WO2023243660A1 - 魚類、魚類の生産方法、および熟成が促進された魚類の生産方法 - Google Patents

魚類、魚類の生産方法、および熟成が促進された魚類の生産方法 Download PDF

Info

Publication number
WO2023243660A1
WO2023243660A1 PCT/JP2023/022090 JP2023022090W WO2023243660A1 WO 2023243660 A1 WO2023243660 A1 WO 2023243660A1 JP 2023022090 W JP2023022090 W JP 2023022090W WO 2023243660 A1 WO2023243660 A1 WO 2023243660A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
gene
nt5e
base sequence
polynucleotide
Prior art date
Application number
PCT/JP2023/022090
Other languages
English (en)
French (fr)
Inventor
政人 木下
敬太郎 家戸
洋平 鷲尾
悠 村上
謙太 岸本
祐基 本田
ヒカルド ショウヘイ ハットリ
Original Assignee
国立大学法人京都大学
学校法人近畿大学
リージョナルフィッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 学校法人近畿大学, リージョナルフィッシュ株式会社 filed Critical 国立大学法人京都大学
Priority to CN202380023318.9A priority Critical patent/CN118804681A/zh
Publication of WO2023243660A1 publication Critical patent/WO2023243660A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/02Breeding vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present disclosure relates to fish, a method for producing fish, and a method for producing fish with accelerated ripening.
  • Patent Document 1 After death, the nucleic acids in the muscles of fish are degraded. Along with this, it is known that the inosinic acid content increases in the muscle (Patent Document 1).
  • the umami of fish meat is due to inosinic acid, the umami of the fish can be increased by aging it after death. On the other hand, the muscles of the fish soften after death. For this reason, it is currently difficult to obtain fish that are both chewy and delicious.
  • the present disclosure aims to provide fish in which the accumulation of inosinic acid is enhanced or promoted during ripening.
  • first fish has a loss of function in the ecto5'-nucleotidase (nt5e) gene.
  • This disclosure is the Fish portion of this disclosure.
  • the fish production method of the present disclosure includes the following step (a): (a) A mating step of mating the fish of the present disclosure with other fish.
  • the production method of the present disclosure is a production method of fish with accelerated ripening (hereinafter also referred to as "second production method"), which includes: It includes a loss-of-function step in which the ecto-5'-nucleotidase (nt5e) gene of the target fish is lost.
  • second production method includes: It includes a loss-of-function step in which the ecto-5'-nucleotidase (nt5e) gene of the target fish is lost.
  • the enhancement method of the present disclosure is a method for enhancing inosinic acid content in aging fish meat, comprising: Including the maturing process of maturing the fish meat,
  • the fish meat is the fish meat of the fish of the present disclosure and/or the fish meat of the edible part of the fish of the present disclosure.
  • the screening method for fish with accelerated ripening (hereinafter also referred to as "screening method") of the present disclosure is to extract test fish in which the ecto-5'-nucleotidase (nt5e) gene has lost its function from test fish. It includes a selection process for selecting fish whose ripening has been accelerated.
  • the fish production method of the present disclosure involves screening for test fish in which the ecto-5'-nucleotidase (nt5e) gene has lost its function. including the process, The screening step is performed by the screening method of the present disclosure.
  • the fish of the present disclosure (hereinafter also referred to as "second fish") can be obtained by the first production method, second production method, or third production method of the present disclosure.
  • the method for detecting the ability to promote ripening in fish includes a detection step of detecting whether the ecto-5'-nucleotidase (nt5e) gene has lost its function in the test fish. include.
  • the processed food of the present disclosure uses the fish of the present disclosure.
  • FIG. 1 is a graph showing the amount of inosinic acid in the medaka fish in which the nt5e gene has lost its function in Example 1.
  • FIG. 2 is a graph showing the amount of inosinic acid in red sea bream in which the nt5e gene has lost its function in Example 2.
  • FIG. 3 is a graph showing the amount and K value of inosinic acid in tilapia with loss of function for the nt5e gene in Example 3.
  • FIG. 4 is a graph showing the amount of inosinic acid and K value of flounder in which the nt5e gene has lost its function in Example 4.
  • fish refers to animals classified into the subphylum Vertebrata, excluding tetrapods.
  • loss of function means, for example, a state in which the original function of the target gene is reduced or lost.
  • loss of function mutation refers to a mutation that (significantly) attenuates the original function of the target gene, and/or a mutation that causes complete loss of function.
  • mutation causing complete loss of function can also be referred to as, for example, a null mutation or an amorph.
  • fish means an individual fish.
  • part of a fish means a part or part of an individual fish.
  • aging means a process or treatment of decomposing proteins into amino acids in target fish.
  • the maturation can also be referred to as aging, for example.
  • inosinic acid decomposition activity or “inosinic acid decomposition activity” means the activity of decomposing inosinic acid into inosine.
  • RNA nucleic acid sequence can also be obtained from the corresponding DNA nucleic acid sequence using appropriate sequence conversion software.
  • the present disclosure provides fish with enhanced or accelerated accumulation of inosinic acid during ripening.
  • the fish of the present disclosure (first fish) has a loss of function for the ecto5'-nucleotidase (nt5e) gene.
  • NT5E fish ecto-5'-nucleotidase
  • inosinic acid which is a flavor component
  • nt5e ecto-5'-nucleotidase
  • the period until a certain amount of inosinic acid content is achieved can be further shortened compared to fish having a wild type (normal) nt5e gene.
  • fish becomes soft and has a soft texture early after death. For this reason, it is difficult to obtain fish that are both chewy and delicious.
  • it is possible to promote the accumulation of inosinic acid in the fish meat after the death of the fish, so it is expected that the fish will be chewy and delicious.
  • the fishes include, for example, Tetraodontidae (puffers), Ostraciidae (boxfishes), Sparidae (sea breams and porgies), Salmonidae ( Salmonidae ), Cyprinidae ( Cyprinidae ), and Serranidae (sea breams).
  • Fish such as basses, Cichlidae , Oryziidae (medakas), Paralichthys , Carangidae , Bagridae , Clariidae , and Intaluridae . can give.
  • the fish of the pufferfish family include, for example, fish of the genus Takifugu such as Takifugu rubripes , Takifugu porphyreus , and Takifugu niphobles ; fish of the genus Lagocephalus such as Lagocephalus wheeleri ; can be given.
  • Examples of the fish of the family Boxfish include fish of the genus Boxfish such as boxfish ( Ostracion immaculatus ).
  • the above-mentioned fishes of the bream family include, for example, the genus Pagrus such as Pagrus major and Pagrus auratus ; the genus Acanthopagrus such as Acanthopagrus schlegelii and Acanthopagrus latus ; and the genus Acanthopagrus such as Acanthopagrus latus.
  • the genus Pagrus such as Pagrus major and Pagrus auratus
  • the genus Acanthopagrus such as Acanthopagrus schlegelii and Acanthopagrus latus
  • the genus Acanthopagrus such as Acanthopagrus latus.
  • Dentex tumifrons and other fishes of the genus Dentex
  • fishes of the genus Sparus such as the European red snapper ( Sparus aurata ).
  • the salmonid fish include, for example, rainbow trout ( Oncorhynchus mykiss ), king salmon ( Oncorhynchus tshawytscha ), cherry salmon ( Oncorhynchus masou), satsuki trout ( Oncorhynchus masou), black trout ( Oncorhynchus kawamurae ), pink trout ( Oncorhynchus gorbuscha ), and salmon ( Oncorhynchus keta ).
  • fish of the Atlantic salmon genus such as brown trout ( Salmo trutta ), sockeye salmon ( Oncorhynchus nerka ), coho salmon ( Oncorhynchus kisutch ), and Atlantic salmon ( Salmo salar ); ( Salvelinus malma), char ( Salvelinus leucomaenis ), brook trout ( Salvelinus fontinalis ), lake trout ( Salvelinus namaycush ), and other fish of the genus Char; fish such as Parahucho perryi ; and the like.
  • Examples of the cyprinid fish include Gnathopogon caerulescens , Hypophthalmichthys molitrix , Cyprinus carpio , Ctenopharyngodon idellus , Hypophthalmichthys nobilis , Carassius carassius, and Cyprinus catla . ), Mylopharyngodon piceus , Cirrhinus molitorella , Cirrhinus cirrhosus , Catla catla , Labeo rohita , and Megalobrama amblycephala .
  • Examples of the grouper fish include Epinephelus septemfasciatus , Epinephelus bruneus , Epinephelus akaara , Epinephelus malabaricus , white grouper Epinephelus aeneus, Epinephelus amblycephalus, and Epinephelus amblycephalus.
  • Epinephelus bleekeri yellow grouper
  • white grouper Epinephelus bontoides
  • Epinephelus chlorostigma white bumble grouper
  • Epinephelus coiodes Epinephelus coiodes
  • red grouper Epinephelus fasciatus
  • red-spotted grouper Epinephelus fuscoguttatus
  • starry grouper Epinephelus labriformis
  • ringworm Epinephelus LANCEOLATUS
  • Epinephelus Maculatus Yite Hata ( EpinePhelus Malabricus), Dasky Grooper (Epinephelus Marginatus), Namihata ( EpinePhelus Ongus), Madarahata ( Madarahata).
  • Epinephelus polyphekadion Moyouhata (Epinephelus QUOYANUS ) , Kokuten Hill Hata ( Epinephelus Sexfasciatus), Nassohata ( Epinephelus) striatus ), human grouper ( Epinephelus tauvina), potato grouper ( Epinephelus tukula ) and other genus Epinephelus ; There are hybrid species of grouper fish.
  • Examples of the fish of the family Cichlidae include fish of the genus Oreochromis , such as Nile tilapia ( Oreochromis niloticus ), cichlid ( Oreochromis mossambicus ), and blue tilapia ( Oreochromis aureus ).
  • Examples of the fish of the medaka family include fish of the genus medaka ( Oryzias ), such as medaka ( Oryzias latipes , Oryzias sakaizumii ) and Java medaka ( Oryzias javanicus ).
  • Examples of the fish of the family Flounder include fish of the genus Paralichthys , such as flounder ( Parlichthys olivaceus ).
  • Examples of the fish of the horse mackerel family include fish of the genus Seriola , such as amberjack ( Seriola lalandi ) and amberjack ( Seriola dumerili ).
  • Examples of the fish of the family Pseudobagrus include fish of the genus Pelteobagrus , such as Pseudobagrus fulvidraco .
  • Examples of the fish of the family Catfishidae include fish of the genus Clarias, such as Clarias garienpinus .
  • Examples of the fish of the catfish family include fish of the genus Ictalurus , such as the American catfish ( Ictalurus punctatus ).
  • the fish may be a fixed species or a hybrid species.
  • the hybrid species include hybrids derived from intergeneric hybrids.
  • the fish are preferably fish for aquaculture, for example.
  • the fish may be a saltwater fish, a freshwater fish, or a brackishwater fish.
  • the growth stage of the fish is not particularly limited, and may be, for example, any of larval fish (larvae), juvenile fish, immature fish (juvenile fish, young fish), and adult fish.
  • nt5e The ecto-5'-nucleotidase (nt5e) is generally known as a protein that has the activity of catalyzing a chemical reaction that converts extracellular 5'-ribonucleotides into ribonucleosides.
  • the fish nt5e gene may be any gene (wild-type nt5e gene) that encodes ecto-5'-nucleotidase present in fish, and specific examples include the nt5e gene shown in Table 1 below. It will be done.
  • the nt5e gene (wild type nt5e gene) of the fish is the following (Pn), ( Examples include polynucleotides of Pt), (Po), (Pm), (Pg), (Pp), (Pq), and (Pl), or genomic regions encoding these.
  • Pn polynucleotides of Pt
  • Po polynucleotides of Pt
  • Pm polynucleotides of Pt
  • Pg polynucleotides of Pt
  • Pp polynucleotides of Pt
  • Pg polyg
  • Pp polyp
  • Pq nt5e gene
  • Pl genomic regions encoding these.
  • the base sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, and 25 below are base sequences that include a stop codon.
  • Pn Any polynucleotide of the following (Pn1) to (Pn7): (Pn1) Polynucleotide consisting of the base sequence of SEQ ID NO: 1; (Pn2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pn1), and encodes a protein having inosinic acid degrading activity; (Pn3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pn1) and encoding a protein having inosinic acid degrading activity; (Pn4) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence (Pn1) above, and encoding a protein having inosinic acid degrading activity.
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
  • Pn6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 2, and encodes a protein having inosinic acid degrading activity;
  • Pn7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 2 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 1 is a base sequence encoding the amino acid sequence of the above (Pn5).
  • the base sequence of SEQ ID NO: 1 can be obtained from red sea bream ( Pagrus major ), for example.
  • “one or several” may be within the range in which the protein encoded by the polynucleotide of the above (Pn2) has inosinic acid degrading activity.
  • “One or several” in the above (Pn2) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of (Pn1).
  • numerical ranges of numbers such as the number of bases or the number of amino acids, for example, disclose all positive integers belonging to the range. That is, for example, the description "1 to 5" means disclosure of all "1, 2, 3, 4, and 5" (the same applies hereinafter).
  • identity may be within the range in which the protein encoded by the polynucleotide of the above (Pn3) has inosinic acid degrading activity.
  • the identity of (Pn3) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of (Pn1). It is 99% or more.
  • the “identity” can be determined by aligning two base sequences or amino acid sequences (the same applies hereinafter). The alignment can be calculated using default parameters using BLAST, FASTA, etc., for example.
  • the “hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Pn4) has inosinic acid degrading activity.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pn1).
  • the hybridization can be detected, for example, by various hybridization assays.
  • the hybridization assay is not particularly limited, and for example, "Molecular Cloning: A Laboratory Manual 2nd Ed.” edited by Sambrook et al. [Cold Spring Harbor Laboratory Press] (1989)] can also be adopted.
  • stringent conditions may be, for example, low stringency conditions, medium stringency conditions, or high stringency conditions.
  • Low stringency conditions are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide, and 32°C.
  • Intermediate stringency conditions are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide, and 42°C.
  • Highly stringent conditions are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide, and 50°C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, and time. "Stringent conditions” are defined, for example, in “Molecular Cloning: A Laboratory Manual 2nd Ed.” edited by Sambrook et al. [Cold Spring Harbor Laboratory Press ( 1989)], etc. can also be adopted.
  • the polynucleotide (Pn5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pn5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pn5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 2.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pn6) has inosinic acid degrading activity.
  • “1 or several" of the above (Pn6) is, for example, 1 to 116, 1 to 86, 1 to 58, 1 to 29, 1 to 23 in the amino acid sequence of SEQ ID NO: 2. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, as long as the protein encoded by the polynucleotide of the above (Pn7) has inosinic acid degrading activity.
  • the identity of (Pn7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 2. It is 99% or more.
  • (Pt5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 4
  • (Pt6) A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4, and encodes a protein having inosinic acid decomposition activity
  • (Pt7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 4 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 3 is a base sequence encoding the amino acid sequence of the above (Pt5).
  • the base sequence of SEQ ID NO: 3 can be obtained from, for example, Takifugu rubripes .
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pt2) has inosinic acid degrading activity.
  • “One or several” in the above (Pt2) refers to, for example, 1 to 348, 1 to 261, 1 to 174, 1 to 87, 1 to 69, 1 in the base sequence of (Pt1). -52 pieces, 1-34 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • the "identity” may be within the range in which the protein encoded by the polynucleotide of the above (Pt3) has inosinic acid degrading activity.
  • the identity of (Pt3) with respect to the base sequence of (Pt1) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, It is 99% or more.
  • the "hybridizing polynucleotide” may be any range in which the protein encoded by the polynucleotide (Pt4) has inosinic acid degrading activity.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pt1).
  • the explanation in the above (Pn4) can be used.
  • the polynucleotide (Pt5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pt5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pt5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 4.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pt6) has inosinic acid degrading activity.
  • “One or several" of the above (Pt6) is, for example, 1 to 115, 1 to 86, 1 to 57, 1 to 28, 1 to 23 in the amino acid sequence of SEQ ID NO: 4. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be within the range, for example, as long as the protein encoded by the polynucleotide of the above (Pt7) has inosinic acid degrading activity.
  • the identity of (Pt7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 4. It is 99% or more.
  • polynucleotides (Po1) to (Po7) Any of the following polynucleotides (Po1) to (Po7): (Po1) Polynucleotide consisting of the base sequence of SEQ ID NO: 5; (Po2) A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Po1), and encodes a protein having inosinic acid degrading activity; (Po3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Po1) and encoding a protein having inosinic acid degrading activity; (Po4) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence of (Po1) above, and encoding a protein having inos
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 6;
  • Po6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 6, and encodes a protein having inosinic acid degrading activity;
  • Po7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 6 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 5 is a base sequence that encodes the amino acid sequence of the above (Po5).
  • the base sequence of SEQ ID NO: 5 can be obtained from tilapia ( Oreochromis niloticus ), for example.
  • “one or several” may be within the range in which the protein encoded by the polynucleotide of the above (Po2) has inosinic acid degrading activity.
  • “1 or several” in the above (Po2) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of (Po1). -52 pieces, 1-35 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • identity may be, for example, in a range where the protein encoded by the polynucleotide in (Po3) has inosinic acid degrading activity.
  • the identity of (Po3) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of (Po1). It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Po4) has inosinic acid degrading activity.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Po1).
  • the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • the polynucleotide (Po5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Po5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Po5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 6.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Po6) has inosinic acid degrading activity.
  • “1 or several" in the above (Po6) is, for example, 1 to 116, 1 to 87, 1 to 58, 1 to 29, 1 to 23 in the amino acid sequence of SEQ ID NO: 6. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Po7) has inosinic acid degrading activity.
  • the identity of (Po7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 6. It is 99% or more.
  • polynucleotides (Pm1) to (Pm7) Any of the following polynucleotides (Pm1) to (Pm7): (Pm1) Polynucleotide consisting of the base sequence of SEQ ID NO: 7; (Pm2) A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pm1), and encodes a protein having inosinic acid degrading activity; (Pm3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pm1) and encoding a protein having inosinic acid degrading activity; (Pm4) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence (Pm1) above, and encoding a protein having inosin
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 8;
  • Pm6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 8, and encodes a protein having inosinic acid degrading activity;
  • Pm7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 8 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 7 is a base sequence that encodes the amino acid sequence of the above (Pm5).
  • the base sequence of SEQ ID NO: 7 can be obtained from rainbow trout ( Oncorhynchus mykiss ), for example.
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pm2) has inosinic acid degrading activity.
  • “One or several” in the above (Pm2) refers to, for example, 1 to 327, 1 to 245, 1 to 163, 1 to 81, 1 to 65, 1 in the base sequence of (Pm1). -49 pieces, 1-32 pieces, 1-16 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • the "identity” may be within the range in which the protein encoded by the polynucleotide of the above (Pm3) has inosinic acid degrading activity.
  • the identity of (Pm3) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of (Pm1). It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Pm4) has inosinic acid degrading activity.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pm1).
  • the explanation in the above (Pn4) can be used.
  • the polynucleotide (Pm5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pm5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pm5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 8.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pm6) has inosinic acid degrading activity.
  • “1 or several" in the above (Pm6) is, for example, 1 to 108, 1 to 81, 1 to 54, 1 to 27, 1 to 21 in the amino acid sequence of SEQ ID NO: 8. , 1 to 16, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Pm7) has inosinic acid degrading activity.
  • the identity of (Pm7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 8. It is 99% or more.
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 10;
  • Pg6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 10, and encodes a protein having inosinic acid degrading activity;
  • Pg7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 10 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 9 is a base sequence encoding the amino acid sequence of the above (Pg5).
  • the base sequence of SEQ ID NO: 9 can be obtained from, for example, Gnathopogon caerulescens .
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pg2) has inosinic acid degrading activity.
  • “One or several” in the above (Pg2) refers to, for example, 1 to 342, 1 to 256, 1 to 171, 1 to 85, 1 to 68, 1 in the base sequence of (Pg1). -51 pieces, 1-34 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • identity may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Pg3) has inosinic acid degrading activity.
  • the identity of (Pg3) with respect to the base sequence of (Pg1) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Pg4) has inosinic acid degrading activity.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pg1).
  • the explanation in (Pn4) above can be used.
  • the polynucleotide (Pg5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pg5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pg5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 10.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pg6) has inosinic acid degrading activity.
  • “1 or several" in the above (Pg6) is, for example, 1 to 114, 1 to 85, 1 to 57, 1 to 28, 1 to 22 in the amino acid sequence of SEQ ID NO: 10. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Pg7) has inosinic acid degrading activity.
  • the identity of (Pg7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 10. It is 99% or more.
  • Pp Any polynucleotide of the following (Pp1) to (Pp7): (Pp1) Polynucleotide consisting of the base sequence of SEQ ID NO: 11; (Pp2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pp1), and encodes a protein having inosinic acid degrading activity; (Pp3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pp1) and encoding a protein having inosinic acid degrading activity; (Pp4) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence (Pp1) above, and encoding a protein having inosinic acid degrading activity.
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 12;
  • Pp6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 12, and encodes a protein having inosinic acid degrading activity;
  • Pp7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 12 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 11 is a base sequence that encodes the amino acid sequence of the above (Pp5).
  • the base sequence of SEQ ID NO: 11 can be obtained from flounder ( Paralichthys olivaceus ), for example.
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pp2) has inosinic acid degrading activity.
  • “One or several” in the above (Pp2) refers to, for example, 1 to 234, 1 to 175, 1 to 117, 1 to 58, 1 to 47, 1 in the base sequence of (Pp1). ⁇ 35 pieces, 1 to 23 pieces, 1 to 11 pieces, 1 to 8 pieces, 1 to 6 pieces, 1 to 3 pieces, 1 or 2 pieces, 1 piece.
  • the "identity” may be within the range in which the protein encoded by the polynucleotide of the above (Pp3) has inosinic acid degrading activity.
  • the identity of (Pp3) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of (Pp1). It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Pp4) has inosinic acid degrading activity.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pp1).
  • the explanation in the above (Pn4) can be used.
  • the polynucleotide (Pp5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pp5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pp5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 12.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pp6) has inosinic acid degrading activity.
  • “One or several" of the above (Pp6) is, for example, 1 to 78, 1 to 58, 1 to 39, 1 to 19, 1 to 15 in the amino acid sequence of SEQ ID NO: 12. , 1 to 11, 1 to 7, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Pp7) has inosinic acid degrading activity.
  • the identity of (Pp7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 12. It is 99% or more.
  • polynucleotides (Pq1) to (Pq7) Any of the following polynucleotides (Pq1) to (Pq7): (Pq1) Polynucleotide consisting of the base sequence of SEQ ID NO: 25; (Pq2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pq1), and encodes a protein having inosinic acid degrading activity; (Pq3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pq1) and encoding a protein having inosinic acid degrading activity; (Pq4) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence (Pq1) above, and encoding a protein having inosinic
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 26;
  • Pq6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 26, and encodes a protein having inosinic acid degrading activity;
  • Pq7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 26 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 25 is a base sequence that encodes the amino acid sequence of the above (Pq5).
  • the base sequence of SEQ ID NO: 25 can be obtained, for example, from Clarias garienpinus .
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pq2) has inosinic acid degrading activity.
  • “One or several” in the above (Pq2) refers to, for example, 1 to 370, 1 to 277, 1 to 185, 1 to 92, 1 to 74, 1 in the base sequence of (Pq1). ⁇ 55 pieces, 1 to 37 pieces, 1 to 18 pieces, 1 to 9 pieces, 1 to 3 pieces, 1 or 2 pieces, and 1 piece.
  • identity may be, for example, within the range in which the protein encoded by the polynucleotide of (Pq3) has inosinic acid degrading activity.
  • the identity of (Pq3) with respect to the base sequence of (Pq1) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, It is 99% or more.
  • the "hybridizing polynucleotide” may be within the range where the protein encoded by the polynucleotide (Pq4) has inosinic acid degrading activity.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pq1).
  • the explanation in the above (Pn4) can be used.
  • the polynucleotide (Pq5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pq5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pq5) can be designed, for example, by substituting the corresponding codon based on the amino acid sequence of SEQ ID NO: 26.
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pq6) has inosinic acid degrading activity, for example.
  • “1 or several" of the above (Pq6) is, for example, 1 to 123, 1 to 92, 1 to 61, 1 to 30, 1 to 24 in the amino acid sequence of SEQ ID NO: 26. , 1 to 18, 1 to 12, 1 to 6, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, as long as the protein encoded by the polynucleotide of the above (Pq7) has inosinic acid degrading activity.
  • the identity of (Pq7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 26. It is 99% or more.
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 14;
  • Pl6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 14, and encodes a protein having inosinic acid degrading activity;
  • Pl7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 14 and encoding a protein having inosinic acid degrading activity.
  • the base sequence of SEQ ID NO: 13 is a base sequence encoding the amino acid sequence of the above (P15).
  • the base sequence of SEQ ID NO: 13 can be obtained from, for example, medaka fish ( Oryzias latipes ).
  • one or several may be within the range in which the protein encoded by the polynucleotide of the above (Pl2) has inosinic acid degrading activity.
  • “One or several” in the above (Pl2) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of (Pl1). -52 pieces, 1-35 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • identity may be, for example, within the range in which the protein encoded by the polynucleotide of (Pl3) above has inosinic acid degrading activity.
  • the identity of (Pl3) with respect to the base sequence of (Pl1) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Pl4) has inosinic acid degrading activity.
  • the “hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in the above (Pl1).
  • the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • the polynucleotide (Pl5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Pl5) has inosinic acid degrading activity.
  • the base sequence of the polynucleotide (Pl5) can be designed, for example, based on the amino acid sequence of SEQ ID NO: 14 by replacing it with the corresponding codon.
  • Amino acid sequence of medaka NT5E protein (SEQ ID NO: 14) MTLRWRCCALGALLGLLLRLDSWSGASGFELTLLHTNDVHARIEETSEDSSKCHEAGSCFAGVARMFTKVTEIRRKETHVLFLDAGDQFQGTVWFNYYKGKEAAHFMNKLGYDVMTFGNHEFDNGVDSLTQNFLQRVNFSVVCATIKPLHSLVANMSRFYRPFAVFNVGSEKVAVVGYTTKETPVLSAPGPYLKFEDEVEALQDQVNQLE KLGVNKIIALGHSGFEVDKDIAKRVRGIDVVIGGHTNTFLYTGKPPSTEVPRGPYPFNVSSNDGRWVPVVQAFAFGKYLGYLKVTFDQAGKVVKAVGNPILMNSSIPQDPGILSDVEKWKKGLEQYSSQYIGQTLVYLNGTFEEECRFRECNLGNLICDAMIYNYIRYSNKLQWNHVGVCMLNSGSIRA
  • amino acid sequence may be within the range in which the protein encoded by the polynucleotide of the above (Pl6) has inosinic acid degrading activity.
  • “1 or several" of the above (Pl6) is, for example, 1 to 115, 1 to 86, 1 to 57, 1 to 28, 1 to 23 in the amino acid sequence of SEQ ID NO: 14. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the "identity" with respect to the amino acid sequence may be, for example, within the range in which the protein encoded by the polynucleotide of the above (Pl7) has inosinic acid degrading activity.
  • the identity of (Pl7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 14. It is 99% or more.
  • inosinic acid degrading activity may be evaluated, for example, based on the amount of inosinic acid in a biological sample of a target fish (test fish), or may be evaluated based on the amount of inosinic acid in a biological sample of a target fish (test fish), or the nt5e gene or NT5E in a biological sample of a test fish. Evaluation may be based on protein expression.
  • the biological sample of the test fish is not particularly limited, and may be, for example, either an individual fish or a part of the individual fish, and is preferably a skeletal muscle of the fish. For example, one type or two or more types of biological samples may be used.
  • the inosinic acid degrading activity is determined on the first day after death (24 It can be evaluated based on the content of inosinic acid in fish meat at Specifically, according to Example 1 described below, the amount of inosinic acid in the biological sample 24 hours after the death of the test fish is measured.
  • the amount of inosinic acid in the biological sample of the test fish is the same as the amount of inosinic acid in the biological sample of the fish homozygous for the wild-type nt5e gene (there is no significant difference), then (significantly) lower than the amount of inosinic acid in a biological sample of a fish having a homozygous form of the nt5e gene, and/or a living body of a fish having a homozygous or heterozygous form of a loss-of-function form of the nt5e gene.
  • the test fish can be evaluated as having inosinic acid degrading activity, for example.
  • the amount of inosinic acid in the biological sample of the test fish is (significantly) higher than the amount of inosinic acid in the biological sample of the fish homozygous for the wild-type nt5e gene, the function of the nt5e gene is determined.
  • the test fish can be evaluated as having no inosinic acid degrading activity, for example.
  • the expression of the nt5e gene can be carried out, for example, by detecting the expression of mRNA of the nt5e gene. Extraction of mRNA from the fish biological sample can be performed by a conventional method. Detection of the expression of mRNA of the nt5e gene includes, for example, semi-quantitative PCR, quantitative PCR, Northern blotting, digital PCR, RNA sequence analysis (RNAseq), and the like. Primers and/or probes used for detecting the expression of the mRNA can be designed, for example, by methods common in the technical field.
  • the expression level of the nt5e gene in the biological sample of the test fish is the same as the expression level of the nt5e gene in the fish homozygous for the wild type nt5e gene (no significant difference)
  • the expression level of the nt5e gene in the biological sample is (significantly) higher than the expression level of the nt5e gene in a fish homozygous for the wild type nt5e gene, and/or when the nt5e gene has lost its function.
  • the test fish can be evaluated as having inosinic acid degrading activity, for example.
  • the nt5e gene in the biological sample of the test fish is (significantly) lower than the expression level of the nt5e gene in the biological sample of the fish homozygous for the wild-type nt5e gene, the nt5e gene If the expression level of the nt5e gene is the same (no significant difference) in the biological sample of a fish having a homozygous or heterozygous loss-of-function body of the nt5e gene, and/or the expression level of the nt5e gene is homozygous or heterozygous.
