WO2023243715A1 - Method for operating direct cooling water system, oil content separation promoter, and treatment facility for direct cooling water system - Google Patents

Method for operating direct cooling water system, oil content separation promoter, and treatment facility for direct cooling water system Download PDF

Info

Publication number
WO2023243715A1
WO2023243715A1 PCT/JP2023/022419 JP2023022419W WO2023243715A1 WO 2023243715 A1 WO2023243715 A1 WO 2023243715A1 JP 2023022419 W JP2023022419 W JP 2023022419W WO 2023243715 A1 WO2023243715 A1 WO 2023243715A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cooling water
cross
flow
direct cooling
Prior art date
Application number
PCT/JP2023/022419
Other languages
French (fr)
Japanese (ja)
Inventor
荻野哲
加藤雅敏
Original Assignee
ナルコジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルコジャパン合同会社 filed Critical ナルコジャパン合同会社
Publication of WO2023243715A1 publication Critical patent/WO2023243715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B9/00Measures for carrying out rolling operations under special conditions, e.g. in vacuum or inert atmosphere to prevent oxidation of work; Special measures for removing fumes from rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material

Definitions

  • the present disclosure relates to a method of operating a so-called direct cooling water system such as spray water in continuous casting or rolling in a steel mill.
  • mill scale In steel mills, a large amount of mill scale is generated due to processing equipment such as direct cooling water used for cooling steel materials during the manufacturing of steel materials.
  • Such scales are mainly metals such as iron oxide and iron generated from steel materials, and metal scales that do not contain oil are useful resources that can be reused in pig iron making, steel making processes, etc.
  • lubricating oil and rolling oil used in manufacturing machines such as rolling mills mix into cooling water containing scale, so many metal scales are generated. In this case, it contains water and several mass % of oil.
  • oil may inevitably be mixed in during work such as recombining the rolling rolls.
  • the oil concentration in the scale varies greatly, and specifically, it may vary within a range of 1 to several 10% by mass.
  • Such direct cooling water is treated with an organic or inorganic flocculant in a scale pit or coagulation-sedimentation facility, and after being cooled, it is reused as cooling water.
  • coarse suspended solids such as metal powder and oil with a particle size of 50 ⁇ m or more and fine suspended solids with a particle size of less than 50 ⁇ m are treated in the direct cooling water.
  • fine SS fine SS
  • This treatment method attempts to obtain clear treated water by adding a specific polymer to cause oil-containing suspended matter to coagulate and settle in a scale pit and remove it.
  • the sludge that accumulates in scale pits and the like contains oil.
  • scales that do not contain oil are useful resources that can be reused in steel manufacturing processes, etc., as described above. Therefore, if the sludge that accumulates in the scale pit contains oil, it is necessary to separate the oil in order to reuse the sludge.
  • oil-impregnated sludge is temporarily stored in sedimentation tanks and thickening layers in steel plants, and must be transported to a treatment facility when it is processed for disposal or as a raw material for steel production. There is. At this time, since oil-impregnated sludge often has a high moisture content and is easily flowable, there is a concern that the oil-impregnated sludge and the oil contained therein may leak out during transportation. Therefore, compared to sludge that does not contain oil and is used as a raw material for steelmaking, oil-impregnated sludge is subject to restrictions such as the amount of transportation and drying. Therefore, it is necessary to make oil-impregnated sludge into a treated material that is easy to transport (Patent Document 8).
  • oil-impregnated sludge is subject to limitations not only in its treatment but also in its transportation. Therefore, the present disclosure efficiently separates oil and other suspended substances from direct cooling water containing oil and metal scales such as iron oxide and iron, suppresses the generation of oil-containing sludge, and To provide a method for operating a direct cooling water system that can easily recover oil.
  • the present disclosure provides a method for operating a direct cooling water system containing oil and metal scale such as iron oxide or iron, the method comprising: Presence of an oil separation promoter in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit; Removing the separated floating oil in a cross-flow settling tank downstream of the scale pit, collecting the wastewater from which the oil has been removed in the cross-flow settling tank, cooling the collected wastewater, and directly using it as cooling water again.
  • oil and metal scale such as iron oxide or iron
  • the cross-flow sedimentation tank includes a partition weir, and the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the partition weir allows the
  • the present invention relates to a method of operating a direct cooling water system, in which the flow of floating oil is dammed, and the wastewater from which the oil has been separated is allowed to pass through a spaced apart portion between the lower end of the partition weir and the bottom of the cross-flow settling tank.
  • the present disclosure relates to a direct cooling water system treatment facility containing oil and metal scale.
  • the processing equipment of the present disclosure includes: A path forming a turbulent flow state from the scale sluice to the scale pit, an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system; It includes a lateral flow sedimentation tank located downstream of the scale pit and removes separated oil,
  • the cross-flow settling tank is equipped with a partition weir,
  • the partition weir has an upper end protruding from the water surface and a lower end separated from the bottom surface of the cross-flow sedimentation tank, so that the flow of the floating oil is dammed by the partition weir, and the lower end of the partition weir and the cross-flow sedimentation tank are separated from each other. It is arranged in the cross-flow sedimentation tank so that the wastewater from which the oil content has been separated can pass through a spaced apart part from the bottom surface of the tank.
  • the present disclosure provides an oil separation promoter for carrying out the method of operating a direct cooling water system of the present disclosure, wherein the oil separation promoter is made from a cationic or amphoteric organic coagulant or polymer.
  • This invention relates to an oil separation promoter.
  • oil is efficiently separated from direct cooling water containing oil and metal scales such as iron oxide and iron, while suppressing the generation of oil-containing sludge and allowing the oil to float to the surface of the water. can be easily collected.
  • the amount of oil contained in generated sludge can be suppressed. Therefore, according to the present disclosure, in one or more embodiments, oil can be removed from oil-containing sludge, which was necessary in the conventional method of coagulating and settling coarse SS and fine SS containing oil in the same process. This has the advantage that special processing for separating the two is no longer necessary.
  • FIG. 1 is a schematic diagram showing the configuration of a direct cooling water circulation system in a continuous casting process.
  • 2A and B are drawings for explaining an example of a configuration in which a partition weir is arranged in a cross-flow sedimentation tank, in which FIG. 2A is a plan view seen from the top, and FIG. 2B is a cross-sectional view taken along the line 2A-2A. It is a diagram.
  • the present disclosure provides an oil separation promoter to be added to the cooling water in a turbulent flow path from scale sluice to scale pits. Based on the knowledge that by having a scale pit, the oil can be efficiently separated and the generation of oil-containing sludge can be suppressed, and the separated and floated oil can be easily collected in a cross-flow settling tank equipped with a partition weir downstream of the scale pit. Based on.
  • the flow of the separated floating oil is dammed by a partition weir arranged in a cross-flow settling tank, and the lower end of the partition weir and the cross-flow settling
  • the treated water can be recovered and cooled, and then used directly as cooling water again.
  • the present disclosure relates to a method of operating a so-called direct cooling water system such as spray water in continuous casting or rolling in a steel mill.
  • the operating method of the present disclosure includes at least the following (1) to (3).
  • An oil separation promoter is present in the cooling water in the turbulent flow path from the scale sluice to the scale pit.
  • (2) In a cross-flow settling tank equipped with a partition weir on the downstream side of the scale pit, the flow of the floating oil is dammed by the partition weir and the oil is removed, and the lower end of the partition weir and the bottom of the cross-flow settling tank are and passing the cooling water from which the oil has been separated.
  • the "direct cooling water system" in the present disclosure refers to a water system that uses cooling water that is directly sprayed onto an object or used to immerse the object by recooling it.
  • the direct cooling water system wastewater and the direct cooling water system wastewater in the present disclosure are cooling water used as direct cooling water, that is, cooling water directly sprayed onto an object or cooling water in which the object was immersed.
  • Direct cooling water wastewater (direct cooling water wastewater) in the present disclosure contains oil and metal scale.
  • the direct cooling water can be directly sprayed or immersed onto steel products such as steel materials and steel plates, rolling rolls, etc. in the continuous casting process or rolling process of a steel mill to cool them.
  • cooling water used for descaling or the like or cooling water that can be used such as cooling water containing oil and metal scale
  • cooling water containing oil and metal scale can be mentioned.
  • Direct cooling water and “cooling water” in the present disclosure may include cooling water used as direct cooling water and cooling water that can be used as direct cooling water.
  • the metal scale include iron oxide, iron, and the like in one or more embodiments.
  • the operating method of the present disclosure includes the presence of an oil separation promoter in the turbulent flow path.
  • the "turbulent state" in the present disclosure means that the flow or vortex of the cooling water is irregular, or that the flow rate of the cooling water is 0.5 m/s or more. can be mentioned. This is because if the flow rate of the cooling water is 0.5 m/s or more, the water flow or vortex flow of the cooling water containing metal scale becomes irregular.
  • the "turbulent flow path from the scale sluice to the scale pit" in the present disclosure includes the scale sluice, the scale pit, and the piping between the scale sluice and the scale pit. It will be done.
  • the scale sluice includes a location where cooling water is directly collected in a continuous casting process or a rolling process. In one or more embodiments, the scale sluice includes a function of discharging, circulating and reusing cooling water recovered from the continuous casting process or rolling process, and oil and metal scale such as iron oxide or iron. It can also function to move cooling water to the outdoor scale pit.
  • the oil separation promoter is preferably a cationic organic coagulant or polymer or an amphoteric organic coagulant or polymer.
  • the cationic organic coagulant or polymer includes an alkylamine/epichlorohydrin condensate, polyethyleneimine, an alkylene dichloride/polyalkylene polyamine condensate, a dicyandichloride/polyalkylene polyamine condensate, and a polydimethyl Examples include aminoethyl methacrylate and polydiallyldimethylammonium chloride.
  • amphoteric organic coagulant or polymer examples include, in one or more embodiments, a copolymer of trialkylamine and acrylic acid, a copolymer of diallyldimethylammonium chloride and acrylic acid, and the like.
  • the operating method of the present disclosure uses an organic or inorganic flocculant that is commonly used to coagulate and precipitate iron oxide and iron scale in a normal manner, in addition to an oil separation promoter. be able to.
  • the oil separation promoter used in the operating method of the present disclosure may or may not contain an inorganic flocculant in one or more embodiments.
  • the amount of the oil separation promoter added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L.
  • the concentration of the oil separation promoter in the turbulent flow path is 0.001 mg/L to 5 mg/L, preferably 0.001 mg/L to 5 mg/L, in one or more embodiments. 05 mg/L to 5 mg/L.
  • the operating method of the present disclosure includes removing separated floating oil in a cross-flow settling tank provided with a partition weir downstream of the scale pit.
  • the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom of the cross-flow sedimentation tank.
  • the flow of oil (floated oil) that has surfaced by the partition weir is dammed, and the wastewater from which the oil has been separated is allowed to pass between the lower end of the partition weir and the bottom of the cross-flow settling tank (separated portion). Can be done.
  • recovery (or removal) of the oil whose flow is blocked by the partition weir can be performed using a skimmer, an oil recovery device floated on the water surface of the cross-flow settling tank, or the like. Therefore, in one or more embodiments, the cross-flow sedimentation tank may include a skimmer, an oil recovery device, a recovery tank for storing or processing the recovered oil, and the like.
  • a cross-flow sedimentation tank (also referred to as a cross-flow coagulation-sedimentation tank) suspends oil and other suspensions during the process (time) in which the water to be treated moves in the longitudinal direction of the tank. Precipitate (or coagulate) a substance. Therefore, from the perspective of improving separation efficiency, the larger the size (especially the length) of the cross-flow sedimentation tank, the better (the longer the better), but from the perspective of equipment investment, etc. It may be determined as appropriate depending on the size of the equipment from which the cooling water system is discharged, the amount of wastewater to be discharged, the size of the place where the cross-flow sedimentation tank is installed, etc.
  • the partition weir may be arranged perpendicular to the flow direction.
  • the shape of the partition weir is diagonal to the flow direction in order to make the flow of cooling water smooth and to recover and/or separate oil more easily or efficiently. It may be a V-shape in which two plate-like objects extending from the sides of the cross-flow settling tank are arranged so as to close along the flow direction, or it may be a concave shape.
  • 2A and 2B are drawings for explaining an example of arranging the partition weir 10 in the cross-flow sedimentation tank 3.
  • FIG. 2A is an example of a view seen from the top
  • FIG. 2B is an example of a view taken along the line 2A-2A.
  • the partition weir 10 is arranged in a V-shape such that the intersection (apex) of two plate-like objects extending from the side surface of the cross-flow sedimentation tank 3 is located on the downstream side of the cross-flow sedimentation tank 3.
  • the cross-flow sedimentation tank 3 includes, in addition to the partition weir 10, an oil recovery device 11 for recovering floated and separated oil, and a sludge drain for recovering suspended solids that have coagulated and settled.
  • a pump 14 may also be provided.
  • the oil recovery device 11 includes a float and is placed floating on the water surface upstream of the partition weir 10.
  • the sludge pump 14 is arranged at the bottom of the cross-flow settling tank 3 upstream of the partition weir 10.
  • the partition weir may be configured to have a V-shape with two plate-like members extending from the sides of the cross-flow sedimentation tank, as shown in FIG.
  • the angle ( ⁇ ) between the two plate-like objects may be arranged to be an acute angle, and the oil contained in the partition weir can be more easily recovered. Therefore, they may be arranged at an obtuse angle.
  • the angle ( ⁇ ) formed is 30° or more, 40° or more, 50° or more, 60° or more, 70° or more, 80° or more, 90° or more, or 110° or more.
  • the angle ( ⁇ ) formed is 170° or less, 160° or less, 150° or less, 140° or less, 130° or less, or 125° or less.
