  • the polarity change switch can change the polarity of the voltage applied to the electrochromic element 10.
  • the polarity change switch may operate under the control of the control unit 130 and change the direction of the voltage applied to the electrochromic element 10.
  • the polarity change switch when it is desired to change the color change level of the electrochromic device 10 from 1 to 2, the polarity change switch can be operated so that a constant voltage is applied to the electrochromic device 10. Meanwhile, when it is desired to change the color change level of the electrochromic device 10 from 2 to 1, the polarity change switch can change the polarity so that a reverse voltage is applied to the electrochromic device 10.
  • Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1.
  • the electrochromic device 10 includes transparent substrates 11 and 17, electrode layers 12 and 16, a first electrochromic layer 13, a second electrochromic side 15, and an electrolyte layer 14. ) includes.
  • the transparent substrates 11 and 17 may be made of transparent plastic or glass with a light transmittance of 95% or more to allow sunlight to pass through.
  • Transparent plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI), and triacetylcellulose (TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PP polypropylene
  • PI polyimide
  • TAC triacetylcellulose
  • the transparent substrates 11 and 17 may be formed to have a thickness of 10 ⁇ m to 5 mm.
  • the electrode layers 12 and 16 are formed on the surfaces of the upper and lower transparent substrates 11 and 17, respectively, and are made of a transparent conductive material that allows electricity to flow without interfering with the transmission of light.
  • the electrode layers 12 and 16 may be made of metal oxides such as ITO, ATO, FTO, IZO, ZnO, copper oxide, zinc oxide, and titanium oxide.
  • the electrode layers 12 and 16 may be formed in the form of a thin film on the transparent substrates 11 and 17 through a known coating process such as sputtering, and may preferably be formed to a thickness of 300 nm to 1,000 nm.
  • the electrochromic layers 13 and 15 are formed on the electrode layers 12 and 16 and change color due to the movement of charges or electrolyte ions injected by the supplied power, and the first electrochromic layer 13 is reduced and It is a layer that changes color, and the second electrochromic layer 15 is a layer that changes color by oxidation.
  • the first electrochromic layer 13 and the second electrochromic layer 15 include an electrochromic material that changes color according to an electrical signal, and may be an organic or inorganic electrochromic material.
  • Organic electrochromic materials may be composed of viologen, anthraquinone, polyaniline, polypinol, or polythiophene, and may include Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, and one or more oxides of Ir may be included as an inorganic discoloring material.
  • Reductive discoloration materials include V 2 O 5 , Nb 2 O 5 , WO 3 , TiO 2 , MoO 3 , viologen, and PEDOT
  • oxidation discoloration materials include (NH 4 )Fe[Fe(CN) 6 ].
  • LiNiOx, LixCoO 2 , IrO, Rh 2 O 3 , NiO, Ir(OH) 2 , CoO 2 , ITO, etc. can be used.
  • the color-changing material may be a material with electrochromic properties in which light absorption changes through electrochemical oxidation and reduction reactions, and the electrochemical properties of the electrochromic material are reversible depending on whether voltage is applied and the intensity of the voltage. Oxidation and reduction phenomena occur, which can reversibly change the transparency and absorbance of the discoloring material.
  • first electrochromic layer 13 or the second electrochromic layer 15 involves coating the area to be laminated with either a reducing material or an oxidizing material, followed by drying and firing at a high temperature.
  • An electrolyte layer 14 may be inserted between (13) and the second electrochromic layer (15).
  • the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 use the electrochromic principle of changing color when voltage is applied, and reversibly change color or change transmittance by applying voltage from the outside. This includes changing elements.
  • the total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 may be 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, and more preferably 50 to 200 ⁇ m. there is.
  • the total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 is less than 10 ⁇ m, the first electrode layer 12 and the second electrode layer 16 can contact each other.
  • there is a possibility of short circuit and if the total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 exceeds 500 ⁇ m, the electrical conductivity decreases and the reaction rate decreases. It can be slow.
  • the electrolyte layer 14 is a layer that provides an environment for the movement of hydrogen ions or lithium ions for discoloration or decolorization of the electrochromic layers 13 and 15, and a liquid polymer electrolyte that can be hardened by ultraviolet ray irradiation can be used.
  • Ultraviolet curing resin can be composed by mixing PEG-based or urethane-based oligomers, low-molecular-weight PEGDMe, PEGDA, and light or thermal initiators, and a liquid electrolyte is formed by dissolving electrolyte salt in a solvent.
  • the solvent can be single or It can be used in combination, and electrolyte salts can be compounds containing H + , Li + , Na + , K + , Rb + , Cs + , for example, LiTFSI, LiFSI, LiBOB, LiClO 4 , LiBF 4 , Lithium salt compounds such as LiAsF 6 or LiPF 6 may be used singly or in combination.
  • the electrolyte layer 14 composed in this way is formed in a layered form by gap coating between the first electrochromic layer 13 and the second electrochromic layer 15 with uniform intervals, preferably 10 ⁇ m to 200 ⁇ m. It can be formed as
  • the method of forming the electrode layers 12 and 16, the electrochromic layers 13 and 15, and the electrolyte layer 14 is not particularly limited, and known methods can be used. For example, any one of deposition, spin coating, dip coating, screen printing, gravure coating, sol-gel method, or slot die coating. Each floor can be prepared by.
  • the electrochromic device driving control device 100 of the present invention measures the electrical characteristics of a test device 20 having the same material and structure as the electrochromic device 10 described above, and externally detects the electrochromic device 10 during operation. Environmental conditions can be identified and used to control the operation of the electrochromic device 10.
  • the electrical characteristics of the electrochromic device 10 and the test device 20 for external environmental conditions may be measured in advance, and data correlating the electrical properties may be stored in the data storage unit 110.
  • the control unit 130 stores the data from the measured electrical characteristics of the test element 20 to the data storage unit 110.
  • the operation of the electrochromic device 10 can be controlled based on this.
  • Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device according to an embodiment.
  • the principle of measuring the electrical characteristics of the electrochromic device 10 and the test device 20 is the same, and a data set in which the measured electrical characteristics are correlated is formed and stored in the data storage unit 110. You can.
  • the electrical characteristics of the electrochromic device 10 and the test device 20 are measured under the same external environmental conditions.
  • External environmental conditions can be factors such as temperature, illumination, humidity, and airflow, and can form an n-dimensional data structure combining these factors. For example, while changing temperature and illuminance, their data can be combined to form a two-dimensional data structure.
  • the circuit configuration in the dotted box represents an equivalent model of the electrochromic device 10 or the test device 20, and a driving voltage V dc of a preset size for the electrochromic device 10 or the test device 20.
  • V dc a driving voltage of a preset size for the electrochromic device 10 or the test device 20.
  • the driving voltage V dc After applying the driving voltage V dc , if a floating state is created, the external resistance becomes infinite and the internal voltage Vc(t) of the electrochromic device 10 or the test device 20 can be measured.
  • the first driving parameter applied to the electrochromic device 10 and the second driving parameter applied to the test device 20 so that the electrochromic device 10 and the test device 20 achieve the same transmittance.
  • Parameters can be detected in advance through experiment, and a data set that correlates these parameters can be constructed and stored in the data storage unit 110.
  • the first driving parameter and the second driving parameter are the size of the driving voltage applied to the electrochromic element 10 and the test element 20, the application time of the driving voltage, and the current value change waveform or resistance according to the application of the driving voltage, respectively. It may include information such as value change waveforms.
  • the electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions are stored in the data storage unit 110, and during operation of the electrochromic device 10, the sensing unit ( When 120) measures the electrical characteristics of the test element 20, external environmental conditions and the electrical characteristics of the electrochromic element 10 can be derived from the electrical characteristics.
  • the test device 20 has a relatively faster response speed to external environmental conditions than the electrochromic device 10, so it quickly determines the external environmental conditions and the electrical characteristics of the electrochromic device 10, thereby causing electrochromic color change.
  • Driving of the device 10 can be controlled.
  • Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment.
  • the experimental results for three panels on which the electrochromic device 10 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, the heat-resistant panel, and the general panel, and the waveforms when plotted.
  • the internal voltage value change waveforms are shown.
  • the light-resistant panel is a Flexade B panel with experimental conditions of 1 sun (100mW/cm 2 ) irradiation and an external environment of 85°C
  • the heat-resistant panel is a Flexade B panel with experimental conditions of an external environment of 85°C
  • the general panel is at room temperature. refers to the Flexade B panel.
  • a driving voltage of 1.5V is applied to the first area 101, and no voltage is applied to the second area 102.
  • the current of the room temperature (normal) panel changes from 105 mA to 28 mA
  • the current of the heat-resistant panel changes from 105 mA to 40 mA
  • the current of the light-resistant panel changes from 80 mA to 40 mA.
  • the voltage of the room temperature (normal) panel changes from 1.1V to 1.05V
  • the voltage of the heat-resistant panel changes from 1.0V to 0.9V
  • the voltage of the light-resistant panel changes from 0.95V to 0.8V.
  • the X-axis interval in FIG. 5 is 1.4 s, and current and voltage measurements in the first area 101 and the second area 102 were performed at 1/100 second intervals.
  • the initial current value was about 80 mA, which was lower than the initial current value (100-110 mA) of general panels and heat-resistant panels.
  • the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
  • the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
  • the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
  • the second area 102 represents waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel, and the internal voltage (V) can be derived as shown in the following equation.
  • V 0 is the driving voltage
  • R is the resistance of the electrochromic device
  • C is the capacity of the electrochromic device
  • t is time.
  • the internal voltage of the light-resistant panel slightly decreased compared to the internal voltage of the heat-resistant panel, and since the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the second area 102, the light-resistant panel
  • the RC values of and heat-resistant panels can be assumed to be similar.
  • the transmittance of the three final colored panels was all similar.
  • Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment.
  • FIG. 6 the experimental results for three panels on which the electrochromic device 10 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting.
  • the internal voltage value change waveforms are shown.
  • a driving voltage of -1.5V is applied to the third area 103, and no voltage is applied to the fourth area 104.
  • the current of the room temperature (normal) panel changes from -140 mA to -10 mA
  • the current of the heat-resistant panel changes from -140 mA to -60 mA
  • the current of the light-resistant panel changes from -115 mA to -60 mA.
  • the voltage of the room temperature (normal) panel changes from -0.3V to -0.2V
  • the voltage of the heat-resistant panel changes from -0.3V to -0.17V
  • the voltage of the light-resistant panel changes from -0.17V to + It changes to 0.08V.
  • the X-axis interval in FIG. 6 is 1.4 s, and current and voltage measurements in the third area 103 and the fourth area 104 were performed at 1/100 second intervals.
  • the initial current value was approximately -115 mA, which was lower than the initial current value (-140 mA) of general panels and heat-resistant panels.
  • the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
  • the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
  • the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
  • the fourth area 104 shows waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel.
  • the internal voltage of the light-resistant panel has decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
  • the internal voltage of the light-resistant panel is significantly reduced compared to the internal voltage of the heat-resistant panel, and the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the fourth region 104, so the light-resistant panel and the heat-resistant panel appear in similar shapes.
  • the RC values of the panels can be assumed to be similar.
  • the transmittance of the three final bleached panels was all similar.
  • Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment.
  • the sensing unit 120 of the electrochromic device driving control device 100 of the present invention determines the magnitude of the test voltage applied to the test device 20 and the current according to the application of the test voltage. A value change waveform or a resistance value change waveform can be detected.
  • the control unit 130 calculates a slope value at one or more specific times for the current value change waveform or resistance value change waveform of the test element 20 transmitted from the sensing unit 120, and determines the electrical characteristics of the test element 20. can be figured out.
  • the control unit 130 receives external environmental conditions and the current value change waveform or resistance value change waveform of the electrochromic element 10 from the data storage unit 110 based on the current value change waveform or resistance value change waveform of the test element 20. By deriving , the magnitude of the driving voltage applied to the electrochromic device 10 or the application time of the driving voltage can be controlled so that the electrochromic device 10 changes to the desired target transmittance.
  • the data storage unit 110 applies a driving voltage to the electrochromic element 10 and the test element 20 under the same external environmental conditions, and sets the first setting time (t 1 ) and the second setting time.
  • the slope values of each current value change waveform or resistance value change waveform are calculated, and the two slope values of the electrochromic element 10 and the two slope values of the test element 20 are matched with each other. Data subsets can be stored.
  • the second slope value (A 2 ) of the current value change waveform of the electrochromic device 10 measured at (t 2 ) is configured as the first data subset (A 1 , A 2 ), and the first set time (t)
  • the slope value (a 2 ) can be configured as a second data subset (a 1 , a 2 ), and the data subsets matching them can be stored in the data storage unit 110 .
  • the second slope value (R 2 ) of the resistance value change waveform of the electrochromic element 10 measured at the set time (t 2 ) is configured as the first data subset (R 1 , R 2 ), and the first set time
  • the second slope value (r 2 ) may be configured as a second data subset (r 1 , r 2 ), and the data subsets matching these may be stored in the data storage unit 110.
  • data subsets regarding slope values at external temperatures of 60°C and 40°C can be constructed and stored in the data storage unit 110.
  • the current value change waveform or the resistance value change waveform may appear in a similar pattern.
  • the external environmental conditions can be more precisely distinguished, and thus the electrochromic device (10 ) can be controlled.
  • Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment.
  • the data storage unit 110 applies a driving voltage to the electrochromic element 10 and the test element 20 under the same external environmental conditions, and sets the first set time (t 1 ) and the second set time.
  • the slope values of each current value change waveform or resistance value change waveform are calculated, and the two slope values of the electrochromic element 10 and the two slope values of the test element 20 are matched to each other. Subsets can be stored.
  • Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment.
  • the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), but at the point when coloring is completed, the resistance values are measured similarly.
  • the current value at high temperature 80°C
  • the current value at low temperature 40°C
  • the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), and after 300 seconds, the resistance value at low temperature (40°C) is measured. It is measured to be larger than the resistance value at high temperature (80°C), but it is presumed to be a measurement error.
  • Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
  • the electrochromic device driving control method of the present invention is to drive the electrochromic device 10 by measuring the electrical characteristics of a test device 20 having the same material and structure as the electrochromic device 10.
  • the data storage unit 110 stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions (S110).
  • External environmental conditions may be environmental factors such as temperature, illuminance, humidity, and airflow outside the electrochromic device 10.
  • changes in electrical characteristics of the electrochromic device 10 and the test device 20 can be matched to each other at the same transmittance.
  • An n-dimensional data structure is formed by combining environmental factors such as external temperature, illumination, humidity, and airflow, and the electrochromic element 10 and the test element 20 are used for the change amount or change rate for each element. Data on changes in electrical characteristics can be accumulated.
  • the data storage unit 110 stores data on changes in electrical characteristics of the test element 20 due to changes in thermal state or optical state, and stores the area of the electrochromic element 10 and the test element 20. ) can store the correlation equation of electrical characteristics according to the area ratio.
  • the electrochromic device 10 and the test device 20 are made of the same material and structure, but their area sizes are different, so the size of the driving voltage, the application time of the driving voltage, and plotting to achieve the same transmittance under the same environmental conditions. Time, etc. are applied differently, and accordingly, the current value change waveform, resistance value change waveform, etc. may appear differently.
  • a correlation equation between the electrical characteristics of the electrochromic device 10 and the test device 20 is derived and stored in the data storage unit 110. It can be.
  • the sensing unit 120 measures the electrical characteristics of the test device 20 (S120).
  • the sensing unit 120 may detect the magnitude of the test voltage applied to the test element 20 and the current value change waveform or resistance value change waveform according to the application of the test voltage.
  • control unit 130 analyzes the external environmental conditions from the electrical characteristics of the test element 20 measured by the sensing unit 120 and adjusts the size or voltage application time of the driving voltage applied to the electrochromic element 10. Do it (S130).
  • control unit 130 calculates the current value slope or resistance value slope at one or more specific times for the current value change waveform or resistance value change waveform transmitted from the sensing unit 120, and stores the current value slope or resistance value slope in the data storage unit 110. By comparing the stored current value slope or resistance value slope, the electrical characteristics of the test element 20 can be determined.
  • the control unit 130 applies an interpolation method to determine the electrical characteristics of the test element 20. can be calculated, and according to this, the electrical characteristics of the electrochromic device 10 can be corrected, and the driving of the electrochromic device 10 can be controlled.
  • the data calculated by applying the interpolation method is stored in the data storage unit 110. It can be stored separately.
  • Data to which the interpolation method has been applied can later be replaced with data on electrical characteristics measured from the electrochromic device 10 and the test device 20 while changing external environmental conditions in more detail. For example, if there was existing data measured at 40°C and 60°C and there was no data measured at a specific temperature between 40°C and 60°C, and an interpolation method was applied, then the temperature between 40°C and 60°C was used.
  • the interval can be set to be narrower, and data on the electrical characteristics of the electrochromic device 10 and the test device 20 measured at the corresponding temperature can be generated and stored in the data storage unit 110.
  • control unit 130 while applying the first driving voltage to the electrochromic element 10, the control unit 130 adjusts the size or size of the second driving voltage according to the electrical characteristics of the test element 20 transmitted from the sensing unit 120. By determining the voltage application time, it is possible to control the application of voltage to the electrochromic element 10.
  • the current value change waveform flowing through the electrochromic element 10 changes depending on the magnitude of the driving voltage, and the amount of charge is calculated by integrating the current value change waveform with respect to time.
  • the driving voltage application time for accumulating the same amount of charge in the electrochromic device 10 may be shortened.
  • the electrochromic device driving control device 100 of the present invention determines the electrical characteristics of the test device 20 transmitted from the sensing unit 120 while applying the first driving voltage to the electrochromic device 10, and monitors the external environment. When conditions change, the size of the second driving voltage can be changed or the application time of the driving voltage can be adjusted to control the electrochromic element 10 to change to a desired target transmittance within a desired target time.
  • the embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components.
  • the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using one or more general-purpose or special-purpose computers, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • a processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • OS operating system
  • a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include.
  • a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
  • FIG 11 is a block diagram showing the configuration of an electrochromic device driving control device according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11.
  • Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment.
  • Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment.
  • Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment.
  • Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment.
  • Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of decolorization of an electrochromic device according to another embodiment.
  • Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to another embodiment.
  • Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
  • the electrochromic device driving control device 200 of the present invention is a device that controls the driving of the electrochromic device 20 by measuring the electrical characteristics of the electrochromic device 20, and includes a data storage unit. (111), including a sensing unit 121 and a control unit 131.
  • the data storage unit 111 stores data regarding changes in electrical characteristics of the electrochromic device 20 according to external environmental conditions.
  • External environmental conditions may be environmental factors such as light, heat, and humidity outside the electrochromic device 20.
  • the driving and control to change the electrochromic device 20 to the same transmittance are also subject to external environmental conditions. Minor differences may occur depending on the condition.
  • the data storage unit 111 may store data regarding changes in electrical characteristics of the electrochromic element 20 due to changes in thermal state or change in optical state.
  • the data may be structured, for example, in the form of a function or lookup table.
  • the data storage unit 111 not only stores data regarding changes in the electrical characteristics of the electrochromic device 20 according to external environmental conditions, but also stores data, commands, and/or software necessary for the overall operation of the electrochromic device 20. Detailed information such as voltage, current, and application time required to change the color change level of the electrochromic device 10 can be stored.
  • the data storage unit 111 is a flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), and multimedia card micro type. micro type), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or programmable read-only memory (PROM) It may include storage media such as:
  • the sensing unit 121 measures the electrical characteristics of the electrochromic element 20.
  • the electrical characteristics may be, for example, the size of the driving voltage that drives the electrochromic device 20, the change in current value depending on the driving voltage application time, or the change in resistance value of the electrochromic device 20.
  • the control unit 131 analyzes external environmental conditions from the electrical characteristics of the electrochromic element 10 measured by the sensing unit 121 and adjusts the magnitude of the driving voltage applied to the electrochromic element 20 or the voltage application time. .
  • the control unit 131 may change the magnitude of the driving voltage or the voltage application time for changing the level of color change of the electrochromic element 20.
  • the control unit 131 is hardware-wise, application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), or microprocessors. It can be implemented using microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • microprocessors microprocessors. It can be implemented using microprocessors, etc.
  • the electrochromic device 20 may have two or more discoloration levels, and the light transmittance of the window on which the electrochromic device 20 is installed may change depending on the discoloration level.
  • the transmittance of the electrochromic device 20 may be 70% at level 1, 50% at level 2, 30% at level 3, and 10% at level 4. there is.
  • the transmittance may decrease from level 1 to level 4, and when the electrochromic device 20 is discolored, the transmittance may increase from level 4 to level 1.
  • a constant voltage is applied to color the electrochromic element 20, and the voltage intensity for changing each level from level 1 to level 4 may be configured differently.
  • the constant voltage change for changing from level 1 to level 2 is 0.5V
  • the constant voltage change for changing from level 2 to level 3 may be 0.7V.
  • a reverse voltage is applied to decolorize the electrochromic element 20, and the voltage intensity for changing each level from level 4 to level 1 may be configured differently.
  • the absolute value of the constant voltage required to change from level 3 to level 4 may be larger than the absolute value of the reverse voltage required to change from level 4 to level 3.
  • the specific values of the number of color combination levels, transmittance, and voltage magnitude of the electrochromic device described in this specification are illustrative for understanding the present invention, and the spirit of the present invention is not limited thereto.
  • the color desorption level and transmittance of an electrochromic device may mean not only a specific value but also a predetermined value range.
  • the electrochromic device driving control device 200 of the present invention may further include a polarity change switch (not shown) that switches the polarity of the voltage applied to the electrochromic device 20.
  • the polarity change switch can change the polarity of the voltage applied to the electrochromic element 20.
  • the polarity change switch can operate under the control of the control unit 131 and change the direction of the voltage applied to the electrochromic element 20.
  • the polarity change switch when it is desired to change the color change level of the electrochromic device 20 from 1 to 2, the polarity change switch can be operated so that a constant voltage is applied to the electrochromic device 20. Meanwhile, when it is desired to change the color change level of the electrochromic device 20 from 2 to 1, the polarity change switch can change the polarity so that a reverse voltage is applied to the electrochromic device 20.
  • the data storage unit 111 may store data that matches the hysteresis characteristics of the electrochromic device 10 and external environmental conditions.
  • the electrochromic device 20 changes its physical properties depending on external environmental conditions and has hysteresis characteristics in which the physical quantity of the material changes depending on the previously applied voltage or current.
  • the external environmental conditions of the electrochromic device 20 can be determined by measuring the current or voltage inside the electrochromic device 20. It's difficult to figure out.
  • Both ends of the electrochromic element 20 may have a potential difference within a predetermined range.
  • a data subset is formed by combining the current value and resistance value measured by applying the same discrimination voltage to N specific potential differentials applied to both ends of the electrochromic element 20, and the data storage unit 111 can store a subset of data.
  • the current measured by the potential difference between both ends of the electrochromic element 10 and resistance can change as shown in the table below.
  • the difference in potential between both ends of the electrochromic element 10 is measured.
  • the current and resistance can change as shown in the table below.
  • the electrochromic device driving control device 100 of the present invention stores data matching the hysteresis characteristics of the electrochromic device 10 and external environmental conditions in the data storage unit 110, and drives the electrochromic device 10. By comparing the electrical characteristics such as voltage, current, or resistance of the electrochromic device 10 measured while measuring it with the data stored in the data storage unit 110 to identify external environmental conditions, the change in transmittance of the electrochromic device 10 can be accurately determined. can be controlled properly.
  • FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11.
  • the electrochromic device 20 includes transparent substrates 21 and 27, electrode layers 22 and 26, a first electrochromic layer 23, a second electrochromic side 25, and an electrolyte layer 24. ) includes.
  • the transparent substrates 21 and 27 may be made of transparent plastic or glass with a light transmittance of 95% or more to allow sunlight to pass through.
  • Transparent plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI), and triacetylcellulose (TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PP polypropylene
  • PI polyimide
  • TAC triacetylcellulose
  • the transparent substrates 21 and 27 may be formed to have a thickness of 10 ⁇ m to 5 mm.
  • the electrode layers 22 and 26 are formed on the surfaces of the upper and lower transparent substrates 21 and 27, respectively, and are made of a transparent conductive material that allows electricity to flow without interfering with the transmission of light.
  • the electrode layers 22 and 26 may be made of metal oxides such as ITO, ATO, FTO, IZO, ZnO, copper oxide, zinc oxide, and titanium oxide.
  • the electrode layers 22 and 26 may be formed in the form of a thin film on the transparent substrates 21 and 27 through a known coating process such as sputtering, and may preferably be formed to a thickness of 300 nm to 1,000 nm.
  • the electrochromic layers 23 and 25 are formed on the electrode layers 22 and 26 and change color due to the movement of charges or electrolyte ions injected by the supplied power, and the first electrochromic layer 23 is reduced and It is a layer that changes color, and the second electrochromic layer 25 is a layer that changes color by oxidation.
  • the first electrochromic layer 23 and the second electrochromic layer 25 include an electrochromic material that changes color according to an electrical signal, and may be an organic or inorganic electrochromic material.
  • Organic electrochromic materials may be composed of viologen, anthraquinone, polyaniline, polypinol, or polythiophene, and may include Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, and one or more oxides of Ir may be included as an inorganic discoloring material.
  • Reductive discoloration materials include V 2 O 5 , Nb 2 O 5 , WO 3 , TiO 2 , MoO 3 , viologen, and PEDOT
  • oxidation discoloration materials include (NH 4 )Fe[Fe(CN) 6 ].
  • LiNiOx, LixCoO 2 , IrO, Rh 2 O 3 , NiO, Ir(OH) 2 , CoO 2 , ITO, etc. can be used.
  • the color-changing material may be a material with electrochromic properties in which light absorption changes through electrochemical oxidation and reduction reactions, and the electrochemical properties of the electrochromic material are reversible depending on whether voltage is applied and the intensity of the voltage. Oxidation and reduction phenomena occur, which can reversibly change the transparency and absorbance of the discoloring material.
  • the first electrochromic layer 23 or the second electrochromic layer 25 is formed by coating the area to be laminated with either a reducing material or an oxidizing material, followed by drying and firing at a high temperature.
  • An electrolyte layer 24 may be inserted between (23) and the second electrochromic layer (25).
  • the first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 use the electrochromic principle of changing color when voltage is applied, and reversibly change color or change transmittance by applying voltage from the outside. This includes changing elements.
  • the total thickness of the first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 may be 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, and more preferably 50 to 200 ⁇ m. there is.
  • the total thickness of the first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 is less than 10 ⁇ m, the first electrode layer 22 and the second electrode layer 26 can be in contact with each other. , there is a possibility of short circuit, and if the total thickness of the first electrochromic layer 22, the second electrochromic layer 25, and the electrolyte layer 24 exceeds 500 ⁇ m, the electrical conductivity decreases and the reaction rate decreases. It can be slow.
  • the electrolyte layer 24 is a layer that provides an environment for the movement of hydrogen ions or lithium ions for discoloration or decolorization of the electrochromic layers 23 and 25, and a liquid polymer electrolyte that can be hardened by ultraviolet ray irradiation can be used.
  • Ultraviolet curing resin can be composed by mixing PEG-based or urethane-based oligomers, low-molecular-weight PEGDMe, PEGDA, and light or thermal initiators, and a liquid electrolyte is formed by dissolving electrolyte salt in a solvent.
  • the solvent can be single or It can be used in combination, and electrolyte salts can be compounds containing H + , Li + , Na + , K + , Rb + , Cs + , for example, LiTFSI, LiFSI, LiBOB, LiClO 4 , LiBF 4 , Lithium salt compounds such as LiAsF 6 or LiPF 6 may be used singly or in combination.