  • the test fish can be evaluated as not having inosinic acid degrading activity, for example.
  • the expression of the NT5E protein can be detected by, for example, a method using a spectrophotometer such as an ultraviolet absorption method or a bicinchoninic acid method, ELISA, Western blotting, or the like.
  • a spectrophotometer such as an ultraviolet absorption method or a bicinchoninic acid method, ELISA, Western blotting, or the like.
  • Preparation of the protein-containing extract from fish can be carried out by methods commonly used in this technical field, such as ultrasonic crushing and physical crushing using a homogenizer.
  • the test fish If the expression level of NT5E protein in the biological sample of the test fish is the same as the expression level of NT5E protein in the fish homozygous for the wild type NT5E protein (no significant difference), the test fish the expression level of the NT5E protein in the biological sample is (significantly) higher than the expression level of the NT5E protein in a fish homozygous for the wild-type NT5E protein, and/or a loss-of-function body of the NT5E protein.
  • the test fish can be evaluated as having inosinic acid degrading activity, for example.
  • the expression level of the NT5E protein in the biological sample of the test fish is (significantly) lower than the expression level of the NT5E protein in the biological sample of the fish homozygous for the wild-type NT5E protein, the NT5E protein If the expression level of the NT5E protein is the same (no significant difference) in the biological sample of a fish that has a homozygous or heterozygous loss-of-function form of the NT5E protein, and/or the expression level of the NT5E protein is homozygous or heterozygous.
  • the expression level of the NT5E protein is (significantly) lower than the expression level of the NT5E protein in a biological sample of a heterozygous fish, it can be evaluated that the test fish does not have inosinic acid degrading activity, for example.
  • the nt5e gene may exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA). DNA may be double-stranded or single-stranded.
  • the gene may include additional sequences such as untranslated region (UTR) sequences.
  • the loss of function of the nt5e gene means that fish having a loss of function of the nt5e gene are more susceptible to aging than fish having a wild-type nt5e gene (hereinafter also referred to as "wild-type fish"). It means a state in which the function of the nt5e gene is (significantly) reduced or lost to the extent that the amount of inosinic acid in fish meat increases.
  • the loss of function of the nt5e gene includes, for example, a state in which the expression level of the mRNA of the nt5e gene or the protein encoded by the gene is (significantly) reduced, or a state in which the expression level of the mRNA of the nt5e gene or the protein encoded by the gene It may mean a state in which the protein encoded by is not completely expressed, or a state in which the expression level of the mRNA of the functional nt5e gene or the protein encoded by the nt5e gene is reduced, or a state in which the functional nt5e gene It may also mean a state in which the mRNA of or the protein encoded by the nt5e gene is not completely expressed.
  • the loss of function of the nt5e gene may be achieved by introducing a loss-of-function mutation into the nt5e gene, or by introducing a polynucleotide that suppresses the expression of the nt5e gene. , may be implemented.
  • the above-mentioned “suppression of gene expression” may be suppression of gene transcription or translation into protein.
  • fish that have lost the function of the nt5e gene can also be referred to as, for example, fish that have a loss of function of the nt5e gene.
  • the fish that has lost the function of the nt5e gene may have the nt5e gene in a heterozygous or homozygous form, for example.
  • genes other than the nt5e gene may be modified, modified, introduced, and/or lost in function.
  • the loss of function of the nt5e gene can be caused, for example, by introducing a mutation, more specifically a loss-of-function mutation, into the nt5e gene.
  • the type of mutation is not particularly limited, and includes, for example, point mutation, missense mutation, nonsense mutation, frame shift mutation, and wide base deletion (large deletion).
  • the mutation may, for example, result in deletion of part or all of the nt5e gene.
  • the frameshift mutation is a mutation that occurs when a base is deleted or inserted and the triplet reading frame (codon) is shifted.
  • the frameshift mutation has a much greater influence on gene function than base pair substitution mutations. This is because when the frameshift mutation occurs, the genetic code after the point where the frameshift mutation was introduced in the gene concerned changes significantly, and not only the amino acid changes, but also the stop codon etc. It is.
  • the loss-of-function form of the nt5e gene includes, for example, insertion, deletion, and/or substitution of one or several bases (hereinafter also referred to as "one or more bases”) in the base sequence of the wild-type nt5e gene.
  • This is a gene into which a mutation has been introduced.
  • the one or more bases for example, refer to the explanation of the number of bases in the explanation of (Pn2), (Pt2), (Po2), (Pm2), (Pg2), (Pp2), (Pq2), and (Pl2) above.
  • the frameshift mutation is caused, for example, by insertion or deletion of 3m+1 bases or 3m+2 bases (m is an integer of 0 or more).
  • the mutation to the nt5e gene can be caused, for example, by introducing a mutation into the target gene in the genome of the target fish using a conventional method.
  • the method for introducing the mutation can be carried out, for example, by homologous recombination; genome editing technology using ZFN, TALEN, CRISPR-CAS9, CRISPR-CPF1, etc., and the like.
  • the mutation introduction method may be carried out by, for example, a mutation introduction method such as a site-directed mutagenesis method.
  • the method for introducing mutations may be performed, for example, by random mutagenesis.
  • the random mutagenesis method includes, for example, radiation treatment such as alpha rays, beta rays, gamma rays, and X-rays; chemical substance treatment with mutagenic agents such as ethyl methanesulfonate (EMS) and ethynylnitrosourea (ENU). ; heavy ion beam processing; etc.
  • radiation treatment such as alpha rays, beta rays, gamma rays, and X-rays
  • chemical substance treatment with mutagenic agents such as ethyl methanesulfonate (EMS) and ethynylnitrosourea (ENU).
  • EMS ethyl methanesulfonate
  • ENU ethynylnitrosourea
  • heavy ion beam processing etc.
  • the introduction of mutations using the genome editing technology can be carried out, for example, by introducing proteins and nucleic acids that constitute the genome editing technology, or
  • Examples of the protein include CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) enzyme, and specific examples include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16 , CsaX, Examples include Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, and Csf4.
  • Cas1, Cas1B Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10,
  • nucleic acids examples include crRNA and tracrRNA, or single-stranded nucleic acids in which these are linked via a linker.
  • the nucleic acid is designed such that the base sequence that anneals with the target sequence in crRNA is complementary to the base sequence encoding the nt5e gene.
  • the nucleic acids may be used alone or in combination of two or more.
  • the mutation introduction method may be carried out by, for example, a mutation introduction method such as a site-directed mutagenesis method.
  • the location of the mutation in the nt5e gene loss-of-function body is not particularly limited, and can be set in any region related to the nt5e gene.
  • the location of the mutation in the nt5e gene loss-of-function body is, for example, an expression control region such as a promoter region of the nt5e gene, an exon region including a coding region encoding a protein encoded by the nt5e gene, or the nt5e gene. Examples include non-coding regions that do not encode proteins encoded by genes (eg, intron regions, enhancer regions, etc.), and exon regions are preferred.
  • the exon region is, for example, the first exon.
  • the position of the mutation in the nt5e gene is, for example, the 1st to 1200th base, preferably the 1000th to 1100th, or 1014th to 1036th bases in the base sequence of SEQ ID NO: 1.
  • the position of the mutation in the nt5e gene is, for example, a position corresponding to the 6th exon of the red sea bream nt5e gene.
  • the position of the mutation in the nt5e gene is 1 to 250, preferably 100 to 200 or 131 to 153 in the base sequence of SEQ ID NO: 3.
  • the position of the mutation in the nt5e gene is, for example, a position corresponding to the first exon of the tiger pufferfish nt5e gene.
  • the location of the mutation in the nt5e gene is the 1st to 300th bases, preferably the 200th to 250th, and 217th to 239th bases in the base sequence of SEQ ID NO: 5.
  • the position of the mutation in the nt5e gene is, for example, a position corresponding to the first exon of the tilapia nt5e gene.
  • the location of the mutation in the nt5e gene is the 1st to 700th bases, preferably the 600th to 650th, and the 605th to 627th bases in the base sequence of SEQ ID NO: 5.
  • the position of the mutation in the nt5e gene is, for example, a position corresponding to the fourth exon of the flounder nt5e gene. Mutations introduced at the positions of these mutations are preferably nonsense mutations or frameshift mutations.
  • the loss-of-function nt5e gene of the fish includes the following (MN), (MT), (MO), respectively.
  • MN magnucleotides of (MM), (MG), (MP), (MQ), and (ML), or genomic regions encoding these.
  • MN Any polynucleotide of the following (MN1) to (MN5);
  • MN1 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 1;
  • MN2 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 1;
  • MN3 A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence of SEQ ID NO: 1;
  • MN4 A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 2;
  • MN5 A polynucleotide encoding a protein
  • the polynucleotides (MN1) to (MN5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • polynucleotides (MN1) to (MN5) having no inosinic acid degrading activity means, for example, that the polynucleotides (MN1) to (MN5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pn1) or (Pn5). This means that the decomposition activity is significantly suppressed, and preferably means that the inosinic acid decomposition activity is completely lost.
  • MN1 “One or several” in the above (MN1) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of SEQ ID NO: 1. -52 pieces, 1-35 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MN2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 1. It is 99% or more.
  • hybridizing polynucleotide is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 1.
  • the hybridization can be detected, for example, by various hybridization assays.
  • Pn4 the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • MN4 “One or several” in the above (MN4) is, for example, 1 to 116, 1 to 86, 1 to 58, 1 to 29, 1 to 23 in the amino acid sequence of SEQ ID NO: 2. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (MN5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 2. It is 99% or more.
  • MT Any polynucleotide of the following (MT1) to (MT5);
  • (MT1) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 3;
  • (MT2) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 3;
  • (MT3) a polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of SEQ ID NO: 3;
  • (MT4) A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4;
  • (MT5) A polynucleotide encoding a protein consisting of an
  • the polynucleotides (MT1) to (MT5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • not having inosinic acid decomposition activity means, for example, that the polynucleotides (MT1) to (MT5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pt1) or (Pt5). This means that the activity is significantly suppressed, and preferably means that the inosinic acid degrading activity is completely lost.
  • “1 or several” in the above (MT1) refers to, for example, 1 to 348, 1 to 261, 1 to 174, 1 to 87, 1 to 69, 1 in the base sequence of SEQ ID NO: 3. -52 pieces, 1-34 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MT2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 3. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 3.
  • the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • “One or several” in the above (MT4) is, for example, 1 to 115, 1 to 86, 1 to 57, 1 to 28, 1 to 23 in the amino acid sequence of SEQ ID NO: 4. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (MT5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 4. It is 99% or more.
  • MO1 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 5;
  • MO2 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 5;
  • MO3 A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of SEQ ID NO: 5;
  • MO4 A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 6;
  • MO5 A polynucleotide encoding a protein consisting of an amino acid sequence having 80% or
  • the polynucleotides (MO1) to (MO5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • polynucleotides (MO1) to (MO5) having no inosinic acid degrading activity means, for example, that the polynucleotides (MO1) to (MO5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Po1) or (Po5). This means that the decomposition activity is significantly suppressed, and preferably means that the inosinic acid decomposition activity is completely lost.
  • “1 or several” in the above (MO1) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of SEQ ID NO: 5. -52 pieces, 1-35 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MO2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 5. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 5.
  • the description in the above (Pn4) can be used for the hybridization and stringent conditions.
  • “One or several” in the above (MO4) is, for example, 1 to 116, 1 to 87, 1 to 58, 1 to 29, 1 to 23 in the amino acid sequence of SEQ ID NO: 6. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (MO5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 6. It is 99% or more.
  • MM Any polynucleotide of the following (MM1) to (MM5);
  • MM1 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 7;
  • MM2 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 7;
  • MM3 A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of SEQ ID NO: 7;
  • MM4 A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 8;
  • MM5 A polynucleotide encoding a protein consisting of
  • the polynucleotides (MM1) to (MM5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • not having inosinic acid decomposition activity means, for example, that the polynucleotides (MM1) to (MM5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pm1) or (Pm5). This means that the decomposition activity is significantly suppressed, and preferably means that the inosinic acid decomposition activity is completely lost.
  • MM1 refers to, for example, 1 to 327, 1 to 245, 1 to 163, 1 to 81, 1 to 65, 1 in the base sequence of SEQ ID NO: 7. -49 pieces, 1-32 pieces, 1-16 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MM2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 7. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 7.
  • the hybridization can be detected, for example, by various hybridization assays.
  • Pn4 the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • MM4 "One or several” in the above (MM4) is, for example, 1 to 108, 1 to 81, 1 to 54, 1 to 27, 1 to 21 in the amino acid sequence of SEQ ID NO: 8. , 1 to 16, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (MM5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 8. It is 99% or more.
  • MG Any polynucleotide of the following (MG1) to (MG5);
  • MG1 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 9;
  • MG2 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 9;
  • MG3 A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence of SEQ ID NO: 9;
  • MG4 A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 10;
  • MG5 A polynucleotide encoding a protein consisting
  • the polynucleotides (MG1) to (MG5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • polynucleotides (MG1) to (MG5) having no inosinic acid degrading activity means, for example, that the polynucleotides (MG1) to (MG5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pg1) or (Pg5). This means that the decomposition activity is significantly suppressed, and preferably means that the inosinic acid decomposition activity is completely lost.
  • MG1 refers to, for example, 1 to 327, 1 to 245, 1 to 163, 1 to 81, 1 to 65, 1 in the base sequence of SEQ ID NO: 9. -49 pieces, 1-32 pieces, 1-16 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • the identity of (MG2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 9. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 9.
  • the hybridization can be detected, for example, by various hybridization assays.
  • the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • MG4 "One or several” in the above (MG4) is, for example, 1 to 108, 1 to 81, 1 to 54, 1 to 27, 1 to 21 in the amino acid sequence of SEQ ID NO: 10. , 1 to 16, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • the identity of (MG5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 10. It is 99% or more.
  • (MP1) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 11;
  • (MP2) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 11;
  • (MP3) a polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of SEQ ID NO: 11;
  • (MP4) A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 12;
  • MP5 A polynucleotide encoding a protein consisting of an
  • the polynucleotides (MP1) to (MP5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • “having no inosinic acid degrading activity” means, for example, that in comparison with the protein encoded by the polynucleotide (Pg1) or (Pg5), This means that the decomposition activity is significantly suppressed, and preferably means that the inosinic acid decomposition activity is completely lost.
  • One or several in the above refers to, for example, 1 to 327, 1 to 245, 1 to 163, 1 to 81, 1 to 65, 1 in the base sequence of SEQ ID NO: 11. -49 pieces, 1-32 pieces, 1-16 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MP2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 11. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 11.
  • the hybridization can be detected, for example, by various hybridization assays.
  • the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • “One or several” in the above (MP4) is, for example, 1 to 108, 1 to 81, 1 to 54, 1 to 27, 1 to 21 in the amino acid sequence of SEQ ID NO: 12. , 1 to 16, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (MP5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 12. It is 99% or more.
  • (MQ) Any of the following polynucleotides (MQ1) to (MQ5); (MQ1) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted and/or added to the base sequence of SEQ ID NO: 25; (MQ2) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 25; (MQ3) A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to a polynucleotide consisting of the base sequence of SEQ ID NO: 25; (MQ4) A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 25; (MQ5) A polynucleotide encoding a protein consisting of an
  • the polynucleotides (MQ1) to (MQ5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • polynucleotides (MQ1) to (MQ5) above “having no inosinic acid degrading activity” means, for example, that the polynucleotides (Pq1) or (Pq5) have an inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pq5). This means that the activity is significantly suppressed, and preferably means that the inosinic acid degrading activity is completely lost.
  • “1 or several” in (MQ1) above refers to, for example, 1 to 370, 1 to 277, 1 to 185, 1 to 92, 1 to 74, 1 in the base sequence of SEQ ID NO: 25. -55 pieces, 1-37 pieces, 1-18 pieces, 1-9 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (MQ2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 25. It is 99% or more.
  • hybridizing polynucleotide is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 25.
  • Pn4 the explanation in the above (Pn4) can be used for the hybridization and stringent conditions.
  • “1 or several” in the above (MQ4) is, for example, 1 to 123, 1 to 92, 1 to 61, 1 to 30, 1 to 24 in the amino acid sequence of SEQ ID NO: 26. , 1 to 18, 1 to 12, 1 to 6, 1 to 3, 1 or 2, and 1.
  • (MQ5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 26. It is 99% or more.
  • ML Any polynucleotide of the following (ML1) to (ML5);
  • ML1 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of SEQ ID NO: 13;
  • ML2 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 13;
  • ML3 A polynucleotide consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of SEQ ID NO: 13;
  • ML4 A polynucleotide encoding a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted, and/or added to the amino acid sequence of SEQ ID NO: 14;
  • ML5 A polynucleotide encoding a protein consisting of an
  • the polynucleotides (ML1) to (ML5) are polynucleotides encoding a protein that does not have inosinic acid degrading activity.
  • not having inosinic acid degrading activity means, for example, that the polynucleotides (ML1) to (ML5) have no inosinic acid degrading activity compared to the protein encoded by the polynucleotide (Pl1) or (Pl5). This means that the activity is significantly suppressed, and preferably means that the inosinic acid degrading activity is completely lost.
  • the "one or several" in (ML1) refers to, for example, 1 to 351, 1 to 263, 1 to 175, 1 to 87, 1 to 70, 1 in the base sequence of SEQ ID NO: 13. -52 pieces, 1-35 pieces, 1-17 pieces, 1-8 pieces, 1-6 pieces, 1-3 pieces, 1 or 2 pieces, 1 piece.
  • (ML2) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the base sequence of SEQ ID NO: 13. It is 99% or more.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide consisting of the base sequence of SEQ ID NO: 13.
  • the explanation in the above (Pn) can be used for the hybridization and stringent conditions.
  • “One or several” in the above (ML4) is, for example, 1 to 115, 1 to 86, 1 to 57, 1 to 28, 1 to 23 in the amino acid sequence of SEQ ID NO: 14. , 1 to 17, 1 to 11, 1 to 8, 1 to 6, 1 to 5, 1 to 3, 1 or 2, and 1.
  • (ML5) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 14. It is 99% or more.
  • examples of the loss-of-function nt5e gene of the fish include the following polynucleotide (Ml) or the genomic region encoding these.
  • (Ml3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Ml1) and encoding a protein that does not have inosinic acid degrading activity; (Ml4) Codes for a protein consisting of a complementary base sequence to a polynucleotide that hybridizes under stringent conditions to the polynucleotide consisting of the base sequence of (Ml1) above, and having no inosinic acid degrading activity.
  • (Ml5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 16
  • (Ml6) A polynucleotide consisting of the amino acid sequence of SEQ ID NO: 16 with deletion, substitution, insertion, and/or addition of one or more amino acids, and encoding a protein that does not have inosinic acid degrading activity.
  • (Ml7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 16 and encoding a protein having no inosinic acid degrading activity.
  • “having no inosinic acid decomposition activity” means, for example, that the polynucleotides (Ml1) to (Ml7) have inosinic acid decomposition activity compared to the protein encoded by the polynucleotide (Pl1) or (Pl5). This means that the activity is significantly suppressed, and preferably means that the inosinic acid degrading activity is completely lost.
  • the base sequence of SEQ ID NO: 15 is a base sequence in which the 208th and 209th bases are deleted and the 339th to 1734th bases are deleted in the base sequence of SEQ ID NO: 13.
  • the base sequence of SEQ ID NO: 15 is a base sequence that encodes the amino acid sequence of (Ml5).
  • “one or several” may be in a range in which the protein encoded by the polynucleotide of the above (Ml2) does not have inosinic acid degrading activity.
  • “1 or several" in the above (Ml2) refers to, for example, 1 to 67, 1 to 50, 1 to 33, 1 to 16, 1 to 13, 1 in the base sequence of (Ml1). ⁇ 10 pieces, 1 to 6 pieces, 1 to 3 pieces, 1 or 2 pieces, 1 piece.
  • identity may be within a range in which the protein encoded by the polynucleotide of the above (Ml3) does not have inosinic acid degrading activity.
  • the identity of (Ml3) with respect to the base sequence of (Ml1) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, It is 99% or more.
  • the "hybridizing polynucleotide” may be in a range where the protein encoded by the polynucleotide in the above (Ml4) does not have inosinic acid degrading activity.
  • the "hybridizing polynucleotide” is, for example, a polynucleotide that is completely or partially complementary to the polynucleotide in (Ml1) above.
  • the explanation in (Pn4) above can be used.
  • the polynucleotide (Ml5) may have a base sequence, for example, as long as the protein encoded by the polynucleotide (Ml5) does not have inosinic acid degrading activity.
  • the base sequence of the polynucleotide (M15) can be designed, for example, by replacing the corresponding codons based on the amino acid sequence of SEQ ID NO: 16.
  • Amino acid sequence of medaka NT5E protein mutant (SEQ ID NO: 16) MTLRWRCCALGALLGLLLRLDSWSGASGFELTLLHTNDVHARIEETSEDSSKCHEAGSCFAGVARMFTKDGDPEKGDARAVSGRWRSISRHGVVQLLQRQRSCAFHEQTWL
  • amino acid sequence may be within a range in which the protein encoded by the polynucleotide of the above (Ml6) does not have inosinic acid degrading activity.
  • “One or several" of the above (Ml6) is, for example, 1 to 22, 1 to 16, 1 to 11, 1 to 5, 1 to 4 in the amino acid sequence of SEQ ID NO: 16. , 1 to 3, 1 or 2, 1.
  • the "identity" with respect to the amino acid sequence may be within a range where the protein encoded by the polynucleotide of the above (Ml7) does not have inosinic acid degrading activity.
  • the identity of (Ml7) is, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, with respect to the amino acid sequence of SEQ ID NO: 16. It is 99% or more.
  • the loss of function of the nt5e gene can be achieved by, for example, injecting a polynucleotide that suppresses the expression of the nt5e gene into a target fish.
  • This can be implemented by introducing
  • the method for introducing the polynucleotide is not particularly limited, and can be carried out, for example, by methods such as RNA interference, antisense RNA, and genome editing technology.
  • An expression cassette such as an expression vector containing the polynucleotide can be introduced into a target fish by, for example, microinjection, polyethylene glycol method, electroporation method, particle gun method, or the like.
  • the target fish may be, for example, eggs, larvae, young fish, immature fish, or adult fish.
  • the fish of the present disclosure can suppress a decrease in freshness, for example, compared to fish having a wild type (normal) nt5e gene.
  • the freshness can be evaluated using the K value.
  • K values are calculated based on adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosinic acid (IMP), and inosine (per mg) of skeletal muscle of the target fish.
  • HxR hypoxanthine
  • Hx hypoxanthine
  • the molar amounts of ATP, ADP, AMP, IMP, HxR, and Hx per skeletal muscle can be determined using HPLC according to the method described in Example 3 below.
  • K (HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx).
  • K Freshness index value ATP: Molar amount of adenosine triphosphate per muscle weight
  • ADP Molar amount of adenosine diphosphate per muscle weight
  • AMP Molar amount of adenosine monophosphate per muscle weight
  • IMP molar amount of inosinic acid per weight of muscle
  • HxR molar amount of inosine per weight of muscle
  • Hx molar amount of hypoxanthine per weight of muscle
  • the K value of the fish having the wild type (normal) nt5e gene stored at 4°C for 2 days after death is used as the standard.
  • K value 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60 Freshness reduced by % or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more It has maintenance activity or freshness deterioration suppressing activity.
  • the K value of the fish having the wild type (normal) nt5e gene stored at 4°C for 2 days after death is As a standard, K value is 5-100%, 5-95%, 5-90%, 10-85%, 10-80%, 10-75%, 15-70%, 15-65%, 15-60 %, 20-55%, 20-50%, 20-45%, 25-40%, 25-35%, or 25-30%. Therefore, the fish of the present disclosure can also be referred to as, for example, fish having freshness-maintaining activity or fish having freshness-deterioration suppressing activity.
  • the fish of the present disclosure is obtained by generating a loss-of-function mutation in the wild-type nt5e gene. Therefore, the fish of the present disclosure can also be referred to as a "fish mutant," for example. Furthermore, the fish of the present disclosure is a progeny strain of a "fish mutant" and may be a fish having a loss-of-function mutation in the nt5e gene. The fish of the present disclosure can also be referred to as a fish mutant having, for example, a genetic mutation introduced into the base sequence of the nt5e gene by the above-described mutation introduction method. Fish of the present disclosure excludes, for example, fish obtained solely by means of an essentially biological process.
  • the descriptions of the first production method, second production method, screening method, and third production method described below can be referred to.
  • the present disclosure provides fish parts that have enhanced or accelerated accumulation of inosinic acid upon ripening.
  • the fish part of the present disclosure is the fish part of the present disclosure.
  • the fish of the present disclosure may be the first fish of the present disclosure described above, or the second fish of the present disclosure described below.
  • the fish parts include edible parts of fish.
  • the fish parts include, for example, muscles, reproductive organs (eg, testes, ovaries), skin, liver, bones, and the like.
  • the present disclosure provides a method for producing the fish of the present disclosure and a method of reproducing the fish of the present disclosure using the fish of the present disclosure.
  • the fish production method of the present disclosure includes the following step (a): (a) Crossbreeding the fish of the present disclosure with other fish.
  • the first production method of the present disclosure uses the fish of the present disclosure in the step (a), it is possible to produce fish with accelerated ripening, for example.
  • the fish used as the first parent may be any of the fish of the present disclosure.
  • the fish of the present disclosure can also be obtained by, for example, the provision method, the second production method, the screening method, and the third production method of the present disclosure, which will be described later.
  • the first production method of the present disclosure may include, for example, prior to the step (a), any one of the imparting method, the second production method, the screening method, and the third production method of the present disclosure. More than one may be implemented. In this case, the explanation of each method described later can be used for the explanation of each method.
  • the first production method of the present disclosure may include the following (x) step or (y) step.
  • (x) The process of selecting the fish of the present disclosure from the test fish (selection process)
  • (y) Step of creating the fish of the present disclosure from the target fish (creation step)
  • the selection of the fish can be said to be the selection of fish in which the nt5e gene has lost its function. Therefore, the step (x) can be performed, for example, by the steps (x1) and (x2) below. (x1) Detection step of detecting whether the nt5e gene of the test fish has lost its function (x2) If the nt5e gene has lost its function, a selection step of selecting the test fish as the fish of the present disclosure
  • the step (x) may be performed, for example, using the nucleotide sequence of the nt5e gene as an index, or the nt5e gene or the The expression level of NT5E protein may be used as an indicator.
  • the loss of function of the nt5e gene can be detected in step (x1) by, for example, decoding the base sequence of the nt5e gene of the test fish, and determining the base sequence of the corresponding wild type. This may be carried out by comparing the base sequence of the nt5e gene or a loss-of-function form of the nt5e gene.
  • the nucleotide sequence can be decoded using, for example, a sequencer.
  • the nucleotide sequence of the nt5e gene of the test fish is a nucleotide sequence into which a loss-of-function mutation has been introduced with respect to the nucleotide sequence of the wild-type nt5e gene of the corresponding fish. or when the nucleotide sequence matches the nucleotide sequence of a loss-of-function body of the nt5e gene of the corresponding fish, the fish is selected as the fish of the present disclosure. The conditions for the selection will be described later.
  • the base sequence of the wild type nt5e gene reference can be made to the base sequence of the wild type nt5e gene of each fish described above.
  • the base sequence of the loss-of-function form of the nt5e gene reference can be made to the base sequence of the loss-of-function form of the nt5e gene of each fish described above.
  • the comparison of the base sequences can be performed using, for example, base sequence analysis software (eg, the above-mentioned BLAST, etc.).
  • the region whose base sequences are compared may be the intron region of the nt5e gene or the exon region of the nt5e gene, but preferably the latter.
  • the step (x1) may be carried out using, for example, a primer set, a probe, or a combination thereof that can detect at least one mutation.
  • the primer set and probe can be designed, for example, based on the type of mutation, using methods common in the technical field.
  • step (x2) for example, if one or more bases have been inserted, deleted, and/or replaced with respect to the wild-type nt5e gene, the gene may be determined to be a loss-of-function gene. Furthermore, in step (x2), for example, if a frameshift mutation has been introduced into the wild-type nt5e gene, the gene may be determined to be a loss-of-function gene. Furthermore, in step (x2), for example, if the wild-type nt5e gene is partially or completely deleted, the gene may be determined to be a loss-of-function gene.
  • test fish may be selected as the fish of the present disclosure.
  • the loss of function of the nt5e gene can be detected by, for example, detecting the function of the mRNA of the nt5e gene or the protein encoded by the nt5e gene of the test fish. It may also be implemented by detecting. Furthermore, in the step (x1), the detection of the loss of function of the nt5e gene may be performed, for example, by determining the presence or absence of expression of the nt5e gene or the protein encoded by the nt5e gene in the test fish, or the presence or absence of expression of the nt5e gene or the protein encoded by the nt5e gene. It may be carried out by detecting the expression level of.
  • step (x) when the determination is made based on the expression of the protein encoded by the nt5e gene, in the step (x1), for example, the expression of the nt5e gene and the protein encoded by the nt5e gene in the biological sample of the test fish is determined. The expression level of at least one of them is measured. In the step (x2), it is determined that the nt5e gene has lost its function based on the expression level of at least one of the nt5e gene and the protein encoded by the nt5e gene in the biological sample of the test fish, and a reference value. Select fish (fish that have lost their functions).
  • the selection of the fish that has lost the function is performed, for example, by selecting the nt5e gene and the protein encoded by the nt5e gene in the biological sample of the test fish. This can also be carried out by comparing the expression level of one side with the reference value.
  • the biological sample of the test fish is not particularly limited, and may be, for example, either an individual fish or a part of the individual fish, and is preferably a skeletal muscle of the fish.
  • the number of types of biological samples used in the step (x1) may be, for example, one type or two or more types.
