WO2023243709A1 - Living cell freezing method and living cell freezing system - Google Patents

Living cell freezing method and living cell freezing system Download PDF

Info

Publication number
WO2023243709A1
WO2023243709A1 PCT/JP2023/022393 JP2023022393W WO2023243709A1 WO 2023243709 A1 WO2023243709 A1 WO 2023243709A1 JP 2023022393 W JP2023022393 W JP 2023022393W WO 2023243709 A1 WO2023243709 A1 WO 2023243709A1
Authority
WO
WIPO (PCT)
Prior art keywords
freezing
sample
cells
frozen
cell
Prior art date
Application number
PCT/JP2023/022393
Other languages
French (fr)
Japanese (ja)
Inventor
憲三 馬場
有弘 小原
みどり 小澤
靖之 森島
裕子 原
弘晃 角川
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
株式会社サンテツ技研
株式会社LINKSu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, 株式会社サンテツ技研, 株式会社LINKSu filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Publication of WO2023243709A1 publication Critical patent/WO2023243709A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects

Definitions

  • the present disclosure relates to a technique for freezing living cells while preserving their biological abilities.
  • three-dimensional cell aggregates such as spheroids can provide conditions closer to in-vivo cells than single cells or two-dimensional cultured cells, and are therefore highly useful in medicine, drug discovery, etc. It is difficult to freeze cells that have the ability to form cells while preserving that ability. That is, in many cases, cells that have undergone freezing and thawing significantly lose their ability to form spheroids.
  • the slow freezing method is a method in which an unfrozen frozen solution containing living cells is gradually frozen at a cooling rate of approximately -1°C to -2°C/min. According to this method, although ice crystals can be formed, ice crystal formation occurs in a manner that causes less damage to the cells than when simply freezing without controlling the cooling rate, so cell viability is relatively maintained. be able to.
  • the concentration of cryoprotectant (and potentially associated toxicity) in the freezing solution used in slow freezing methods can be kept relatively low.
  • Slow freezing is widely used for cryopreservation of common cultured cell lines including iPS cells.
  • the slow freezing method has a relatively simple procedure and is suitable for freezing a large number of samples in large quantities, and it is also possible to transport the frozen samples in dry ice.
  • Slow freezing is most preferably carried out using a programmed freezer.
  • a program freezer also called a controlled rate freezer, is a freezer that can execute a user-specified cooling rate and cooling temperature profile under computer control. While program freezers are expensive, simple slow-freezing containers that can approximate a cooling rate of approximately -1°C/min at a much lower cost are also available and are in fact widely used. Examples of simple slow freezing containers include Nippon Freezer Co., Ltd.'s BiCellTM, Corning International Co., Ltd.'s CoolCellTM, and Thermo Fisher Scientific's Mr. FrostyTM.
  • Patent Document 5 discloses a supercooling process in which an electric field and/or a magnetic field is applied to an object to be frozen while cooling the object, and a freezing process in which application of the electric field and/or magnetic field is stopped after the supercooling process is completed. This describes a freezing method characterized by repeating the steps.
  • Patent Document 6 discloses a cooling method in which an alternating electric field is formed in the refrigerator to cool an object placed in the refrigerator, and the alternating electric field suppresses the coarsening of ice crystals in the object during cooling. describes a cooling method for refrigerators and freezers in which the frequency of AC voltage is 500 hertz or higher.
  • Patent Document 7 states, ⁇ Techniques for suppressing quality deterioration (e.g., drips due to oxidation and tissue destruction) during thawing of frozen foods are known. The effectiveness of applying the above voltage to To provide a method for freezing and preserving frozen products in which quality deterioration of the frozen products contained therein can be more appropriately suppressed than in the past.” Under this introduction, Patent Document 7 discloses that frozen products are stored frozen at a freezing temperature for a predetermined storage period or longer while applying an alternating current voltage so that a "weak current" (1 ⁇ A to 1000 mA) flows through the frozen products. is listed.
  • the present inventors have demonstrated that when unfrozen living cells immersed in a freezing solution containing a cryoprotectant are placed in a freezing chamber that generates an electric field and frozen while an alternating current (AC) is applied, the cells It has been found that the loss of inherent biological properties (expressed by viability, proliferation ability, ability to form three-dimensional cell aggregates, etc.) can be significantly suppressed.
  • Storing the frozen sample at a temperature below -80°C includes transferring the frozen sample into a tank containing liquid nitrogen, and storing the frozen sample in the tank containing liquid nitrogen.
  • a method for forming spheroids the method comprising freezing living cells having spheroid-forming ability by the method according to any one of [1] to [8], and thawing the frozen living cells. and culturing the thawed living cells to form spheroids.
  • a live cell freezing system for freezing an unfrozen cell sample containing living cells while keeping the living cells alive, the system comprising: comprising a transformer, a freezing chamber, an electrode electrically connected to the transformer and installed in the freezing chamber, and the cell sample placed in the freezing chamber,
  • the cell sample includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution, the freezing chamber has a temperature lower than the freezing temperature of the freezing solution;
  • An electric field is generated in the freezing chamber from the electrode by an alternating voltage applied by the transformer, and a conduction current flows through the cell sample;
  • the frequency of the alternating current voltage is 10 to 200 Hz
  • the transformer is configured to continuously generate the electric field without interruption while the cell sample changes from an unfrozen state to a frozen state.
  • FIG. 6 shows a comparison of cell numbers when various types of cells are grown after freezing and thawing.
  • (a) and (b) are floating cells, and (c) and (d) are adherent cells.
  • (A) to (F) show different freezing conditions (the same applies to Figures 7 and 8).
  • FIG. 7 shows the results of the experiment of FIG. 6 by changing the freezing solution to a DMSO-free composition.
  • (a) and (b) use a cryoprotectant based on propylene glycol, and
  • (c) and (d) use a cryoprotectant based on poly-L-lysine.
  • FIG. 8(a) shows anti- ⁇ III tubulin staining (top) and diamidino-2-phenylindole (DAPI) staining (bottom) of nervous system spheroids cultured for 3 days after freezing and thawing.
  • (b) and (c) show the results of quantifying neurite outgrowth in spheroids derived from 1231A3 cells and 201B7-Ff cells, respectively.
  • the present disclosure provides a method for freezing an unfrozen sample containing living cells while keeping the living cells alive.
  • the method consists of placing an unfrozen sample containing a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution in an electric field generated by an electrode to which an alternating current (AC) voltage is applied. It involves freezing an unfrozen sample, that is, bringing it to a frozen state, by cooling while applying a conduction current.
  • AC alternating current
  • freezing solution refers to a solution for freezing cells by immersing them in the solution, and the term itself does not indicate whether the solution is frozen, unfrozen, or frozen. It does not indicate that it is in the process of being done. It will be appreciated by those skilled in the art that a typical freezing solution is an aqueous liquid, and usually at least half of the weight of the freezing solution will be comprised of water.
  • the freezing solution of this embodiment includes a cryoprotectant. Cryoprotectants are well known to those skilled in the art of live cell freezing, and a wide variety of types exist. Cryoprotectant types and concentrations used in conventional slow freezing methods can be used in this embodiment.
  • cryoprotectants when dissolved in water, provide the ability to suppress cell damage associated with ice crystal formation.
  • cryoprotectants in this embodiment include dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, or a combination of any of these. These are all water-soluble molecules that inhibit the damage associated with ice crystal formation by a common mechanism: they penetrate cells and displace intracellular water molecules.
  • Dimethyl sulfoxide (DMSO) is the most widely used cryoprotectant and may be particularly preferably used in this embodiment.
  • Another example of a cryoprotectant preferred in this embodiment is polyampholytes (see Communications Materials (2021) 2:15).
  • the polyampholyte may be, for example, carboxylated poly-L-lysine, which, as known to those skilled in the art, is ⁇ -poly-L-lysine in which some of the amino groups are carboxylated.
  • Amphoteric polymer electrolysis differs from the above-mentioned DMSO and the like in that it does not penetrate into cells, but it can also be used in this embodiment, and it can also be used in combination with the other cryoprotectants mentioned above.
  • the concentration of dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is, for example, 5-30% (w/v); It can be 7-25%, 8-20%, or 9-15%.
  • % (w/v) represents a weight/volume concentration and is a percentage indicating how many grams of the target component are dissolved per 100 mL of aqueous solution.
  • the freezing solution contains 8-20% or 9-15% (w/v) dimethyl sulfoxide and may contain no other cryoprotectants.
  • the freezing solution may contain other cryoprotectants and components selected from other cryoprotectants.
  • ingredients include sugars (e.g. glucose, trehalose, etc.), proteins (e.g. serum albumin such as bovine serum albumin or human serum albumin), polymers (e.g. cellulose derivatives, hydroxyethyl starch, dextrans, polyethylene glycols, -L-lysine, etc.), buffers (eg, HEPES, phosphates, carbonates, etc.), serum, and components of cell culture media.
  • sugars e.g. glucose, trehalose, etc.
  • proteins e.g. serum albumin such as bovine serum albumin or human serum albumin
  • polymers e.g. cellulose derivatives, hydroxyethyl starch, dextrans, polyethylene glycols, -L-lysine, etc.
  • buffers eg, HEPES, phosphates, carbonates, etc.
  • serum and components of cell culture media.
  • Immersion of cells can be accomplished by suspending, dispersing, or otherwise encapsulating cells or groups of cells in a solution.
  • a living cell may be a eukaryotic cell or a prokaryotic cell, and a eukaryotic cell may be, for example, an animal cell or a plant cell.
  • the living cells are preferably animal cells, and may for example be insect cells, avian cells, fish cells or mammalian cells.
  • Mammalian cells can be, for example, rodent cells (eg, mouse, rat, or hamster), artiodactyl cells (eg, bovine, porcine, ovine, goat, etc.), or primate cells (eg, monkey or human).
  • Living cells can be, for example, stem cells, immortalized cells, or cancer cells.
  • the living cells are induced pluripotent stem (iPS) cells, embryonic stem (ES) cells, or differentiated cells derived from either.
  • the living cell is a sperm, an egg, or a fertilized egg of an animal (especially a mammal such as a human).
  • the living cells are derived from or are derived from cell type(s) of interest that have been separated from other cell types with which they were associated in living tissue and maintained in culture (e.g. , genetically engineered, and/or differentiated) cells.
  • the cell concentration in the freezing solution can be appropriately selected by those skilled in the art based on common knowledge, and may vary depending on the type of cell.
  • the cell concentration may be 10 4 to 10 7 cells per mL of freezing solution, such as 1 ⁇ 10 6 to 5 ⁇ 10 6 cells/mL.
  • the cell concentration can be between 10 4 and 10 7 cells per mL of sample, such as between 1 ⁇ 10 6 and 5 ⁇ 10 6 cells/mL.
  • the amount of freezing solution in each sample frozen in this embodiment, or the total amount of each sample can be, for example, but not limited to, 0.05-10 mL, 0.1-5 mL, or 0.2-1 mL.
  • samples of living cells are typically frozen in containers called cryotubes, cryovials, or glass ampoule tubes.
  • the shape and material of the sample container suitable for freezing while applying an electric current can be appropriately determined by those skilled in the art, and may be a commonly used cryotube, cryovial, or glass ampoule tube, for example. Commercially available cryotubes, cryovials, or glass ampoule tubes may be suitably used.
  • a container containing a sample for cell freezing has a substantially cylindrical or tubular shape, and such a shape is preferred because it can promote uniform conduction of heat and current in the sample.
  • suitable materials for the container include, but are not limited to, polypropylene, polyethylene, and glass.
  • the term "unfrozen” refers to an unfrozen state, typically a flowable liquid state.
  • a sample comprising a freezing solution and live cells is cooled starting from an unfrozen state to a frozen state, and the sample is exposed to an electrical current during the process (e.g., for at least 30 minutes).
  • a voltage is applied (ie, the sample is placed in an electric field) and a conduction current is caused to flow.
  • the sample starts at a temperature above the freezing temperature of the freezing solution (e.g., at least 5°C above, at least 10°C above, or at least 15°C above) and starts at a temperature below the freezing temperature of the freezing solution (for example, at least 5° C.
  • the freezing temperature of a freezing solution may vary depending on the composition of the liquid and can be readily determined by one skilled in the art.
  • the solidification temperature and conductivity of the sample are primarily governed by the composition of the freezing solution, and the influence of suspended cells can be relatively limited. The point is that a frozen state is achieved in the freezer starting from an unfrozen state brought in from outside the freezer, and it is usually not necessary to accurately specify the freezing temperature of each freezing solution or sample.
  • the alternating current voltage is applied to the sample at least during that time.
  • the electric field is continuously generated without interruption while the sample changes from an unfrozen state to a frozen state. Therefore, the alternating current voltage may be continuously applied and the conduction current may continue to flow.
  • the electric field may occur uninterruptedly before, during, and after freezing the sample; for example, a frozen sample may be placed in the electric field until removed from the freezer.
  • the conduction current flowing through the sample during the freezing process in this embodiment may typically be between 0.1 and 500 nA, such as between 0.2 and 200 nA, between 0.5 and 100 nA, or between 1 and 50 nA.
  • the magnitude of the conducted current flowing through each sample during cooling of an unfrozen sample to a frozen state does not exceed 0.5 ⁇ A (500 nA), and preferably does not exceed 0.4 ⁇ A or 0.1 ⁇ A. .
  • the current value of a sample in the present disclosure is interpreted as an average value for that sample.
  • Conducted currents greater than 0.5 ⁇ A may maintain high cell viability after thawing, but may result in inhibition, variability, or other unnatural effects on the biological function of the cells.
  • the goal is to maintain the same viability and function as the cell before freezing, but the term "unnatural effects" here refers to This includes functional differences that arise due to the freezing and thawing process compared to cells that did not.
  • the position of the sample can be adjusted.
  • the appropriate applied voltage magnitude and sample position depending on the freezer can be tested in advance using a simulated sample of composition corresponding to the sample or freezing solution.
  • passing a conduction current by applying an alternating current voltage to a sample refers to applying an alternating current voltage (e.g., 0.1 to 100 kV or 0.5 to 10 kV in effective value) on an electrode to generate an electric field. This can be achieved by placing the sample near it.
  • the sample is placed such that the freezing solution is within 20 cm, within 10 cm, or within 5 cm of the electrode.
  • the specific structure of a freezer capable of passing such conduction current through a sample can be appropriately determined by one skilled in the art based on the present disclosure and the information provided in Patent Document 7.
  • the conduction current and corresponding applied voltage flowing to a sample placed at a given position within the freezing chamber for a freezer of given dimensions with electrodes within the freezing chamber can be measured by one skilled in the art (e.g., when actually freezing It can also be calculated by simulation (using a simulated sample of the corresponding composition rather than the true sample being attempted).
  • the current density of the sample can be calculated from the electric field strength (potential gradient) generated by the electrode to which a voltage is applied.
  • a given region within a sample located parallel to the electrode plane can have a generally uniform current density, and by multiplying the current density by the area of that region, the current You can find the value.
  • the current density of the sample can be varied, for example, between 2 and 500 ⁇ A/m 2 .
  • the alternating current is preferably a sinusoidal alternating current, but is not limited thereto.
  • the frequency of the alternating current in this embodiment is suitably lower than 500 Hz, preferably 10 Hz to 200 Hz or 20 Hz to 100 Hz, and the frequency of commercial power supply, 50 Hz or 60 Hz, is also preferably used. can. Increasing the frequency of the alternating voltage beyond these ranges may have unnatural or adverse effects on the biological functions of living cells.
  • FIG. 1 is a perspective view of the freezer 1
  • FIG. 2 is a sectional view of the freezer 1 taken along section II-II in FIG.
  • the main body 2 of the freezer 1 is formed with a freezing chamber 3 that opens on the top surface, and the freezing chamber 3 can be opened and closed by a door 6 attached to the main body 2 with a hinge 7.
  • the freezing compartment 3 is surrounded by a heat insulating material 8 provided on the main body 2 and the door 6, and a heat pump including a cooling plate 12 inside the freezing compartment 3, an external radiator 13, and a compressor 11 is operated in a refrigeration cycle. It is cooled by this.
  • the present disclosure provides a method of forming spheroids.
  • a spheroid is a cell aggregate having a three-dimensional (usually approximately spherical) structure formed by an in vitro culture process from a single cell.
  • the term "single cell" in this disclosure refers to a group of cells that are not associated and are dissociated into individual cells. Spheroids can provide conditions closer to in vivo cells than single cells and two-dimensional cultured cells. Furthermore, spheroids can be further induced to differentiate and develop into organoids with organ-like properties. Therefore, spheroids are highly useful in medicine, drug discovery, and the like.
  • the problem with conventional freezing methods is that the ability to form three-dimensional cell aggregates is significantly lost. That is, in many cases, cells that have undergone freezing and thawing significantly lose their ability to form three-dimensional cell aggregates. It has been found that the freezing method of this embodiment is excellent in preserving biological properties and can also preserve three-dimensional cell agglomeration ability. That is, the living cells frozen by the embodiment of the freezing method described above may be living cells that have the ability to form spheroids.
  • a method of forming spheroids according to one aspect of the present disclosure includes freezing living cells capable of forming spheroids by the method of the embodiment described above, and then thawing the frozen living cells, and thawing the living cells. and culturing living cells to form spheroids.
  • Cells capable of forming spheroids are known to those skilled in the art.
  • Spheroids are generally formed by three-dimensional self-association of cell groups while adhering to each other. It is known to those skilled in the art that spheroids can be formed by a number of different methods, such as the hanging drop method. In the simplest method, spheroids are formed by culturing single cells in U-bottom (round-bottom) wells. Low attachment U-bottom well plates suitable for spheroid formation applications are known to those skilled in the art and are commercially available in large numbers.
  • spheroids are passaged by once dissociating forming or expanding spheroids into single cells, and then restarting spheroid formation from a smaller number of cells.
  • cells with inherent spheroid-forming ability have the same ability to self-associate and expand, whether they are in a single cell state or as part of a forming spheroid. I can understand that you are doing it.
  • the living cells to be frozen may be in a single cell state or may be in a state in which a spheroid is being formed.
  • "Forming a spheroid" can mean starting spheroid formation anew from a single cell and/or continuing the formation of a spheroid in progress. Thawed living cells can be cultured to form spheroids immediately, ie, without passage or differentiation steps.
  • Suitable methods for thawing living cells are known to those skilled in the art. It is usually preferable to rapidly thaw frozen cell samples at 37°C.
  • the present disclosure provides a live cell freezing system for freezing an unfrozen cell sample containing living cells while keeping the living cells alive.
  • the live cell freezing system of this embodiment can be used, for example, to implement the embodiment of the freezing method described above.
  • the freezing method embodiments and live cell freezing system embodiments described above have common elements, and the description provided with respect to the freezing method embodiments also applies to the live cell freezing system embodiments. It should be understood that the same can be said for a given term, and vice versa.
  • a live cell freezing system includes a transformer, a freezing chamber, electrodes, and a cell sample.
  • the electrode is electrically connected to the transformer and placed inside the freezer.
  • the shape of the electrode can be, for example, a plate (electrode plate) or a rod (e.g., single, multiple, or a plurality of rods combined to form a grid, straight rods, or non-straight, such as curved or meandering). rods), etc., but are not limited to these.
  • Cell samples are also placed in the freezing chamber.
  • the transformer may be placed outside the freezer.
  • a plate-shaped, grid-shaped, or other generally planar electrode is installed horizontally in the freezing chamber, and a cell sample container (for example, a tube) is placed on the generally planar electrode.
  • a cell sample container for example, a tube
  • the electrode can act as a sample shelf in the freezer.
  • the cell sample container it is not essential that the cell sample container be in direct contact with the electrode. Holding the cell sample tube perpendicular to the generally planar electrode (eg, placing the cell sample tube upright on a horizontal electrode plate) is preferred for uniformity of current density.
  • the freezing solution contains 8-20% or 9-15% (w/v) dimethyl sulfoxide and may contain no other cryoprotectants.
  • suitable living cells are induced pluripotent stem cell lines, embryonic stem cell lines, and differentiated cells derived from any of them, as well as cells that have spheroid-forming potential and are in the process of forming or have formed spheroids. It's okay.
  • the freezing chamber has a temperature lower than the freezing temperature of the freezing solution.
  • the temperature of the freezer compartment can be, for example, between -15°C and -80°C or between -20°C and -50°C.
  • the freezer compartment may be maintained at a constant temperature, ie, a stable temperature within ⁇ 1°C. Cell samples found in live cell freezing systems may be unfrozen or may be in a frozen state.
  • AC alternating current
  • This current is typically in the range of 0.1-500 nA, and may be 0.2-200 nA, 0.5-100 nA, or 1-50 nA.
  • the magnitude of the conduction current flowing through each sample preferably does not exceed 0.5 ⁇ A (500 nA), and preferably does not exceed 0.4 ⁇ A or 0.1 ⁇ A.
  • the alternating current voltage is suitably applied at a frequency below 500 Hz, preferably within the range of 10-200 Hz.
  • the transformer is configured to continuously generate the electric field while the cell sample changes from an unfrozen state to a frozen state. In other words, for example, the transformer may be configured to continuously generate the electric field during operation of the live cell freezing system or during closure of the freezing chamber during operation.
  • the transformer can be configured as follows.
  • the numerical range indicated using the expression “A to B” refers to the numerical value A written before and after "" and B as the minimum and maximum values, respectively, and also includes ranges excluding the minimum and/or maximum values.
  • the upper or lower value of one stated numerical range may be combined with the upper or lower value of another stated numerical range, and no such combination Numerical ranges that may occur are also contemplated in this disclosure.
  • Storing the frozen sample at a temperature below -80°C includes transferring the frozen sample into a tank containing liquid nitrogen, and storing the frozen sample in the tank containing liquid nitrogen.
  • a method for forming spheroids comprising: freezing living cells having spheroid-forming ability by the method according to any one of [1] to [7]; thawing the frozen living cells; and culturing the thawed living cells to form spheroids.
  • a live cell freezing system comprising a transformer, a freezing chamber, an electrode electrically connected to the transformer and installed in the freezing chamber, and a cell sample placed in the freezing chamber,
  • the cell sample includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution, the freezing chamber has a temperature lower than the freezing temperature of the freezing solution;
  • An electric field is generated in the freezing chamber from the electrode by an alternating voltage applied by the transformer, and a conduction current is flowing through the cell sample.
  • Live cell freezing system [10] The system of [9], wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
  • Example 1 Study of current conditions
  • a commercially available conventional constant temperature freezer was modified to create a freezer 1 essentially as shown in FIGS. 1 and 2.
  • a transformer was installed outside the freezing chamber of a conventional freezer, and a metal shelf (electrode) connected to one of the secondary terminals of the transformer was installed horizontally below the freezing chamber.
  • An insulating glass support was sandwiched between the bottom of the freezer and the shelf board.
  • the other secondary terminal of the transformer is open.
  • This freezer (including a transformer) was connected to a commercial power source to cool the freezer compartment and apply voltage.
  • the current flowing through the sample liquid was calculated by inputting the parameters corresponding to the experimental conditions, including: Freezer 1 Freezer compartment 3 Internal dimensions, dimensions of metal shelf 4 (length x width x thickness) and position within freezing chamber 3, sample tube dimensions (length, outer diameter, inner diameter) and position relative to shelf 4, amount of sample liquid and conductivity , as well as the applied voltage to shelf 4.
  • the inner diameter of a typical sample tube is approximately 8 mm.
  • the sample tube was held vertically against the horizontal shelf 4.
  • FIG. 2 shows a grid-like shelf 4, here a single plate was used as the electrode/shelf.
  • the dimensions and material of the tube rack used to hold the sample tube were also taken into consideration in the calculation.
  • FIG. 3 shows an example of a simulation result, which shows the distribution of current density in the freezing compartment 3 of the freezer 1 under one experimental condition. It should be noted that in this figure, the distribution of current density is represented by the color coding of individual data points rather than the density of data points. The following specific examples describe experiments conducted under conditions in which the current flowing through the sample liquid was approximately 1 to 50 nA on average.
  • This standard protocol involves dissociating the iPS cell line into single cells on day 0, starting differentiation culture in a 6-well plate, performing neuronal differentiation until day 13, and then dissociating the iPS cell line into single cells again.
  • the cells are seeded in U-shaped low-attachment 96-well plates and cultured to form spheroids.
  • differentiated cells were frozen on the 13th day before seeding into U-shaped 96-well plates using a different method described below, and the frozen cells were placed in a liquid nitrogen tank for 1 hour. or 7 days. Thereafter, the cells were thawed by a conventional method and seeded in a U-shaped 96-well plate as described above, and culture for forming spheroids was started. Four days after the start of culture in the U-shaped 96-well plate, the presence and extent of spheroid formation was examined under a microscope.
  • Cell freezing was performed as follows. Differentiated cells dissociated into single cells using Accumax cell dissociation solution (Funakoshi) were placed in a cryotube at a concentration of 5 ⁇ 10 cells in 200 ⁇ L of freezing solution, and these unfrozen (4-10 °C) The sample tube was cooled and frozen under any of conditions 1 to 3 below, and then immediately transferred in a frozen state to a liquid nitrogen tank.
  • the freezing solution the one described in the Examples of Japanese Patent No. 4385158 was used, which contains 10% DMSO as a cryoprotectant.
  • Condition 1 By placing an unfrozen sample tube in the -35°C freezing chamber of the freezer described in Example 1, the sample was cooled and frozen for 30 minutes while an electric current was passed through it, and then transferred to a liquid nitrogen tank (this Disclosure Freeze Law).
  • Condition 2) The unfrozen sample tube was cooled to -80°C and frozen in a program freezer set at a controlled cooling rate of 4°C ⁇ -80°C, -1°C/min, and then transferred to a liquid nitrogen tank.
  • Condition 3 A simple slow freezing container containing an unfrozen sample tube was placed in the -80°C freezing chamber of a standard deep freezer overnight to cool and freeze, and then the sample tube was transferred to a liquid nitrogen tank. .
  • the program freezer is commercially available from Company X.
  • the container for simple slow freezing is commercially available from Company Y.
  • Containers for slow freezing are constructed from materials with a specific thermal conductivity, allowing them to be cooled at controlled cooling rates similar to those obtained in programmable freezers by simply leaving the container containing the sample in a standard deep freezer. This is a cell freezing container that can approximate
  • the results are shown in Figure 4.
  • the numbers (1) to (3) shown in Figure 4 correspond to the freezing conditions 1 to 3 above, and each three representative wells with the typical appearance of the majority of wells under each condition are shown.
  • An example is shown.
  • Cooling rate control using a programmed freezer (condition 2) is generally considered the gold standard for cell freezing, but surprisingly, cells frozen using the freezing method of the present disclosure (condition 1) do not meet conditions 2 and 3.
  • the spheroid-forming ability was clearly superior to that of the cells that had been frozen.
  • the spheroid-forming ability of cells frozen under condition 1 was comparable to that of cells that had not undergone freezing (no freezing).
  • Example 3 Proliferation of human iPS cells after freezing
  • the same iPS cell line used in Example 2 was frozen in an undifferentiated state under conditions 1 to 3 above.
  • the same freezing solution as in Example 2 was used, except that the cell concentration was 6.30 ⁇ 10 5 (strain 201B7-Ff) or 8.84 ⁇ 10 5 (strain 1231A3) in 200 ⁇ L of freezing solution.
  • the cells were quickly thawed by spraying with a liquid medium warmed to 37°C using a dropper, and the cells were collected by centrifugation (190x g, 3 minutes).
  • Condition D Same as Condition C except that a program freezer from Company Z was used.
  • Condition E Place the Y company's simple slow freezing container containing unfrozen sample tubes in the -80°C freezing chamber of a standard deep freezer overnight to cool and freeze, then transfer the sample tubes to a liquid nitrogen tank. Moved.
  • Condition F Same as Condition E except that a simple slow freezing container from Company W was used.
  • Example 5 Neurite outgrowth ability of spheroids after cryopreservation
  • Example 2 an experiment was described in which neurally differentiated cells were frozen at a stage immediately before the start of spheroid formation, but an experiment was also conducted in which similar cryopreservation was performed after spheroid formation (corresponding to the 27th day of differentiation). Spheroids were frozen under conditions corresponding to freezing conditions A, B, C, and E described in Example 4 and stored for a period of time in liquid nitrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided are a method and a living cell freezing system for freezing an unfrozen specimen comprising living cells in such a manner as to keep the cells alive. The method comprises: causing an unfrozen specimen to reach a frozen state by placing the unfrozen specimen, that includes a freezing solution containing a freezing protection agent and living cells immersed in the freezing solution, in an electrical field, generated by an electrode to which an alternating current with a frequency of 10-200 Hz is applied, so that said specimen is cooled while conduction electrical current flows. The electrical field is continuously generated without any interruption for a duration that the specimen goes from an unfrozen state to a frozen state. Also provided is a method for forming spheroids, the method comprising: freezing living cells having a spheroid-forming function by the foregoing freezing method; thawing the frozen living cells; and cultivating the thawed living cells to form spheroids.