  • the electrolyte layer 24 composed in this way is formed in a layered form by gap coating between the first electrochromic layer 23 and the second electrochromic layer 25 with uniform intervals, preferably 10 ⁇ m to 200 ⁇ m. It can be formed as
  • the method of forming the electrode layers 22 and 26, the electrochromic layers 23 and 25, and the electrolyte layer 24 is not particularly limited, and known methods can be used. For example, any one of deposition, spin coating, dip coating, screen printing, gravure coating, sol-gel method, or slot die coating. Each floor can be prepared by.
  • the electrochromic device drive control device 200 of the present invention measures the electrical characteristics of the electrochromic device 20, determines the external environmental conditions during operation of the electrochromic device 20, and determines the external environmental conditions during operation of the electrochromic device 20. Can be used to control.
  • the electrical characteristics of the electrochromic device 20 in response to external environmental conditions may be measured in advance, and data regarding changes in electrical characteristics due to changes in external environmental conditions may be stored in the data storage unit 110.
  • the control unit 131 stores the data from the measured electrical characteristics of the electrochromic element 10 into a data storage unit ( By recalling data about external environmental conditions and electrical characteristics of the electrochromic device 20 stored in 111), the operation of the electrochromic device 20 can be controlled based on this.
  • Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment.
  • the electrical characteristics of the electrochromic device 10 are measured under specific external environmental conditions.
  • External environmental conditions can be factors such as temperature, illumination, humidity, and airflow, and can form an n-dimensional data structure combining these factors. For example, while changing temperature and illuminance, their data can be combined to form a two-dimensional data structure.
  • the circuit configuration in the dotted box represents an equivalent model of the electrochromic device 20, and a driving voltage V dc of a preset size is applied to the electrochromic device 20.
  • the sensing unit 121 is electrically connected to both ends of the electrochromic device 20 through a sensing line, so that it can detect the voltage Vc(t) at both ends of the electrochromic device 20.
  • the driving parameters applied to the electrochromic device 20 to change from the first transmittance to the second transmittance are detected in advance through experiment, and this is stored in the data storage unit 111. It can be saved in .
  • the driving parameters may include information such as the size of the driving voltage applied to the electrochromic device 20, the application time of the driving voltage, and the current value change waveform or resistance value change waveform according to the application of the driving voltage.
  • the sensing unit 121 detects the electrochromic device 20 during operation of the electrochromic device 20. By measuring the electrical characteristics of (20), external environmental conditions can be derived from the electrical characteristics.
  • the driving of the electrochromic device 10 can be precisely feedback-controlled to change the transmittance of the electrochromic device 20 to a desired level.
  • Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment.
  • the experimental results for three panels on which the electrochromic device 20 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting.
  • the internal voltage value change waveforms are shown.
  • the light-resistant panel is a Flexade B panel with experimental conditions of 1 sun (100mW/cm 2 ) irradiation and an external environment of 85°C
  • the heat-resistant panel is a Flexade B panel with experimental conditions of an external environment of 85°C
  • the general panel is at room temperature. refers to the Flexade B panel.
  • a driving voltage of 1.5V is applied to the first area 101, and no voltage is applied to the second area 102.
  • the current of the room temperature (normal) panel changes from 105 mA to 28 mA
  • the current of the heat-resistant panel changes from 105 mA to 40 mA
  • the current of the light-resistant panel changes from 80 mA to 40 mA.
  • the voltage of the room temperature (normal) panel changes from 1.1V to 1.05V
  • the voltage of the heat-resistant panel changes from 1.0V to 0.9V
  • the voltage of the light-resistant panel changes from 0.95V to 0.8V.
  • the X-axis interval in FIG. 14 is 1.4 s, and current and voltage measurements in the first area 101 and the second area 102 were performed at 1/100 second intervals.
  • the initial current value was about 80 mA, which was lower than the initial current value (100-110 mA) of general panels and heat-resistant panels.
  • the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
  • the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
  • the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
  • the second area 102 represents waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel, and the internal voltage (V) can be derived as shown in the following equation.
  • V 0 is the driving voltage
  • R is the resistance of the electrochromic device
  • C is the capacity of the electrochromic device
  • t is time.
  • the internal voltage of the light-resistant panel slightly decreased compared to the internal voltage of the heat-resistant panel, and since the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the second area 102, the light-resistant panel
  • the RC values of and heat-resistant panels can be assumed to be similar.
  • the transmittance of the three final colored panels was all similar.
  • Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment.
  • the experimental results for three panels on which the electrochromic device 20 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting.
  • the internal voltage value change waveforms are shown.
  • a driving voltage of -1.5V is applied to the third area 103, and no voltage is applied to the fourth area 104.
  • the current of the room temperature (normal) panel changes from -140 mA to -10 mA
  • the current of the heat-resistant panel changes from -140 mA to -60 mA
  • the current of the light-resistant panel changes from -115 mA to -60 mA.
  • the voltage of the room temperature (normal) panel changes from -0.3V to -0.2V
  • the voltage of the heat-resistant panel changes from -0.3V to -0.17V
  • the voltage of the light-resistant panel changes from -0.17V to + It changes to 0.08V.
  • the X-axis interval in FIG. 15 is 1.4 s, and current and voltage measurements in the third area 103 and the fourth area 104 were performed at 1/100 second intervals.
  • the initial current value was approximately -115 mA, which was lower than the initial current value (-140 mA) of general panels and heat-resistant panels.
  • the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
  • the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
  • the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
  • the fourth area 104 shows waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel.
  • the internal voltage of the light-resistant panel has decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
  • the internal voltage of the light-resistant panel is significantly reduced compared to the internal voltage of the heat-resistant panel, and the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the fourth region 104, so the light-resistant panel and the heat-resistant panel appear in similar shapes.
  • the RC values of the panels can be assumed to be similar.
  • the transmittance of the three final bleached panels was all similar.
  • Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment.
  • the sensing unit 121 of the electrochromic device drive control device 200 of the present invention detects the magnitude of the driving voltage applied to the electrochromic device 20 and the driving voltage application.
  • a current value change waveform or a resistance value change waveform can be detected.
  • the control unit 130 calculates a slope value at one or more specific times for the current value change waveform or resistance value change waveform of the electrochromic device 10 transmitted from the sensing unit 120, and determines the slope value of the electrochromic device 20. Electrical characteristics can be determined.
  • the control unit 131 derives external environmental conditions from the data storage unit 111 based on the current value change waveform or the resistance value change waveform of the electrochromic device 20, and changes the electrochromic device 20 to the desired target transmittance.
  • the size of the driving voltage applied to the electrochromic element 20 or the application time of the driving voltage can be controlled to do so.
  • the data storage unit 111 applies a driving voltage to the electrochromic element 20 under the same external environmental conditions and generates a current at the first set time (t 1 ) and the second set time (t 2 ). Slope values of the value change waveform or resistance value change waveform can be calculated, and the two slope values of the electrochromic device 10 can be configured and stored as a data subset.
  • the first slope value (A 1 ) and the second set time of the current value change waveform of the electrochromic element 20 measured at the first set time (t 1 ) is composed of a data subset (A 1 , A 2 ), and the data subset is stored in the data storage unit ( 111).
  • the second slope value (R 2 ) of the resistance value change waveform of the electrochromic element 20 measured at the set time (t 2 ) is composed of a data subset (R 1 , R 2 ), and the data subset stores the data. It may be stored in unit 111.
  • the current value change waveform or the resistance value change waveform may appear in a similar pattern.
  • the external environmental conditions can be more accurately distinguished, and thus the electrochromic device (20) can be controlled.
  • Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device.
  • the data storage unit 111 applies a driving voltage to the electrochromic element 20 under the same external environmental conditions and changes the current value at the first set time (t 1 ) and the second set time (t 2 ). Slope values of the change waveform or resistance value change waveform can be calculated, and the two slope values of the electrochromic device 10 can be stored as a data subset.
  • Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal.
  • current value change waveforms and resistance value change waveforms are shown according to external temperature in a colored state in which the transmittance of the electrochromic element 20 changes from 60% to 20% from 0 seconds to approximately 180 seconds, From approximately 180 seconds to 360 seconds, current value change waveforms and resistance value change waveforms are shown according to external temperature in a discolored state in which the transmittance of the electrochromic element 20 changes from 20% to 60%.
  • the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), but at the point when coloring is completed, the resistance values are measured similarly.
  • the current value at high temperature 80°C
  • the current value at low temperature 40°C
  • the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), and after 300 seconds, the resistance value at low temperature (40°C) is measured. It is measured to be larger than the resistance value at high temperature (80°C), but it is presumed to be a measurement error.
  • Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
  • the data storage unit 111 stores data regarding changes in electrical characteristics of the electrochromic device 20 according to external environmental conditions (S110). .
  • External environmental conditions may be environmental factors such as temperature, illuminance, humidity, and airflow outside the electrochromic device 20.
  • An n-dimensional data structure is formed by combining environmental factors such as external temperature, illumination, humidity, and airflow, and data on the change in electrical characteristics of the electrochromic element 20 for the amount or rate of change for each factor. can accumulate.
  • the data storage unit 111 may store data regarding changes in electrical characteristics of the electrochromic element 20 due to changes in thermal state or change in optical state.
  • the data storage unit 111 may store data that matches the hysteresis characteristics of the electrochromic device 20 and external environmental conditions.
  • Both ends of the electrochromic element 10 may have a potential difference within a predetermined range.
  • a data subset is formed by combining the current value and resistance value measured by applying the same discrimination voltage to N specific potential differentials applied to both ends of the electrochromic element 20, and the data storage unit 111 can store a subset of data.
  • the sensing unit 121 measures the electrical characteristics of the electrochromic device 20 (S120).
  • the sensing unit 121 may detect the magnitude of the driving voltage applied to the electrochromic element 20 and the current value change waveform or resistance value change waveform according to the application of the driving voltage.
  • control unit 131 analyzes the external environmental conditions from the electrical characteristics of the electrochromic device 20 measured by the sensing unit 121 and determines the magnitude of the driving voltage applied to the electrochromic device 20 or the voltage application time. Adjust (S130).
  • control unit 131 calculates the current value slope or resistance value slope at one or more specific times for the current value change waveform or resistance value change waveform transmitted from the sensing unit 121, and stores the current value slope or resistance value slope in the data storage unit 111. By comparing the stored current value slope or resistance value slope, the electrical characteristics of the electrochromic device 20 can be determined.
  • the control unit 131 applies an interpolation method to determine the electrical properties of the electrochromic device 20. Electrical characteristics can be calculated, and accordingly, the driving of the electrochromic device 20 can be controlled.
  • the data calculated by applying the interpolation method is stored in the data storage unit 110. ) can be stored separately.
  • Data to which the interpolation method has been applied can later be replaced with data on electrical characteristics measured in the electrochromic element 20 while changing external environmental conditions in more detail. For example, if there was existing data measured at 40°C and 60°C and there was no data measured at a specific temperature between 40°C and 60°C, and an interpolation method was applied, then the temperature between 40°C and 60°C was used.
  • the interval can be set to be narrower, and data on the electrical characteristics of the electrochromic element 20 measured at the corresponding temperature can be generated and stored in the data storage unit 110.
  • the control unit 131 while applying the first driving voltage to the electrochromic device 20, the control unit 131 adjusts the magnitude of the second driving voltage according to the electrical characteristics of the electrochromic device 20 transmitted from the sensing unit 121.
  • the voltage application time can be determined and controlled to apply the voltage to the electrochromic element 20.
  • the current value change waveform flowing through the electrochromic element 20 changes depending on the magnitude of the driving voltage, and the amount of charge is calculated by integrating the current value change waveform with respect to time.
  • the driving voltage application time for accumulating the same amount of charge in the electrochromic device 20 may be shortened.
  • the electrochromic device driving control device 200 of the present invention determines the electrical characteristics of the electrochromic device 20 transmitted from the sensing unit 121 while applying the first driving voltage to the electrochromic device 20, and externally detects the electrochromic device 20.
  • the size of the second driving voltage can be changed or the application time of the driving voltage can be adjusted to control the electrochromic element 20 to change to a desired target transmittance within a desired target time.
  • control unit 131 controls the operation of a plurality of electrochromic elements 20, selects a specific electrochromic element 20 among the plurality of electrochromic elements 20, and detects a specific electrochromic element 20 in the sensing unit 121.
  • the magnitude or voltage application time of the driving voltage applied to the plurality of electrochromic devices 20 can be feedback controlled based on the measured electrical characteristics of the specific electrochromic device 20.
  • control of the other electrochromic elements 20 is performed uniformly based on the change in electrical characteristics of a specific electrochromic element 20. It can be executed with .
  • control unit 131 selects a first specific electrochromic device and a second specific electrochromic device among the plurality of electrochromic devices 20, and consists of electrochromic devices adjacent to the first specific electrochromic device. Divided into a first group and a second group consisting of electrochromic elements adjacent to a second specific electrochromic element, the magnitude or voltage application time of the driving voltage applied to the first group and the second group is independently fed back. You can control it.
  • electrochromic elements close to the first specific electrochromic element have electrical characteristics of the first specific electrochromic element. Control is executed based on the change, and electrochromic devices close to the second specific electrochromic device may be controlled based on changes in the electrical characteristics of the second specific electrochromic device.
  • three or more standard electrochromic devices may be designated, and based on the change in electrical characteristics of each standard electrochromic device, Control over the color changing elements can be performed.
  • the embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components.
  • the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using one or more general-purpose or special-purpose computers, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • a processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • OS operating system
  • a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include.
  • a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
  • the electrochromic device according to the embodiment can be used in the smart window field.

Abstract

The present invention relates to an apparatus and method for controlling the driving of an electrochromic device and, more particularly, to an apparatus and method for controlling the driving of an electrochromic device, capable of controlling the driving of an electrochromic device by quickly identifying external environmental conditions through measurement of electrical characteristics of a test device having the same material and structure as the electrochromic device. According to an embodiment of the present invention, the apparatus for controlling the driving of an electrochromic device controls the driving of the electrochromic device by measuring the electrical characteristics of the test device, the apparatus comprising: a data storage unit storing data that matches changes in electrical characteristics of the electrochromic device and the test device according to external environmental conditions; a sensing unit that measures the electrical characteristics of the test device; and a control unit that analyzes external environmental conditions from the electrical characteristics of the test device, which are measured by the sensing unit, and adjusts the magnitude or voltage application time of a driving voltage applied to the electrochromic device.

Description

전기변색소자 구동 제어 장치 및 방법Electrochromic device driving control device and method
본 발명의 일 실시예는 전기변색소자 구동 제어 장치 및 방법에 관한 것으로, 특히, 전기변색소자와 동일한 재료와 구조를 갖는 테스트 소자의 전기적 특성의 측정을 통해 외부 환경 조건을 신속하게 파악하여 전기변색소자의 구동을 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법에 관한 것이다.One embodiment of the present invention relates to an electrochromic device driving control device and method, and in particular, to quickly identify external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device. It relates to an electrochromic device driving control device and method that can control the driving of the device.
본 발명의 다른 실시예는 전기변색소자 구동 제어 장치 및 방법에 관한 것으로, 특히, 외부 환경 조건에 따른 전기변색소자의 전기적 특성을 미리 측정한 데이터를 기반으로, 전기변색소자의 구동 시, 미리 설정된 시간 간격동안 측정되는 전기변색소자의 전기적 특성으로부터 전기변색소자의 구동을 피드백 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법에 관한 것이다.Another embodiment of the present invention relates to an electrochromic device driving control device and method. In particular, when driving the electrochromic device, based on data that previously measured the electrical characteristics of the electrochromic device according to external environmental conditions, It relates to an electrochromic device driving control device and method that can feedback control the operation of an electrochromic device from the electrical characteristics of the electrochromic device measured over a time interval.
전기변색(Electrochromism)이란 전압을 인가하면 전계방향에 의해 가역적으로 색상이 변하는 현상으로, 이러한 특성을 지닌 소자를 전기변색소자 (Electrochromic Devices)라고 한다. 전기변색소자는 외부에서 전자 이동이 없을 경우에는 색을 띠고 있지 않다가, 전자가 공급되어 환원되거나 전자를 잃어 산화되는 경우 색을 띠게 되거나, 반대로 외부에서 전자공급이 없을 경우 색을 띠고 있다가 전자가 공급되어 환원되거나 전자를 잃어버려 산화되는 경우 색이 사라지는 특성을 갖는다.Electrochromism is a phenomenon in which color changes reversibly depending on the direction of the electric field when voltage is applied. Devices with this characteristic are called electrochromic devices. An electrochromic device has no color when there is no external electron movement, but becomes colored when electrons are supplied and reduced or oxidized by losing electrons, or, conversely, when there is no external electron supply, it takes on color and then becomes electrochromic. When supplied and reduced or oxidized by losing electrons, the color disappears.
전기변색소자는 건축용 창유리나 자동차 미러의 광 투과도 또는 반사도를 조절하는 용도로 이용되고 있으며, 최근에는 가시광선 영역에서의 색 변화 뿐만 아니라 적외선 차단효과까지 있다는 것이 알려지면서 에너지 절약형 제품으로의 응용 가능성에 대해서도 큰 관심을 받고 있다.Electrochromic devices are used to control the light transmittance or reflectivity of architectural window glass or automobile mirrors, and as it has recently become known that they not only change color in the visible light region but also have an infrared blocking effect, their potential application as energy-saving products has increased. It is also receiving great attention.
전기변색소자는 소정 간격의 투명 기판사이에 전극층, 전기 변색층, 전해질층이 순차적으로 적층되어 외부 전원공급에 의하여 전기 변색층이 변색된다. 이와 같은 전기 변색층은 산화, 환원 반응에 의해 변색되는데, 사용되는 변색물질에 따라 변색 응답속도나 변색범위와 같은 변색성능이 제한된다.An electrochromic device consists of an electrode layer, an electrochromic layer, and an electrolyte layer sequentially stacked between transparent substrates at predetermined intervals, and the electrochromic layer changes color when an external power supply is supplied. This electrochromic layer changes color through oxidation and reduction reactions, and color change performance, such as color change response speed and color change range, is limited depending on the color change material used.
전기변색소자를 원하는 착탈색 레벨로 변화시켜서, 전기변색소자를 목표 투과율로 제어하는 과정에서, 태양광, 온도, 습도, 기류 등과 같은 외부 환경 조건이 전기변색소자의 투과율에 영향을 미치므로, 이들의 영향을 반영하여 전기변색소자를 정밀하게 제어할 필요가 있다. In the process of controlling the electrochromic device to the target transmittance by changing the electrochromic device to the desired color change level, external environmental conditions such as sunlight, temperature, humidity, air current, etc. affect the transmittance of the electrochromic device. It is necessary to precisely control the electrochromic device to reflect the influence of .
종전에는 전기변색소자의 정밀 제어를 위해 광센서, 온도센서, 조도센서 등 여러 센서를 사용하여, 전기변색소자의 외부 환경 조건을 파악하였다. 센서들에서 파악된 정보는 전기변색소자에 대한 구동 전압의 크기, 구동 전압 인가 시간 등의 구동 파라미터의 변경에 반영되어, 전기변색소자의 제어에 활용되었다. Previously, for precise control of electrochromic devices, various sensors such as optical sensors, temperature sensors, and illuminance sensors were used to determine the external environmental conditions of electrochromic devices. The information obtained from the sensors was reflected in changes to driving parameters such as the size of the driving voltage for the electrochromic device and the driving voltage application time, and was used to control the electrochromic device.
그러나, 전기변색소자의 외부 환경 조건을 파악하기 위해 여러 센서를 사용하는 것은 운영 면에 있어서 비효율적이며, 전기변색소자의 착탈색에 상대적으로 긴 시간이 필요하므로, 센서에서 파악된 정보를 전기변색소자의 구동에 즉각적으로 반영하여 정밀하게 제어하는데 한계가 있다. However, using multiple sensors to determine the external environmental conditions of the electrochromic device is inefficient in terms of operation, and it requires a relatively long time to attach or remove the color of the electrochromic device, so the information obtained from the sensors is transmitted to the electrochromic device. There are limits to precise control by immediately reflecting the operation of the system.
따라서, 외부 환경 조건이 전기변색소자의 투과율에 미치는 영향을 신속하고 정확하게 파악하여, 전기변색소자의 구동을 정밀하게 제어할 수 있는 방안에 대한 연구 개발의 필요성이 있다. Therefore, there is a need for research and development on a method that can quickly and accurately determine the effect of external environmental conditions on the transmittance of the electrochromic device and precisely control the operation of the electrochromic device.
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 본 발명의 일 목적은 전기변색소자와 동일한 재료와 구조를 갖는 테스트 소자의 전기적 특성의 측정을 통해 외부 환경 조건을 신속하게 파악하여 전기변색소자의 구동을 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법을 제공하는 것이다. The present invention was created in consideration of the above-described circumstances, and one object of the present invention is to quickly determine external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device. The object is to provide an electrochromic device driving control device and method capable of controlling driving.
또한, 본 발명의 다른 목적은 전기변색소자의 구동에 영향을 미치는 외부 환경 조건을 파악하기 위해 광센서, 온도센서, 조도센서 등 여러 센서를 사용할 필요없이, 테스트 소자의 전기적 특성 변화를 측정하여, 전기변색소자를 원하는 착탈색 레벨로 정밀하게 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법을 제공하는 것이다.In addition, another object of the present invention is to measure changes in the electrical characteristics of the test device without the need to use various sensors such as optical sensors, temperature sensors, and illuminance sensors to identify external environmental conditions that affect the operation of the electrochromic device, The object is to provide an electrochromic device driving control device and method that can precisely control the electrochromic device to a desired color change level.
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 본 발명의 또 다른 목적은 별도의 센서를 부가하지 않으면서, 전기변색소자의 전기적 특성을 측정함으로써, 외부 환경 조건을 파악하여 전기변색소자의 구동을 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법을 제공하는 것이다. The present invention was created in consideration of the above circumstances, and another object of the present invention is to determine the external environmental conditions and drive the electrochromic device by measuring the electrical characteristics of the electrochromic device without adding a separate sensor. To provide an electrochromic device driving control device and method capable of controlling.
또한, 본 발명의 또 다른 목적은 전기변색소자의 구동 시에 측정되는 전기적 특성을 직접 전기변색소자의 피드백 제어에 사용함으로써, 전기변색소자를 원하는 착탈색 레벨로 정밀하게 제어할 수 있는 전기변색소자 구동 제어 장치 및 방법을 제공하는 것이다. In addition, another object of the present invention is to provide an electrochromic device that can precisely control the electrochromic device to a desired color change level by directly using the electrical characteristics measured when driving the electrochromic device for feedback control of the electrochromic device. To provide a driving control device and method.
본 발명의 일 실시예에 따른 전기변색소자 구동 제어 장치는, 테스트 소자의 전기적 특성의 측정을 통해 전기변색소자의 구동을 제어하는 장치로서, 외부 환경 조건에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화를 상호 매칭시킨 데이터를 저장하는 데이터 저장부, 상기 테스트 소자의 전기적 특성을 측정하는 센싱부, 및 상기 센싱부에서 측정된 테스트 소자의 전기적 특성으로부터 외부 환경 조건을 분석하여, 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정하는 제어부를 포함한다. The electrochromic device driving control device according to an embodiment of the present invention is a device that controls the operation of the electrochromic device by measuring the electrical characteristics of the test device, and the electrical characteristics of the electrochromic device and the test device according to external environmental conditions. A data storage unit that stores data matching the changes, a sensing unit that measures the electrical characteristics of the test element, and an external environmental condition is analyzed from the electrical characteristics of the test element measured by the sensing unit, and the electrochromic element is It includes a control unit that adjusts the magnitude of the applied driving voltage or the voltage application time.
일 실시예에서, 상기 데이터 저장부는, 열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화에 관한 데이터, 및 상기 전기변색소자의 면적과 상기 테스트 소자의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장할 수 있다. In one embodiment, the data storage unit includes data on changes in electrical characteristics of the electrochromic device and the test device due to changes in thermal state or optical state, and electrical information according to the ratio of the area of the electrochromic device to the area of the test device. The correlation equation of characteristics can be saved.
일 실시예에서, 상기 데이터 저장부는, 동일한 외부 환경 조건 하에서, 상기 전기변색소자와 상기 테스트 소자에 각각 구동 전압을 인가하고, 제1 설정 시각과 제2 설정 시각에서 각각의 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 상기 전기변색소자의 2개의 기울기 값들과 상기 테스트 소자의 2개의 기울기 값들을 상호 매칭시킨 데이터 서브 세트들을 저장할 수 있다. In one embodiment, the data storage unit applies a driving voltage to the electrochromic element and the test element, respectively, under the same external environmental conditions, and changes each current value change waveform or resistance at the first set time and the second set time. Slope values of the value change waveform may be calculated, and data subsets obtained by matching the two slope values of the electrochromic device and the two slope values of the test device may be stored.
일 실시예에서, 상기 테스트 소자의 면적은 100cm2 이하로 구성할 수 있다. In one embodiment, the area of the test element may be 100 cm 2 or less.
일 실시예에서, 상기 센싱부는, 상기 테스트 소자에 인가되는 테스트 전압의 크기, 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다. In one embodiment, the sensing unit may detect the magnitude of the test voltage applied to the test element and a current value change waveform or a resistance value change waveform according to the application of the test voltage.
일 실시예에서, 상기 제어부는, 상기 센싱부로부터 전달되는 상기 테스트 소자의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 테스트 소자의 전기적 특성을 파악할 수 있다. In one embodiment, the control unit calculates a current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform of the test element transmitted from the sensing unit, and the test element The electrical characteristics of can be determined.
일 실시예에서, 상기 제어부는, 상기 센싱부에서 측정된 상기 테스트 소자의 전기적 특성이 상기 데이터 저장부에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 상기 테스트 소자의 전기적 특성을 산출할 수 있다. In one embodiment, if the electrical characteristics of the test element measured by the sensing unit do not match the data stored in the data storage unit, the control unit may apply an interpolation method to calculate the electrical characteristics of the test element.
일 실시예에서, 상기 제어부는, 상기 전기변색소자에 제1 구동 전압을 인가 중에, 상기 센싱부로부터 전달되는 상기 테스트 소자의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 상기 전기변색소자에 전압을 인가하도록 제어할 수 있다. In one embodiment, while applying the first driving voltage to the electrochromic element, the control unit determines the magnitude or voltage application time of the second driving voltage according to the electrical characteristics of the test element transmitted from the sensing unit, It can be controlled to apply voltage to the electrochromic element.
본 발명의 일 실시예에 따른 전기변색소자 구동 제어 방법은, 테스트 소자의 전기적 특성의 측정을 통해 전기변색소자의 구동을 제어하는 방법으로서, (a) 외부 환경 조건에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화를 상호 매칭시킨 데이터를 데이터 저장부가 저장하는 단계, (b) 상기 테스트 소자의 전기적 특성을 센싱부가 측정하는 단계, 및 (c) 상기 센싱부에서 측정된 테스트 소자의 전기적 특성으로부터 외부 환경 조건을 분석하여, 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 제어부가 조정하는 단계를 포함한다. A method of controlling the operation of an electrochromic device according to an embodiment of the present invention is a method of controlling the operation of an electrochromic device by measuring the electrical characteristics of the test device, which includes: (a) the electrochromic device and the test device according to external environmental conditions; A data storage unit stores data matching the changes in electrical characteristics of the test element, (b) a sensing unit measures the electrical characteristics of the test element, and (c) an external signal is obtained from the electrical characteristics of the test element measured by the sensing unit. It includes a step of the control unit adjusting the magnitude or voltage application time of the driving voltage applied to the electrochromic device by analyzing environmental conditions.
일 실시예에서, 상기 (a) 단계는, 열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화에 관한 데이터, 및 상기 전기변색소자의 면적과 상기 테스트 소자의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장하는 단계를 포함할 수 있다. In one embodiment, step (a) includes data on changes in electrical characteristics of the electrochromic device and the test device due to changes in thermal state or optical state, and the ratio of the area of the electrochromic device to the area of the test device. It may include the step of storing correlation equations of electrical characteristics.