  • the expression level of the nt5e gene can be measured by, for example, semi-quantitative PCR, quantitative PCR, Northern blotting, digital PCR, RNA sequence analysis (RNAseq), etc. Further, in the step (x1), the expression level of the protein encoded by the nt5e gene can be determined by, for example, a method using a spectrophotometer such as an ultraviolet absorption method or a bicinchoninic acid method, or a protein quantitative method such as ELISA or Western blotting. , can be measured.
  • a spectrophotometer such as an ultraviolet absorption method or a bicinchoninic acid method
  • a protein quantitative method such as ELISA or Western blotting.
  • the reference value is, for example, the expression level of the nt5e gene or a protein encoded by the nt5e gene in the wild-type fish, the expression level of the nt5e gene or a protein encoded by the nt5e gene in a fish with a loss of function of the nt5e gene, etc. can give.
  • the fish with the loss of function may, for example, have either one of the two nt5e genes located on each of a pair of chromosomes.
  • Fish may have a loss of function for one of the genes, that is, a heterozygous fish, or fish may have a loss of function for both genes, that is, a homozygous fish.
  • the expression level of the nt5e gene or the protein encoded by the nt5e gene used as the reference value is, for example, the expression level of the nt5e gene or the protein encoded by the nt5e gene in a biological sample collected under the same conditions as the biological sample of the test fish. , can be obtained by measuring in the same manner as the biological sample of the test fish.
  • the reference value may be measured in advance, for example, or at the same time as the biological sample of the test fish.
  • the method for evaluating whether the nt5e gene in the test fish has lost its function is not particularly limited, and can be appropriately determined depending on the type of the reference value.
  • the test sample When the expression level of the nt5e gene in the fish biological sample is (significantly) higher than the expression level of the nt5e gene in the fish homozygous for the wild-type nt5e gene, and/or loss of function of the nt5e gene.
  • the expression level of the nt5e gene is (significantly) higher than the expression level of the nt5e gene in a biological sample of a fish having a homozygous or heterozygous body, it can be evaluated that the test fish has not lost the function of the nt5e gene, for example.
  • the nt5e gene in the biological sample of the test fish is (significantly) lower than the expression level of the nt5e gene in the biological sample of the fish homozygous for the wild-type nt5e gene, the nt5e gene If the expression level of the nt5e gene is the same (no significant difference) in the biological sample of a fish having a homozygous or heterozygous loss-of-function body of the nt5e gene, and/or the expression level of the nt5e gene is homozygous or heterozygous.
  • the test fish can be evaluated as having lost the function of the nt5e gene, for example.
  • the test fish the expression level of the NT5E protein in the biological sample of the test fish is the same as the expression level of NT5E protein in the fish homozygous for the wild type NT5E protein (no significant difference)
  • the test fish the expression level of the NT5E protein in the biological sample is (significantly) higher than the expression level of the NT5E protein in a fish homozygous for the wild-type NT5E protein, and/or a loss-of-function body of the NT5E protein.
  • the expression level of the NT5E protein is (significantly) higher than the expression level of the NT5E protein in a biological sample of a fish having the nt5e gene in homozygous or heterozygous form, it can be evaluated that the test fish has not lost the function of the nt5e gene, for example.
  • the expression level of the NT5E protein in the biological sample of the test fish is (significantly) lower than the expression level of the NT5E protein in the biological sample of the fish homozygous for the wild-type NT5E protein, the NT5E protein If the expression level of the NT5E protein is the same (no significant difference) in the biological sample of a fish that has a homozygous or heterozygous loss-of-function form of the NT5E protein, and/or the expression level of the NT5E protein is homozygous or heterozygous.
  • the test fish can be evaluated as having lost the function of the nt5e gene, for example.
  • step (x2) fish that have been evaluated to have lost the function of the nt5e gene are selected as the fish of the present disclosure.
  • the genotype of the nt5e gene may be evaluated based on the expression level of the nt5e gene, and specific examples include homozygous for a normal gene or heterozygous for a normal gene and a loss-of-function gene. or homozygous for a loss-of-function gene.
  • the reference value is used for fish having a homozygous form of the wild-type nt5e gene (wild-type fish), and for fish having a loss-of-function form of the nt5e gene in a heterozygous or homozygous form (heterozygous). This can be carried out by using zygotic fish or homozygous fish.
  • the expression level of the target gene in the test fish is equivalent to the expression level of the target gene in the wild type fish, the heterozygous fish, or the homozygous fish.
  • the test fish can be evaluated as having the same genotype as the fish having the same expression level, for example.
  • the step (y) can also be called, for example, a step of causing the nt5e gene of the target fish to lose its function (loss of function step).
  • a step of causing the nt5e gene of the target fish to lose its function loss of function step
  • the description of the function loss step in the application method of the present disclosure, which will be described later, can be referred to.
  • the fish used as the other parent is not particularly limited, and can be any fish with any trait.
  • the fish used as the other parent may be the fish of the present disclosure.
  • step (a) the method of crossing the fish of the present disclosure with the other fish is not particularly limited, and any known method can be employed.
  • step (a) a progeny strain of fish can be obtained by crossing the fish of the present disclosure with the other fish.
  • the first production method of the present disclosure may further include the following step (b).
  • step (b) A selection step of selecting fish in which the ecto5'-nucleotidase (nt5e) gene has lost its function from the fish obtained in step (a) or its progeny.
  • the target for selecting fish in which the nt5e gene has lost its function may be, for example, the fish obtained in the step (a), or the progeny line obtained from the fish. .
  • the target may be, for example, the F1 fish obtained by the crossbreeding in step (a), or its progeny line.
  • the progeny line may be, for example, a self-crossing progeny or a backcrossing progeny of the F1 fish obtained by the crossbreeding in step (a), or a combination of the progeny line fish such as the F1 fish and other fish. It may also be a fish obtained by crossing.
  • step (b) the selection of fish that have lost the function of the nt5e gene can be performed, for example, by directly or indirectly confirming the loss of function of the nt5e gene.
  • the direct confirmation can be made based on, for example, the amount of inosinic acid in the biological sample for the obtained F1 fish or its progeny.
  • the loss of function of the nt5e gene is determined by the content of inosinic acid in the fish meat on the first day (24 hours) after death of a fish having a wild-type nt5e gene or a fish having a loss of function of the nt5e gene. can be evaluated based on the criteria. More specifically, according to Example 1 described below, the amount of inosinic acid in the biological sample 24 hours after the death of the test fish is measured.
  • the amount of inosinic acid in the biological sample of the test fish is the same as the amount of inosinic acid in the biological sample of the fish homozygous for the wild-type nt5e gene (there is no significant difference), then (significantly) lower than the amount of inosinic acid in a biological sample of a fish having a homozygous form of the nt5e gene, and/or a living body of a fish having a homozygous or heterozygous form of a loss-of-function form of the nt5e gene.
  • the amount of inosinic acid is (significantly) lower than the amount of inosinic acid in the sample, it can be evaluated that the test fish has not lost the function of the nt5e gene, for example.
  • the amount of inosinic acid in the biological sample of the test fish is (significantly) higher than the amount of inosinic acid in the biological sample of the fish homozygous for the wild-type nt5e gene, the function of the nt5e gene is determined.
  • the test fish can be evaluated as having lost the function of the nt5e gene, for example.
  • the selection by indirect confirmation can be performed, for example, by the steps (b1) and (b2) below.
  • (b1) Detection step of detecting whether the nt5e gene of the test fish has lost its function from the step (a) (b2) If the nt5e gene has lost its function, the test fish is Selection process to select missing fish species
  • step (b) The selection of fish in which the nt5e gene has lost its function in the step (b) is, for example, the same as the method described in the step (x), and the step (b1) is the same as the step (x1). , the step (b2) can be carried out in the same manner as the step (x2).
  • the fish selected in the step (b) are further cultivated.
  • the conditions and method for growing the fish can be determined as appropriate, for example, depending on the growth stage of the fish and the variety of the fish. In the breeding, for example, the fish may be grown to any growth stage.
  • step (b) fish in which the nt5e gene has lost its function or its progeny line can be selected.
  • the first production method of the present disclosure may further include a collection step of collecting gametes (eg, eggs, sperm) from the progeny line obtained by crossing.
  • gametes eg, eggs, sperm
  • the present disclosure provides a method for producing fish with accelerated ripening.
  • the production method of the present disclosure is a method for producing fish with accelerated ripening, and includes a loss-of-function step in which the ecto-5'-nucleotidase (nt5e) gene of the target fish is lost.
  • nt5e ecto-5'-nucleotidase
  • fish with accelerated ripening can be obtained.
  • accumulation of inosinic acid during ripening can be promoted. Therefore, the second production method of the present disclosure can also be said to be, for example, a method for producing fish in which accumulation of inosinic acid during ripening is promoted.
  • the enhancement method of the present disclosure is, for example, a method for producing fish that maintains freshness, a method for producing fish that suppresses deterioration in freshness, a method for maintaining freshness of fish, or a method for suppressing deterioration in freshness of fish. You can also do it.
  • the loss of function of the nt5e gene may be achieved by introducing a loss-of-function mutation into the nt5e gene, or by introducing a polynucleotide that suppresses the expression of the nt5e gene.
  • it may be carried out by crossing the target fish with the fish of the present disclosure, that is, by cross-transferring a loss-of-function body of the nt5e gene.
  • the imparting method of the present disclosure can be carried out in the same manner as the first production method of the present disclosure, for example.
  • the loss-of-function mutation is introduced into the nt5e gene of the target fish.
  • the target fish has, for example, the nt5e gene on each of a pair of chromosomes. Therefore, in the function loss step, for example, the function of the nt5e gene of either one of the pair of chromosomes in the target fish may be lost, or the function of the nt5e gene of both chromosomes may be lost.
  • the nt5e gene may be rendered functional, the latter is preferred.
  • the loss of function of the nt5e gene can be achieved, for example, by introducing a mutation as described above.
  • the above-mentioned mutation can be referred to, for example, as described above, and is preferably a nonsense mutation or a frameshift mutation.
  • the loss-of-function mutation may be introduced by, for example, deleting, substituting, inserting, and/or adding one or more bases to each gene (base sequence of each gene), and preferably , by partially or completely deleting the wild-type nt5e gene.
  • the region into which a loss-of-function mutation is introduced into the nt5e gene may be an intron region or an exon region of the nt5e gene, but preferably the latter.
  • the loss of function of the nt5e gene can be caused, for example, by introducing a mutation into the nt5e gene of the target fish using a conventional method.
  • the method for introducing the mutation can be carried out, for example, by homologous recombination; genome editing technology using ZFN, TALEN, CRISPR-CAS9, CRISPR-CPF1, etc., and the like.
  • the method of introducing mutations using the genome editing technology see Example 1 below, for example.
  • the method for introducing mutations may be performed, for example, by random mutagenesis.
  • the random mutagenesis method includes, for example, radiation treatment such as alpha rays, beta rays, gamma rays, and X-rays; chemical substance treatment with mutagenic agents such as ethyl methanesulfonate (EMS) and ethynylnitrosourea (ENU). ; heavy ion beam processing; etc.
  • radiation treatment such as alpha rays, beta rays, gamma rays, and X-rays
  • chemical substance treatment with mutagenic agents such as ethyl methanesulfonate (EMS) and ethynylnitrosourea (ENU).
  • EMS ethyl methanesulfonate
  • ENU ethynylnitrosourea
  • the method for introducing each mutation described above may be carried out using, for example, a commercially available kit.
  • the target fish may be, for example, eggs, larvae, juvenile fish, immature fish, or adult fish.
  • the fish to be selected may be, for example, the fish obtained in the loss-of-function step or its progeny line.
  • the selection can be performed, for example, in the same manner as the above-mentioned step (x), and the explanation thereof can be cited.
  • the method for introducing the polynucleotide is not particularly limited, and can be carried out by, for example, methods such as RNA interference, antisense RNA, and genome editing technology.
  • An expression cassette such as an expression vector containing the polynucleotide can be introduced into a target fish by, for example, microinjection, polyethylene glycol method, electroporation method, particle gun method, or the like.
  • the target fish may be, for example, eggs, larvae, young fish, immature fish, or adult fish.
  • the present disclosure provides a method capable of enhancing inosinic acid content in the aging of fish or fish meat.
  • the enhancement method of the present disclosure is a method of enhancing inosinic acid content in the aging of fish meat, and includes a maturing step of aging fish or fish meat, and the fish meat includes the fish of the present disclosure, the fish meat of the fish of the present disclosure, and /Or the fish meat of the edible part of the fish of the present disclosure.
  • the inosinic acid content in the fish or fish meat can be enhanced during ripening.
  • the enhancement method of the present disclosure for example, the increase in inosinic acid during ripening is enhanced compared to fish having a homozygous wild type nt5e gene, so that the same inosinic acid content can reach the level earlier. Can be done. Therefore, the enhancement method of the present disclosure can also be referred to as, for example, a method for promoting the ripening of fish or fish meat, or a method for promoting the accumulation of inosinic acid in fish or fish meat.
  • the method for aging the fish or fish meat may be, for example, the general aging conditions for the fish or fish meat.
  • the temperature during the aging is, for example, 1 to 10°C.
  • the ripening period (ripening period) is, for example, 0.1 to 31 days, 0.5 to 20 days, or 1 to 3 days.
  • the present disclosure provides a method for screening fish for accelerated ripening.
  • the screening method for fish with accelerated ripening of the present disclosure is a selection method in which test fish in which the ecto-5'-nucleotidase (nt5e) gene has lost its function are selected as fish with accelerated ripening. Including process.
  • fish whose ripening has been accelerated can be screened.
  • the screening method of the present invention can also be called, for example, a method for screening fish that have the ability to enhance (promote) accumulation of inosinic acid.
  • the screening method of the present disclosure can also be referred to as, for example, a method of screening fish whose freshness is maintained or a method of screening fish whose deterioration in freshness is suppressed.
  • the selection step can be performed in the same manner as the step (x), and the explanation thereof can be cited.
  • the present disclosure provides a method for producing fish with accelerated ripening.
  • the fish production method of the present disclosure includes a screening step of screening test fish for the nt5e gene that has lost its function, and the screening step includes screening the test fish for the nt5e gene that has lost its function; This screening method is used.
  • fish having a loss of function of the nt5e gene can be screened, and thus fish with accelerated ripening can be produced.
  • the present disclosure provides fish with accelerated ripening.
  • the fish of the present disclosure (hereinafter also referred to as "second fish") can be obtained by the first production method, second production method, or third production method of the present disclosure.
  • the fish of the present disclosure it is possible to provide fish whose ripening has been accelerated.
  • the present disclosure provides a method capable of detecting the ability to promote ripening in fish.
  • the detection method of the present disclosure includes a detection step of detecting whether the ecto5'-nucleotidase (nt5e) gene has lost its function in the test fish. According to the detection method of the present disclosure, it is possible to detect whether or not ripening of a test fish is promoted during ripening, or whether accumulation of inosinic acid is enhanced during ripening.
  • the detection method of the present disclosure can also be referred to as, for example, a method for screening fish that have the ability to promote ripening, or a method for screening fish that has the ability to enhance (promote) accumulation of inosinic acid.
  • the detection method of the present disclosure includes, for example, a detection step of detecting a loss-of-function mutation in the nt5e gene of a test fish.
  • a detection step for example, the description of step (x) in the selection step of the first production method of the present disclosure or the indirect selection can be used.
  • the detection step for example, gene expression or the base sequence of the nt5e gene is detected.
  • the detection method of the present disclosure may further include a determination step of determining whether the nt5e gene of the test fish is a wild-type nt5e gene or a loss-of-function nt5e gene based on the gene expression or base sequence. preferable.
  • the determination step can be performed, for example, by comparing the nt5e gene of the test fish with the wild-type nt5e gene of the corresponding fish.
  • the determination step if the nt5e gene of the test fish has the same base sequence as the wild type nt5e gene of the corresponding fish, or has a mutation that is not a loss-of-function mutation; Alternatively, if the nucleotide sequence does not match the nucleotide sequence of the corresponding loss-of-function nt5e gene of the fish, it can be determined that the nt5e gene of the test fish is a wild-type nt5e gene.
  • the determination step if the nt5e gene of the test fish has a loss-of-function mutation in the wild-type nt5e gene of the corresponding fish, or if the nt5e gene of the corresponding fish has a loss-of-function mutation, If the sequence matches, it can be determined that the nt5e gene of the test fish is a loss-of-function version of the nt5e gene.
  • the present disclosure provides a processed food using the fish of the present disclosure.
  • the processed fish food of the present disclosure uses the fish of the present disclosure.
  • the processed fish food of the present disclosure may use the first fish of the present disclosure or the second fish of the present disclosure as the fish to be processed.
  • processing is not particularly limited, and means, for example, any treatment for fish.
  • the processing includes, for example, cutting, slicing, mincing, straining, drying, canning, bottling, washing, packaging, freezing, heating, and seasoning.
  • One or more types of processing may be performed in the production of the processed food.
  • the same treatment may be performed once or multiple times.
  • Example 1 We created medaka fish with a loss of function for the nt5e gene, and found that the accumulation of inosinic acid was enhanced compared to wild-type medaka fish, that is, the nt5e gene encodes an inosinic acid degrading enzyme. It was confirmed.
  • Single guide RNA was synthesized by a cloning-free method that does not require a vector.
  • Template DNA for synthesis was prepared by PCR using three types of oligonucleotides (OligoA-gRNA1 or OligoA-sgRNA2, OligoB, OligoC).
  • OligoA-gRNA1 or OligoA-sgRNA2, OligoB, OligoC three types of oligonucleotides
  • CUGA registered trademark 7 gRNA Synthesis Kit, manufactured by Nippon Gene Co., Ltd.
  • the sgRNA1 and sgRNA2 were synthesized using an RNA purification kit (RNeasy Plus Mini Kit, manufactured by Qiagen). and sgRNA2 were purified.
  • the target site of the sgRNA on the genome is the following target sequence present in exon 1 or exon 9 of the ecto-5'-nucleotidase (nt5e) gene.
  • nt5e ecto-5'-nucleotidase
  • PAM protospacer adjacent motif
  • a mutation was introduced into the nt5e gene by introducing 500 ng/ ⁇ L Cas9 protein and 100 ng/ ⁇ L sgRNA1 into the cytoplasm of the one-cell stage fertilized egg obtained in (1) above by microinjection (Case 1) ). Furthermore, by microinjecting 500 ng/ ⁇ L Cas9 protein, 100 ng/ ⁇ L sgRNA1, and 100 ng/ ⁇ L sgRNA2 into the cytoplasm of the one-cell stage fertilized egg obtained in (1) above, the nt5e gene was A mutation was introduced (Case 2). Thereafter, the medaka fish into which the mutation had been introduced were crossed with wild-type medaka fish to obtain second generation medaka fish.
  • DNA extracted from the caudal fin of the second generation medaka fish was analyzed, and individuals with a base deletion in the nt5e gene were selected by PCR and base sequence analysis. By crossing the above-mentioned individuals, an individual in which a functional deletion mutation of the nt5e gene was introduced was obtained.
  • Case 1 was a two-base deletion strain ( ⁇ 2).
  • case 2 among the individuals into which the functional deletion mutation of the nt5e gene was introduced, it was a 5521 base deletion strain ( ⁇ 5521).
  • the fertilized eggs produced above were cultured, hatched, and then reared using a normal culture method. Three months after hatching, each individual was killed immediately and stored at 4°C for 2 or 4 days for ripening. After the storage, skeletal muscle was collected from each individual, and the weight of the skeletal muscle was measured. After the measurement, 10% perchloric acid was added and homogenized. After the homogenization, centrifugation was performed at 12,900 rpm (or 15,000 ⁇ g) for 10 minutes. After the centrifugation, a supernatant fraction was obtained. After the acquisition, the supernatant fraction was neutralized by adding 1N KOH, and then centrifuged at 12,900 rpm (or 15,000 ⁇ g) for 10 minutes.
  • FIG. 1 is a graph showing the amount of inosinic acid in medaka fish that has lost the function of the nt5e gene.
  • (A) shows the amount of inosinic acid in medaka fish after 2 days of ripening
  • the horizontal axis shows the type of individual
  • the vertical axis shows the amount of inosinic acid. As shown in FIG.
  • the medaka of the present disclosure has an enhanced amount of inosinic acid after 2 and 4 days of ripening compared to wild-type medaka, that is, the introduction of a loss-of-function mutation into the nt5e gene. It was found that the decomposition activity of inosinic acid was suppressed.
  • Example 2 We created a red sea bream with a loss of function for the nt5e gene, and confirmed that its inosinic acid degrading activity was suppressed compared to wild-type red sea bream.
  • the genomic target site of sgRNA in red sea bream is the following target sequence present in exon 6 of the Pm-nt5e gene.
  • the three underlined bases at the 3' end are the protospacer adjacent motif (PAM) sequence.
  • each individual was immediately killed 6 months after hatching, and 1, 2, 3, 5, or 7 days after death.
  • the amount of inosinic acid was measured over time. Specifically, skeletal muscle was collected from each individual, and the weight of the skeletal muscle was measured. After the measurement, 10% perchloric acid was added and homogenized. After the homogenization, centrifugation was performed at 12,900 rpm (or 15,000 g) for 10 minutes. After the centrifugation, a supernatant fraction was obtained. After the acquisition, the supernatant fraction was neutralized by adding 1N KOH, and then centrifuged at 12,900 rpm (or 15,000 g) for 10 minutes.
  • FIG. 2 is a graph showing the amount of inosinic acid in red sea bream that has lost the function of the nt5e gene.
  • the horizontal axis shows the number of days after death (ripening period), and the vertical axis shows the amount of inosinic acid.
  • the red sea bream of Example 2 mutant group
  • the control red sea bream wild type red sea bream, control group
  • Example 2 Although the red sea bream of Example 2 is a result of using a chimera individual, it can be seen that the decomposition activity of inosinic acid is suppressed. Therefore, it is estimated that by making the red sea bream an individual having a loss-of-function nt5e gene in a heterozygous or homozygous type, the accumulation of inosinic acid will be enhanced, similar to the medaka of Example 1. Ru.
  • Example 3 We created tilapia with a loss of function for the nt5e gene, and confirmed that inosinic acid decomposition activity was suppressed and freshness was maintained compared to wild-type tilapia.
  • the target site of sgRNA on the genome in tilapia is the following target sequence (base sequence 217th to 239th in the base sequence of SEQ ID NO: 5) located in exon 1 of the nt5e gene.
  • the three underlined bases at the 5' end are the protospacer adjacent motif (PAM) sequence.
  • each individual was immediately killed 50 days after hatching and stored at 4°C for 2 or 4 days for ripening. did.
  • the amount of nucleic acids (ATP, ADP, AMP, IMP, HxR, Hx) in each individual was measured.
  • skeletal muscle was collected from each individual, and the weight of the skeletal muscle was measured.
  • 10% perchloric acid was added and homogenized. After the homogenization, centrifugation was performed at 12,900 rpm (or 15,000 ⁇ g) for 10 minutes. After the centrifugation, a supernatant fraction was obtained.
  • the supernatant fraction was neutralized by adding 1N KOH, and then centrifuged at 12,900 rpm (or 15,000 ⁇ g) for 10 minutes. After the centrifugation, a supernatant fraction was obtained. Thereafter, the supernatant fraction was adjusted to a constant volume with distilled water, and the amount of the nucleic acid was measured using HPLC. Further, the K value, which is an index of freshness, was calculated using the measured value of the nucleic acid and the following formula (1). The following calculation formula was used for the calculation. In the measurement, a C18 reverse phase column (4.6 mm ID x 250 mm, OTD-80Ts, manufactured by Tosoh) was used. The results are shown in FIG. 3.
  • K (HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx).
  • K Freshness index value ATP: Molar amount of adenosine triphosphate per muscle weight
  • ADP Molar amount of adenosine diphosphate per muscle weight
  • AMP Molar amount of adenosine monophosphate per muscle weight
  • IMP molar amount of inosinic acid per weight of muscle
  • HxR molar amount of inosine per weight of muscle Hx: molar amount of hypoxanthine per weight of muscle
  • FIG. 3 is a graph showing the amount of inosinic acid and K value in tilapia with loss of function for the nt5e gene.
  • (A) shows the amount of inosinic acid in tilapia after 2 days of ripening
  • (B) shows the K value of tilapia after 4 days of ripening.
  • the horizontal axis shows the type of individual
  • the vertical axis shows the amount of inosinic acid.
  • the horizontal axis indicates the type of individual
  • the vertical axis indicates the K value.
  • the tilapia of Example 3 had a 34% higher amount of inosinic acid compared to the control tilapia (wild-type tilapia, WT).
  • the tilapia of Example 3 had a 28% lower K value than the control tilapia (wild-type tilapia, WT).
  • the tilapia of the present disclosure has suppressed inosinic acid decomposition activity after 2 days of ripening and maintains freshness after 4 days, compared to wild-type tilapia. Ta.
  • the genomic target site of sgRNA in flounder is the following target sequence (605th to 627th base sequence in the base sequence of SEQ ID NO: 11) located in exon 4 of the nt5e gene.
  • the three underlined bases at the 3' end are the protospacer adjacent motif (PAM) sequence.
  • each individual was killed immediately at 546 days after fertilization in the same manner as in Example 1, except that the fertilized eggs of flounder after the introduction were used, and stored at 4°C for 2 days for ripening. After the storage, the amount of nucleic acids (ATP, ADP, AMP, IMP, HxR, Hx) in each individual was measured. Specifically, it was carried out in the same manner as described in Example 2 above. The results are shown in FIG. 4.
  • FIG. 4 is a graph showing the amount of inosinic acid and K value of flounder with loss of function for the nt5e gene.
  • (A) shows the amount of inosinic acid in flounder after 2 days of ripening
  • (B) shows the K value of flounder after 2 days of ripening.
  • the horizontal axis shows the type of individual
  • the vertical axis shows the amount of inosinic acid.
  • the horizontal axis indicates the type of individual
  • the vertical axis indicates the K value.
  • the fish of the present disclosure has suppressed inosinic acid decomposition activity and maintains freshness compared to wild-type fish.
  • ⁇ Additional notes> Some or all of the above embodiments and examples may be described as in the following supplementary notes, but are not limited to the following.
  • ⁇ Fish> A fish with a loss of function for the ecto5'-nucleotidase (nt5e) gene.
  • nt5e ecto5'-nucleotidase
  • Additional note 2 Including a loss-of-function form of the nt5e gene, The fish according to appendix 1, wherein the loss-of-function body is a mutant gene in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of the normal nt5e gene.
  • the fish is a red sea bream ( Pagrus major ), The fish according to any one of appendices 2 to 6, wherein the normal nt5e gene of red sea bream is a gene containing the following polynucleotide (Pn): (Pn) Any polynucleotide of the following (Pn1) to (Pn7): (Pn1) Polynucleotide consisting of the base sequence of SEQ ID NO: 1; (Pn2) In the base sequence of (Pn1) above, A polynucleotide consisting of an amino acid sequence in which inosinic acid is deleted, substituted, inserted and/or added, and encodes a protein having inosinic acid degrading activity; (Pn7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 2 and encoding a protein having inosinic acid degrading activity.
  • the fish is a red sea bream ( Pagrus major ), 8.
  • the red sea bream has a mutation in exon 6 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frame shift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish is a red sea bream ( Pagrus major ), The fish according to any one of Supplementary Notes 2 to 9, wherein the red sea bream contains a mutant gene having a mutation at bases 1014 to 1036 in the base sequence of SEQ ID NO: 1 as a loss-of-function nt5e gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The fish according to any one of appendices 2 to 6, wherein the normal nt5e gene of the tiger puffer is a gene containing the following polynucleotide (Pt): (Pt) Any polynucleotide of the following (Pt1) to (Pt7): (Pt1) Polynucleotide consisting of the base sequence of SEQ ID NO: 3; (Pt2) A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pt1), and encodes a protein having inosinic acid degrading activity; (Pt3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pt1) and encoding a protein having inosinic acid degrading activity; (Pt4) A polynucleotide
  • (Pt5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 4
  • (Pt6) A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4, and encodes a protein having inosinic acid degrading activity
  • (Pt7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 4 and encoding a protein having inosinic acid degrading activity.
  • the fish is a tiger puffer ( Takifugu rubripes ), The fish according to any one of Supplementary Notes 2 to 6 and 11, wherein the tiger puffer fish contains a mutant gene having a mutation in exon 1 of a normal nt5e gene as a loss-of-function nt5e gene.
  • the tiger puffer fish has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The fish according to any one of Supplementary Notes 2 to 6 and 11 to 13, wherein the tiger puffer has a mutation in the 131st to 153rd bases in the base sequence of SEQ ID NO: 3 as a loss of function of the nt5e gene.
  • the fish is tilapia ( Oreochromis niloticus ), The fish according to any one of appendices 2 to 6, wherein the normal nt5e gene of tilapia is a gene containing the following polynucleotide (Po): (Po) Any of the following polynucleotides (Po1) to (Po7): (Po1) Polynucleotide consisting of the base sequence of SEQ ID NO: 5; (Po2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Po1), and encodes a protein having inosinic acid degrading activity; (Po3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Po1) and encoding a protein having inosinic acid degrading activity; (Po4) A polynucleotide (P
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 6;
  • Po6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 6, and encodes a protein having inosinic acid degrading activity;
  • Po7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 6 and encoding a protein having inosinic acid degrading activity.
  • the fish is tilapia ( Oreochromis niloticus ), The fish according to any one of Supplementary Notes 2 to 6 and 15, wherein the tilapia contains a mutant gene having a mutation in exon 1 of the normal gene of the nt5e gene as a loss-of-function nt5e gene.
  • the tilapia has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish is tilapia ( Oreochromis niloticus ), The fish according to any one of Supplementary Notes 2 to 6 and 15 to 17, wherein the tilapia has a mutation in the 217th to 239th bases in the base sequence of SEQ ID NO: 5 as a loss of function of the nt5e gene.