Description

生細胞凍結方法および生細胞凍結システムLive cell freezing method and live cell freezing system
 本開示は、生細胞の生物学的能力を保存したまま生細胞を凍結する技術に関する。 The present disclosure relates to a technique for freezing living cells while preserving their biological abilities.
 広く医学、獣医学、生物学、創薬等を含むライフサイエンスの分野では、治療、研究、新製品開発等のためにインビトロの生きた細胞を使用することが不可欠である。しかしこれらの活動を、生細胞が取得されたその時点およびその場所において直ちに実行することは、現実的に可能でないことが多い。従って、取得された生細胞を使用時まで凍結保存する技術もまた不可欠である。また、例えば細胞バンクによる有用な細胞株のコレクションの貯蔵および輸送を可能にし世界中の技術者が生物学的に同じ細胞を共有できるようにするためにも、凍結保存する技術は重要である。 In the field of life science, which broadly includes medicine, veterinary medicine, biology, drug discovery, etc., it is essential to use in vitro living cells for treatment, research, new product development, etc. However, it is often not practical to carry out these activities immediately at the time and location where living cells are obtained. Therefore, techniques for cryopreserving the obtained living cells until use are also essential. Cryopreservation techniques are also important, for example, to enable the storage and transportation of collections of useful cell lines by cell banks, allowing technicians around the world to share biologically identical cells.
 しかしながら、細胞を凍結する際には、細胞内外で起こる微視的な氷結晶の形成に主に起因して、細胞の本来の生物学的能力はもとより生存性すらもしばしば大きく失われることが知られている。長年に渡り、最適な凍結溶液組成および冷却速度条件の検討が行われてきたが、生細胞の凍結技術は完成された状態には程遠いのが現状である。神経系細胞、および近年応用例が急増している人工多能性幹(iPS)細胞のように、比較的凍結が難しい細胞種も存在する。 However, it is known that when cells are frozen, their original biological abilities and even their viability are often significantly lost, mainly due to the formation of microscopic ice crystals that occur inside and outside the cells. It is being Although studies have been carried out on the optimal freezing solution composition and cooling rate conditions for many years, the current state of living cell freezing technology is far from complete. There are cell types that are relatively difficult to freeze, such as nervous system cells and induced pluripotent stem (iPS) cells, whose applications have been rapidly increasing in recent years.
 特に、スフェロイドのような三次元的細胞集塊は、シングルセルまたは二次元的培養細胞よりも生体内の細胞に近い状態を提供し得るため、医学、創薬等における有用性が高いが、スフェロイド形成能力を有する細胞を、その能力を保存したまま凍結することは難易度が高い。すなわち多くの場合、凍結および解凍を経た細胞はスフェロイド形成能力を著しく喪失してしまう。 In particular, three-dimensional cell aggregates such as spheroids can provide conditions closer to in-vivo cells than single cells or two-dimensional cultured cells, and are therefore highly useful in medicine, drug discovery, etc. It is difficult to freeze cells that have the ability to form cells while preserving that ability. That is, in many cases, cells that have undergone freezing and thawing significantly lose their ability to form spheroids.
 現在広く使用されている生細胞凍結技術は、異なる冷却速度条件に基づいて、緩慢凍結法とガラス化法に大きく二分される。 Currently widely used live cell freezing techniques are broadly divided into slow freezing methods and vitrification methods based on different cooling rate conditions.
 緩慢凍結法は、生細胞を含有する未凍結の凍結溶液を、約-1℃~-2℃/分の冷却速度で徐々に凍結する方法である。この方法によれば、氷結晶は形成し得るものの、冷却速度無制御で単に凍らせた場合と比べて細胞を損傷しにくい態様で氷結晶形成が起こるため、細胞の生存性を比較的維持することができる。緩慢凍結法で使用される凍結溶液中の凍結保護剤の濃度(および潜在的に付随する毒性)は比較的低く抑えることができる。緩慢凍結法は、iPS細胞を含め一般的な培養細胞株の凍結保存のために広く利用されている。緩慢凍結法は手順が比較的シンプルであり、多数および多量の試料を凍結することに適しており、凍結後の試料をドライアイス中で輸送することも可能である。 The slow freezing method is a method in which an unfrozen frozen solution containing living cells is gradually frozen at a cooling rate of approximately -1°C to -2°C/min. According to this method, although ice crystals can be formed, ice crystal formation occurs in a manner that causes less damage to the cells than when simply freezing without controlling the cooling rate, so cell viability is relatively maintained. be able to. The concentration of cryoprotectant (and potentially associated toxicity) in the freezing solution used in slow freezing methods can be kept relatively low. Slow freezing is widely used for cryopreservation of common cultured cell lines including iPS cells. The slow freezing method has a relatively simple procedure and is suitable for freezing a large number of samples in large quantities, and it is also possible to transport the frozen samples in dry ice.
 緩慢凍結法は、最も好ましくはプログラムフリーザーを使用して行われる。プログラムフリーザーは、コントロールドレートフリーザーとも呼ばれ、ユーザーが指定した冷却速度および冷却温度のプロファイルをコンピューター制御により実行できるフリーザーである。プログラムフリーザーは高価であるのに対し、はるかに安価に約-1℃/分の冷却速度を近似できる簡易緩慢凍結用容器も利用可能であり、実際に広く利用されている。簡易緩慢凍結用容器の例としては、日本フリーザー株式会社のバイセル、コーニングインターナショナル株式会社のCoolCell(商標)、およびサーモフィッシャーサイエンティフィック社のMr. Frosty(商標)が挙げられる。これらの簡易緩慢凍結用容器はそれぞれ、特定の熱伝導率の材料で構成されていることにより、未凍結試料を収納した該容器を例えば約-80℃のディープフリーザー中に放置するだけで、プログラムフリーザーで得られるような制御冷却速度を近似できる。しかしそれはあくまで近似であって、細胞の特性および生存性の保存という点ではプログラムフリーザーによる凍結より見劣りすると一般的に理解されている。 Slow freezing is most preferably carried out using a programmed freezer. A program freezer, also called a controlled rate freezer, is a freezer that can execute a user-specified cooling rate and cooling temperature profile under computer control. While program freezers are expensive, simple slow-freezing containers that can approximate a cooling rate of approximately -1°C/min at a much lower cost are also available and are in fact widely used. Examples of simple slow freezing containers include Nippon Freezer Co., Ltd.'s BiCell™, Corning International Co., Ltd.'s CoolCell™, and Thermo Fisher Scientific's Mr. Frosty™. Each of these containers for simple slow freezing is made of a material with a specific thermal conductivity, so you can program it by simply leaving the container containing an unfrozen sample in a deep freezer at approximately -80°C. It can approximate controlled cooling rates such as those obtained with freezers. However, this is only an approximation, and it is generally understood that freezing in a programmed freezer is inferior in terms of preserving cell properties and viability.
 ガラス化法は、細胞を含有する未凍結の凍結溶液を、液体窒素に浸して極めて急速に温度を下げ凍結する方法である。ガラス化法により、氷結晶の形成が回避され無結晶のガラス状固体としての急速凍結を実現することができる。ガラス化法は、精子、卵子、および受精卵の凍結に主に利用されている。ガラス化法で使用される凍結溶液の凍結保護剤の濃度(および潜在的に付随する毒性)は比較的高くなり得る。ガラス化法は手順が複雑で熟練を要し、多数または多量の試料を凍結することには適していない。また、ガラス化法で凍結された試料を生かしたままドライアイス中で輸送することは通常不可能である。 The vitrification method is a method in which an unfrozen solution containing cells is immersed in liquid nitrogen to extremely rapidly lower the temperature and freeze. The vitrification method avoids the formation of ice crystals and allows rapid freezing as an amorphous glassy solid. Vitrification is primarily used to freeze sperm, eggs, and fertilized eggs. The concentration of cryoprotectants (and potentially associated toxicity) in freezing solutions used in vitrification processes can be relatively high. The vitrification method is complicated and requires skill, and is not suitable for freezing a large number or large amount of samples. Furthermore, it is usually impossible to transport samples frozen by vitrification in dry ice while keeping them alive.
 いくつかの文献が、冷凍室の周囲または壁内にコイルまたは磁石を備えたフリーザーで細胞試料に磁場を適用しながら凍結を行うことを記載している。特許文献1は、凍結保護剤の非存在下で、変動(交流)磁場(1.5~2.2 G、5~20 Hz)中で細胞を凍結することを特徴とする細胞の凍結保存方法を記載している。特許文献2および非特許文献1は、ニューロスフェアを形成するヒトiPS細胞由来神経幹細胞/前駆細胞に交流磁場(0.22~0.50 mT=2.2~5.0 G、25~35 Hz)を印加しながら細胞を凍結する方法を記載している。特許文献3は、ヒト多能性幹細胞由来心筋細胞に交流磁場(0.1~1.0 mT=1~10 G、30~60 Hz)を印加しながら細胞を凍結する方法を記載している。特許文献4および非特許文献2は、iPS細胞由来のニューロスフェアをプロトンフリーザーで凍結することを記載している。プロトンフリーザーは、1~200 mT(=10~2000 G)の静磁場、0.2~1 MHzの電波、および冷風を適用しながら試料を凍結する。 Several publications describe performing freezing while applying a magnetic field to cell samples in freezers equipped with coils or magnets around or within the walls of the freezing chamber. Patent Document 1 describes a method for cryopreservation of cells characterized by freezing cells in a fluctuating (alternating current) magnetic field (1.5-2.2 G, 5-20 Hz) in the absence of a cryoprotectant. There is. Patent Document 2 and Non-Patent Document 1 disclose that cells are frozen while applying an alternating current magnetic field (0.22 to 0.50 mT=2.2 to 5.0 G, 25 to 35 Hz) to human iPS cell-derived neural stem cells/progenitor cells that form neurospheres. It describes how to do this. Patent Document 3 describes a method of freezing human pluripotent stem cell-derived cardiomyocytes while applying an alternating magnetic field (0.1 to 1.0 mT=1 to 10 G, 30 to 60 Hz). Patent Document 4 and Non-Patent Document 2 describe freezing iPS cell-derived neurospheres in a proton freezer. Proton freezers freeze samples while applying a static magnetic field of 1 to 200 mT (=10 to 2000 G), radio waves of 0.2 to 1 MHz, and cold air.
 このように、凍結を経た後も未凍結の細胞と全く同じ生物学的特性を保存するという究極の目標に少しでも近づくべく、様々なアプローチが試みられ様々な程度の成功も見られてきたが、各アプローチには欠点も存在している。例えば、ガラス化法は熟練の技術が必要であるし多数または多量の試料の凍結には適していない。プログラムフリーザーや磁場適用型フリーザーはコストが高い傾向があり既存のフリーザーのハードウェアをそれらに適合させることも容易ではない。簡易緩慢凍結用容器は安価で特別な研究室設備を必要としないが、生物学的特性の保存性能は他の凍結技術より劣る傾向がある。 Thus, various approaches have been attempted with varying degrees of success in order to move closer to the ultimate goal of preserving the exact same biological properties of unfrozen cells after freezing. However, each approach also has drawbacks. For example, vitrification requires skilled techniques and is not suitable for freezing multiple or large amounts of samples. Programmed freezers and magnetic field freezers tend to be expensive, and it is not easy to adapt existing freezer hardware to them. Although simple slow-freezing containers are inexpensive and do not require special laboratory equipment, their preservation of biological properties tends to be inferior to other freezing techniques.
 特許文献5は、被冷凍物を冷却しながら当該被冷凍物に電界及び/又は磁界を付与する過冷却工程と、該過冷却工程の終了後、前記電界及び/又は磁界の付与を停止させる凍結工程とを繰り返すことを特徴とする冷凍方法を記載している。特許文献6は、庫内に載置された対象物を冷却するにあたり、庫内に交番電界を形成し、該交番電界によって冷却中における対象物内の氷結晶の粗大化を抑制する冷却方法において、交流電圧の周波数が500ヘルツ以上である、冷蔵・冷凍庫における冷却方法を記載している。特許文献5および6の発明は、冷凍中の氷結晶の粗大化に伴う細胞の破壊ならびに色および味の劣化、解凍時の液汁の流出(食品凍結分野でドリップと呼ばれる)等の問題を解決しようとするものである。つまり特許文献5および6は食品等の鮮度を保ちドリップを防ぐ程度に細胞の破壊を防ぐことを目的とすると理解される。 Patent Document 5 discloses a supercooling process in which an electric field and/or a magnetic field is applied to an object to be frozen while cooling the object, and a freezing process in which application of the electric field and/or magnetic field is stopped after the supercooling process is completed. This describes a freezing method characterized by repeating the steps. Patent Document 6 discloses a cooling method in which an alternating electric field is formed in the refrigerator to cool an object placed in the refrigerator, and the alternating electric field suppresses the coarsening of ice crystals in the object during cooling. describes a cooling method for refrigerators and freezers in which the frequency of AC voltage is 500 hertz or higher. The inventions of Patent Documents 5 and 6 attempt to solve problems such as cell destruction and deterioration of color and taste due to coarsening of ice crystals during freezing, and outflow of liquid juice during thawing (called drip in the food freezing field). That is. In other words, it is understood that Patent Documents 5 and 6 are intended to prevent cell destruction to the extent that foods and the like can be kept fresh and drips can be prevented.
 特許文献7は、「冷凍食品の解凍時の品質劣化(例えば、酸化、組織破壊によるドリップ流出)を抑える技術が知られている。(…)しかし、従来例は、冷凍保存期間中の冷凍食品に対する上記の電圧印加の有効性(冷凍品の品質劣化抑制機能)については検討されていない。本発明の一態様(aspect)は、このような事情に鑑みてなされたものであり、冷凍保存期間中の冷凍品の品質劣化が従来よりも適切に抑制され得る冷凍品の冷凍保存方法を提供する。」と記載している。この導入の下に特許文献7は、冷凍品に「微弱電流」(1μA~1000mA)が流れるように交流電圧を印加しながら、所定の保存期間以上、この冷凍品を冷凍温度で冷凍保存することを記載している。 Patent Document 7 states, ``Techniques for suppressing quality deterioration (e.g., drips due to oxidation and tissue destruction) during thawing of frozen foods are known. The effectiveness of applying the above voltage to To provide a method for freezing and preserving frozen products in which quality deterioration of the frozen products contained therein can be more appropriately suppressed than in the past." Under this introduction, Patent Document 7 discloses that frozen products are stored frozen at a freezing temperature for a predetermined storage period or longer while applying an alternating current voltage so that a "weak current" (1 μA to 1000 mA) flows through the frozen products. is listed.
 しかしながら、食品分野で要求される細胞の無傷性(あるいは「鮮度」)は、厳密な生細胞の生存性と機能性を維持するというライフサイエンス分野の要求とは異なっている。実際、食品に含まれる細胞は、例えドリップを起こすほどには「破壊」されておらず外見的に無傷かつ新鮮であったとしても、また凍結前には生存していたとしても、凍結解凍後には厳密な生存性と本来の機能性が通常失われている。食品凍結という一般的な技術とは別に、凍結保護剤やプログラムフリーザーといった、生細胞凍結という別個の分野のための特別な技術が発展してきた根本的な所以である。特許文献5および6は、生細胞の厳密な生存と機能維持のために望ましい凍結条件を教示するものではなかった。また特許文献7は、既に凍結状態にある冷凍食品を、延長された期間に渡り冷凍保存し続けることに関する文献である。特許文献7は、未凍結の生細胞を凍結する過程で起こるde novo氷結晶形成という、生細胞凍結の技術分野の根本的かつ固有の問題について何らかの洞察を与える文献ではなく、厳密に細胞を生存させることを研究する文献でもなかった。 However, the cell integrity (or "freshness") required in the food field is different from the life science field's requirement to maintain strict viability and functionality of living cells. In fact, even if the cells contained in food are not "destroyed" enough to cause drips and are apparently intact and fresh, and even if they were alive before freezing, after freezing and thawing, Strict viability and original functionality are usually lost. This is the fundamental reason why, apart from the general technology of food freezing, special technologies have been developed for the distinct field of live cell freezing, such as cryoprotectants and programmable freezers. Patent Documents 5 and 6 do not teach desirable freezing conditions for strictly maintaining survival and function of living cells. Further, Patent Document 7 is a document related to continuing frozen preservation of frozen foods that are already in a frozen state for an extended period of time. Patent Document 7 is not a document that provides any insight into the fundamental and inherent problem of the technical field of live cell freezing, which is de novo ice crystal formation that occurs during the process of freezing unfrozen living cells, but is a document that strictly focuses on keeping cells alive. Nor was it a literature that studied how to do things.
特開2014-155443号公報Japanese Patent Application Publication No. 2014-155443 特開2017-104061号公報Japanese Patent Application Publication No. 2017-104061 特開2019-24325号公報Japanese Patent Application Publication No. 2019-24325 国際公開第2021/100829号International Publication No. 2021/100829 特開2007-259709号公報Japanese Patent Application Publication No. 2007-259709 特開2011-182700号公報Japanese Patent Application Publication No. 2011-182700 国際公開第2018/185912号International Publication No. 2018/185912
 従って、生細胞凍結の目的、凍結される細胞の種類、施設の現実的制約(例えば、設備的、資金的、または人員的制約)等に応じて選択することができる、生細胞凍結技術の新しい選択肢のニーズが存在し続けている。特に、従来の方法の欠点を少なくとも部分的に克服し、従来の方法に匹敵するあるいは従来の方法を上回る程度において、未凍結細胞に近い細胞を提供することができる、新しい凍結方法の選択肢が望まれている。 Therefore, new types of live cell freezing techniques can be selected depending on the purpose of live cell freezing, the type of cells to be frozen, the practical constraints of the facility (e.g., equipment, financial, or personnel constraints), etc. The need for choice continues to exist. In particular, new freezing method options are desired that can at least partially overcome the shortcomings of conventional methods and provide cells that approximate unfrozen cells to an extent that is comparable to or even better than conventional methods. It is rare.
 本発明者らは、凍結保護剤を含む凍結溶液に浸漬された、未凍結の生細胞を、電界発生させた冷凍室中に置くことにより交流電流(AC)を流しながら凍結を行うと、細胞固有の生物学的特性(生存性、増殖能力、および三次元的細胞集塊形成能力等で表される)の喪失を著しく抑制できることを見出した。 The present inventors have demonstrated that when unfrozen living cells immersed in a freezing solution containing a cryoprotectant are placed in a freezing chamber that generates an electric field and frozen while an alternating current (AC) is applied, the cells It has been found that the loss of inherent biological properties (expressed by viability, proliferation ability, ability to form three-dimensional cell aggregates, etc.) can be significantly suppressed.
 フリーザーの冷凍室内に置かれた物品に電流を流すことができる機械的原理自体は、例えば特許文献7(国際公開第2018/185912号)にも記載されていた。しかし上述したように特許文献7は、既に凍結状態にある冷凍食品を、延長された期間に渡り冷凍保存し続ける技術に関する文献である。この文献は、未凍結の生細胞を凍結する過程で起こるde novo氷結晶形成という、生細胞凍結の技術分野の根本的かつ固有の問題について何らかの洞察を与える文献ではなく、厳密に細胞を生存させることを研究する文献でもなかった。換言すると、特許文献7に記載されたような機械的原理の修正的応用が、生細胞が未凍結→凍結のプロセスを克服することを助けることができるという事実は、予測できなかった発見である。 The mechanical principle itself that allows electric current to flow through articles placed in the freezing chamber of a freezer was also described in, for example, Patent Document 7 (International Publication No. 2018/185912). However, as mentioned above, Patent Document 7 is a document relating to a technique for continuing frozen preservation of frozen foods that are already in a frozen state for an extended period of time. This document does not provide any insight into the fundamental and inherent problem in the technical field of live cell freezing, which is the de novo ice crystal formation that occurs during the process of freezing unfrozen living cells, but rather strictly to keep cells alive. It wasn't even a literature that studied things. In other words, the fact that the modified application of mechanical principles, such as those described in US Pat. .
 本開示は以下の実施形態を含む。
[1]
 生細胞を含む未凍結の試料を、前記生細胞を生存させたまま凍結するための方法であって、
 凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された前記生細胞とを含む、未凍結の前記試料を、交流電圧が印加された電極から生じる電界中に置くことにより伝導電流を流しながら冷却して、前記未凍結の試料を凍結状態まで至らせることを含み、
 前記交流電圧の周波数は10~200 Hzであり、
 前記試料が未凍結状態から凍結状態に至るまでのあいだ前記電界は途切れず継続して生じさせられる、
 方法。
[2]
 前記冷却することは、前記凍結溶液の凝固温度より低い一定温度の冷凍室と、前記冷凍室内に設置され前記交流電圧が印加された電極とを有するフリーザーの前記冷凍室内に、前記未凍結の試料を置くことによって行われる、[1]に記載の方法。
[3]
 前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、[1]または[2]に記載の方法。
[4]
 前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、[3]に記載の方法。
[5]
 前記未凍結の試料を凍結状態まで至らせる冷却のあいだに各試料に流れる前記伝導電流の大きさは0.5μAを超えない、[1]~[4]のいずれか一項に記載の方法。
[6]
 前記試料が凍結した後に、前記凍結された試料を-80℃以下の温度で保存することをさらに含む、[1]~[5]のいずれか一項に記載の方法。
[7]
 前記凍結された試料を-80℃以下の温度で保存することは、液体窒素を含有するタンク中に前記凍結された試料を移すこと、および、前記タンク中で、前記凍結された試料を前記液体窒素またはその蒸気に曝露しながら保存することを含む、[6]に記載の方法。
[8]