  • the partition weir is arranged in the cross-flow settling tank so that the distance between the water surface and the lower end of the partition weir (d1 in FIG. 2B) is 0.5 m or more. In one or more embodiments, the distance between the water surface and the lower end of the partition weir (d1 in FIG. 2B) is 1 m or more, 1.5 m or more, or 2 m or more. In one or more embodiments, the distance between the water surface and the lower end of the partition weir is 2.5 m or less, or 2 m or less.
  • the partition weir is the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank (the length of the separated part between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank) (d2 in FIG. 2B) is arranged in the cross-flow sedimentation tank so that the distance is 0.5 m or more. In one or more embodiments, the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank (d2 in FIG. 2B) is 1 m or more or 2 m or more. In one or more embodiments, the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank is 3 m or less or 2.5 m or less.
  • the partition weir has a distance (d1) between the water surface and the lower end of the partition weir that is 1/2 or more of the depth of the cross-flow sedimentation tank (distance between the water surface and the cross-flow sedimentation tank: D), They may be arranged so as to be 2/3 or more, or 3/4 or more.
  • the upper end of the partition weir only needs to protrude (expose) above the water surface to the extent that it can block the flow of floating oil and the oil does not overflow the upper end of the partition weir.
  • the upper end of the partition weir may be exposed 10 cm or more, 30 cm or more, or 50 cm or more from the water surface.
  • the number of partition weirs is not particularly limited, and in one or more embodiments, it may be one, or two or three or more partition weirs may be arranged in the flow direction of the cross-flow sedimentation tank. Good too.
  • the location of the partition weir is not particularly limited, and in one or more embodiments, it is 1/2 or less, 1/3 or less, or 1/2 from the downstream end of the cross-flow sedimentation tank toward the upstream side. It can be placed in 4 or less positions.
  • the operating method of the present disclosure may include collecting suspended substances other than oil (sludge components containing metal scale) precipitated in a cross-flow settling tank.
  • the oil is floated and separated, so that the suspended matter (sludge component) has a low oil content, and preferably substantially no oil.
  • substantially oil-free means that the amount of oil in the suspended matter (sludge component) is less than 0.5 mg/L (below the detection limit).
  • the cross-flow sedimentation tank in the operating method of the present disclosure includes a pump (such as a sludge pump) for collecting suspended solids (sludge components), and a sludge collected by the pump for storing or storing the sludge. It may further include a waste sludge collection tank (tank) for processing.
  • a pump such as a sludge pump
  • sludge components suspended solids (sludge components)
  • sludge collected by the pump for storing or storing the sludge.
  • It may further include a waste sludge collection tank (tank) for processing.
  • the operating method of the present disclosure includes collecting the wastewater from which oil has been removed in a cross-flow settling tank, cooling it, and directly using it as cooling water again.
  • the oil-containing wastewater (direct cooling water) treated by the operating method of the present disclosure can be used as direct cooling water in a rolling mill or the like after passing through a filter and a cooling tower.
  • the operating method of the present disclosure can also be referred to as a direct cooling water treatment method in one or more embodiments. Further, the operating method of the present disclosure can also be referred to as the operation or operating method of the direct cooling water system treatment facility of the present disclosure in one or more embodiments.
  • the present disclosure relates to a direct cooling water system treatment facility containing oil and metal scale.
  • the processing equipment of the present disclosure includes: A path forming a turbulent flow state from the scale sluice to the scale pit, an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system; A cross-flow sedimentation tank that is placed downstream of the scale pit and removes separated floating oil, The cross-flow settling tank is equipped with a partition weir, The partition weir is disposed in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the flow of the floating oil is dammed by the partition weir, and The wastewater from which the oil has been separated can pass between the lower end of the partition weir and the bottom surface of the cross-flow settling tank.
  • the method of operating a direct cooling water system of the present disclosure can be
  • the path for forming a turbulent flow state from the scale sluice to the scale pit, the equipment incidental thereto, such as the cross-flow sedimentation tank and the partition weir, are the same as the operating method of the present disclosure.
  • the present disclosure provides an oil separation promoter for carrying out the method of operating a direct cooling water system of the present disclosure, wherein the oil separation promoter is made from a cationic or amphoteric organic coagulant or polymer.
  • This invention relates to an oil separation promoter.
  • the cationic or amphoteric organic coagulant or polymer in the oil separation promoter of the present disclosure is the same as the operating method of the present disclosure.
  • One embodiment of the operating method of the present disclosure includes the following (1) to (4).
  • (1) In scale sluice 1, an amphoteric organic coagulant or polymer is added to the direct cooling water system wastewater.
  • (2) In the scale pit 2, a cationic organic coagulant or polymer and an inorganic coagulant are added directly to the cooling water system wastewater.
  • (3) In the cross-flow sedimentation tank 3 equipped with a partition weir, the oil in the wastewater to which the chemical has been added is suspended, and other suspended substances (sludge components) are coagulated and precipitated.
  • (4) Collect the wastewater from which oil has been removed, cool it, and use it again as direct cooling water.
  • an amphoteric organic coagulant or polymer is directly added to the cooling water system wastewater using the chemical addition device 7.
  • the amount of the amphoteric organic coagulant or polymer added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L.
  • the concentration of the amphoteric organic coagulant or polymer in the wastewater in the scale sluice is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L. It is L.
  • a cationic organic coagulant or polymer and an inorganic coagulant are directly added to the cooling water system wastewater using a chemical addition device (not shown).
  • the cationic organic coagulant or polymer and the inorganic coagulant may be added separately, or may be added as a mixture.
  • the cationic organic flocculant or polymer and the inorganic coagulant may be added at the same position in the scale pit or at different positions.
  • the amount of the cationic organic flocculant or polymer added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L.
  • the concentration of the cationic organic flocculant or polymer in the wastewater in the scale sluice is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg. /L.
  • the inorganic coagulant includes polyaluminum chloride (PAC), aluminum sulfate, aluminum chloride, ferric chloride, ferric sulfate, polyferric sulfate, and the like.
  • the amount of the inorganic coagulant added is 0.001 mg/L to 20 mg/L, preferably 0.1 mg/L to 10 mg/L.
  • the concentration of the inorganic coagulant in the wastewater in the scale sluice is 0.001 mg/L to 20 mg/L, preferably 0.1 mg/L to 10 mg/L.
  • the oil in the wastewater to which the chemical has been added is suspended, and other suspended substances (sludge components) are coagulated and precipitated.
  • the oil content in the wastewater to which the drug has been added and introduced into the cross-flow sedimentation tank 3 is separated from the wastewater and floats to the water surface.
  • the flow of the floating oil (floating oil) is dammed up by a partition weir installed in the cross-flow settling tank.
  • the dammed oil can be easily recovered using, for example, a skimmer or an oil recovery device placed above the water surface.
  • suspended substances (sludge components) other than oil are coagulated and precipitated in the cross-flow sedimentation tank 3, and can be recovered using a sludge pump or the like, for example. Therefore, wastewater from which oil and other suspended substances have been removed can be passed between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank.
  • an amphoteric organic coagulant or polymer is added in the scale sluice 1, and a cationic organic coagulant or polymer and an inorganic coagulant are added in the scale pit 2.
  • the types of chemicals used in the operating method and the positions at which they are added are not limited to these.
  • a method for operating a direct cooling water system containing oil and metal scale comprising: Presence of an oil separation promoter in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit; Removing the separated floating oil in a cross-flow sedimentation tank downstream of the scale pit, and collecting the wastewater from which the oil has been removed in the cross-flow sedimentation tank, cooling it and directly using it as cooling water,
  • the cross-flow sedimentation tank includes a partition weir, and the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the partition weir allows the damming the flow of floating oil, and allowing the wastewater from which the oil has been separated to pass through a spaced apart portion between the lower end of the partition weir and the bottom of the cross-flow settling tank; How to operate a direct cooling
  • the cationic organic coagulant or polymer may be alkylamine/epichlorohydrin condensate, polyethyleneimine, alkylene dichloride/polyalkylenepolyamine condensate, dicyandichloride/polyalkylenepolyamine condensate, polydimethylaminoethyl methacrylate, or The method according to [3], which is one or more organic coagulants or polymers selected from diallyldimethylammonium chloride.
  • Direct cooling according to [3] or [4], wherein the amount of the cationic organic flocculant or polymer added is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L.
  • the amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid. 3] to [5]. [7] The amount of the amphoteric organic coagulant or polymer added is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L, according to any one of [3] to [6]. Method.
  • the inorganic coagulant is selected from the group consisting of polyaluminum chloride (PAC), aluminum sulfate, aluminum chloride, ferric chloride, ferric sulfate, and polyferric sulfate, according to [8]. the method of. [10]
  • the amount of inorganic coagulant added is 0.001 mg/L to 20 mg/L, 0.01 mg/L to 20 mg/L, 0.1 mg/L to 20 mg/L, 0.001 mg/L to 10 mg/L.
  • the concentration of the inorganic flocculant in the wastewater in the scale pit is 0.001 mg/L to 20 mg/L, 0.01 mg/L to 20 mg/L, 0.1 mg/L to 20 mg/L, 0.001 mg/L.
  • a direct cooling water system treatment facility disposed within the cross-flow sedimentation tank so that the wastewater from which the oil content has been separated can pass through a space between the tank and the bottom surface of the tank.
  • the oil separation promoter is made of a cationic or amphoteric organic coagulant or polymer.
  • the cationic organic coagulant or polymer may be alkylamine/epichlorohydrin condensate, polyethyleneimine, alkylene dichloride/polyalkylenepolyamine condensate, dicyandichloride/polyalkylenepolyamine condensate, polydimethylaminoethyl methacrylate, or
  • the oil separation promoter according to [17] which is one or more organic coagulants or polymers selected from diallyldimethylammonium chloride.
  • the amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid, [ 17] or the oil separation promoter according to [18].
  • a treatment for removing sludge components was performed in a direct cooling water circulation system (circulated water amount: 1400 m 3 /h) of a continuous casting process as shown in FIGS. 1 and 2.
  • the direct cooling water circulation system shown in FIG. 1 includes a scale sluice 1, a scale pit 2, a cross-flow sedimentation tank 3, a filter 4, and a cooling tower 5. Cooling water used for cooling the steel material in the rolling process is introduced into the scale pit 2 through a pipe (trough, gutter) 6 from a scale sluice 1 provided below the steel material rolling line.
  • the scale sluice 1 includes a drug addition device 7.
  • the cross-flow settling tank 3 includes a partition weir 10, an oil recovery device 11, an oil recovery tank (tank) 8, a sludge pump 14, and a sludge recovery tank (tank) 9, and the oil recovered by the oil recovery device 11 is an oil component. Suspended substances (sludge components) stored in a recovery tank (tank) 8 and recovered by a sludge pump 14 are collected in a sludge recovery tank (tank) 9.
  • scale sleuth 1 ⁇ Oil separation promoter to be added Copolymer of diallyldimethylammonium chloride and acrylic acid (weight average molecular weight: approximately 400,000, manufactured by Nalco Company)
  • ⁇ Amount added 0.5mg/L to circulating water scale pit 2
  • PAC polyaluminum chloride
  • Cationic organic flocculant manufactured by Katayama Chemical Industry Research Institute Co., Ltd., trade name "Floclan (registered trademark) SC-640" 1 mg/L
  • an oil separation promoter is added to the circulating water before oil separation, in the scale pit 2, the above-mentioned PAC and cationic organic flocculant are added, and in the cross-flow settling tank 3, the oil is suspended.
  • a V-shaped partition weir (distance between the water surface and the bottom end (d2): 1 m, distance between the water surface and the top end: 30 cm, ⁇ : 120°) is installed in the cross-flow sedimentation tank 3 on the downstream side of the scale pit 2, and the cross-flow sedimentation tank The cooling water from which the oil has been separated is passed between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank 3. .
  • Test water was collected from near the water surface on the upstream side of the partition weir and near the water surface on the downstream side of the partition weir, and the oil content contained in the test water was measured by the N-hexane extractable substance measurement method based on JIS K 0102.
  • the oil content of the test water collected from near the water surface on the upstream side of the partition weir 10 ( ⁇ 12 in Figure 2A) remained at a maximum value of 52 mg/L, a minimum value of 15 mg/L, and an average value of 35 mg/L.
  • the oil content of the test water collected from near the water surface on the downstream side of the partition weir 10 had a maximum value of 3.5 mg/L, a minimum value of less than 0.5 mg/L, and an average value of 0.7 mg/L. It has changed. Moreover, the oil content of the sludge coagulated and precipitated in the cross-flow settling tank 3 was not detected (less than 0.5 mg/L).
  • oil can be efficiently separated from direct cooling water containing oil and iron oxide and metal scale such as iron, and the treated treated water can be effectively separated.
  • the sludge can be cooled as it is and used directly as cooling water, and has the effect of suppressing the amount of oil contained in the generated sludge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Floating Material (AREA)
  • Continuous Casting (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Provided is a method for operating a direct cooling water system capable of efficiently separating oil content and suspended matter from direct cooling water that contains oil and metal scale, such as an iron oxide and iron, and of easily recovering the oil content. The method for operating a direct cooling water system that contains oil and metal scale comprises: causing an oil content separation promoter to be present in wastewater of the direct cooling water system, in a path of turbulent flow from a scale sluice to a scale pit; removing separated floating oil content in a cross-flow settling tank downstream of the scale pit; and recovering and cooling the wastewater from which the oil content was removed in the cross-flow settling tank, and using said wastewater once again as direct cooling water. The cross-flow settling tank is provided with a partitioning weir, and the partitioning weir is disposed inside the cross-flow settling tank with the upper end thereof protruding from the water surface and the lower end thereof being spaced apart from the bottom surface of the cross-flow settling tank, and is provided at a position up to a prescribed depth from the water surface. Flow of the floating oil content is dammed by the partitioning weir, and cooling water wastewater, from which the oil content was separated, is caused to pass between the bottom surface of the cross-flow settling tank and below the lower end of the partitioning weir.