  • the fish is a flounder ( Paralichthys olivaceus ), The fish according to any one of appendices 2 to 6, wherein the normal nt5e gene of flounder is a gene containing the following polynucleotide (Pp):
  • Pp Any polynucleotide of the following (Pp1) to (Pp7):
  • Pp1 Polynucleotide consisting of the base sequence of SEQ ID NO: 11;
  • Pp2 A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pp1), and encodes a protein having inosinic acid degrading activity;
  • Pp3 A polynucleotide consisting of a base sequence having 90% or more identity to the base sequence of (Pp1) and encoding a protein having inosinic acid degrading activity;
  • Pp4 A polynucleotide consist
  • the fish is a flounder ( Paralichthys olivaceus ), 20.
  • the flounder has a mutation in exon 4 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish is a flounder ( Paralichthys olivaceus ), 22.
  • the fish is a catfish ( Clarias garienpinus ),
  • the fish according to any one of appendices 2 to 6, wherein the normal nt5e gene of the fin catfish is a gene containing the following polynucleotide (Pq): (Pq) Any of the following polynucleotides (Pq1) to (Pq7): (Pq1) Polynucleotide consisting of the base sequence of SEQ ID NO: 25; (Pq2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted and/or added to the base sequence of (Pq1), and encodes a protein having inosinic acid degrading activity; (Pq)
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 26;
  • Pq6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 26, and encodes a protein having inosinic acid degrading activity;
  • Pq7 A polynucleotide consisting of an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 26 and encoding a protein having inosinic acid degrading activity.
  • Appendix 33 A method for producing fish with accelerated ripening, A production method comprising a loss-of-function step of causing loss of function of the ecto-5'-nucleotidase (nt5e) gene of a target fish.
  • Appendix 34 The production method according to appendix 33, wherein in the loss-of-function step, a loss-of-function mutation is introduced into the nt5e gene of the target fish to produce a fish containing a loss-of-function body of the nt5e gene.
  • Appendix 35 35.
  • Appendix 36 The production method according to appendix 35, wherein the loss-of-function gene is a mutant gene in which at least some bases are deleted in the base sequence of the normal nt5e gene.
  • Appendix 38 38.
  • the fish is a red sea bream ( Pagrus major ), The production method according to any one of appendices 34 to 39, wherein the normal nt5e gene of the red sea bream is a gene containing the following polynucleotide (Pn): (Pn) Any polynucleotide of the following (Pn1) to (Pn7): (Pn1) a polynucleotide consisting of any of the base sequences of SEQ ID NO: 1; (Pn2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pn1), and encodes a protein having inosinic acid degrading activity; (Pn3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pn1) and encoding a protein having inosinic acid degrading activity; (Pn4)
  • the fish is a red sea bream ( Pagrus major ), 41.
  • the red sea bream has a mutation in exon 6 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frame shift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the production method according to appendix 41 which includes a gene.
  • the fish is a red sea bream ( Pagrus major ), 43.
  • red sea bream contains a mutant gene having a mutation in the 1014th to 1036th bases in the base sequence of SEQ ID NO: 1 as a loss-of-function nt5e gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The production method according to any one of appendices 34 to 39, wherein the normal nt5e gene of tiger puffer fish is a gene containing the following polynucleotide (Pt):
  • Pt Any polynucleotide of the following (Pt1) to (Pt7):
  • Pt1 a polynucleotide consisting of any of the base sequences of SEQ ID NO: 3;
  • Pt2 A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pt1), and encodes a protein having inosinic acid degrading activity;
  • Pt3 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pt1) and encoding a protein having inosinic acid degrading activity;
  • (Pt5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 4
  • (Pt6) A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4, and encodes a protein having inosinic acid decomposition activity
  • (Pt7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 4 and encoding a protein having inosinic acid degrading activity.
  • the fish is a tiger puffer ( Takifugu rubripes ), 45.
  • the production method according to any one of appendices 34 to 39 and 44, wherein the tiger puffer fish contains a mutant gene having a mutation in exon 1 of a normal nt5e gene as a loss-of-function nt5e gene.
  • the tiger puffer fish has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the production method according to appendix 45 which includes a gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The production method according to any one of appendices 34 to 39 and 44 to 46, wherein the tiger puffer fish has a mutation in the 131st to 153rd bases in the base sequence of SEQ ID NO: 3 as a loss of function of the nt5e gene.
  • the fish is tilapia ( Oreochromis niloticus ), The production method according to any one of appendices 34 to 39, wherein the normal nt5e gene of tilapia is a gene containing the following polynucleotide (Po): (Po) Any of the following polynucleotides (Po1) to (Po7): (Po1) A polynucleotide consisting of any of the base sequences of SEQ ID NO: 5; (Po2) A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Po1), and encodes a protein having inosinic acid degrading activity; (Po3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Po1) and encoding a protein having inosinic acid degrading activity; (P
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 6;
  • Po6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 6, and encodes a protein having inosinic acid degrading activity;
  • Po7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 6 and encoding a protein having inosinic acid degrading activity.
  • the fish is tilapia ( Oreochromis niloticus ), 49.
  • the production method according to any one of Supplementary Notes 34 to 39 and 48, wherein the tilapia contains a mutant gene having a mutation in exon 1 of a normal gene of the nt5e gene as a loss-of-function product of the nt5e gene.
  • the tilapia has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the production method according to appendix 49 which includes a gene.
  • the fish is tilapia ( Oreochromis niloticus ), The fish according to any one of appendices 34 to 39 and 48 to 50, wherein the tilapia has a mutation at bases 217 to 239 in the base sequence of SEQ ID NO: 5 as a loss-of-function nt5e gene.
  • the fish is a flounder ( Paralichthys olivaceus ), The fish according to any one of appendices 34 to 39, wherein the normal nt5e gene of flounder is a gene containing the following polynucleotide (Pp):
  • Pp Any polynucleotide of the following (Pp1) to (Pp7):
  • Pp1 Polynucleotide consisting of the base sequence of SEQ ID NO: 11;
  • Pp2 A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pp1), and encodes a protein having inosinic acid degrading activity;
  • Pp3 A polynucleotide consisting of a base sequence having 90% or more identity to the base sequence of (Pp1) and encoding a protein having inosinic acid degrading activity;
  • Pp4 A polynucleotide
  • the fish is a flounder ( Paralichthys olivaceus ), 53.
  • the flounder has a mutation in exon 4 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish according to appendix 53 which contains the gene.
  • the fish is a flounder ( Paralichthys olivaceus ), 55.
  • the fish is a catfish ( Clarias garienpinus ),
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 26;
  • Pq6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 26, and encodes a protein having inosinic acid degrading activity;
  • Pq7 A polynucleotide consisting of an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 26 and encoding a protein having inosinic acid degrading activity.
  • the production process includes: an introduction step of introducing a mutation into the nt5e gene of the target fish; A selection step of selecting fish containing a loss-of-function body of the nt5e gene as fish with accelerated ripening from the target fish into which the mutation has been introduced;
  • the production method according to any one of appendices 34 to 57 comprising: ⁇ Method for increasing inosinic acid content during aging of fish meat>
  • a method for increasing inosinic acid content in aging fish meat the method comprising: Including the maturing process of maturing the fish meat, The reinforcement method, wherein the fish meat is the fish meat of the fish according to any one of appendices 1 to 25, and/or the fish meat of the edible part of the fish according to appendix 26 or 27.
  • the screening method according to appendix 61, wherein the loss-of-function gene is a mutant gene in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of the normal nt5e gene.
  • the loss-of-function gene is a mutant gene in which at least some bases are deleted in the base sequence of the normal nt5e gene.
  • a test fish containing a loss-of-function nt5e gene is selected as a fish with accelerated ripening, 64.
  • Appendix 65 In the selection step, a test fish containing a loss-of-function nt5e gene is selected as a fish with accelerated ripening, 65.
  • a test fish containing a loss-of-function nt5e gene is selected as a fish with accelerated ripening, 66.
  • the screening method according to any one of appendices 62 to 65, wherein the loss-of-function gene is a mutant gene containing a mutation in the first exon of a normal nt5e gene.
  • the fish is a red sea bream ( Pagrus major ), The screening method according to any one of appendices 62 to 66, wherein the normal nt5e gene of red sea bream is a gene containing the following polynucleotide (Pn): (Pn) Any polynucleotide of the following (Pn1) to (Pn7): (Pn1) a polynucleotide consisting of any of the base sequences of SEQ ID NO: 1; (Pn2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pn1), and encodes a protein having inosinic acid degrading activity; (Pn3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pn1) and encoding a protein having inosinic acid degrading activity; (Pn)
  • (Pn5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2
  • Pn6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 2, and encodes a protein having inosinic acid degrading activity
  • Pn7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 2 and encoding a protein having inosinic acid degrading activity.
  • Appendix 68 The fish is a red sea bream ( Pagrus major ), 68.
  • the red sea bream has a mutation in exon 6 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frame shift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the fish is a red sea bream ( Pagrus major ), 69.
  • the fish is a tiger puffer ( Takifugu rubripes ), The screening method according to any one of appendices 62 to 66, wherein the normal nt5e gene of tiger puffer fish is a gene containing the following polynucleotide (Pt): (Pt) Any polynucleotide of the following (Pt1) to (Pt7): (Pt1) a polynucleotide consisting of any of the base sequences of SEQ ID NO: 3; (Pt2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pt1), and encodes a protein having inosinic acid degrading activity; (Pt3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pt1) and encoding a protein having inosinic acid degrad
  • (Pt5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 4
  • (Pt6) A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4, and encodes a protein having inosinic acid degrading activity
  • (Pt7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 4 and encoding a protein having inosinic acid degrading activity.
  • the fish is a tiger puffer ( Takifugu rubripes ), 72.
  • the screening method according to any one of appendices 62 to 66 and 71, wherein the tiger puffer fish contains a mutant gene having a mutation in exon 1 of a normal nt5e gene as a loss-of-function nt5e gene.
  • the tiger puffer fish has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the screening method according to appendix 72 comprising a gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The screening method according to any one of appendices 62 to 66 and 71 to 73, wherein the tiger puffer fish has a mutation in the 131st to 153rd bases in the base sequence of SEQ ID NO: 3 as a loss of function of the nt5e gene.
  • the fish is tilapia ( Oreochromis niloticus ), The screening method according to any one of appendices 62 to 66, wherein the normal nt5e gene of tilapia is a gene containing the following polynucleotide (Po): (Po) Any of the following polynucleotides (Po1) to (Po7): (Po1) A polynucleotide consisting of any of the base sequences of SEQ ID NO: 5; (Po2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Po1), and encodes a protein having inosinic acid degrading activity; (Po3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Po1) and encoding a protein having inosinic acid degrading activity;
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 6;
  • Po6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 6, and encodes a protein having inosinic acid degrading activity;
  • Po7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 6 and encoding a protein having inosinic acid degrading activity.
  • the fish is tilapia ( Oreochromis niloticus ), 76.
  • the screening method according to any one of appendices 62 to 66 and 75, wherein the tilapia contains a mutant gene having a mutation in exon 1 of the normal gene of the nt5e gene as a loss-of-function nt5e gene.
  • the tilapia has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the screening method according to appendix 76 comprising a gene.
  • the fish is tilapia ( Oreochromis niloticus ), The screening method according to any one of appendices 62 to 66 and 75 to 77, wherein the tilapia has a mutation at bases 217 to 239 in the base sequence of SEQ ID NO: 5 as a loss of function of the nt5e gene.
  • the fish is a flounder ( Paralichthys olivaceus ), The screening method according to any one of appendices 62 to 66, wherein the normal nt5e gene of flounder is a gene containing the following polynucleotide (Pp):
  • Pp Any polynucleotide of the following (Pp1) to (Pp7):
  • Pp1 A polynucleotide consisting of any of the base sequences of SEQ ID NO: 11;
  • Pp2 A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pp1), and encodes a protein having inosinic acid degrading activity;
  • Pp3 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pp1) and encoding a protein having inosinic acid degrading activity;
  • the fish is a flounder ( Paralichthys olivaceus ), 80.
  • the screening method according to any one of appendices 62 to 66 and 79, wherein the flounder contains a mutant gene having a mutation in exon 4 of a normal gene of the nt5e gene as a loss-of-function nt5e gene.
  • the flounder has a mutation in exon 4 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the screening method according to appendix 80 comprising a gene.
  • the fish is a flounder ( Paralichthys olivaceus ), 82.
  • the screening method according to any one of appendices 62 to 66 and 79 to 81, wherein the flounder has a mutation at bases 605 to 627 in the base sequence of SEQ ID NO: 11 as a loss of function of the nt5e gene.
  • the fish is a catfish ( Clarias garienpinus ), The screening method according to any one of appendices 62 to 66, wherein the normal nt5e gene of catfish is a gene containing the following polynucleotide (Pq): (Pq) Any of the following polynucleotides (Pq1) to (Pq7): (Pq1) Polynucleotide consisting of the base sequence of SEQ ID NO: 25; (Pq2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted and/or added to the base sequence of (Pq1), and encodes a protein having inosinic acid degrading activity; (Pq3) A polynucleotide consisting of a base sequence having 90% or more identity to the base sequence of (Pq1) and encoding a protein having inosinic acid degrading activity; (Pq4) A polynucleot
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 26;
  • Pq6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 26, and encodes a protein having inosinic acid degrading activity;
  • Pq7 A polynucleotide consisting of an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 26 and encoding a protein having inosinic acid degrading activity.
  • ⁇ Fish production method> A screening step of screening test fish in which the ecto-5'-nucleotidase (nt5e) gene has lost its function, 79. A method for producing fish, wherein the screening step is performed by the screening method according to any one of appendices 62 to 78.
  • ⁇ Fish> (Additional note 85) Fish obtained by the production method according to any one of appendices 28 to 58 and 84.
  • a method for detecting the ability to promote ripening of fish comprising a detection step of detecting whether the ecto-5'-nucleotidase (nt5e) gene has lost its function in the test fish.
  • nt5e ecto-5'-nucleotidase
  • 88 Additional note 88.
  • the detection method according to appendix 87, wherein the loss-of-function gene is a mutant gene in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of the normal nt5e gene.
  • the detection method according to appendix 88, wherein the loss-of-function gene is a mutant gene in which at least some bases are deleted in the base sequence of the normal nt5e gene.
  • the detection method according to any one of appendices 87 to 89, wherein the loss-of-function gene is a mutant gene containing a frameshift mutation with respect to the base sequence of the normal nt5e gene.
  • Appendix 91 91.
  • the fish is a red sea bream ( Pagrus major ), The detection method according to any one of appendices 87 to 92, wherein the normal nt5e gene of red sea bream is a gene containing the following polynucleotide (Pn): (Pn) Any polynucleotide of the following (Pn1) to (Pn7): (Pn1) a polynucleotide consisting of any of the base sequences of SEQ ID NO: 1; (Pn2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pn1), and encodes a protein having inosinic acid degrading activity; (Pn3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pn1) and encoding a protein having inosinic acid degrading activity; (Pn)
  • the fish is a red sea bream ( Pagrus major ), 94.
  • the red sea bream has a mutation in exon 6 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the detection method according to appendix 94 which includes a gene.
  • the fish is a red sea bream ( Pagrus major ), 96.
  • the fish is a tiger puffer ( Takifugu rubripes ), The detection method according to any one of appendices 87 to 92, wherein the normal nt5e gene of the tiger puffer fish is a gene containing the following polynucleotide (Pt):
  • Pt Any polynucleotide of the following (Pt1) to (Pt7):
  • Pt1 a polynucleotide consisting of any of the base sequences of SEQ ID NO: 3;
  • Pt2 A polynucleotide consisting of a base sequence in which one or several bases have been deleted, substituted, inserted, and/or added to the base sequence of (Pt1), and encodes a protein having inosinic acid degrading activity;
  • Pt3 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pt1) and encoding a protein having inosinic acid de
  • (Pt5) A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 4
  • (Pt6) A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 4, and encodes a protein having inosinic acid decomposition activity
  • (Pt7) A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 4 and encoding a protein having inosinic acid degrading activity.
  • the fish is a tiger puffer ( Takifugu rubripes ), 98.
  • the detection method according to any one of appendices 87 to 92 and 97, wherein the tiger puffer fish contains a mutant gene having a mutation in exon 1 of a normal nt5e gene as a loss-of-function nt5e gene.
  • the tiger puffer fish has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene. 99.
  • the detection method according to appendix 98 comprising a gene.