 前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、[1]~[7]のいずれか一項に記載の方法。
[9]
 スフェロイドを形成する方法であって、スフェロイド形成能を有する生細胞を、[1]~[8]のいずれか一項に記載の方法によって凍結すること、前記凍結された生細胞を解凍すること、および前記解凍された生細胞を培養してスフェロイドを形成させることを含む、方法。
[10]
 生細胞を含む未凍結の細胞試料を、前記生細胞を生存させたまま凍結するための生細胞凍結システムであって、前記システムは、
 変圧器と、冷凍室と、前記変圧器に電気的に接続され前記冷凍室内に設置された電極と、前記冷凍室内に置かれた前記細胞試料とを含み、
 前記細胞試料は、凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された生細胞とを含み、
 前記冷凍室は、前記凍結溶液の凝固温度より低い温度を有し、
 前記変圧器により印加された交流電圧によって前記電極から前記冷凍室内に電界が生じ、前記細胞試料に伝導電流が流れており、
 前記交流電圧の周波数は10~200 Hzであり、
 前記変圧器は、前記細胞試料が未凍結状態から凍結状態に至るまでのあいだ前記電界を途切れず継続して生じるように構成されている、
 生細胞凍結システム。
[11]
 前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、[10]に記載のシステム。
[12]
 前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、[11]に記載のシステム。
[13]
 各試料に流れている前記伝導電流の大きさは0.5μAを超えない、[10]~[12]のいずれか一項に記載のシステム。
[14]
 前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、[10]~[13]のいずれか一項に記載のシステム。
The present disclosure includes the following embodiments.
[1]
A method for freezing an unfrozen sample containing living cells while keeping the living cells alive, the method comprising:
The unfrozen sample, which includes a freezing solution containing a cryoprotectant and the living cells immersed in the freezing solution, is placed in an electric field generated from an electrode to which an alternating voltage is applied, while applying a conduction current. cooling the unfrozen sample to a frozen state;
The frequency of the alternating current voltage is 10 to 200 Hz,
The electric field is generated continuously without interruption while the sample changes from an unfrozen state to a frozen state.
Method.
[2]
The cooling means placing the unfrozen sample in the freezing chamber of a freezer, which has a freezing chamber at a constant temperature lower than the freezing temperature of the freezing solution, and an electrode installed in the freezing chamber and to which the AC voltage is applied. The method described in [1], which is carried out by placing .
[3]
The method according to [1] or [2], wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
[4]
The method according to [3], wherein the concentration of the dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5 to 30% (w/v). .
[5]
The method according to any one of [1] to [4], wherein the magnitude of the conduction current flowing through each sample during cooling of the unfrozen sample to a frozen state does not exceed 0.5 μA.
[6]
The method according to any one of [1] to [5], further comprising storing the frozen sample at a temperature of -80°C or lower after the sample is frozen.
[7]
Storing the frozen sample at a temperature below -80°C includes transferring the frozen sample into a tank containing liquid nitrogen, and storing the frozen sample in the tank containing liquid nitrogen. The method according to [6], which comprises storing while being exposed to nitrogen or its vapor.
[8]
The method according to any one of [1] to [7], wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
[9]
A method for forming spheroids, the method comprising freezing living cells having spheroid-forming ability by the method according to any one of [1] to [8], and thawing the frozen living cells. and culturing the thawed living cells to form spheroids.
[10]
A live cell freezing system for freezing an unfrozen cell sample containing living cells while keeping the living cells alive, the system comprising:
comprising a transformer, a freezing chamber, an electrode electrically connected to the transformer and installed in the freezing chamber, and the cell sample placed in the freezing chamber,
The cell sample includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution,
the freezing chamber has a temperature lower than the freezing temperature of the freezing solution;
An electric field is generated in the freezing chamber from the electrode by an alternating voltage applied by the transformer, and a conduction current flows through the cell sample;
The frequency of the alternating current voltage is 10 to 200 Hz,
The transformer is configured to continuously generate the electric field without interruption while the cell sample changes from an unfrozen state to a frozen state.
Live cell freezing system.
[11]
The system of [10], wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
[12]
The system according to [11], wherein the concentration of the dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5-30% (w/v). .
[13]
The system according to any one of [10] to [12], wherein the magnitude of the conduction current flowing through each sample does not exceed 0.5 μA.
[14]
The system according to any one of [10] to [13], wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
図1は、フリーザーの一例の概略的な構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of an example of a freezer. 図2は、フリーザーの一例の概略的な構成を示す断面図である。FIG. 2 is a sectional view showing a schematic configuration of an example of a freezer. 図3は、電極板を設置し試料を置いたフリーザーの冷凍室内の電流密度分布を分析した一例を示す。FIG. 3 shows an example of an analysis of the current density distribution in the freezing chamber of a freezer in which an electrode plate was installed and a sample was placed. 図4は、異なる条件での凍結および液体窒素保存(LN2 storage)を経たiPS由来神経細胞が解凍後にスフェロイドを形成する能力の比較を示す。(1)~(3)は異なる凍結条件を示す(図5も同じ)。Figure 4 shows a comparison of the ability of iPS-derived neurons subjected to freezing and liquid nitrogen storage ( LN2 storage) under different conditions to form spheroids after thawing. (1) to (3) show different freezing conditions (the same applies to Figure 5). 図5は、異なる条件で凍結を経たiPS細胞を、解凍後に増殖させた際の細胞数の比較を示す。FIG. 5 shows a comparison of cell numbers when iPS cells that have been frozen under different conditions are grown after thawing. 図6は、多様な種類の細胞を凍結および解凍後に増殖させた際の細胞数の比較を示す。(a)(b)は浮遊系細胞、(c)(d)は接着系細胞である。(A)~(F)は異なる凍結条件を示す(図7、8も同じ)。Figure 6 shows a comparison of cell numbers when various types of cells are grown after freezing and thawing. (a) and (b) are floating cells, and (c) and (d) are adherent cells. (A) to (F) show different freezing conditions (the same applies to Figures 7 and 8). 図7は、凍結溶液をDMSOフリー組成に変えて図6の実験を行った結果を示す。(a)(b)はプロピレングリコールに基づく凍結保護剤、(c)(d)はポリ-L-リジンに基づく凍結保護剤を使用している。FIG. 7 shows the results of the experiment of FIG. 6 by changing the freezing solution to a DMSO-free composition. (a) and (b) use a cryoprotectant based on propylene glycol, and (c) and (d) use a cryoprotectant based on poly-L-lysine. 図8(a)は、凍結および解凍を経て3日間培養した神経系スフェロイドの抗βIIIチューブリン染色(上)およびジアミジノ-2-フェニルインドール(DAPI)染色(下)を示す。(b)および(c)は、それぞれ、1231A3細胞および201B7-Ff細胞由来スフェロイドにおける神経突起伸長の定量化結果を示す。FIG. 8(a) shows anti-βIII tubulin staining (top) and diamidino-2-phenylindole (DAPI) staining (bottom) of nervous system spheroids cultured for 3 days after freezing and thawing. (b) and (c) show the results of quantifying neurite outgrowth in spheroids derived from 1231A3 cells and 201B7-Ff cells, respectively.
 一態様において、本開示は、生細胞を含む未凍結の試料を、該生細胞を生存させたまま凍結するための方法を提供する。この方法は、凍結保護剤を含む凍結溶液と、該凍結溶液に浸漬された生細胞とを含む、未凍結の試料を、交流(AC)電圧が印加された電極から生じる電界中に置くことにより伝導電流を流しながら冷却して、未凍結の試料を凍結させる、すなわち凍結状態まで至らせることを含む。通常、未凍結の細胞が凍結する際には、細胞内外に氷結晶が生成し発達し、主にそれが原因になって、細胞の生存性、増殖能、ならびに細胞固有のその他の生物学的特性の損失が起こる。本実施形態の方法により凍結を行うことにより、その損失を著しく抑制することができる。つまり、本実施形態の方法により凍結された生細胞は、解凍後も高い率で生存性を維持し、凍結前のその細胞と実質的に同じまたはそれに近い特性を維持することができる。 In one aspect, the present disclosure provides a method for freezing an unfrozen sample containing living cells while keeping the living cells alive. The method consists of placing an unfrozen sample containing a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution in an electric field generated by an electrode to which an alternating current (AC) voltage is applied. It involves freezing an unfrozen sample, that is, bringing it to a frozen state, by cooling while applying a conduction current. Normally, when an unfrozen cell is frozen, ice crystals form and develop inside and outside the cell, which are primarily responsible for the cell's viability, proliferation ability, and other cell-specific biological functions. A loss of properties occurs. By freezing using the method of this embodiment, the loss can be significantly suppressed. That is, living cells frozen by the method of the present embodiment can maintain viability at a high rate even after thawing, and can maintain substantially the same or similar characteristics as the cells before freezing.
 本開示において使用される「凍結溶液」という用語は、その溶液に細胞を浸漬させて凍結させるための液を意味し、その用語自体は液が凍結しているか、凍結していないか、または凍結する途中であるかを表してはいない。典型的な凍結溶液は水性液であることが当業者に理解され、通常、凍結溶液の重量の少なくとも半分は水で占められる。本実施形態の凍結溶液は、凍結保護剤を含む。凍結保護剤は、生細胞凍結の分野の当業者によく知られており、多様な種類が存在する。従来の緩慢凍結法で用いられる種類と濃度の凍結保護剤を、本実施形態で使用することができる。凍結保護剤は、水中に溶解して存在することにより、氷結晶形成に伴う細胞のダメージを抑制する機能を提供する。本実施形態において好ましい凍結保護剤の例としては、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、またはこれらいずれかの組合せが挙げられる。これらはいずれも、細胞内に浸透して細胞内の水分子に置き換わるという共通の機序によって、氷結晶形成に関連するダメージを抑制する水溶性分子である。ジメチルスルホキシド(DMSO)は最も広く使用されている凍結保護剤であり、本実施形態においても特に好ましく使用され得る。本実施形態において好ましい凍結保護剤の別の例は、両性高分子電解質(polyampholytes)である(Communications Materials (2021) 2:15参照)。両性高分子電解質は例えばカルボキシル化ポリ-L-リジンであり得、当業者に知られるようにこれはε-ポリ-L-リジンのアミノ基の一部がカルボキシル化されたものである。両性高分子電解は、細胞内に浸透しないという点で上記DMSO等と異なっているが、本実施形態においてこれも使用可能であり、上述した他の凍結保護剤と組み合わされても使用され得る。 The term "freezing solution" as used in this disclosure refers to a solution for freezing cells by immersing them in the solution, and the term itself does not indicate whether the solution is frozen, unfrozen, or frozen. It does not indicate that it is in the process of being done. It will be appreciated by those skilled in the art that a typical freezing solution is an aqueous liquid, and usually at least half of the weight of the freezing solution will be comprised of water. The freezing solution of this embodiment includes a cryoprotectant. Cryoprotectants are well known to those skilled in the art of live cell freezing, and a wide variety of types exist. Cryoprotectant types and concentrations used in conventional slow freezing methods can be used in this embodiment. Cryoprotectants, when dissolved in water, provide the ability to suppress cell damage associated with ice crystal formation. Examples of preferred cryoprotectants in this embodiment include dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, or a combination of any of these. These are all water-soluble molecules that inhibit the damage associated with ice crystal formation by a common mechanism: they penetrate cells and displace intracellular water molecules. Dimethyl sulfoxide (DMSO) is the most widely used cryoprotectant and may be particularly preferably used in this embodiment. Another example of a cryoprotectant preferred in this embodiment is polyampholytes (see Communications Materials (2021) 2:15). The polyampholyte may be, for example, carboxylated poly-L-lysine, which, as known to those skilled in the art, is ε-poly-L-lysine in which some of the amino groups are carboxylated. Amphoteric polymer electrolysis differs from the above-mentioned DMSO and the like in that it does not penetrate into cells, but it can also be used in this embodiment, and it can also be used in combination with the other cryoprotectants mentioned above.
 いくつかの実施形態では、凍結溶液中のジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度は、例えば5~30%(w/v)であり、7~25%、8~20%、または9~15%であり得る。「%(w/v)」とは、当業者に通常理解されるように、重量/体積の濃度を表し、100 mLの水溶液当たり何グラムの対象成分が溶解されているかを示す百分率である。一実施形態では、凍結溶液は8~20%または9~15%(w/v)のジメチルスルホキシドを含み、他の凍結保護剤を含んでいなくてもよい。 In some embodiments, the concentration of dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is, for example, 5-30% (w/v); It can be 7-25%, 8-20%, or 9-15%. "% (w/v)", as commonly understood by those skilled in the art, represents a weight/volume concentration and is a percentage indicating how many grams of the target component are dissolved per 100 mL of aqueous solution. In one embodiment, the freezing solution contains 8-20% or 9-15% (w/v) dimethyl sulfoxide and may contain no other cryoprotectants.
 当業者に知られているように、凍結溶液は上記以外の凍結保護剤および凍結保護剤以外から選択される成分を含んでいてもよい。そのような成分の例としては、糖(例えばグルコース、トレハロース等)、タンパク質(例えばウシ血清アルブミンまたはヒト血清アルブミン等の血清アルブミン)、ポリマー(例えばセルロース誘導体、ヒドロキシエチルスターチ、デキストラン、ポリエチレングリコール、ポリ-L-リジン等)、緩衝剤(例えばHEPES、リン酸塩、炭酸塩等)、血清、および細胞培養培地の成分が挙げられるが、これらに限定されない。 As known to those skilled in the art, the freezing solution may contain other cryoprotectants and components selected from other cryoprotectants. Examples of such ingredients include sugars (e.g. glucose, trehalose, etc.), proteins (e.g. serum albumin such as bovine serum albumin or human serum albumin), polymers (e.g. cellulose derivatives, hydroxyethyl starch, dextrans, polyethylene glycols, -L-lysine, etc.), buffers (eg, HEPES, phosphates, carbonates, etc.), serum, and components of cell culture media.
 細胞が溶液に「浸漬」される場合、細胞がその溶液に接触して、溶液中の成分(例えばDMSOのような凍結保護剤)が細胞内に浸透する。細胞の浸漬は、細胞または細胞群を溶液に懸濁、分散、その他の態様で包囲させることによって達成され得る。 When cells are "immersed" in a solution, they come into contact with the solution and components in the solution (e.g. cryoprotectants such as DMSO) penetrate into the cells. Immersion of cells can be accomplished by suspending, dispersing, or otherwise encapsulating cells or groups of cells in a solution.
 生細胞は、真核細胞または原核細胞であり得、真核細胞は例えば動物細胞または植物細胞であり得る。生細胞は好ましくは動物細胞であり、例えば昆虫細胞、鳥類細胞、魚類細胞、または哺乳類細胞であり得る。哺乳類細胞は例えばげっ歯類細胞(例えばマウス、ラット、またはハムスター)、鯨偶蹄目細胞(例えばウシ、ブタ、ヒツジ、ヤギ等)、または霊長類細胞(例えばサルまたはヒト)であり得る。生細胞は例えば、幹細胞、不死化細胞、または癌細胞であり得る。好ましい一実施形態では、生細胞は、人工多能性幹(iPS)細胞、胚性幹(ES)細胞、またはそれらのいずれかに由来する分化細胞である。好ましい一実施形態では、生細胞は、動物(特にヒト等の哺乳類動物)の精子、卵子、または受精卵である。いくつかの実施形態では、生細胞は、生体組織内で付随していた他の細胞種から分離されて培養物中に維持されている目的細胞タイプ(複数可)、またはそれらに由来する(例えば、遺伝子操作された、および/または分化された)細胞からなる、培養細胞である。 A living cell may be a eukaryotic cell or a prokaryotic cell, and a eukaryotic cell may be, for example, an animal cell or a plant cell. The living cells are preferably animal cells, and may for example be insect cells, avian cells, fish cells or mammalian cells. Mammalian cells can be, for example, rodent cells (eg, mouse, rat, or hamster), artiodactyl cells (eg, bovine, porcine, ovine, goat, etc.), or primate cells (eg, monkey or human). Living cells can be, for example, stem cells, immortalized cells, or cancer cells. In one preferred embodiment, the living cells are induced pluripotent stem (iPS) cells, embryonic stem (ES) cells, or differentiated cells derived from either. In one preferred embodiment, the living cell is a sperm, an egg, or a fertilized egg of an animal (especially a mammal such as a human). In some embodiments, the living cells are derived from or are derived from cell type(s) of interest that have been separated from other cell types with which they were associated in living tissue and maintained in culture (e.g. , genetically engineered, and/or differentiated) cells.
 凍結溶液中の細胞濃度は、当業者が通常の知識に基づいて適宜選択することができ、細胞の種類によって異なり得る。典型的な例では、細胞濃度は凍結溶液1 mLあたり104~107細胞であり得、例えば1×106~5×106細胞/mLである。いくつかの実施形態では、細胞濃度は、試料1 mLあたり104~107細胞であり得、例えば1×106~5×106細胞/mLである。本実施形態において凍結される各試料中の凍結溶液の量、または各試料の総量は、例えば0.05~10 mL、0.1~5 mL、または0.2~1 mLであり得るがこれらに限定されない。生細胞の試料は通常、クライオチューブ、クライオバイアル、またはガラスアンプル管と呼ばれる容器に入れられて凍結されることが当業者に理解される。本実施形態において電流を流しながら凍結することに適した試料容器の形状および材質は当業者が適宜決定することができ、一般的に使用されているクライオチューブ、クライオバイアル、またはガラスアンプル管、例えば市販のクライオチューブ、クライオバイアル、またはガラスアンプル管が好適に使用され得る。最も典型的には、細胞凍結のための試料を入れる容器は、略円筒状、あるいはチューブ状であり、そのような形状は試料中の熱および電流の伝導の均一化を促進できるため好ましい。容器に適した材料の例はポリプロプレン、ポリエチレン、およびガラスであるがこれらに限定されない。 The cell concentration in the freezing solution can be appropriately selected by those skilled in the art based on common knowledge, and may vary depending on the type of cell. In a typical example, the cell concentration may be 10 4 to 10 7 cells per mL of freezing solution, such as 1×10 6 to 5×10 6 cells/mL. In some embodiments, the cell concentration can be between 10 4 and 10 7 cells per mL of sample, such as between 1×10 6 and 5×10 6 cells/mL. The amount of freezing solution in each sample frozen in this embodiment, or the total amount of each sample, can be, for example, but not limited to, 0.05-10 mL, 0.1-5 mL, or 0.2-1 mL. Those skilled in the art will appreciate that samples of living cells are typically frozen in containers called cryotubes, cryovials, or glass ampoule tubes. In this embodiment, the shape and material of the sample container suitable for freezing while applying an electric current can be appropriately determined by those skilled in the art, and may be a commonly used cryotube, cryovial, or glass ampoule tube, for example. Commercially available cryotubes, cryovials, or glass ampoule tubes may be suitably used. Most typically, a container containing a sample for cell freezing has a substantially cylindrical or tubular shape, and such a shape is preferred because it can promote uniform conduction of heat and current in the sample. Examples of suitable materials for the container include, but are not limited to, polypropylene, polyethylene, and glass.