Description

直接冷却水系の運転方法及び油分分離促進剤ならびに直接冷却水系の処理設備Direct cooling water system operation method, oil separation promoter, and direct cooling water system treatment equipment
 本開示は、製鉄所の連続鋳造や圧延におけるスプレー水などのいわゆる直接冷却水系の運転方法に関する。 The present disclosure relates to a method of operating a so-called direct cooling water system such as spray water in continuous casting or rolling in a steel mill.
 製鉄所においては、鋼材の製造中に鋼材の冷却等に用いる直接冷却水等の処理設備より多量のミルスケールが発生する。このようなスケール類は、鋼材より発生する酸化鉄や鉄等の金属が主体であり、油分を含まない金属スケール類については、製銑、製鋼工程等において再利用される有用な資源となる。しかし、連鋳工程や圧延工程中に、圧延油や圧延機等の製造用機械に用いられる潤滑油や圧延油が、スケール類を含む冷却水に混入するため、発生する金属スケール類は多くの場合水と数質量%の油分を含有することになる。その上、圧延ロールの組換え等の作業時に不可避的に油分が混入する場合もある。このような作業を実施するたびに、スケール中の油分濃度が大きく変動し、具体的には1~10数質量%の範囲で変動することがある。 In steel mills, a large amount of mill scale is generated due to processing equipment such as direct cooling water used for cooling steel materials during the manufacturing of steel materials. Such scales are mainly metals such as iron oxide and iron generated from steel materials, and metal scales that do not contain oil are useful resources that can be reused in pig iron making, steel making processes, etc. However, during the continuous casting process and rolling process, lubricating oil and rolling oil used in manufacturing machines such as rolling mills mix into cooling water containing scale, so many metal scales are generated. In this case, it contains water and several mass % of oil. Moreover, oil may inevitably be mixed in during work such as recombining the rolling rolls. Each time such an operation is performed, the oil concentration in the scale varies greatly, and specifically, it may vary within a range of 1 to several 10% by mass.
 このような直接冷却水は、スケールピットや凝集沈殿設備において、有機や無機の凝集剤を用いて処理され、冷却後、冷却水として再使用される。 Such direct cooling water is treated with an organic or inorganic flocculant in a scale pit or coagulation-sedimentation facility, and after being cooled, it is reused as cooling water.
 このような直接冷却水系の処理として、直接冷却水に含まれる粒径が50μm以上の金属粉や油分等の粗大な懸濁物質(粗大SS)と粒径が50μmに満たない微細な懸濁物質(微細SS)とを同一の処理で凝集沈降させ、同時に除去する技術が提案されている(特許文献1~4参照)。この処理方法は、特定のポリマーを添加することにより、スケールピットで油を含む懸濁物質を凝集沈降させ、除去することにより、清澄な処理水を得ようとするものである。
 上記の油分等を含む粗大SSと微細SSとを同一処理で凝集沈降させる処理方法の場合、スケールピット等に蓄積するスラッジは油分を含有する。一方、油分を含まないスケール類は、上記のとおり、製鋼工程等において再利用される有用な資源となる。このため、スケールピットに蓄積するスラッジが油分を含有する場合、スラッジを再利用するには油分を分離する必要がある。
As a treatment for such a direct cooling water system, coarse suspended solids (coarse SS) such as metal powder and oil with a particle size of 50 μm or more and fine suspended solids with a particle size of less than 50 μm are treated in the direct cooling water. A technique has been proposed in which fine SS (fine SS) is coagulated and sedimented in the same process and removed at the same time (see Patent Documents 1 to 4). This treatment method attempts to obtain clear treated water by adding a specific polymer to cause oil-containing suspended matter to coagulate and settle in a scale pit and remove it.
In the case of a treatment method in which coarse SS and fine SS containing oil and the like are coagulated and sedimented in the same process, the sludge that accumulates in scale pits and the like contains oil. On the other hand, scales that do not contain oil are useful resources that can be reused in steel manufacturing processes, etc., as described above. Therefore, if the sludge that accumulates in the scale pit contains oil, it is necessary to separate the oil in order to reuse the sludge.
 含油スラッジから油分を分離する方法としては、例えば、含油スラッジに抽出剤として有機溶剤を混合して強撹拌して、含油スラッジから有機溶剤に油分を抽出する方法がある(特許文献5参照)。一方、含油スラッジには水分が含まれているため、このような処理では、安定化したエマルションが形成される。
 このような安定化したエマルションを破壊(解乳化)させるには、多重円盤型の遠心分離機が必要となり、高価な投資となる(特許文献6及び7参照)。
As a method for separating oil from oil-impregnated sludge, for example, there is a method in which an organic solvent is mixed with oil-impregnated sludge as an extractant, and the mixture is strongly stirred to extract oil from oil-impregnated sludge with an organic solvent (see Patent Document 5). On the other hand, since oil-impregnated sludge contains water, such treatment forms a stabilized emulsion.
To break (demulsify) such a stabilized emulsion, a multi-disc centrifuge is required, which is an expensive investment (see Patent Documents 6 and 7).
 さらに、含油スラッジは、製鉄所における沈殿池や濃縮層等の層に一時的に貯留され、廃棄のために処理される際や製鉄原料のために処理される際には処理施設に運搬する必要がある。この際、含油スラッジは、含水率が高く、流動しやすいものが多いため、運搬時に含油スラッジ、及びそれに含まれる油分が流出することが懸念される。そのため、含油スラッジは、油分を含有しないスラッジ等のような、そのまま製鉄原料として利用されるスラッジと比べて、運搬の際の運搬量や乾燥等の制限を受けることになる。そこで、含油スラッジを運搬しやすい処理物にすることが必要となる(特許文献8)。 In addition, oil-impregnated sludge is temporarily stored in sedimentation tanks and thickening layers in steel plants, and must be transported to a treatment facility when it is processed for disposal or as a raw material for steel production. There is. At this time, since oil-impregnated sludge often has a high moisture content and is easily flowable, there is a concern that the oil-impregnated sludge and the oil contained therein may leak out during transportation. Therefore, compared to sludge that does not contain oil and is used as a raw material for steelmaking, oil-impregnated sludge is subject to restrictions such as the amount of transportation and drying. Therefore, it is necessary to make oil-impregnated sludge into a treated material that is easy to transport (Patent Document 8).
特許6068112号公報Patent No. 6068112 特許6374157号公報Patent No. 6374157 特許6374352号公報Patent No. 6374352 特許6374351号公報Patent No. 6374351 特開2015-132011号公報Japanese Patent Application Publication No. 2015-132011 特開平3-238059号公報Japanese Patent Application Publication No. 3-238059 特開2005-349371号公報Japanese Patent Application Publication No. 2005-349371 特開2019-98327号公報JP2019-98327A
 このように含油スラッジは、その処理だけでなく運搬等においても制限を受けることになる。
 そこで、本開示は、油と酸化鉄及び鉄等の金属スケールとを含有する直接冷却水から油分とそれ以外の懸濁物質とを効率よく分離し、含油スラッジの発生を抑制しつつ、かつ、油分を簡便に回収可能な直接冷却水系の運転方法を提供する。
In this way, oil-impregnated sludge is subject to limitations not only in its treatment but also in its transportation.
Therefore, the present disclosure efficiently separates oil and other suspended substances from direct cooling water containing oil and metal scales such as iron oxide and iron, suppresses the generation of oil-containing sludge, and To provide a method for operating a direct cooling water system that can easily recover oil.
 本開示は、一態様において、油と酸化鉄や鉄等の金属スケールとを含有する直接冷却水系の運転方法であって、
 スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該直接冷却水系の廃水に油分分離促進剤を存在させること、
 分離した浮上油分をスケールピットの下流側の横流沈殿槽で除去すること、及び
 前記横流沈殿槽で油分が除去された前記廃水を回収し、回収した当該廃水を冷却して再度直接冷却水として使用することを含み、
 前記横流沈殿槽は、仕切り堰を備え、前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で前記横流沈殿槽内に配置され、前記仕切り堰によって前記浮上油分の流れを堰き止め、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水を通過させる、直接冷却水系の運転方法に関する。
In one aspect, the present disclosure provides a method for operating a direct cooling water system containing oil and metal scale such as iron oxide or iron, the method comprising:
Presence of an oil separation promoter in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit;
Removing the separated floating oil in a cross-flow settling tank downstream of the scale pit, collecting the wastewater from which the oil has been removed in the cross-flow settling tank, cooling the collected wastewater, and directly using it as cooling water again. including doing;
The cross-flow sedimentation tank includes a partition weir, and the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the partition weir allows the The present invention relates to a method of operating a direct cooling water system, in which the flow of floating oil is dammed, and the wastewater from which the oil has been separated is allowed to pass through a spaced apart portion between the lower end of the partition weir and the bottom of the cross-flow settling tank.
 本開示は、その他の態様として、油と金属スケールとを含有する直接冷却水系の処理設備に関する。本開示の処理設備は、
 スケールスルースからスケールピットに至るまでの乱流状態を形成する経路と、
 前記直接冷却水系の廃水に油分分離促進剤を添加するための油分分離促進剤供給装置と、
 スケールピットの下流側に配置され、分離した油分を除去する横流沈殿槽とを含み、
  前記横流沈殿槽は、仕切り堰を備え、
  前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で、前記仕切り堰によって前記浮上油分の流れが堰き止められ、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水が通過可能となるように前記横流沈殿槽内に配置されている。
In another aspect, the present disclosure relates to a direct cooling water system treatment facility containing oil and metal scale. The processing equipment of the present disclosure includes:
A path forming a turbulent flow state from the scale sluice to the scale pit,
an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system;
It includes a lateral flow sedimentation tank located downstream of the scale pit and removes separated oil,
The cross-flow settling tank is equipped with a partition weir,
The partition weir has an upper end protruding from the water surface and a lower end separated from the bottom surface of the cross-flow sedimentation tank, so that the flow of the floating oil is dammed by the partition weir, and the lower end of the partition weir and the cross-flow sedimentation tank are separated from each other. It is arranged in the cross-flow sedimentation tank so that the wastewater from which the oil content has been separated can pass through a spaced apart part from the bottom surface of the tank.
 本開示は、さらにその他の態様として、本開示の直接冷却水系の運転方法を実施するための油分分離促進剤であって、該油分分離促進剤は、カチオン性又は両性の有機凝結剤若しくはポリマーからなる、油分分離促進剤に関する。 In still another aspect, the present disclosure provides an oil separation promoter for carrying out the method of operating a direct cooling water system of the present disclosure, wherein the oil separation promoter is made from a cationic or amphoteric organic coagulant or polymer. This invention relates to an oil separation promoter.
 本開示の方法によれば、油と酸化鉄や鉄等の金属スケールとを含有する直接冷却水から油分を効率よく分離し、含油スラッジの発生を抑制しつつ、かつ、水面に浮上させた油分を簡便に回収することができる。
 本開示によれば、一又は複数の実施形態において、発生したスラッジに含まれる油分の量を抑制できる。このため、本開示によれば、一又は複数の実施形態において、油分を含む粗大SSと微細SSとを同一の処理で凝集沈降させて除去するという従来の方法では必要であった含油スラッジから油分を分離するための特別な処理等が不要になるという効果を奏しうる。
According to the method of the present disclosure, oil is efficiently separated from direct cooling water containing oil and metal scales such as iron oxide and iron, while suppressing the generation of oil-containing sludge and allowing the oil to float to the surface of the water. can be easily collected.
According to the present disclosure, in one or more embodiments, the amount of oil contained in generated sludge can be suppressed. Therefore, according to the present disclosure, in one or more embodiments, oil can be removed from oil-containing sludge, which was necessary in the conventional method of coagulating and settling coarse SS and fine SS containing oil in the same process. This has the advantage that special processing for separating the two is no longer necessary.
図1は、連続鋳造工程の直接冷却水循環系の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a direct cooling water circulation system in a continuous casting process. 図2A及びBは、横流沈殿槽に仕切り堰を配置した形態の一例を説明するための図面であって、図2Aは上面からみた平面図であり、図2Bは2A-2A線に沿った断面図である。2A and B are drawings for explaining an example of a configuration in which a partition weir is arranged in a cross-flow sedimentation tank, in which FIG. 2A is a plan view seen from the top, and FIG. 2B is a cross-sectional view taken along the line 2A-2A. It is a diagram.
 本開示は、油と酸化鉄や鉄等の金属スケールとを含有する直接冷却水を処理するにあたり、スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該冷却水に油分分離促進剤を存在させることにより、油分を効率よく分離し、含油スラッジの発生を抑制でき、かつ、分離浮上した油をスケールピットの下流側の、仕切り堰を備える横流沈殿槽で簡便に回収できるという知見に基づく。 In treating direct cooling water containing oil and metal scale such as iron oxide or iron, the present disclosure provides an oil separation promoter to be added to the cooling water in a turbulent flow path from scale sluice to scale pits. Based on the knowledge that by having a scale pit, the oil can be efficiently separated and the generation of oil-containing sludge can be suppressed, and the separated and floated oil can be easily collected in a cross-flow settling tank equipped with a partition weir downstream of the scale pit. Based on.
 本開示の一態様によれば、分離した浮上性の油分(浮上油分)を、横流沈殿槽に配置された仕切り堰によって前記浮上油分の流れを堰き止め、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間から前記油分が分離された冷却水廃水を通過させることにより当該処理水を回収し冷却することによって再度直接冷却水として使用することができる。 According to one aspect of the present disclosure, the flow of the separated floating oil (floating oil) is dammed by a partition weir arranged in a cross-flow settling tank, and the lower end of the partition weir and the cross-flow settling By passing the cooling water wastewater from which the oil has been separated from the bottom of the tank, the treated water can be recovered and cooled, and then used directly as cooling water again.
 [本開示の運転方法]
 本開示は、製鉄所の連続鋳造や圧延におけるスプレー水などのいわゆる直接冷却水系の運転方法に関する。
 本開示の運転方法は、以下の(1)~(3)を少なくとも含む。
(1)スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該冷却水に油分分離促進剤を存在させること。
(2)スケールピットの下流側の、仕切り堰を備える横流沈殿槽において、前記仕切り堰によって前記浮上油分の流れを堰き止め該油分を除去し、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間から前記油分が分離された冷却水を通過させること。
(3)前記横流沈殿槽で油分が除去された前記廃水を回収し、冷却して再度直接冷却水として使用すること。
[Operating method of the present disclosure]
The present disclosure relates to a method of operating a so-called direct cooling water system such as spray water in continuous casting or rolling in a steel mill.
The operating method of the present disclosure includes at least the following (1) to (3).
(1) An oil separation promoter is present in the cooling water in the turbulent flow path from the scale sluice to the scale pit.