  • the fish is a tiger puffer ( Takifugu rubripes ), The detection method according to any one of appendices 87 to 92 and 97 to 99, wherein the tiger puffer fish has a mutation in the 131st to 153rd bases in the base sequence of SEQ ID NO: 3 as a loss of function of the nt5e gene.
  • the fish is tilapia ( Oreochromis niloticus ), The detection method according to any one of appendices 87 to 92, wherein the normal nt5e gene of tilapia is a gene containing the following polynucleotide (Po): (Po) Any of the following polynucleotides (Po1) to (Po7): (Po1) A polynucleotide consisting of any of the base sequences of SEQ ID NO: 5; (Po2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Po1), and encodes a protein having inosinic acid degrading activity; (Po3) A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Po1) and encoding a protein having inosinic acid degrading activity;
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 6;
  • Po6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 6, and encodes a protein having inosinic acid degrading activity;
  • Po7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 6 and encoding a protein having inosinic acid degrading activity.
  • the fish is tilapia ( Oreochromis niloticus ), The detection method according to any one of appendices 87 to 92 and 101, wherein the tilapia contains a mutant gene having a mutation in exon 1 of a normal gene of the nt5e gene as a loss-of-function nt5e gene.
  • the tilapia has a mutation in exon 1 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the detection method according to supplementary note 102, which includes a gene.
  • the fish is tilapia ( Oreochromis niloticus ), The detection method according to any one of appendices 87 to 92 and 101 to 103, wherein the tilapia has a mutation in bases 217 to 239 in the base sequence of SEQ ID NO: 5 as a loss of function of the nt5e gene.
  • the fish is a flounder ( Paralichthys olivaceus ), The detection method according to any one of appendices 87 to 92, wherein the normal nt5e gene of flounder is a gene containing the following polynucleotide (Pp):
  • Pp Any polynucleotide of the following (Pp1) to (Pp7):
  • Pp1 A polynucleotide consisting of any of the base sequences of SEQ ID NO: 11;
  • Pp2 A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted, and/or added to the base sequence of (Pp1), and encodes a protein having inosinic acid degrading activity;
  • Pp3 A polynucleotide consisting of a base sequence having 80% or more identity to the base sequence of (Pp1) and encoding a protein having inosinic acid degrading activity;
  • Pp4 A poly
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 12;
  • Pp6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 12, and encodes a protein having inosinic acid degrading activity;
  • Pp7 A polynucleotide consisting of an amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 12 and encoding a protein having inosinic acid degrading activity.
  • the fish is a flounder ( Paralichthys olivaceus ), 106.
  • the detection method according to any one of appendices 87 to 92 and 105, wherein the flounder contains a mutant gene having a mutation in exon 4 of a normal gene of the nt5e gene as a loss-of-function nt5e gene.
  • the flounder has a mutation in exon 4 of the normal nt5e gene as a loss of function of the nt5e gene, and has a frameshift mutation or a nonsense mutation with respect to the base sequence of the normal nt5e gene.
  • the detection method according to supplementary note 106, which includes a gene.
  • the fish is a flounder ( Paralichthys olivaceus ), The detection method according to any one of appendices 87 to 92 and 105 to 107, wherein the flounder has a mutation at bases 605 to 627 in the base sequence of SEQ ID NO: 11 as a loss-of-function nt5e gene.
  • the fish is a catfish ( Clarias garienpinus ), The detection method according to any one of appendices 87 to 92, wherein the normal nt5e gene of catfish is a gene containing the following polynucleotide (Pq): (Pq) Any of the following polynucleotides (Pq1) to (Pq7): (Pq1) Polynucleotide consisting of the base sequence of SEQ ID NO: 25; (Pq2) A polynucleotide consisting of a base sequence in which one or several bases are deleted, substituted, inserted and/or added to the base sequence of (Pq1), and encodes a protein having inosinic acid degrading activity; (Pq3) A polynucleotide consisting of a base sequence having 90% or more identity to the base sequence of (Pq1) and encoding a protein having inosinic acid degrading activity; (Pq4) A polynucleotide
  • nucleotide A polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 26;
  • Pq6 A polynucleotide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added to the amino acid sequence of SEQ ID NO: 26, and encodes a protein having inosinic acid degrading activity;
  • Pq7 A polynucleotide consisting of an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 26 and encoding a protein having inosinic acid degrading activity.
  • the present invention is extremely useful in the field of fish breeding, fisheries, etc., for example.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

熟成時にイノシン酸の蓄積が増強または促進された魚類を提供する。 本開示の魚類は、エクト5'-ヌクレオチダーゼ(nt5e)遺伝子について、機能喪失している。

Description

魚類、魚類の生産方法、および熟成が促進された魚類の生産方法
 本開示は、魚類、魚類の生産方法、および熟成が促進された魚類の生産方法に関する。
 魚類は、死後、筋肉中の核酸が分解される。これに伴い、前記筋肉では、イノシン酸含有量が増加することが知られている(特許文献1)。
特開昭61-115499号公報
 魚肉の旨味は、イノシン酸に起因するため、前記魚類は、死後、熟成させることにより旨味を増加させることができる。他方、前記魚類は、死後、筋肉が軟化する。このため、現状、歯ごたえがありつつ、旨味のある魚類を得ることは、困難である。
 そこで、本開示は、熟成時にイノシン酸の蓄積が増強または促進された魚類の提供を目的とする。
 前記目的を達成するために、本開示の魚類(以下、「第1の魚類」ともいう)は、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子について、機能喪失している。
 本開示は、本開示の魚類の部分である。
 本開示の魚類の生産方法(以下、「第1の生産方法」ともいう)は、下記(a)工程を含む:
(a)本開示の魚類と、他の魚類とを交配する交配工程。
 本開示の生産方法は、熟成が促進された魚類の生産方法(以下、「第2の生産方法」ともいう)であって、
対象の魚類のエクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失させる機能喪失工程を含む。
 本開示の増強方法は、魚肉の熟成におけるイノシン酸含有量の増強方法であって、
魚肉を熟成させる熟成工程を含み、
前記魚肉は、本開示の魚類の魚肉、および/または、本開示の魚類の可食部の魚肉である。
 本開示の熟成が促進された魚類のスクリーニング方法(以下、「スクリーニング方法」ともいう)は、被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類を、熟成が促進された魚類として選抜する選抜工程を含む。
 本開示の魚類の生産方法(以下、「第3の生産方法」ともいう)は、被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類をスクリーニングするスクリーニング工程を含み、
前記スクリーニング工程は、本開示のスクリーニング方法により実施される。
 本開示の魚類(以下、「第2の魚類」ともいう)は、本開示の第1の生産方法、第2の生産方法、または第3の生産方法により得られる。
 本開示の魚類の熟成促進能の検出方法(以下、「検出方法」ともいう)は、被検魚類において、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失しているかを検出する検出工程を含む。
 本開示の加工食品は、本開示の魚類を用いる。
 本開示によれば、熟成時にイノシン酸の蓄積が増強または促進された魚類を提供できる。
図1は、実施例1における、nt5e遺伝子について機能喪失しているメダカのイノシン酸の量を示すグラフである。 図2は、実施例2における、nt5e遺伝子について機能喪失しているマダイのイノシン酸の量を示すグラフである。 図3は、実施例3における、nt5e遺伝子について機能喪失しているティラピアのイノシン酸の量およびK値を示すグラフである。 図4は、実施例4における、nt5e遺伝子について機能喪失しているヒラメのイノシン酸の量およびK値を示すグラフである。
<定義>
 本明細書において、「魚類」は、脊椎動物亜門から四肢動物を除外した動物群に分類される動物を意味する。
 本明細書において、「機能喪失」は、例えば、対象遺伝子の本来有する機能が低下または失われた状態を意味する。
 本明細書において、「機能喪失変異」(loss of function mutation)は、対象遺伝子の本来有する機能が(有意に)減弱する変異、および/または、完全な機能喪失が生じる変異を意味する。前記「完全な機能喪失が生じる変異」は、例えば、ヌル変異(null mutation)またはアモルフ(amorph)ということもできる。
 本明細書において、「魚類」は、魚類の個体を意味する。
 本明細書において、「魚類の部分」は、魚類個体の一部または部分を意味する。
 本開示において、「熟成」は、対象の魚類において、タンパク質をアミノ酸に分解させる工程または処理を意味する。前記熟成は、例えば、エイジングということもできる。
 本明細書において、「イノシン酸の分解活性」または「イノシン酸分解活性」は、イノシン酸をイノシンに分解する活性を意味する。
 本明細書に記載のタンパク質またはそれをコードする核酸(例えば、DNAまたはRNA)の配列情報は、Protein Data Bank、UniProt、EnsemblまたはGenBank等から入手可能である。また、RNAの核酸配列は、適宜配列変換ソフト等を用い、対応するDNAの核酸配列からも入手可能である。
<魚類>
 ある態様において、本開示は、熟成時にイノシン酸の蓄積が増強または促進された魚類を提供する。本開示の魚類(第1の魚類)は、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子について、機能喪失している。
 本発明者らは、鋭意研究の結果、魚類のエクト5’-ヌクレオチダーゼ(NT5E)が魚類の死後に生じる旨味成分の含有量の変動に関与するとの知見を得た。そして、本発明者らは、さらなる研究の結果、NT5Eが、旨味成分であるイノシン酸の分解に寄与していることを突き止め、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失させることにより、イノシン酸の蓄積を促進できることを見出し、本開示を確立するに至った。本開示によれば、一定量のイノシン酸の含有量を達成するまでの期間を、野生型の(正常な)nt5e遺伝子を有する魚類と比較して、より短縮できる。一般的に魚類は、死後早期に柔らかくなり、食感が柔らかくなる。このため、前記魚類では、歯ごたえがありつつ、旨味のある魚類を得るのが困難である。他方、本開示によれば、魚類の死後において、魚肉におけるイノシン酸の蓄積を促進できるため、歯ごたえがありつつ、旨味のある魚類を得られると期待される。
 前記魚類は、例えば、フグ科(Tetraodontidae:puffers)、ハコフグ科(Ostraciidae:boxfishes)、タイ科(Sparidae:sea breams and porgies)、サケ科(Salmonidae)、コイ科(Cyprinidae)ハタ科(Serranidae:sea basses)、カワスズメ科(Cichlidae)、メダカ科(Oryziidae:medakas)、ヒラメ科(Paralichthys)アジ科(Carangidae)、ギギ科(Bagridae)、ヒレナマズ科(Clariidae)、アメリカナマズ科(Intaluridae)等の魚類があげられる。
 前記フグ科の魚類は、例えば、トラフグ(Takifugu rubripes)、マフグ(Takifugu porphyreus)、クサフグ(Takifugu niphobles)等のトラフグ属(Takifugu);シロサバフグ(Lagocephalus wheeleri)等のサバフグ属(Lagocephalus;)等の魚類があげられる。
 前記ハコフグ科の魚類は、例えば、ハコフグ(Ostracion immaculatus)等のハコフグ属の魚類があげられる。
 前記タイ科の魚類は、例えば、マダイ(Pagrus major)、ゴウシュウマダイ(Pagrus auratus)等のマダイ属(Pagrus);クロダイ(Acanthopagrus schlegelii)、キチヌ(Acanthopagrus latus)等のAcanthopagrus属;キダイ(連子鯛)(Dentex tumifrons)等のキダイ属(Dentex);ヨーロッパヘダイ(Sparus aurata)等のヘダイ属(Sparus)等の魚類があげられる。
 前記サケ科の魚類は、例えば、ニジマス(Oncorhynchus mykiss)、キングサーモン(Oncorhynchus tshawytscha)、サクラマス(Oncorhynchus masou)、サツキマス(Oncorhynchus masou)、クニマス(Oncorhynchus kawamurae)、カラフトマス(Oncorhynchus gorbuscha)、サケ(Oncorhynchus keta)等のタイヘイヨウサケ属の魚類;ブラウントラウト(Salmo trutta)、ベニザケ(Oncorhynchus nerka)、ギンザケ(Oncorhynchus kisutch)、タイセイヨウサケ(アトランティックサーモン)(Salmo salar)等のタイセイヨウサケ属の魚類;オショロコマ(Salvelinus malma)、イワナ(Salvelinus leucomaenis)、カワマス(Salvelinus fontinalis)、レイクトラウト(Salvelinus namaycush)等のイワナ属の魚類;イトウ(Parahucho perryi)等のイトウ属の魚類;等があげられる。
 前記コイ科の魚類は、例えば、ホンモロコ(Gnathopogon caerulescens)、ハクレン(Hypophthalmichthys molitrix)、コイ(Cyprinus carpio)、ソウギョ(Ctenopharyngodon idellus)、コクレン(Hypophthalmichthys nobilis)、ヨーロッパブナ(Carassius carassius)、カトラ(Cyprinus catla)、アオウオ(Mylopharyngodon piceus)、ケンヒー(Cirrhinus molitorella)、ムリガルカープ(Cirrhinus cirrhosus)、カトラ(Catla catla)、ローフー(Labeo rohita)、ダントウボウ(Megalobrama amblycephala)等の魚類があげられる。
 前記ハタ科の魚類は、例えば、マハタ(Epinephelus septemfasciatus)、クエ(Epinephelus bruneus)、キジハタ(Epinephelus akaara)、ヤイトハタ(Epinephelus malabaricus)、ホワイトグルーパー(Epinephelus aeneus)、コクテンアオハタ(Epinephelus amblycephalus)、オオモンハタ(Epinephelus areolatus)、キテンハタ(Epinephelus bleekeri)、シラヌイハタ(Epinephelus bontoides)、(Epinephelus chlorostigma)、チャイロマルハタ(Epinephelus coiodes)、アカハタ(Epinephelus fasciatus)、アカマダラハタ(Epinephelus fuscoguttatus)、スターリーグルーパー(Epinephelus labriformis)、タマカイ(Epinephelus lanceolatus)、シロブチハタ(Epinephelus maculatus)、ヤイトハタ(Epinephelus malabricus)、ダスキーグルーパー(Epinephelus marginatus)、ナミハタ(Epinephelus ongus)、マダラハタ(Epinephelus polyphekadion)、モヨウハタ(Epinephelus quoyanus)、コクテンヒレハタ(Epinephelus sexfasciatus)、ナッソーハタ(Epinephelus striatus)、ヒトミハタ(Epinephelus tauvina)、ジャガイモハタ(Epinephelus tukula)等のマハタ属(Epinephelus)、サラサハタ(Cromileptes altivelis)等のサラサハタ属、スジアラ(Plectropomus leopardus)等のスジアラ属(Plectropomus)等の魚類、およびハタ科魚類同士交雑種があげられる。
 前記カワスズメ科(Cichlidae)の魚類は、例えば、ナイルティラピア(Oreochromis niloticus)、カワスズメ(Oreochromis mossambicus)、ブルーティラピア(Oreochromis aureus)等のオレオクロミス属(Oreochromis)等の魚類があげられる。
 前記メダカ科の魚類は、例えば、メダカ(Oryzias latipesOryzias sakaizumii)、ジャワメダカ(Oryzias javanicus)等のメダカ属(Oryzias)等の魚類があげられる。
 前記ヒラメ科の魚類は、例えば、ヒラメ(Paralichthys olivaceus)等のヒラメ属(Paralichthys)の魚類があげられる。
 前記アジ科の魚類は、例えば、ヒラマサ(Seriola lalandi)、カンパチ(Seriola dumerili)等のブリ属(Seriola)の魚類があげられる。
 前記ギギ科の魚類は、例えば、コウライギギ(Pseudobagrus fulvidraco)等のギバチ属(Pelteobagrus)の魚類があげられる。
 前記ヒレナマズ科の魚類は、例えば、ヒレナマズ(Clarias garienpinus)等のヒレナマズ属(Clarias)の魚類があげられる。
 前記アメリカナマズ科の魚類は、例えば、アメリカナマズ(Ictalurus punctatus)等のアメリカナマズ属(Ictalurus)の魚類があげられる。
 本開示において、前記魚類は、固定種でもよいし、交雑種でもよい。前記交雑種は、例えば、属間交雑に由来する雑種があげられる。
 本開示において、前記魚類は、例えば、養殖用の魚類であることが好ましい。
 本開示において、前記魚類は、海水魚でもよいし、淡水魚でもよいし、汽水魚でもよい。
 本開示において、前記魚類の成長段階は、特に制限されず、例えば、仔魚(幼生)、稚魚、未成魚(幼魚、若魚)、および成魚のいずれでもよい。
 前記エクト5’-ヌクレオチダーゼ(nt5e)は、一般的に、細胞外の5’-リボヌクレオチドをリボヌクレオシドに変換する化学反応を触媒する活性を有するタンパク質として知られている。前記nt5e遺伝子およびその相同遺伝子は、魚類においては、ゲノム上で2種類以上存在する。
 本開示において、前記魚類のnt5e遺伝子は、魚類に存在するエクト5’-ヌクレオチダーゼをコードする遺伝子(野生型のnt5e遺伝子)であればよく、具体例として、下記表1に示すnt5e遺伝子があげられる。
Figure JPOXMLDOC01-appb-T000001
 具体例として、前記魚類が、マダイ、トラフグ、ティラピア、ニジマス、ホンモロコ、ヒラメ、ヒレナマズ、またはメダカの場合、前記魚類のnt5e遺伝子(野生型のnt5e遺伝子)としては、それぞれ、下記(Pn)、(Pt)、(Po)、(Pm)、(Pg)、(Pp)、(Pq)、および(Pl)のポリヌクレオチド、またはこれらをコードするゲノム領域が例示できる。なお、下記配列番号1、3、5、7、9、11、13、および25の塩基配列は、終止コドンを含む塩基配列である。
(Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
(Pn1)配列番号1の塩基配列からなるポリヌクレオチド;
(Pn2)前記(Pn1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn3)前記(Pn1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn4)前記(Pn1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn5)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pn6)配列番号2のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn7)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
マダイのnt5e遺伝子の塩基配列(配列番号1)
5'-ATGGGAGCGCTGCGCCCGCGCTGCCTCCACCTCCTCCTCCTGCTGCTGGGCTTCTCCGTGTCCACCTCGGCGGCCTGGGACCTGGTTCTCCTCCACACCAACGACGTGCACGCCCGGGTGGAGGAGACCAGCAAGCACTCCGGGAAATGCAGCAGCAGCAGGAAGAGCGGCGGGTGTTTCGCCGGAGTGGCCCGCAGAGCCACGATGATCAAGAAGATCCGCTCCACCGACAGCAACGTGCTGCTGCTGGACGCCGGGGACCAGTTCCAGGGCAGCGTGTGGTTCAATTACTACAAGGGAGCCGAGGCTGCTCACTTCATGAACAAACTGCAGTATGATGCCATGGCCTTGGGAAATCACGAGTTCGACAACGGAGTGGAAGGACTCATGAAGCCGTTCATGGAGAAGATCAGGTGTCCTGTTCTGAGCGCCAACATCAAACCTGATGAAGCTATGGCACCGACGTTCAGCAGCTCCTATCTACCTTATAAGATACTGACTGTGGGCAGCGAGAAGGTGGGCGTAGTGGGATACACGTCGCAGGAAACTCCGGCTCTGTCCAGACCTGGACCTCACCTGGAGTTTGAGGACGAGGTGACCTCGCTGCAGCTGCAGGTGAACAAACTGCAGACGCTGGGAGTGAATAAGATCATCGCTCTGGGACACTCCGGCTTCACGGTGGATCGCGAGATCGCCAAGAAGGTCCGCGGAGTCGACGTGGTCATCGGTGGACACACCAACACTTTCCTGTTCACAGGGCATCCTCCCTCCTCTGAGGTCCCGTTGGGTAGTTATCCGTTCATGGTGACATCAGTGGACGGGCGCCAGGTTCCTGTCGTGCAGGCCTACGCCTTTGGAAAATATCTGGGTCACTTGAAAGTGACCTTTGATGATGCTGGAAACGTGATGAAGTCAACAGGAAACCCAATCCTGCTGGACAGCAGCGTCCCACAGGATCCAGATGTTCTTGCTGACGTGGAGGAATGGAAAAAGAGTCTGGCCAACTACTCAGCTCAGGAGGTGGGAAAGACTCTGGTGTTCCTGAACGGGACCACTGAGGAGTGTCGATTTCGAGAATGCAACCTGGGAAACCTGATCTGTGACGCCATGGTCAACAACAACATCCGATTCTTAGAGGACGAGCAGTGGAACCACGTCAGCGCCTCCATCTTCAATGGAGGAGGCATCCGAACATCCATCGATGAGCACAGCAGGAACGGTTCGATCACCATGGAGGACCTGATCTCCGTCTTACCTTTCGGAGGAACCTTCGACCTGGTGCAGCTGAACGGCTCCACGCTGAGGAGAGCTTTCGAGCACTCAGTGAAACGATACGGCGAAAGCACCGGAGAATTTCTCCAAGTGTCCGGTTTCCATGTAGAGTTCGACCTCTCCAAACCGGCTGGTAGTCGCGTGAGGAGCCTCGACATCCTCTGCACTCAGTGTCGAGTCCCTCAATACGAACCCGTGGAGGATGAGACGGTTTACACAGTGGTGGTGCCGTCCTTCATGGTGACAGGCGGAGACGGATACTCCATGATCAGGAATGAGACGCTCAAACACAACAGCGGTAATCTGGACATTTCAGTCGTGTCCAACTACATCATGCAGAGAAAGAGAGTTTATCCGGCTGTTGAAGGACGAATCAAGATCTACAACTCAGCTTCTGGACCGCGAGGACAAATTTTACTGGTTTCACTGGTGCTGCTCTGGACTCTGTGGGAGCATGTAGGAGTGACTTCAACCAGTTTTTAA-3'
 前記(Pn1)において、配列番号1の塩基配列は、前記(Pn5)のアミノ酸配列をコードする塩基配列である。前記配列番号1の塩基配列は、例えば、マダイ(Pagrus major)から得ることができる。
 前記(Pn2)において、「1もしくは数個」は、例えば、前記(Pn2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pn2)の「1もしくは数個」は、前記(Pn1)の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。本開示において、塩基数またはアミノ酸数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~5個」との記載は、「1、2、3、4、5個」の全ての開示を意味する(以下、同様)。
 前記(Pn3)において、「同一性」は、例えば、前記(Pn3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pn3)の同一性は、前記(Pn1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。前記「同一性」は、2つの塩基配列またはアミノ酸配列をアライメントすることによって求めることができる(以下、同様)。前記アライメントは、例えば、BLAST、FASTA等を用いてデフォルトのパラメータで算出できる。
 前記(Pn4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pn4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pn4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pn1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。
 前記(Pn4)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載の条件を採用することもできる。
 前記(Pn5)のポリヌクレオチドは、例えば、前記(Pn5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pn5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号2のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
マダイのNT5Eタンパク質のアミノ酸配列(配列番号2)
MGALRPRCLHLLLLLLGFSVSTSAAWDLVLLHTNDVHARVEETSKHSGKCSSSRKSGGCFAGVARRATMIKKIRSTDSNVLLLDAGDQFQGSVWFNYYKGAEAAHFMNKLQYDAMALGNHEFDNGVEGLMKPFMEKIRCPVLSANIKPDEAMAPTFSSSYLPYKILTVGSEKVGVVGYTSQETPALSRPGPHLEFEDEVTSLQLQVNKLQTLGVNKIIALGHSGFTVDREIAKKVRGVDVVIGGHTNTFLFTGHPPSSEVPLGSYPFMVTSVDGRQVPVVQAYAFGKYLGHLKVTFDDAGNVMKSTGNPILLDSSVPQDPDVLADVEEWKKSLANYSAQEVGKTLVFLNGTTEECRFRECNLGNLICDAMVNNNIRFLEDEQWNHVSASIFNGGGIRTSIDEHSRNGSITMEDLISVLPFGGTFDLVQLNGSTLRRAFEHSVKRYGESTGEFLQVSGFHVEFDLSKPAGSRVRSLDILCTQCRVPQYEPVEDETVYTVVVPSFMVTGGDGYSMIRNETLKHNSGNLDISVVSNYIMQRKRVYPAVEGRIKIYNSASGPRGQILLVSLVLLWTLWEHVGVTSTSF
 前記(Pn6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pn6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pn6)の「1もしくは数個」は、例えば、前記配列番号2のアミノ酸配列において、例えば、1~116個、1~86個、1~58個、1~29個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pn7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pn7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pn7)の同一性は、前記配列番号2のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
(Pt1)配列番号3の塩基配列からなるポリヌクレオチド;
(Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt3)前記(Pt1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt7)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
トラフグのnt5e遺伝子の塩基配列(配列番号3)
5'-ATGAGCGTGTGGTCGCGCCGGTGCGCTCTCTGGGTCTGCATCTCTCTACTGGCGGGGCCAGTTTGGACCTTCGAGCTGACGCTGCTTCACACCAACGACAACCATGCGCGGATCGAGGAGACCAGCGAGGACTTGGGAAAGTGCTCATCCAGGGGTCCCTGTTTCGCGGGGGTCGCCCGGAGGTTCACCAAAGTGTCGGAGATCCGCAAAAAGGAAAAGAACGTTTTGTTCCTGGACGCTGGGGACCAATTTCAGGGGACGGTTTGGTTTAACTACTACAAAGGCGCAGAAGCCGCGCACTTTATGAATAAACTTGGTTATAATGCGATGGCTTTAGGGAACCATGAGTTTGATAATGGGGTGGAGGGACTCCTGCCTTTCCTCCAGAATGTGAACTGTTCTGTGGTGAGTGCGAACATCCAACCTGACCAGAGTCTGGCTGCAAAGCTCAGCGGTTTCCTCCAGCCCTACACGGTCCTCAACGTGGGCTCAGAGAAGGTGGCCGTGGTGGGCTACACCACCGCCGAGACCCCCTTCCTATCTATGCCAGGCCCACATCTTAAATTTAACGAGGAAGTGGAGGCGCTCCAGGTCCAGGTGGACAAACTGGAAACCCTGGGTTATGATAAGATCATCGCCTTGGGTCACTCCGGCTTTGATGTGGATCAGCAGATCGCCAAGCGAGTGAGAGGGGTTGACGTCGTCATCGGAGGACACACCAACACCTTCCTTTATACTGGAAAAGCCCCGTCCACTGAAGTGCCTGTAGGTCCTTATCCTTTTATAGTGAGGTCTGACGATGGGAGAAACGTCCCGGTGGTCCAAGCTTTTGCCTTTGGAAAATACCTCGGTTACTTGAGGGTCACATTTGACGATGCTGGAAAAGTAATCAAGGCTGCAGGAAACCCAATCCTACTGGACAGCAGCGTCCCTCAGGATCCGGACGTCCTGGCTGAGGTCAACAGGTGGAAGAAAGACCTGGCTCAGTACTCCTCACAGTATGTCGGGCAAACCTTAGTTTATCTCAACGGCACGTTTGAAGAGTGCCGATTTCGGGAGTGTAACCTCGGCAACCTGATCTGCGATGGCATGATCGACCACAACATCAAATTCTCCAGCGAGCTGCAGTGGAACCACGTGAGCCTTTGTATGCTGAACAGCGGAGCCATACGGGCTCCCATCGATGAGCGCTACAAGAACGGCTCCATAACTATGGAGGACGTCCTCACTGTCTTGCCGTTCGGAGGGACTGTTGACTTGGTGCAGATAAAAGGGTCAACGGTGAAGAAGGCGTTCGAACATGCCGTCCACAGATTTGGAAGCATGTCAGGAGAGTTTCTGCAAGTCTCAGGCTTCCATGTCAAGTACGACCTGTCCAAACCAGTGAACCAACGCGTCACGTCTCTGTCGGCACTTTGCACTGAGTGCCGCGTACCCAAATATGAGCCCATAGACCCGGAGAGGACGTACAAGGTGACCATGCCGTCATATCTGGTGGACGGTGGTGACGGTTTCAGCATGATCAAGGAGGAGTTACTGAAGCATAACACAGGTGACTTGGACATTTCTGTGTTCTCTAAATATATCTCGCAGCAGAAGCGCGTATATCCAGCAGTGGAGGGCCGGATCACAGTCAGGGGCTCGGCCTCCTCTGCAGCCCACAGCCTCGACGTATTCCTTCATACTTGGCCTCTTCTCCCATACATTTCCCCAGGAAGTCTGAAAGATAAATGGCTATAG-3'
 前記(Pt1)において、配列番号3の塩基配列は、前記(Pt5)のアミノ酸配列をコードする塩基配列である。前記配列番号3の塩基配列は、例えば、トラフグ(Takifugu rubripes)から得ることができる。
 前記(Pt2)において、「1もしくは数個」は、例えば、前記(Pt2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pt2)の「1もしくは数個」は、前記(Pt1)の塩基配列において、例えば、1~348個、1~261個、1~174個、1~87個、1~69個、1~52個、1~34個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Pt3)において、「同一性」は、例えば、前記(Pt3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pt3)の同一性は、前記(Pt1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pt4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pt4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pt4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pt1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pt4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pt5)のポリヌクレオチドは、例えば、前記(Pt5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pt5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号4のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
トラフグのNT5Eタンパク質のアミノ酸配列(配列番号4)
MSVWSRRCALWVCISLLAGPVWTFELTLLHTNDNHARIEETSEDLGKCSSRGPCFAGVARRFTKVSEIRKKEKNVLFLDAGDQFQGTVWFNYYKGAEAAHFMNKLGYNAMALGNHEFDNGVEGLLPFLQNVNCSVVSANIQPDQSLAAKLSGFLQPYTVLNVGSEKVAVVGYTTAETPFLSMPGPHLKFNEEVEALQVQVDKLETLGYDKIIALGHSGFDVDQQIAKRVRGVDVVIGGHTNTFLYTGKAPSTEVPVGPYPFIVRSDDGRNVPVVQAFAFGKYLGYLRVTFDDAGKVIKAAGNPILLDSSVPQDPDVLAEVNRWKKDLAQYSSQYVGQTLVYLNGTFEECRFRECNLGNLICDGMIDHNIKFSSELQWNHVSLCMLNSGAIRAPIDERYKNGSITMEDVLTVLPFGGTVDLVQIKGSTVKKAFEHAVHRFGSMSGEFLQVSGFHVKYDLSKPVNQRVTSLSALCTECRVPKYEPIDPERTYKVTMPSYLVDGGDGFSMIKEELLKHNTGDLDISVFSKYISQQKRVYPAVEGRITVRGSASSAAHSLDVFLHTWPLLPYISPGSLKDKWL
 前記(Pt6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pt6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pt6)の「1もしくは数個」は、例えば、前記配列番号4のアミノ酸配列において、例えば、1~115個、1~86個、1~57個、1~28個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pt7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pt7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pt7)の同一性は、前記配列番号4のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
(Po1)配列番号5の塩基配列からなるポリヌクレオチド;
(Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po3)前記(Po1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po7)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
ティラピアのnt5e遺伝子の塩基配列(配列番号5)