 本開示において「未凍結」という語は、凍結していない状態を表し、通常は流動できる液の状態を表す。本実施形態の方法において、凍結溶液と生細胞とを含む試料は、未凍結の状態から始まって冷却されて、凍結状態に至り、そのプロセスのあいだ(例えば少なくとも30分間に渡って)試料に交流電圧が印加されて(すなわち試料が電界中に置かれて)伝導電流が流される。これは、試料が、凍結溶液の凝固温度より高い温度(例えば、少なくとも5℃高い、少なくとも10℃高い、または少なくとも15℃高い温度)から始まって、凍結溶液の凝固温度より低い温度(例えば、少なくとも5℃低い、少なくとも10℃低い、または少なくとも15℃低い温度)に至り、そのあいだ上記交流電圧が印加されることを意味し得る。凍結溶液の凝固温度は、液の組成に応じて変化し得、当業者が容易に決定することができる。試料の凝固温度および導電率は、凍結溶液の組成によって主に支配され、懸濁された細胞の影響は比較的限定的であり得る。要はフリーザーの外から持ち込まれた未凍結の状態から始まってフリーザー中で凍結状態が達成されればよく、通常、個々の凍結溶液または試料の凝固温度を正確に特定する必要はない。例えば、25℃~-4℃または20℃~0℃の範囲内の温度(凍結溶液の凝固温度より高い温度)から、-15℃~-80℃または-20℃~-50℃の範囲内の温度(凍結溶液の凝固温度より低い温度)まで試料が冷却され、少なくともそのあいだ、試料に上記交流電圧が印加される。本実施形態において、試料が未凍結状態から凍結状態に至るまでのあいだ上記電界は途切れず継続して生じさせられる。従って、上記交流電圧が継続して印加され、上記伝導電流は継続して流され得る。電界は、試料の凍結前、凍結中、および凍結後を通じて途切れず継続して生じ得、例えば凍結試料はフリーザーから取り出されるときまでその電界中に置かれてもよい。 In this disclosure, the term "unfrozen" refers to an unfrozen state, typically a flowable liquid state. In the method of this embodiment, a sample comprising a freezing solution and live cells is cooled starting from an unfrozen state to a frozen state, and the sample is exposed to an electrical current during the process (e.g., for at least 30 minutes). A voltage is applied (ie, the sample is placed in an electric field) and a conduction current is caused to flow. This means that the sample starts at a temperature above the freezing temperature of the freezing solution (e.g., at least 5°C above, at least 10°C above, or at least 15°C above) and starts at a temperature below the freezing temperature of the freezing solution (for example, at least 5° C. lower, at least 10° C. lower, or at least 15° C. lower) during which said alternating voltage is applied. The freezing temperature of a freezing solution may vary depending on the composition of the liquid and can be readily determined by one skilled in the art. The solidification temperature and conductivity of the sample are primarily governed by the composition of the freezing solution, and the influence of suspended cells can be relatively limited. The point is that a frozen state is achieved in the freezer starting from an unfrozen state brought in from outside the freezer, and it is usually not necessary to accurately specify the freezing temperature of each freezing solution or sample. For example, from a temperature in the range 25°C to -4°C or 20°C to 0°C (above the freezing temperature of the freezing solution) to a temperature in the range -15°C to -80°C or -20°C to -50°C. The sample is cooled to a temperature (lower than the solidification temperature of the freezing solution), and the alternating current voltage is applied to the sample at least during that time. In this embodiment, the electric field is continuously generated without interruption while the sample changes from an unfrozen state to a frozen state. Therefore, the alternating current voltage may be continuously applied and the conduction current may continue to flow. The electric field may occur uninterruptedly before, during, and after freezing the sample; for example, a frozen sample may be placed in the electric field until removed from the freezer.
 本実施形態において凍結プロセスのあいだ試料に流れる伝導電流は典型的に0.1~500 nAであり得、例えば0.2~200 nA、0.5~100 nA、または1~50 nAであり得る。未凍結の試料を凍結状態まで至らせる冷却のあいだに各試料に流れる伝導電流の大きさが0.5μA(500 nA)を超えないことが好適であり、0.4μAまたは0.1μAを超えないことが好ましい。試料内の異なる位置により、および/または時間経過により、電流値の微細な変動は不可避的に存在し得るが、本開示における試料の電流値はその試料についての平均値として解される。伝導電流が0.5μAを超えても、解凍後の細胞の生存率は高く維持され得るが、細胞の生物学的機能について抑制、ばらつき、またはその他の不自然な影響が生じる可能性がある。一般に生細胞凍結の分野では、凍結する前の細胞と同じ生存性と機能が凍結・解凍を経て維持されることが目標とされるが、ここでいう「不自然な影響」とは、凍結しなかった細胞と比べた機能的な違いが凍結・解凍を経たがゆえに生じることを含む。 The conduction current flowing through the sample during the freezing process in this embodiment may typically be between 0.1 and 500 nA, such as between 0.2 and 200 nA, between 0.5 and 100 nA, or between 1 and 50 nA. Preferably, the magnitude of the conducted current flowing through each sample during cooling of an unfrozen sample to a frozen state does not exceed 0.5 μA (500 nA), and preferably does not exceed 0.4 μA or 0.1 μA. . Although there may inevitably be slight fluctuations in the current value due to different locations within the sample and/or over time, the current value of a sample in the present disclosure is interpreted as an average value for that sample. Conducted currents greater than 0.5 μA may maintain high cell viability after thawing, but may result in inhibition, variability, or other unnatural effects on the biological function of the cells. Generally, in the field of live cell freezing, the goal is to maintain the same viability and function as the cell before freezing, but the term "unnatural effects" here refers to This includes functional differences that arise due to the freezing and thawing process compared to cells that did not.
 未凍結の試料を凍結まで冷却させる際に試料または凍結溶液にこれらの範囲内の伝導電流が流れるように、冷凍室空間内に電界を発生させる印加電圧の大きさおよび/または冷凍室空間内の試料の位置を調節することができる。フリーザーに応じた適切な印加電圧の大きさおよび試料の位置は、試料または凍結溶液に対応する組成の模擬試料を使用して事前に試験することができる。試料に交流電圧を印加することにより伝導電流を流すことは、具体的には、交流電圧(例えば実効値で0.1~100 kVまたは0.5~10 kV)が印加され電界を生じている電極上にまたはその近傍に試料を置くことによって達成することができる。好ましくは、凍結溶液が電極から20 cm以内、10 cm以内、または5 cm以内の範囲に入るように試料が置かれる。 The magnitude of the applied voltage that generates an electric field within the freezer space and/or the magnitude of the voltage within the freezer space so that a conduction current within these ranges flows through the sample or freezing solution when an unfrozen sample is cooled to freezing. The position of the sample can be adjusted. The appropriate applied voltage magnitude and sample position depending on the freezer can be tested in advance using a simulated sample of composition corresponding to the sample or freezing solution. Specifically, passing a conduction current by applying an alternating current voltage to a sample refers to applying an alternating current voltage (e.g., 0.1 to 100 kV or 0.5 to 10 kV in effective value) on an electrode to generate an electric field. This can be achieved by placing the sample near it. Preferably, the sample is placed such that the freezing solution is within 20 cm, within 10 cm, or within 5 cm of the electrode.
 試料にそのような伝導電流を流すことができるフリーザーの具体的構造は、本開示および特許文献7に提供される情報に基づいて当業者が適宜決定することができる。冷凍室内に電極を有する所与の寸法のフリーザーの、冷凍室内の所与の位置に置かれた試料に流れる伝導電流および対応する印加電圧は、当業者により測定可能であり(例えば、実際に凍結しようとしている真の試料ではなく、対応する組成の模擬試料を使用して)、シミュレーションにより計算することもできる。電流密度Jは式J=σEで表され、ここでEは電界強度、σは導電率である。従って、電圧が印加された電極により生じる電界強度(電位の勾配)から、試料の電流密度ひいては電流値を計算することができる。図3に例示されているように、試料内で、電極面に平行に位置する所与の領域には、概して均等な電流密度が生じ得、その電流密度にその領域の面積を乗ずることによって電流値を求めることができる。試料チューブ内でも電流密度の小さなばらつきは存在し得るが、試料全体平均(あるいは試料のバルク)に流れる電流が例えば上記のような特定範囲内となる条件は明確に特定することができる。試料の電流密度は例えば2~500μA/m2のあいだで変更させ得る。交流は好ましくは正弦波交流であるがこれに限定されない。本実施形態における交流の周波数は500 Hzより低いことが好適であり、好ましくは10 Hz~200 Hzまたは20 Hz~100 Hzであり得、商用電源の周波数である50 Hzまたは60 Hzも好適に使用できる。これらの範囲を超えて交流電圧の周波数を高くすると、生細胞の生物学的機能に対して不自然な影響ないし悪影響が及ぶ可能性がある。 The specific structure of a freezer capable of passing such conduction current through a sample can be appropriately determined by one skilled in the art based on the present disclosure and the information provided in Patent Document 7. The conduction current and corresponding applied voltage flowing to a sample placed at a given position within the freezing chamber for a freezer of given dimensions with electrodes within the freezing chamber can be measured by one skilled in the art (e.g., when actually freezing It can also be calculated by simulation (using a simulated sample of the corresponding composition rather than the true sample being attempted). The current density J is expressed by the formula J=σE, where E is the electric field strength and σ is the conductivity. Therefore, the current density of the sample, and hence the current value, can be calculated from the electric field strength (potential gradient) generated by the electrode to which a voltage is applied. As illustrated in Figure 3, a given region within a sample located parallel to the electrode plane can have a generally uniform current density, and by multiplying the current density by the area of that region, the current You can find the value. Although there may be small variations in the current density within the sample tube, it is possible to clearly specify the conditions under which the average current flowing through the entire sample (or the bulk of the sample) falls within a specific range, for example, as described above. The current density of the sample can be varied, for example, between 2 and 500 μA/m 2 . The alternating current is preferably a sinusoidal alternating current, but is not limited thereto. The frequency of the alternating current in this embodiment is suitably lower than 500 Hz, preferably 10 Hz to 200 Hz or 20 Hz to 100 Hz, and the frequency of commercial power supply, 50 Hz or 60 Hz, is also preferably used. can. Increasing the frequency of the alternating voltage beyond these ranges may have unnatural or adverse effects on the biological functions of living cells.
 本実施形態において未凍結の試料を冷却し凍結させることは、例えば、凍結溶液の凝固温度より低い温度の冷凍室と、その冷凍室内に設置され、上述したAC電圧が印加された電極とを有するフリーザーの冷凍室内に、未凍結の試料を置くことによって行うことができる。この冷凍室の温度は、一定温度であってもよい。つまり、プログラムフリーザーのように冷却速度のコントロール乃至緩慢化を特に行わなくても、未凍結の試料を一定温度(例えば-15℃~-80℃または-20℃~-50℃)のフリーザー冷凍室内に放置するだけで、本実施形態の凍結方法は実現され得る。ここでいう「一定温度」の冷凍室とは、閉じられたときに、設定温度±1℃以内で安定な温度を提供する冷凍室を意味する。これはプログラムフリーザーと比べて手順の簡略化およびコスト削減という点において大きな利点となり得る。しかしながら、プログラムフリーザーまたはその他の手段による冷却速度の緩慢化と、本実施形態の方法による電流適用を組み合わせてもよく、その場合でも、細胞の生物学的特性の保存という点に関して、電流を適用しない場合(つまり緩慢凍結法単独)と比べて、電流を適用することによるさらなる利益が生じ得る。本実施形態の方法は、特許文献1~4に記載された方法とも異なる技術である。例えば、本実施形態の方法に使用されるフリーザーは、特許文献1~4のような冷凍室の周囲または壁内に変動(交流)磁場または静磁場を発生させるコイルまたは磁石を要しない。一実施形態において、試料の冷却は、磁場の適用を実質的に伴わない。磁場の適用を実質的に伴わないとは、交流電圧が印加された電極から生じる電界中に試料を置く際に不可避的に存在し得る微小な磁場を除き、コイルまたは磁石等の使用による試料への意図的な磁場の適用は行わないことを意味する。 In this embodiment, cooling and freezing an unfrozen sample includes, for example, a freezing chamber with a temperature lower than the solidification temperature of the freezing solution, and an electrode installed in the freezing chamber and to which the above-mentioned AC voltage is applied. This can be done by placing an unfrozen sample in the freezing chamber of a freezer. The temperature of this freezer compartment may be constant. In other words, you can store unfrozen samples in a freezer at a constant temperature (for example, -15°C to -80°C or -20°C to -50°C) without having to particularly control or slow down the cooling rate like in a program freezer. The freezing method of the present embodiment can be achieved by simply leaving it in the water. The "constant temperature" freezer compartment here means a freezer compartment that provides a stable temperature within ±1°C of the set temperature when closed. This can be a major advantage in terms of procedural simplification and cost reduction compared to programmed freezers. However, the slowing of the cooling rate by a programmed freezer or other means may be combined with the application of current according to the method of the present invention, even if no current is applied in terms of preserving the biological properties of the cells. Additional benefits may result from applying an electric current compared to the case (i.e., slow freezing alone). The method of this embodiment is a technology different from the methods described in Patent Documents 1 to 4. For example, the freezer used in the method of the present embodiment does not require a coil or magnet to generate a fluctuating (alternating current) or static magnetic field around or within the wall of the freezing chamber, as in Patent Documents 1-4. In one embodiment, cooling the sample does not substantially involve application of a magnetic field. Substantially not involving the application of a magnetic field means that the application of a coil or magnet to the sample does not involve the use of coils, magnets, etc., except for the minute magnetic field that may unavoidably exist when the sample is placed in an electric field generated from an electrode to which an alternating voltage is applied. This means that there is no intentional application of a magnetic field.
 ここで、本実施形態の方法を適用することができるフリーザーの一例について説明する。図1はフリーザー1の斜視図であり、図2は図1の切断面II-IIによるフリーザー1の断面図である。フリーザー1の本体2には、上面に開口する冷凍室3が形成され、冷凍室3は本体2にヒンジ7で取り付けられたドア6によって開閉が可能である。冷凍室3は、本体2およびドア6に設けられた断熱材8によって取り囲まれ、冷凍室3内の冷却板12、外部のラジエーター13およびコンプレッサー11を含んで構成されるヒートポンプを冷凍サイクルで運転することによって冷却される。本体2には制御モジュール16が設けられ、制御モジュール16はコントロールパネル5の操作に応じてヒートポンプを駆動し、冷凍室3の温度を制御することができる。冷凍室3内には碍子で支持された金属製の棚4が設けられ(棚4は冷凍室3の内壁から絶縁されている)、棚4は変圧器15の二次側の端子の一つに接続されて高電圧が印加されている。すなわちこの例では棚4が電極となっている。これによって冷凍室3内には交番電場が発生し、棚4に載置された試料には、試料の導電率に応じた微小な電流が流れるようになる。この電流(または印加電圧)についても、コントロールパネル5を通じて制御することができる。この例では冷凍室3内に一つの棚4が設けられているが、複数の棚(電極)を設けてもよい。 Here, an example of a freezer to which the method of this embodiment can be applied will be described. FIG. 1 is a perspective view of the freezer 1, and FIG. 2 is a sectional view of the freezer 1 taken along section II-II in FIG. The main body 2 of the freezer 1 is formed with a freezing chamber 3 that opens on the top surface, and the freezing chamber 3 can be opened and closed by a door 6 attached to the main body 2 with a hinge 7. The freezing compartment 3 is surrounded by a heat insulating material 8 provided on the main body 2 and the door 6, and a heat pump including a cooling plate 12 inside the freezing compartment 3, an external radiator 13, and a compressor 11 is operated in a refrigeration cycle. It is cooled by this. The main body 2 is provided with a control module 16, and the control module 16 can drive the heat pump according to the operation of the control panel 5 and control the temperature of the freezing compartment 3. A metal shelf 4 supported by an insulator is provided inside the freezer compartment 3 (shelf 4 is insulated from the inner wall of the freezer compartment 3), and the shelf 4 is one of the terminals on the secondary side of the transformer 15. is connected and high voltage is applied. That is, in this example, the shelf 4 serves as an electrode. As a result, an alternating electric field is generated in the freezing chamber 3, and a minute current flows through the sample placed on the shelf 4 in accordance with the conductivity of the sample. This current (or applied voltage) can also be controlled through the control panel 5. In this example, one shelf 4 is provided in the freezer compartment 3, but a plurality of shelves (electrodes) may be provided.
 いくつかの実施形態において、本方法は、試料が凍結した後に、凍結された試料を-80℃以下または-150℃以下の温度で保存することをさらに含んでもよい。このことは例えば、これらの温度のディープフリーザー中にその凍結された試料を置くことによって達成できる。あるいは本方法は、試料が凍結した後に、液体窒素を含有するタンク中にその凍結された試料(すなわち、凍結状態のままの試料)を移すこと、および、該タンク中で、上記凍結された試料を液体窒素またはその蒸気に曝露しながら保存することを含んでもよい。このように、いったん凍結された細胞試料を、ディープフリーザーまたは液体窒素を用いて長期保存することは、研究室、医療機関、および細胞バンク等で日常的に行われているプラクティスであり、本実施形態の凍結方法の後に組み合わせることができる。本実施形態の方法により凍結された生細胞の生物学的特性は、その後のディープフリーザーまたは液体窒素での保存期間の長さに実質的に影響されないことが見出された。 In some embodiments, the method may further include storing the frozen sample at a temperature of -80°C or lower or -150°C or lower after the sample is frozen. This can be accomplished, for example, by placing the frozen sample in a deep freezer at these temperatures. Alternatively, the method includes, after the sample has been frozen, transferring the frozen sample (i.e., the sample that remains frozen) into a tank containing liquid nitrogen; may also include storage while exposed to liquid nitrogen or its vapor. In this way, long-term storage of frozen cell samples using deep freezers or liquid nitrogen is a routine practice in laboratories, medical institutions, and cell banks. The form can be combined after freezing method. It has been found that the biological properties of living cells frozen by the method of this embodiment are not substantially affected by the length of subsequent storage in a deep freezer or in liquid nitrogen.
 本開示の方法は、スフェロイドを形成させる目的の生細胞を凍結することに特別な有用性を見出す。従って、一態様において本開示は、スフェロイドを形成する方法を提供する。スフェロイドは、シングルセルからのインビトロ培養過程により形成される、三次元的な(通常は、略球状の)構造を有する細胞集塊である。本開示における「シングルセル」という用語は、会合せず個々の細胞に解離された状態の細胞群を意味する。スフェロイドはシングルセルおよび二次元的培養細胞よりも生体内の細胞に近い状態を提供し得る。また、スフェロイドからさらに分化を誘導させて臓器様の特性を有するオルガノイドに発達させることもできる。従って、スフェロイドは医学、創薬等における有用性が高い。スフェロイドを形成する能力を有する細胞群を、凍結保存し、解凍後にスフェロイドを形成させるまたは形成を継続させることの強いニーズがある。しかしながら、従来法による凍結では、三次元的細胞集塊形成能が著しく喪失してしまうことが問題になっていた。すなわち多くの場合、凍結および解凍を経た細胞は三次元的細胞集塊形成能を著しく喪失してしまう。本実施形態の凍結方法は、生物学的特性を保存することにおいて優れており、三次元的細胞集塊形成能もよく保存できることが見出された。すなわち、上記凍結方法の実施形態により凍結される生細胞は、スフェロイド形成能を有する生細胞であり得る。 The methods of the present disclosure find particular utility in freezing living cells for the purpose of forming spheroids. Accordingly, in one aspect, the present disclosure provides a method of forming spheroids. A spheroid is a cell aggregate having a three-dimensional (usually approximately spherical) structure formed by an in vitro culture process from a single cell. The term "single cell" in this disclosure refers to a group of cells that are not associated and are dissociated into individual cells. Spheroids can provide conditions closer to in vivo cells than single cells and two-dimensional cultured cells. Furthermore, spheroids can be further induced to differentiate and develop into organoids with organ-like properties. Therefore, spheroids are highly useful in medicine, drug discovery, and the like. There is a strong need to cryopreserve a group of cells that have the ability to form spheroids and allow them to form or continue to form spheroids after thawing. However, the problem with conventional freezing methods is that the ability to form three-dimensional cell aggregates is significantly lost. That is, in many cases, cells that have undergone freezing and thawing significantly lose their ability to form three-dimensional cell aggregates. It has been found that the freezing method of this embodiment is excellent in preserving biological properties and can also preserve three-dimensional cell agglomeration ability. That is, the living cells frozen by the embodiment of the freezing method described above may be living cells that have the ability to form spheroids.
 本開示の一態様による、スフェロイドを形成する方法は、スフェロイド形成能を有する生細胞を、上述した実施形態の方法によって凍結すること、そしてその後、凍結された生細胞を解凍すること、および解凍された生細胞を培養してスフェロイドを形成させることを含む。スフェロイド形成能を有する細胞は当業者に知られている。スフェロイドは一般に、細胞群が互いに接着しながら立体的に自己会合することによって形成される。ハンギングドロップ法等、複数の異なる方法によってスフェロイドを形成することができることが当業者に知られている。最も単純な方法では、U字底(丸底)ウェル中でシングルセルを培養することにより、スフェロイドが形成される。スフェロイド形成用途に適した低付着性のU字底ウェルプレートが当業者に知られており、多数市販されている。 A method of forming spheroids according to one aspect of the present disclosure includes freezing living cells capable of forming spheroids by the method of the embodiment described above, and then thawing the frozen living cells, and thawing the living cells. and culturing living cells to form spheroids. Cells capable of forming spheroids are known to those skilled in the art. Spheroids are generally formed by three-dimensional self-association of cell groups while adhering to each other. It is known to those skilled in the art that spheroids can be formed by a number of different methods, such as the hanging drop method. In the simplest method, spheroids are formed by culturing single cells in U-bottom (round-bottom) wells. Low attachment U-bottom well plates suitable for spheroid formation applications are known to those skilled in the art and are commercially available in large numbers.