(2) In a cross-flow settling tank equipped with a partition weir on the downstream side of the scale pit, the flow of the floating oil is dammed by the partition weir and the oil is removed, and the lower end of the partition weir and the bottom of the cross-flow settling tank are and passing the cooling water from which the oil has been separated.
(3) Collecting the wastewater from which oil has been removed in the cross-flow settling tank, cooling it, and directly using it again as cooling water.
 本開示における「直接冷却水系」とは、一又は複数の実施形態において、対象物に直接噴霧又は対象物を浸漬する冷却水を再冷却して使用する水系のことをいう。本開示における直接冷却水系廃水及び直接冷却水系の廃水は、直接冷却水として使用された冷却水、すなわち対象物に直接噴霧した冷却水又は対象物を浸漬させた冷却水である。本開示における直接冷却水系廃水(直接冷却水系の廃水)は、油分と金属スケールとを含む。直接冷却水としては、一又は複数の実施形態において、製鉄所の連続鋳造工程や圧延工程の成形過程における鋼材や鋼板等の鋼鉄製品や圧延ロール等に直接スプレー又は浸漬等して、これらの冷却又はスケール落とし等に用いた冷却水あるいは用いられうる冷却水であって、油と金属スケールとを含有する冷却水等が挙げられる。本開示における「直接冷却水」及び「冷却水」は、直接冷却水として使用された冷却水及び直接冷却水として使用されうる冷却水を含みうる。
 金属スケールとしては、一又は複数の実施形態において、酸化鉄及び鉄等が挙げられる。
In one or more embodiments, the "direct cooling water system" in the present disclosure refers to a water system that uses cooling water that is directly sprayed onto an object or used to immerse the object by recooling it. The direct cooling water system wastewater and the direct cooling water system wastewater in the present disclosure are cooling water used as direct cooling water, that is, cooling water directly sprayed onto an object or cooling water in which the object was immersed. Direct cooling water wastewater (direct cooling water wastewater) in the present disclosure contains oil and metal scale. In one or more embodiments, the direct cooling water can be directly sprayed or immersed onto steel products such as steel materials and steel plates, rolling rolls, etc. in the continuous casting process or rolling process of a steel mill to cool them. Alternatively, cooling water used for descaling or the like or cooling water that can be used, such as cooling water containing oil and metal scale, can be mentioned. "Direct cooling water" and "cooling water" in the present disclosure may include cooling water used as direct cooling water and cooling water that can be used as direct cooling water.
Examples of the metal scale include iron oxide, iron, and the like in one or more embodiments.
 本開示の運転方法は、乱流状態の経路に油分分離促進剤を存在させることを含む。
 本開示における「乱流状態」としては、一又は複数の実施形態において、当該冷却水の水流又は渦流が不規則であること、又は、当該冷却水の流速が0.5m/s以上であることが挙げられる。冷却水の流速が0.5m/s以上であれば、金属スケールを含有する冷却水の水流又は渦流は不規則になるからである。
 本開示における「スケールスルースからスケールピットに至るまでの乱流状態の経路」としては、特に限定されない一実施形態において、スケールスルース、スケールピット、及びスケールスルースとスケールピットとの間の配管等が挙げられる。
The operating method of the present disclosure includes the presence of an oil separation promoter in the turbulent flow path.
In one or more embodiments, the "turbulent state" in the present disclosure means that the flow or vortex of the cooling water is irregular, or that the flow rate of the cooling water is 0.5 m/s or more. can be mentioned. This is because if the flow rate of the cooling water is 0.5 m/s or more, the water flow or vortex flow of the cooling water containing metal scale becomes irregular.
In one embodiment that is not particularly limited, the "turbulent flow path from the scale sluice to the scale pit" in the present disclosure includes the scale sluice, the scale pit, and the piping between the scale sluice and the scale pit. It will be done.
 スケールスルースとしては、一又は複数の実施形態において、連続鋳造工程又は圧延工程の直接冷却水を回収する箇所が挙げられる。スケールスルースは、一又は複数の実施形態において、連続鋳造工程又は圧延工程から回収された冷却水を排出して循環させて再使用する機能と、油と酸化鉄や鉄等の金属スケールとを含む冷却水を屋外のスケールピットに移動させる機能とを担いうる。 In one or more embodiments, the scale sluice includes a location where cooling water is directly collected in a continuous casting process or a rolling process. In one or more embodiments, the scale sluice includes a function of discharging, circulating and reusing cooling water recovered from the continuous casting process or rolling process, and oil and metal scale such as iron oxide or iron. It can also function to move cooling water to the outdoor scale pit.
 油分分離促進剤としては、一又は複数の実施形態において、カチオン性の有機凝結剤若しくはポリマー又は両性の有機凝結剤若しくはポリマーが好ましい。カチオン性の有機凝結剤又はポリマーとしては、一又は複数の実施形態において、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、ポリジメチルアミノエチルメタクリレート、及びポリジアリルジメチルアンモニウムクロライド等が挙げられる。両性の有機凝結剤又はポリマーとしては、一又は複数の実施形態において、トリアルキルアミンとアクリル酸の共重合物、及びジアリルジメチルアンモニウムクロライドとアクリル酸の共重合物等が挙げられる。 In one or more embodiments, the oil separation promoter is preferably a cationic organic coagulant or polymer or an amphoteric organic coagulant or polymer. In one or more embodiments, the cationic organic coagulant or polymer includes an alkylamine/epichlorohydrin condensate, polyethyleneimine, an alkylene dichloride/polyalkylene polyamine condensate, a dicyandichloride/polyalkylene polyamine condensate, and a polydimethyl Examples include aminoethyl methacrylate and polydiallyldimethylammonium chloride. Examples of the amphoteric organic coagulant or polymer include, in one or more embodiments, a copolymer of trialkylamine and acrylic acid, a copolymer of diallyldimethylammonium chloride and acrylic acid, and the like.
 油分分離促進剤は、一又は複数の実施形態において、1種類でもあってもよいし、複数種類であってもよい。
 本開示の運転方法は、一又は複数の実施形態において、油分分離促進剤とは別に酸化鉄や鉄スケールを凝集沈殿させるために通常用いられている有機や無機の凝集剤を通常の用法で用いることができる。
 本開示の運転方法において使用する油分分離促進剤は、一又は複数の実施形態において、無機凝集剤を含んでいてもよいし、無機凝集剤を含んでいなくてもよい。
In one or more embodiments, there may be one type of oil separation promoter, or there may be multiple types of oil separation promoters.
In one or more embodiments, the operating method of the present disclosure uses an organic or inorganic flocculant that is commonly used to coagulate and precipitate iron oxide and iron scale in a normal manner, in addition to an oil separation promoter. be able to.
The oil separation promoter used in the operating method of the present disclosure may or may not contain an inorganic flocculant in one or more embodiments.
 油分分離促進剤の添加量としては、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。
 本開示における特に限定されない一実施形態として、乱流状態の経路における油分分離促進剤の濃度は、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。
In one or more embodiments, the amount of the oil separation promoter added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L.
In one embodiment of the present disclosure, which is not particularly limited, the concentration of the oil separation promoter in the turbulent flow path is 0.001 mg/L to 5 mg/L, preferably 0.001 mg/L to 5 mg/L, in one or more embodiments. 05 mg/L to 5 mg/L.
 本開示の運転方法は、分離した浮上油分を、スケールピットの下流側の、仕切り堰を備える横流沈殿槽で除去することを含む。
 仕切り堰は、上端が水面から突出し、かつ下端が横流沈殿槽の底面と離間した状態で横流沈殿槽内に配置されている。これにより、仕切り堰によって浮上した油分(浮上油分)の流れが堰き止められ、かつ仕切り堰の下端と前記横流沈殿槽の底面との間(離間部分)から油分が分離された廃水を通過させることができる。
The operating method of the present disclosure includes removing separated floating oil in a cross-flow settling tank provided with a partition weir downstream of the scale pit.
The partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom of the cross-flow sedimentation tank. As a result, the flow of oil (floated oil) that has surfaced by the partition weir is dammed, and the wastewater from which the oil has been separated is allowed to pass between the lower end of the partition weir and the bottom of the cross-flow settling tank (separated portion). Can be done.
 仕切り堰によって流れが堰き止められた油分の回収(又は除去)は、一又は複数の実施形態において、スキマーや、横流沈殿槽の水面に浮かせた油分回収装置等を用いて行うことができる。よって、横流沈殿槽は、一又は複数の実施形態において、スキマー及び油分回収装置、並びに回収した油を貯蔵又は処理するための回収槽(タンク)等を備えていてもよい。 In one or more embodiments, recovery (or removal) of the oil whose flow is blocked by the partition weir can be performed using a skimmer, an oil recovery device floated on the water surface of the cross-flow settling tank, or the like. Therefore, in one or more embodiments, the cross-flow sedimentation tank may include a skimmer, an oil recovery device, a recovery tank for storing or processing the recovered oil, and the like.
 横流沈殿槽(横流式凝集沈殿槽ともいう)は、一又は複数の実施形態において、槽の長手方向に被処理水が移動する過程(時間)で、油分を浮遊させ、かつそれ以外の懸濁物質を沈殿(又は凝集沈殿)させる。このため、横流沈殿槽の大きさ(特に長さ等)は、分離効率を向上させる観点からは、大きければ大きいほどよい(長ければ長いほどよい)が、設備投資等の費用の点から、直接冷却水系が排出される設備の大きさ及び排出される廃水の量、並びに横流沈殿槽を設置する場所の大きさ等に応じて適宜決定すればよい。 In one or more embodiments, a cross-flow sedimentation tank (also referred to as a cross-flow coagulation-sedimentation tank) suspends oil and other suspensions during the process (time) in which the water to be treated moves in the longitudinal direction of the tank. Precipitate (or coagulate) a substance. Therefore, from the perspective of improving separation efficiency, the larger the size (especially the length) of the cross-flow sedimentation tank, the better (the longer the better), but from the perspective of equipment investment, etc. It may be determined as appropriate depending on the size of the equipment from which the cooling water system is discharged, the amount of wastewater to be discharged, the size of the place where the cross-flow sedimentation tank is installed, etc.
 仕切り堰は、一又は複数の実施形態において、流れ方向に対して垂直方向に配置されていてもよい。仕切り堰の形状は、冷却水の流れをスムーズにするとともに油分の回収及び/又は分離をより簡便に又は効率よく行うことができる点から、一又は複数の実施形態において、流れ方向に対して斜め方向であってもよいし、横流沈殿槽の側面から伸びる2つの板状物が流れ方向に沿って閉じるように配置されたV字形であってもよいし、凹字形であってもよい。図2A及びBは、横流沈殿槽3に、仕切り堰10を配置した一例を説明するための図面であって、図2Aは上面から見た図の一例であり、図2Bは2A-2A線に沿った断面図である。図2Aにおいて、仕切り堰10は、横流沈殿槽3の側面から伸びる2つの板状物の交点(頂点)が、横流沈殿槽3の下流側に位置するようにV字形に配置されている。図2A及びBに示すように、横流沈殿槽3は、仕切り堰10に加えて、浮上分離した油分を回収するための油分回収装置11、及び凝集沈殿した懸濁物質を回収するための排泥ポンプ14が配置されていてもよい。油分回収装置11は、一又は複数の実施形態において、フロートを備え、仕切り堰10よりも上流の水面に浮かべて配置する。排泥ポンプ14は、一又は複数の実施形態において、仕切り堰10よりも上流の横流沈殿槽3の底面に配置する。 In one or more embodiments, the partition weir may be arranged perpendicular to the flow direction. In one or more embodiments, the shape of the partition weir is diagonal to the flow direction in order to make the flow of cooling water smooth and to recover and/or separate oil more easily or efficiently. It may be a V-shape in which two plate-like objects extending from the sides of the cross-flow settling tank are arranged so as to close along the flow direction, or it may be a concave shape. 2A and 2B are drawings for explaining an example of arranging the partition weir 10 in the cross-flow sedimentation tank 3. FIG. 2A is an example of a view seen from the top, and FIG. 2B is an example of a view taken along the line 2A-2A. FIG. In FIG. 2A, the partition weir 10 is arranged in a V-shape such that the intersection (apex) of two plate-like objects extending from the side surface of the cross-flow sedimentation tank 3 is located on the downstream side of the cross-flow sedimentation tank 3. As shown in FIGS. 2A and 2B, the cross-flow sedimentation tank 3 includes, in addition to the partition weir 10, an oil recovery device 11 for recovering floated and separated oil, and a sludge drain for recovering suspended solids that have coagulated and settled. A pump 14 may also be provided. In one or more embodiments, the oil recovery device 11 includes a float and is placed floating on the water surface upstream of the partition weir 10. In one or more embodiments, the sludge pump 14 is arranged at the bottom of the cross-flow settling tank 3 upstream of the partition weir 10.
 仕切り堰は、一又は複数の実施形態において、図2Aに示すとおり、横流沈殿槽の側面から伸びる2つの板状物によりV字形となるように構成されていてもよく、油分の回収及び/又は分離をより効率よく行うことができる点から、2つの板状物のなす角(θ)が、鋭角になるように配置されてもよいし、仕切り堰で堰き止められた油分の回収がより簡便になることから、鈍角になるように配置されていてもよい。なす角(θ)は、一又は複数の実施形態において、30°以上、40°以上、50°以上、60°以上、70°以上、80°以上、90°以上又は110°以上である。なす角(θ)は、一又は複数の実施形態において、170°以下、160°以下、150°以下、140°以下、130°以下又は125°以下である。 In one or more embodiments, the partition weir may be configured to have a V-shape with two plate-like members extending from the sides of the cross-flow sedimentation tank, as shown in FIG. In order to achieve more efficient separation, the angle (θ) between the two plate-like objects may be arranged to be an acute angle, and the oil contained in the partition weir can be more easily recovered. Therefore, they may be arranged at an obtuse angle. In one or more embodiments, the angle (θ) formed is 30° or more, 40° or more, 50° or more, 60° or more, 70° or more, 80° or more, 90° or more, or 110° or more. In one or more embodiments, the angle (θ) formed is 170° or less, 160° or less, 150° or less, 140° or less, 130° or less, or 125° or less.
 仕切り堰は、一又は複数の実施形態において、水面と仕切り堰の下端との距離(図2Bにおけるd1)が、0.5m以上となるように横流沈殿槽に配置されている。水面と仕切り堰の下端との距離(図2Bにおけるd1)は、一又は複数の実施形態において、1m以上、1.5m以上、又は2m以上である。水面と仕切り堰の下端との距離は、一又は複数の実施形態において、2.5m以下又は2m以下である。仕切り堰は、一又は複数の実施形態において、仕切り堰の下端と横流沈殿槽の底面との距離(仕切り堰の下端と横流沈殿槽の底面との離間部分の長さ)(図2Bにおけるd2)が、0.5m以上となるように横流沈殿槽に配置されている。仕切り堰の下端と横流沈殿槽の底面との距離(図2Bにおけるd2)は、一又は複数の実施形態において、1m以上又は2m以上である。仕切り堰の下端と横流沈殿槽の底面との距離は、一又は複数の実施形態において、3m以下又は2.5m以下である。仕切り堰は、一又は複数の実施形態において、水面と仕切り堰の下端との距離(d1)が、横流沈殿槽の深さ(水面と横流沈殿槽との距離:D)の1/2以上、2/3以上、又は3/4以上となるように配置されてもよい。 In one or more embodiments, the partition weir is arranged in the cross-flow settling tank so that the distance between the water surface and the lower end of the partition weir (d1 in FIG. 2B) is 0.5 m or more. In one or more embodiments, the distance between the water surface and the lower end of the partition weir (d1 in FIG. 2B) is 1 m or more, 1.5 m or more, or 2 m or more. In one or more embodiments, the distance between the water surface and the lower end of the partition weir is 2.5 m or less, or 2 m or less. In one or more embodiments, the partition weir is the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank (the length of the separated part between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank) (d2 in FIG. 2B) is arranged in the cross-flow sedimentation tank so that the distance is 0.5 m or more. In one or more embodiments, the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank (d2 in FIG. 2B) is 1 m or more or 2 m or more. In one or more embodiments, the distance between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank is 3 m or less or 2.5 m or less. In one or more embodiments, the partition weir has a distance (d1) between the water surface and the lower end of the partition weir that is 1/2 or more of the depth of the cross-flow sedimentation tank (distance between the water surface and the cross-flow sedimentation tank: D), They may be arranged so as to be 2/3 or more, or 3/4 or more.