일 실시예에서, 상기 (b) 단계는, 상기 테스트 소자에 인가되는 테스트 전압의 크기, 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출하는 단계를 포함할 수 있다. In one embodiment, step (b) may include detecting the magnitude of the test voltage applied to the test element and a current value change waveform or a resistance value change waveform according to the application of the test voltage.
일 실시예에서, 상기 (c) 단계는, 상기 센싱부로부터 전달되는 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 테스트 소자의 전기적 특성을 파악하는 단계를 포함할 수 있다.In one embodiment, the step (c) calculates the current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform transmitted from the sensing unit, and the test element It may include the step of determining electrical characteristics.
본 발명의 일 실시예에 따른 전기변색소자 구동 제어 장치는, 전기변색소자의 외부 환경 조건에 따른 전기적 특성 변화에 관한 데이터를 저장하는 데이터 저장부, 상기 전기변색소자의 구동 중, 미리 설정된 시간 간격동안 상기 전기변색소자의 전기적 특성을 측정하는 센싱부, 및 상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성으로부터 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 피드백 제어하는 제어부를 포함한다. An electrochromic device driving control device according to an embodiment of the present invention includes a data storage unit that stores data on changes in electrical characteristics according to external environmental conditions of the electrochromic device, and a preset time interval during operation of the electrochromic device. a sensing unit that measures the electrical characteristics of the electrochromic device, and a control unit that feedback controls the magnitude or voltage application time of the driving voltage applied to the electrochromic device from the electrical characteristics of the electrochromic device measured by the sensing unit. Includes.
일 실시예에서, 상기 데이터 저장부는, 상기 전기변색소자의 히스테리시스 특성과 외부 환경 조건을 상호 매칭시킨 데이터를 저장할 수 있다. In one embodiment, the data storage unit may store data that matches the hysteresis characteristics of the electrochromic device and external environmental conditions.
일 실시예에서, 상기 데이터 저장부는, 상기 전기변색소자 양단에 걸리는 N개의 특정 전위차에서, 동일한 판별 전압을 인가하여 측정되는 전류 값 및 저항 값을 조합한 데이터 서브 세트를 저장할 수 있다. In one embodiment, the data storage unit may store a subset of data that combines current values and resistance values measured by applying the same discrimination voltage at N specific potential differences across the electrochromic element.
일 실시예에서, 상기 데이터 저장부는, 열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자의 전기적 특성 변화에 관한 데이터를 저장할 수 있다. In one embodiment, the data storage unit may store data regarding changes in electrical characteristics of the electrochromic device due to changes in thermal state or change in optical state.
일 실시예에서, 상기 데이터 저장부는, 특정한 외부 환경 조건 하에서, 상기 전기변색소자에 구동 전압을 인가하고, 제1 설정 시각과 제2 설정 시각에서 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 2개의 기울기 값들을 조합한 데이터 서브 세트를 저장할 수 있다. In one embodiment, the data storage unit applies a driving voltage to the electrochromic element under specific external environmental conditions, and stores slope values of the current value change waveform or the resistance value change waveform at the first set time and the second set time. You can calculate and store a data subset that combines two slope values.
일 실시예에서, 상기 센싱부는, 상기 전기변색소자에 인가되는 구동 전압의 크기, 및 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다. In one embodiment, the sensing unit may detect the magnitude of the driving voltage applied to the electrochromic element, and a current value change waveform or a resistance value change waveform according to the application of the driving voltage.
일 실시예에서, 상기 제어부는, 상기 센싱부로부터 전달되는 상기 전기변색소자의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 전기변색소자의 전기적 특성을 파악할 수 있다. In one embodiment, the control unit calculates a current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform of the electrochromic element transmitted from the sensing unit, and The electrical characteristics of color-changing devices can be determined.
일 실시예에서, 상기 제어부는, 상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성이 상기 데이터 저장부에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 상기 전기변색소자의 전기적 특성을 산출할 수 있다. In one embodiment, if the electrical characteristics of the electrochromic device measured by the sensing unit do not match the data stored in the data storage unit, the control unit may apply an interpolation method to calculate the electrical characteristics of the electrochromic device. there is.
일 실시예에서, 상기 제어부는, 상기 전기변색소자에 제1 구동 전압을 인가 중에, 상기 센싱부로부터 전달되는 상기 전기변색소자의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 상기 전기변색소자를 피드백 제어할 수 있다. In one embodiment, while applying the first driving voltage to the electrochromic device, the control unit determines the magnitude or voltage application time of the second driving voltage according to the electrical characteristics of the electrochromic device transmitted from the sensing unit. , the electrochromic device can be feedback controlled.
일 실시예에서, 상기 제어부는, 복수의 전기변색소자의 구동을 제어하며, 상기 복수의 전기변색소자 중 특정 전기변색소자를 선택하여, 상기 센싱부에서 측정된 상기 특정 전기변색소자의 전기적 특성으로부터 상기 복수의 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 피드백 제어할 수 있다. In one embodiment, the control unit controls the operation of a plurality of electrochromic elements, selects a specific electrochromic element among the plurality of electrochromic elements, and obtains information from the electrical characteristics of the specific electrochromic element measured by the sensing unit. The magnitude of the driving voltage applied to the plurality of electrochromic elements or the voltage application time can be controlled through feedback.
일 실시예에서, 상기 제어부는, 상기 복수의 전기변색소자 중 제1 특정 전기변색소자와 제2 특정 전기변색소자를 선택하여, 제1 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제1 그룹과, 제2 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제2 그룹으로 구분하여, 상기 제1 그룹과 제2 그룹에 대해 인가되는 구동 전압의 크기 또는 전압 인가 시간을 독립적으로 피드백 제어할 수 있다. In one embodiment, the control unit selects a first specific electrochromic device and a second specific electrochromic device among the plurality of electrochromic devices to form a first group consisting of electrochromic devices adjacent to the first specific electrochromic device. and a second group consisting of electrochromic elements adjacent to a second specific electrochromic element, and the magnitude or voltage application time of the driving voltage applied to the first group and the second group can be independently feedback controlled. there is.
본 발명의 일 실시예에 따른 전기변색소자 구동 제어 방법은, (a) 전기변색소자의 외부 환경 조건에 따른 전기적 특성 변화에 관한 데이터를 데이터 저장부가 저장하는 단계, (b) 상기 전기변색소자의 구동 중, 미리 설정된 시간 간격동안 상기 전기변색소자의 전기적 특성을 센싱부가 측정하는 단계, 및 (c) 상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성으로부터 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 제어부가 피드백 제어하는 단계를 포함한다. A method of controlling the operation of an electrochromic device according to an embodiment of the present invention includes the steps of (a) a data storage unit storing data on changes in electrical characteristics according to external environmental conditions of the electrochromic device, (b) the electrochromic device During operation, a sensing unit measures the electrical characteristics of the electrochromic element during a preset time interval, and (c) measuring the driving voltage applied to the electrochromic element from the electrical characteristics of the electrochromic element measured by the sensing unit. It includes the step of the control unit feedback controlling the size or voltage application time.
본 발명에 따른 전기변색소자 구동 제어 장치 및 방법은, 전기변색소자와 동일한 재료와 구조를 갖는 테스트 소자의 전기적 특성의 측정을 통해 외부 환경 조건을 신속하게 파악하여, 전기변색소자의 구동 전압 크기 또는 구동 전압 인가 시간 등을 제어함으로써, 외부 환경 조건 변화에 따라 유연하게 대응할 수 있는 효과가 있다. The electrochromic device driving control device and method according to the present invention quickly determines external environmental conditions through measurement of the electrical characteristics of a test device having the same material and structure as the electrochromic device, and determines the driving voltage level or size of the electrochromic device. By controlling the driving voltage application time, etc., there is an effect of being able to flexibly respond to changes in external environmental conditions.
또한, 본 발명에 따른 전기변색소자 구동 제어 장치 및 방법은, 전기변색소자의 구동에 영향을 미치는 외부 환경 조건을 파악하기 위해 광센서, 온도센서, 조도센서 등 여러 센서를 사용할 필요가 없으므로, 센싱 구조를 간단히 하면서도, 전기변색소자의 전기적 특성 변화와 상관 관계를 갖는 테스트 소자의 전기적 특성 변화를 측정하여, 전기변색소자를 원하는 착탈색 레벨로 정밀하게 제어할 수 있는 효과가 있다.In addition, the electrochromic device drive control device and method according to the present invention does not require the use of various sensors such as optical sensors, temperature sensors, and illuminance sensors to determine external environmental conditions that affect the operation of the electrochromic device, so sensing While simplifying the structure, it is possible to precisely control the electrochromic device to the desired color removal level by measuring changes in the electrical characteristics of the test element that are correlated with changes in the electrical characteristics of the electrochromic device.
또한, 본 발명에 따른 전기변색소자 구동 제어 장치 및 방법은, 전기변색소자의 구동 시의 전기적 특성의 측정을 통해 외부 환경 조건을 신속하게 파악하여, 전기변색소자의 구동 전압 크기 또는 구동 전압 인가 시간 등을 제어함으로써, 외부 환경 조건 변화에 따라 유연하게 대응할 수 있는 효과가 있다. In addition, the electrochromic device drive control device and method according to the present invention quickly determines external environmental conditions through measurement of electrical characteristics when driving the electrochromic device, and determines the driving voltage size or driving voltage application time of the electrochromic device. By controlling the etc., there is an effect of being able to respond flexibly to changes in external environmental conditions.
또한, 본 발명에 따른 전기변색소자 구동 제어 장치 및 방법은, 전기변색소자의 구동에 영향을 미치는 외부 환경 조건을 파악하기 위해 광센서, 온도센서, 조도센서 등 여러 센서를 사용할 필요가 없으므로, 센싱 구조를 간단히 하면서도, 전기변색소자의 전기적 특성 변화에 대해 미리 저장된 데이터를 기반으로, 전기변색소자를 원하는 착탈색 레벨로 정밀하게 제어할 수 있는 효과가 있다. In addition, the electrochromic device drive control device and method according to the present invention does not require the use of various sensors such as optical sensors, temperature sensors, and illuminance sensors to determine external environmental conditions that affect the operation of the electrochromic device, so sensing While simplifying the structure, it has the effect of precisely controlling the electrochromic device to the desired color removal level based on pre-stored data about changes in the electrical characteristics of the electrochromic device.
도 1은 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 장치의 구성을 도시한 블록도이다. Figure 1 is a block diagram showing the configuration of an electrochromic device driving control device according to an embodiment of the present invention.
도 2는 일 실시예에 따른 전기변색소자와 테스트 소자의 배치를 도시한 도면이다. Figure 2 is a diagram showing the arrangement of an electrochromic device and a test device according to an embodiment.
도 3은 도 1에 도시한 전기변색소자의 단면도이다. Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1.
도 4는 전기변색소자와 테스트 소자의 전기적 특성 측정을 설명하기 위한 도면이다. Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device.
도 5는 일 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment.
도 6은 일 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment.
도 7은 일 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment.
도 8은 일 실시예에 따른 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment.
도 9는 일 실시예에 따른 전기 변색 소자에 있어서, 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment.
도 10은 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 전기변색소자 구동 제어 장치의 구성을 도시한 블록도이다. Figure 11 is a block diagram showing the configuration of an electrochromic device driving control device according to another embodiment of the present invention.
도 12는 도 11에 도시한 전기변색소자의 단면도이다. FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11.
도 13은 다른 실시예에 따른 전기변색소자의 전기적 특성 측정을 설명하기 위한 도면이다. Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment.
도 14는 다른 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment.
도 15는 다른 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment.
도 16은 다른 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment.
도 17은 다른 실시예에 따른 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of decolorization of an electrochromic device according to another embodiment.
도 18은 다른 실시예에 따른 전기변색 소자에 있어서, 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to another embodiment.
도 19는 본 발명의 다른 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
이하에서는, 본 발명의 일 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail through exemplary drawings. When adding reference numerals to components in each drawing, it should be noted that identical components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
도 1은 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 장치의 구성을 도시한 블록도이다. 도 2는 일 실시예에 따른 전기변색소자와 테스트 소자의 배치를 도시한 도면이다. 도 3은 도 1에 도시한 전기변색소자의 단면도이다. 도 4는 전기변색소자와 테스트 소자의 전기적 특성 측정을 설명하기 위한 도면이다. 도 5는 일 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. 도 6은 일 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. 도 7은 일 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 8은 일 실시예에 따른 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 9는 일 실시예에 따른 전기 변색 소자에 있어서, 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 10은 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 1 is a block diagram showing the configuration of an electrochromic device driving control device according to an embodiment of the present invention. Figure 2 is a diagram showing the arrangement of an electrochromic device and a test device according to an embodiment. Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1. Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device. Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment. Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment. Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment. Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment. Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment. Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 장치(100)는, 전기변색소자(10)와 동일한 재료와 구조를 갖는 테스트 소자(20)의 전기적 특성의 측정을 통해 전기변색소자(10)의 구동을 제어하는 장치로서, 데이터 저장부(110), 센싱부(120) 및 제어부(130)를 포함한다. Referring to Figures 1 and 2, the electrochromic device driving control device 100 according to an embodiment of the present invention measures the electrical characteristics of the test device 20 having the same material and structure as the electrochromic device 10. It is a device that controls the operation of the electrochromic element 10 through measurement, and includes a data storage unit 110, a sensing unit 120, and a control unit 130.
데이터 저장부(110)는 외부 환경 조건에 따른 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 변화를 상호 매칭시킨 데이터를 저장한다. 외부 환경 조건은 전기변색소자(10) 외부의 빛, 열, 습도 등의 환경적인 요소가 될 수 있다. The data storage unit 110 stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions. External environmental conditions may be environmental factors such as light, heat, and humidity outside the electrochromic device 10.
전기변색소자(10)의 착탈색 변화 시, 빛, 열, 습도 등과 같은 외부 환경 조건에 의한 영향을 받을 수 있으며, 전기변색소자(10)를 동일한 투과율로 변경시키기 위한 구동 및 제어도 외부 환경 조건에 따라 미세한 차이가 발생할 수 있다. When changing the color of the electrochromic device 10, it may be affected by external environmental conditions such as light, heat, humidity, etc., and the driving and control to change the electrochromic device 10 to the same transmittance are also subject to external environmental conditions. Minor differences may occur depending on the condition.
데이터 저장부(110)는, 열적 상태 변화 또는 광학적 상태 변화에 따른 테스트 소자(20)의 전기적 특성 변화에 관한 데이터를 저장한다. The data storage unit 110 stores data regarding changes in electrical characteristics of the test element 20 due to changes in thermal or optical states.
또한, 데이터 저장부(110)는 전기변색소자(10)의 면적과 테스트 소자(20)의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장할 수 있다. 상관 관계식은 예를 들어, 함수 또는 룩업 테이블(lookup table) 형태로 구성될 수 있다. Additionally, the data storage unit 110 may store a correlation equation of electrical characteristics according to the area ratio of the electrochromic element 10 and the area of the test element 20. The correlation equation may be configured in the form of a function or a lookup table, for example.
테스트 소자(20)는 전기변색소자(10)와 동일한 재료와 구조로 이루어지며, 전기변색소자(10)에 비해 상대적으로 작은 면적을 가지므로, 외부 환경 조건 변화에 대해 전기변색소자(10) 보다 더 빠르게 반응한다.The test device 20 is made of the same material and structure as the electrochromic device 10, and has a relatively small area compared to the electrochromic device 10, so it is more resistant to changes in external environmental conditions than the electrochromic device 10. React faster.
테스트 소자(20)의 X축 방향의 길이(X2)와 Y축 방향의 길이(Y2)는, 전기변색소자(10)의 X축 방향의 길이(X1)와 Y축 방향의 길이(Y1)에 대해 동일한 비율로 축소될 수 있다. The X-axis direction length (X2) and the Y-axis direction length (Y2) of the test element 20 are equal to the can be reduced by the same ratio.
다른 예에서, 전기변색소자(10)와 테스트 소자(20)의 X축 방향의 길이에 대한 비율(X1:X2)과 Y축 방향의 길이에 대한 비율(Y1:Y2)은 상이하게 조정될 수 있다. In another example, the ratio of the lengths of the electrochromic device 10 and the test device 20 in the X-axis direction (X1:X2) and the ratio of the lengths in the Y-axis direction (Y1:Y2) may be adjusted differently. .
데이터 저장부(110)는 전기변색소자(10)와 테스트 소자(20)의 X축 방향의 길이에 대한 비율과 Y축 방향의 길이에 대한 비율에 관한 데이터를 저장할 수 있으며, 길이 비율의 변화에 따른 전기적 특성의 상관 관계식을 저장할 수 있다. The data storage unit 110 may store data regarding the ratio of the lengths of the electrochromic element 10 and the test element 20 in the X-axis direction and the ratio of the lengths in the Y-axis direction. The correlation equation of electrical characteristics can be saved.
일 실시예에서, 테스트 소자(20)의 면적은 100cm2 이하로 구성될 수 있다. 테스트 소자(20)는 전기변색소자(10)가 설치된 창호 상의 소정 위치에 배치될 수 있으며, 창호의 외관, 창호 설치를 위한 배선 등을 고려하여, 그 크기 및 위치가 변경될 수 있다. In one embodiment, the area of the test element 20 may be 100 cm 2 or less. The test element 20 may be placed at a predetermined position on the window on which the electrochromic element 10 is installed, and its size and location may be changed in consideration of the appearance of the window, wiring for window installation, etc.
데이터 저장부(110)는 외부 환경 조건에 따른 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 변화를 상호 매칭시킨 데이터를 저장할 뿐만 아니라, 전기변색소자(10)의 전반적인 구동에 필요한 데이터, 명령어 및/또는 소프트웨어를 저장할 수 있으며, 전기변색소자(10)의 착탈색 레벨 변화에 필요한 전압, 전류, 인가 시간 등의 상세 정보를 저장할 수 있다.The data storage unit 110 not only stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions, but also stores data necessary for the overall operation of the electrochromic device 10. , commands and/or software can be stored, and detailed information such as voltage, current, and application time required to change the color change level of the electrochromic element 10 can be stored.
데이터 저장부(110)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory) 또는 PROM(programmable read-only memory) 등의 저장매체를 포함할 수 있다.The data storage unit 110 is a flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), and multimedia card micro type. micro type), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or programmable read-only memory (PROM) It may include storage media such as:
센싱부(120)는 테스트 소자(20)의 전기적 특성을 측정한다. 전기적 특성은, 예를 들어, 테스트 소자(20)를 구동시키는 구동 전압 크기, 구동 전압 인가 시간에 따른 전류 값의 변화 또는 테스트 소자(20)의 저항 값의 변화가 될 수 있다. The sensing unit 120 measures the electrical characteristics of the test element 20. The electrical characteristics may be, for example, the size of the driving voltage that drives the test element 20, the change in current value depending on the driving voltage application time, or the change in resistance value of the test element 20.
제어부(130)는 센싱부(120)에서 측정된 테스트 소자(20)의 전기적 특성으로부터 외부 환경 조건을 분석하여, 전기변색소자(10)로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정한다. The control unit 130 analyzes external environmental conditions from the electrical characteristics of the test element 20 measured by the sensing unit 120 and adjusts the magnitude of the driving voltage applied to the electrochromic element 10 or the voltage application time.
제어부(130)는 전기변색소자(10) 착탈색의 레벨 변화를 위한 구동 전압의 크기 또는 전압 인가 시간을 변경할 수 있다. The control unit 130 may change the magnitude of the driving voltage or the voltage application time for changing the level of color change of the electrochromic element 10.
제어부(130)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 또는 마이크로 프로세서(microprocessors) 등을 이용하여 구현될 수 있다. The control unit 130 is hardware-wise, application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), or microprocessors. It can be implemented using microprocessors, etc.
전기변색소자(10)는 2 이상의 착탈색 레벨을 가질 수 있으며, 착탈색 레벨에 따라 전기변색소자(10)가 설치된 창호의 빛 투과율이 변할 수 있다. The electrochromic element 10 may have two or more color change levels, and the light transmittance of the window on which the electrochromic element 10 is installed may change depending on the color change level.
예를 들어, 전기변색소자(10)의 착탈색 레벨 1에서 투과율이 70%이며, 레벨 2에서 투과율이 50%이고, 레벨 3에서 투과율이 30%이고, 레벨 4에서 투과율이 10%가 될 수 있다. 전기변색소자(10)가 착색되면, 레벨 1에서 레벨 4 방향으로 투과율이 감소하며, 전기변색소자(10)가 탈색되면, 레벨 4에서 레벨 1 방향으로 투과율이 증가할 수 있다. For example, the transmittance of the electrochromic device 10 may be 70% at level 1, 50% at level 2, 30% at level 3, and 10% at level 4. there is. When the electrochromic device 10 is colored, the transmittance may decrease from level 1 to level 4, and when the electrochromic device 10 is discolored, the transmittance may increase from level 4 to level 1.
전기변색소자(10)가 착색되기 위해 정전압이 걸리며, 레벨 1에서 레벨 4까지 각각의 레벨로 변화하기 위한 전압 세기는 상이하게 구성될 수 있다. 예를 들어, 레벨 1에서 레벨 2로 변하기 위한 정전압 크기 변화는 0.5V인데 반해, 레벨 2에서 레벨 3로 변하기 위한 정전압 크기 변화는 0.7V가 될 수 있다. A constant voltage is applied to color the electrochromic element 10, and the voltage intensity for changing each level from level 1 to level 4 may be configured differently. For example, the constant voltage change for changing from level 1 to level 2 is 0.5V, while the constant voltage change for changing from level 2 to level 3 may be 0.7V.
한편, 전기변색소자(10)가 탈색되기 위해 역전압이 걸리며, 레벨 4에서 레벨 1까지 각각의 레벨로 변화하기 위한 전압 세기는 상이하게 구성될 수 있다.Meanwhile, a reverse voltage is applied to decolorize the electrochromic element 10, and the voltage intensity for changing each level from level 4 to level 1 may be configured differently.
예를 들어, 레벨 3에서 레벨 4로 변화시키기 위해 필요한 정전압 크기의 절대값은 레벨 4에서 레벨 3로 변화시키기 위해 필요한 역전압 크기의 절대값보다 크게 구성될 수 있다. For example, the absolute value of the constant voltage required to change from level 3 to level 4 may be larger than the absolute value of the reverse voltage required to change from level 4 to level 3.
본 명세서에 기재된 전기변색소자의 착탈색 레벨의 개수, 투과율, 전압 크기의 구체적 수치 등은 본 발명의 이해를 위한 예시적인 것으로, 본 발명의 사상은 이에 제한되지 않는다. 또한, 전기변색소자의 착탈색 레벨, 투과율은 특정 수치 뿐만 아니라 소정 수치 범위를 의미할 수 있다.The specific values of the number of color combination levels, transmittance, and voltage magnitude of the electrochromic device described in this specification are illustrative for understanding the present invention, and the spirit of the present invention is not limited thereto. In addition, the color desorption level and transmittance of an electrochromic device may mean not only a specific value but also a predetermined value range.
일 실시예에서, 본 발명의 전기변색소자 구동 제어 장치(100)는 전기변색소자(10)로 인가되는 전압의 극성을 전환시키는 극성 전환 스위치(미도시)를 더 포함할 수 있다. In one embodiment, the electrochromic device driving control device 100 of the present invention may further include a polarity change switch (not shown) that switches the polarity of the voltage applied to the electrochromic device 10.
극성 전환 스위치는 전기변색소자(10)에 인가되는 전압의 극성을 전환할 수 있다. 극성 전환 스위치는 제어부(130)의 제어에 따라 동작할 수 있으며, 전기변색소자(10)에 인가되는 전압의 방향을 변경할 수 있다. The polarity change switch can change the polarity of the voltage applied to the electrochromic element 10. The polarity change switch may operate under the control of the control unit 130 and change the direction of the voltage applied to the electrochromic element 10.
예를 들어, 전기변색소자(10)의 착탈색 레벨을 1에서 2로 변화시키고자 하는 경우, 극성 전환 스위치는 전기변색소자(10)에 정전압이 걸리도록 작동할 수 있다. 한편, 전기변색소자(10)의 착탈색 레벨을 2에서 1로 변화시키고자 하는 경우, 극성 전환 스위치는 전기변색소자(10)에 역전압이 걸리도록 극성을 전환시킬 수 있다. For example, when it is desired to change the color change level of the electrochromic device 10 from 1 to 2, the polarity change switch can be operated so that a constant voltage is applied to the electrochromic device 10. Meanwhile, when it is desired to change the color change level of the electrochromic device 10 from 2 to 1, the polarity change switch can change the polarity so that a reverse voltage is applied to the electrochromic device 10.
도 3은 도 1에 도시한 전기변색소자의 단면도이다. Figure 3 is a cross-sectional view of the electrochromic device shown in Figure 1.
도 3을 참조하면, 전기변색소자(10)는 투명 기판(11, 17), 전극층(12, 16), 제1 전기변색층(13), 제2 전기 변색측(15) 및 전해질층(14)을 포함한다. Referring to FIG. 3, the electrochromic device 10 includes transparent substrates 11 and 17, electrode layers 12 and 16, a first electrochromic layer 13, a second electrochromic side 15, and an electrolyte layer 14. ) includes.
투명 기판(11, 17)은 태양광이 내부로 투과하도록 광투과율이 95% 이상인 투명 플라스틱이나 유리가 사용될 수 있다. 투명 플라스틱으로는 폴리 에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리이미드(PI), 트리 아세틸셀룰로오스(TAC)가 사용될 수 있다. 투명 기판(11, 17)은 10㎛~5mm 두께로 형성될 수 있다. The transparent substrates 11 and 17 may be made of transparent plastic or glass with a light transmittance of 95% or more to allow sunlight to pass through. Transparent plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI), and triacetylcellulose (TAC). The transparent substrates 11 and 17 may be formed to have a thickness of 10 μm to 5 mm.
전극층(12, 16)은 각각 상부 및 하부 투명 기판(11, 17)의 표면에 형성되어 빛의 투과를 방해하지 않으면서 전기가 흐를 수 있는 투명 전도성 재료로 형성된다. The electrode layers 12 and 16 are formed on the surfaces of the upper and lower transparent substrates 11 and 17, respectively, and are made of a transparent conductive material that allows electricity to flow without interfering with the transmission of light.
전극층(12, 16)은, 예를 들어, ITO, ATO, FTO, IZO, ZnO, 구리 산화물, 아연 산화물, 티타늄 산화물과 같은 금속 산화물이 사용될 수 있다. 전극층(12, 16)은 스퍼터링과 같은 공지의 코팅공정을 통해 투명 기판(11, 17)에 박막의 필름형태로 형성될 수 있으며, 바람직하게는 300nm~1,000nm 두께로 형성될 수 있다. The electrode layers 12 and 16 may be made of metal oxides such as ITO, ATO, FTO, IZO, ZnO, copper oxide, zinc oxide, and titanium oxide. The electrode layers 12 and 16 may be formed in the form of a thin film on the transparent substrates 11 and 17 through a known coating process such as sputtering, and may preferably be formed to a thickness of 300 nm to 1,000 nm.