 通常、スフェロイドの継代は、形成中すなわち拡大中のスフェロイドをいったんシングルセルに解離して、より少数の細胞から再度スフェロイド形成を開始させることにより行われる。つまり、固有のスフェロイド形成能を有する細胞は、シングルセルの状態にあっても形成中のスフェロイドの一部をなしている状態にあっても、自己会合して拡大していく能力を同様に有していると理解することができる。本実施形態において、凍結される生細胞は、シングルセルの状態であってもよいしスフェロイド形成中の状態であってもよい。「スフェロイドを形成する」とは、シングルセルからスフェロイド形成を新たに開始すること、および/または、形成中のスフェロイドの形成を続行することを意味し得る。解凍された生細胞は、直ちに、すなわち継代または分化のステップを経ることなく、スフェロイドを形成させるための培養に供することができる。 Normally, spheroids are passaged by once dissociating forming or expanding spheroids into single cells, and then restarting spheroid formation from a smaller number of cells. In other words, cells with inherent spheroid-forming ability have the same ability to self-associate and expand, whether they are in a single cell state or as part of a forming spheroid. I can understand that you are doing it. In this embodiment, the living cells to be frozen may be in a single cell state or may be in a state in which a spheroid is being formed. "Forming a spheroid" can mean starting spheroid formation anew from a single cell and/or continuing the formation of a spheroid in progress. Thawed living cells can be cultured to form spheroids immediately, ie, without passage or differentiation steps.
 生細胞を解凍させる適切な方法は当業者に知られている。通常は、凍結した細胞試料を37℃で迅速に解凍することが好ましい。 Suitable methods for thawing living cells are known to those skilled in the art. It is usually preferable to rapidly thaw frozen cell samples at 37°C.
 別の態様において本開示は、生細胞を含む未凍結の細胞試料を、該生細胞を生存させたまま凍結するための生細胞凍結システムを提供する。本実施形態の生細胞凍結システムは、例えば、上述した凍結方法の実施形態を実施するために使用することができる。上述した凍結方法の実施形態と、生細胞凍結システムの実施形態とは、共通のエレメントを有しており、凍結方法の実施形態に関して提供された説明は生細胞凍結システムの実施形態にも適用され得、その逆もまた然りであることが理解されるべきである。 In another aspect, the present disclosure provides a live cell freezing system for freezing an unfrozen cell sample containing living cells while keeping the living cells alive. The live cell freezing system of this embodiment can be used, for example, to implement the embodiment of the freezing method described above. The freezing method embodiments and live cell freezing system embodiments described above have common elements, and the description provided with respect to the freezing method embodiments also applies to the live cell freezing system embodiments. It should be understood that the same can be said for a given term, and vice versa.
 いくつかの実施形態において、生細胞凍結システムは、変圧器、冷凍室、電極、および細胞試料を含む。電極は、変圧器に電気的に接続され、かつ、冷凍室内に設置される。電極の形状は、例えば、板(電極板)、またはロッド(例えば、単独の、複数の、もしくは組み合わされてグリッドを形成する複数の、ストレートなロッド、または、曲線状、蛇行状等の非ストレートなロッド)等を含み得るがこれらに限定されない。細胞試料も冷凍室内に置かれる。変圧器は冷凍室の外に配置され得る。例えば、板状、グリッド状等の概して平面的な電極が冷凍室内に水平に設置され、その概して平面的な電極の上に細胞試料の容器(例えばチューブ)が置かれることが好ましい。このように、電極はフリーザーの試料棚の役割を果たすことができる。しかしながら、細胞試料の容器が電極に直接接触することは必須ではない。概して平面的な電極に対して細胞試料チューブが垂直に保持される(例えば、水平な電極板の上に細胞試料チューブが立てて置かれる)ことが、電流密度の均一性のために好ましい。 In some embodiments, a live cell freezing system includes a transformer, a freezing chamber, electrodes, and a cell sample. The electrode is electrically connected to the transformer and placed inside the freezer. The shape of the electrode can be, for example, a plate (electrode plate) or a rod (e.g., single, multiple, or a plurality of rods combined to form a grid, straight rods, or non-straight, such as curved or meandering). rods), etc., but are not limited to these. Cell samples are also placed in the freezing chamber. The transformer may be placed outside the freezer. For example, it is preferable that a plate-shaped, grid-shaped, or other generally planar electrode is installed horizontally in the freezing chamber, and a cell sample container (for example, a tube) is placed on the generally planar electrode. In this way, the electrode can act as a sample shelf in the freezer. However, it is not essential that the cell sample container be in direct contact with the electrode. Holding the cell sample tube perpendicular to the generally planar electrode (eg, placing the cell sample tube upright on a horizontal electrode plate) is preferred for uniformity of current density.
 この生細胞凍結システムにおける細胞試料も、上述した凍結方法の実施形態におけるものと同様に、凍結保護剤を含む凍結溶液と、凍結溶液に浸漬された生細胞とを含む。凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含み得る。凍結溶液中のジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度は、5~30%(w/v)、7~25%、8~20%、または9~15%であり得る。一実施形態では、凍結溶液は8~20%または9~15%(w/v)のジメチルスルホキシドを含み、他の凍結保護剤を含んでいなくてもよい。好適な生細胞の例は、人工多能性幹細胞株、胚性幹細胞株、およびそれらのいずれかに由来する分化細胞、ならびにスフェロイド形成能を有する細胞であり、形成中または形成されたスフェロイドであってもよい。 Similarly to the embodiment of the freezing method described above, the cell sample in this live cell freezing system also includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution. Cryoprotectants may include dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholytes, or combinations of any of these. The concentration of dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5-30% (w/v), 7-25%, 8-20%, Or it can be 9-15%. In one embodiment, the freezing solution contains 8-20% or 9-15% (w/v) dimethyl sulfoxide and may contain no other cryoprotectants. Examples of suitable living cells are induced pluripotent stem cell lines, embryonic stem cell lines, and differentiated cells derived from any of them, as well as cells that have spheroid-forming potential and are in the process of forming or have formed spheroids. It's okay.
 冷凍室は、凍結溶液の凝固温度より低い温度を有している。冷凍室の温度は例えば-15℃~-80℃または-20℃~-50℃であり得る。冷凍室は一定温度、すなわち±1℃以内で安定した温度に維持されていてもよい。生細胞凍結システム中に見出される細胞試料は、未凍結であり得、あるいは凍結状態であり得る。 The freezing chamber has a temperature lower than the freezing temperature of the freezing solution. The temperature of the freezer compartment can be, for example, between -15°C and -80°C or between -20°C and -50°C. The freezer compartment may be maintained at a constant temperature, ie, a stable temperature within ±1°C. Cell samples found in live cell freezing systems may be unfrozen or may be in a frozen state.
 変圧器と電極の電気的な接続は、典型的には電線を介して達成される。具体的には、変圧器の二次側端子対の一方が、電極に電気的に接続される。変圧器の二次側端子対の他方は開放されていてよい。変圧器自体も交流電源に電気的に接続されることが理解される。変圧器から供給される交流(AC)電圧が、電極に印加され、冷凍室内空間に電界が発生して、電極上または電極近傍にある細胞試料に伝導電流が流れる。この電流は典型的には0.1~500 nAの範囲内であり、0.2~200 nA、0.5~100 nA、または1~50 nAであってもよい。各試料に流れている伝導電流の大きさは0.5μA(500 nA)を超えないことが好適であり、0.4μAまたは0.1μAを超えないことが好ましい。交流電圧は500 Hzより低い周波数が好適であり、好ましくは10~200 Hzの範囲内の周波数で印加される。変圧器は、細胞試料が未凍結状態から凍結状態に至るまでのあいだ上記電界を途切れず継続して生じるように構成される。換言すると例えば、変圧器は、生細胞凍結システムの稼働中、または稼働時の冷凍室の閉鎖中は途切れず継続して上記電界を生じるように構成され得る。例えば、冷凍室が開閉可能なドアを有し、(例えば試料を出し入れするために)ドアを開けたときには電界発生が途切れ、ドアを閉じて冷凍室を閉鎖したときには継続して電界発生が起こるように変圧器を構成することができる。 Electrical connection between the transformer and the electrodes is typically accomplished via electrical wires. Specifically, one of the pair of secondary terminals of the transformer is electrically connected to the electrode. The other of the pair of secondary terminals of the transformer may be open. It is understood that the transformer itself is also electrically connected to the AC power source. An alternating current (AC) voltage provided by a transformer is applied to the electrodes, creating an electric field in the freezer space that causes a conduction current to flow through the cell sample on or near the electrodes. This current is typically in the range of 0.1-500 nA, and may be 0.2-200 nA, 0.5-100 nA, or 1-50 nA. The magnitude of the conduction current flowing through each sample preferably does not exceed 0.5 μA (500 nA), and preferably does not exceed 0.4 μA or 0.1 μA. The alternating current voltage is suitably applied at a frequency below 500 Hz, preferably within the range of 10-200 Hz. The transformer is configured to continuously generate the electric field while the cell sample changes from an unfrozen state to a frozen state. In other words, for example, the transformer may be configured to continuously generate the electric field during operation of the live cell freezing system or during closure of the freezing chamber during operation. For example, if a freezing chamber has a door that can be opened and closed, when the door is opened (for example, to take a sample in or out), the electric field generation will be interrupted, but when the door is closed and the freezing chamber is closed, the electric field generation will continue. The transformer can be configured as follows.
 本明細書において、「A~B」(あるいは「AからBまで」または「AとBの間」)という表現を用いて示された数値範囲は、「~」の前後に記載される数値AおよびBをそれぞれ最小値および最大値として含む範囲を示し、また、その最小値および/または最大値を除外した範囲も包含する。複数の数値範囲が記載されている場合は、或る記載された数値範囲の上限値または下限値は、別の記載された数値範囲の上限値または下限値と組み合わせることができ、そのように組み合わされてできる数値範囲も本開示において企図されている。 In this specification, the numerical range indicated using the expression "A to B" (or "from A to B" or "between A and B") refers to the numerical value A written before and after "..." and B as the minimum and maximum values, respectively, and also includes ranges excluding the minimum and/or maximum values. Where more than one numerical range is stated, the upper or lower value of one stated numerical range may be combined with the upper or lower value of another stated numerical range, and no such combination Numerical ranges that may occur are also contemplated in this disclosure.
関連出願への相互参照
 本願は、2022年6月17日に出願された国際出願PCT/JP2022/024417号の利益を主張し、該出願は参照によりその全体がここに組み入れられる。
 本開示はさらに以下の実施形態を含む。
[1]
 凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された生細胞とを含む、未凍結の試料を、交流電圧が印加された電極から生じる電界中に置くことにより伝導電流を流しながら冷却して、前記未凍結の試料を凍結させることを含む、生細胞を凍結する方法。
[2]
 前記冷却することは、前記凍結溶液の凝固温度より低い一定温度の冷凍室と、前記冷凍室内に設置され前記交流電圧が印加された電極とを有するフリーザーの前記冷凍室内に、前記未凍結の試料を置くことによって行われる、[1]に記載の方法。
[3]
 前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、[1]または[2]に記載の方法。
[4]
 前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、[3]に記載の方法。
[5]
 前記試料が凍結した後に、前記凍結された試料を-80℃以下の温度で保存することをさらに含む、[1]~[4]のいずれかに記載の方法。
[6]
 前記凍結された試料を-80℃以下の温度で保存することは、液体窒素を含有するタンク中に前記凍結された試料を移すこと、および、前記タンク中で、前記凍結された試料を前記液体窒素またはその蒸気に曝露しながら保存することを含む、[5]に記載の方法。
[7]
 前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、[1]~[6]のいずれか一項に記載の方法。
[8]
 スフェロイドを形成する方法であって、スフェロイド形成能を有する生細胞を、[1]~[7]のいずれか一項に記載の方法によって凍結すること、前記凍結された生細胞を解凍すること、および前記解凍された生細胞を培養してスフェロイドを形成させることを含む、方法。
[9]
 変圧器と、冷凍室と、前記変圧器に電気的に接続され前記冷凍室内に設置された電極と、前記冷凍室内に置かれた細胞試料とを含む、生細胞凍結システムであって、
 前記細胞試料は、凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された生細胞とを含み、
 前記冷凍室は、前記凍結溶液の凝固温度より低い温度を有し、
 前記変圧器により印加された交流電圧によって前記電極から前記冷凍室内に電界が生じ、前記細胞試料に伝導電流が流れている、
 生細胞凍結システム。
[10]
 前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、[9]に記載のシステム。
[11]
 前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、[10]に記載のシステム。
[12]
 前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、[9]~[11]のいずれか一項に記載のシステム。
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of international application PCT/JP2022/024417, filed June 17, 2022, which is hereby incorporated by reference in its entirety.
The present disclosure further includes the following embodiments.
[1]
An unfrozen sample containing a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution is cooled while passing a conduction current by placing it in an electric field generated from an electrode to which an alternating voltage is applied. and freezing the unfrozen sample.
[2]
The cooling means placing the unfrozen sample in the freezing chamber of a freezer, which has a freezing chamber at a constant temperature lower than the freezing temperature of the freezing solution, and an electrode installed in the freezing chamber and to which the AC voltage is applied. The method described in [1], which is carried out by placing .
[3]
The method according to [1] or [2], wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
[4]
The method according to [3], wherein the concentration of the dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5 to 30% (w/v). .
[5]
The method according to any one of [1] to [4], further comprising storing the frozen sample at a temperature of -80°C or lower after the sample is frozen.
[6]
Storing the frozen sample at a temperature below -80°C includes transferring the frozen sample into a tank containing liquid nitrogen, and storing the frozen sample in the tank containing liquid nitrogen. The method according to [5], which comprises storing while being exposed to nitrogen or its vapor.
[7]
The method according to any one of [1] to [6], wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
[8]
A method for forming spheroids, the method comprising: freezing living cells having spheroid-forming ability by the method according to any one of [1] to [7]; thawing the frozen living cells; and culturing the thawed living cells to form spheroids.
[9]
A live cell freezing system comprising a transformer, a freezing chamber, an electrode electrically connected to the transformer and installed in the freezing chamber, and a cell sample placed in the freezing chamber,
The cell sample includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution,
the freezing chamber has a temperature lower than the freezing temperature of the freezing solution;
An electric field is generated in the freezing chamber from the electrode by an alternating voltage applied by the transformer, and a conduction current is flowing through the cell sample.
Live cell freezing system.
[10]
The system of [9], wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
[11]
The system according to [10], wherein the concentration of the dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5-30% (w/v). .
[12]
The system according to any one of [9] to [11], wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
 以下の実施例は、代表的な実施形態を例示する目的に過ぎず、本発明はこれらの具体的な実施形態に限定されない。 The following examples are merely for the purpose of illustrating typical embodiments, and the present invention is not limited to these specific embodiments.
[実施例1:電流条件の検討]
 市販の従来型定温度フリーザーを改造して、本質的に図1および図2に示されたもののようなフリーザー1を作製した。従来型フリーザーの冷凍室外部に変圧器を設置し、さらに、その変圧器の二次側端子の一方に接続された金属製の棚(電極)を、冷凍室内下方に水平に設置した。冷凍室の底と棚板との間には絶縁硝子の支柱を挟んだ。変圧器の二次側端子の他方は開放されている。このフリーザー(変圧器を含む)を商用電源に接続して冷凍室中の冷却および電圧印加を行った。
[Example 1: Study of current conditions]
A commercially available conventional constant temperature freezer was modified to create a freezer 1 essentially as shown in FIGS. 1 and 2. A transformer was installed outside the freezing chamber of a conventional freezer, and a metal shelf (electrode) connected to one of the secondary terminals of the transformer was installed horizontally below the freezing chamber. An insulating glass support was sandwiched between the bottom of the freezer and the shelf board. The other secondary terminal of the transformer is open. This freezer (including a transformer) was connected to a commercial power source to cool the freezer compartment and apply voltage.
 後述する実施例のように異なる凍結条件の生物学的効果を研究することと合わせて、試料に流れる電流を分析した。電流は実測することも可能であるが、ここでは、計算による電流値の分析について記述する。 In addition to studying the biological effects of different freezing conditions as in the Examples described below, we analyzed the current flowing through the sample. Although it is possible to actually measure the current, here we will describe analysis of the current value by calculation.
 ムラタソフトウェア株式会社のFemtet(有限要素法シミュレーションソフトウェア)を使用し、以下のことを含む、実験条件に対応するパラメータを入力することによって、試料液に流れる電流を計算した:フリーザー1の冷凍室3内寸、金属製の棚4の寸法(縦×横×厚み)および冷凍室3内位置、試料チューブの寸法(長さ、外径、内径)および棚4に対する位置、試料液の量および導電率、ならびに棚4への印加電圧。典型的な試料チューブの内径は約8 mmである。水平な棚4に対して試料チューブは垂直に保持された。なお、図2ではグリッド状の棚4が示されているが、ここでは一枚板の板を電極/棚として使用した。また図には示していないが試料チューブを保持するために使用したチューブラックの寸法と材質も考慮に入れて計算を行った。 Using Femtet (finite element method simulation software) from Murata Software Co., Ltd., the current flowing through the sample liquid was calculated by inputting the parameters corresponding to the experimental conditions, including: Freezer 1 Freezer compartment 3 Internal dimensions, dimensions of metal shelf 4 (length x width x thickness) and position within freezing chamber 3, sample tube dimensions (length, outer diameter, inner diameter) and position relative to shelf 4, amount of sample liquid and conductivity , as well as the applied voltage to shelf 4. The inner diameter of a typical sample tube is approximately 8 mm. The sample tube was held vertically against the horizontal shelf 4. Although FIG. 2 shows a grid-like shelf 4, here a single plate was used as the electrode/shelf. Although not shown in the figure, the dimensions and material of the tube rack used to hold the sample tube were also taken into consideration in the calculation.
 後述する実施例に記載されるように、未凍結の試料をこのフリーザー内に置くことにより凍結を行うと、凍結前の細胞固有の生物学的能力の保存が改善されることが見出されたが、そのときの試料チューブ中の試料液に流れる電流は0.1~500 nAの範囲内であると分析された。図3はシミュレーション結果の一例を示しており、これは一実験条件におけるフリーザー1の冷凍室3内の電流密度の分布を示したものである。この図において、データ点の密度ではなく個々のデータ点の色分けによって電流密度の分布が表されていることに注意すべきである。以下の具体的な実施例では、試料液中に流れる電流が平均約1~50 nAとなる条件で行った実験を記述している。 As described in the Examples below, it has been found that freezing by placing unfrozen samples in this freezer improves the preservation of the cells' inherent biological capabilities prior to freezing. However, it was analyzed that the current flowing through the sample liquid in the sample tube at that time was within the range of 0.1 to 500 nA. FIG. 3 shows an example of a simulation result, which shows the distribution of current density in the freezing compartment 3 of the freezer 1 under one experimental condition. It should be noted that in this figure, the distribution of current density is represented by the color coding of individual data points rather than the density of data points. The following specific examples describe experiments conducted under conditions in which the current flowing through the sample liquid was approximately 1 to 50 nA on average.
[実施例2:ヒトiPS由来分化細胞の凍結保存後スフェロイド形成]