5'-ATGTGCTATACATTCTTGGTCACAAATGCGTTTTTTACGCACGGAGACATCATGGGTTTCCGTTCGTCTCGGCGCGCTCTCTTGACCTCGCTCTGCCTCGTTTTAAACTGCTGGAGCGGAGCGTCGACCTTCGAGCTGACAATACTCCACACCAATGACAACCATGCGCGAATCGAGGAGACCGGCAAGGACTCGGGAAAGTGTCGACCCGAGCGTCCCTGCTTCGCTGGTGTGGCCAGGAGGTTCACGAAAGTGACCGAGATCAGAACAAAAGAGACGAACGTGGTGTTTCTGGATGCTGGAGACCAATTCCAAGGGACACTCTGGTTCAACTACTATAAAGGCGCTGAAGCCGCACACTTTATGAACAAACTTTGTTATGATGTTATGGCTTTTGGAAATCACGAGTTTGACAATGGAGTGGAGGGTCTCATTCACCCCTTCCTCCAAAATATAAATTTCTCTGTGGTCAGTGCAAACATTAAACCCGACTACACCCTGGCAGAGCTTCATAAATACTACAGTCCCTACAAAGTTATCAGTGTGGGCTCAGAGAAAGTGGCTGTGGTTGGCTATACCTCAGCAGAGACGCCCTTCTTATCCATGCCAGGCAAACATCTCAAGTTCGAAGATGAGGTGGAGTCACTTCAAGCTCAAGTAAATAAGCTGGAAAGTCTGGGCTATAATAAAATCATTGCCCTGGGACACTCTGGTTTTGTTGTGGATCAAGACATCGCAAGACGCGTGAGAGGGGTGGACGTTGTTGTTGGAGGGCATACCAACACGTTCCTCTACACAGGAACGCCCCCATCTTCCGAAGTGCCAGCTGGCCCATATCCTTTTATAGTAAAATCCAGCCATGGAAGAGATGTGCCAGTGGTCCAGGCTTACGCCTTTGGGAAATATCTTGGACACTTAAAAGTCACCTTTGATGATGCTGGCAATGTCATCAAAGCCGTTGGAAATCCCATCCTAATGGACAGCAGCATACCTCAAGATGCAGAGATCCTTGCTGATGTTAATAAGTGGAAAACAGACTTGGCTCAATACTCGACTAAGTATGTGGGCCAAACCTTAGTCTACCTCAACGGGTCATTTGAAGAGTGCCGATTTCGGGAGTGTAACCTGGGAAACCTAATCTGTGATGCCATGGTGTATCACAATATGAGGCATTCAACTGGGGAGCAGTGGAATCATGTAAGCCTGTGTATGCTGAATAGTGGGGGCATACGGACAGCGATAGACGAACGCTACAGAAATGGCTCCATAACAATGGAGGAGATCCTCACCGTGTTACCATTTGGAGGAACCTGCGACTTGGTCCAAATAAAAGGCTCAACAATAAAAAAGGCATTTGAACACTCTGTTCACAGATATGGAAGCAAGACTGGAGAATTTCTTCAGGTGGTTTACGACCTCTCTAAGCCAGTGAACCAGCGTGTAGCATCGCTGTCATTGCTCTGCACAGAGTGCCGAGTGCCCAAGTATGAACCATTAGACCCACAGAAGACCTACACCGTGGTCATGCCTTCATACATGGTGGGCGGAGGCGATAACTTTACAATGATTAAGAGGGAGTTACTGAAACATAATTCAGGTGACTTGGACATTACCGTTTTTTCCAAGTACATCTCCGACATGAAGCGCGTGTTCCCTGCAGTAGAAGGCCGCATCACTTTCAGGAACTCTGCTGTCATTGCTTCATACAGTATTGGCTTGTTGCTGCTGAGTCTGTGTCTGTCTGTGACACTTTGA-3'
 前記(Po1)において、配列番号5の塩基配列は、前記(Po5)のアミノ酸配列をコードする塩基配列である。前記配列番号5の塩基配列は、例えば、ティラピア(Oreochromis niloticus)から得ることができる。
 前記(Po2)において、「1もしくは数個」は、例えば、前記(Po2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Po2)の「1もしくは数個」は、前記(Po1)の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Po3)において、「同一性」は、例えば、前記(Po3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Po3)の同一性は、前記(Po1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Po4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Po4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Po4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Po1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Po4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Po5)のポリヌクレオチドは、例えば、前記(Po5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Po5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号6のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
ティラピアのNT5Eタンパク質のアミノ酸配列(配列番号6)
MCYTFLVTNAFFTHGDIMGFRSSRRALLTSLCLVLNCWSGASTFELTILHTNDNHARIEETGKDSGKCRPERPCFAGVARRFTKVTEIRTKETNVVFLDAGDQFQGTLWFNYYKGAEAAHFMNKLCYDVMAFGNHEFDNGVEGLIHPFLQNINFSVVSANIKPDYTLAELHKYYSPYKVISVGSEKVAVVGYTSAETPFLSMPGKHLKFEDEVESLQAQVNKLESLGYNKIIALGHSGFVVDQDIARRVRGVDVVVGGHTNTFLYTGTPPSSEVPAGPYPFIVKSSHGRDVPVVQAYAFGKYLGHLKVTFDDAGNVIKAVGNPILMDSSIPQDAEILADVNKWKTDLAQYSTKYVGQTLVYLNGSFEECRFRECNLGNLICDAMVYHNMRHSTGEQWNHVSLCMLNSGGIRTAIDERYRNGSITMEEILTVLPFGGTCDLVQIKGSTIKKAFEHSVHRYGSKTGEFLQVVYDLSKPVNQRVASLSLLCTECRVPKYEPLDPQKTYTVVMPSYMVGGGDNFTMIKRELLKHNSGDLDITVFSKYISDMKRVFPAVEGRITFRNSAVIASYSIGLLLLSLCLSVTL
 前記(Po6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Po6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Po6)の「1もしくは数個」は、例えば、前記配列番号6のアミノ酸配列において、例えば、1~116個、1~87個、1~58個、1~29個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Po7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Po7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Po7)の同一性は、前記配列番号6のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pm)下記(Pm1)~(Pm7)のいずれかのポリヌクレオチド:
(Pm1)配列番号7の塩基配列からなるポリヌクレオチド;
(Pm2)前記(Pm1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pm3)前記(Pm1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pm4)前記(Pm1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pm5)配列番号8のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pm6)配列番号8のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pm7)配列番号8のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
ニジマスのnt5e遺伝子の塩基配列(配列番号7)
5'-ATGAAAAAGGGTAACCAGCATATAATGTATGCGCCTAAAATTATTCCCAATGTTTTGGTCGCTTTCCTTTCCCTAGCGGCTGAGATTCTTTTTTTCTCCAAAAGTGCGTCAGACACGGTTACTTTCACTTGGTTCTCACTTGCCGAGGAACCCGTGTCACCGGAGTGGGTATCATGTCTTCCACACTGCAAAGGTGATGTCGATGCCACAGATCCAGGGGAGTTCGTGACCAGGCGCGCTGAAGCATTTGGAAACCATGAGTTTGACAATGGAGTGGAGGGCCTGCTCCGCCCTTTTCTGCAGAAGGTGAACTTCACTGTTCTCAGTGCCAACATCAAGGCAGATGCAACACTCGCCCCAACTATCAATGGTTACTATCAACCCTACACAACATTCACGATGGGCTCTGAAATAGTGGCTGTGGTAGGTTACACCTCAGTGGAAACTCCAGTCTTATCCTTACCAGGTCCACACCTGATCTTTGAGGATGAGATCAAAGCCTTGCAGGTCCAGGTGGATAAACTGATCACTCTTGGTTACAATAAGATCATCGCCCTTGGTCACTCTGGATTTGACGTGGATATAGACATCGCCAAGCGAGTGAAAGGCGTGGACCTGGTCATCGGCGGACACACCAACACTTTCCTCTACACCGGGAGTGTCCCATCTTCAGAGGTGCCGGCGGGTCCCTACCCCTTCACGGTGAGGTCTGAGGACGGGAGAGATGTCCCTGTGGTACAGGCTTTTGCCTTTGGGAAGTACCTGGGATACCTCAAGTTGGTCTTCGATAAATCTGGGAACGTGCTGAAGGCGAATGGAAACCCCATCCTGCTGGACAGCAGCATAGCCCAGGATCCAGGTATCCTTGCTGATGTTGACGAGTGGAAGAAGAACTTGGCCCAGTACTCGTCTCAGTACGTGGGGAAAACCCTGGTGTATCTCAATGGAACCTTCAATGAGTGCCGGTTCCGAGAGTGCAACCTGGGGAACCTCATCTGTGACGCAATGATTCATCACAATATCAAGTATGCAGATGAGATCCAGTGGAATCACGTCAGTTTATGCATCCTGAACAGTGGAGGCATAAGGACAGGAATAGATGAAAGTCACAAAAATGGCACCATCACCATGGAGGAAGTTATATCAGTCTTACCATTTGGGGGCACTTTTGATCTGGTGCAGTTGAAGGGATCAACCTTGAAAAAGGCATTTGAAAACTCTGTCCGAAGATACGGGAGCAGCAGAGGAGAATTTCTTCAAGTTTCAGGAATCCATGTGGAATACGACCTGTCACGGTCGGTGGGGGACCGTGTGACGTCCTTGAGCCTCCGCTGCTCTCAGTGCCGTGTGCCCAGATACGAATCTCTGGACCCAGACAGGCTGTACAAGCTGGTCCTACCATCCTACATCGCAGACGGAGGAGATGGTTTTACCATGATTAAGGAGGAGAAACTGAAACATGACACTGGTGATCTGGACATCTCGGTTTTCGCCAACTACATCAAGGAGATGAAGAGGGTGTACCCAACTGTGGAGGGCCGCATCAAGTTCAGAAACTCATCCGTGGCGGCTGGGGCCAACTGTCTGACTTTGTTACTGCTAGGCCTGATGTGGGCCCTGTCCACAAGTTTATGA-3'
 前記(Pm1)において、配列番号7の塩基配列は、前記(Pm5)のアミノ酸配列をコードする塩基配列である。前記配列番号7の塩基配列は、例えば、ニジマス(Oncorhynchus mykiss)から得ることができる。
 前記(Pm2)において、「1もしくは数個」は、例えば、前記(Pm2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pm2)の「1もしくは数個」は、前記(Pm1)の塩基配列において、例えば、1~327個、1~245個、1~163個、1~81個、1~65個、1~49個、1~32個、1~16個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Pm3)において、「同一性」は、例えば、前記(Pm3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pm3)の同一性は、前記(Pm1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pm4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pm4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pm4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pm1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pm4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pm5)のポリヌクレオチドは、例えば、前記(Pm5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pm5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号8のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
ニジマスのNT5Eタンパク質のアミノ酸配列(配列番号8)
MKKGNQHIMYAPKIIPNVLVAFLSLAAEILFFSKSASDTVTFTWFSLAEEPVSPEWVSCLPHCKGDVDATDPGEFVTRRAEAFGNHEFDNGVEGLLRPFLQKVNFTVLSANIKADATLAPTINGYYQPYTTFTMGSEIVAVVGYTSVETPVLSLPGPHLIFEDEIKALQVQVDKLITLGYNKIIALGHSGFDVDIDIAKRVKGVDLVIGGHTNTFLYTGSVPSSEVPAGPYPFTVRSEDGRDVPVVQAFAFGKYLGYLKLVFDKSGNVLKANGNPILLDSSIAQDPGILADVDEWKKNLAQYSSQYVGKTLVYLNGTFNECRFRECNLGNLICDAMIHHNIKYADEIQWNHVSLCILNSGGIRTGIDESHKNGTITMEEVISVLPFGGTFDLVQLKGSTLKKAFENSVRRYGSSRGEFLQVSGIHVEYDLSRSVGDRVTSLSLRCSQCRVPRYESLDPDRLYKLVLPSYIADGGDGFTMIKEEKLKHDTGDLDISVFANYIKEMKRVYPTVEGRIKFRNSSVAAGANCLTLLLLGLMWALSTSL
 前記(Pm6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pm6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pm6)の「1もしくは数個」は、例えば、前記配列番号8のアミノ酸配列において、例えば、1~108個、1~81個、1~54個、1~27個、1~21個、1~16個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pm7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pm7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pm7)の同一性は、前記配列番号8のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pg)下記(Pg1)~(Pg7)のいずれかのポリヌクレオチド:
(Pg1)配列番号9の塩基配列からなるポリヌクレオチド;
(Pg2)前記(Pg1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pg3)前記(Pg1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pg4)前記(Pg1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pg5)配列番号10のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pg6)配列番号10のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pg7)配列番号10のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
ホンモロコのnt5e遺伝子の塩基配列(配列番号9)
5’-ATGATGGCACAGTGGCTCAGCTCCATAAGCCTCCTCTGGATTCACTGTCAGCTGTGCAGGACTGCGGAGTTCGAGCTGACTTTACTCCACACGAATGATGTCCACGCACGAGTGGAGGAGACCAATAAAGACTCGGGGAAGTGCAGTAAAGCGCCTTGTTTCGCTGGAGTCGCTCGGAGGTTGACGAAGATCAGGGAAGTCCGAGCCCAGGAGAAACACGTTCTGCTGCTGGACGCGGGAGACCAGTTCCAGGGCACCGTCTGGTTTAACTTTTACAAAGGCGCAGAAGCGGCGTATTTCATGAATAAACTCGGATACAATGCGATGGCCTTAGGAAATCATGAGTTTGACAATGGAGTGGACGGCCTCGTGAAACCTTTCCTTCAGGAAGTGAACTGCTCTGTTCTGAGCGCAAATATTAAAGCCGATCAGACAATCGCTCCTCGGATCAGCGGCTACTATCTCCCCTATAAAATCTTCAATTTCACCTCAGAGAAAGTAGGTGTTGTTGGCTACACATCCGTGGAGACCCCGGCTTTGTCTCTGCCAGGCCCCCATCTCCAGTTTGAGGATGAGGTTACTGCTTTACAGCTTCAAGTGGACAAACTCACTGCTTTGGGTGTTAATAAGATCATTGCCCTTGGACATTCTGGCTTCCTAACGGACAAAAAGATCGCAAAGAAAGTTCGGGGAGTGGATGTTGTGATTGGAGGGCACACCAATACATTCTTGTTCACAGGAGAGCCACCATCCACAGAGGTTCCCGCAGGACCGTACCCATTCATGGTGGATTCTGAGGATGGCCGACAGGTTCCCGTGGTCCAGGCCTATGCATTTGGAAAATATCTGGGATTCCTAAAAGTGACTTTTGATTCAAATGGGAATGTGGTGAAATCTTTTGGCAACCCAATTCTTCTGAATGGCTCAGTAGCACCAGATCCAGTCATTCAGGCTGAAGTGGACAACTGGAGGAAGAATCTGGCCAATTACTCTTCTCAGTATGTAGGAGAGACTCTCGTCTATCTCAATGGGACTTTTGAGGAATGCCGATTTCGTGAATGTAATTTGGGAAATTTAATCTGTGATGCAATGGTTCATAATAATATTAAATATGCTGATGAAATCCAGTGGAACCATGTCAGCTCTTGTATTCTGAACGGTGGAGCCATTCGATCACCTATTGATGAGCGAAACAGAAATGGTTCCATCACGATGGAGGACCTGATCGCTGTCCTGCCGTTTGGAGGCACGTTTGACCTGGTCCAAATGAACGGATCTACTCTGCGAGAGGTCTTTGAGCACTCAGTTCGCAGATACGGAGGAAACACTGGAGAATTCCTACAGGTGTCAGGGTTTCAGCTGGTGTTTGATTTATCGAAACCGCCAGGAAGCCGTGTTAAAAGTGTGAACGCGCTCTGCACGGAGTGTCGAGTGCCCCGCTATGAACCGCTCATCCCCACGAAGGTGTATAAAGTGGTGCTGCCCTCTTACCTAGTGGACGGAGGAGACGGATACACCATGATCAAAGAACAGAAACTCAAACATGACAGTGGTGACCTGGATATAGCCGTAGTTGCCAGCTATATCACAGAGAGAAAGAGAGTTCATCCAGCCGTGGAAGGACGCATTCAGTTTTCCAGCTCTTGCATTGCACATCGAGGATACACGGCCATCGTTCTGCTGGTGTGGGCGCTCTGGGTCATGATTGTTTAG-3'
 前記(Pg1)において、配列番号9の塩基配列は、前記(Pg5)のアミノ酸配列をコードする塩基配列である。前記配列番号9の塩基配列は、例えば、ホンモロコ(Gnathopogon caerulescens)から得ることができる。
 前記(Pg2)において、「1もしくは数個」は、例えば、前記(Pg2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pg2)の「1もしくは数個」は、前記(Pg1)の塩基配列において、例えば、1~342個、1~256個、1~171個、1~85個、1~68個、1~51個、1~34個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Pg3)において、「同一性」は、例えば、前記(Pg3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pg3)の同一性は、前記(Pg1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pg4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pg4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pg4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pg1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pg4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pg5)のポリヌクレオチドは、例えば、前記(Pg5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pg5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号10のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
ホンモロコのNT5Eタンパク質のアミノ酸配列(配列番号10)
MMAQWLSSISLLWIHCQLCRTAEFELTLLHTNDVHARVEETNKDSGKCSKAPCFAGVARRLTKIREVRAQEKHVLLLDAGDQFQGTVWFNFYKGAEAAYFMNKLGYNAMALGNHEFDNGVDGLVKPFLQEVNCSVLSANIKADQTIAPRISGYYLPYKIFNFTSEKVGVVGYTSVETPALSLPGPHLQFEDEVTALQLQVDKLTALGVNKIIALGHSGFLTDKKIAKKVRGVDVVIGGHTNTFLFTGEPPSTEVPAGPYPFMVDSEDGRQVPVVQAYAFGKYLGFLKVTFDSNGNVVKSFGNPILLNGSVAPDPVIQAEVDNWRKNLANYSSQYVGETLVYLNGTFEECRFRECNLGNLICDAMVHNNIKYADEIQWNHVSSCILNGGAIRSPIDERNRNGSITMEDLIAVLPFGGTFDLVQMNGSTLREVFEHSVRRYGGNTGEFLQVSGFQLVFDLSKPPGSRVKSVNALCTECRVPRYEPLIPTKVYKVVLPSYLVDGGDGYTMIKEQKLKHDSGDLDIAVVASYITERKRVHPAVEGRIQFSSSCIAHRGYTAIVLLVWALWVMIV
 前記(Pg6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pg6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pg6)の「1もしくは数個」は、例えば、前記配列番号10のアミノ酸配列において、例えば、1~114個、1~85個、1~57個、1~28個、1~22個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pg7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pg7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pg7)の同一性は、前記配列番号10のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
(Pp1)配列番号11の塩基配列からなるポリヌクレオチド;
(Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp3)前記(Pp1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp7)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
ヒラメのnt5e遺伝子の塩基配列(配列番号11)
5’-TCAGGACCTCACCTGAGGTTCGAGGACGAGGTGGACGCTCTGCAGCCACATGTGGACAAGCTGCGGACGCTGGGAGTGGATAAGATCATCGCTCTGGGTCACTCTGGTTTCACCAAGGACCAGGAGATCGCTAAGAAGGTCCGCGGAGTGGACGTGGTCATCGGAGGACACACCAACACGTTCCTCTACACAGGAACTCCTCCCTCATCGGAAGTCCCCGCAGGTCCGTATCCCTTTCTGGTGAAATCGGACGACGGGCGGCAGGTTCCCGTTGTGCAGGCCTACGCCTTCGGAAAATATCTGGGATATCTGAAAGTGACCTTTGACGATGCTGGAAACGTGGAGAGGGCCACAGGAAACCCCATCCTGCTGAACAGCAGCTTCCCGCAGGACCCAGATGTTCTGGCTGATGTGGAGAAATGGAAGAAGAATCTGGCAAACTACTCGGCTCAGGTTGTGGGACAGACTCTGGTCTTCCTGAACGGAGAAAGCGAGGAGTGTCGTTTCCGGGAGTGTAACCTGGGAAACCTGATCTGTGACGCCATGGTCGACAACAACATCCGCATCCCTGACGACGTCCAGTGGAACCACGTCAGCGCCAGCATCTTCAACGGAGGCGGCGTCCGGGCGTCCATCGACGAGCAGTCCAGGAACGGTTCCATCACCATGGAGGACCTGATCTCCGTCTTACCGTTCGGAGGAACCTTCGACCTGGTGCAGCTGAGGGGCTCCACGCTGAGGAAAGCGTTCGAACACTCAGTGAGACGATACGGACAGAGCACCGGAGAATTCCTCCAAGTGTCCGGATTTCACGTAGAGTTCGATCTCTCCAAACCTCCAGGACGTCGTGTGACGAGCCTCCGCATCCTCTGCACAGAGTGTCGCGTCCCTCACTACCAACCGGTGGAGGACGAGACGGTTTACACGGTGGTGCTGACGTCCTACATGGTGAAGGGCGGGGACGGATTCGACATGATCCAAAACGAGATTGTCAAGTACAACAGCGGAGATCTGGACATTTCAGTCGTTTCCAGGTTCATCGGGAAGAGAAAGAAAGTTTATCCTCCTGTCGAAGGACGAATCAGGATCAAGAACTCTGCGTCGAGGCTGCAGGGACGAGCTGCTCTGCTGGTTTCACTGTCGCTGCTCTGGAGTGTGTGCGGGACCATGTGA-3'
 前記(Pp1)において、配列番号11の塩基配列は、前記(Pp5)のアミノ酸配列をコードする塩基配列である。前記配列番号11の塩基配列は、例えば、ヒラメ(Paralichthys olivaceus)から得ることができる。
 前記(Pp2)において、「1もしくは数個」は、例えば、前記(Pp2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pp2)の「1もしくは数個」は、前記(Pp1)の塩基配列において、例えば、1~234個、1~175個、1~117個、1~58個、1~47個、1~35個、1~23個、1~11個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Pp3)において、「同一性」は、例えば、前記(Pp3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pp3)の同一性は、前記(Pp1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pp4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pp4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pp4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pp1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pp4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pp5)のポリヌクレオチドは、例えば、前記(Pp5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pp5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号12のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
ヒラメのNT5Eタンパク質のアミノ酸配列(配列番号12)
SGPHLRFEDEVDALQPHVDKLRTLGVDKIIALGHSGFTKDQEIAKKVRGVDVVIGGHTNTFLYTGTPPSSEVPAGPYPFLVKSDDGRQVPVVQAYAFGKYLGYLKVTFDDAGNVERATGNPILLNSSFPQDPDVLADVEKWKKNLANYSAQVVGQTLVFLNGESEECRFRECNLGNLICDAMVDNNIRIPDDVQWNHVSASIFNGGGVRASIDEQSRNGSITMEDLISVLPFGGTFDLVQLRGSTLRKAFEHSVRRYGQSTGEFLQVSGFHVEFDLSKPPGRRVTSLRILCTECRVPHYQPVEDETVYTVVLTSYMVKGGDGFDMIQNEIVKYNSGDLDISVVSRFIGKRKKVYPPVEGRIRIKNSASRLQGRAALLVSLSLLWSVCGTM
 前記(Pp6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pp6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pp6)の「1もしくは数個」は、例えば、前記配列番号12のアミノ酸配列において、例えば、1~78個、1~58個、1~39個、1~19個、1~15個、1~11個、1~7個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pp7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pp7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pp7)の同一性は、前記配列番号12のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
(Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
(Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq3)前記(Pq1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq7)配列番号26のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
ヒレナマズのnt5e遺伝子の塩基配列(配列番号25)
5'-ATGCGCTACTCGACAGCGGCGCGCGCGCTGCTCCCTTTGCTGGTAGTGTGCGCGAGCTTGCGGCTCGCGGCGGCAGACTGGGAGCTGACGCTCTTGCACACCAACGACGTGCACGCGCGGGTCGAGGAGACCAACAAGGACTCGGGCAAGTGCACGAAGGGAGAGTGCTTCGCCGGTGTCGCGCGGCGTTCCACGAAGATCAAAGAGATCCGGAGCAAGGAGAAGAACGTGCTGCTGCTGGACGCAGGGGATCAGTTTCAGGGCACCGTCTGGTTCAACGTCTACAAAGGCGATGAGGCGGCGCACTTCATGAACAAACTCCAATACGATGCCATGGCTTTGGGAAACCACGAGTTTGACAATAGAGTGGAAGGTCTCATACCCTTCCTGCAGAAGGTGAAGTGTCCTGTACTCAGCGCTAACATCAAGGCGGTTGAGCCTGTTGCGTCAAATATTAGCGGATATTTTTCACCTTATAAAATCTTAAATGTAACCTCTGAGAAAGTGGGTATAGTGGGATACACTACCAAGGAGACTCCAGCTCTGTCATTGCCAGGGCCGTACCTGCATTTTGAGGACGAGGTCGTAGCCGTGCAGCGGGAGGTAGACAAACTCATCGCTCTCGGCGTTAACAAGATCATCGCCCTCGGCCATTCTGGATTTGACACGGACAAAGAGATCGCCAAAAAGGTCCGTGGAGTGGACGTGGTGATTGGAGGACACACCAACACTTTTTTATACACAGGGGCTCCCCCATCCAGCGAGGTTCCAGCAGGACCCTACCCATTAATGGTACAGTCCGATGATGGTCGCAAAGTGCCAGTGGTCCAGGCGTACGCCTTTGGGAAATACCTTGGCTATCTCAAAGTGACTTTCGATTCTGCTGGAAACGTGATAAAAGCGGAAGGAAATCCAATCCTCCTAAATAGCAGCGTAACCGAAGATCCCAGCATTAAGGCAGATGTGGATACCTGGAAGGTCAAATTGGCCAATTACTCAGCTCAGTTTGTGGGAAACACTCTGGTCTACCTGAACGGGACATTTGAAGAGTGTCGATTTCGGGAATGCAACCTGGGAAACTTGATCTGCGATGCCATGGTCCATCACTACATCAAATATCCGGATGAACTCCAGTGGAACCATGTTAGTTCCTGTATTTTAAACGGAGGGGGCATACGATCCTCCATTGATGAGAGAAGCAGAAATGGTAGCATCACTATGGAGGACGTGTTGACCGTGCTGCCGTTTGGAGGAACATATGATCTGGTTCAACTGAATGGCTCGACTCTTCTCCAGGCCTTCGAGCACAGCGTCCACAGATATGGAGGAAACACTGGGGAGTTCCTACAGGTCTCAGGCTTTCAGCTGGAGTACGACCTCACCAAGCCCTCTGGTCATCGTGTGATCAAGGCGAGAGTGTTATGTACCGAGTGTCGAGTGCCACACTACGAGCCCCTGGACGCTACAAAAGTCTACAGGGTGGTGATGCCATCCTACCTAGTGGACGGAGGAGACGGTTTCTCAATGATCAAGCAGCAGATCCTGAAACATGATAGTGGTGACCTCGACATATCCGTCTTTTCTCGCTACATCACAGAGAGGCAGAGGGTTCACCCATCCGTGGAAGGACGAATCCGTCTCCTAAATTCTGCCGTGGAAATCTCAAACTCTTCCTCCTACACCCTCTGCGTCGTGATTCTCATTATTGTGGGTGTTATGCTCATTATGTTGGCTGGTGTCTACTACTACAGAAGGAAAGGTCTTGTTGATGATAAGGTTACAGTACAGTACAGAAGAGCTATAGATGGAGATGAAAAACTGAATGACCAAACCACAGTAACGAGTTCCTGA-3'
 前記(Pq1)において、配列番号25の塩基配列は、前記(Pq5)のアミノ酸配列をコードする塩基配列である。前記配列番号25の塩基配列は、例えば、ヒレナマズ(Clarias garienpinus)から得ることができる。
 前記(Pq2)において、「1もしくは数個」は、例えば、前記(Pq2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pq2)の「1もしくは数個」は、前記(Pq1)の塩基配列において、例えば、1~370個、1~277個、1~185個、1~92個、1~74個、1~55個、1~37個、1~18個、1~9個、1~3個、1または2個、1個である。
 前記(Pq3)において、「同一性」は、例えば、前記(Pq3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pq3)の同一性は、前記(Pq1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pq4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pq4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pq4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pq1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pq4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pq5)のポリヌクレオチドは、例えば、前記(Pq5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pq5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号26のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
ヒレナマズのNT5Eタンパク質のアミノ酸配列(配列番号26)
MRYSTAARALLPLLVVCASLRLAAADWELTLLHTNDVHARVEETNKDSGKCTKGECFAGVARRSTKIKEIRSKEKNVLLLDAGDQFQGTVWFNVYKGDEAAHFMNKLQYDAMALGNHEFDNRVEGLIPFLQKVKCPVLSANIKAVEPVASNISGYFSPYKILNVTSEKVGIVGYTTKETPALSLPGPYLHFEDEVVAVQREVDKLIALGVNKIIALGHSGFDTDKEIAKKVRGVDVVIGGHTNTFLYTGAPPSSEVPAGPYPLMVQSDDGRKVPVVQAYAFGKYLGYLKVTFDSAGNVIKAEGNPILLNSSVTEDPSIKADVDTWKVKLANYSAQFVGNTLVYLNGTFEECRFRECNLGNLICDAMVHHYIKYPDELQWNHVSSCILNGGGIRSSIDERSRNGSITMEDVLTVLPFGGTYDLVQLNGSTLLQAFEHSVHRYGGNTGEFLQVSGFQLEYDLTKPSGHRVIKARVLCTECRVPHYEPLDATKVYRVVMPSYLVDGGDGFSMIKQQILKHDSGDLDISVFSRYITERQRVHPSVEGRIRLLNSAVEISNSSSYTLCVVILIIVGVMLIMLAGVYYYRRKGLVDDKVTVQYRRAIDGDEKLNDQTTVTSS
 前記(Pq6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pq6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pq6)の「1もしくは数個」は、例えば、前記配列番号26のアミノ酸配列において、例えば、1~123個、1~92個、1~61個、1~30個、1~24個、1~18個、1~12個、1~6個、1~3個、1または2個、1個である。
 前記(Pq7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pq7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pq7)の同一性は、前記配列番号26のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(Pl)下記(Pl1)~(Pl7)のいずれかのポリヌクレオチド:
(Pl1)配列番号13の塩基配列からなるポリヌクレオチド;
(Pl2)前記(Pl1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pl3)前記(Pl1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pl4)前記(Pl1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pl5)配列番号14のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pl6)配列番号14のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pl7)配列番号14のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
メダカのnt5e遺伝子の塩基配列(配列番号13)