전기변색층(13, 15)은 전극층(12, 16) 상에 형성되어 공급되는 전원에 의해 주입되는 전하 또는 전해질 이온의 이동에 의해 변색되는 층으로, 제1 전기변색층(13)은 환원되어 변색되는 층이고, 제2 전기변색층(15)은 산화되어 변색되는 층이다. 제1 전기변색층(13)과 제2 전기변색층(15)은 전기신호에 따라 색이 변하는 전기변색 물질을 포함하는데, 유기계 또는 무기계 전기변색 물질일 수 있다. 유기계 전기변색물질로는 비올로겐, 안트라퀴논, 폴리아닐린, 폴리피놀 또는 폴리싸이오펜으로 이루어질 수 있으며, Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, 및 Ir 의 산화물 중 하나 이상의 산화물을 무기변색 물질로 포함할 수 있다. 환원 변색물질로는 V2O5, Nb2O5, WO3, TiO2, MoO3, viologen, PEDOT 등이 사용될 수 있으며, 산화 변색물질로는 (NH4)Fe[Fe(CN)6], LiNiOx, LixCoO2, IrO, Rh2O3, NiO, Ir(OH)2, CoO2, ITO 등이 사용될 수 있다. The electrochromic layers 13 and 15 are formed on the electrode layers 12 and 16 and change color due to the movement of charges or electrolyte ions injected by the supplied power, and the first electrochromic layer 13 is reduced and It is a layer that changes color, and the second electrochromic layer 15 is a layer that changes color by oxidation. The first electrochromic layer 13 and the second electrochromic layer 15 include an electrochromic material that changes color according to an electrical signal, and may be an organic or inorganic electrochromic material. Organic electrochromic materials may be composed of viologen, anthraquinone, polyaniline, polypinol, or polythiophene, and may include Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, and one or more oxides of Ir may be included as an inorganic discoloring material. Reductive discoloration materials include V 2 O 5 , Nb 2 O 5 , WO 3 , TiO 2 , MoO 3 , viologen, and PEDOT, and oxidation discoloration materials include (NH 4 )Fe[Fe(CN) 6 ]. , LiNiOx, LixCoO 2 , IrO, Rh 2 O 3 , NiO, Ir(OH) 2 , CoO 2 , ITO, etc. can be used.
본 명세서에서, 변색물질은 전기화학적 산화, 환원 반응에 의하여 광흡수도가 변화하는 전기변색특성을 갖는 물질이 될 수 있으며, 전압의 인가 여부 및 전압의 세기에 따라 가역적으로 전기변색물질의 전기 화학적 산화, 환원 현상이 일어나고, 이에 의하여 변색물질의 투명도 및 흡광도가 가역적으로 변경될 수 있다. In this specification, the color-changing material may be a material with electrochromic properties in which light absorption changes through electrochemical oxidation and reduction reactions, and the electrochemical properties of the electrochromic material are reversible depending on whether voltage is applied and the intensity of the voltage. Oxidation and reduction phenomena occur, which can reversibly change the transparency and absorbance of the discoloring material.
제1 전기변색층(13) 또는 제2 전기변색층(15)의 형성은 환원물질 또는 산화물질 중 어느 하나를 적층할 영역에 코팅한 후 건조하고 고온소성을 수행하게 되며, 제1 전기변색층(13)과 제2 전기변색층(15) 사이에 전해질층(14)이 삽입될 수 있다. The formation of the first electrochromic layer 13 or the second electrochromic layer 15 involves coating the area to be laminated with either a reducing material or an oxidizing material, followed by drying and firing at a high temperature. An electrolyte layer 14 may be inserted between (13) and the second electrochromic layer (15).
제1 전기변색층(13), 제2 전기변색층(15) 및 전해질층(14)은 전압을 가하면 색상이 변하는 전기변색원리를 이용하여 외부로부터의 전압 인가에 의해 가역적으로 색이 변하거나 투과율이 변하는 소자를 포함한다.The first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 use the electrochromic principle of changing color when voltage is applied, and reversibly change color or change transmittance by applying voltage from the outside. This includes changing elements.
제1 전기변색층(13), 제2 전기변색층(15) 및 전해질층(14)의 총 두께는 10 내지 500㎛, 바람직하게는 20 내지 300㎛, 더욱 바람직하게는 50 내지 200㎛일 수 있다. 제1 전기변색층(13), 제2 전기변색층(15) 및 전해질층(14)의 총 두께가 10㎛ 미만인 경우, 제1 전극층(12)과 제2 전극층(16)이 맞닿을 수 있어서, 합선이 될 가능성이 있고, 제1 전기변색층(13), 제2 전기변색층(15) 및 전해질층(14)의 총 두께가 500㎛를 초과하는 경우, 전기전도도가 감소하여 반응 속도가 느려질 수 있다.The total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 may be 10 to 500 μm, preferably 20 to 300 μm, and more preferably 50 to 200 μm. there is. When the total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 is less than 10㎛, the first electrode layer 12 and the second electrode layer 16 can contact each other. , there is a possibility of short circuit, and if the total thickness of the first electrochromic layer 13, the second electrochromic layer 15, and the electrolyte layer 14 exceeds 500㎛, the electrical conductivity decreases and the reaction rate decreases. It can be slow.
전해질층(14)은 전기 변색층(13, 15)의 변색이나 탈색을 위해 수소 이온이나 리튬 이온의 이동 환경을 제공하는 층으로, 자외선 조사에 따라 경화될 수 있는 액상의 고분자 전해질이 사용될 수 있다. 자외선 경화수지는 PEG계 또는 우레탄계 올리고머, 저분자량의 PEGDMe, PEGDA, 광 또는 열 개시제가 혼합하여 조성될 수 있으며, 여기에 용매에 전해질염이 녹은 액체 전해질이 형성된다.The electrolyte layer 14 is a layer that provides an environment for the movement of hydrogen ions or lithium ions for discoloration or decolorization of the electrochromic layers 13 and 15, and a liquid polymer electrolyte that can be hardened by ultraviolet ray irradiation can be used. . Ultraviolet curing resin can be composed by mixing PEG-based or urethane-based oligomers, low-molecular-weight PEGDMe, PEGDA, and light or thermal initiators, and a liquid electrolyte is formed by dissolving electrolyte salt in a solvent.
이때, 용매는 Carbonate계(EC, PC, DMC, DEC, EMC 등), Alcohol계(Ethylene glycol 등), Nitrile계(Acetonitrile 등), Amide계(Acetamide 등), Sulfide계(Sulfolane 등)를 단일 혹은 혼합되어 사용될 수 있으며, 전해질염은 H+, Li+, Na+, K+, Rb+, Cs+를 포함하는 화합물이 사용될 수 있는데, 예를 들어 LiTFSI, LiFSI, LiBOB, LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이 단일 또는 복합되어 사용될 수 있다. 이와 같이 조성되는 전해질층(14)은 균일한 간격을 가지고 제1 전기변색층(13)과 제2 전기변색층(15) 사이에 갭 코팅되어 층상으로 형성되는데, 바람직하게는 10㎛~200㎛로 형성될 수 있다. At this time, the solvent can be single or It can be used in combination, and electrolyte salts can be compounds containing H + , Li + , Na + , K + , Rb + , Cs + , for example, LiTFSI, LiFSI, LiBOB, LiClO 4 , LiBF 4 , Lithium salt compounds such as LiAsF 6 or LiPF 6 may be used singly or in combination. The electrolyte layer 14 composed in this way is formed in a layered form by gap coating between the first electrochromic layer 13 and the second electrochromic layer 15 with uniform intervals, preferably 10㎛ to 200㎛. It can be formed as
상기 전극층(12, 16)이나, 전기변색층(13, 15), 전해질층(14)을 형성하는 방법은 특별히 제한되지 않으며, 공지된 방법을 사용할 수 있다. 예를 들어, 증착(deposition), 스핀코팅(spin coating), 딥코팅(dip coating), 스크린 인쇄, 그라비아 코팅, 졸겔(sol-Gel)법, 또는 슬롯 다이 코팅(slot die) 중 어느 하나의 방법에 의해 각 층이 마련될 수 있다.The method of forming the electrode layers 12 and 16, the electrochromic layers 13 and 15, and the electrolyte layer 14 is not particularly limited, and known methods can be used. For example, any one of deposition, spin coating, dip coating, screen printing, gravure coating, sol-gel method, or slot die coating. Each floor can be prepared by.
본 발명의 전기변색소자 구동 제어 장치(100)는 전술한 전기변색소자(10)와 동일한 재료와 구조를 갖는 테스트 소자(20)에 대한 전기적 특성을 측정하여, 전기변색소자(10) 구동 중의 외부 환경 조건을 파악하고, 이를 전기변색소자(10)의 구동을 제어하는데 사용할 수 있다.The electrochromic device driving control device 100 of the present invention measures the electrical characteristics of a test device 20 having the same material and structure as the electrochromic device 10 described above, and externally detects the electrochromic device 10 during operation. Environmental conditions can be identified and used to control the operation of the electrochromic device 10.
이를 위해, 외부 환경 조건에 대한 전기변색소자(10)와 테스트 소자(20)의 전기적 특성을 미리 측정하여, 전기적 특성들을 상호 연관시킨 데이터가 데이터 저장부(110)에 저장될 수 있다. To this end, the electrical characteristics of the electrochromic device 10 and the test device 20 for external environmental conditions may be measured in advance, and data correlating the electrical properties may be stored in the data storage unit 110.
이후, 센싱부(120)가 테스트 소자(20)의 전기적 특성을 측정하여, 제어부(130)로 전달하면, 제어부(130)는 테스트 소자(20)의 측정된 전기적 특성으로부터 데이터 저장부(110)에 저장된 외부 환경 조건 및 전기변색소자(10)의 전기적 특성에 대한 데이터를 호출하여, 이를 기반으로 전기변색소자(10)의 구동을 제어할 수 있다.Thereafter, when the sensing unit 120 measures the electrical characteristics of the test element 20 and transmits it to the control unit 130, the control unit 130 stores the data from the measured electrical characteristics of the test element 20 to the data storage unit 110. By recalling data about external environmental conditions and electrical characteristics of the electrochromic device 10 stored in , the operation of the electrochromic device 10 can be controlled based on this.
도 4는 일 실시예에 따른 전기변색소자와 테스트 소자의 전기적 특성 측정을 설명하기 위한 도면이다. Figure 4 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device and a test device according to an embodiment.
도 4를 참조하면, 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 측정 원리는 동일하며, 각각 측정된 전기적 특성들을 상호 연관시킨 데이터 세트를 구성하여, 데이터 저장부(110)에 저장할 수 있다.Referring to FIG. 4, the principle of measuring the electrical characteristics of the electrochromic device 10 and the test device 20 is the same, and a data set in which the measured electrical characteristics are correlated is formed and stored in the data storage unit 110. You can.
우선, 동일한 외부 환경 조건 하에서, 전기변색소자(10)와 테스트 소자(20)의 전기적 특성을 측정한다. 외부 환경 조건은, 온도, 조도, 습도, 기류 등의 요소가 될 수 있으며, 이들 요소를 조합시킨 n차원 데이터 구조를 형성할 수 있다. 예를 들어, 온도와 조도를 각각 변화시키면서, 그들의 데이터를 조합하여 2차원 데이터 구조를 형성할 수 있다. First, the electrical characteristics of the electrochromic device 10 and the test device 20 are measured under the same external environmental conditions. External environmental conditions can be factors such as temperature, illumination, humidity, and airflow, and can form an n-dimensional data structure combining these factors. For example, while changing temperature and illuminance, their data can be combined to form a two-dimensional data structure.
도 4에서, 점선의 박스 안의 회로 구성은 전기변색소자(10) 또는 테스트 소자(20)의 등가 모델을 나타내며, 전기변색소자(10) 또는 테스트 소자(20)에 미리 설정된 크기의 구동 전압 Vdc를 인가한다. 전술한 바와 같이, 전기변색소자(10)와 테스트 소자(20)는 면적 크기가 상이하므로, 테스트 소자(20)에는 전기변색소자(10)에 비해 작은 크기의 구동 전압이 인가되어야 테스트 소자(20)가 손상되지 않을 수 있다.In FIG. 4, the circuit configuration in the dotted box represents an equivalent model of the electrochromic device 10 or the test device 20, and a driving voltage V dc of a preset size for the electrochromic device 10 or the test device 20. Authorize. As described above, since the area sizes of the electrochromic device 10 and the test device 20 are different, a smaller driving voltage must be applied to the test device 20 than that of the electrochromic device 10 to test the test device 20. ) may not be damaged.
구동 전압 Vdc 인가 후, 플로팅(floating) 상태를 만들면, 외부 저항이 무한대가 되어 전기변색소자(10) 또는 테스트 소자(20)의 내부 전압 Vc(t)을 측정할 수 있다. After applying the driving voltage V dc , if a floating state is created, the external resistance becomes infinite and the internal voltage Vc(t) of the electrochromic device 10 or the test device 20 can be measured.
센싱부(120)는, 전기변색소자(10) 또는 테스트 소자(20)의 양단에 센싱 라인을 통해 전기적으로 연결됨으로써, 전기변색소자(10) 또는 테스트 소자(20)의 양단 전압 Vc(t)를 검출할 수 있다. 한편, 전류를 측정하기 위해 (-)가 접지되는 지점에 저항 Ri를 배치하여, I=V/R 수식에 따라 전류 값을 도출할 수 있으며, 시간에 따른 전류 값 변화 파형을 획득할 수 있다. The sensing unit 120 is electrically connected to both ends of the electrochromic device 10 or the test device 20 through a sensing line, so that the voltage Vc(t) at both ends of the electrochromic device 10 or the test device 20 can be detected. Meanwhile, by placing a resistor R i at the point where (-) is grounded to measure the current, the current value can be derived according to the formula I=V/R, and a waveform of the current value change over time can be obtained. .
동일한 외부 환경 조건 하에서, 전기변색소자(10)와 테스트 소자(20)가 동일한 투과율을 달성하기 위해 전기변색소자(10)에 적용되는 제1 구동 파라미터와 테스트 소자(20)에 적용되는 제2 구동 파라미터를 실험에 의해 미리 검출하며, 이들 파라미터들을 상호 연관시킨 데이터 세트를 구성하여, 데이터 저장부(110)에 저장할 수 있다.Under the same external environmental conditions, the first driving parameter applied to the electrochromic device 10 and the second driving parameter applied to the test device 20 so that the electrochromic device 10 and the test device 20 achieve the same transmittance. Parameters can be detected in advance through experiment, and a data set that correlates these parameters can be constructed and stored in the data storage unit 110.
여기서, 제1 구동 파라미터와 제2 구동 파라미터는 각각 전기변색소자(10)와 테스트 소자(20)에 인가되는 구동 전압의 크기, 구동 전압의 인가 시간, 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형 등의 정보를 포함할 수 있다.Here, the first driving parameter and the second driving parameter are the size of the driving voltage applied to the electrochromic element 10 and the test element 20, the application time of the driving voltage, and the current value change waveform or resistance according to the application of the driving voltage, respectively. It may include information such as value change waveforms.
위와 같은 과정을 거쳐 데이터 저장부(110)에 외부 환경 조건에 따른 전기변색소자(10)와 테스트 소자(20)의 전기적 특성이 저장된 상태에서, 전기변색소자(10)의 구동 중에, 센싱부(120)가 테스트 소자(20)의 전기적 특성을 측정하면, 해당 전기적 특성으로부터 외부 환경 조건 및 전기변색소자(10)의 전기적 특성이 도출될 수 있다. Through the above process, the electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions are stored in the data storage unit 110, and during operation of the electrochromic device 10, the sensing unit ( When 120) measures the electrical characteristics of the test element 20, external environmental conditions and the electrical characteristics of the electrochromic element 10 can be derived from the electrical characteristics.
이때, 테스트 소자(20)는 외부 환경 조건에 대한 반응 속도가 전기변색소자(10)에 비해 상대적으로 빠르므로, 신속하게 외부 환경 조건 및 전기변색소자(10)의 전기적 특성을 파악하여, 전기변색소자(10)의 구동이 제어될 수 있다. At this time, the test device 20 has a relatively faster response speed to external environmental conditions than the electrochromic device 10, so it quickly determines the external environmental conditions and the electrical characteristics of the electrochromic device 10, thereby causing electrochromic color change. Driving of the device 10 can be controlled.
도 5는 일 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 5 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to an embodiment.
도 5를 참조하면, 전기변색소자(10)가 설치된 3개의 패널에 대한 실험 결과를 나타내며, 내광 패널, 내열 패널, 일반 패널에 대해 동일한 구동 전압을 인가했을 때 전류 값 변화 파형들과, 플로팅 시의 내부 전압 값 변화 파형들이 도시된다. Referring to FIG. 5, the experimental results for three panels on which the electrochromic device 10 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, the heat-resistant panel, and the general panel, and the waveforms when plotted. The internal voltage value change waveforms are shown.
실험에는 오리온엔이에스社의 100×100mm Flexade B 패널이 사용되었다. 여기서, 내광 패널은 1sun(100mW/cm2) 조사, 외부 환경이 85℃인 실험 조건이 적용된 Flexade B 패널, 내열 패널은 외부 환경이 85℃인 실험 조건이 적용된 Flexade B 패널, 일반 패널은 상온 상태의 Flexade B 패널을 의미한다.Orion NC's 100×100mm Flexade B panel was used in the experiment. Here, the light-resistant panel is a Flexade B panel with experimental conditions of 1 sun (100mW/cm 2 ) irradiation and an external environment of 85℃, the heat-resistant panel is a Flexade B panel with experimental conditions of an external environment of 85℃, and the general panel is at room temperature. refers to the Flexade B panel.
제1 영역(101)에서는 1.5V의 구동 전압이 인가되며, 제2 영역(102)에서는 전압이 인가되지 않는다. A driving voltage of 1.5V is applied to the first area 101, and no voltage is applied to the second area 102.
제1 영역(101)에서 상온(일반) 패널의 전류는 105mA에서 28mA로 변하며, 내열 패널의 전류는 105mA에서 40mA로 변하고, 내광 패널의 전류는 80mA에서 40mA로 변한다. In the first area 101, the current of the room temperature (normal) panel changes from 105 mA to 28 mA, the current of the heat-resistant panel changes from 105 mA to 40 mA, and the current of the light-resistant panel changes from 80 mA to 40 mA.
제2 영역(102)에서 상온(일반) 패널의 전압은 1.1V에서 1.05V로 변하며, 내열 패널의 전압은 1.0V에서 0.9V로 변하고, 내광 패널의 전압은 0.95V에서 0.8V로 변한다. In the second area 102, the voltage of the room temperature (normal) panel changes from 1.1V to 1.05V, the voltage of the heat-resistant panel changes from 1.0V to 0.9V, and the voltage of the light-resistant panel changes from 0.95V to 0.8V.
도 5의 X축 간격은 1.4s 이며, 제1 영역(101)과 제2 영역(102)에서 전류와 전압의 측정은 1/100sec 간격으로 실행되었다.The X-axis interval in FIG. 5 is 1.4 s, and current and voltage measurements in the first area 101 and the second area 102 were performed at 1/100 second intervals.
내광 패널의 경우, 착색 시, 초기 전류 값이 약 80mA로 일반 패널과 내열 패널의 초기 전류 값(100~110mA)에 비해 낮게 나타났다. In the case of light-resistant panels, when coloring, the initial current value was about 80 mA, which was lower than the initial current value (100-110 mA) of general panels and heat-resistant panels.
구동 전압 인가의 시작 시점에서, 내광 패널과 내열 패널의 초기 전류 값은 상이하게 나타났으나, 구동 전압 인가의 종료 시점에서, 내광 패널과 내열 패널의 전류 값은 유사하게 나타났다.At the start of applying the driving voltage, the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
또한, 구동 전압 인가의 시작 시점에서, 내열 패널과 일반 패널의 초기 전류 값은 유사하게 나타났으나, 구동 전압 인가의 종료 시점에서, 일반 패널의 전류 값은 내열 패널의 전류 값에 비해 낮게 나타났다.Additionally, at the start of applying the driving voltage, the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
제1 영역(101)의 전류 값 변화 파형들을 시간에 대해 적분하면 각각의 패널에 인가되는 전하량이 산출되며, 동시간 대비 내열 패널에서 가장 많은 전하량이 인가되었으며, 이어서 일반 패널, 내광 패널 순으로 전하량이 많이 인가되었다.By integrating the current value change waveforms in the first area 101 with respect to time, the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
제2 영역(102)은 내광 패널, 내열 패널, 일반 패널에 대해 플로팅 시의 내부 전압 값 변화 파형들을 나타내며, 내부 전압(V)은 하기 수학식과 같이 도출될 수 있다. The second area 102 represents waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel, and the internal voltage (V) can be derived as shown in the following equation.
Figure PCTKR2023004766-appb-img-000001
Figure PCTKR2023004766-appb-img-000001
여기서, V0는 구동 전압, R은 전기변색소자의 저항, C는 전기변색소자의 용량, t는 시간이며, RC 값이 클 수록 내부 전압(V)은 느리게 변화한다. Here, V 0 is the driving voltage, R is the resistance of the electrochromic device, C is the capacity of the electrochromic device, and t is time. The larger the RC value, the slower the internal voltage (V) changes.
플로팅의 시작 시점에서 내부 전압들을 비교하면, 일반 패널의 내부 전압에 비해 내열 패널의 내부 전압이 상당히 감소했으며, 이는 RC 값의 변동에 의한 것으로 파악된다.Comparing the internal voltages at the start of floating, the internal voltage of the heat-resistant panel decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
또한, 플로팅의 시작 시점에서 내광 패널의 내부 전압은 내열 패널의 내부 전압에 비해 소폭 감소했으며, 제2 영역(102) 전체적으로 내광 패널과 내열 패널의 전압 값 변화 파형들이 유사한 형태로 나타나므로, 내광 패널과 내열 패널의 RC 값은 유사한 것으로 추정할 수 있다. In addition, at the start of floating, the internal voltage of the light-resistant panel slightly decreased compared to the internal voltage of the heat-resistant panel, and since the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the second area 102, the light-resistant panel The RC values of and heat-resistant panels can be assumed to be similar.
최종 착색된 3개 패널의 투과율은 모두 유사하였다. The transmittance of the three final colored panels was all similar.
도 6은 일 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 6 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to an embodiment.
도 6을 참조하면, 전기변색소자(10)가 설치된 3개의 패널에 대한 실험 결과를 나타내며, 내광 패널, 내열 패널, 일반 패널에 대해 동일한 구동 전압을 인가했을 때 전류 값 변화 파형들과, 플로팅 시의 내부 전압 값 변화 파형들이 도시된다. Referring to FIG. 6, the experimental results for three panels on which the electrochromic device 10 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting. The internal voltage value change waveforms are shown.
제3 영역(103)에서는 -1.5V의 구동 전압이 인가되며, 제4 영역(104)에서는 전압이 인가되지 않는다. A driving voltage of -1.5V is applied to the third area 103, and no voltage is applied to the fourth area 104.
제3 영역(103)에서 상온(일반) 패널의 전류는 -140mA에서 -10mA로 변하며, 내열 패널의 전류는 -140mA에서 -60mA로 변하고, 내광 패널의 전류는 -115mA에서 -60mA로 변한다. In the third area 103, the current of the room temperature (normal) panel changes from -140 mA to -10 mA, the current of the heat-resistant panel changes from -140 mA to -60 mA, and the current of the light-resistant panel changes from -115 mA to -60 mA.
제4 영역(104)에서 상온(일반) 패널의 전압은 -0.3V에서 -0.2V로 변하며, 내열 패널의 전압은 -0.3V에서 -0.17V로 변하고, 내광 패널의 전압은 -0.17V에서 +0.08V로 변한다. In the fourth area 104, the voltage of the room temperature (normal) panel changes from -0.3V to -0.2V, the voltage of the heat-resistant panel changes from -0.3V to -0.17V, and the voltage of the light-resistant panel changes from -0.17V to + It changes to 0.08V.
도 6의 X축 간격은 1.4s 이며, 제3 영역(103)과 제4 영역(104)에서 전류와 전압의 측정은 1/100sec 간격으로 실행되었다. The X-axis interval in FIG. 6 is 1.4 s, and current and voltage measurements in the third area 103 and the fourth area 104 were performed at 1/100 second intervals.
내광 패널의 경우, 탈색 시, 초기 전류 값이 약 -115mA로 일반 패널과 내열 패널의 초기 전류 값(-140mA)에 비해 낮게 나타났다. In the case of light-resistant panels, when discoloring, the initial current value was approximately -115 mA, which was lower than the initial current value (-140 mA) of general panels and heat-resistant panels.
구동 전압 인가의 시작 시점에서, 내광 패널과 내열 패널의 초기 전류 값은 상이하게 나타났으나, 구동 전압 인가의 종료 시점에서, 내광 패널과 내열 패널의 전류 값은 유사하게 나타났다. At the start of applying the driving voltage, the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
또한, 구동 전압 인가의 시작 시점에서, 내열 패널과 일반 패널의 초기 전류 값은 유사하게 나타났으나, 구동 전압 인가의 종료 시점에서, 일반 패널의 전류 값은 내열 패널의 전류 값에 비해 낮게 나타났다.Additionally, at the start of applying the driving voltage, the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
제3 영역(103)의 전류 값 변화 파형들을 시간에 대해 적분하면 각각의 패널에 인가되는 전하량이 산출되며, 동시간 대비 내열 패널에서 가장 많은 전하량이 인가되었으며, 이어서 일반 패널, 내광 패널 순으로 전하량이 많이 인가되었다.By integrating the current value change waveforms in the third area 103 with respect to time, the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
제4 영역(104)은 내광 패널, 내열 패널, 일반 패널에 대해 플로팅 시의 내부 전압 값 변화 파형들을 나타낸다. The fourth area 104 shows waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel.
플로팅의 시작 시점에서 내부 전압들을 비교하면, 일반 패널의 내부 전압에 비해 내광 패널의 내부 전압이 상당히 감소했으며, 이는 RC 값의 변동에 의한 것으로 파악된다.Comparing the internal voltages at the start of floating, the internal voltage of the light-resistant panel has decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
또한, 플로팅 시, 내광 패널의 내부 전압은 내열 패널의 내부 전압에 비해 대폭 감소했으며, 제4 영역(104) 전체적으로 내광 패널과 내열 패널의 전압 값 변화 파형들이 유사한 형태로 나타나므로, 내광 패널과 내열 패널의 RC 값은 유사한 것으로 추정할 수 있다. In addition, when floating, the internal voltage of the light-resistant panel is significantly reduced compared to the internal voltage of the heat-resistant panel, and the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the fourth region 104, so the light-resistant panel and the heat-resistant panel appear in similar shapes. The RC values of the panels can be assumed to be similar.
최종 탈색된 3개 패널의 투과율은 모두 유사하였다. The transmittance of the three final bleached panels was all similar.
도 7은 일 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 7 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to an embodiment.
도 7을 참조하면, 전기변색소자(10)의 투과율이 60%에서 20%로 변화되도록 구동시킬 때, 전류 값 변화 파형과 저항 값 변화 파형이 도시된다.Referring to FIG. 7, when the electrochromic device 10 is driven to change the transmittance from 60% to 20%, a current value change waveform and a resistance value change waveform are shown.
실험에는 오리온엔이에스社의 250×250mm Flexade B 패널이 사용되었다.Orion NC's 250×250mm Flexade B panel was used in the experiment.
착색 초기, 각각 1초와 5초에서 측정된 전류 값과 저항 값은 하기 표와 같다.The current and resistance values measured at the beginning of coloring, at 1 second and 5 seconds, respectively, are shown in the table below.
전류 (A)Current (A)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
1One 0.0740.074 0.0720.072 0.0640.064
55 0.0650.065 0.0640.064 0.0580.058
저항 (Ω)Resistance (Ω)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
1One 20.31220.312 20.94220.942 23.39823.398
55 23.01123.011 23.30723.307 25.71025.710
착색 초기, 전기변색소자(10)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 것을 확인할 수 있다. 마찬가지로, 착색 초기, 테스트 소자(20)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 경향을 갖는다.In the early stages of coloring, when a driving voltage is applied to the electrochromic element 10, it can be seen that the higher the external temperature, the smaller the measured current value and the larger the measured resistance value. Likewise, when a driving voltage is applied to the test element 20 at the beginning of coloring, the higher the external temperature, the smaller the measured current value and the larger the measured resistance value tends to be.
전기변색소자(10)와 테스트 소자(20)에 대해 온도별로 측정된 전류 값 변화 파형과 저항 값 변화 파형들은 상호 매칭되어 데이터 저장부(110)에 저장될 수 있다. Current value change waveforms and resistance value change waveforms measured by temperature for the electrochromic device 10 and the test device 20 may be matched with each other and stored in the data storage unit 110.