 この実施例では、ヒトiPS細胞株201B7-Ffおよび1231A3を使用した実験例を記述する。201B7-Ffは皮膚線維芽細胞に由来し(Cell. 2007 Nov 30;131(5):861-72)、1231A3は末梢血細胞に由来する(J Parkinsons Dis. 2022;12(3):871-884)ヒトiPS細胞である。未分化iPS細胞の培養からドパミン神経分化を誘導する培養およびスフェロイドを形成する培養までを、Nat Commun. 2020 Jul 6;11(1):3369に記載されているプロトコールに本質的に従って行った。この標準プロトコールは、第0日にiPS細胞株をシングルセルに解離させて6ウェルプレート中での分化培養を開始し、第13日まで神経分化を行い、その後あらためてシングルセルに解離させた分化細胞をU字底低付着96ウェルプレートに播種して、スフェロイドを形成する培養を行うものである。
[Example 2: Spheroid formation after cryopreservation of human iPS-derived differentiated cells]
This example describes an example experiment using human iPS cell lines 201B7-Ff and 1231A3. 201B7-Ff is derived from skin fibroblasts (Cell. 2007 Nov 30;131(5):861-72), and 1231A3 is derived from peripheral blood cells (J Parkinsons Dis. 2022;12(3):871-884 ) Human iPS cells. Culture of undifferentiated iPS cells to culture to induce dopaminergic neuron differentiation and culture to form spheroids was performed essentially according to the protocol described in Nat Commun. 2020 Jul 6;11(1):3369. This standard protocol involves dissociating the iPS cell line into single cells on day 0, starting differentiation culture in a 6-well plate, performing neuronal differentiation until day 13, and then dissociating the iPS cell line into single cells again. The cells are seeded in U-shaped low-attachment 96-well plates and cultured to form spheroids.
 本実施例が上記標準プロトコールと異なる点は、U字底96ウェルプレートに播種する前の上記第13日に、後述する異なる方法で分化細胞を凍結し、その凍結細胞を液体窒素タンク中で1日間または7日間保存したことである。その後常法により細胞を解凍して、上記の通りU字底96ウェルプレートに播種して、スフェロイドを形成する培養を開始した。U字底96ウェルプレートでの培養を開始した4日後に、顕微鏡下でスフェロイド形成の有無および程度を調べた。 The difference between this example and the standard protocol above is that differentiated cells were frozen on the 13th day before seeding into U-shaped 96-well plates using a different method described below, and the frozen cells were placed in a liquid nitrogen tank for 1 hour. or 7 days. Thereafter, the cells were thawed by a conventional method and seeded in a U-shaped 96-well plate as described above, and culture for forming spheroids was started. Four days after the start of culture in the U-shaped 96-well plate, the presence and extent of spheroid formation was examined under a microscope.
 細胞凍結は以下のようにして行った。Accumax細胞解離溶液(フナコシ社)を用いてシングルセルに解離させた分化細胞を、200μLの凍結溶液中5×105個の細胞濃度でクライオチューブに入れ、これら未凍結(4~10℃)の試料チューブを下記1~3のうちのいずれかの条件で冷却して凍結させた後、凍結状態のまま速やかに液体窒素タンクに移した。凍結溶液としては日本国特許第4385158号の実施例記載のものを使用し、これは凍結保護剤として10% DMSOを含むものである。
 条件1)実施例1で記述したフリーザーの-35℃の冷凍室内に未凍結の試料チューブを置くことにより、試料に電流を流しながら30分間冷却し凍結させ、その後液体窒素タンクへ移した(本開示の凍結法)。
 条件2)未凍結の試料チューブを、4℃→-80℃, -1℃/minの制御冷却速度に設定したプログラムフリーザー中で-80℃まで冷却し凍結させ、その後液体窒素タンクへ移した。
 条件3)未凍結の試料チューブを収納した簡易緩慢凍結用容器を、標準的ディープフリーザーの-80℃の冷凍室中に一晩置いて冷却し凍結させ、その後試料チューブを液体窒素タンクへ移した。
Cell freezing was performed as follows. Differentiated cells dissociated into single cells using Accumax cell dissociation solution (Funakoshi) were placed in a cryotube at a concentration of 5 × 10 cells in 200 μL of freezing solution, and these unfrozen (4-10 °C) The sample tube was cooled and frozen under any of conditions 1 to 3 below, and then immediately transferred in a frozen state to a liquid nitrogen tank. As the freezing solution, the one described in the Examples of Japanese Patent No. 4385158 was used, which contains 10% DMSO as a cryoprotectant.
Condition 1) By placing an unfrozen sample tube in the -35°C freezing chamber of the freezer described in Example 1, the sample was cooled and frozen for 30 minutes while an electric current was passed through it, and then transferred to a liquid nitrogen tank (this Disclosure Freeze Law).
Condition 2) The unfrozen sample tube was cooled to -80°C and frozen in a program freezer set at a controlled cooling rate of 4°C → -80°C, -1°C/min, and then transferred to a liquid nitrogen tank.
Condition 3) A simple slow freezing container containing an unfrozen sample tube was placed in the -80°C freezing chamber of a standard deep freezer overnight to cool and freeze, and then the sample tube was transferred to a liquid nitrogen tank. .
 プログラムフリーザーはX社から市販されているものである。簡易緩慢凍結用容器はY社から市販されているものである。簡易緩慢凍結用容器とは、特定の熱伝導率の材料で構成されていることにより、試料を収納した容器を標準的ディープフリーザー中に放置するだけで、プログラムフリーザーで得られるような制御冷却速度を近似できる細胞凍結容器である。 The program freezer is commercially available from Company X. The container for simple slow freezing is commercially available from Company Y. Containers for slow freezing are constructed from materials with a specific thermal conductivity, allowing them to be cooled at controlled cooling rates similar to those obtained in programmable freezers by simply leaving the container containing the sample in a standard deep freezer. This is a cell freezing container that can approximate
 結果を図4に示す。図4において表示されている(1)~(3)の数字は上記凍結条件1~3に対応し、それぞれの条件のウェルの大部分で典型的に見られた外見の代表的ウェルを各三例、示している。プログラムフリーザーによる冷却速度制御(条件2)は一般に細胞凍結のゴールドスタンダードとされているが、驚くべきことに、本開示の凍結法(条件1)での凍結を経た細胞は、条件2および3での凍結を経た細胞より明らかに優れたスフェロイド形成能を維持した。条件1での凍結を経た細胞のスフェロイド形成能は、凍結を経ていない細胞(no freezing)に匹敵していた。液体窒素(LN2)中の凍結保存期間が1日間であるか((a), (c))7日間であるか((b), (d))によってスフェロイド形成能に有意な違いは見られなかった。ここではドパミン神経分化細胞のスフェロイド形成を調べた例を記述したが、本開示の凍結法は他の種類の細胞のスフェロイド形成能も保存することができる。 The results are shown in Figure 4. The numbers (1) to (3) shown in Figure 4 correspond to the freezing conditions 1 to 3 above, and each three representative wells with the typical appearance of the majority of wells under each condition are shown. An example is shown. Cooling rate control using a programmed freezer (condition 2) is generally considered the gold standard for cell freezing, but surprisingly, cells frozen using the freezing method of the present disclosure (condition 1) do not meet conditions 2 and 3. The spheroid-forming ability was clearly superior to that of the cells that had been frozen. The spheroid-forming ability of cells frozen under condition 1 was comparable to that of cells that had not undergone freezing (no freezing). There was no significant difference in spheroid formation ability depending on whether the cryopreservation period in liquid nitrogen (LN 2 ) was 1 day ((a), (c)) or 7 days ((b), (d)). I couldn't. Although an example in which spheroid formation of dopaminergic neuron differentiated cells was investigated has been described here, the freezing method of the present disclosure can also preserve the spheroid formation ability of other types of cells.
[実施例3:ヒトiPS細胞の凍結経由後増殖]
 この実施例では、実施例2で使用したのと同じiPS細胞株を、未分化のまま、上記の条件1~3により凍結した。実施例2と同じ凍結溶液を使用し、ただし細胞濃度は200μLの凍結溶液中6.30×105個(201B7-Ff株)または8.84×105個(1231A3株)とした。液体窒素タンク中で7日間凍結保存した後、37℃に温めた液体培地をスポイトで吹きかけることにより細胞を素早く解凍し、遠心分離(190x g、3分間)により細胞を回収した。この細胞を新鮮な培地に再懸濁して、ラミニンコーティングされた6ウェルプレート中で培養した。培養開始の1日後および3日後に培地を新鮮なものに交換し、培養開始の5日後(201B7-Ff株)または4日後(1231A3株)に、TC20自動セルカウンター(Bio-Rad社)で生細胞数をカウントした。
[Example 3: Proliferation of human iPS cells after freezing]
In this example, the same iPS cell line used in Example 2 was frozen in an undifferentiated state under conditions 1 to 3 above. The same freezing solution as in Example 2 was used, except that the cell concentration was 6.30×10 5 (strain 201B7-Ff) or 8.84×10 5 (strain 1231A3) in 200 μL of freezing solution. After cryopreservation in a liquid nitrogen tank for 7 days, the cells were quickly thawed by spraying with a liquid medium warmed to 37°C using a dropper, and the cells were collected by centrifugation (190x g, 3 minutes). The cells were resuspended in fresh medium and cultured in laminin-coated 6-well plates. The medium was replaced with a fresh one 1 and 3 days after the start of culture, and 5 days (201B7-Ff strain) or 4 days (1231A3 strain) after the start of culture, the cells were grown using a TC20 automatic cell counter (Bio-Rad). Cell numbers were counted.
 結果を図5に示す。図5において表示されている(1)~(3)の数字は上記凍結条件1~3に対応する。各細胞株の各凍結条件につきn=5であり、統計学的検定ソフトGraphPad Prism 8 J(GraphPad Software, San Diego, CA, USA)を用いた、対応のないt検定で有意差検定を行っている。条件1での凍結を経たiPS細胞の細胞増殖能力は、条件2および3での凍結を経たiPS細胞より高く、それらの差は統計学的に有意だった。 The results are shown in Figure 5. The numbers (1) to (3) displayed in FIG. 5 correspond to the freezing conditions 1 to 3 above. n = 5 for each freezing condition for each cell line, and significant differences were tested using an unpaired t-test using statistical testing software GraphPad Prism 8 J (GraphPad Software, San Diego, CA, USA). There is. The cell proliferation ability of iPS cells frozen under condition 1 was higher than that of iPS cells frozen under conditions 2 and 3, and the difference between them was statistically significant.
[実施例4:多様な細胞株の凍結経由後増殖]
 この実施例では、本開示の凍結法による細胞増殖能力の保存の一般性を検証する実験例を記述する。浮遊系細胞の代表例として、ヒトナチュラルキラー様細胞株であるKHYG-1およびヒトリンパ球系細胞株であるTHP-1を、接着系細胞の代表例として、ヒト肝細胞がん株であるHuH-7およびヒト卵巣由来細胞株であるOVMANAを使用した。これらは不死化したがん細胞株である。実施例2と同じ凍結溶液を使用した。200μLの凍結溶液中4×105個(浮遊系細胞)または1 mLの凍結溶液中2×106個(接着系細胞)の凍結容量および細胞密度を使用した。各細胞株の各凍結条件につきn=4であり、統計学的検定は実施例3と同じである。
[Example 4: Post-freezing expansion of various cell lines]
This example describes an experimental example to verify the generality of preserving cell proliferation ability by the freezing method of the present disclosure. Typical examples of suspension cells are the human natural killer-like cell line KHYG-1 and human lymphoid cell line THP-1, and representative adherent cells include the human hepatocellular carcinoma line HuH-1. 7 and OMVANA, a human ovary-derived cell line, were used. These are immortalized cancer cell lines. The same freezing solution as in Example 2 was used. Freezing volumes and cell densities of 4 × 10 cells in 200 μL of freezing solution (suspension cells) or 2 × 10 cells in 1 mL of freezing solution (adherent cells) were used. n=4 for each freezing condition for each cell line, and statistical tests were the same as in Example 3.
 次の6種類の異なる凍結条件を比較した:
 条件A)実施例1で記述したフリーザーの-35℃の冷凍室内に未凍結の試料チューブを置くことにより、試料に電流を流しながら30分間冷却し凍結させ、その後液体窒素タンクへ移した(本開示の凍結法)。
 条件B)未凍結の試料チューブをプロトンフリーザーの-35℃の冷凍室内に30分間置くことにより冷却し凍結させ、その後液体窒素タンクへ移した。
 条件C)未凍結の試料チューブを、4℃→-80℃, -1℃/minの制御冷却速度に設定したX社プログラムフリーザー中で-80℃まで冷却し凍結させ、その後液体窒素タンクへ移した。
 条件D)Z社のプログラムフリーザーを使用したこと以外は、条件Cと同じ。
 条件E)未凍結の試料チューブを収納したY社簡易緩慢凍結用容器を、標準的ディープフリーザーの-80℃の冷凍室中に一晩置いて冷却し凍結させ、その後試料チューブを液体窒素タンクへ移した。
 条件F)W社の簡易緩慢凍結用容器を使用したこと以外は、条件Eと同じ。
Six different freezing conditions were compared:
Condition A) By placing an unfrozen sample tube in the -35°C freezing chamber of the freezer described in Example 1, the sample was cooled and frozen for 30 minutes while passing an electric current through it, and then transferred to a liquid nitrogen tank (this Disclosure Freeze Law).
Condition B) The unfrozen sample tube was cooled and frozen by placing it in the -35°C freezing chamber of a proton freezer for 30 minutes, and then transferred to a liquid nitrogen tank.
Condition C) Cool and freeze the unfrozen sample tube to -80°C in a company X program freezer set at a controlled cooling rate of 4°C → -80°C and -1°C/min, then transfer it to a liquid nitrogen tank. did.
Condition D) Same as Condition C except that a program freezer from Company Z was used.
Condition E) Place the Y company's simple slow freezing container containing unfrozen sample tubes in the -80℃ freezing chamber of a standard deep freezer overnight to cool and freeze, then transfer the sample tubes to a liquid nitrogen tank. Moved.
Condition F) Same as Condition E except that a simple slow freezing container from Company W was used.
 条件Bのプロトンフリーザー(菱豊フリーズシステムズ社)は、非特許文献2(J Parkinsons Dis. 2022;12(3):871-884)および特許文献4(国際公開第2021/100829号、日本国特許第4424693号)に記載されているものである。これは、1~200 mTの静磁場、0.2~1 MHzの電波、および冷風を適用しながら試料を冷却し凍結させるフリーザーである。 The proton freezer under condition B (Ryoho Freeze Systems Co., Ltd.) is disclosed in Non-Patent Document 2 (J Parkinsons Dis. 2022;12(3):871-884) and Patent Document 4 (International Publication No. 2021/100829, Japanese Patent No. 4424693). This is a freezer that cools and freezes samples while applying a static magnetic field of 1 to 200 mT, radio waves of 0.2 to 1 MHz, and cold air.
 液体窒素タンク中で1週間以上の保存を経た後に、細胞を解凍し、浮遊系細胞は24ウェルプレートに、接着系細胞は6ウェルプレートに、それぞれ播種して培養した。培養開始の5日後(KHYG-1)、7日後(THP-1)、4日後(HuH-7)または3日後(OVMANA)にTC20自動セルカウンターで生細胞数をカウントした。結果を図6に示す。図6において表示されている(A)~(F)の記号は上記凍結条件A~Fに対応する。本開示の凍結法(条件A)は、多様な細胞の凍結の際に細胞本来の能力を保存するという点において、従来の凍結法より優れる、あるいは少なくとも従来の凍結法に匹敵する結果を提供し得ることがこれらのデータから見て取れる。 After being stored in a liquid nitrogen tank for more than a week, the cells were thawed, and the suspended cells were seeded in 24-well plates and the adherent cells were seeded in 6-well plates for culture. The number of living cells was counted using a TC20 automatic cell counter 5 days (KHYG-1), 7 days (THP-1), 4 days (HuH-7), or 3 days (OVMANA) after the start of culture. The results are shown in FIG. The symbols (A) to (F) displayed in FIG. 6 correspond to the above freezing conditions A to F. The freezing method of the present disclosure (Condition A) provides results that are superior to, or at least comparable to, conventional freezing methods in preserving the inherent capabilities of cells when freezing a variety of cells. This can be seen from these data.
 本質的に同じ実験を、凍結溶液の組成を変えて繰り返した。図7a、bに示す実験で用いられた凍結溶液はDMSOフリーであり、アルブミンも非含有であり、ただし10%(w/v)のプロピレングリコール(Propylene glycol)凍結保護剤を含むものであった。図7において表示されている(A)~(E)の記号は上記凍結条件A~Eに対応する。プロピレングリコールによる凍結保護のレベルは、全体としてDMSOによる凍結保護より低かったが(データは図示していない)、同じ凍結溶液組成で比べた場合、本開示の凍結方法はプログラムフリーザー等に少なくとも匹敵するあるいはこれら従来法を上回る結果を提供し得るという結論は変わらない。図7c、dに示す実験で用いられたDMSOフリー凍結溶液は、特許第5630979号の実施例2に記載されたポリ-L-リジン系(Poly-L-lysine)凍結保護剤を含むものである。すなわちこれは、ε-ポリ-L-リジンのアミノ基の一部(65モル%)を(無水コハク酸との反応により)カルボキシル化することにより得られた両性高分子電解質を主成分とする凍結保護剤である。この凍結保護剤を使用した場合にも、本開示の凍結法(A)は、細胞増殖能を維持するという点において従来法より有意に優れた家結果を示した。 Essentially the same experiment was repeated with different compositions of the freezing solution. The freezing solution used in the experiments shown in Figure 7a,b was DMSO-free and albumin-free, but contained 10% (w/v) propylene glycol cryoprotectant. . The symbols (A) to (E) displayed in FIG. 7 correspond to the above-mentioned freezing conditions A to E. Although the level of cryoprotection with propylene glycol was overall lower than that with DMSO (data not shown), when compared with the same freezing solution composition, the freezing method of the present disclosure is at least comparable to program freezers, etc. The conclusion remains that it can provide results superior to these conventional methods. The DMSO-free freezing solution used in the experiments shown in Figures 7c, d contained the Poly-L-lysine cryoprotectant described in Example 2 of Patent No. 5,630,979. In other words, it is a frozen polymer whose main component is an ampholyte obtained by carboxylating a portion (65 mol%) of the amino groups of ε-poly-L-lysine (by reaction with succinic anhydride). It is a protective agent. Even when this cryoprotectant was used, the freezing method (A) of the present disclosure showed significantly better results than the conventional method in terms of maintaining cell proliferation ability.
[実施例5:凍結保存後スフェロイドの神経突起伸長能]
 実施例2では、スフェロイド形成開始直前の段階で神経分化細胞を凍結した実験を記述したが、スフェロイド形成後(分化第27日目に相当)に同様の凍結保存をする実験も行った。実施例4で記述した凍結条件A、B、C、およびEに対応する条件でスフェロイドを凍結し、液体窒素中で一定期間保存した。比較例である条件B、C、およびEでは、解凍後3日間培養した時点で約30~80%のスフェロイドが失われていたケースがあったのに対し、本開示の凍結法の実施例である条件Aに従って電流を流しながら凍結した場合では一貫して80%以上のスフェロイドを回収できた。解凍後3日間培養の後に回収できたスフェロイドに対し、抗βIIIチューブリン抗体染色を行って神経突起の伸長度を測定した。より詳細に説明すると、スフェロイド本体は細胞体の集合であるからその全体的輪郭が抗βIIIチューブリン抗体だけでなくDAPIによっても染色されるのに対し、核を欠く神経突起部分はDAPI染色されず抗βIIIチューブリン抗体だけによって染色される(図8a)。従って、蛍光顕微鏡像において抗βIIIチューブリン抗体染色領域からDAPI染色領域を差し引いた面積を「神経突起面積」として求めることによって、各スフェロイドにおける神経突起伸長の程度を定量化することができる。
[Example 5: Neurite outgrowth ability of spheroids after cryopreservation]
In Example 2, an experiment was described in which neurally differentiated cells were frozen at a stage immediately before the start of spheroid formation, but an experiment was also conducted in which similar cryopreservation was performed after spheroid formation (corresponding to the 27th day of differentiation). Spheroids were frozen under conditions corresponding to freezing conditions A, B, C, and E described in Example 4 and stored for a period of time in liquid nitrogen. In conditions B, C, and E, which are comparative examples, there were cases in which about 30 to 80% of spheroids were lost after 3 days of culture after thawing, whereas in the freezing method example of the present disclosure, When freezing while applying an electric current according to condition A, more than 80% of spheroids were consistently recovered. Spheroids recovered after thawing and culture for 3 days were stained with anti-βIII tubulin antibody to measure the degree of neurite outgrowth. To explain in more detail, since the spheroid body is a collection of cell bodies, its overall outline is stained not only with anti-βIII tubulin antibody but also with DAPI, whereas the neurite parts lacking nuclei are not stained with DAPI. It is stained only by anti-βIII tubulin antibody (Fig. 8a). Therefore, the degree of neurite outgrowth in each spheroid can be quantified by determining the area obtained by subtracting the DAPI staining area from the anti-βIII tubulin antibody staining area as the "neurite area" in a fluorescence microscopic image.
 実施例の凍結を経たスフェロイドは、比較例の凍結を経たスフェロイドよりも神経突起の伸長能力をよりよく維持していた(図8b、c)。関連する実験において、凍結の際に各試料に流れる電流値を増加させたところ、なお良好な細胞生存率とともに神経突起伸長も得ることが可能であったが、神経突起伸長度について試料間のばらつきが大きくなることが観察された。凍結の際に各試料に流れる伝導電流の大きさが0.5μAを超えないようにすることによって、凍結解凍手順を経た後の生物学的状態の再現性あるいは安定性が向上する可能性が示唆された。 The spheroids that underwent freezing in the example maintained the ability to extend neurites better than the spheroids that underwent freezing in the comparative example (FIGS. 8b, c). In a related experiment, when the current value flowing through each sample during freezing was increased, it was possible to obtain good cell survival rate and neurite outgrowth, but the degree of neurite outgrowth varied between samples. was observed to increase. It has been suggested that ensuring that the magnitude of the conducted current flowing through each sample during freezing does not exceed 0.5 μA may improve the reproducibility or stability of the biological state after the freeze-thaw procedure. Ta.