 仕切り堰の上端は、一又は複数の実施形態において、浮上油分の流れを堰き止めることがき、油分が仕切り堰の上端をオーバーフローしない範囲で水面上に突出(露出)していればよい。仕切り堰の上端は、一又は複数の実施形態において、水面から10cm以上、30cm以上、又は50cm以上露出していればよい。 In one or more embodiments, the upper end of the partition weir only needs to protrude (expose) above the water surface to the extent that it can block the flow of floating oil and the oil does not overflow the upper end of the partition weir. In one or more embodiments, the upper end of the partition weir may be exposed 10 cm or more, 30 cm or more, or 50 cm or more from the water surface.
 仕切り堰の数は、特に制限されるものではなく、一又は複数の実施形態において、1個であってもよいし、横流沈殿槽の流れ方向に向かって2個又は3個以上配置されていてもよい。 The number of partition weirs is not particularly limited, and in one or more embodiments, it may be one, or two or three or more partition weirs may be arranged in the flow direction of the cross-flow sedimentation tank. Good too.
 仕切り堰の配置箇所は、特に限定されるものではなく、一又は複数の実施形態において、横流沈殿槽の下流側の端部から上流側に向かって1/2以下、1/3以下又は1/4以下の位置に配置することができる。 The location of the partition weir is not particularly limited, and in one or more embodiments, it is 1/2 or less, 1/3 or less, or 1/2 from the downstream end of the cross-flow sedimentation tank toward the upstream side. It can be placed in 4 or less positions.
 本開示の運転方法は、一又は複数の実施形態において、横流沈殿槽で沈殿した油分以外の懸濁物質(金属スケールを含むスラッジ成分)を回収することを含んでいてもよい。本開示の運転方法において、一又は複数の実施形態において、油分は浮上分離させることから、懸濁物質(スラッジ成分)は、油分の含有量が少なく、好ましくは実質的に油分を含んでいない。本開示において「実質的に油分を含んでいない」とは、懸濁物質(スラッジ成分)における油分の量が0.5mg/L未満(検出限界以下)であることをいう。本開示の運転方法における横流沈殿槽は、一又は複数の実施形態において、懸濁物質(スラッジ成分)を回収するためのポンプ(排泥ポンプ等)、及び該ポンプで回収した排泥を貯蔵又は処理するための排泥回収槽(タンク)等をさらに備えていてもよい。 In one or more embodiments, the operating method of the present disclosure may include collecting suspended substances other than oil (sludge components containing metal scale) precipitated in a cross-flow settling tank. In the operating method of the present disclosure, in one or more embodiments, the oil is floated and separated, so that the suspended matter (sludge component) has a low oil content, and preferably substantially no oil. In the present disclosure, "substantially oil-free" means that the amount of oil in the suspended matter (sludge component) is less than 0.5 mg/L (below the detection limit). In one or more embodiments, the cross-flow sedimentation tank in the operating method of the present disclosure includes a pump (such as a sludge pump) for collecting suspended solids (sludge components), and a sludge collected by the pump for storing or storing the sludge. It may further include a waste sludge collection tank (tank) for processing.
 本開示の運転方法は、横流沈殿槽で油分が除去された前記廃水を回収し、冷却して再度直接冷却水として使用することを含む。
 本開示の運転方法により処理された含油廃水(直接冷却水)は、一又は複数の実施形態において、濾過機及び冷却塔を経て、圧延工場等における直接冷却水として使用されうる。
 本開示の運転方法は、一又は複数の実施形態において、直接冷却水の処理方法ということもできる。また、本開示の運転方法は、一又は複数の実施形態において、本開示における直接冷却水系の処理設備の運転又は操業方法ということもできる。
The operating method of the present disclosure includes collecting the wastewater from which oil has been removed in a cross-flow settling tank, cooling it, and directly using it as cooling water again.
In one or more embodiments, the oil-containing wastewater (direct cooling water) treated by the operating method of the present disclosure can be used as direct cooling water in a rolling mill or the like after passing through a filter and a cooling tower.
The operating method of the present disclosure can also be referred to as a direct cooling water treatment method in one or more embodiments. Further, the operating method of the present disclosure can also be referred to as the operation or operating method of the direct cooling water system treatment facility of the present disclosure in one or more embodiments.
 [本開示の処理設備]
 本開示は、その他の態様として、油と金属スケールとを含有する直接冷却水系の処理設備に関する。本開示の処理設備は、
 スケールスルースからスケールピットに至るまでの乱流状態を形成する経路と、
 前記直接冷却水系の廃水に油分分離促進剤を添加するための油分分離促進剤供給装置と、
 スケールピットの下流側に配置され、分離した浮上油分を除去する横流沈殿槽と、を含み、
  前記横流沈殿槽は、仕切り堰を備え、
  前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で前記横流沈殿槽内に配置されおり、前記仕切り堰によって前記浮上油分の流れが堰き止められ、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間から前記油分が分離された廃水が通過可能である。本開示の処理設備によれば、本開示の直接冷却水系の運転方法を効率よく行うことができる。
[Processing equipment of the present disclosure]
In another aspect, the present disclosure relates to a direct cooling water system treatment facility containing oil and metal scale. The processing equipment of the present disclosure includes:
A path forming a turbulent flow state from the scale sluice to the scale pit,
an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system;
A cross-flow sedimentation tank that is placed downstream of the scale pit and removes separated floating oil,
The cross-flow settling tank is equipped with a partition weir,
The partition weir is disposed in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the flow of the floating oil is dammed by the partition weir, and The wastewater from which the oil has been separated can pass between the lower end of the partition weir and the bottom surface of the cross-flow settling tank. According to the processing equipment of the present disclosure, the method of operating a direct cooling water system of the present disclosure can be performed efficiently.
 本開示の処理設備における、スケールスルースからスケールピットに至るまでの乱流状態を形成する経路、横流沈殿槽及び仕切り堰等のそれに付帯する設備は、本開示の運転方法と同様である。 In the processing equipment of the present disclosure, the path for forming a turbulent flow state from the scale sluice to the scale pit, the equipment incidental thereto, such as the cross-flow sedimentation tank and the partition weir, are the same as the operating method of the present disclosure.
 [本開示の油分分離促進剤]
 本開示は、さらにその他の態様として、本開示の直接冷却水系の運転方法を実施するための油分分離促進剤であって、該油分分離促進剤は、カチオン性又は両性の有機凝結剤若しくはポリマーからなる、油分分離促進剤に関する。
 本開示の油分分離促進剤における、カチオン性又は両性の有機凝結剤若しくはポリマーは、本開示の運転方法と同様である。
[Oil separation promoter of the present disclosure]
In still another aspect, the present disclosure provides an oil separation promoter for carrying out the method of operating a direct cooling water system of the present disclosure, wherein the oil separation promoter is made from a cationic or amphoteric organic coagulant or polymer. This invention relates to an oil separation promoter.
The cationic or amphoteric organic coagulant or polymer in the oil separation promoter of the present disclosure is the same as the operating method of the present disclosure.
 本開示の特に限定されない一実施形態を、図1を参酌しながら説明する。本開示の運転方法の一実施形態は、以下の(1)~(4)を含む。
(1)スケールスルース1において、直接冷却水系廃水に両性の有機凝結剤又はポリマーを添加する。
(2)スケールピット2において、直接冷却水系廃水にカチオン性の有機凝集剤又はポリマー及び無機凝結剤を添加する。
(3)仕切り堰を備える横流沈殿槽3において、前記薬剤が添加された廃水中の油分を浮遊させ、かつそれ以外の懸濁物質(スラッジ成分)を凝集沈殿させる。
(4)油分が除去された廃水を回収し、冷却して再度直接冷却水として使用する。
 以下に、(1)~(4)の各工程について詳述する。
A non-limiting embodiment of the present disclosure will be described with reference to FIG. 1. One embodiment of the operating method of the present disclosure includes the following (1) to (4).
(1) In scale sluice 1, an amphoteric organic coagulant or polymer is added to the direct cooling water system wastewater.
(2) In the scale pit 2, a cationic organic coagulant or polymer and an inorganic coagulant are added directly to the cooling water system wastewater.
(3) In the cross-flow sedimentation tank 3 equipped with a partition weir, the oil in the wastewater to which the chemical has been added is suspended, and other suspended substances (sludge components) are coagulated and precipitated.
(4) Collect the wastewater from which oil has been removed, cool it, and use it again as direct cooling water.
Each step of (1) to (4) will be explained in detail below.
 (1)スケールスルース1において、薬剤添加装置7により直接冷却水系廃水に両性の有機凝結剤又はポリマーを添加する。
 両性の有機凝結剤又はポリマーの添加量としては、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。また、スケールスルースにおける廃水中の両性の有機凝結剤又はポリマーの濃度は、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。
(1) In the scale sluice 1, an amphoteric organic coagulant or polymer is directly added to the cooling water system wastewater using the chemical addition device 7.
In one or more embodiments, the amount of the amphoteric organic coagulant or polymer added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L. Further, in one or more embodiments, the concentration of the amphoteric organic coagulant or polymer in the wastewater in the scale sluice is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L. It is L.
 (2)スケールピット2において、薬剤添加装置(図示せず)により直接冷却水系廃水にカチオン性の有機凝集剤又はポリマー及び無機凝結剤を添加する。
 カチオン性の有機凝集剤又はポリマー及び無機凝結剤は、それぞれ別々に添加してもよいし、混合して添加してもよい。カチオン性の有機凝集剤又はポリマー及び無機凝結剤の添加位置は、スケールピットの同じ位置であってもよく、異なる位置であってもよい。
 カチオン性の有機凝集剤又はポリマーの添加量としては、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。また、スケールスルースにおける廃水中のカチオン性の有機凝集剤又はポリマーの濃度は、一又は複数の実施形態において、0.001mg/L~5mg/Lが挙げられ、好ましくは0.05mg/L~5mg/Lである。
 無機凝結剤としては、一又は複数の実施形態において、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、塩化アルミニウム、塩化第二鉄、硫酸第二鉄、及びポリ硫酸第二鉄等が挙げられる。無機凝結剤の添加量としては、一又は複数の実施形態において、0.001mg/L~20mg/Lが挙げられ、好ましくは0.1mg/L~10mg/Lである。また、スケールスルースにおける廃水中の無機凝結剤の濃度は、一又は複数の実施形態において、0.001mg/L~20mg/Lが挙げられ、好ましくは0.1mg/L~10mg/Lである。
(2) In the scale pit 2, a cationic organic coagulant or polymer and an inorganic coagulant are directly added to the cooling water system wastewater using a chemical addition device (not shown).
The cationic organic coagulant or polymer and the inorganic coagulant may be added separately, or may be added as a mixture. The cationic organic flocculant or polymer and the inorganic coagulant may be added at the same position in the scale pit or at different positions.
In one or more embodiments, the amount of the cationic organic flocculant or polymer added is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg/L. Further, in one or more embodiments, the concentration of the cationic organic flocculant or polymer in the wastewater in the scale sluice is 0.001 mg/L to 5 mg/L, preferably 0.05 mg/L to 5 mg. /L.
In one or more embodiments, the inorganic coagulant includes polyaluminum chloride (PAC), aluminum sulfate, aluminum chloride, ferric chloride, ferric sulfate, polyferric sulfate, and the like. In one or more embodiments, the amount of the inorganic coagulant added is 0.001 mg/L to 20 mg/L, preferably 0.1 mg/L to 10 mg/L. Further, in one or more embodiments, the concentration of the inorganic coagulant in the wastewater in the scale sluice is 0.001 mg/L to 20 mg/L, preferably 0.1 mg/L to 10 mg/L.
 (3)仕切り堰を備える横流沈殿槽3において、前記薬剤が添加された廃水中の油分を浮遊させ、かつそれ以外の懸濁物質(スラッジ成分)を凝集沈殿させる。
 前記薬剤が添加されかつ横流沈殿槽3に導入された廃水中の油分は、廃水から分離され、水面に浮上する。浮上した油分(浮上油分)は横流沈殿槽に設けられた仕切り堰でその流れが堰き止められる。堰き止められた油分は、例えば、スキマーや水面上に配置した油分回収装置によって、簡便に回収することができる。また、油分以外の懸濁物質(スラッジ成分)は、横流沈殿槽3において凝集沈殿し、例えば、排泥ポンプ等で回収することができる。このため、仕切り堰の下端と横流沈殿槽の底面との間から油分及びそれ以外の懸濁物質が除去された廃水を通過させることができる。
(3) In the cross-flow sedimentation tank 3 equipped with a partition weir, the oil in the wastewater to which the chemical has been added is suspended, and other suspended substances (sludge components) are coagulated and precipitated.
The oil content in the wastewater to which the drug has been added and introduced into the cross-flow sedimentation tank 3 is separated from the wastewater and floats to the water surface. The flow of the floating oil (floating oil) is dammed up by a partition weir installed in the cross-flow settling tank. The dammed oil can be easily recovered using, for example, a skimmer or an oil recovery device placed above the water surface. Further, suspended substances (sludge components) other than oil are coagulated and precipitated in the cross-flow sedimentation tank 3, and can be recovered using a sludge pump or the like, for example. Therefore, wastewater from which oil and other suspended substances have been removed can be passed between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank.
 (4)油分が除去された廃水を回収し、冷却して再度直接冷却水として使用する。 (4) Collect wastewater from which oil has been removed, cool it, and use it directly as cooling water again.
 上記実施形態では、両性の有機凝結剤又はポリマーをスケールスルース1で添加し、カチオン性の有機凝結剤又はポリマー及び無機凝結剤をスケールピット2で添加した形態を例にとり説明したが、本開示の運転方法において使用する薬剤の種類及び添加位置はこれに限定して解釈されるものではない。 In the above embodiment, an amphoteric organic coagulant or polymer is added in the scale sluice 1, and a cationic organic coagulant or polymer and an inorganic coagulant are added in the scale pit 2. The types of chemicals used in the operating method and the positions at which they are added are not limited to these.
 本開示はさらに以下の一又は複数の実施形態に関する。
[1] 油と金属スケールとを含有する直接冷却水系の運転方法であって、
 スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該直接冷却水系の廃水に油分分離促進剤を存在させること、
 分離した浮上油分をスケールピットの下流側の横流沈殿槽で除去すること、及び
 前記横流沈殿槽で油分が除去された前記廃水を回収し、冷却して再度直接冷却水として使用することを含み、
 前記横流沈殿槽は、仕切り堰を備え、前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で前記横流沈殿槽内に配置され、前記仕切り堰によって前記浮上油分の流れを堰き止め、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水を通過させる、
 直接冷却水系の運転方法。
[2] 前記仕切り堰は、前記横流沈殿槽の流れ方向に対して斜め又はV字形となるように配置されている、[1]に記載の方法。