이후, 전기변색소자(10)의 구동 시, 본 발명의 전기변색소자 구동 제어 장치(100)의 센싱부(120)가 테스트 소자(20)에 인가되는 테스트 전압의 크기 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다.Thereafter, when driving the electrochromic device 10, the sensing unit 120 of the electrochromic device driving control device 100 of the present invention determines the magnitude of the test voltage applied to the test device 20 and the current according to the application of the test voltage. A value change waveform or a resistance value change waveform can be detected.
제어부(130)는 센싱부(120)로부터 전달되는 테스트 소자(20)의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 기울기 값을 산출하여, 테스트 소자(20)의 전기적 특성을 파악할 수 있다. The control unit 130 calculates a slope value at one or more specific times for the current value change waveform or resistance value change waveform of the test element 20 transmitted from the sensing unit 120, and determines the electrical characteristics of the test element 20. can be figured out.
제어부(130)는 테스트 소자(20)의 전류 값 변화 파형 또는 저항 값 변화 파형을 기반으로 데이터 저장부(110)로부터 외부 환경 조건 및 전기변색소자(10)의 전류 값 변화 파형 또는 저항 값 변화 파형을 도출하여, 전기변색소자(10)가 원하는 목표 투과율로 변화하도록 전기변색소자(10)로 인가되는 구동 전압의 크기 또는 구동 전압의 인가 시간을 제어할 수 있다.The control unit 130 receives external environmental conditions and the current value change waveform or resistance value change waveform of the electrochromic element 10 from the data storage unit 110 based on the current value change waveform or resistance value change waveform of the test element 20. By deriving , the magnitude of the driving voltage applied to the electrochromic device 10 or the application time of the driving voltage can be controlled so that the electrochromic device 10 changes to the desired target transmittance.
일 실시예에서, 데이터 저장부(110)는 동일한 외부 환경 조건 하에서, 전기변색소자(10)와 테스트 소자(20)에 각각 구동 전압을 인가하고, 제1 설정 시각(t1)과 제2 설정 시각(t2)에서 각각의 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 전기변색소자(10)의 2개의 기울기 값들과 테스트 소자(20)의 2개의 기울기 값들을 상호 매칭시킨 데이터 서브 세트(subset)들을 저장할 수 있다. In one embodiment, the data storage unit 110 applies a driving voltage to the electrochromic element 10 and the test element 20 under the same external environmental conditions, and sets the first setting time (t 1 ) and the second setting time. At time t 2 , the slope values of each current value change waveform or resistance value change waveform are calculated, and the two slope values of the electrochromic element 10 and the two slope values of the test element 20 are matched with each other. Data subsets can be stored.
예를 들어, 도 7에서, 외부 온도 80℃에서, 제1 설정 시각(t1)에서 측정된 전기변색소자(10)의 전류 값 변화 파형의 제1 기울기 값(A1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(10)의 전류 값 변화 파형의 제2 기울기 값(A2)을 제1 데이터 서브 세트(A1, A2)로 구성하고, 제1 설정 시각(t1)에서 측정된 테스트 소자(20)의 전류 값 변화 파형의 제1 기울기 값(a1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(10)의 전류 값 변화 파형의 제2 기울기 값(a2)을 제2 데이터 서브 세트(a1, a2)로 구성하여, 이들을 상호 매칭시킨 데이터 서브 세트들이 데이터 저장부(110)에 저장될 수 있다. For example, in FIG. 7, at an external temperature of 80°C, the first slope value (A 1 ) and the second set time of the current value change waveform of the electrochromic element 10 measured at the first set time (t 1 ) The second slope value (A 2 ) of the current value change waveform of the electrochromic device 10 measured at (t 2 ) is configured as the first data subset (A 1 , A 2 ), and the first set time (t) The first slope value (a 1 ) of the current value change waveform of the test element 20 measured at 1 ) and the second current value change waveform of the electrochromic element 10 measured at the second set time (t 2 ) The slope value (a 2 ) can be configured as a second data subset (a 1 , a 2 ), and the data subsets matching them can be stored in the data storage unit 110 .
또한, 예를 들어, 도 7에서, 외부 온도 80℃에서, 제1 설정 시각(t1)에서 측정된 전기변색소자(10)의 저항 값 변화 파형의 제1 기울기 값(R1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(10)의 저항 값 변화 파형의 제2 기울기 값(R2)을 제1 데이터 서브 세트(R1, R2)로 구성하고, 제1 설정 시각(t1)에서 측정된 테스트 소자(20)의 저항 값 변화 파형의 제1 기울기 값(r1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(10)의 저항 값 변화 파형의 제2 기울기 값(r2)을 제2 데이터 서브 세트(r1, r2)로 구성하여, 이들을 상호 매칭시킨 데이터 서브 세트들이 데이터 저장부(110)에 저장될 수 있다. In addition, for example, in FIG. 7, the first slope value (R 1 ) and the second resistance value change waveform of the electrochromic element 10 measured at the first set time (t 1 ) at an external temperature of 80° C. The second slope value (R 2 ) of the resistance value change waveform of the electrochromic element 10 measured at the set time (t 2 ) is configured as the first data subset (R 1 , R 2 ), and the first set time The first slope value (r 1 ) of the resistance value change waveform of the test element 20 measured at (t 1 ) and the resistance value change waveform of the electrochromic element 10 measured at the second set time (t 2 ) The second slope value (r 2 ) may be configured as a second data subset (r 1 , r 2 ), and the data subsets matching these may be stored in the data storage unit 110.
같은 방식으로, 외부 온도 60℃, 40℃에서 기울기 값들에 관한 데이터 서브 세트들이 구성되어, 이들이 데이터 저장부(110)에 저장될 수 있다. In the same way, data subsets regarding slope values at external temperatures of 60°C and 40°C can be constructed and stored in the data storage unit 110.
외부 환경 조건에 따라 전류 값 변화 파형 또는 저항 값 변화 파형은 비슷한 양상으로 나타날 수 있는데, 2개 이상의 기울기 값들을 사용하여, 외부 환경 조건이 보다 정밀하게 구분될 수 있으며, 이에 따라 전기변색소자(10)가 제어될 수 있다.Depending on the external environmental conditions, the current value change waveform or the resistance value change waveform may appear in a similar pattern. By using two or more slope values, the external environmental conditions can be more precisely distinguished, and thus the electrochromic device (10 ) can be controlled.
도 8은 일 실시예에 따른 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 8 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device according to an embodiment.
도 8을 참조하면, 전기변색소자(10)의 투과율이 20%에서 60%로 변화되도록 구동시킬 때, 전류 값 변화 파형과 저항 값 변화 파형이 도시된다. Referring to FIG. 8, when the electrochromic device 10 is driven to change the transmittance from 20% to 60%, a current value change waveform and a resistance value change waveform are shown.
실험에는 오리온엔이에스社의 250×250mm Flexade B 패널이 사용되었다.Orion NC's 250×250mm Flexade B panel was used in the experiment.
탈색 초기, 각각 203초와 207초에서 측정된 전류 값과 저항 값은 하기 표와 같다. The current and resistance values measured at the beginning of decolorization, at 203 seconds and 207 seconds, respectively, are shown in the table below.
전류 (A)Current (A)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
203203 -0.103-0.103 -0.094-0.094 -0.091-0.091
207207 -0.095-0.095 -0.090-0.090 -0.085-0.085
저항 (Ω)Resistance (Ω)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
203203 14.48414.484 15.39215.392 16.29516.295
207207 15.61615.616 16.58416.584 17.42817.428
탈색 초기, 전기변색소자(10)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 것을 확인할 수 있다. 마찬가지로, 탈색 초기, 테스트 소자(20)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 경향을 갖는다.At the beginning of discoloration, when a driving voltage is applied to the electrochromic element 10, it can be seen that the higher the external temperature, the smaller the measured current value and the larger the measured resistance value. Likewise, when a driving voltage is applied to the test element 20 at the beginning of discoloration, the higher the external temperature, the smaller the measured current value, and the larger the measured resistance value tends to be.
전기변색소자(10)와 테스트 소자(20)에 대해 온도별로 측정된 전류 값 변화 파형들 또는 저항 값 변화 파형들은 상호 매칭되어 데이터 저장부(110)에 저장될 수 있다. Current value change waveforms or resistance value change waveforms measured by temperature for the electrochromic device 10 and the test device 20 may be matched with each other and stored in the data storage unit 110.
탈색 시에도, 데이터 저장부(110)는 동일한 외부 환경 조건 하에서, 전기변색소자(10)와 테스트 소자(20)에 각각 구동 전압을 인가하고, 제1 설정 시각(t1)과 제2 설정 시각(t2)에서 각각의 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 전기변색소자(10)의 2개의 기울기 값들과 테스트 소자(20)의 2개의 기울기 값들을 상호 매칭시킨 데이터 서브 세트(subset)들을 저장할 수 있다. Even during discoloration, the data storage unit 110 applies a driving voltage to the electrochromic element 10 and the test element 20 under the same external environmental conditions, and sets the first set time (t 1 ) and the second set time. At (t 2 ), the slope values of each current value change waveform or resistance value change waveform are calculated, and the two slope values of the electrochromic element 10 and the two slope values of the test element 20 are matched to each other. Subsets can be stored.
도 9는 일 실시예에 따른 전기변색소자에 있어서, 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 9 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to an embodiment.
도 9를 참조하면, 0초부터 대략 180초까지는 전기변색소자(10)의 투과율이 60%에서 20%로 변화되는 착색 상태에서 외부 온도별로 전류 값 변화 파형들과 저항 값 변화 파형들을 도시하며, 대략 180초부터 360초까지는 전기변색소자(10)의 투과율이 20%에서 60%로 변화되는 탈색 상태에서 외부 온도별로 전류 값 변화 파형들과 저항 값 변화 파형들을 도시한다. Referring to FIG. 9, from 0 seconds to approximately 180 seconds, current value change waveforms and resistance value change waveforms are shown according to external temperature in a colored state in which the transmittance of the electrochromic element 10 changes from 60% to 20%, From approximately 180 seconds to 360 seconds, current value change waveforms and resistance value change waveforms are shown according to external temperature in a discolored state in which the transmittance of the electrochromic element 10 changes from 20% to 60%.
0초부터 180초 구간에서, 착색 시, 구동 전압의 인가 및 플로팅이 반복되면서, 측정되는 전류 값은 점차 감소되는 경향을 갖는다. 또한, 착색 초기에는, 고온(80℃)에서 전류 값이 저온(40℃)에서 전류 값보다 작게 측정되나, 착색이 완료되는 시점에서 전류 값들은 유사하게 측정된다. In the period from 0 to 180 seconds, when coloring, the application and floating of the driving voltage are repeated, and the measured current value tends to gradually decrease. Additionally, at the beginning of coloring, the current value at high temperature (80°C) is measured to be smaller than the current value at low temperature (40°C), but the current values are measured similarly when coloring is completed.
또한, 0초부터 180초 구간에서, 착색 초기에는, 고온(80℃)에서 저항 값이 저온(40℃)에서 저항 값보다 크게 측정되나, 착색이 완료되는 시점에서 저항 값들은 유사하게 측정된다. In addition, in the period from 0 to 180 seconds, at the beginning of coloring, the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), but at the point when coloring is completed, the resistance values are measured similarly.
180초부터 360초 구간에서, 탈색 시, 구동 전압의 인가 및 플로팅이 반복되면서, 측정되는 전류 값은 점차 감소되는 경향을 갖는다. 또한, 탈색 초기에는, 고온(80℃)에서 전류 값이 저온(40℃)에서 전류 값보다 작게 측정되나, 탈색이 완료되는 시점에서 전류 값들은 유사하게 측정된다. In the period from 180 seconds to 360 seconds, when discoloring, the application and floating of the driving voltage are repeated, and the measured current value tends to gradually decrease. In addition, at the beginning of decolorization, the current value at high temperature (80°C) is measured to be smaller than the current value at low temperature (40°C), but at the point when decolorization is completed, the current values are measured similarly.
또한, 180초부터 360초 구간에서, 탈색 초기에는, 고온(80℃)에서 저항 값이 저온(40℃)에서 저항 값보다 크게 측정되며, 300초 이후에는, 저온(40℃)에서 저항 값이 고온(80℃)에서 저항 값보다 더 크게 측정되나, 측정 오류로 추정된다.In addition, in the period from 180 seconds to 360 seconds, in the early stages of discoloration, the resistance value at high temperature (80℃) is measured to be greater than the resistance value at low temperature (40℃), and after 300 seconds, the resistance value at low temperature (40℃) is measured. It is measured to be larger than the resistance value at high temperature (80℃), but it is presumed to be a measurement error.
도 10은 본 발명의 일 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 10 is a flowchart illustrating a method for controlling the operation of an electrochromic device according to an embodiment of the present invention.
도 10을 참조하면, 본 발명의 전기변색소자 구동 제어 방법은, 전기변색소자(10)와 동일한 재료와 구조를 갖는 테스트 소자(20)의 전기적 특성의 측정을 통해 전기변색소자(10)의 구동을 제어하는 방법으로서, 우선, 외부 환경 조건에 따른 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 변화를 상호 매칭시킨 데이터를 데이터 저장부(110)가 저장한다(S110). Referring to FIG. 10, the electrochromic device driving control method of the present invention is to drive the electrochromic device 10 by measuring the electrical characteristics of a test device 20 having the same material and structure as the electrochromic device 10. As a method of controlling, first, the data storage unit 110 stores data that matches changes in electrical characteristics of the electrochromic device 10 and the test device 20 according to external environmental conditions (S110).
외부 환경 조건은 전기변색소자(10) 외부의 온도, 조도, 습도, 기류 등의 환경적인 요소가 될 수 있다. 외부 환경 조건을 변화시키면서, 동일한 투과율에서, 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 변화를 상호 매칭시킬 수 있다. External environmental conditions may be environmental factors such as temperature, illuminance, humidity, and airflow outside the electrochromic device 10. By changing external environmental conditions, changes in electrical characteristics of the electrochromic device 10 and the test device 20 can be matched to each other at the same transmittance.
외부의 온도, 조도, 습도, 기류 등의 환경적인 요소에 대해 이들을 조합시킨 n차원 데이터 구조를 형성하고, 각각의 요소에 대한 변화량 내지 변화율에 대해 전기변색소자(10)와 테스트 소자(20)의 전기적 특성 변화에 대한 데이터를 축적할 수 있다. An n-dimensional data structure is formed by combining environmental factors such as external temperature, illumination, humidity, and airflow, and the electrochromic element 10 and the test element 20 are used for the change amount or change rate for each element. Data on changes in electrical characteristics can be accumulated.
일 실시예에서, 데이터 저장부(110)는 열적 상태 변화 또는 광학적 상태 변화에 따른 테스트 소자(20)의 전기적 특성 변화에 관한 데이터를 저장하며, 전기변색소자(10)의 면적과 테스트 소자(20)의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장할 수 있다. In one embodiment, the data storage unit 110 stores data on changes in electrical characteristics of the test element 20 due to changes in thermal state or optical state, and stores the area of the electrochromic element 10 and the test element 20. ) can store the correlation equation of electrical characteristics according to the area ratio.
전기변색소자(10)와 테스트 소자(20)는 동일한 재료와 구조로 구성되나, 그 면적 크기가 상이하므로, 동일한 환경 조건 하에서 동일한 투과율을 달성하기 위한 구동 전압의 크기, 구동 전압의 인가 시간, 플로팅 시간 등이 다르게 적용되며, 이에 따라, 전류 값 변화 파형, 저항 값 변화 파형 등이 상이하게 나타날 수 있다.The electrochromic device 10 and the test device 20 are made of the same material and structure, but their area sizes are different, so the size of the driving voltage, the application time of the driving voltage, and plotting to achieve the same transmittance under the same environmental conditions. Time, etc. are applied differently, and accordingly, the current value change waveform, resistance value change waveform, etc. may appear differently.
전기변색소자(10)와 테스트 소자(20)의 면적 크기 내지 면적 비율에 따라 전기변색소자(10)와 테스트 소자(20)의 전기적 특성의 상관 관계식이 도출되어, 데이터 저장부(110)에 저장될 수 있다. Depending on the area size or area ratio of the electrochromic device 10 and the test device 20, a correlation equation between the electrical characteristics of the electrochromic device 10 and the test device 20 is derived and stored in the data storage unit 110. It can be.
다음으로, 전기변색소자(10)의 구동 시, 센싱부(120)가 테스트 소자(20)의 전기적 특성을 측정한다(S120). 여기서, 센싱부(120)는 테스트 소자(20)에 인가되는 테스트 전압의 크기 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다. Next, when the electrochromic device 10 is driven, the sensing unit 120 measures the electrical characteristics of the test device 20 (S120). Here, the sensing unit 120 may detect the magnitude of the test voltage applied to the test element 20 and the current value change waveform or resistance value change waveform according to the application of the test voltage.
이어서, 제어부(130)는 센싱부(120)에서 측정된 테스트 소자(20)의 전기적 특성으로부터 외부 환경 조건을 분석하여, 전기변색소자(10)로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정한다(S130). Next, the control unit 130 analyzes the external environmental conditions from the electrical characteristics of the test element 20 measured by the sensing unit 120 and adjusts the size or voltage application time of the driving voltage applied to the electrochromic element 10. Do it (S130).
여기서, 제어부(130)는 센싱부(120)로부터 전달되는 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하며, 데이터 저장부(110)에 저장된 전류 값 기울기 또는 저항 값 기울기와 비교하여, 테스트 소자(20)의 전기적 특성을 파악할 수 있다. Here, the control unit 130 calculates the current value slope or resistance value slope at one or more specific times for the current value change waveform or resistance value change waveform transmitted from the sensing unit 120, and stores the current value slope or resistance value slope in the data storage unit 110. By comparing the stored current value slope or resistance value slope, the electrical characteristics of the test element 20 can be determined.
이때, 제어부(130)는 센싱부(120)에서 측정된 테스트 소자(20)의 전기적 특성이 데이터 저장부(110)에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 테스트 소자(20)의 전기적 특성을 산출할 수 있으며, 이에 따라, 전기변색소자(10)의 전기적 특성을 보정하여, 전기변색소자(10)의 구동을 제어할 수 있다. At this time, if the electrical characteristics of the test element 20 measured by the sensing unit 120 do not match the data stored in the data storage unit 110, the control unit 130 applies an interpolation method to determine the electrical characteristics of the test element 20. can be calculated, and according to this, the electrical characteristics of the electrochromic device 10 can be corrected, and the driving of the electrochromic device 10 can be controlled.
보간법을 적용하여, 테스트 소자(20)의 전기적 특성을 산출한 경우, 기존 데이터 저장부(110)에 해당하는 측정 데이터가 존재하지 않는 것이므로, 보간법을 적용하여 산출된 데이터가 데이터 저장부(110)에 구분되어 저장될 수 있다. When the electrical characteristics of the test element 20 are calculated by applying the interpolation method, since there is no measurement data corresponding to the existing data storage unit 110, the data calculated by applying the interpolation method is stored in the data storage unit 110. It can be stored separately.
보간법이 적용된 데이터에 대해서는 추후 외부 환경 조건을 보다 세밀하게 변화시키면서 전기변색소자(10)와 테스트 소자(20)로부터 측정된 전기적 특성에 관한 데이터로 대체될 수 있다. 예를 들어, 기존에 40℃와 60℃에서 측정된 데이터만 존재하고, 40℃ 내지 60℃ 사이의 특정 온도에서 측정되는 데이터가 부존재 하여, 보간법을 적용한 경우, 추후 40℃ 내지 60℃ 사이의 온도 간격을 보다 좁게 설정하고, 해당 온도에서 측정된 전기변색소자(10)와 테스트 소자(20)의 전기적 특성에 관한 데이터를 생성하여, 데이터 저장부(110)에 저장할 수 있다. Data to which the interpolation method has been applied can later be replaced with data on electrical characteristics measured from the electrochromic device 10 and the test device 20 while changing external environmental conditions in more detail. For example, if there was existing data measured at 40℃ and 60℃ and there was no data measured at a specific temperature between 40℃ and 60℃, and an interpolation method was applied, then the temperature between 40℃ and 60℃ was used. The interval can be set to be narrower, and data on the electrical characteristics of the electrochromic device 10 and the test device 20 measured at the corresponding temperature can be generated and stored in the data storage unit 110.
일 실시예에서, 제어부(130)는 전기변색소자(10)에 제1 구동 전압을 인가 중, 센싱부(120)로부터 전달되는 테스트 소자(20)의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 전기변색소자(10)에 전압을 인가하도록 제어할 수 있다. In one embodiment, while applying the first driving voltage to the electrochromic element 10, the control unit 130 adjusts the size or size of the second driving voltage according to the electrical characteristics of the test element 20 transmitted from the sensing unit 120. By determining the voltage application time, it is possible to control the application of voltage to the electrochromic element 10.
구동 전압의 크기에 따라 전기변색소자(10)에 흐르는 전류 값 변화 파형은 변하며, 전류 값 변화 파형을 시간에 대해 적분하면 전하량이 산출된다. The current value change waveform flowing through the electrochromic element 10 changes depending on the magnitude of the driving voltage, and the amount of charge is calculated by integrating the current value change waveform with respect to time.
구동 전압의 크기가 크면, 전기변색소자(10)에 더 큰 전류가 흐를 수 있고, 전기변색소자(10)에 동일한 전하량을 축적하기 위한 구동 전압 인가 시간이 짧아질 수 있다. If the magnitude of the driving voltage is large, a larger current may flow through the electrochromic device 10, and the driving voltage application time for accumulating the same amount of charge in the electrochromic device 10 may be shortened.
본 발명의 전기변색소자 구동 제어 장치(100)는 전기변색소자(10)에 제1 구동 전압을 인가 중, 센싱부(120)로부터 전달되는 테스트 소자(20)의 전기적 특성을 파악하여, 외부 환경 조건이 변한 경우, 제2 구동 전압의 크기를 변화시키거나, 구동 전압의 인가 시간을 조절하여, 전기변색소자(10)를 원하는 목표 투과율로 원하는 목표 시간 내에 변화시키도록 제어할 수 있다. The electrochromic device driving control device 100 of the present invention determines the electrical characteristics of the test device 20 transmitted from the sensing unit 120 while applying the first driving voltage to the electrochromic device 10, and monitors the external environment. When conditions change, the size of the second driving voltage can be changed or the application time of the driving voltage can be adjusted to control the electrochromic element 10 to change to a desired target transmittance within a desired target time.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로 컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 프로세서 (parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components. For example, the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using one or more general-purpose or special-purpose computers, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. A processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software. For ease of understanding, a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include. For example, a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
도 11은 본 발명의 다른 실시예에 따른 전기변색소자 구동 제어 장치의 구성을 도시한 블록도이다. 도 12는 도 11에 도시한 전기변색소자의 단면도이다. 도 13은 다른 실시예에 따른 전기변색소자의 전기적 특성 측정을 설명하기 위한 도면이다. 도 14는 다른 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. 도 15는 다른 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. 도 16은 다른 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 17은 다른 실시예에 따른 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 18은 다른 실시예에 따른 전기변색 소자에 있어서, 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. 도 19는 본 발명의 다른 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 11 is a block diagram showing the configuration of an electrochromic device driving control device according to another embodiment of the present invention. FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11. Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment. Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment. Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment. Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment. Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of decolorization of an electrochromic device according to another embodiment. Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal in an electrochromic device according to another embodiment. Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
도 11을 참조하면, 본 발명의 전기변색소자 구동 제어 장치(200)는, 전기변색소자(20)의 전기적 특성의 측정을 통해 전기변색소자(20)의 구동을 제어하는 장치로서, 데이터 저장부(111), 센싱부(121) 및 제어부(131)를 포함한다. Referring to FIG. 11, the electrochromic device driving control device 200 of the present invention is a device that controls the driving of the electrochromic device 20 by measuring the electrical characteristics of the electrochromic device 20, and includes a data storage unit. (111), including a sensing unit 121 and a control unit 131.
데이터 저장부(111)는 외부 환경 조건에 따른 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 저장한다. 외부 환경 조건은 전기변색소자(20) 외부의 빛, 열, 습도 등의 환경적인 요소가 될 수 있다. The data storage unit 111 stores data regarding changes in electrical characteristics of the electrochromic device 20 according to external environmental conditions. External environmental conditions may be environmental factors such as light, heat, and humidity outside the electrochromic device 20.
전기변색소자(20)의 착탈색 변화 시, 빛, 열, 습도 등과 같은 외부 환경 조건에 의한 영향을 받을 수 있으며, 전기변색소자(20)를 동일한 투과율로 변경시키기 위한 구동 및 제어도 외부 환경 조건에 따라 미세한 차이가 발생할 수 있다. When changing the color of the electrochromic device 20, it may be affected by external environmental conditions such as light, heat, humidity, etc., and the driving and control to change the electrochromic device 20 to the same transmittance are also subject to external environmental conditions. Minor differences may occur depending on the condition.
데이터 저장부(111)는, 열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 저장할 수 있다. 상기 데이터는, 예를 들어, 함수 또는 룩업 테이블(lookup table) 형태로 구성될 수 있다.The data storage unit 111 may store data regarding changes in electrical characteristics of the electrochromic element 20 due to changes in thermal state or change in optical state. The data may be structured, for example, in the form of a function or lookup table.
데이터 저장부(111)는 외부 환경 조건에 따른 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 저장할 뿐만 아니라, 전기변색소자(20)의 전반적인 구동에 필요한 데이터, 명령어 및/또는 소프트웨어를 저장할 수 있으며, 전기변색소자(10)의 착탈색 레벨 변화에 필요한 전압, 전류, 인가 시간 등의 상세 정보를 저장할 수 있다.The data storage unit 111 not only stores data regarding changes in the electrical characteristics of the electrochromic device 20 according to external environmental conditions, but also stores data, commands, and/or software necessary for the overall operation of the electrochromic device 20. Detailed information such as voltage, current, and application time required to change the color change level of the electrochromic device 10 can be stored.
데이터 저장부(111)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory) 또는 PROM(programmable read-only memory) 등의 저장매체를 포함할 수 있다.The data storage unit 111 is a flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), and multimedia card micro type. micro type), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or programmable read-only memory (PROM) It may include storage media such as:
센싱부(121)는 전기변색소자(20)의 전기적 특성을 측정한다. 전기적 특성은, 예를 들어, 전기변색소자(20)를 구동시키는 구동 전압 크기, 구동 전압 인가 시간에 따른 전류 값의 변화 또는 전기변색소자(20)의 저항 값의 변화가 될 수 있다. The sensing unit 121 measures the electrical characteristics of the electrochromic element 20. The electrical characteristics may be, for example, the size of the driving voltage that drives the electrochromic device 20, the change in current value depending on the driving voltage application time, or the change in resistance value of the electrochromic device 20.
제어부(131)는 센싱부(121)에서 측정된 전기변색소자(10)의 전기적 특성으로부터 외부 환경 조건을 분석하여, 전기변색소자(20)로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정한다. The control unit 131 analyzes external environmental conditions from the electrical characteristics of the electrochromic element 10 measured by the sensing unit 121 and adjusts the magnitude of the driving voltage applied to the electrochromic element 20 or the voltage application time. .
제어부(131)는 전기변색소자(20) 착탈색의 레벨 변화를 위한 구동 전압의 크기 또는 전압 인가 시간을 변경할 수 있다. The control unit 131 may change the magnitude of the driving voltage or the voltage application time for changing the level of color change of the electrochromic element 20.
제어부(131)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 또는 마이크로 프로세서(microprocessors) 등을 이용하여 구현될 수 있다. The control unit 131 is hardware-wise, application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), or microprocessors. It can be implemented using microprocessors, etc.
전기변색소자(20)는 2 이상의 착탈색 레벨을 가질 수 있으며, 착탈색 레벨에 따라 전기변색소자(20)가 설치된 창호의 빛 투과율이 변할 수 있다. The electrochromic device 20 may have two or more discoloration levels, and the light transmittance of the window on which the electrochromic device 20 is installed may change depending on the discoloration level.