Claims (14)

  1.  生細胞を含む未凍結の試料を、前記生細胞を生存させたまま凍結するための方法であって、
     凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された前記生細胞とを含む、未凍結の前記試料を、交流電圧が印加された電極から生じる電界中に置くことにより伝導電流を流しながら冷却して、前記未凍結の試料を凍結状態まで至らせることを含み、
     前記交流電圧の周波数は10~200 Hzであり、
     前記試料が未凍結状態から凍結状態に至るまでのあいだ前記電界は途切れず継続して生じさせられる、
     方法。
    A method for freezing an unfrozen sample containing living cells while keeping the living cells alive, the method comprising:
    The unfrozen sample, which includes a freezing solution containing a cryoprotectant and the living cells immersed in the freezing solution, is placed in an electric field generated from an electrode to which an alternating voltage is applied, while applying a conduction current. cooling the unfrozen sample to a frozen state;
    The frequency of the alternating current voltage is 10 to 200 Hz,
    The electric field is generated continuously without interruption while the sample changes from an unfrozen state to a frozen state.
    Method.
  2.  前記冷却することは、前記凍結溶液の凝固温度より低い一定温度の冷凍室と、前記冷凍室内に設置され前記交流電圧が印加された電極とを有するフリーザーの前記冷凍室内に、前記未凍結の試料を置くことによって行われる、請求項1に記載の方法。 The cooling means placing the unfrozen sample in the freezing chamber of a freezer, which has a freezing chamber at a constant temperature lower than the freezing temperature of the freezing solution, and an electrode installed in the freezing chamber and to which the AC voltage is applied. 2. The method according to claim 1, which is carried out by placing.
  3.  前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、請求項1に記載の方法。 2. The method of claim 1, wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
  4.  前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、請求項3に記載の方法。 4. The method of claim 3, wherein the concentration of dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5-30% (w/v). .
  5.  前記未凍結の試料を凍結状態まで至らせる冷却のあいだに各試料に流れる前記伝導電流の大きさは0.5μAを超えない、請求項1に記載の方法。 2. The method of claim 1, wherein the magnitude of the conducted current flowing through each sample during cooling of the unfrozen sample to a frozen state does not exceed 0.5 μA.
  6.  前記試料が凍結した後に、前記凍結された試料を-80℃以下の温度で保存することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising storing the frozen sample at a temperature of −80° C. or lower after the sample is frozen.
  7.  前記凍結された試料を-80℃以下の温度で保存することは、液体窒素を含有するタンク中に前記凍結された試料を移すこと、および、前記タンク中で、前記凍結された試料を前記液体窒素またはその蒸気に曝露しながら保存することを含む、請求項6に記載の方法。 Storing the frozen sample at a temperature below -80°C includes transferring the frozen sample into a tank containing liquid nitrogen, and storing the frozen sample in the tank containing liquid nitrogen. 7. The method of claim 6, comprising storage with exposure to nitrogen or its vapor.
  8.  前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
  9.  スフェロイドを形成する方法であって、スフェロイド形成能を有する生細胞を、請求項1~7のいずれか一項に記載の方法によって凍結すること、前記凍結された生細胞を解凍すること、および前記解凍された生細胞を培養してスフェロイドを形成させることを含む、方法。 A method for forming spheroids, the method comprising: freezing living cells having spheroid-forming ability by the method according to any one of claims 1 to 7; thawing the frozen living cells; and A method comprising culturing thawed living cells to form spheroids.
  10.  生細胞を含む未凍結の細胞試料を、前記生細胞を生存させたまま凍結するための生細胞凍結システムであって、前記システムは、
     変圧器と、冷凍室と、前記変圧器に電気的に接続され前記冷凍室内に設置された電極と、前記冷凍室内に置かれた前記細胞試料とを含み、
     前記細胞試料は、凍結保護剤を含む凍結溶液と、前記凍結溶液に浸漬された生細胞とを含み、
     前記冷凍室は、前記凍結溶液の凝固温度より低い温度を有し、
     前記変圧器により印加された交流電圧によって前記電極から前記冷凍室内に電界が生じ、前記細胞試料に伝導電流が流れており、
     前記交流電圧の周波数は10~200 Hzであり、
     前記変圧器は、前記細胞試料が未凍結状態から凍結状態に至るまでのあいだ前記電界を途切れず継続して生じるように構成されている、
     生細胞凍結システム。
    A live cell freezing system for freezing an unfrozen cell sample containing living cells while keeping the living cells alive, the system comprising:
    comprising a transformer, a freezing chamber, an electrode electrically connected to the transformer and installed in the freezing chamber, and the cell sample placed in the freezing chamber,
    The cell sample includes a freezing solution containing a cryoprotectant and living cells immersed in the freezing solution,
    the freezing chamber has a temperature lower than the freezing temperature of the freezing solution;
    An electric field is generated in the freezing chamber from the electrode by an alternating voltage applied by the transformer, and a conduction current flows through the cell sample;
    The frequency of the alternating current voltage is 10 to 200 Hz,
    The transformer is configured to continuously generate the electric field without interruption while the cell sample changes from an unfrozen state to a frozen state.
    Live cell freezing system.
  11.  前記凍結保護剤は、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せを含む、請求項10に記載のシステム。 11. The system of claim 10, wherein the cryoprotectant comprises dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or a combination of any of these.
  12.  前記凍結溶液中の前記ジメチルスルホキシド、エチレングリコール、プロピレングリコール、グリセロール、両性高分子電解質、またはこれらいずれかの組合せの濃度が5~30%(w/v)である、請求項11に記載のシステム。 12. The system of claim 11, wherein the concentration of the dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol, polyampholyte, or any combination thereof in the freezing solution is 5-30% (w/v). .
  13.  各試料に流れている前記伝導電流の大きさは0.5μAを超えない、請求項10に記載のシステム。 11. The system of claim 10, wherein the magnitude of the conduction current flowing through each sample does not exceed 0.5 μA.
  14.  前記生細胞が人工多能性幹細胞、胚性幹細胞、またはそれらのいずれかに由来する分化細胞である、請求項10~13のいずれか一項に記載のシステム。 The system according to any one of claims 10 to 13, wherein the living cells are induced pluripotent stem cells, embryonic stem cells, or differentiated cells derived from any of them.
PCT/JP2023/022393 2022-06-17 2023-06-16 Living cell freezing method and living cell freezing system WO2023243709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2022/024417 2022-06-17
PCT/JP2022/024417 WO2023243097A1 (en) 2022-06-17 2022-06-17 Live cell freezing method and live cell freezing system