[3] 油分分離促進剤が、カチオン性又は両性の有機凝結剤若しくはポリマーである、[1]又は[2]に記載の方法。
[4] カチオン性の有機凝結剤又はポリマーが、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、ポリジメチルアミノエチルメタクリレート、及びポリジアリルジメチルアンモニウムクロライドから選ばれた一種以上の有機凝結剤又はポリマーである、[3]に記載の方法。
[5] カチオン性の有機凝集剤又はポリマーの添加量は、0.001mg/L~5mg/L又は0.05mg/L~5mg/Lである、[3]又は[4]に記載の直接冷却水系の運転方法。
[6] 両性の有機凝結剤又はポリマーが、トリアルキルアミンとアクリル酸の共重合物及びジアリルジメチルアンモニウムクロライドとアクリル酸の共重合物から選ばれた一種以上の有機凝結剤又はポリマーである、[3]から[5]のいずれかに記載の方法。
[7] 両性の有機凝結剤又はポリマーの添加量は、0.001mg/L~5mg/L又は0.05mg/L~5mg/Lである、[3]から[6]のいずれかに記載の方法。
[8] スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該直接冷却水系の廃水に無機凝結剤を存在させることを含む、[1]から[7]のいずれかに記載の方法。
[9] 無機凝結剤が、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、塩化アルミニウム、塩化第二鉄、硫酸第二鉄、及びポリ硫酸第二鉄からなる群から選択される、[8]に記載の方法。
[10] 無機凝結剤の添加量は、0.001mg/L~20mg/L、0.01mg/L~20mg/L、0.1mg/L~20mg/L、0.001mg/L~10mg/L又は0.1mg/L~10mg/Lである、[8]又は[9]に記載の方法。
[11] スケールスルースに両性の有機凝結剤又はポリマーを添加することを含む、[1]から[10]のいずれかに記載の方法。
[12] スケールスルースにおける廃水中の両性の有機凝結剤又はポリマーの濃度が、0.001mg/L~5mg/L又は0.05mg/L~5mg/Lとなるように、スケールスルースの廃水に両性の有機凝結剤又はポリマーを添加することを含む、[1]から[11]のいずれかに記載の方法。
[13] スケールピットにカチオン性の有機凝結剤又はポリマーと無機凝集剤とを添加することを含む、[1]から[12]のいずれかに記載の方法。
[14] スケールピットにおける廃水中のカチオン性の有機凝結剤又はポリマーの濃度が、0.001mg/L~5mg/L又は0.05mg/L~5mg/Lとなるように、スケールピットの廃水にカチオン性の有機凝結剤又はポリマーを添加することを含む、[1]から[13]のいずれかに記載の方法。
[15] スケールピットにおける廃水中の無機凝集剤の濃度が、0.001mg/L~20mg/L、0.01mg/L~20mg/L、0.1mg/L~20mg/L、0.001mg/L~10mg/L又は0.1mg/L~10mg/Lとなるように、スケールピットの廃水に無機凝集剤を添加することを含む、[1]から[14]のいずれかに記載の方法。
[16] 油と金属スケールとを含有する直接冷却水系の処理設備であって、
 スケールスルースからスケールピットに至るまでの乱流状態を形成する経路と、
 前記直接冷却水系の廃水に油分分離促進剤を添加するための油分分離促進剤供給装置と、
 スケールピットの下流側に配置され、分離した浮上油分を除去する横流沈殿槽と、を含み、
  前記横流沈殿槽は、仕切り堰を備え、
  前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で、前記仕切り堰によって前記浮上油分の流れが堰き止められ、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水が通過可能であるように前記横流沈殿槽内に配置されている、直接冷却水系の処理設備。
[17] [1]~[15]のいずれかに記載の直接冷却水系の運転方法を実施するための油分分離促進剤であって、
 該油分分離促進剤は、カチオン性又は両性の有機凝結剤若しくはポリマーからなる、油分分離促進剤。
[18] カチオン性の有機凝結剤又はポリマーが、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、ポリジメチルアミノエチルメタクリレート、及びポリジアリルジメチルアンモニウムクロライドから選ばれた一種以上の有機凝結剤又はポリマーである、[17]に記載の油分分離促進剤。
[19] 両性の有機凝結剤又はポリマーが、トリアルキルアミンとアクリル酸の共重合物及びジアリルジメチルアンモニウムクロライドとアクリル酸の共重合物から選ばれた一種以上の有機凝結剤又はポリマーである、[17]又は[18]に記載の油分分離促進剤。
The present disclosure further relates to one or more embodiments below.
[1] A method for operating a direct cooling water system containing oil and metal scale, comprising:
Presence of an oil separation promoter in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit;
Removing the separated floating oil in a cross-flow sedimentation tank downstream of the scale pit, and collecting the wastewater from which the oil has been removed in the cross-flow sedimentation tank, cooling it and directly using it as cooling water,
The cross-flow sedimentation tank includes a partition weir, and the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the partition weir allows the damming the flow of floating oil, and allowing the wastewater from which the oil has been separated to pass through a spaced apart portion between the lower end of the partition weir and the bottom of the cross-flow settling tank;
How to operate a direct cooling water system.
[2] The method according to [1], wherein the partition weir is arranged obliquely or in a V-shape with respect to the flow direction of the cross-flow settling tank.
[3] The method according to [1] or [2], wherein the oil separation promoter is a cationic or amphoteric organic coagulant or polymer.
[4] The cationic organic coagulant or polymer may be alkylamine/epichlorohydrin condensate, polyethyleneimine, alkylene dichloride/polyalkylenepolyamine condensate, dicyandichloride/polyalkylenepolyamine condensate, polydimethylaminoethyl methacrylate, or The method according to [3], which is one or more organic coagulants or polymers selected from diallyldimethylammonium chloride.
[5] Direct cooling according to [3] or [4], wherein the amount of the cationic organic flocculant or polymer added is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L. How to operate a water system.
[6] The amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid. 3] to [5].
[7] The amount of the amphoteric organic coagulant or polymer added is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L, according to any one of [3] to [6]. Method.
[8] The method according to any one of [1] to [7], which comprises causing an inorganic coagulant to be present in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit. .
[9] The inorganic coagulant is selected from the group consisting of polyaluminum chloride (PAC), aluminum sulfate, aluminum chloride, ferric chloride, ferric sulfate, and polyferric sulfate, according to [8]. the method of.
[10] The amount of inorganic coagulant added is 0.001 mg/L to 20 mg/L, 0.01 mg/L to 20 mg/L, 0.1 mg/L to 20 mg/L, 0.001 mg/L to 10 mg/L. or 0.1 mg/L to 10 mg/L, the method according to [8] or [9].
[11] The method according to any one of [1] to [10], which comprises adding an amphoteric organic coagulant or polymer to the scale sluice.
[12] Adding amphoteric organic coagulants or polymers to the wastewater of the scale sluice such that the concentration of the amphoteric organic coagulant or polymer in the wastewater of the scale sluice is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L. The method according to any one of [1] to [11], which comprises adding an organic coagulant or polymer.
[13] The method according to any one of [1] to [12], which includes adding a cationic organic coagulant or polymer and an inorganic coagulant to the scale pit.
[14] Add to the wastewater of the scale pit so that the concentration of the cationic organic coagulant or polymer in the wastewater of the scale pit is 0.001 mg/L to 5 mg/L or 0.05 mg/L to 5 mg/L. The method according to any one of [1] to [13], which comprises adding a cationic organic coagulant or polymer.
[15] The concentration of the inorganic flocculant in the wastewater in the scale pit is 0.001 mg/L to 20 mg/L, 0.01 mg/L to 20 mg/L, 0.1 mg/L to 20 mg/L, 0.001 mg/L. The method according to any one of [1] to [14], which comprises adding an inorganic flocculant to the wastewater of the scale pit so that the concentration is L ~ 10 mg/L or 0.1 mg/L ~ 10 mg/L.
[16] Direct cooling water system treatment equipment containing oil and metal scale,
A path forming a turbulent flow state from the scale sluice to the scale pit,
an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system;
A cross-flow sedimentation tank that is placed downstream of the scale pit and removes separated floating oil,
The cross-flow settling tank is equipped with a partition weir,
The partition weir has an upper end protruding from the water surface and a lower end separated from the bottom surface of the cross-flow sedimentation tank, so that the flow of the floating oil is dammed by the partition weir, and the lower end of the partition weir and the cross-flow sedimentation tank are separated from each other. A direct cooling water system treatment facility disposed within the cross-flow sedimentation tank so that the wastewater from which the oil content has been separated can pass through a space between the tank and the bottom surface of the tank.
[17] An oil separation promoter for carrying out the method of operating a direct cooling water system according to any one of [1] to [15],
The oil separation promoter is made of a cationic or amphoteric organic coagulant or polymer.
[18] The cationic organic coagulant or polymer may be alkylamine/epichlorohydrin condensate, polyethyleneimine, alkylene dichloride/polyalkylenepolyamine condensate, dicyandichloride/polyalkylenepolyamine condensate, polydimethylaminoethyl methacrylate, or The oil separation promoter according to [17], which is one or more organic coagulants or polymers selected from diallyldimethylammonium chloride.
[19] The amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid, [ 17] or the oil separation promoter according to [18].
 以下、実施例を用いて本開示をさらに説明する。ただし、本開示は以下の実施例に限定して解釈されない。 Hereinafter, the present disclosure will be further explained using Examples. However, this disclosure is not to be construed as being limited to the following examples.
 図1及び2に示すような、連続鋳造工程の直接冷却水循環系(循環水量:1400m3/h)において、スラッジ成分を除去する処理を行った。図1に示す直接冷却水循環系は、スケールスルース1、スケールピット2、横流沈殿槽3、濾過機4及び冷却塔5を備える。圧延工程で鋼材の冷却に使用された冷却水は、鋼材圧延ラインの下に設けられたスケールスルース1から、配管(トラフ、樋)6を通じてスケールピット2に導入される。スケールスルース1は、薬剤添加装置7を備える。横流沈殿槽3は、仕切り堰10、油分回収装置11、油分回収槽(タンク)8、排泥ポンプ14及び排泥回収槽(タンク)9を備え、油分回収装置11で回収された油分は油分回収槽(タンク)8に貯蔵され、排泥ポンプ14で回収された懸濁物質(スラッジ成分)は排泥回収槽(タンク)9に回収される。 A treatment for removing sludge components was performed in a direct cooling water circulation system (circulated water amount: 1400 m 3 /h) of a continuous casting process as shown in FIGS. 1 and 2. The direct cooling water circulation system shown in FIG. 1 includes a scale sluice 1, a scale pit 2, a cross-flow sedimentation tank 3, a filter 4, and a cooling tower 5. Cooling water used for cooling the steel material in the rolling process is introduced into the scale pit 2 through a pipe (trough, gutter) 6 from a scale sluice 1 provided below the steel material rolling line. The scale sluice 1 includes a drug addition device 7. The cross-flow settling tank 3 includes a partition weir 10, an oil recovery device 11, an oil recovery tank (tank) 8, a sludge pump 14, and a sludge recovery tank (tank) 9, and the oil recovered by the oil recovery device 11 is an oil component. Suspended substances (sludge components) stored in a recovery tank (tank) 8 and recovered by a sludge pump 14 are collected in a sludge recovery tank (tank) 9.
 スラッジ成分を除去する処理は、以下の手順で2ヶ月間実施した。
 スケールスルース1
  ・添加する油分分離促進剤:ジアリルジメチルアンモニウムクロライドとアクリル酸との共重合体(重量平均分子量:約400,000、ナルコカンパニー社製)
  ・添加量:循環水に対して0.5mg/L
 スケールピット2
  ・添加する薬剤:PAC(ポリ塩化アルミニウム)6mg/L
          カチオン系有機凝集剤((株)片山化学工業研究所製、商品名「フロクラン(登録商標)SC-640」)1mg/L
 上記のとおりスケールスルース1において、油分分離前の循環水に油分分離促進剤を添加し、スケールピット2において上記のPACとカチオン系有機凝集剤とを添加し、横流沈殿槽3において油分を浮遊させ、かつそれ以外の懸濁物質(スラッジ成分)を凝集沈殿させた。
 スケールピット2の下流側の横流沈殿槽3にV字型の仕切り堰(水面と下端との距離(d2):1m、水面と上端との距離:30cm、θ:120°)を、横流沈殿槽3の端部から上流側に向かって排泥ポンプ14後方1mの位置に配置し、仕切り堰の下端と前記横流沈殿槽3の底面との間から前記油分が分離された冷却水を通過させた。
 仕切り堰の上流側の水面付近と仕切り堰の下流側の水面付近から試験水を採取し、試験水の含有する油分をJIS K 0102に基づきN-ヘキサン抽出物質測定法によって測定した。
 仕切り堰10の上流側の水面付近(図2Aの▽12)から採取した試験水の油分は、最高値52mg/L、最低値15mg/L、平均値35mg/Lで推移したのに対して、仕切り堰10の下流側の水面付近(図2Aの▽13)から採取した試験水の油分は、最高値3.5mg/L、最低値0.5mg/L未満、平均値0.7mg/Lで推移した。
 また、横流沈殿槽3で凝集沈殿されたスラッジの油分は不検出(0.5mg/L未満)であった。
 これらの結果から明らかなように、本開示の運転方法を実施することにより、油と酸化鉄及び鉄等の金属スケールとを含有する直接冷却水から油分を効率よく分離でき、処理された処理水はそのまま冷却して直接冷却水として使用することができ、かつ、発生したスラッジに含まれる油分の量を抑制できるという効果を奏し得る。
The treatment for removing sludge components was carried out for two months using the following procedure.
scale sleuth 1
・Oil separation promoter to be added: Copolymer of diallyldimethylammonium chloride and acrylic acid (weight average molecular weight: approximately 400,000, manufactured by Nalco Company)
・Amount added: 0.5mg/L to circulating water
scale pit 2
・Drug added: PAC (polyaluminum chloride) 6mg/L
Cationic organic flocculant (manufactured by Katayama Chemical Industry Research Institute Co., Ltd., trade name "Floclan (registered trademark) SC-640") 1 mg/L
As mentioned above, in the scale sluice 1, an oil separation promoter is added to the circulating water before oil separation, in the scale pit 2, the above-mentioned PAC and cationic organic flocculant are added, and in the cross-flow settling tank 3, the oil is suspended. , and other suspended substances (sludge components) were coagulated and precipitated.
A V-shaped partition weir (distance between the water surface and the bottom end (d2): 1 m, distance between the water surface and the top end: 30 cm, θ: 120°) is installed in the cross-flow sedimentation tank 3 on the downstream side of the scale pit 2, and the cross-flow sedimentation tank The cooling water from which the oil has been separated is passed between the lower end of the partition weir and the bottom of the cross-flow sedimentation tank 3. .
Test water was collected from near the water surface on the upstream side of the partition weir and near the water surface on the downstream side of the partition weir, and the oil content contained in the test water was measured by the N-hexane extractable substance measurement method based on JIS K 0102.
The oil content of the test water collected from near the water surface on the upstream side of the partition weir 10 (▽12 in Figure 2A) remained at a maximum value of 52 mg/L, a minimum value of 15 mg/L, and an average value of 35 mg/L. The oil content of the test water collected from near the water surface on the downstream side of the partition weir 10 (▽13 in Figure 2A) had a maximum value of 3.5 mg/L, a minimum value of less than 0.5 mg/L, and an average value of 0.7 mg/L. It has changed.
Moreover, the oil content of the sludge coagulated and precipitated in the cross-flow settling tank 3 was not detected (less than 0.5 mg/L).
As is clear from these results, by implementing the operating method of the present disclosure, oil can be efficiently separated from direct cooling water containing oil and iron oxide and metal scale such as iron, and the treated treated water can be effectively separated. The sludge can be cooled as it is and used directly as cooling water, and has the effect of suppressing the amount of oil contained in the generated sludge.