예를 들어, 전기변색소자(20)의 착탈색 레벨 1에서 투과율이 70%이며, 레벨 2에서 투과율이 50%이고, 레벨 3에서 투과율이 30%이고, 레벨 4에서 투과율이 10%가 될 수 있다. 전기변색소자(20)가 착색되면, 레벨 1에서 레벨 4 방향으로 투과율이 감소하며, 전기변색소자(20)가 탈색되면, 레벨 4에서 레벨 1 방향으로 투과율이 증가할 수 있다. For example, the transmittance of the electrochromic device 20 may be 70% at level 1, 50% at level 2, 30% at level 3, and 10% at level 4. there is. When the electrochromic device 20 is colored, the transmittance may decrease from level 1 to level 4, and when the electrochromic device 20 is discolored, the transmittance may increase from level 4 to level 1.
전기변색소자(20)가 착색되기 위해 정전압이 걸리며, 레벨 1에서 레벨 4까지 각각의 레벨로 변화하기 위한 전압 세기는 상이하게 구성될 수 있다. 예를 들어, 레벨 1에서 레벨 2로 변하기 위한 정전압 크기 변화는 0.5V인데 반해, 레벨 2에서 레벨 3로 변하기 위한 정전압 크기 변화는 0.7V가 될 수 있다. A constant voltage is applied to color the electrochromic element 20, and the voltage intensity for changing each level from level 1 to level 4 may be configured differently. For example, the constant voltage change for changing from level 1 to level 2 is 0.5V, while the constant voltage change for changing from level 2 to level 3 may be 0.7V.
한편, 전기변색소자(20)가 탈색되기 위해 역전압이 걸리며, 레벨 4에서 레벨 1까지 각각의 레벨로 변화하기 위한 전압 세기는 상이하게 구성될 수 있다.Meanwhile, a reverse voltage is applied to decolorize the electrochromic element 20, and the voltage intensity for changing each level from level 4 to level 1 may be configured differently.
예를 들어, 레벨 3에서 레벨 4로 변화시키기 위해 필요한 정전압 크기의 절대값은 레벨 4에서 레벨 3로 변화시키기 위해 필요한 역전압 크기의 절대값보다 크게 구성될 수 있다. For example, the absolute value of the constant voltage required to change from level 3 to level 4 may be larger than the absolute value of the reverse voltage required to change from level 4 to level 3.
본 명세서에 기재된 전기변색소자의 착탈색 레벨의 개수, 투과율, 전압 크기의 구체적 수치 등은 본 발명의 이해를 위한 예시적인 것으로, 본 발명의 사상은 이에 제한되지 않는다. 또한, 전기변색소자의 착탈색 레벨, 투과율은 특정 수치 뿐만 아니라 소정 수치 범위를 의미할 수 있다.The specific values of the number of color combination levels, transmittance, and voltage magnitude of the electrochromic device described in this specification are illustrative for understanding the present invention, and the spirit of the present invention is not limited thereto. In addition, the color desorption level and transmittance of an electrochromic device may mean not only a specific value but also a predetermined value range.
일 실시예에서, 본 발명의 전기변색소자 구동 제어 장치(200)는 전기변색소자(20)로 인가되는 전압의 극성을 전환시키는 극성 전환 스위치(미도시)를 더 포함할 수 있다. In one embodiment, the electrochromic device driving control device 200 of the present invention may further include a polarity change switch (not shown) that switches the polarity of the voltage applied to the electrochromic device 20.
극성 전환 스위치는 전기변색소자(20)에 인가되는 전압의 극성을 전환할 수 있다. 극성 전환 스위치는 제어부(131)의 제어에 따라 동작할 수 있으며, 전기변색소자(20)에 인가되는 전압의 방향을 변경할 수 있다. The polarity change switch can change the polarity of the voltage applied to the electrochromic element 20. The polarity change switch can operate under the control of the control unit 131 and change the direction of the voltage applied to the electrochromic element 20.
예를 들어, 전기변색소자(20)의 착탈색 레벨을 1에서 2로 변화시키고자 하는 경우, 극성 전환 스위치는 전기변색소자(20)에 정전압이 걸리도록 작동할 수 있다. 한편, 전기변색소자(20)의 착탈색 레벨을 2에서 1로 변화시키고자 하는 경우, 극성 전환 스위치는 전기변색소자(20)에 역전압이 걸리도록 극성을 전환시킬 수 있다. For example, when it is desired to change the color change level of the electrochromic device 20 from 1 to 2, the polarity change switch can be operated so that a constant voltage is applied to the electrochromic device 20. Meanwhile, when it is desired to change the color change level of the electrochromic device 20 from 2 to 1, the polarity change switch can change the polarity so that a reverse voltage is applied to the electrochromic device 20.
일 실시예에서, 데이터 저장부(111)는 전기변색소자(10)의 히스테리시스 특성과 외부 환경 조건을 상호 매칭시킨 데이터를 저장할 수 있다. In one embodiment, the data storage unit 111 may store data that matches the hysteresis characteristics of the electrochromic device 10 and external environmental conditions.
전기변색소자(20)는 외부 환경 조건에 따라 물성이 변화하며, 이전에 인가되었던 전압 또는 전류에 따라 물질의 물리량이 변하는 히스테리시스 특성을 갖는다. The electrochromic device 20 changes its physical properties depending on external environmental conditions and has hysteresis characteristics in which the physical quantity of the material changes depending on the previously applied voltage or current.
또한, 전기변색소자(20)에는 고정된 전압이 아닌 다양한 크기의 전압이 인가될 수 있으므로, 전기변색소자(20) 내부의 전류 또는 전압을 측정하여, 전기변색소자(20)의 외부 환경 조건을 파악하기 어렵다. In addition, since voltages of various sizes, rather than a fixed voltage, can be applied to the electrochromic device 20, the external environmental conditions of the electrochromic device 20 can be determined by measuring the current or voltage inside the electrochromic device 20. It's difficult to figure out.
전기변색소자(20)의 양단은 소정 범위의 전위차를 가질 수 있다. 동일한 외부 환경 조건 하에서, 전기변색소자(20) 양단에 걸리는 N개의 특정 전위차별로, 동일한 판별 전압을 인가하여 측정되는 전류 값 및 저항 값을 조합한 데이터 서브 세트를 구성하고, 데이터 저장부(111)는 데이터 서브 세트를 저장할 수 있다.Both ends of the electrochromic element 20 may have a potential difference within a predetermined range. Under the same external environmental conditions, a data subset is formed by combining the current value and resistance value measured by applying the same discrimination voltage to N specific potential differentials applied to both ends of the electrochromic element 20, and the data storage unit 111 can store a subset of data.
예를 들어, 외부 온도와 태양광이 각각 25℃, 0.1sun인 조건에서, 동일한 판별 전압 1.0V가 전기변색소자(20)에 인가될 때, 전기변색소자(10) 양단의 전위차별로 측정되는 전류와 저항은 하기 표와 같이 변화할 수 있다. For example, when the same discrimination voltage of 1.0V is applied to the electrochromic element 20 under conditions where the external temperature and sunlight are 25°C and 0.1 sun, respectively, the current measured by the potential difference between both ends of the electrochromic element 10 and resistance can change as shown in the table below.
전위차potential difference 전류electric current 저항resistance
0.1V0.1V 100mA100mA 0.40MΩ0.40MΩ
0.2V0.2V 50mA50mA 0.41MΩ0.41MΩ
0.3V0.3V 25mA25mA 0.43MΩ0.43MΩ
또한, 예를 들어, 외부 온도와 태양광이 각각 60℃, 0.7sun인 조건에서, 동일한 판별 전압 1.0V가 전기변색소자(10)에 인가될 때, 전기변색소자(10) 양단의 전위차별로 측정되는 전류와 저항은 하기 표와 같이 변화할 수 있다.In addition, for example, when the same discrimination voltage of 1.0V is applied to the electrochromic element 10 under the conditions that the external temperature and sunlight are 60℃ and 0.7sun, respectively, the difference in potential between both ends of the electrochromic element 10 is measured. The current and resistance can change as shown in the table below.
전위차potential difference 전류electric current 저항resistance
0.1V0.1V 80mA80mA 0.50MΩ0.50MΩ
0.2V0.2V 60mA60mA 0.55MΩ0.55MΩ
0.3V0.3V 30mA30mA 0.57MΩ0.57MΩ
본 발명의 전기변색소자 구동 제어 장치(100)는 전기변색소자(10)의 히스테리시스 특성과 외부 환경 조건을 상호 매칭시킨 데이터를 데이터 저장부(110)에 저장하고, 전기변색소자(10)를 구동하면서 측정되는 전기변색소자(10)의 전압, 전류 또는 저항과 같은 전기적 특성을 데이터 저장부(110)에 저장된 데이터와 대비하여 외부 환경 조건을 파악함으로써, 전기변색소자(10)의 투과율 변화를 정밀하게 제어할 수 있다.The electrochromic device driving control device 100 of the present invention stores data matching the hysteresis characteristics of the electrochromic device 10 and external environmental conditions in the data storage unit 110, and drives the electrochromic device 10. By comparing the electrical characteristics such as voltage, current, or resistance of the electrochromic device 10 measured while measuring it with the data stored in the data storage unit 110 to identify external environmental conditions, the change in transmittance of the electrochromic device 10 can be accurately determined. can be controlled properly.
도 12는 도 11에 도시한 전기변색소자의 단면도이다.FIG. 12 is a cross-sectional view of the electrochromic device shown in FIG. 11.
도 12를 참조하면, 전기변색소자(20)는 투명 기판(21, 27), 전극층(22, 26), 제1 전기변색층(23), 제2 전기 변색측(25) 및 전해질층(24)을 포함한다. Referring to FIG. 12, the electrochromic device 20 includes transparent substrates 21 and 27, electrode layers 22 and 26, a first electrochromic layer 23, a second electrochromic side 25, and an electrolyte layer 24. ) includes.
투명 기판(21, 27)은 태양광이 내부로 투과하도록 광투과율이 95% 이상인 투명 플라스틱이나 유리가 사용될 수 있다. 투명 플라스틱으로는 폴리 에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리이미드(PI), 트리 아세틸셀룰로오스(TAC)가 사용될 수 있다. 투명 기판(21, 27)은 10㎛~5mm 두께로 형성될 수 있다. The transparent substrates 21 and 27 may be made of transparent plastic or glass with a light transmittance of 95% or more to allow sunlight to pass through. Transparent plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (PP), polyimide (PI), and triacetylcellulose (TAC). The transparent substrates 21 and 27 may be formed to have a thickness of 10 μm to 5 mm.
전극층(22, 26)은 각각 상부 및 하부 투명 기판(21, 27)의 표면에 형성되어 빛의 투과를 방해하지 않으면서 전기가 흐를 수 있는 투명 전도성 재료로 형성된다. The electrode layers 22 and 26 are formed on the surfaces of the upper and lower transparent substrates 21 and 27, respectively, and are made of a transparent conductive material that allows electricity to flow without interfering with the transmission of light.
전극층(22, 26)은, 예를 들어, ITO, ATO, FTO, IZO, ZnO, 구리 산화물, 아연 산화물, 티타늄 산화물과 같은 금속 산화물이 사용될 수 있다. 전극층(22, 26)은 스퍼터링과 같은 공지의 코팅공정을 통해 투명 기판(21, 27)에 박막의 필름형태로 형성될 수 있으며, 바람직하게는 300nm~1,000nm 두께로 형성될 수 있다. The electrode layers 22 and 26 may be made of metal oxides such as ITO, ATO, FTO, IZO, ZnO, copper oxide, zinc oxide, and titanium oxide. The electrode layers 22 and 26 may be formed in the form of a thin film on the transparent substrates 21 and 27 through a known coating process such as sputtering, and may preferably be formed to a thickness of 300 nm to 1,000 nm.
전기변색층(23, 25)은 전극층(22, 26) 상에 형성되어 공급되는 전원에 의해 주입되는 전하 또는 전해질 이온의 이동에 의해 변색되는 층으로, 제1 전기변색층(23)은 환원되어 변색되는 층이고, 제2 전기변색층(25)은 산화되어 변색되는 층이다. 제1 전기변색층(23)과 제2 전기변색층(25)은 전기신호에 따라 색이 변하는 전기변색 물질을 포함하는데, 유기계 또는 무기계 전기변색 물질일 수 있다. 유기계 전기변색물질로는 비올로겐, 안트라퀴논, 폴리아닐린, 폴리피놀 또는 폴리싸이오펜으로 이루어질 수 있으며, Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, 및 Ir 의 산화물 중 하나 이상의 산화물을 무기변색 물질로 포함할 수 있다. 환원 변색물질로는 V2O5, Nb2O5, WO3, TiO2, MoO3, viologen, PEDOT 등이 사용될 수 있으며, 산화 변색물질로는 (NH4)Fe[Fe(CN)6], LiNiOx, LixCoO2, IrO, Rh2O3, NiO, Ir(OH)2, CoO2, ITO 등이 사용될 수 있다. The electrochromic layers 23 and 25 are formed on the electrode layers 22 and 26 and change color due to the movement of charges or electrolyte ions injected by the supplied power, and the first electrochromic layer 23 is reduced and It is a layer that changes color, and the second electrochromic layer 25 is a layer that changes color by oxidation. The first electrochromic layer 23 and the second electrochromic layer 25 include an electrochromic material that changes color according to an electrical signal, and may be an organic or inorganic electrochromic material. Organic electrochromic materials may be composed of viologen, anthraquinone, polyaniline, polypinol, or polythiophene, and may include Ti, Nb, Mo, Ta, W, V, Cr, Mn, Fe, Co, Ni, Rh, and one or more oxides of Ir may be included as an inorganic discoloring material. Reductive discoloration materials include V 2 O 5 , Nb 2 O 5 , WO 3 , TiO 2 , MoO 3 , viologen, and PEDOT, and oxidation discoloration materials include (NH 4 )Fe[Fe(CN) 6 ]. , LiNiOx, LixCoO 2 , IrO, Rh 2 O 3 , NiO, Ir(OH) 2 , CoO 2 , ITO, etc. can be used.
본 명세서에서, 변색물질은 전기화학적 산화, 환원 반응에 의하여 광흡수도가 변화하는 전기변색특성을 갖는 물질이 될 수 있으며, 전압의 인가 여부 및 전압의 세기에 따라 가역적으로 전기변색물질의 전기 화학적 산화, 환원 현상이 일어나고, 이에 의하여 변색물질의 투명도 및 흡광도가 가역적으로 변경될 수 있다. In this specification, the color-changing material may be a material with electrochromic properties in which light absorption changes through electrochemical oxidation and reduction reactions, and the electrochemical properties of the electrochromic material are reversible depending on whether voltage is applied and the intensity of the voltage. Oxidation and reduction phenomena occur, which can reversibly change the transparency and absorbance of the discoloring material.
제1 전기변색층(23) 또는 제2 전기변색층(25)의 형성은 환원물질 또는 산화물질 중 어느 하나를 적층할 영역에 코팅한 후 건조하고 고온소성을 수행하게 되며, 제1 전기변색층(23)과 제2 전기변색층(25) 사이에 전해질층(24)이 삽입될 수 있다. The first electrochromic layer 23 or the second electrochromic layer 25 is formed by coating the area to be laminated with either a reducing material or an oxidizing material, followed by drying and firing at a high temperature. An electrolyte layer 24 may be inserted between (23) and the second electrochromic layer (25).
제1 전기변색층(23), 제2 전기변색층(25) 및 전해질층(24)은 전압을 가하면 색상이 변하는 전기변색원리를 이용하여 외부로부터의 전압 인가에 의해 가역적으로 색이 변하거나 투과율이 변하는 소자를 포함한다.The first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 use the electrochromic principle of changing color when voltage is applied, and reversibly change color or change transmittance by applying voltage from the outside. This includes changing elements.
제1 전기변색층(23), 제2 전기변색층(25) 및 전해질층(24)의 총 두께는 10 내지 500㎛, 바람직하게는 20 내지 300㎛, 더욱 바람직하게는 50 내지 200㎛일 수 있다. 제1 전기변색층(23), 제2 전기변색층(25) 및 전해질층(24)의 총 두께가 10㎛ 미만인 경우, 제1 전극층(22)과 제2 전극층(26)이 맞닿을 수 있어서, 합선이 될 가능성이 있고, 제1 전기변색층(22), 제2 전기변색층(25) 및 전해질층(24)의 총 두께가 500㎛를 초과하는 경우, 전기전도도가 감소하여 반응 속도가 느려질 수 있다.The total thickness of the first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 may be 10 to 500 μm, preferably 20 to 300 μm, and more preferably 50 to 200 μm. there is. When the total thickness of the first electrochromic layer 23, the second electrochromic layer 25, and the electrolyte layer 24 is less than 10㎛, the first electrode layer 22 and the second electrode layer 26 can be in contact with each other. , there is a possibility of short circuit, and if the total thickness of the first electrochromic layer 22, the second electrochromic layer 25, and the electrolyte layer 24 exceeds 500㎛, the electrical conductivity decreases and the reaction rate decreases. It can be slow.
전해질층(24)은 전기 변색층(23, 25)의 변색이나 탈색을 위해 수소 이온이나 리튬 이온의 이동 환경을 제공하는 층으로, 자외선 조사에 따라 경화될 수 있는 액상의 고분자 전해질이 사용될 수 있다. 자외선 경화수지는 PEG계 또는 우레탄계 올리고머, 저분자량의 PEGDMe, PEGDA, 광 또는 열 개시제가 혼합하여 조성될 수 있으며, 여기에 용매에 전해질염이 녹은 액체 전해질이 형성된다.The electrolyte layer 24 is a layer that provides an environment for the movement of hydrogen ions or lithium ions for discoloration or decolorization of the electrochromic layers 23 and 25, and a liquid polymer electrolyte that can be hardened by ultraviolet ray irradiation can be used. . Ultraviolet curing resin can be composed by mixing PEG-based or urethane-based oligomers, low-molecular-weight PEGDMe, PEGDA, and light or thermal initiators, and a liquid electrolyte is formed by dissolving electrolyte salt in a solvent.
이때, 용매는 Carbonate계(EC, PC, DMC, DEC, EMC 등), Alcohol계(Ethylene glycol 등), Nitrile계(Acetonitrile 등), Amide계(Acetamide 등), Sulfide계(Sulfolane 등)를 단일 혹은 혼합되어 사용될 수 있으며, 전해질염은 H+, Li+, Na+, K+, Rb+, Cs+를 포함하는 화합물이 사용될 수 있는데, 예를 들어 LiTFSI, LiFSI, LiBOB, LiClO4, LiBF4, LiAsF6, 또는 LiPF6 와 같은 리튬염 화합물이 단일 또는 복합되어 사용될 수 있다. 이와 같이 조성되는 전해질층(24)은 균일한 간격을 가지고 제1 전기변색층(23)과 제2 전기변색층(25) 사이에 갭 코팅되어 층상으로 형성되는데, 바람직하게는 10㎛~200㎛로 형성될 수 있다. At this time, the solvent can be single or It can be used in combination, and electrolyte salts can be compounds containing H + , Li + , Na + , K + , Rb + , Cs + , for example, LiTFSI, LiFSI, LiBOB, LiClO 4 , LiBF 4 , Lithium salt compounds such as LiAsF 6 or LiPF 6 may be used singly or in combination. The electrolyte layer 24 composed in this way is formed in a layered form by gap coating between the first electrochromic layer 23 and the second electrochromic layer 25 with uniform intervals, preferably 10㎛ to 200㎛. It can be formed as
상기 전극층(22, 26)이나, 전기변색층(23, 25), 전해질층(24)을 형성하는 방법은 특별히 제한되지 않으며, 공지된 방법을 사용할 수 있다. 예를 들어, 증착(deposition), 스핀코팅(spin coating), 딥코팅(dip coating), 스크린 인쇄, 그라비아 코팅, 졸겔(sol-Gel)법, 또는 슬롯 다이 코팅(slot die) 중 어느 하나의 방법에 의해 각 층이 마련될 수 있다.The method of forming the electrode layers 22 and 26, the electrochromic layers 23 and 25, and the electrolyte layer 24 is not particularly limited, and known methods can be used. For example, any one of deposition, spin coating, dip coating, screen printing, gravure coating, sol-gel method, or slot die coating. Each floor can be prepared by.
태양광이 있는 상태, 외부 온도 변화가 있는 상태에서, 전기변색소자(20)의 내부 전해질의 이온 전도 또는 WO3 등의 광전 효과로 인해 전기변색소자(20)의 구동 특성에 변화가 발생하며, 각 특성에 따라 구동 전압의 크기 또는 전압 인가 시간 등을 제어해야 한다. In the presence of sunlight or changes in external temperature, changes occur in the driving characteristics of the electrochromic device 20 due to ion conduction of the internal electrolyte of the electrochromic device 20 or photoelectric effects such as WO 3 , The size of the driving voltage or voltage application time must be controlled according to each characteristic.
본 발명의 전기변색소자 구동 제어 장치(200)는 전기변색소자(20)의 전기적 특성을 측정하여, 전기변색소자(20) 구동 중의 외부 환경 조건을 파악하고, 이를 전기변색소자(20)의 구동을 제어하는데 사용할 수 있다.The electrochromic device drive control device 200 of the present invention measures the electrical characteristics of the electrochromic device 20, determines the external environmental conditions during operation of the electrochromic device 20, and determines the external environmental conditions during operation of the electrochromic device 20. Can be used to control.
이를 위해, 외부 환경 조건에 대한 전기변색소자(20)의 전기적 특성을 미리 측정하여, 외부 환경 조건 변화에 따른 전기적 특성 변화에 관한 데이터가 데이터 저장부(110)에 저장될 수 있다. To this end, the electrical characteristics of the electrochromic device 20 in response to external environmental conditions may be measured in advance, and data regarding changes in electrical characteristics due to changes in external environmental conditions may be stored in the data storage unit 110.
이후, 센싱부(121)가 전기변색소자(20)의 전기적 특성을 측정하여, 제어부(131)로 전달하면, 제어부(131)는 전기변색소자(10)의 측정된 전기적 특성으로부터 데이터 저장부(111)에 저장된 외부 환경 조건 및 전기변색소자(20)의 전기적 특성에 대한 데이터를 호출하여, 이를 기반으로 전기변색소자(20)의 구동을 제어할 수 있다.Thereafter, when the sensing unit 121 measures the electrical characteristics of the electrochromic element 20 and transmits it to the control unit 131, the control unit 131 stores the data from the measured electrical characteristics of the electrochromic element 10 into a data storage unit ( By recalling data about external environmental conditions and electrical characteristics of the electrochromic device 20 stored in 111), the operation of the electrochromic device 20 can be controlled based on this.
도 13은 다른 실시예에 따른 전기변색소자의 전기적 특성 측정을 설명하기 위한 도면이다. Figure 13 is a diagram for explaining the measurement of electrical characteristics of an electrochromic device according to another embodiment.
도 13을 참조하면, 우선, 특정한 외부 환경 조건 하에서, 전기변색소자(10)의 전기적 특성을 측정한다. 외부 환경 조건은, 온도, 조도, 습도, 기류 등의 요소가 될 수 있으며, 이들 요소를 조합시킨 n차원 데이터 구조를 형성할 수 있다. 예를 들어, 온도와 조도를 각각 변화시키면서, 그들의 데이터를 조합하여 2차원 데이터 구조를 형성할 수 있다. Referring to FIG. 13, first, the electrical characteristics of the electrochromic device 10 are measured under specific external environmental conditions. External environmental conditions can be factors such as temperature, illumination, humidity, and airflow, and can form an n-dimensional data structure combining these factors. For example, while changing temperature and illuminance, their data can be combined to form a two-dimensional data structure.
도 13에서, 점선의 박스 안의 회로 구성은 전기변색소자(20)의 등가 모델을 나타내며, 전기변색소자(20)에 미리 설정된 크기의 구동 전압 Vdc를 인가한다.In FIG. 13, the circuit configuration in the dotted box represents an equivalent model of the electrochromic device 20, and a driving voltage V dc of a preset size is applied to the electrochromic device 20.
구동 전압 Vdc 인가 후, 플로팅(floating) 상태를 만들면, 외부 저항이 무한대가 되어 전기변색소자(20)의 내부 전압 Vc(t)을 측정할 수 있다. After applying the driving voltage V dc , if a floating state is created, the external resistance becomes infinite and the internal voltage Vc(t) of the electrochromic element 20 can be measured.
센싱부(121)는, 전기변색소자(20)의 양단에 센싱 라인을 통해 전기적으로 연결됨으로써, 전기변색소자(20)의 양단 전압 Vc(t)를 검출할 수 있다. The sensing unit 121 is electrically connected to both ends of the electrochromic device 20 through a sensing line, so that it can detect the voltage Vc(t) at both ends of the electrochromic device 20.
한편, 전류를 측정하기 위해 (-)가 접지되는 지점에 저항 Ri를 배치하여, I=V/R 수식에 따라 전류 값을 도출할 수 있으며, 시간에 따른 전류 값 변화 파형을 획득할 수 있다. Meanwhile, by placing a resistor R i at the point where (-) is grounded to measure the current, the current value can be derived according to the formula I=V/R, and a waveform of the current value change over time can be obtained. .
특정한 외부 환경 조건 하에서, 전기변색소자(20)가 제1 투과율로부터 제2 투과율로 변화하기 위해 전기변색소자(20)에 적용되는 구동 파라미터를 실험에 의해 미리 검출하며, 이를 데이터 저장부(111)에 저장할 수 있다.Under specific external environmental conditions, the driving parameters applied to the electrochromic device 20 to change from the first transmittance to the second transmittance are detected in advance through experiment, and this is stored in the data storage unit 111. It can be saved in .
여기서, 구동 파라미터는 전기변색소자(20)에 인가되는 구동 전압의 크기, 구동 전압의 인가 시간, 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형 등의 정보를 포함할 수 있다.Here, the driving parameters may include information such as the size of the driving voltage applied to the electrochromic device 20, the application time of the driving voltage, and the current value change waveform or resistance value change waveform according to the application of the driving voltage.
위와 같은 과정을 거쳐 데이터 저장부(111)에 외부 환경 조건에 따른 전기변색소자(20)의 전기적 특성이 저장된 상태에서, 전기변색소자(20)의 구동 중에, 센싱부(121)가 전기변색소자(20)의 전기적 특성을 측정하면, 해당 전기적 특성으로부터 외부 환경 조건이 도출될 수 있다.With the electrical characteristics of the electrochromic device 20 according to external environmental conditions stored in the data storage unit 111 through the above process, the sensing unit 121 detects the electrochromic device 20 during operation of the electrochromic device 20. By measuring the electrical characteristics of (20), external environmental conditions can be derived from the electrical characteristics.
이에 따라, 전기변색소자(20)의 투과율을 원하는 레벨로 변화시키도록 전기변색소자(10)의 구동을 정밀하게 피드백 제어할 수 있다. Accordingly, the driving of the electrochromic device 10 can be precisely feedback-controlled to change the transmittance of the electrochromic device 20 to a desired level.
도 14는 다른 실시예에 따른 전기변색소자의 착색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 14 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when coloring an electrochromic device according to another embodiment.
도 14를 참조하면, 전기변색소자(20)가 설치된 3개의 패널에 대한 실험 결과를 나타내며, 내광 패널, 내열 패널, 일반 패널에 대해 동일한 구동 전압을 인가했을 때 전류 값 변화 파형들과, 플로팅 시의 내부 전압 값 변화 파형들이 도시된다. Referring to FIG. 14, the experimental results for three panels on which the electrochromic device 20 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting. The internal voltage value change waveforms are shown.