Publications (1)

Publication Number Publication Date
WO2023243709A1 true WO2023243709A1 (en) 2023-12-21

Family

ID=89190911

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/024417 WO2023243097A1 (en) 2022-06-17 2022-06-17 Live cell freezing method and live cell freezing system
PCT/JP2023/022393 WO2023243709A1 (en) 2022-06-17 2023-06-16 Living cell freezing method and living cell freezing system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024417 WO2023243097A1 (en) 2022-06-17 2022-06-17 Live cell freezing method and live cell freezing system

Country Status (1)

Country Link
WO (2) WO2023243097A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115837A (en) * 2004-09-24 2006-05-11 Seiren Co Ltd Composition for cryopreserving cell
JP2007259709A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Freezing method and freezing device
JP2011182700A (en) * 2010-03-08 2011-09-22 Institute Of National Colleges Of Technology Japan Method for cooling in refrigerator/freezer and apparatus therefor
JP2017104061A (en) * 2015-12-10 2017-06-15 学校法人慶應義塾 Method for freezing human ips cell-derived neural stem/progenitor cells
WO2018185912A1 (en) * 2017-04-06 2018-10-11 株式会社マヤテック Method for freezing frozen item

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115837A (en) * 2004-09-24 2006-05-11 Seiren Co Ltd Composition for cryopreserving cell
JP2007259709A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Freezing method and freezing device
JP2011182700A (en) * 2010-03-08 2011-09-22 Institute Of National Colleges Of Technology Japan Method for cooling in refrigerator/freezer and apparatus therefor
JP2017104061A (en) * 2015-12-10 2017-06-15 学校法人慶應義塾 Method for freezing human ips cell-derived neural stem/progenitor cells
WO2018185912A1 (en) * 2017-04-06 2018-10-11 株式会社マヤテック Method for freezing frozen item

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IMAMURA SHINSUKE: "Cryopreservation of primate ES/iPS cells", BIOENGINEERING, vol. 90, 1 January 2012 (2012-01-01), pages 556 - 553, XP093118214 *

Also Published As

Publication number Publication date
WO2023243097A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
Kang et al. Supercooling preservation technology in food and biological samples: A review focused on electric and magnetic field applications
Wowk Electric and magnetic fields in cryopreservation
Hunt Cryopreservation: vitrification and controlled rate cooling
Morris et al. Controlled ice nucleation in cryopreservation–a review
Finger et al. Cryopreservation by vitrification: a promising approach for transplant organ banking
JP7486286B2 (en) Ice nucleation formulations for cryopreservation and stabilization of biological materials - Patents.com
Franks Biological freezing and cryofixation
JPS61198037A (en) Freezing adjusting device for organism tissue for analyzing ultrafine structure
JP6820531B2 (en) Method for freezing human iPS cell-derived neural stem cells / progenitor cells
JP6973731B2 (en) Method of freezing human pluripotent stem cell-derived cardiomyocytes
US20190313632A1 (en) Cryopreservation medium and method to prevent recrystallization
Benson et al. An improved cryopreservation method for a mouse embryonic stem cell line
Huebinger et al. Reversible cryopreservation of living cells using an electron microscopy cryo-fixation method
WO2023243709A1 (en) Living cell freezing method and living cell freezing system
Bai et al. Cryopreservation in the era of cell therapy: revisiting fundamental concepts to enable future technologies
Rey Studies on the action of liquid nitrogen on cultures in vitro of fibroblasts
Ugraitskaya et al. Cryopreservation of hela cells at a high hydrostatic pressure of 1.0–1.5 kBar
RU2688331C1 (en) Method for cryopreservation of biological samples under pressure and device for its implementation
JP7266892B2 (en) Cell Cryopreservation Solution, Cryopreservation Method, and Cell Freezing Method
Devireddy et al. Preservation protocols for human adipose tissue-derived adult stem cells
Hofmann et al. Development of systematic parameter optimization for cryopreservation protocols for cellular suspensions
Ugraitskaya et al. The Effect of Helium on Cryopreservation of HeLa and L929 Cells
Khodko et al. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature
JP7318983B2 (en) Cell cryopreservation solution and cell freezing method
US11039610B2 (en) Methods and compositions for cryopreservation of endothelial cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823999

Country of ref document: EP

Kind code of ref document: A1