5'-ATGACTCTCCGCTGGCGCTGCTGCGCCCTCGGCGCCTTGCTCGGTCTCCTTCTCCGGTTAGACTCGTGGAGCGGAGCGTCCGGCTTCGAGCTGACTCTGCTCCACACCAACGACGTCCACGCTCGCATCGAGGAGACCAGCGAGGACTCGTCCAAATGCCACGAAGCGGGCTCGTGCTTCGCGGGGGTCGCCAGGATGTTCACCAAAGTGACGGAGATCCGGAGAAAGGAGACGCACGTGCTGTTTCTGGACGCTGGAGATCAATTTCAAGGCACGGTGTGGTTCAACTACTACAAAGGCAAAGAAGCTGCGCATTTCATGAACAAACTTGGTTATGACGTCATGACCTTTGGGAACCACGAGTTTGATAATGGAGTGGACAGTCTCACGCAAAACTTCCTCCAGCGCGTAAACTTCTCCGTAGTGTGTGCCACCATCAAACCGCTCCACAGTCTGGTTGCAAACATGAGCCGCTTCTACAGACCCTTTGCTGTTTTTAACGTGGGCTCAGAGAAGGTTGCTGTTGTTGGTTACACCACCAAAGAAACCCCTGTCTTATCTGCTCCAGGTCCTTATCTGAAGTTTGAGGATGAGGTGGAAGCCCTCCAGGATCAGGTCAACCAGCTAGAGAAGCTGGGTGTGAACAAGATCATCGCATTGGGACACTCTGGCTTTGAAGTGGACAAAGACATCGCCAAGCGTGTGAGAGGAATCGATGTAGTGATCGGAGGACACACAAACACCTTCCTGTACACAGGAAAGCCTCCTTCTACCGAAGTGCCGAGAGGACCCTATCCTTTCAATGTGAGCTCCAACGACGGGAGATGGGTGCCAGTGGTCCAAGCGTTCGCCTTCGGAAAATACCTGGGATACCTGAAGGTGACGTTCGACCAAGCTGGGAAGGTCGTAAAAGCCGTTGGAAACCCCATCCTGATGAACAGCAGCATCCCTCAAGATCCAGGGATCTTGTCGGATGTTGAAAAGTGGAAGAAGGGCTTGGAGCAGTATTCTTCCCAGTACATTGGACAAACTTTAGTCTACCTGAATGGAACGTTTGAAGAGTGTCGATTTAGGGAATGTAACCTGGGGAACCTCATCTGTGATGCCATGATATACAACTATATTAGGTATTCCAACAAGCTGCAGTGGAATCACGTGGGTGTTTGTATGCTGAACAGTGGATCCATACGAGCAACAATCGATGAACGCAGTACAAACGGCTCCATCACGATGGAGGAGATTCTCAGCGTCTTGCCGTTTGGAGGAACTTTTGACTTAGTGCAGCTGAAAGGATCTACGCTAAAAAAGGCTTTTGAGCACTCTGTTCACAGATATGGAGGGATGTCTGGAGAATTTCTTCAAGTGTCAGGTATCCGTGTGGAGTACGACCTCTCCAAACCCGTCAACCAGCGCGTTGTATCGCTGTTAATGCGTTGCACAGAATGCCGCGTTCCCAAGTTTGAACCGCTGGACCCTCAGAAGACGTACACCGTGGTCATGACCTCATTCATGGTGGGCGGAGGCGATGGCTATAGCATGATCCAAGATGAATTATTGAAGCATAACACAGGAAATTTGGACACTTTGGTTTTTTCCGAATACATCAAGGACATGAGGCGCGTGTACCCTGCAGTGGAAGGCCGCATCACCTTCAGGAACTCTGCAGCTTTTGCAGCTCACAGCCTGAGCCTGATGCTGCTGAGTCTGTGTCTTTTCCTGAACCTCTGCATGTGA-3'
 前記(Pl1)において、配列番号13の塩基配列は、前記(Pl5)のアミノ酸配列をコードする塩基配列である。前記配列番号13の塩基配列は、例えば、メダカ(Oryzias latipes)から得ることができる。
 前記(Pl2)において、「1もしくは数個」は、例えば、前記(Pl2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pl2)の「1もしくは数個」は、前記(Pl1)の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(Pl3)において、「同一性」は、例えば、前記(Pl3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pl3)の同一性は、前記(Pl1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Pl4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Pl4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pl4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Pl1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Pl4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Pl5)のポリヌクレオチドは、例えば、前記(Pl5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する塩基配列であればよい。前記(Pl5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号14のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
メダカのNT5Eタンパク質のアミノ酸配列(配列番号14)
MTLRWRCCALGALLGLLLRLDSWSGASGFELTLLHTNDVHARIEETSEDSSKCHEAGSCFAGVARMFTKVTEIRRKETHVLFLDAGDQFQGTVWFNYYKGKEAAHFMNKLGYDVMTFGNHEFDNGVDSLTQNFLQRVNFSVVCATIKPLHSLVANMSRFYRPFAVFNVGSEKVAVVGYTTKETPVLSAPGPYLKFEDEVEALQDQVNQLEKLGVNKIIALGHSGFEVDKDIAKRVRGIDVVIGGHTNTFLYTGKPPSTEVPRGPYPFNVSSNDGRWVPVVQAFAFGKYLGYLKVTFDQAGKVVKAVGNPILMNSSIPQDPGILSDVEKWKKGLEQYSSQYIGQTLVYLNGTFEECRFRECNLGNLICDAMIYNYIRYSNKLQWNHVGVCMLNSGSIRATIDERSTNGSITMEEILSVLPFGGTFDLVQLKGSTLKKAFEHSVHRYGGMSGEFLQVSGIRVEYDLSKPVNQRVVSLLMRCTECRVPKFEPLDPQKTYTVVMTSFMVGGGDGYSMIQDELLKHNTGNLDTLVFSEYIKDMRRVYPAVEGRITFRNSAAFAAHSLSLMLLSLCLFLNLCM
 前記(Pl6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Pl6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pl6)の「1もしくは数個」は、例えば、前記配列番号14のアミノ酸配列において、例えば、1~115個、1~86個、1~57個、1~28個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(Pl7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Pl7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有する範囲であればよい。前記(Pl7)の同一性は、前記配列番号14のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 本開示において、「イノシン酸分解活性」は、例えば、対象の魚類(被検魚類)の生体試料中のイノシン酸量に基づき評価してもよいし、被検魚類の生体試料におけるnt5e遺伝子またはNT5Eタンパク質の発現に基づき、評価してもよい。前記被検魚類の生体試料は、特に制限されず、例えば、前記被検魚類の魚類個体および前記魚類個体の部分のいずれでもよく、好ましくは、魚類の骨格筋である。使用する生体試料の種類は、例えば、1種類でもよいし、2種類以上でもよい。
 前記被検魚類の生体試料中のイノシン酸量に基づき評価する場合、イノシン酸分解活性は、野生型のnt5e遺伝子を有する魚類、またはnt5e遺伝子の機能喪失体を有する魚類の死後1日目(24時間)における魚肉中のイノシン酸の含有量を基準として評価できる。具体的には、後述の実施例1に準じ、被検魚類の死亡後、24時間における生体試料中のイノシン酸量を測定する。そして、前記被検魚類の生体試料中のイノシン酸量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量と同じ場合(有意差がない)、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)低い場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)低い場合、前記被検魚類は、例えば、イノシン酸分解活性を有すると評価できる。他方、前記被検魚類の生体試料中のイノシン酸量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)高い場合、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量と同じ場合(有意差がない)、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)高い場合、前記被検魚類は、例えば、イノシン酸分解活性を有さないと評価できる。
 前記nt5e遺伝子の発現に基づき評価する場合、前記nt5e遺伝子の発現は、例えば、前記nt5e遺伝子のmRNAの発現を検出することにより実施できる。前記魚類の生体試料からのmRNAの抽出は、常法により実施できる。前記nt5e遺伝子のmRNAの発現の検出は、例えば、半定量的PCR、定量的PCR、ノーザンブロッティング、デジタルPCR、RNAシークエンス解析(RNAseq)等の検出があげられる。前記mRNAの発現の検出に用いるプライマーおよび/またはプローブは、例えば、本技術分野における一般的な手法により設計できる。そして、前記被検魚類の生体試料におけるnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類におけるnt5e遺伝子の発現量と同じ(有意差がない)場合、被検魚類の生体試料中におけるnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類におけるnt5e遺伝子の発現量より(有意に)高い場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)高い場合、前記被検魚類は、例えば、イノシン酸分解活性を有すると評価できる。他方、前記被検魚類の生体試料中のnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)低い場合、nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量と同じ(有意差がない)場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)低い場合、前記被検魚類は、例えば、イノシン酸分解活性を有さないと評価できる。
 前記NT5Eタンパク質の発現に基づき評価する場合、NT5Eタンパク質の発現は、例えば、紫外吸収法、ビシンコニン酸法等の分光光度計を用いた方法、ELISA、ウエスタンブロッティング等により検出できる。前記魚類からのタンパク質を含む抽出液の調製は、超音波破砕、ホモジナイザーを用いた物理的破砕等の本技術分野における一般的な手法により実施できる。そして、前記被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類におけるNT5Eタンパク質の発現量と同じ(有意差がない)場合、被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類におけるNT5Eタンパク質の発現量より(有意に)高い場合、および/または、前記NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)高い場合、前記被検魚類は、例えば、イノシン酸分解活性を有すると評価できる。他方、前記被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)低い場合、NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量と同じ(有意差がない)場合、および/または、前記NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)低い場合、前記被検魚類は、例えば、イノシン酸分解活性を有さないと評価できる。
 本開示において、nt5e遺伝子は、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖であっても、一本鎖であってもよい。本開示において、前記遺伝子は、非翻訳領域(UTR)の配列等の付加的な配列を含むものであってもよい。
 前記nt5e遺伝子の機能喪失は、前記nt5e遺伝子の機能喪失体を有する魚類が、野生型のnt5e遺伝子を有する魚類(以下、「野生型の魚類」ともいう)と比較して、魚類の熟成において、魚肉中のイノシン酸量が増加する程度に、前記nt5e遺伝子の機能が(有意に)低下または失われた状態を意味する。前記nt5e遺伝子の機能喪失は、具体的には、例えば、前記nt5e遺伝子のmRNAもしくは当該遺伝子がコードするタンパク質の発現量が(有意に)低下している状態、または前記nt5e遺伝子のmRNAもしくは当該遺伝子がコードするタンパク質が完全に発現していない状態を意味してもよいし、機能的なnt5e遺伝子のmRNAもしくは前記nt5e遺伝子がコードするタンパク質の発現量が低下している状態または機能的なnt5e遺伝子のmRNAもしくは前記nt5e遺伝子がコードするタンパク質が完全に発現していない状態を意味してもよい。このため、本開示において、前記nt5e遺伝子の機能喪失は、前記nt5e遺伝子に機能喪失変異を導入することにより、実施してもよいし、前記nt5e遺伝子の発現を抑制するポリヌクレオチドを導入することにより、実施してもよい。前記「遺伝子の発現を抑制」は、遺伝子の転写の抑制でもよいし、タンパク質への翻訳の抑制でもよい。
 本開示において、前記nt5e遺伝子を機能喪失した魚類は、例えば、前記nt5e遺伝子の機能喪失体を有する魚類ということもできる。前記nt5e遺伝子を機能喪失した魚類は、例えば、前記nt5e遺伝子の機能喪失体をヘテロ接合型で有してもよいし、ホモ接合型で有してもよい。前記nt5e遺伝子を機能喪失した魚類は、さらに、前記nt5e遺伝子以外の遺伝子について修飾、改変、導入、および/または機能喪失されてもよい。
 前記nt5e遺伝子の機能喪失は、例えば、nt5e遺伝子に対し、突然変異、より具体的には、機能喪失変異を導入することにより、引き起こすことができる。前記突然変異の種類は、特に制限されず、例えば、点突然変異、ミスセンス突然変異、ナンセンス突然変異、フレームシフト突然変異、広範囲における塩基の欠失(ラージデリーション)等があげられる。前記突然変異は、例えば、nt5e遺伝子の一部または全部の欠失を生じさせてもよい。前記フレームシフト突然変異は、塩基の欠失または挿入が起こり、三つ組みの読み枠(コドン)がずれた時に生じる変異である。前記フレームシフト突然変異は、塩基対置換の変異と比較して、遺伝子機能に与える影響が非常に大きい。これは、前記フレームシフト突然変異が生じると、当該遺伝子において、前記フレームシフト突然変異が導入された箇所以降の遺伝暗号が大幅にずれ、アミノ酸が変わるだけでなく、終止コドン等もずれてしまうためである。
 前記nt5e遺伝子の機能喪失体は、例えば、野生型のnt5e遺伝子の塩基配列に対し、1もしくは数個の塩基(以下、「1塩基以上」ともいう)の挿入、欠失、および/または置換等の変異が導入された遺伝子である。前記1塩基以上は、例えば、前記(Pn2)、(Pt2)、(Po2)、(Pm2)、(Pg2)、(Pp2)、(Pq2)、および(Pl2)の説明における塩基数の説明を援用できる。前記フレームシフト突然変異は、例えば、3m+1塩基または3m+2塩基(mは、0以上の整数)の挿入または欠失により、生じる。
 本開示において、前記nt5e遺伝子への突然変異は、例えば、対象の魚類のゲノムにおける対象遺伝子に対し、常法により、変異を導入することにより引き起こすことができる。前記変異の導入方法は、例えば、相同組換え;ZFN、TALEN、CRISPR-CAS9、CRISPR-CPF1等を用いたゲノム編集技術:等により、実施できる。前記変異の導入方法は、例えば、部位特異的突然変異誘発法等の変異導入法により、実施してもよい。また、前記変異の導入方法は、例えば、ランダム突然変異誘発法により、実施してもよい。前記ランダム突然変異誘発法は、例えば、α線、β線、γ線、X線等の放射線照射処理;メタンスルホン酸エチル(EMS)、エチニルニトロソウレア(ENU)等の変異誘発剤による化学物質処理;重イオンビーム処理;等があげられる。前記ゲノム編集技術を用いた変異の導入方法は、例えば、後述の実施例1を参照できる。具体的には、前記ゲノム編集技術を用いた変異の導入は、例えば、ゲノム編集技術を構成するタンパク質および核酸、またはこれらをコードするベクターを導入することにより、実施できる。前記タンパク質は、例えば、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)酵素があげられ、具体例として、Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9、Cas10、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4等があげられる。前記核酸は、例えば、crRNAおよびtracrRNA、またはこれらがリンカーを介して連結された一本鎖核酸があげられる。この場合、前記核酸は、例えば、crRNAにおける標的配列とアニールする塩基配列を、nt5e遺伝子をコードする塩基配列と相補的な塩基配列に設計する。前記核酸は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。前記ゲノム編集技術を用いる場合、例えば、核酸を2種類以上とすることにより、標的配列間の塩基配列のラージデリーションを誘発できる。前記変異の導入方法は、例えば、部位特異的突然変異誘発法等の変異導入法により、実施してもよい。
 前記nt5e遺伝子の機能喪失体における変異の位置、すなわち、前記nt5e遺伝子に対して変異を導入する位置は、特に制限されず、前記nt5e遺伝子に関連する任意の領域に設定できる。具体例として、前記nt5e遺伝子の機能喪失体における変異の位置は、例えば、前記nt5e遺伝子のプロモーター領域等の発現制御領域、前記nt5e遺伝子がコードするタンパク質をコードするコーディング領域を含むエキソン領域、前記nt5e遺伝子がコードするタンパク質をコードしない非コード領域(例えば、イントロン領域、エンハンサー領域等)等があげられ、好ましくは、エキソン領域である。前記エキソン領域は、例えば、第1エキソンである。
 具体例として、前記魚類がマダイの場合、前記nt5e遺伝子における変異の位置は、例えば、配列番号1の塩基配列において、1~1200番目、好ましくは、1000~1100番目、1014~1036番目の塩基があげられる。前記nt5e遺伝子における変異の位置は、例えば、マダイnt5e遺伝子の第6エキソンと対応する位置である。前記魚類がトラフグの場合、前記nt5e遺伝子における変異の位置は、配列番号3の塩基配列において、1~250番目、好ましくは、100~200番目または131~153番目の塩基があげられる。前記nt5e遺伝子における変異の位置は、例えば、トラフグnt5e遺伝子の第1エキソンと対応する位置である。前記魚類がティラピアの場合、前記nt5e遺伝子における変異の位置は、配列番号5の塩基配列において、1~300番目、好ましくは、200~250番目、217~239番目の塩基があげられる。前記nt5e遺伝子における変異の位置は、例えば、ティラピアnt5e遺伝子の第1エキソンと対応する位置である。前記魚類がヒラメの場合、前記nt5e遺伝子における変異の位置は、配列番号5の塩基配列において、1~700番目、好ましくは、600~650番目、605~627番目の塩基があげられる。前記nt5e遺伝子における変異の位置は、例えば、ヒラメnt5e遺伝子の第4エキソンと対応する位置である。これらの変異の位置に導入される変異は、好ましくは、ナンセンス突然変異またはフレームシフト突然変異である。
 前記魚類が、マダイ、トラフグ、ティラピア、ニジマス、ホンモロコ、ヒラメ、ヒレナマズ、またはメダカの場合、前記魚類のnt5e遺伝子の機能喪失体としては、それぞれ、下記(MN)、(MT)、(MO)、(MM)、(MG)、(MP)、(MQ)、および(ML)のポリヌクレオチド、またはこれらをコードするゲノム領域が例示できる。
(MN)下記(MN1)~(MN5)のいずれかのポリヌクレオチド;
(MN1)配列番号1の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MN2)配列番号1の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MN3)配列番号1の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MN4)配列番号2のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MN5)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MN1)~(MN5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MN1)~(MN5)のポリヌクレオチドにおいて、「イノシン酸の分解活性を有さない」は、例えば、前記(Pn1)または(Pn5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MN1)の「1もしくは数個」は、前記配列番号1の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MN2)の同一性は、前記配列番号1の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MN3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号1の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記(MN3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MN4)の「1もしくは数個」は、例えば、前記配列番号2のアミノ酸配列において、例えば、1~116個、1~86個、1~58個、1~29個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MN5)の同一性は、前記配列番号2のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MT)下記(MT1)~(MT5)のいずれかのポリヌクレオチド;
(MT1)配列番号3の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MT2)配列番号3の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MT3)配列番号3の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MT4)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MT5)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MT1)~(MT5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MT1)~(MT5)のポリヌクレオチドにおいて、「イノシン酸の分解活性有さない」は、例えば、前記(Pt1)または(Pt5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MT1)の「1もしくは数個」は、前記配列番号3の塩基配列において、例えば、1~348個、1~261個、1~174個、1~87個、1~69個、1~52個、1~34個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MT2)の同一性は、前記配列番号3の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MT3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号3の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(MT3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MT4)の「1もしくは数個」は、例えば、前記配列番号4のアミノ酸配列において、例えば、1~115個、1~86個、1~57個、1~28個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MT5)の同一性は、前記配列番号4のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MO)下記(MO1)~(MO5)のいずれかのポリヌクレオチド;
(MO1)配列番号5の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MO2)配列番号5の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MO3)配列番号5の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MO4)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MO5)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MO1)~(MO5)のポリヌクレオチドは、イノシン酸分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MO1)~(MO5)のポリヌクレオチドにおいて、「イノシン酸の分解活性を有さない」は、例えば、前記(Po1)または(Po5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MO1)の「1もしくは数個」は、前記配列番号5の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MO2)の同一性は、前記配列番号5の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MO3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号5の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(MO3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MO4)の「1もしくは数個」は、例えば、前記配列番号6のアミノ酸配列において、例えば、1~116個、1~87個、1~58個、1~29個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MO5)の同一性は、前記配列番号6のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MM)下記(MM1)~(MM5)のいずれかのポリヌクレオチド;
(MM1)配列番号7の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MM2)配列番号7の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MM3)配列番号7の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MM4)配列番号8のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MM5)配列番号8のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MM1)~(MM5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MM1)~(MM5)のポリヌクレオチドにおいて、「イノシン酸の分解活性を有さない」は、例えば、前記(Pm1)または(Pm5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MM1)の「1もしくは数個」は、前記配列番号7の塩基配列において、例えば、1~327個、1~245個、1~163個、1~81個、1~65個、1~49個、1~32個、1~16個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MM2)の同一性は、前記配列番号7の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MM3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号7の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記(MM3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MM4)の「1もしくは数個」は、例えば、前記配列番号8のアミノ酸配列において、例えば、1~108個、1~81個、1~54個、1~27個、1~21個、1~16個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MM5)の同一性は、前記配列番号8のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MG)下記(MG1)~(MG5)のいずれかのポリヌクレオチド;
(MG1)配列番号9の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MG2)配列番号9の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MG3)配列番号9の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MG4)配列番号10のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MG5)配列番号10のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MG1)~(MG5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MG1)~(MG5)のポリヌクレオチドにおいて、「イノシン酸の分解活性を有さない」は、例えば、前記(Pg1)または(Pg5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MG1)の「1もしくは数個」は、前記配列番号9の塩基配列において、例えば、1~327個、1~245個、1~163個、1~81個、1~65個、1~49個、1~32個、1~16個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MG2)の同一性は、前記配列番号9の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MG3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号9の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記(MG3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MG4)の「1もしくは数個」は、例えば、前記配列番号10のアミノ酸配列において、例えば、1~108個、1~81個、1~54個、1~27個、1~21個、1~16個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MG5)の同一性は、前記配列番号10のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MP)下記(MP1)~(MP5)のいずれかのポリヌクレオチド;
(MP1)配列番号11の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MP2)配列番号11の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MP3)配列番号11の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MP4)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MP5)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MP1)~(MP5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MP1)~(MP5)のポリヌクレオチドにおいて、「イノシン酸の分解活性を有さない」は、例えば、前記(Pg1)または(Pg5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MP1)の「1もしくは数個」は、前記配列番号11の塩基配列において、例えば、1~327個、1~245個、1~163個、1~81個、1~65個、1~49個、1~32個、1~16個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(MP2)の同一性は、前記配列番号11の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MP3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号11の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記(MP3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MP4)の「1もしくは数個」は、例えば、前記配列番号12のアミノ酸配列において、例えば、1~108個、1~81個、1~54個、1~27個、1~21個、1~16個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(MP5)の同一性は、前記配列番号12のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(MQ)下記(MQ1)~(MQ5)のいずれかのポリヌクレオチド;
(MQ1)配列番号25の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(MQ2)配列番号25の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(MQ3)配列番号25の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(MQ4)配列番号25のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(MQ5)配列番号26のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(MQ1)~(MQ5)のポリヌクレオチドは、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(MQ1)~(MQ5)のポリヌクレオチドにおいて、「イノシン酸の分解活性有さない」は、例えば、前記(Pq1)または(Pq5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(MQ1)の「1もしくは数個」は、前記配列番号25の塩基配列において、例えば、1~370個、1~277個、1~185個、1~92個、1~74個、1~55個、1~37個、1~18個、1~9個1~3個、1または2個、1個である。
 前記(MQ2)の同一性は、前記配列番号25の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(MQ3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号25の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(MQ3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(MQ4)の「1もしくは数個」は、例えば、前記配列番号26のアミノ酸配列において、例えば、1~123個、1~92個、1~61個、1~30個、1~24個、1~18個、1~12個、1~6個、1~3個、1または2個、1個である。
 前記(MQ5)の同一性は、前記配列番号26のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
(ML)下記(ML1)~(ML5)のいずれかのポリヌクレオチド;
(ML1)配列番号13の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなるポリヌクレオチド;
(ML2)配列番号13の塩基配列に対して、80%以上の同一性を有する塩基配列からなるポリヌクレオチド;
(ML3)配列番号13の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなるポリヌクレオチド;
(ML4)配列番号14のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(ML5)配列番号14のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
 前記(ML1)~(ML5)のポリヌクレオチドは、イノシン酸分解活性を有さないタンパク質をコードするポリヌクレオチドであることが好ましい。
 前記(ML1)~(ML5)のポリヌクレオチドにおいて、「イノシン酸分解活性を有さない」は、例えば、前記(Pl1)または(Pl5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
 前記(ML1)の「1もしくは数個」は、前記配列番号13の塩基配列において、例えば、1~351個、1~263個、1~175個、1~87個、1~70個、1~52個、1~35個、1~17個、1~8個、1~6個、1~3個、1または2個、1個である。
 前記(ML2)の同一性は、前記配列番号13の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(ML3)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記配列番号13の塩基配列からなるポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(ML3)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn)における説明を援用できる。
 前記(ML4)の「1もしくは数個」は、例えば、前記配列番号14のアミノ酸配列において、例えば、1~115個、1~86個、1~57個、1~28個、1~23個、1~17個、1~11個、1~8個、1~6個、1~5個、1~3個、1または2個、1個である。
 前記(ML5)の同一性は、前記配列番号14のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 他の例として、前記魚類が、メダカの場合、前記魚類のnt5e遺伝子の機能喪失体としては、下記(Ml)のポリヌクレオチド、またはこれらをコードするゲノム領域が例示できる。
(Ml)下記(Ml1)~(Ml7)のいずれかのポリヌクレオチド:
(Ml1)配列番号15の塩基配列からなるポリヌクレオチド;
(Ml2)前記(Ml1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチド;
(Ml3)前記(Ml1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチド;
(Ml4)前記(Ml1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチド;
(Ml5)配列番号16のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Ml6)配列番号16のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチド;
(Ml7)配列番号16のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有さないタンパク質をコードするポリヌクレオチド。
 前記(Ml1)~(Ml7)のポリヌクレオチドにおいて、「イノシン酸分解活性を有さない」は、例えば、前記(Pl1)または(Pl5)のポリヌクレオチドがコードするタンパク質と比較して、イノシン酸分解活性が有意に抑制されていることを意味し、好ましくは、イノシン酸分解活性が完全に喪失していることを意味する。
メダカのnt5e遺伝子の機能喪失体の塩基配列(配列番号15)
5'-ATGACTCTCCGCTGGCGCTGCTGCGCCCTCGGCGCCTTGCTCGGTCTCCTTCTCCGGTTAGACTCGTGGAGCGGAGCGTCCGGCTTCGAGCTGACTCTGCTCCACACCAACGACGTCCACGCTCGCATCGAGGAGACCAGCGAGGACTCGTCCAAATGCCACGAAGCGGGCTCGTGCTTCGCGGGGGTCGCCAGGATGTTCACCAAAGACGGAGATCCGGAGAAAGGAGACGCACGTGCTGTTTCTGGACGCTGGAGATCAATTTCAAGGCACGGTGTGGTTCAACTACTACAAAGGCAAAGAAGCTGCGCATTTCATGAACAAACTTGGTTATGA-3'
 前記(Ml1)において、前記配列番号15の塩基配列は、配列番号13の塩基配列において、208番目および209番目の塩基が欠失、および339~1734番目の塩基が欠失した塩基配列である。前記配列番号15の塩基配列は、(Ml5)のアミノ酸配列をコードする塩基配列である。
 前記(Ml2)において、「1もしくは数個」は、例えば、前記(Ml2)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない範囲であればよい。前記(Ml2)の「1もしくは数個」は、前記(Ml1)の塩基配列において、例えば、1~67個、1~50個、1~33個、1~16個、1~13個、1~10個、1~6個、1~3個、1または2個、1個である。
 前記(Ml3)において、「同一性」は、例えば、前記(Ml3)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない範囲であればよい。前記(Ml3)の同一性は、前記(Ml1)の塩基配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 前記(Ml4)において、「ハイブリダイズするポリヌクレオチド」は、前記(Ml4)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない範囲であればよい。前記(Ml4)において、「ハイブリダイズするポリヌクレオチド」は、例えば、前記(Ml1)のポリヌクレオチドに対して、完全または部分的に相補的なポリヌクレオチドである。前記(Ml4)において、前記ハイブリダイズおよびストリンジェントな条件は、前記(Pn4)における説明を援用できる。
 前記(Ml5)のポリヌクレオチドは、例えば、前記(Ml5)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない塩基配列であればよい。前記(Ml5)のポリヌクレオチドの塩基配列は、例えば、前記配列番号16のアミノ酸配列に基づいて、対応するコドンに置き換えることで設計可能である。
メダカのNT5Eタンパク質の変異体のアミノ酸配列(配列番号16)
MTLRWRCCALGALLGLLLRLDSWSGASGFELTLLHTNDVHARIEETSEDSSKCHEAGSCFAGVARMFTKDGDPEKGDARAVSGRWRSISRHGVVQLLQRQRSCAFHEQTWL
 前記(Ml6)において、アミノ酸配列に関する「1もしくは数個」は、例えば、前記(Ml6)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない範囲であればよい。前記(Ml6)の「1もしくは数個」は、例えば、前記配列番号16のアミノ酸配列において、例えば、1~22個、1~16個、1~11個、1~5個、1~4個、1~3個、1または2個、1個である。
 前記(Ml7)において、アミノ酸配列に関する「同一性」は、例えば、前記(Ml7)のポリヌクレオチドによってコードされるタンパク質が、イノシン酸分解活性を有さない範囲であればよい。前記(Ml7)の同一性は、前記配列番号16のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。