실험에는 오리온엔이에스社의 100×100mm Flexade B 패널이 사용되었다. 여기서, 내광 패널은 1sun(100mW/cm2) 조사, 외부 환경이 85℃인 실험 조건이 적용된 Flexade B 패널, 내열 패널은 외부 환경이 85℃인 실험 조건이 적용된 Flexade B 패널, 일반 패널은 상온 상태의 Flexade B 패널을 의미한다.Orion&S's 100×100mm Flexade B panel was used in the experiment. Here, the light-resistant panel is a Flexade B panel with experimental conditions of 1 sun (100mW/cm 2 ) irradiation and an external environment of 85℃, the heat-resistant panel is a Flexade B panel with experimental conditions of an external environment of 85℃, and the general panel is at room temperature. refers to the Flexade B panel.
제1 영역(101)에서는 1.5V의 구동 전압이 인가되며, 제2 영역(102)에서는 전압이 인가되지 않는다. A driving voltage of 1.5V is applied to the first area 101, and no voltage is applied to the second area 102.
제1 영역(101)에서 상온(일반) 패널의 전류는 105mA에서 28mA로 변하며, 내열 패널의 전류는 105mA에서 40mA로 변하고, 내광 패널의 전류는 80mA에서 40mA로 변한다. In the first area 101, the current of the room temperature (normal) panel changes from 105 mA to 28 mA, the current of the heat-resistant panel changes from 105 mA to 40 mA, and the current of the light-resistant panel changes from 80 mA to 40 mA.
제2 영역(102)에서 상온(일반) 패널의 전압은 1.1V에서 1.05V로 변하며, 내열 패널의 전압은 1.0V에서 0.9V로 변하고, 내광 패널의 전압은 0.95V에서 0.8V로 변한다. In the second area 102, the voltage of the room temperature (normal) panel changes from 1.1V to 1.05V, the voltage of the heat-resistant panel changes from 1.0V to 0.9V, and the voltage of the light-resistant panel changes from 0.95V to 0.8V.
도 14의 X축 간격은 1.4s 이며, 제1 영역(101)과 제2 영역(102)에서 전류와 전압의 측정은 1/100sec 간격으로 실행되었다. The X-axis interval in FIG. 14 is 1.4 s, and current and voltage measurements in the first area 101 and the second area 102 were performed at 1/100 second intervals.
내광 패널의 경우, 착색 시, 초기 전류 값이 약 80mA로 일반 패널과 내열 패널의 초기 전류 값(100~110mA)에 비해 낮게 나타났다. In the case of light-resistant panels, when coloring, the initial current value was about 80 mA, which was lower than the initial current value (100-110 mA) of general panels and heat-resistant panels.
구동 전압 인가의 시작 시점에서, 내광 패널과 내열 패널의 초기 전류 값은 상이하게 나타났으나, 구동 전압 인가의 종료 시점에서, 내광 패널과 내열 패널의 전류 값은 유사하게 나타났다.At the start of applying the driving voltage, the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
또한, 구동 전압 인가의 시작 시점에서, 내열 패널과 일반 패널의 초기 전류 값은 유사하게 나타났으나, 구동 전압 인가의 종료 시점에서, 일반 패널의 전류 값은 내열 패널의 전류 값에 비해 낮게 나타났다.Additionally, at the start of applying the driving voltage, the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
제1 영역(101)의 전류 값 변화 파형들을 시간에 대해 적분하면 각각의 패널에 인가되는 전하량이 산출되며, 동시간 대비 내열 패널에서 가장 많은 전하량이 인가되었으며, 이어서 일반 패널, 내광 패널 순으로 전하량이 많이 인가되었다.By integrating the current value change waveforms in the first area 101 with respect to time, the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
제2 영역(102)은 내광 패널, 내열 패널, 일반 패널에 대해 플로팅 시의 내부 전압 값 변화 파형들을 나타내며, 내부 전압(V)은 하기 수학식과 같이 도출될 수 있다. The second area 102 represents waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel, and the internal voltage (V) can be derived as shown in the following equation.
Figure PCTKR2023004766-appb-img-000002
Figure PCTKR2023004766-appb-img-000002
여기서, V0는 구동 전압, R은 전기변색소자의 저항, C는 전기변색소자의 용량, t는 시간이며, RC 값이 클 수록 내부 전압(V)은 느리게 변화한다. Here, V 0 is the driving voltage, R is the resistance of the electrochromic device, C is the capacity of the electrochromic device, and t is time. The larger the RC value, the slower the internal voltage (V) changes.
플로팅의 시작 시점에서 내부 전압들을 비교하면, 일반 패널의 내부 전압에 비해 내열 패널의 내부 전압이 상당히 감소했으며, 이는 RC 값의 변동에 의한 것으로 파악된다.Comparing the internal voltages at the start of floating, the internal voltage of the heat-resistant panel decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
또한, 플로팅의 시작 시점에서 내광 패널의 내부 전압은 내열 패널의 내부 전압에 비해 소폭 감소했으며, 제2 영역(102) 전체적으로 내광 패널과 내열 패널의 전압 값 변화 파형들이 유사한 형태로 나타나므로, 내광 패널과 내열 패널의 RC 값은 유사한 것으로 추정할 수 있다. In addition, at the start of floating, the internal voltage of the light-resistant panel slightly decreased compared to the internal voltage of the heat-resistant panel, and since the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the second area 102, the light-resistant panel The RC values of and heat-resistant panels can be assumed to be similar.
최종 착색된 3개 패널의 투과율은 모두 유사하였다. The transmittance of the three final colored panels was all similar.
도 15는 다른 실시예에 따른 전기변색소자의 탈색 시, 구동 전압 인가 시간에 따른 전류 값들과 내부 전압들의 변화를 비교하기 위한 그래프이다. Figure 15 is a graph for comparing changes in current values and internal voltages according to driving voltage application time when decolorizing an electrochromic device according to another embodiment.
도 15를 참조하면, 전기변색소자(20)가 설치된 3개의 패널에 대한 실험 결과를 나타내며, 내광 패널, 내열 패널, 일반 패널에 대해 동일한 구동 전압을 인가했을 때 전류 값 변화 파형들과, 플로팅 시의 내부 전압 값 변화 파형들이 도시된다. Referring to FIG. 15, the experimental results for three panels on which the electrochromic device 20 is installed are shown, showing the current value change waveforms when the same driving voltage is applied to the light-resistant panel, heat-resistant panel, and general panel, and when plotting. The internal voltage value change waveforms are shown.
제3 영역(103)에서는 -1.5V의 구동 전압이 인가되며, 제4 영역(104)에서는 전압이 인가되지 않는다. A driving voltage of -1.5V is applied to the third area 103, and no voltage is applied to the fourth area 104.
제3 영역(103)에서 상온(일반) 패널의 전류는 -140mA에서 -10mA로 변하며, 내열 패널의 전류는 -140mA에서 -60mA로 변하고, 내광 패널의 전류는 -115mA에서 -60mA로 변한다. In the third area 103, the current of the room temperature (normal) panel changes from -140 mA to -10 mA, the current of the heat-resistant panel changes from -140 mA to -60 mA, and the current of the light-resistant panel changes from -115 mA to -60 mA.
제4 영역(104)에서 상온(일반) 패널의 전압은 -0.3V에서 -0.2V로 변하며, 내열 패널의 전압은 -0.3V에서 -0.17V로 변하고, 내광 패널의 전압은 -0.17V에서 +0.08V로 변한다. In the fourth area 104, the voltage of the room temperature (normal) panel changes from -0.3V to -0.2V, the voltage of the heat-resistant panel changes from -0.3V to -0.17V, and the voltage of the light-resistant panel changes from -0.17V to + It changes to 0.08V.
도 15의 X축 간격은 1.4s 이며, 제3 영역(103)과 제4 영역(104)에서 전류와 전압의 측정은 1/100sec 간격으로 실행되었다. The X-axis interval in FIG. 15 is 1.4 s, and current and voltage measurements in the third area 103 and the fourth area 104 were performed at 1/100 second intervals.
내광 패널의 경우, 탈색 시, 초기 전류 값이 약 -115mA로 일반 패널과 내열 패널의 초기 전류 값(-140mA)에 비해 낮게 나타났다. In the case of light-resistant panels, when discoloring, the initial current value was approximately -115 mA, which was lower than the initial current value (-140 mA) of general panels and heat-resistant panels.
구동 전압 인가의 시작 시점에서, 내광 패널과 내열 패널의 초기 전류 값은 상이하게 나타났으나, 구동 전압 인가의 종료 시점에서, 내광 패널과 내열 패널의 전류 값은 유사하게 나타났다. At the start of applying the driving voltage, the initial current values of the light-resistant panel and the heat-resistant panel appeared different, but at the end of applying the driving voltage, the current values of the light-resistant panel and the heat-resistant panel appeared similar.
또한, 구동 전압 인가의 시작 시점에서, 내열 패널과 일반 패널의 초기 전류 값은 유사하게 나타났으나, 구동 전압 인가의 종료 시점에서, 일반 패널의 전류 값은 내열 패널의 전류 값에 비해 낮게 나타났다.Additionally, at the start of applying the driving voltage, the initial current values of the heat-resistant panel and the general panel appeared similar, but at the end of applying the driving voltage, the current value of the general panel appeared lower than that of the heat-resistant panel.
제3 영역(103)의 전류 값 변화 파형들을 시간에 대해 적분하면 각각의 패널에 인가되는 전하량이 산출되며, 동시간 대비 내열 패널에서 가장 많은 전하량이 인가되었으며, 이어서 일반 패널, 내광 패널 순으로 전하량이 많이 인가되었다.By integrating the current value change waveforms in the third area 103 with respect to time, the amount of charge applied to each panel is calculated. Compared to the same time, the largest amount of charge was applied to the heat-resistant panel, followed by the general panel and the light-resistant panel in that order. This has been approved a lot.
제4 영역(104)은 내광 패널, 내열 패널, 일반 패널에 대해 플로팅 시의 내부 전압 값 변화 파형들을 나타낸다. The fourth area 104 shows waveforms of changes in internal voltage values when floating for the light-resistant panel, heat-resistant panel, and general panel.
플로팅의 시작 시점에서 내부 전압들을 비교하면, 일반 패널의 내부 전압에 비해 내광 패널의 내부 전압이 상당히 감소했으며, 이는 RC 값의 변동에 의한 것으로 파악된다.Comparing the internal voltages at the start of floating, the internal voltage of the light-resistant panel has decreased significantly compared to the internal voltage of a regular panel, and this is believed to be due to changes in the RC value.
또한, 플로팅 시, 내광 패널의 내부 전압은 내열 패널의 내부 전압에 비해 대폭 감소했으며, 제4 영역(104) 전체적으로 내광 패널과 내열 패널의 전압 값 변화 파형들이 유사한 형태로 나타나므로, 내광 패널과 내열 패널의 RC 값은 유사한 것으로 추정할 수 있다. In addition, when floating, the internal voltage of the light-resistant panel is significantly reduced compared to the internal voltage of the heat-resistant panel, and the voltage value change waveforms of the light-resistant panel and the heat-resistant panel appear in a similar form throughout the fourth region 104, so the light-resistant panel and the heat-resistant panel appear in similar shapes. The RC values of the panels can be assumed to be similar.
최종 탈색된 3개 패널의 투과율은 모두 유사하였다. The transmittance of the three final bleached panels was all similar.
도 16은 다른 실시예에 따른 전기변색소자의 착색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 16 is a graph for comparing changes in current values and resistance values measured by temperature at the beginning of coloring of an electrochromic device according to another embodiment.
도 16을 참조하면, 전기변색소자(20)의 투과율이 60%에서 20%로 변화되도록 구동시킬 때, 전류 값 변화 파형과 저항 값 변화 파형이 도시된다. Referring to FIG. 16, when the electrochromic device 20 is driven to change the transmittance from 60% to 20%, a current value change waveform and a resistance value change waveform are shown.
실험에는 오리온엔이에스社의 250×250mm Flexade B 패널이 사용되었다.Orion NC's 250×250mm Flexade B panel was used in the experiment.
착색 초기, 각각 1초와 5초에서 측정된 전류 값과 저항 값은 하기 표와 같다.The current and resistance values measured at the beginning of coloring, at 1 second and 5 seconds, respectively, are shown in the table below.
전류 (A)Current (A)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
1One 0.0740.074 0.0720.072 0.0640.064
55 0.0650.065 0.0640.064 0.0580.058
저항 (Ω)Resistance (Ω)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
1One 20.31220.312 20.94220.942 23.39823.398
55 23.01123.011 23.30723.307 25.71025.710
착색 초기, 전기변색소자(20)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 것을 확인할 수 있다. 전기변색소자(20)에 대해 온도별로 측정된 전류 값 변화 파형과 저항 값 변화 파형들은 데이터 저장부(111)에 저장될 수 있다. In the early stages of coloring, when a driving voltage is applied to the electrochromic element 20, it can be seen that the higher the external temperature, the smaller the measured current value and the larger the measured resistance value. Current value change waveforms and resistance value change waveforms measured by temperature for the electrochromic device 20 may be stored in the data storage unit 111.
이후, 전기변색소자(20)의 구동 시, 본 발명의 전기변색소자 구동 제어 장치(200)의 센싱부(121)가 전기변색소자(20)에 인가되는 구동 전압의 크기 및 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다.Thereafter, when driving the electrochromic device 20, the sensing unit 121 of the electrochromic device drive control device 200 of the present invention detects the magnitude of the driving voltage applied to the electrochromic device 20 and the driving voltage application. A current value change waveform or a resistance value change waveform can be detected.
제어부(130)는 센싱부(120)로부터 전달되는 전기변색소자(10)의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 기울기 값을 산출하여, 전기변색소자(20)의 전기적 특성을 파악할 수 있다. The control unit 130 calculates a slope value at one or more specific times for the current value change waveform or resistance value change waveform of the electrochromic device 10 transmitted from the sensing unit 120, and determines the slope value of the electrochromic device 20. Electrical characteristics can be determined.
제어부(131)는 전기변색소자(20)의 전류 값 변화 파형 또는 저항 값 변화 파형을 기반으로 데이터 저장부(111)로부터 외부 환경 조건을 도출하여, 전기변색소자(20)가 원하는 목표 투과율로 변화하도록 전기변색소자(20)로 인가되는 구동 전압의 크기 또는 구동 전압의 인가 시간을 제어할 수 있다.The control unit 131 derives external environmental conditions from the data storage unit 111 based on the current value change waveform or the resistance value change waveform of the electrochromic device 20, and changes the electrochromic device 20 to the desired target transmittance. The size of the driving voltage applied to the electrochromic element 20 or the application time of the driving voltage can be controlled to do so.
일 실시예에서, 데이터 저장부(111)는 동일한 외부 환경 조건 하에서, 전기변색소자(20)에 구동 전압을 인가하고, 제1 설정 시각(t1)과 제2 설정 시각(t2)에서 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 전기변색소자(10)의 2개의 기울기 값들을 데이터 서브 세트(subset)로 구성하여 저장할 수 있다. In one embodiment, the data storage unit 111 applies a driving voltage to the electrochromic element 20 under the same external environmental conditions and generates a current at the first set time (t 1 ) and the second set time (t 2 ). Slope values of the value change waveform or resistance value change waveform can be calculated, and the two slope values of the electrochromic device 10 can be configured and stored as a data subset.
예를 들어, 도 16에서, 외부 온도 80℃에서, 제1 설정 시각(t1)에서 측정된 전기변색소자(20)의 전류 값 변화 파형의 제1 기울기 값(A1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(20)의 전류 값 변화 파형의 제2 기울기 값(A2)을 데이터 서브 세트(A1, A2)로 구성하여, 데이터 서브 세트가 데이터 저장부(111)에 저장될 수 있다.For example, in FIG. 16, at an external temperature of 80°C, the first slope value (A 1 ) and the second set time of the current value change waveform of the electrochromic element 20 measured at the first set time (t 1 ) The second slope value (A 2 ) of the current value change waveform of the electrochromic device 20 measured at (t 2 ) is composed of a data subset (A 1 , A 2 ), and the data subset is stored in the data storage unit ( 111).
또한, 예를 들어, 도 16에서, 외부 온도 80℃에서, 제1 설정 시각(t1)에서 측정된 전기변색소자(20)의 저항 값 변화 파형의 제1 기울기 값(R1)과 제2 설정 시각(t2)에서 측정된 전기변색소자(20)의 저항 값 변화 파형의 제2 기울기 값(R2)을 데이터 서브 세트(R1, R2)로 구성하여, 데이터 서브 세트가 데이터 저장부(111)에 저장될 수 있다. In addition, for example, in FIG. 16, the first slope value (R 1 ) and the second resistance value change waveform of the electrochromic element 20 measured at the first set time (t 1 ) at an external temperature of 80° C. The second slope value (R 2 ) of the resistance value change waveform of the electrochromic element 20 measured at the set time (t 2 ) is composed of a data subset (R 1 , R 2 ), and the data subset stores the data. It may be stored in unit 111.
같은 방식으로, 외부 온도 60℃, 40℃에서 기울기 값들에 관한 데이터 서브 세트들이 구성되어, 이들이 데이터 저장부(111)에 저장될 수 있다. In the same way, data subsets regarding slope values at external temperatures of 60°C and 40°C can be constructed and stored in the data storage unit 111.
외부 환경 조건에 따라 전류 값 변화 파형 또는 저항 값 변화 파형은 비슷한 양상으로 나타날 수 있는데, 2개 이상의 기울기 값들을 사용하여, 외부 환경 조건이 보다 정확하게 구분될 수 있으며, 이에 따라 전기변색소자(20)가 제어될 수 있다.Depending on the external environmental conditions, the current value change waveform or the resistance value change waveform may appear in a similar pattern. By using two or more slope values, the external environmental conditions can be more accurately distinguished, and thus the electrochromic device (20) can be controlled.
도 17은 전기변색소자의 탈색 초기에, 온도별로 측정된 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 17 is a graph for comparing changes in current values and resistance values measured by temperature in the early stages of decolorization of an electrochromic device.
도 17을 참조하면, 전기변색소자(20)의 투과율이 20%에서 60%로 변화되도록 구동시킬 때, 전류 값 변화 파형과 저항 값 변화 파형이 도시된다.Referring to FIG. 17, when the electrochromic element 20 is driven to change the transmittance from 20% to 60%, a current value change waveform and a resistance value change waveform are shown.
실험에는 오리온엔이에스社의 250×250mm Flexade B 패널이 사용되었다.Orion NC's 250×250mm Flexade B panel was used in the experiment.
탈색 초기, 각각 203초와 207초에서 측정된 전류 값과 저항 값은 하기 표와 같다. The current and resistance values measured at the beginning of discoloration, at 203 seconds and 207 seconds, respectively, are shown in the table below.
전류 (A)Current (A)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
203203 -0.103-0.103 -0.094-0.094 -0.091-0.091
207207 -0.095-0.095 -0.090-0.090 -0.085-0.085
저항 (Ω)Resistance (Ω)
시간(s)Time (s) 온도 40℃ Temperature 40 온도 60℃Temperature 60 온도 80℃Temperature 80℃
203203 14.48414.484 15.39215.392 16.29516.295
207207 15.61615.616 16.58416.584 17.42817.428
탈색 초기, 전기변색소자(20)에 구동 전압이 인가됐을 때, 외부 온도가 높을 수록 측정된 전류 값의 크기는 작아지며, 측정된 저항 값의 크기는 커지는 것을 확인할 수 있다. 전기변색소자(20)에 대해 온도별로 측정된 전류 값 변화 파형들 또는 저항 값 변화 파형들은 데이터 저장부(111)에 저장될 수 있다. At the beginning of discoloration, when a driving voltage is applied to the electrochromic element 20, it can be seen that the higher the external temperature, the smaller the measured current value and the larger the measured resistance value. Current value change waveforms or resistance value change waveforms measured by temperature for the electrochromic device 20 may be stored in the data storage unit 111.
탈색 시에도, 데이터 저장부(111)는 동일한 외부 환경 조건 하에서, 전기변색소자(20)에 구동 전압을 인가하고, 제1 설정 시각(t1)과 제2 설정 시각(t2)에서 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 전기변색소자(10)의 2개의 기울기 값들을 데이터 서브 세트(subset)로 저장할 수 있다. Even during discoloration, the data storage unit 111 applies a driving voltage to the electrochromic element 20 under the same external environmental conditions and changes the current value at the first set time (t 1 ) and the second set time (t 2 ). Slope values of the change waveform or resistance value change waveform can be calculated, and the two slope values of the electrochromic device 10 can be stored as a data subset.
도 18은 착탈색을 위한 구동 전압 인가 시간에 따른 온도별 전류 값들과 저항 값들의 변화를 비교하기 위한 그래프들이다. Figure 18 is a graph for comparing changes in current values and resistance values for each temperature according to the driving voltage application time for color removal.
도 18을 참조하면, 0초부터 대략 180초까지는 전기변색소자(20)의 투과율이 60%에서 20%로 변화되는 착색 상태에서 외부 온도별로 전류 값 변화 파형들과 저항 값 변화 파형들을 도시하며, 대략 180초부터 360초까지는 전기변색소자(20)의 투과율이 20%에서 60%로 변화되는 탈색 상태에서 외부 온도별로 전류 값 변화 파형들과 저항 값 변화 파형들을 도시한다.Referring to FIG. 18, current value change waveforms and resistance value change waveforms are shown according to external temperature in a colored state in which the transmittance of the electrochromic element 20 changes from 60% to 20% from 0 seconds to approximately 180 seconds, From approximately 180 seconds to 360 seconds, current value change waveforms and resistance value change waveforms are shown according to external temperature in a discolored state in which the transmittance of the electrochromic element 20 changes from 20% to 60%.
0초부터 180초 구간에서, 착색 시, 구동 전압의 인가 및 플로팅이 반복되면서, 측정되는 전류 값은 점차 감소되는 경향을 갖는다. 또한, 착색 초기에는, 고온(80℃)에서 전류 값이 저온(40℃)에서 전류 값보다 작게 측정되나, 착색이 완료되는 시점에서 전류 값들은 유사하게 측정된다. In the period from 0 to 180 seconds, when coloring, the application and floating of the driving voltage are repeated, and the measured current value tends to gradually decrease. Additionally, at the beginning of coloring, the current value at high temperature (80°C) is measured to be smaller than the current value at low temperature (40°C), but the current values are measured similarly when coloring is completed.
또한, 0초부터 180초 구간에서, 착색 초기에는, 고온(80℃)에서 저항 값이 저온(40℃)에서 저항 값보다 크게 측정되나, 착색이 완료되는 시점에서 저항 값들은 유사하게 측정된다. In addition, in the period from 0 to 180 seconds, at the beginning of coloring, the resistance value at high temperature (80°C) is measured to be greater than the resistance value at low temperature (40°C), but at the point when coloring is completed, the resistance values are measured similarly.
180초부터 360초 구간에서, 탈색 시, 구동 전압의 인가 및 플로팅이 반복되면서, 측정되는 전류 값은 점차 감소되는 경향을 갖는다. 또한, 탈색 초기에는, 고온(80℃)에서 전류 값이 저온(40℃)에서 전류 값보다 작게 측정되나, 탈색이 완료되는 시점에서 전류 값들은 유사하게 측정된다. In the period from 180 seconds to 360 seconds, when discoloring, the application and floating of the driving voltage are repeated, and the measured current value tends to gradually decrease. In addition, at the beginning of decolorization, the current value at high temperature (80°C) is measured to be smaller than the current value at low temperature (40°C), but at the point when decolorization is completed, the current values are measured similarly.
또한, 180초부터 360초 구간에서, 탈색 초기에는, 고온(80℃)에서 저항 값이 저온(40℃)에서 저항 값보다 크게 측정되며, 300초 이후에는, 저온(40℃)에서 저항 값이 고온(80℃)에서 저항 값보다 더 크게 측정되나, 측정 오류로 추정된다.In addition, in the period from 180 seconds to 360 seconds, in the early stages of discoloration, the resistance value at high temperature (80℃) is measured to be greater than the resistance value at low temperature (40℃), and after 300 seconds, the resistance value at low temperature (40℃) is measured. It is measured to be larger than the resistance value at high temperature (80℃), but it is presumed to be a measurement error.
도 19는 본 발명의 다른 실시예에 따른 전기변색소자 구동 제어 방법을 도시한 순서도이다.Figure 19 is a flowchart showing a method for controlling the operation of an electrochromic device according to another embodiment of the present invention.
도 19를 참조하면, 본 발명의 전기변색소자 구동 제어 방법은, 우선, 외부 환경 조건에 따른 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 데이터 저장부(111)가 저장한다(S110). Referring to FIG. 19, in the electrochromic device driving control method of the present invention, first, the data storage unit 111 stores data regarding changes in electrical characteristics of the electrochromic device 20 according to external environmental conditions (S110). .
외부 환경 조건은 전기변색소자(20) 외부의 온도, 조도, 습도, 기류 등의 환경적인 요소가 될 수 있다.External environmental conditions may be environmental factors such as temperature, illuminance, humidity, and airflow outside the electrochromic device 20.
외부의 온도, 조도, 습도, 기류 등의 환경적인 요소에 대해 이들을 조합시킨 n차원 데이터 구조를 형성하고, 각각의 요소에 대한 변화량 내지 변화율에 대해 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 축적할 수 있다. An n-dimensional data structure is formed by combining environmental factors such as external temperature, illumination, humidity, and airflow, and data on the change in electrical characteristics of the electrochromic element 20 for the amount or rate of change for each factor. can accumulate.
일 실시예에서, 데이터 저장부(111)는 열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자(20)의 전기적 특성 변화에 관한 데이터를 저장할 수 있다. In one embodiment, the data storage unit 111 may store data regarding changes in electrical characteristics of the electrochromic element 20 due to changes in thermal state or change in optical state.
일 실시예에서, 데이터 저장부(111)는 전기변색소자(20)의 히스테리시스 특성과 외부 환경 조건을 상호 매칭시킨 데이터를 저장할 수 있다. In one embodiment, the data storage unit 111 may store data that matches the hysteresis characteristics of the electrochromic device 20 and external environmental conditions.
전기변색소자(10)의 양단은 소정 범위의 전위차를 가질 수 있다. 동일한 외부 환경 조건 하에서, 전기변색소자(20) 양단에 걸리는 N개의 특정 전위차별로, 동일한 판별 전압을 인가하여 측정되는 전류 값 및 저항 값을 조합한 데이터 서브 세트를 구성하고, 데이터 저장부(111)는 데이터 서브 세트를 저장할 수 있다.Both ends of the electrochromic element 10 may have a potential difference within a predetermined range. Under the same external environmental conditions, a data subset is formed by combining the current value and resistance value measured by applying the same discrimination voltage to N specific potential differentials applied to both ends of the electrochromic element 20, and the data storage unit 111 can store a subset of data.
다음으로, 전기변색소자(20)의 구동 시, 센싱부(121)가 전기변색소자(20)의 전기적 특성을 측정한다(S120). 여기서, 센싱부(121)는 전기변색소자(20)에 인가되는 구동 전압의 크기, 및 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출할 수 있다. Next, when the electrochromic device 20 is driven, the sensing unit 121 measures the electrical characteristics of the electrochromic device 20 (S120). Here, the sensing unit 121 may detect the magnitude of the driving voltage applied to the electrochromic element 20 and the current value change waveform or resistance value change waveform according to the application of the driving voltage.
이어서, 제어부(131)는 센싱부(121)에서 측정된 전기변색소자(20)의 전기적 특성으로부터 외부 환경 조건을 분석하여, 전기변색소자(20)로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정한다(S130). Next, the control unit 131 analyzes the external environmental conditions from the electrical characteristics of the electrochromic device 20 measured by the sensing unit 121 and determines the magnitude of the driving voltage applied to the electrochromic device 20 or the voltage application time. Adjust (S130).