Claims (9)

  1.  油と金属スケールとを含有する直接冷却水系の運転方法であって、
     スケールスルースからスケールピットに至るまでの乱流状態の経路において、当該直接冷却水系の廃水に油分分離促進剤を存在させること、
     分離した浮上油分をスケールピットの下流側の横流沈殿槽で除去すること、及び
     前記横流沈殿槽で油分が除去された前記廃水を回収し、回収した当該廃水を冷却して再度直接冷却水として使用することを含み、
     前記横流沈殿槽は、仕切り堰を備え、前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で前記横流沈殿槽内に配置され、前記仕切り堰によって前記浮上油分の流れを堰き止め、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水を通過させる、
     直接冷却水系の運転方法。
    A method of operating a direct cooling water system containing oil and metal scale, the method comprising:
    Presence of an oil separation promoter in the wastewater of the direct cooling water system in the turbulent flow path from the scale sluice to the scale pit;
    Removing the separated floating oil in a cross-flow settling tank downstream of the scale pit, collecting the wastewater from which the oil has been removed in the cross-flow settling tank, cooling the collected wastewater, and directly using it as cooling water again. including doing;
    The cross-flow sedimentation tank includes a partition weir, and the partition weir is arranged in the cross-flow sedimentation tank with an upper end protruding from the water surface and a lower end spaced apart from the bottom surface of the cross-flow sedimentation tank, and the partition weir allows the damming the flow of floating oil, and allowing the wastewater from which the oil has been separated to pass through a spaced apart portion between the lower end of the partition weir and the bottom of the cross-flow settling tank;
    How to operate a direct cooling water system.
  2.  前記仕切り堰は、前記横流沈殿槽の流れ方向に対して斜め又はV字形となるように配置されている、請求項1に記載の方法。 The method according to claim 1, wherein the partition weir is arranged obliquely or in a V-shape with respect to the flow direction of the cross-flow settling tank.
  3.  前記油分分離促進剤が、カチオン性又は両性の有機凝結剤若しくはポリマーである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the oil separation promoter is a cationic or amphoteric organic coagulant or polymer.
  4.  前記カチオン性の有機凝結剤又はポリマーが、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、ポリジメチルアミノエチルメタクリレート、及びポリジアリルジメチルアンモニウムクロライドからなる群から選ばれた一種以上の有機凝結剤又はポリマーである、請求項3に記載の方法。 The cationic organic coagulant or polymer is an alkylamine/epichlorohydrin condensate, polyethyleneimine, an alkylene dichloride/polyalkylene polyamine condensate, a dicyandichloride/polyalkylene polyamine condensate, polydimethylaminoethyl methacrylate, and polydiallyldimethyl. 4. The method of claim 3, wherein the organic coagulant or polymer is selected from the group consisting of ammonium chloride.
  5.  前記両性の有機凝結剤又はポリマーが、トリアルキルアミンとアクリル酸の共重合物及びジアリルジメチルアンモニウムクロライドとアクリル酸の共重合物からなる群から選ばれた一種以上の有機凝結剤又はポリマーである、請求項3に記載の方法。 The amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from the group consisting of a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid. The method according to claim 3.
  6.  油と金属スケールとを含有する直接冷却水系の処理設備であって、
     スケールスルースからスケールピットに至るまでの乱流状態を形成する経路と、
     前記直接冷却水系の廃水に油分分離促進剤を添加するための油分分離促進剤供給装置と、
     スケールピットの下流側に配置され、分離した浮上油分を除去する横流沈殿槽と、を含み、
      前記横流沈殿槽は、仕切り堰を備え、
      前記仕切り堰は、上端が水面から突出し、かつ下端が前記横流沈殿槽の底面と離間した状態で、前記仕切り堰によって前記浮上油分の流れが堰き止められ、かつ前記仕切り堰の下端と前記横流沈殿槽の底面との間の離間部分から前記油分が分離された廃水が通過可能であるように前記横流沈殿槽内に配置されている、直接冷却水系の処理設備。
    A direct cooling water system treatment facility containing oil and metal scale,
    A path forming a turbulent flow state from the scale sluice to the scale pit,
    an oil separation promoter supply device for adding an oil separation promoter to the wastewater of the direct cooling water system;
    A cross-flow sedimentation tank that is placed downstream of the scale pit and removes separated floating oil,
    The cross-flow settling tank is equipped with a partition weir,
    The partition weir has an upper end protruding from the water surface and a lower end separated from the bottom surface of the cross-flow sedimentation tank, so that the flow of the floating oil is dammed by the partition weir, and the lower end of the partition weir and the cross-flow sedimentation tank are separated from each other. A direct cooling water system treatment facility disposed within the cross-flow sedimentation tank so that the wastewater from which the oil content has been separated can pass through a space between the tank and the bottom surface of the tank.
  7.  請求項1~5のいずれかに記載の直接冷却水系の運転方法を実施するための油分分離促進剤であって、
     該油分分離促進剤は、カチオン性又は両性の有機凝結剤若しくはポリマーからなる、油分分離促進剤。
    An oil separation promoter for carrying out the method for operating a direct cooling water system according to any one of claims 1 to 5, comprising:
    The oil separation promoter is made of a cationic or amphoteric organic coagulant or polymer.
  8.  前記カチオン性の有機凝結剤又はポリマーが、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、ポリジメチルアミノエチルメタクリレート、及びポリジアリルジメチルアンモニウムクロライドからなる群から選ばれた一種以上の有機凝結剤又はポリマーである、請求項7に記載の油分分離促進剤。 The cationic organic coagulant or polymer is an alkylamine/epichlorohydrin condensate, polyethyleneimine, an alkylene dichloride/polyalkylene polyamine condensate, a dicyandichloride/polyalkylene polyamine condensate, polydimethylaminoethyl methacrylate, and polydiallyldimethyl. The oil separation promoter according to claim 7, which is one or more organic coagulants or polymers selected from the group consisting of ammonium chloride.
  9.  前記両性の有機凝結剤又はポリマーが、トリアルキルアミンとアクリル酸の共重合物及びジアリルジメチルアンモニウムクロライドとアクリル酸の共重合物からなる群から選ばれた一種以上の有機凝結剤又はポリマーである、請求項7に記載の油分分離促進剤。 The amphoteric organic coagulant or polymer is one or more organic coagulants or polymers selected from the group consisting of a copolymer of trialkylamine and acrylic acid and a copolymer of diallyldimethylammonium chloride and acrylic acid. The oil separation promoter according to claim 7.
PCT/JP2023/022419 2022-06-17 2023-06-16 Method for operating direct cooling water system, oil content separation promoter, and treatment facility for direct cooling water system WO2023243715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022098228A JP2023184205A (en) 2022-06-17 2022-06-17 Direct cooling water system operation method and oil separation accelerator, as well as direct cooling water system treatment facilities
JP2022-098228 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243715A1 true WO2023243715A1 (en) 2023-12-21