여기서, 제어부(131)는 센싱부(121)로부터 전달되는 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하며, 데이터 저장부(111)에 저장된 전류 값 기울기 또는 저항 값 기울기와 비교하여, 전기변색소자(20)의 전기적 특성을 파악할 수 있다. Here, the control unit 131 calculates the current value slope or resistance value slope at one or more specific times for the current value change waveform or resistance value change waveform transmitted from the sensing unit 121, and stores the current value slope or resistance value slope in the data storage unit 111. By comparing the stored current value slope or resistance value slope, the electrical characteristics of the electrochromic device 20 can be determined.
이때, 제어부(131)는 센싱부(121)에서 측정된 전기변색소자(20)의 전기적 특성이 데이터 저장부(111)에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 전기변색소자(20)의 전기적 특성을 산출할 수 있으며, 이에 따라, 전기변색소자(20)의 구동을 제어할 수 있다. At this time, if the electrical characteristics of the electrochromic device 20 measured by the sensing unit 121 do not match the data stored in the data storage unit 111, the control unit 131 applies an interpolation method to determine the electrical properties of the electrochromic device 20. Electrical characteristics can be calculated, and accordingly, the driving of the electrochromic device 20 can be controlled.
보간법을 적용하여, 전기변색소자(20)의 전기적 특성을 산출한 경우, 기존 데이터 저장부(111)에 해당하는 측정 데이터가 존재하지 않는 것이므로, 보간법을 적용하여 산출된 데이터가 데이터 저장부(110)에 구분되어 저장될 수 있다. When the electrical characteristics of the electrochromic element 20 are calculated by applying the interpolation method, since there is no measurement data corresponding to the existing data storage unit 111, the data calculated by applying the interpolation method is stored in the data storage unit 110. ) can be stored separately.
보간법이 적용된 데이터에 대해서는 추후 외부 환경 조건을 보다 세밀하게 변화시키면서 전기변색소자(20)에서 측정된 전기적 특성에 관한 데이터로 대체될 수 있다. 예를 들어, 기존에 40℃와 60℃에서 측정된 데이터만 존재하고, 40℃ 내지 60℃ 사이의 특정 온도에서 측정되는 데이터가 부존재 하여, 보간법을 적용한 경우, 추후 40℃ 내지 60℃ 사이의 온도 간격을 보다 좁게 설정하고, 해당 온도에서 측정된 전기변색소자(20)의 전기적 특성에 관한 데이터를 생성하여, 데이터 저장부(110)에 저장할 수 있다. Data to which the interpolation method has been applied can later be replaced with data on electrical characteristics measured in the electrochromic element 20 while changing external environmental conditions in more detail. For example, if there was existing data measured at 40℃ and 60℃ and there was no data measured at a specific temperature between 40℃ and 60℃, and an interpolation method was applied, then the temperature between 40℃ and 60℃ was used. The interval can be set to be narrower, and data on the electrical characteristics of the electrochromic element 20 measured at the corresponding temperature can be generated and stored in the data storage unit 110.
일 실시예에서, 제어부(131)는 전기변색소자(20)에 제1 구동 전압을 인가 중, 센싱부(121)로부터 전달되는 전기변색소자(20)의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 전기변색소자(20)에 전압을 인가하도록 제어할 수 있다. In one embodiment, while applying the first driving voltage to the electrochromic device 20, the control unit 131 adjusts the magnitude of the second driving voltage according to the electrical characteristics of the electrochromic device 20 transmitted from the sensing unit 121. Alternatively, the voltage application time can be determined and controlled to apply the voltage to the electrochromic element 20.
구동 전압의 크기에 따라 전기변색소자(20)에 흐르는 전류 값 변화 파형은 변하며, 전류 값 변화 파형을 시간에 대해 적분하면 전하량이 산출된다. The current value change waveform flowing through the electrochromic element 20 changes depending on the magnitude of the driving voltage, and the amount of charge is calculated by integrating the current value change waveform with respect to time.
구동 전압의 크기가 크면, 전기변색소자(20)에 더 큰 전류가 흐를 수 있고, 전기변색소자(20)에 동일한 전하량을 축적하기 위한 구동 전압 인가 시간이 짧아질 수 있다. If the magnitude of the driving voltage is large, a larger current may flow through the electrochromic device 20, and the driving voltage application time for accumulating the same amount of charge in the electrochromic device 20 may be shortened.
본 발명의 전기변색소자 구동 제어 장치(200)는 전기변색소자(20)에 제1 구동 전압을 인가 중, 센싱부(121)로부터 전달되는 전기변색소자(20)의 전기적 특성을 파악하여, 외부 환경 조건이 변한 경우, 제2 구동 전압의 크기를 변화시키거나, 구동 전압의 인가 시간을 조절하여, 전기변색소자(20)를 원하는 목표 투과율로 원하는 목표 시간 내에 변화시키도록 제어할 수 있다. The electrochromic device driving control device 200 of the present invention determines the electrical characteristics of the electrochromic device 20 transmitted from the sensing unit 121 while applying the first driving voltage to the electrochromic device 20, and externally detects the electrochromic device 20. When environmental conditions change, the size of the second driving voltage can be changed or the application time of the driving voltage can be adjusted to control the electrochromic element 20 to change to a desired target transmittance within a desired target time.
일 실시예에서, 제어부(131)는 복수의 전기변색소자(20)의 구동을 제어하며, 복수의 전기변색소자(20) 중 특정 전기변색소자(20)를 선택하여, 센싱부(121)에서 측정된 특정 전기변색소자(20)의 전기적 특성으로부터 복수의 전기변색소자(20)로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 피드백 제어할 수 있다. In one embodiment, the control unit 131 controls the operation of a plurality of electrochromic elements 20, selects a specific electrochromic element 20 among the plurality of electrochromic elements 20, and detects a specific electrochromic element 20 in the sensing unit 121. The magnitude or voltage application time of the driving voltage applied to the plurality of electrochromic devices 20 can be feedback controlled based on the measured electrical characteristics of the specific electrochromic device 20.
복수의 전기변색소자(20)의 투과율 변화를 일괄적으로 제어하고자 하는 경우, 특정 전기변색소자(20)의 전기적 특성 변화를 기준으로 하여, 다른 전기변색소자들(20)에 대한 제어가 일괄적으로 실행될 수 있다. When it is desired to uniformly control the change in transmittance of a plurality of electrochromic elements 20, control of the other electrochromic elements 20 is performed uniformly based on the change in electrical characteristics of a specific electrochromic element 20. It can be executed with .
일 실시예에서, 제어부(131)는 복수의 전기변색소자(20) 중 제1 특정 전기변색소자와 제2 특정 전기변색소자를 선택하여, 제1 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제1 그룹과, 제2 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제2 그룹으로 구분하여, 상기 제1 그룹과 제2 그룹에 대해 인가되는 구동 전압의 크기 또는 전압 인가 시간을 독립적으로 피드백 제어할 수 있다. In one embodiment, the control unit 131 selects a first specific electrochromic device and a second specific electrochromic device among the plurality of electrochromic devices 20, and consists of electrochromic devices adjacent to the first specific electrochromic device. Divided into a first group and a second group consisting of electrochromic elements adjacent to a second specific electrochromic element, the magnitude or voltage application time of the driving voltage applied to the first group and the second group is independently fed back. You can control it.
제1 특정 전기변색소자와 제2 특정 전기변색소자를 기준으로 하여, 각각의 전기변색소자와의 거리에 따라, 제1 특정 전기변색소자에 가까운 전기변색소자들은 제1 특정 전기변색소자의 전기적 특성 변화를 기반으로 제어가 실행되며, 제2 특정 전기변색소자에 가까운 전기변색소자들은 제2 특정 전기변색소자의 전기적 특성 변화를 기반으로 제어가 실행될 수 있다. Based on the first specific electrochromic element and the second specific electrochromic element, depending on the distance from each electrochromic element, electrochromic elements close to the first specific electrochromic element have electrical characteristics of the first specific electrochromic element. Control is executed based on the change, and electrochromic devices close to the second specific electrochromic device may be controlled based on changes in the electrical characteristics of the second specific electrochromic device.
나아가, 복수의 전기변색소자에 대한 투과율 제어를 보다 정밀하게 실행하기 위해, 기준이 되는 전기변색소자를 3개 이상으로 지정할 수도 있으며, 기준이 되는 전기변색소자 각각의 전기적 특성 변화를 기반으로 근접한 전기변색소자들에 대한 제어가 실행될 수 있다. Furthermore, in order to more precisely control the transmittance of a plurality of electrochromic devices, three or more standard electrochromic devices may be designated, and based on the change in electrical characteristics of each standard electrochromic device, Control over the color changing elements can be performed.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로 컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 프로세서 (parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components. For example, the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using one or more general-purpose or special-purpose computers, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. A processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software. For ease of understanding, a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include. For example, a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
지금까지 본 발명을 바람직한 실시 예를 참조하여 상세히 설명하였지만, 본 발명이 상기한 실시 예에 한정되는 것은 아니며, 이하의 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 또는 수정이 가능한 범위까지 본 발명의 기술적 사상이 미친다 할 것이다.Although the present invention has been described in detail with reference to preferred embodiments so far, the present invention is not limited to the above-described embodiments, and the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the following claims. Anyone skilled in the art will recognize that the technical idea of the present invention extends to the extent that various changes or modifications can be made.
실시예에 따른 전기변색소자는 스마트 윈도우 분야에 활용될 수 있다.The electrochromic device according to the embodiment can be used in the smart window field.

Claims (24)

  1. 테스트 소자의 전기적 특성의 측정을 통해 전기변색소자의 구동을 제어하는 장치로서,A device that controls the operation of an electrochromic device by measuring the electrical characteristics of the test device,
    외부 환경 조건에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화를 상호 매칭시킨 데이터를 저장하는 데이터 저장부; a data storage unit that stores data that matches changes in electrical characteristics of the electrochromic device and the test device according to external environmental conditions;
    상기 테스트 소자의 전기적 특성을 측정하는 센싱부; 및A sensing unit that measures electrical characteristics of the test element; and
    상기 센싱부에서 측정된 테스트 소자의 전기적 특성으로부터 외부 환경 조건을 분석하여, 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 조정하는 제어부;를 포함하는, 전기변색소자 구동 제어 장치. A control unit that analyzes external environmental conditions from the electrical characteristics of the test element measured by the sensing unit and adjusts the magnitude or voltage application time of the driving voltage applied to the electrochromic element.
  2. 제1항에 있어서,According to paragraph 1,
    상기 데이터 저장부는, The data storage unit,
    열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화에 관한 데이터, 및 상기 전기변색소자의 면적과 상기 테스트 소자의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장하는, 전기변색소자 구동 제어 장치. Electrochromic, storing data on changes in electrical characteristics of the electrochromic element and test element due to changes in thermal state or optical state, and a correlation equation of electrical characteristics according to the area of the electrochromic element and the area ratio of the test element. Element drive control device.
  3. 제1항에 있어서,According to paragraph 1,
    상기 데이터 저장부는, The data storage unit,
    동일한 외부 환경 조건 하에서, 상기 전기변색소자와 상기 테스트 소자에 각각 구동 전압을 인가하고, 제1 설정 시각과 제2 설정 시각에서 각각의 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 상기 전기변색소자의 2개의 기울기 값들과 상기 테스트 소자의 2개의 기울기 값들을 상호 매칭시킨 데이터 서브 세트들을 저장하는, 전기변색소자 구동 제어 장치. Under the same external environmental conditions, a driving voltage is applied to each of the electrochromic elements and the test element, and slope values of each current value change waveform or resistance value change waveform are calculated at a first set time and a second set time, An electrochromic device driving control device that stores data subsets that match the two slope values of the electrochromic device and the two slope values of the test device.
  4. 제1항에 있어서, According to paragraph 1,
    상기 테스트 소자의 면적은 100cm2 이하인, 전기변색소자 구동 제어 장치. An electrochromic device driving control device wherein the area of the test device is 100 cm 2 or less.
  5. 제1항에 있어서, According to paragraph 1,
    상기 센싱부는, The sensing unit,
    상기 테스트 소자에 인가되는 테스트 전압의 크기, 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출하는, 전기변색소자 구동 제어 장치. An electrochromic device driving control device that detects the magnitude of the test voltage applied to the test device and the current value change waveform or resistance value change waveform according to the application of the test voltage.
  6. 제5항에 있어서, According to clause 5,
    상기 제어부는, The control unit,
    상기 센싱부로부터 전달되는 상기 테스트 소자의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 테스트 소자의 전기적 특성을 파악하는, 전기변색소자 구동 제어 장치. Electrochromism, which determines the electrical characteristics of the test device by calculating the current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform of the test device transmitted from the sensing unit. Element drive control device.
  7. 제1항에 있어서, According to paragraph 1,
    상기 제어부는,The control unit,
    상기 센싱부에서 측정된 상기 테스트 소자의 전기적 특성이 상기 데이터 저장부에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 상기 테스트 소자의 전기적 특성을 산출하는, 전기변색소자 구동 제어 장치. An electrochromic device driving control device that calculates the electrical characteristics of the test device by applying an interpolation method when the electrical characteristics of the test device measured by the sensing unit do not match the data stored in the data storage unit.
  8. 제1항에 있어서, According to paragraph 1,
    상기 제어부는, The control unit,
    상기 전기변색소자에 제1 구동 전압을 인가 중에, 상기 센싱부로부터 전달되는 상기 테스트 소자의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 상기 전기변색소자에 전압을 인가하도록 제어하는, 전기변색소자 구동 제어 장치. While applying the first driving voltage to the electrochromic device, determine the size or voltage application time of the second driving voltage according to the electrical characteristics of the test device transmitted from the sensing unit to apply the voltage to the electrochromic device. Controlling electrochromic device driving control device.
  9. 테스트 소자의 전기적 특성의 측정을 통해 전기변색소자의 구동을 제어하는 방법으로서,A method of controlling the operation of an electrochromic device through measurement of the electrical characteristics of a test device, comprising:
    (a) 외부 환경 조건에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화를 상호 매칭시킨 데이터를 데이터 저장부가 저장하는 단계; (a) a data storage unit storing data matching changes in electrical characteristics of the electrochromic device and the test device according to external environmental conditions;
    (b) 상기 테스트 소자의 전기적 특성을 센싱부가 측정하는 단계; 및(b) a sensing unit measuring electrical characteristics of the test element; and
    (c) 상기 센싱부에서 측정된 테스트 소자의 전기적 특성으로부터 외부 환경 조건을 분석하여, 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 제어부가 조정하는 단계;를 포함하는, 전기변색소자 구동 제어 방법. (c) analyzing external environmental conditions from the electrical characteristics of the test element measured by the sensing unit and adjusting the magnitude or voltage application time of the driving voltage applied to the electrochromic element by the control unit; electrochromic, including; Device driving control method.
  10. 제9항에 있어서,According to clause 9,
    상기 (a) 단계는, In step (a),
    열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자와 테스트 소자의 전기적 특성 변화에 관한 데이터, 및 상기 전기변색소자의 면적과 상기 테스트 소자의 면적 비율에 따른 전기적 특성의 상관 관계식을 저장하는 단계;를 포함하는, 전기변색소자 구동 제어 방법. Storing data on changes in electrical characteristics of the electrochromic element and test element due to changes in thermal state or optical state, and a correlation equation of electrical characteristics according to the area ratio of the electrochromic element and the area of the test element; Including, an electrochromic device driving control method.
  11. 제9항에 있어서, According to clause 9,
    상기 (b) 단계는,In step (b),
    상기 테스트 소자에 인가되는 테스트 전압의 크기, 및 테스트 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출하는 단계;를 포함하는, 전기변색소자 구동 제어 방법.Detecting the magnitude of the test voltage applied to the test element and a current value change waveform or a resistance value change waveform according to the application of the test voltage.
  12. 제11항에 있어서, According to clause 11,
    상기 (c) 단계는, In step (c),
    상기 센싱부로부터 전달되는 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 테스트 소자의 전기적 특성을 파악하는 단계;를 포함하는, 전기변색소자 구동 제어 방법.Calculating a current value slope or resistance value slope at one or more specific times with respect to the current value change waveform or resistance value change waveform transmitted from the sensing unit, and determining the electrical characteristics of the test element; electrical, including; Method for controlling color change device operation.
  13. 전기변색소자의 외부 환경 조건에 따른 전기적 특성 변화에 관한 데이터를 저장하는 데이터 저장부;a data storage unit that stores data on changes in electrical characteristics of the electrochromic device according to external environmental conditions;
    상기 전기변색소자의 구동 중, 미리 설정된 시간 간격동안 상기 전기변색소자의 전기적 특성을 측정하는 센싱부; 및A sensing unit that measures electrical characteristics of the electrochromic device during a preset time interval while the electrochromic device is being driven; and
    상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성으로부터 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 피드백 제어하는 제어부;를 포함하는, 전기변색소자 구동 제어 장치.A control unit for feedback controlling the magnitude or voltage application time of the driving voltage applied to the electrochromic device from the electrical characteristics of the electrochromic device measured by the sensing unit.
  14. 제13항에 있어서,According to clause 13,
    상기 데이터 저장부는, The data storage unit,
    상기 전기변색소자의 히스테리시스 특성과 외부 환경 조건을 상호 매칭시킨 데이터를 저장하는, 전기변색소자 구동 제어 장치.An electrochromic device driving control device that stores data matching the hysteresis characteristics of the electrochromic device and external environmental conditions.
  15. 제14항에 있어서,According to clause 14,
    상기 데이터 저장부는, The data storage unit,
    상기 전기변색소자 양단에 걸리는 N개의 특정 전위차에서, 동일한 판별 전압을 인가하여 측정되는 전류 값 및 저항 값을 조합한 데이터 서브 세트를 저장하는, 전기변색소자 구동 제어 장치.An electrochromic device driving control device that stores a data subset combining current values and resistance values measured by applying the same discrimination voltage at N specific potential differences across the electrochromic device.
  16. 제13항에 있어서,According to clause 13,
    상기 데이터 저장부는, The data storage unit,
    열적 상태 변화 또는 광학적 상태 변화에 따른 전기변색소자의 전기적 특성 변화에 관한 데이터를 저장하는, 전기변색소자 구동 제어 장치.An electrochromic device driving control device that stores data on changes in electrical characteristics of an electrochromic device due to changes in thermal state or optical state.
  17. 제13항에 있어서,According to clause 13,
    상기 데이터 저장부는, The data storage unit,
    특정한 외부 환경 조건 하에서, 상기 전기변색소자에 구동 전압을 인가하고, 제1 설정 시각과 제2 설정 시각에서 전류 값 변화 파형 또는 저항 값 변화 파형의 기울기 값들을 산출하고, 2개의 기울기 값들을 조합한 데이터 서브 세트를 저장하는, 전기변색소자 구동 제어 장치.Under specific external environmental conditions, a driving voltage is applied to the electrochromic element, the slope values of the current value change waveform or the resistance value change waveform are calculated at the first set time and the second set time, and the two slope values are combined. An electrochromic device drive control device that stores a subset of data.
  18. 제13항에 있어서, According to clause 13,
    상기 센싱부는, The sensing unit,
    상기 전기변색소자에 인가되는 구동 전압의 크기, 및 구동 전압 인가에 따른 전류 값 변화 파형 또는 저항 값 변화 파형을 검출하는, 전기변색소자 구동 제어 장치. An electrochromic device driving control device that detects the magnitude of the driving voltage applied to the electrochromic device and a current value change waveform or a resistance value change waveform according to the application of the driving voltage.
  19. 제18항에 있어서, According to clause 18,
    상기 제어부는, The control unit,
    상기 센싱부로부터 전달되는 상기 전기변색소자의 전류 값 변화 파형 또는 저항 값 변화 파형에 대해 하나 이상의 특정 시각에서의 전류 값 기울기 또는 저항 값 기울기를 산출하여, 상기 전기변색소자의 전기적 특성을 파악하는, 전기변색소자 구동 제어 장치. Determining the electrical characteristics of the electrochromic device by calculating the current value slope or resistance value slope at one or more specific times for the current value change waveform or resistance value change waveform of the electrochromic device transmitted from the sensing unit, Electrochromic device driving control device.
  20. 제13항에 있어서, According to clause 13,
    상기 제어부는,The control unit,
    상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성이 상기 데이터 저장부에 저장된 데이터와 일치하지 않으면, 보간법을 적용하여 상기 전기변색소자의 전기적 특성을 산출하는, 전기변색소자 구동 제어 장치. An electrochromic device driving control device that calculates the electrical characteristics of the electrochromic device by applying an interpolation method when the electrical characteristics of the electrochromic device measured by the sensing unit do not match the data stored in the data storage unit.
  21. 제13항에 있어서, According to clause 13,
    상기 제어부는, The control unit,
    상기 전기변색소자에 제1 구동 전압을 인가 중에, 상기 센싱부로부터 전달되는 상기 전기변색소자의 전기적 특성에 따라 제2 구동 전압의 크기 또는 전압 인가 시간을 결정하여, 상기 전기변색소자를 피드백 제어하는, 전기변색소자 구동 제어 장치.While applying a first driving voltage to the electrochromic device, the magnitude or voltage application time of the second driving voltage is determined according to the electrical characteristics of the electrochromic device transmitted from the sensing unit to feedback control the electrochromic device. , Electrochromic device driving control device.
  22. 제13항에 있어서, According to clause 13,
    상기 제어부는, The control unit,
    복수의 전기변색소자의 구동을 제어하며, 상기 복수의 전기변색소자 중 특정 전기변색소자를 선택하여, 상기 센싱부에서 측정된 상기 특정 전기변색소자의 전기적 특성으로부터 상기 복수의 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 피드백 제어하는, 전기변색소자 구동 제어 장치.Controls the operation of a plurality of electrochromic elements, selects a specific electrochromic element among the plurality of electrochromic elements, and applies to the plurality of electrochromic elements from the electrical characteristics of the specific electrochromic element measured by the sensing unit. An electrochromic device driving control device that feedback controls the magnitude of the driving voltage or voltage application time.
  23. 제22항에 있어서, According to clause 22,
    상기 제어부는, The control unit,
    상기 복수의 전기변색소자 중 제1 특정 전기변색소자와 제2 특정 전기변색소자를 선택하여, 제1 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제1 그룹과, 제2 특정 전기변색소자에 근접한 전기변색소자들로 이루어진 제2 그룹으로 구분하여, 상기 제1 그룹과 제2 그룹에 대해 인가되는 구동 전압의 크기 또는 전압 인가 시간을 독립적으로 피드백 제어하는, 전기변색소자 구동 제어 장치.A first specific electrochromic device and a second specific electrochromic device are selected from among the plurality of electrochromic devices, and a first group consisting of electrochromic devices adjacent to the first specific electrochromic device and a second specific electrochromic device are selected. An electrochromic device driving control device that divides adjacent electrochromic devices into a second group and independently feedback controls the magnitude or voltage application time of the driving voltage applied to the first group and the second group.
  24. (a) 전기변색소자의 외부 환경 조건에 따른 전기적 특성 변화에 관한 데이터를 데이터 저장부가 저장하는 단계; (a) a data storage unit storing data on changes in electrical characteristics of the electrochromic device according to external environmental conditions;
    (b) 상기 전기변색소자의 구동 중, 미리 설정된 시간 간격동안 상기 전기변색소자의 전기적 특성을 센싱부가 측정하는 단계; 및(b) a sensing unit measuring electrical characteristics of the electrochromic device during a preset time interval while the electrochromic device is being driven; and
    (c) 상기 센싱부에서 측정된 상기 전기변색소자의 전기적 특성으로부터 상기 전기변색소자로 인가되는 구동 전압의 크기 또는 전압 인가 시간을 제어부가 피드백 제어하는 단계;를 포함하는, 전기변색소자 구동 제어 방법.(c) a control unit performing feedback control on the magnitude or voltage application time of the driving voltage applied to the electrochromic device from the electrical characteristics of the electrochromic device measured by the sensing unit; a method for controlling the driving of an electrochromic device, including; .
PCT/KR2023/004766 2022-06-13 2023-04-07 Apparatus and method for controlling driving of electrochromic device WO2023243837A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220071743A KR20230171315A (en) 2022-06-13 2022-06-13 Apparatus and method for controlling the operation of electrochromic device
KR10-2022-0071741 2022-06-13
KR1020220071741A KR20230171313A (en) 2022-06-13 2022-06-13 Apparatus and method for controlling the operation of electrochromic device
KR10-2022-0071743 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243837A1 true WO2023243837A1 (en) 2023-12-21

Family

ID=89191373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004766 WO2023243837A1 (en) 2022-06-13 2023-04-07 Apparatus and method for controlling driving of electrochromic device

Country Status (1)

Country Link
WO (1) WO2023243837A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070006041A (en) * 2005-07-07 2007-01-11 삼성전자주식회사 Array plate and display device having the same
JP2008089598A (en) * 2007-10-03 2008-04-17 Advantest Corp Electronic device and analysis method
KR20150008414A (en) * 2012-04-17 2015-01-22 뷰, 인크. Controller for optically-switchable windows
JP2015534127A (en) * 2012-10-12 2015-11-26 セイジ・エレクトロクロミクス,インコーポレイテッド Partially tinted transparent state for improved color and solar heat incidence control of electrochromic devices
KR102385713B1 (en) * 2020-12-08 2022-04-11 에스케이씨 주식회사 Method and apparatus for controlling color change of electrochromic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070006041A (en) * 2005-07-07 2007-01-11 삼성전자주식회사 Array plate and display device having the same
JP2008089598A (en) * 2007-10-03 2008-04-17 Advantest Corp Electronic device and analysis method
KR20150008414A (en) * 2012-04-17 2015-01-22 뷰, 인크. Controller for optically-switchable windows
JP2015534127A (en) * 2012-10-12 2015-11-26 セイジ・エレクトロクロミクス,インコーポレイテッド Partially tinted transparent state for improved color and solar heat incidence control of electrochromic devices
KR102385713B1 (en) * 2020-12-08 2022-04-11 에스케이씨 주식회사 Method and apparatus for controlling color change of electrochromic device

Similar Documents

Publication Publication Date Title
WO2015072809A2 (en) Display device and method for controlling the same
WO2015072722A1 (en) Touch input sensing method for reducing influence of parasitic capacitance and device therefor
WO2016129837A1 (en) Display module capable of detecting location using electromagnetic induction and capacitance methods, and display device having same
WO2012005483A2 (en) Method and device for sensing capacitance change and recording medium in which program for executing method is recorded thereon, and method and device for sensing touch using method and recording medium in which program for executing method is recorded thereon
WO2016036194A1 (en) Light control apparatus, manufacturing method for light control apparatus, and display apparatus comprising light control apparatus
WO2018139859A1 (en) Liquid lens, and camera module and optical device including same
WO2017069528A1 (en) Window substrate with integrated polarizing plate and manufacturing method therefor
WO2016043497A2 (en) Light control device, method for manufacturing light control device and display device comprising light control device
WO2021221358A1 (en) Optical path control member and display device comprising same
WO2022005124A1 (en) Optical path control member and display device comprising same
WO2022164302A1 (en) Dual digitizers for flexible display
WO2014119964A1 (en) Reflective display device and method for controlling same
WO2018106073A1 (en) Camera module
WO2023243837A1 (en) Apparatus and method for controlling driving of electrochromic device
WO2017095037A1 (en) Electronic apparatus and control method thereof
WO2017204569A1 (en) Touch input device for sensing touch pressure
WO2019212260A1 (en) Camera module
WO2018131925A1 (en) Method for applying driving voltage for liquid lens, liquid lens, camera module, and optical instrument
WO2021125451A1 (en) Electro-responsive gel lens having automatic multifocal and image stabilization functions
WO2023167562A1 (en) Optical film, composition for forming coating layer, and electronic device
WO2021230541A1 (en) Optical path control member and display device comprising same
WO2015170836A1 (en) Electronic device
WO2019059720A2 (en) Method for producing liquid crystal orientation film
WO2021006679A1 (en) Lens curvature variation apparatus
WO2018016916A1 (en) Rain sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824063

Country of ref document: EP

Kind code of ref document: A1