Family

ID=89191424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022419 WO2023243715A1 (en) 2022-06-17 2023-06-16 Method for operating direct cooling water system, oil content separation promoter, and treatment facility for direct cooling water system

Country Status (2)

Country Link
JP (1) JP2023184205A (en)
WO (1) WO2023243715A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314142A (en) * 1996-05-23 1997-12-09 Akira Yasuda Oil separator in pretreatment degreasing process of plating
JP2001252503A (en) * 2000-03-13 2001-09-18 Takehisa Osugi Oil-water separator
JP3195236U (en) * 2014-10-24 2015-01-08 日産工機株式会社 Floating oil recovery device
JP2015016471A (en) * 2012-04-27 2015-01-29 眞一 渡部 Pneumatic circuit
WO2022018905A1 (en) * 2020-07-21 2022-01-27 栗田工業株式会社 Device and method for treating wet paint booth circulating water
JP2022053344A (en) * 2020-09-24 2022-04-05 株式会社片山化学工業研究所 Waste water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314142A (en) * 1996-05-23 1997-12-09 Akira Yasuda Oil separator in pretreatment degreasing process of plating
JP2001252503A (en) * 2000-03-13 2001-09-18 Takehisa Osugi Oil-water separator
JP2015016471A (en) * 2012-04-27 2015-01-29 眞一 渡部 Pneumatic circuit
JP3195236U (en) * 2014-10-24 2015-01-08 日産工機株式会社 Floating oil recovery device
WO2022018905A1 (en) * 2020-07-21 2022-01-27 栗田工業株式会社 Device and method for treating wet paint booth circulating water
JP2022053344A (en) * 2020-09-24 2022-04-05 株式会社片山化学工業研究所 Waste water treatment method

Also Published As

Publication number Publication date
JP2023184205A (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP6374157B2 (en) Method for removing suspended solids from wastewater
US20050194323A1 (en) System and method for recovering oil from a waste stream
JP2024028377A (en) Waste water treatment method
CN105923830B (en) A kind of preprocess method of coal chemical industrial waste water two-stage enhanced coagulation oil removing
JP6374351B2 (en) Method for removing suspended matter in water
WO2023243715A1 (en) Method for operating direct cooling water system, oil content separation promoter, and treatment facility for direct cooling water system
AU2016314059B2 (en) A method for separating mill scale from wastewater
WO2019077835A1 (en) Flocculation device and flocculation treatment method
JP7290582B2 (en) Water treatment plant with integrated ballasting flocculation and settling and corresponding methods
CN209338280U (en) A kind of steel mill's turbid circulating water processing unit
JP2015231597A (en) Iron and steel waste water treatment method
CN105431384B (en) Sewage disposal device
CN110759577A (en) Hot rolling turbid circulating water treatment and recycling process
JP2546680Y2 (en) Sedimentation equipment
CN110921910A (en) Turbid circulating water treatment device for steel mill
JP7468849B2 (en) Wastewater Treatment Methods
JP3176638U (en) Radioactive wastewater treatment equipment
JP7119658B2 (en) Method for treating organic matter-containing water
CN109179611B (en) Suspension rapid precipitation method and system for abrasive mixed jet descaling
TWI652231B (en) Polymer agglutinating agent and method for removing suspended matter in water using same
CA2459872C (en) Oil/water separation system
JPS6330483Y2 (en)
Ma Recycling Steel Manufacturing Wastewater Treatment Solid Wastes via In-process Separation with Dynamic Separators
CN117509987A (en) Waste gas spraying and wastewater treatment method for setting machine
JPH0290992A (en) Treatment method for cleaning drain of steel material and its device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824005

Country of ref document: EP

Kind code of ref document: A1