 本開示において、前記nt5e遺伝子の発現を抑制することで、前記nt5e遺伝子の機能を喪失させる場合、前記nt5e遺伝子の機能喪失は、例えば、前記nt5e遺伝子の発現を抑制するポリヌクレオチドを対象の魚類に導入することにより実施できる。前記ポリヌクレオチドの導入方法は、特に制限されず、例えば、RNA干渉、アンチセンスRNA、ゲノム編集技術等の方法により実施できる。前記ポリヌクレオチドを含む発現ベクター等の発現カセットは、例えば、マイクロインジェクション、ポリエチレングリコール法、電気穿孔法(エレクトロポレーション法)、パーティクルガン法等により、対象の魚類に導入できる。前記対象の魚類は、例えば、卵、仔魚、稚魚、未成魚、および成魚のいずれでもよい。
 本開示の魚類は、例えば、野生型の(正常な)nt5e遺伝子を有する魚類と比較して、鮮度の低下を抑制できる。前記鮮度は、K値を用いて評価できる。前記K値は、対象の魚類の骨格筋の重量(mg)あたりのアデノシン三リン酸(ATP)、アデノシン二リン酸(ADP)、アデノシン一リン酸(AMP)、イノシン酸(IMP)、イノシン(HxR)、およびヒポキサンチン(Hx)のモル量(mol)の測定値に基づき、下記式(1)を用いて算出できる。前記骨格筋あたりのATP、ADP、AMP、IMP、HxRおよびHxのモル量は、後述の実施例3に記載の方法に準じて、HPLCを用いて定量できる。
 
(K値の算出式)
 K=(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx) ・・・(1)
  K:鮮度の指標値
  ATP:筋肉の重量あたりのアデノシン三リン酸のモル量
  ADP:筋肉の重量あたりのアデノシン二リン酸のモル量
  AMP:筋肉の重量あたりのアデノシン一リン酸のモル量
  IMP:筋肉の重量あたりのイノシン酸のモル量
  HxR:筋肉の重量あたりのイノシンのモル量
  Hx:筋肉の重量あたりのヒポキサンチンのモル量
 本開示の魚類は、例えば、死亡後、4℃で2日間保存した場合において、死亡後、4℃で2日間保存された野生型の(正常な)nt5e遺伝子を有する魚類のK値を基準として、K値を、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上低減する鮮度維持活性または鮮度低下抑制活性を有する。また、本開示の魚類は、例えば、死亡後、4℃で2日間保存した場合において、死亡後、4℃で2日間保存された野生型の(正常な)nt5e遺伝子を有する魚類のK値を基準として、K値を、5~100%、5~95%、5~90%、10~85%、10~80%、10~75%、15~70%、15~65%、15~60%、20~55%、20~50%、20~45%、25~40%、25~35%、または25~30%低減する鮮度維持活性または鮮度低下抑制活性を有する。このため、本開示の魚類は、例えば、鮮度維持活性を有する魚類、または鮮度低下抑制活性を有する魚類ということもできる。
 本開示の魚類は、前述のように、野生型のnt5e遺伝子に機能喪失変異が生じることにより得られる。このため、本開示の魚類は、例えば、「魚類の変異体」ということもできる。また、本開示の魚類は、「魚類の変異体」の後代系統であり、前記nt5e遺伝子に機能喪失変異を有する魚類でもよい。本開示の魚類は、例えば、前記nt5e遺伝子の塩基配列に、前述の変異の導入方法によって導入された遺伝的変異を有する魚類の変異体ということもできる。本開示の魚類は、例えば、本質的に生物学的なプロセス(an essentially biological process)の手段によってのみ得られた魚類を除く。
 本開示の魚類の製造方法については、後述の第1の生産方法、第2の生産方法、スクリーニング方法、および第3の生産方法の説明を援用できる。
<魚類の部分>
 別の態様において、本開示は、熟成時にイノシン酸の蓄積が増強または促進された魚類の部分を提供する。本開示の魚類の部分は、前記本開示の魚類の部分である。
 本開示の魚類は、前記本開示の第1の魚類でもよいし、後述の本開示の第2の魚類でもよい。
 前記魚類の部分は、例えば、魚類の可食部があげられる。具体例として、前記魚類の部分は、例えば、筋肉、生殖器(例えば、精巣、卵巣)、皮、肝臓、および骨等があげられる。
<第1の生産方法>
 別の態様において、本開示は、本開示の魚類を用いた、本開示の魚類の生産方法、本開示の魚類の再生産方法を提供する。本開示の魚類の生産方法は、下記(a)工程を含む:
(a)本開示の魚類と、他の魚類とを交雑する工程。
 本開示の第1の生産方法は、前記(a)工程において、前記本開示の魚類を用いるため、例えば、熟成が促進された魚類を生産できる。
 前記(a)工程において、第一の親として使用する魚類は、前記本開示の魚類であればよい。前述のように、前記本開示の魚類は、例えば、後述の前記本開示の付与方法、第2の生産方法、スクリーニング方法、および第3の生産方法により得ることもできる。このため、前記本開示の第1の生産方法は、例えば、前記(a)工程に先立って、前記本開示の付与方法、第2の生産方法、スクリーニング方法、および第3の生産方法のいずれか1つ以上を実施してもよい。この場合、各方法の説明は、後述の各方法の説明を援用できる。
 具体例として、本開示の第1の生産方法は、下記(x)工程または(y)工程を含んでもよい。
(x)被検魚類から本開示の魚類を選抜する工程(選抜工程)
(y)対象の魚類から本開示の魚類を作出する工程(作出工程)
 前記(x)工程において、前記魚類の選抜は、前記nt5e遺伝子を機能喪失した魚類の選抜ということができる。このため、前記(x)工程は、例えば、下記(x1)工程および(x2)工程により行うことができる。
(x1)前記被検魚類のnt5e遺伝子が機能喪失しているかを検出する検出工程
(x2)前記nt5e遺伝子が機能喪失している場合、前記被検魚類を、本開示の魚類として選抜する選抜工程
 前記(x)工程が前記(x1)工程および(x2)工程を含む場合、前記(x)工程は、例えば、前記nt5e遺伝子の塩基配列を指標に実施してもよいし、前記nt5e遺伝子または前記NT5Eタンパク質の発現量を指標に実施してもよい。
 前記nt5e遺伝子の塩基配列を指標とする場合、前記(x1)工程において、前記nt5e遺伝子の機能喪失の検出は、例えば、前記被検魚類のnt5e遺伝子の塩基配列を解読し、対応する野生型のnt5e遺伝子またはnt5e遺伝子の機能喪失体の塩基配列と比較することにより、実施してもよい。前記塩基配列の解読は、例えば、シークエンサーを用いて実施できる。そして、前記(x2)工程では、例えば、前記被検魚類のnt5e遺伝子の塩基配列が、それぞれ、対応する魚類の野生型のnt5e遺伝子の塩基配列に対して、機能喪失変異が導入された塩基配列である場合、または、対応する魚類のnt5e遺伝子の機能喪失体の塩基配列と一致する場合、前記本開示の魚類として選抜する。前記選抜の条件については、後述する。前記野生型のnt5e遺伝子の塩基配列は、前述の各魚類の野生型のnt5e遺伝子の塩基配列を参照できる。また、前記nt5e遺伝子の機能喪失体の塩基配列は、前述の各魚類のnt5e遺伝子の機能喪失体の塩基配列を参照できる。前記塩基配列の比較は、例えば、塩基配列の解析ソフト(例えば、前述のBLAST等)により実施できる。前記(x2)工程において、塩基配列を比較する領域は、nt5e遺伝子のイントロン領域でもよいし、nt5e遺伝子のエキソン領域でもよいが、好ましくは、後者である。また、前記nt5e遺伝子の機能喪失が、それぞれ、対応する野生型のnt5e遺伝子の塩基配列に対し、1塩基以上の挿入、欠失、および/または置換等の変異を導入することにより引き起こされる場合、前記(x1)工程では、例えば、少なくとも1つの変異を検出可能なプライマーセット、プローブ、またはこれらの組合せを用いて、実施してもよい。前記プライマーセットおよびプローブは、例えば、前記変異の種類に基づき、本技術分野における一般的な方法により設計できる。
 前記(x2)工程では、例えば、前記野生型のnt5e遺伝子に対して、1塩基以上の挿入、欠失、および/または置換されている場合、前記遺伝子を機能喪失遺伝子と判断してもよい。また、前記(x2)工程では、例えば、前記野生型のnt5e遺伝子に対して、フレームシフト突然変異が導入されている場合、前記遺伝子を機能喪失遺伝子と判断してもよい。さらに、前記(x2)工程では、例えば、前記野生型のnt5e遺伝子が部分欠失または完全欠失している場合、前記遺伝子を機能喪失遺伝子と判断してもよい。
 前記(x2)工程では、例えば、前記nt5e遺伝子について、機能喪失体を、ヘテロ接合型またはホモ接合型で有する場合、前記被検魚類を、本開示の魚類として選抜してもよい。
 前記nt5e遺伝子の発現量を指標とする場合、前記(x1)工程において、前記nt5e遺伝子の機能喪失の検出は、例えば、前記被検魚類のnt5e遺伝子のmRNAまたはnt5e遺伝子がコードするタンパク質の機能を検出することにより実施してもよい。さらに、前記(x1)工程において、前記nt5e遺伝子の機能喪失の検出は、例えば、前記被検魚類におけるnt5e遺伝子もしくはnt5e遺伝子がコードするタンパク質の発現の有無、またはnt5e遺伝子もしくはnt5e遺伝子がコードするタンパク質の発現量を検出することにより実施してもよい。
 前記(x)工程において、前記nt5e遺伝子がコードするタンパク質の発現に基づき、判断する場合、前記(x1)工程では、例えば、前記被検魚類の生体試料におけるnt5e遺伝子およびnt5e遺伝子がコードするタンパク質の少なくも一方の発現量を測定する。そして、前記(x2)工程において、前記被検魚類の生体試料におけるnt5e遺伝子およびnt5e遺伝子がコードするタンパク質の少なくも一方の発現量と、基準値とに基づき、前記nt5e遺伝子について機能喪失している魚類(機能喪失している魚類)を選抜する。具体的には、前記(x2)工程では、前記被検魚類において、前記機能喪失している魚類の選抜は、例えば、前記被検魚類の生体試料におけるnt5e遺伝子およびnt5e遺伝子がコードするタンパク質の少なくも一方の発現量と、前記基準値とを比較することにより実施できる。
 前記被検魚類の生体試料は、特に制限されず、例えば、前記被検魚類の魚類個体および前記魚類個体の部分のいずれでもよく、好ましくは、魚類の骨格筋である。前記(x1)工程で使用する生体試料の種類は、例えば、1種類でもよいし、2種類以上でもよい。
 前記(x1)工程において、nt5e遺伝子の発現量は、例えば、半定量的PCR、定量的PCR、ノーザンブロッティング、デジタルPCR、RNAシークエンス解析(RNAseq)等により測定できる。また、前記(x1)工程において、nt5e遺伝子がコードするタンパク質の発現量は、例えば、紫外吸収法、ビシンコニン酸法等の分光光度計を用いた方法、ELISA、ウエスタンブロッティング等のタンパク質の定量方法により、測定できる。
 前記基準値は、例えば、前記野生型の魚類におけるnt5e遺伝子またはnt5e遺伝子がコードするタンパク質の発現量、nt5e遺伝子の機能喪失体を有する魚類におけるnt5e遺伝子またはnt5e遺伝子がコードするタンパク質の発現量等があげられる。前記基準値として前記機能喪失している魚類におけるnt5e遺伝子の発現量を用いる場合、前記機能喪失している魚類は、例えば、一対の染色体上のそれぞれに座乗する2つのnt5e遺伝子のうち、いずれか一方の遺伝子について、機能喪失している魚類、すなわち、ヘテロ接合型の魚類でもよいし、両方の遺伝子について、機能喪失している魚類、すなわち、ホモ接合型の魚類でもよい。前記基準値とするnt5e遺伝子またはnt5e遺伝子がコードするタンパク質の発現量は、例えば、前記被検魚類の生体試料と同じ条件で採取した生体試料におけるnt5e遺伝子またはnt5e遺伝子がコードするタンパク質の発現量を、前記被検魚類の生体試料と同様の方法で測定することにより、得ることができる。前記基準値は、例えば、予め測定してもよいし、前記被検魚類の生体試料と同時に測定してもよい。
 この場合、前記(x2)工程において、前記被検魚類におけるnt5e遺伝子について、機能喪失しているかの評価方法は、特に制限されず、前記基準値の種類によって、適宜決定できる。
 具体例として、前記被検魚類の生体試料におけるnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類におけるnt5e遺伝子の発現量と同じ(有意差がない)場合、被検魚類の生体試料中におけるnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類におけるnt5e遺伝子の発現量より(有意に)高い場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)高い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していないと評価できる。他方、前記被検魚類の生体試料中のnt5e遺伝子の発現量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)低い場合、nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量と同じ(有意差がない)場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるnt5e遺伝子の発現量より(有意に)低い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していると評価できる。
 また、前記被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類におけるNT5Eタンパク質の発現量と同じ(有意差がない)場合、被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類におけるNT5Eタンパク質の発現量より(有意に)高い場合、および/または、前記NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)高い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していないと評価できる。他方、前記被検魚類の生体試料中のNT5Eタンパク質の発現量が、前記野生型のNT5Eタンパク質をホモ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)低い場合、NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量と同じ(有意差がない)場合、および/または、前記NT5Eタンパク質の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料におけるNT5Eタンパク質の発現量より(有意に)低い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していると評価できる。
 そして、前記(x2)工程では、例えば、前記nt5e遺伝子について、機能喪失していると評価された魚類を、前記本開示の魚類として選抜する。
 前記(x2)工程では、例えば、nt5e遺伝子の発現量に基づき、nt5e遺伝子の遺伝子型を評価してもよく、具体例として正常遺伝子のホモ接合型か、正常遺伝子と機能喪失遺伝子のヘテロ接合型か、機能喪失遺伝子のホモ接合型かを評価してもよい。この場合、前記基準値として、それぞれ、前記野生型のnt5e遺伝子をホモ接合型で有する魚類(野生型の魚類)、前記nt5e遺伝子の機能喪失体をヘテロ接合型またはホモ接合型で有する魚類(ヘテロ接合型の魚類またはホモ接合型の魚類)を用いることにより実施できる。具体的には、前記(x2)工程において、被検魚類における対象遺伝子の発現量が、前記野生型の魚類、前記ヘテロ接合型の魚類、または前記ホモ接合型魚類における対象遺伝子の発現量と同等である場合、前記被検魚類は、例えば、同等の発現量を有する魚類と同様の遺伝子型のであると評価できる。
 前記(y)工程は、例えば、対象の魚類のnt5e遺伝子を機能喪失させる工程(機能喪失工程)ということもできる。前記機能喪失工程は、後述の本開示の付与方法における機能喪失工程の説明を援用できる。
 つぎに、前記(a)工程において、他方の親として使用する魚類は、特に制限されず、任意の形質を有する魚類とできる。前記他方の親として使用する魚類は、前記本開示の魚類でもよい。
 前記(a)工程において、前記本開示の魚類と前記他の魚類との交雑方法は、特に制限されず、公知の方法が採用できる。前記(a)工程では、前記本開示の魚類と前記他の魚類との交雑により、後代系統の魚類を得ることができる。
 本開示の第1の生産方法は、さらに、下記(b)工程を含んでもよい。
(b)前記(a)工程より得られた魚類またはその後代系統から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失している魚類を選抜する選抜工程。
 前記(b)工程において、nt5e遺伝子が機能喪失している魚類を選抜する対象は、例えば、前記(a)工程より得られた魚類でもよいし、さらに、その魚類から得られた後代系統でもよい。具体的に、前記対象は、例えば、前記(a)工程の交雑によって得られたF1の魚類でもよいし、その後代系統でもよい。前記後代系統は、例えば、前記(a)工程の交雑によって得られたF1の魚類の自殖交雑後代または戻し交雑後代でもよいし、前記F1の魚類等の後代系統の魚類と、他の魚類とを交雑することによって得られた魚類であってもよい。
 前記(b)工程において、前記nt5e遺伝子を機能喪失している魚類の選抜は、例えば、前記nt5e遺伝子の機能喪失を、直接的または間接的に確認することにより行うことができる。
 前記(b)工程において、前記直接的な確認は、得られた前記F1の魚類またはその後代系統について、例えば、生体試料中のイノシン酸量に基づき判断することができる。具体的には、前記nt5e遺伝子の機能喪失は、野生型のnt5e遺伝子を有する魚類、またはnt5e遺伝子の機能喪失体を有する魚類の死後1日目(24時間)における魚肉中のイノシン酸の含有量を基準として評価できる。より具体的には、後述の実施例1に準じ、被検魚類の死亡後、24時間における生体試料中のイノシン酸量を測定する。そして、前記被検魚類の生体試料中のイノシン酸量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量と同じ場合(有意差がない)、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)低い場合、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)低い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していないと評価できる。他方、前記被検魚類の生体試料中のイノシン酸量が、前記野生型のnt5e遺伝子をホモ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)高い場合、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量と同じ場合(有意差がない)、および/または、前記nt5e遺伝子の機能喪失体をホモ接合型またはヘテロ接合型で有する魚類の生体試料中のイノシン酸量より(有意に)高い場合、前記被検魚類は、例えば、前記nt5e遺伝子について機能喪失していると評価できる。
 また、前記(b)工程において、前記間接的な確認による選抜は、例えば、下記(b1)および(b2)工程によって行うことができる。
(b1)前記(a)工程より被検魚類のnt5e遺伝子が機能喪失しているかを検出する検出工程
(b2)前記nt5e遺伝子が機能喪失している場合、前記被検魚類を、nt5e遺伝子を機能喪失している魚類として選抜する選抜工程
 前記(b)工程におけるnt5e遺伝子が機能喪失している魚類の選抜は、例えば、前記(x)工程において説明した方法と同様であり、前記(b1)工程は、前記(x1)工程と同様に、前記(b2)工程は、前記(x2)工程と同様にして実施できる。
 本開示の第1の生産方法は、前記(b)工程において選抜された魚類を、さらに育成することが好ましい。前記魚類の育成条件および育成方法は、例えば、前記魚類の成長段階および前記魚類の品種に応じて適宜決定できる。前記育成では、例えば、前記魚類の任意の成長段階まで生育してよい。
 このように、前記(b)工程では、前記nt5e遺伝子が機能喪失された魚類またはその後代系統を選抜できる。
 本開示の第1の生産方法は、さらに、交雑により得られた前記後代系統から、配偶子(例えば、卵、精子)を採取する採取工程を含んでもよい。
<第2の生産方法>
 別の態様において、本開示は、熟成が促進された魚類の生産方法を提供する。本開示の生産方法は、熟成が促進された魚類の生産方法であって、対象の魚類のエクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失させる機能喪失工程を含む。本開示の第2の生産方法によれば、熟成が促進された魚類を得ることができる。また、本開示の第2の生産方法によれば、例えば、熟成時のイノシン酸の蓄積を促進できる。このため、本開示の第2の生産方法は、例えば、熟成時のイノシン酸の蓄積が促進された魚類の生産方法ということもできる。
 また、本開示の魚類は、例えば、熟成時におけるイノシン酸からイノシンおよびヒポキサンチンへの分解が抑制されているため、同じ期間保存した際の鮮度が維持されている。このため、本開示の増強方法は、例えば、鮮度が維持された魚類の生産方法、鮮度の低下が抑制された魚類の生産方法、魚類の鮮度維持方法、または魚類の鮮度の低下抑制方法ということもできる。
 本開示において、前述のように、前記nt5e遺伝子の機能喪失は、前記nt5e遺伝子に機能喪失変異を導入することにより、実施してもよいし、前記nt5e遺伝子の発現を抑制するポリヌクレオチドを導入することにより、実施してもよいし、対象の魚類と、本開示の魚類を交雑すること、すなわち、前記nt5e遺伝子の機能喪失体の交雑移入により、実施してもよい。前記交雑により実施する場合、本開示の付与方法は、例えば、前記本開示の第1の生産方法と同様に実施できる。
 前記nt5e遺伝子に機能喪失変異を導入する場合、前記機能喪失工程では、例えば、対象の魚類のnt5e遺伝子に機能喪失変異を導入する。前記対象の魚類は、例えば、一対の染色体のそれぞれに、前記nt5e遺伝子を有する。このため、前記機能喪失工程では、例えば、前記対象の魚類における一対の染色体の前記nt5e遺伝子のうち、いずれか一方の染色体の前記nt5e遺伝子について、機能喪失させてもよいし、両方の染色体の前記nt5e遺伝子について、機能喪失させてもよいが、後者が好ましい。
 前記nt5e遺伝子の機能喪失は、例えば、前述のように突然変異を導入することにより実施できる。前記突然変異は、例えば、前述の説明が援用でき、好ましくは、ナンセンス突然変異またはフレームシフト突然変異である。前記機能喪失変異は、例えば、各遺伝子(各遺伝子の塩基配列)に対して、1もしくは数個の塩基が欠失、置換、挿入、および/または付加することにより導入してもよく、好ましくは、野生型のnt5e遺伝子を部分欠失または完全欠失させることにより導入する。
 前記機能喪失工程において、前記nt5e遺伝子に機能喪失変異を導入する領域は、前記nt5e遺伝子のイントロン領域でもよいし、エキソン領域でもよいが、好ましくは、後者である。
 前記nt5e遺伝子の機能喪失は、例えば、対象の魚類のnt5e遺伝子に対し、常法により、変異を導入することにより引き起こすことができる。前記変異の導入方法は、例えば、相同組換え;ZFN、TALEN、CRISPR-CAS9、CRISPR-CPF1等を用いたゲノム編集技術:等により、実施できる。前記ゲノム編集技術を用いた変異の導入方法は、例えば、後述の実施例1を参照できる。また、前記変異の導入方法は、例えば、ランダム突然変異誘発法により、実施してもよい。前記ランダム突然変異誘発法は、例えば、α線、β線、γ線、X線等の放射線照射処理;メタンスルホン酸エチル(EMS)、エチニルニトロソウレア(ENU)等の変異誘発剤による化学物質処理;重イオンビーム処理;等があげられる。なお、上述の各変異の導入方法は、例えば、市販のキット等を用いて実施してもよい。
 前記対象の魚類は、例えば、卵、仔魚、稚魚、未成魚、および成魚のいずれでもよい。
 本開示の第2の生産方法では、前記機能喪失工程後、前記nt5e遺伝子に機能喪失変異が導入されている魚類を選抜することが好ましい。前記選抜対象の魚類は、例えば、前記機能喪失工程で得られた魚類でもよいし、その後代系統でもよい。前記選抜は、例えば、前述の(x)工程と同様に実施でき、その説明を援用できる。
 つぎに、前記nt5e遺伝子の発現を抑制するポリヌクレオチドを導入する場合、前記ポリヌクレオチドの導入方法は、特に制限されず、例えば、RNA干渉、アンチセンスRNA、ゲノム編集技術等の方法により実施できる。前記ポリヌクレオチドを含む発現ベクター等の発現カセットは、例えば、マイクロインジェクション、ポリエチレングリコール法、電気穿孔法(エレクトロポレーション法)、パーティクルガン法等により、対象の魚類に導入できる。前記対象の魚類は、例えば、卵、仔魚、稚魚、未成魚、および成魚のいずれでもよい。
<イノシン酸含有量の増強方法>
 別の態様において、本開示は、魚類または魚肉の熟成におけるイノシン酸含有量を増強可能な方法を提供する。本開示の増強方法は、魚肉の熟成におけるイノシン酸含有量の増強方法であって、魚類または魚肉を熟成させる熟成工程を含み、前記魚肉は、本開示の魚類、本開示の魚類の魚肉、および/または、本開示の魚類の可食部の魚肉である。本開示の増強方法によれば、熟成時に、前記魚類または魚肉におけるイノシン酸含有量を増強できる。本開示の増強方法では、例えば、熟成時におけるイノシン酸の増加が、野生型のnt5e遺伝子をホモ接合型で有する魚類と比較して増強されているため、同じイノシン酸含有量により早期に達することができる。このため、本開示の増強方法は、例えば、魚類もしくは魚肉の熟成の促進方法、または魚類もしくは魚肉におけるイノシン酸の蓄積促進方法ということもできる。
 前記熟成工程において、前記魚類または魚肉の熟成方法は、例えば、前記魚類または魚肉の一般的な熟成条件を適用できる。具体例として、前記熟成時の温度は、例えば、1~10℃である。前記熟成の期間(熟成期間)は、例えば、0.1~31日、0.5~20日、または1~3日である。
<スクリーニング方法>
 別の態様において、本開示は、熟成が促進された魚類のスクリーニング方法を提供する。本開示の熟成が促進された魚類のスクリーニング方法は、被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類を、熟成が促進された魚類として選抜する選抜工程を含む。本開示によれば、熟成が促進された魚類をスクリーニングできる。本発明のスクリーニング方法は、例えば、イノシン酸の蓄積増強(促進)能を有する魚類のスクリーニング方法ということもできる。
 また、本開示の魚類は、例えば、熟成時におけるイノシン酸からイノシンおよびヒポキサンチンへの分解が抑制されているため、同じ期間保存した際の鮮度が維持されている。このため、本開示のスクリーニング方法は、例えば、鮮度が維持された魚類のスクリーニング方法、または鮮度の低下が抑制された魚類のスクリーニング方法ということもできる。
 本開示のスクリーニング方法において、前記選抜工程は、前記(x)工程と同様に実施でき、その説明を援用できる。
<第3の生産方法>
 別の態様において、本開示は、熟成が促進された魚類の生産方法を提供する。本開示の魚類の生産方法は、被検魚類から、nt5e遺伝子について、機能喪失している、被検魚類をスクリーニングするスクリーニング工程を含み、前記スクリーニング工程は、前記本開示の熟成が促進された魚類のスクリーニング方法により実施される。本開示の第3の生産方法によれば、前記nt5e遺伝子の機能喪失体を有する魚類をスクリーニングできるため、熟成が促進された魚類を生産できる。
<第2の魚類>
 別の態様において、本開示は、熟成が促進された魚類を提供する。本開示の魚類(以下、「第2の魚類」ともいう)は、前記本開示の第1の生産方法、第2の生産方法、または第3の生産方法により得られる。本開示の魚類によれば、熟成が促進された魚類を提供できる。また、本開示によれば、魚類の死後において、魚肉におけるイノシン酸の蓄積を促進できるため、歯ごたえがありつつ、旨味のある魚類を得られると期待される。
<検出方法>
 別の態様において、本開示は、魚類の熟成促進能を検出可能な方法を提供する。本開示の検出方法は、被検魚類において、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失しているかを検出する検出工程を含む。本開示の検出方法によれば、被検魚類が、熟成時に熟成が促進されるか否か、または熟成時にイノシン酸の蓄積が増強されるか否かを検出できる。このため、本開示の検出方法は、例えば、熟成促進能を有する魚類のスクリーニング方法、またはイノシン酸の蓄積増強(促進)能を有する魚類のスクリーニング方法ということもできる。
 本開示の検出方法は、例えば、被検魚類のnt5e遺伝子について、機能欠失変異を検出する検出工程を含む。前記検出工程は、例えば、前記本開示の第1の生産方法の選抜工程における(x)工程または前記間接的な選抜の説明を援用できる。具体例として、前記検出工程では、例えば、nt5e遺伝子について、遺伝子発現またはその塩基配列を検出する。
 本開示の検出方法は、さらに、前記遺伝子発現または塩基配列に基づき、前記被検魚類のnt5e遺伝子が、野生型のnt5e遺伝子か、nt5e遺伝子の機能喪失体かを判定する判定工程を含むことが好ましい。前記判定工程は、例えば、前記被検魚類のnt5e遺伝子を、それぞれ対応する魚類の野生型のnt5e遺伝子と比較することにより判定できる。具体的には、前記判定工程では、前記被検魚類のnt5e遺伝子が、対応する魚類の野生型のnt5e遺伝子と同一の塩基配列を有しているか、機能喪失変異でない変異を有している場合、または、対応する魚類のnt5e遺伝子の機能喪失体の塩基配列と一致しない場合、前記被検魚類のnt5e遺伝子は、野生型のnt5e遺伝子であると判定できる。他方、前記判定工程では、前記被検魚類のnt5e遺伝子が、対応する魚類の野生型のnt5e遺伝子において機能喪失変異を有している場合、または、対応する魚類のnt5e遺伝子の機能喪失体の塩基配列と一致する場合、前記被検魚類のnt5e遺伝子は、前記nt5e遺伝子の機能喪失体であると判定できる。
<加工食品>
 別の態様において、本開示は、本開示の魚類を用いた加工食品を提供する。本開示の魚類の加工食品は、本開示の魚類を用いる。
 本開示の魚類の加工食品は、加工対象の魚類として、前記本開示の第1の魚類を用いてもよいし、前記本開示の第2の魚類を用いてもよい。
 本開示の加工食品において、「加工」は、特に制限されず、例えば、魚類に対する任意の処理を意味する。具体例として、前記加工は、例えば、切断、スライス、ミンチ化、裏ごし、乾燥、缶詰め、瓶詰め、洗浄、包装、冷凍、加熱、調味等があげられる。前記加工食品の製造において実施する加工は、1種類でもよいし、複数種類でもよい。また、前記加工食品の製造においては、同一の処理を1回実施してもよいし、複数回実施してもよい。
 以下、実施例を用いて本開示を詳細に説明するが、本開示は実施例に記載された態様に限定されるものではない。
[実施例1]
 nt5e遺伝子について機能喪失しているメダカを作出し、それぞれ、野生型のメダカと比較して、イノシン酸の蓄積が増強されていること、すなわち、nt5e遺伝子がイノシン酸の分解酵素をコードしていることを確認した。
(1)受精卵の作製
 性成熟したメダカを同じ水槽内に入れ、仕切り板等を用いて顕微注入前日の夕方から雌雄ごとに隔離した。顕微注入当日に仕切り板を外し、自然交配させることで1細胞期の受精卵を取得した。回収した卵はピンセットなどを用いて卵膜上の付着糸を除去し、顕微注入に用いた。
(2)機能喪失メダカの作出
 変異の導入は、下記参考文献1を参照し、CRISPR-Cas9を用いて実施した。Cas9はIntegrated DNA Technologies株式会社より購入したタンパク質試薬を使用した。
参考文献1:Satoshi Ansai et.al, “Targeted mutagenesis using CRISPR/Cas system in medaka”, Biology Open, 2014, vol.3, pages 362-371
 シングルガイドRNA(sgRNA)はベクターを必要としない、クローニングフリーな手法によって合成した。合成用の鋳型DNAは3種のオリゴヌクレオチド(OligoA-gRNA1またはOligoA-sgRNA2・OligoB・OligoC)を用いたPCRを行うことで調製した。鋳型DNAおよびキット(CUGA(登録商標)7 gRNA Synthesis Kit、株式会社ニッポンジーン社製)を用いてsgRNA1およびsgRNA2を合成後、RNA精製キット(RNeasy Plus Mini Kit、Qiagen社製)を用いて、前記sgRNA1およびsgRNA2を精製した。前記sgRNAのゲノム上のターゲットサイトは、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子のエキソン1またはエキソン9に存在する下記ターゲット配列である。メダカゲノムデータベース上には10種類のnt5遺伝子が存在する。これらのうち細胞外型として区分されるnt5e遺伝子は、一般にイノシン酸に対する親和性が高いことが報告されている(参考文献2参照)。メダカは2種のnt5e遺伝子を有するが、シンテニー解析の結果から幅広い魚類で保存されている22番染色体上のnt5e遺伝子(ENSORLG00000014932)を標的とした。下記ターゲット配列において、3’端側の下線で示す3塩基がプロトスペーサー隣接モチーフ(PAM)配列である。
参考文献2:H Zimmermann, “5'-Nucleotidase: molecular structure and functional aspects”, Biochem J. 1992 Jul 15;285 (Pt 2)(Pt 2):345-65.
(OligoA-sgRNA1)
5'-CTAATACGACTCACTATAGCAGGATGTTCACCAAAGTGAGTTTTAGAGCTAGAAATAGCA-3'(配列番号17)
(OligoA-sgRNA2)
5'-CTAATACGACTCACTATAGGTGATGCGGCCTTCCACTGCGTTTTAGAGCTAGAAATAGCA-3'(配列番号18)
(OligoB)
5'-AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3'(配列番号19)
(OligoC)
5'-AAAAGCACCGACTCGGTGCC-3'(配列番号20)
(エキソン1上のターゲット配列:sgRNA1)
5'-CAGGATGTTCACCAAAGTGACGG-3'(配列番号21)
(エキソン9上のターゲット配列:sgRNA2)
 5'-GTGATGCGGCCTTCCACTGCAGG-3'(配列番号22)
 前記(1)で得られた1細胞期の受精卵の細胞質に、500ng/μL Cas9タンパク質、および100ng/μL sgRNA1を、顕微注入法より導入することにより、nt5e遺伝子に変異を導入した(ケース1)。また、前記(1)で得られた1細胞期の受精卵の細胞質に、500ng/μL Cas9タンパク質、100ng/μL sgRNA1、および100ng/μL sgRNA2を、顕微注入法より導入することにより、nt5e遺伝子に変異を導入した(ケース2)。その後、変異を導入した前記メダカを野生型メダカと交配させ、第2世代のメダカを得た。前記第2の世代のメダカの尾鰭から抽出したDNAを解析し、PCRおよび塩基配列解析により、nt5e遺伝子に塩基欠損が見られる個体を選別した。前記個体を交配させることにより、nt5e遺伝子の機能欠失変異が導入された個体を得た。前記nt5e遺伝子の機能欠失変異が導入された個体において、ケース1では、2塩基欠失系統(Δ2)であった。また、前記nt5e遺伝子の機能欠失変異が導入された個体において、ケース2では、5521塩基欠失系統(Δ5521)であった。
 前記作製後の受精卵を培養し、孵化させた後、通常の養殖方法により飼育した。孵化後3ヶ月における各個体について即殺し、熟成のために4℃で2日間または4日間保存した。前記保存後、前記各個体から骨格筋を採取し、前記骨格筋の重量を測定した。前記測定後、10%の過塩素酸を添加し、ホモジナイズした。前記ホモジナイズ後、12900rpm(または15000×g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。前記取得後、前記上清画分に1N KOHを添加し中和した後、12900rpm(または15000×g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。その後、前記上清画分を蒸留水で定容し、HPLCを用いて、骨格筋の重量あたりのイノシン酸の量(nmol/mg骨格筋)を測定した。前記測定において、C18逆相カラム(4.6mm I.D. ×250mm、OTD-80Ts、Tosoh社製)を用いた。この結果を、下記表2~表3および図1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1は、nt5e遺伝子について機能喪失しているメダカのイノシン酸の量を示すグラフである。図1において、(A)は、熟成2日後のメダカのイノシン酸の量を示し、(B)は、熟成4日後のメダカのイノシン酸の量を示す。図1において、横軸は、個体の種類を示し、縦軸は、イノシン酸量を示す。図1(A)および前記表2に示すように、熟成2日後において、ケース1のメダカΔ2のヘテロノックアウトおよびホモノックアウトの両方、およびケース2のメダカΔ5521のヘテロノックアウトおよびホモノックアウトの両方において、コントロールのメダカ(野生型のメダカ)と比較して、イノシン酸の量が有意に多かった。また、図1(B)および前記表3に示すように、熟成4日後において、ケース1のメダカΔ2のヘテロノックアウトおよびホモノックアウトの両方、およびケース2のメダカΔ5521のヘテロノックアウトにおいて、コントロールのメダカ(野生型のメダカ)と比較して、イノシン酸の量が有意に多かった。以上のことから、本開示のメダカは、野生型のメダカと比較して、熟成2日後および4日後において、イノシン酸の量が増強されていること、すなわち、nt5e遺伝子への機能喪失変異の導入により、イノシン酸の分解活性が抑制されていることがわかった。
[実施例2]
 nt5e遺伝子について機能喪失しているマダイを作出し、野生型のマダイと比較して、イノシン酸の分解活性が抑制されていることを確認した。
 雌雄のメダカに代えて、雌雄のマダイを用い、sgRNAを変更した以外は、同様にして、nt5e遺伝子に変異を導入した。マダイにおけるsgRNAのゲノム上のターゲットサイトは、Pm-nt5e遺伝子のエキソン6に存在する下記ターゲット配列である。下記ターゲット配列において、3’端側の下線で示す3塩基がプロトスペーサー隣接モチーフ(PAM)配列である。
(エキソン6上のターゲット配列:Pm-Nt5-sgRNA)
 5'-TCAGGAGGTGGGAAAGACTCTGG-3’(配列番号23)
 つぎに、前記導入後のマダイの受精卵を用いた以外は、前記実施例1と同様にして、孵化後6ヶ月における各個体について即殺し、死後1、2、3、5、または7日におけるイノシン酸の量を経時的に測定した。具体的には、前記各個体から骨格筋を採取し、前記骨格筋の重量を測定した。前記測定後、10%の過塩素酸を添加し、ホモジナイズした。前記ホモジナイズ後、12,900rpm(または15,000g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。前記取得後、前記上清画分に1N KOHを添加し中和した後、12,900rpm(または15,000g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。その後、前記上清画分を蒸留水で定容し、HPLCを用いてイノシン酸の量を測定した。前記測定において、C18逆相カラム(4.6mm I.D. ×250mm、OTD-80Ts、Tosoh社製)を用いた。この結果を、図2に示す。
 図2は、nt5e遺伝子について機能喪失しているマダイのイノシン酸の量を示すグラフである。図2において、横軸は、死後日数(熟成期間)を示し、縦軸は、イノシン酸の量を示す。図2に示すように、実施例2のマダイ(変異群)は、コントロールのマダイ(野生型のマダイ、コントロール群)と比較して、いずれの時点においてもイノシン酸の量が多かった。これらのことから、本開示のマダイは、野生型のマダイと比較して、イノシン酸の分解活性が抑制されていることがわかった。なお、実施例2のマダイは、キメラ個体を用いた結果であるが、イノシン酸の分解活性が抑制されていることが分かる。このため、前記マダイを、nt5e遺伝子の機能喪失体をヘテロ接合型またはホモ接合型で有する個体とすることにより、前記実施例1のメダカと同様に、イノシン酸の蓄積が増強されると推定される。
[実施例3]
 nt5e遺伝子について機能喪失しているティラピアを作出し、それぞれ、野生型のティラピアと比較して、イノシン酸の分解活性が抑制されていること、および鮮度が維持されていることを確認した。
 雌雄のメダカに代えて、雌雄のティラピアを用い、sgRNA以外は、同様にして、nt5e遺伝子に変異を導入した。ティラピアにおけるsgRNAのゲノム上のターゲットサイトは、nt5e遺伝子のエキソン1に存在する下記ターゲット配列(配列番号5の塩基配列における217~239番目の塩基配列)である。下記ターゲット配列において、5’端側の下線で示す3塩基がプロトスペーサー隣接モチーフ(PAM)配列である。
(エキソン1上のターゲット配列:sgRNA-t)
 5'-CCCTGCTTCGCTGGTGTGGCCAG-3’(配列番号24)
 つぎに、前記導入後のティラピアの受精卵を用いた以外は、前記実施例1と同様にして、孵化後50日における各個体について即殺し、熟成のために4℃で2日間または4日間保存した。前記保存後、前記各個体の核酸(ATP、ADP、AMP、IMP、HxR、Hx)の量を測定した。具体的には、前記各個体から骨格筋を採取し、前記骨格筋の重量を測定した。前記測定後、10%の過塩素酸を添加し、ホモジナイズした。前記ホモジナイズ後、12900rpm(または15000×g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。前記取得後、前記上清画分に1N KOHを添加し中和した後、12900rpm(または15000×g)、10分の条件下で、遠心分離を行った。前記遠心分離後、上清画分を取得した。その後、前記上清画分を蒸留水で定容し、HPLCを用いて前記核酸の量を測定した。また、鮮度の指標であるK値を、前記核酸の測定値と、下記式(1)とを用いて算出した。前記算出には、下記計算式を用いた。前記測定において、C18逆相カラム(4.6mm I.D. ×250mm、OTD-80Ts、Tosoh社製)を用いた。この結果を、図3に示す。
(K値の算出式)
 K=(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx) ・・・(1)
  K:鮮度の指標値
  ATP:筋肉の重量あたりのアデノシン三リン酸のモル量
  ADP:筋肉の重量あたりのアデノシン二リン酸のモル量
  AMP:筋肉の重量あたりのアデノシン一リン酸のモル量
  IMP:筋肉の重量あたりのイノシン酸のモル量
  HxR:筋肉の重量あたりのイノシンのモル量
  Hx:筋肉の重量あたりのヒポキサンチンのモル量
 図3は、nt5e遺伝子について機能喪失しているティラピアのイノシン酸の量およびK値を示すグラフである。図3において、(A)は、熟成2日後のティラピアのイノシン酸の量を示し、(B)は、熟成4日後のティラピアのK値を示す。図3(A)において、横軸は、個体の種類を示し、縦軸は、イノシン酸の量を示す。図3(B)において、横軸は、個体の種類を示し、縦軸は、K値を示す。図3(A)に示すように、熟成2日後において、実施例3のティラピア(GE)は、コントロールのティラピア(野生型のティラピア、WT)と比較して、イノシン酸の量が34%多かった。また、図3(B)に示すように、熟成4日後において、実施例3のティラピア(GE)は、コントロールのティラピア(野生型のティラピア、WT)と比較して、K値が28%少なかった。以上のことから、本開示のティラピアは、野生型のティラピアと比較して、熟成2日後のイノシン酸の分解活性が抑制されていること、および4日後の鮮度の維持がされていることがわかった。
 以上のことから、本開示の魚類は、野生型の魚類と比較して、イノシン酸の分解活性が抑制されていること、および鮮度が保たれていることが分かった。
[実施例4]
 nt5e遺伝子について機能喪失しているヒラメを作出し、それぞれ、野生型のヒラメと比較して、イノシン酸の分解活性が抑制されていること、および鮮度が維持されていることを確認した。
 雌雄のメダカに代えて、雌雄のヒラメを用い、sgRNA以外は、同様にして、nt5e遺伝子に変異を導入した。ヒラメにおけるsgRNAのゲノム上のターゲットサイトは、nt5e遺伝子のエキソン4に存在する下記ターゲット配列(配列番号11の塩基配列における605~627番目の塩基配列)である。下記ターゲット配列において、3’端側の下線で示す3塩基がプロトスペーサー隣接モチーフ(PAM)配列である。
(エキソン4上のターゲット配列:sgRNA-p)
 5'-CTTCAACGGAGGCGGCGTCCGGG-3’(配列番号27)
 つぎに、前記導入後のヒラメの受精卵を用いた以外は、前記実施例1と同様にして、受精後546日における各個体について即殺し、熟成のために4℃で2日間保存した。前記保存後、前記各個体の核酸(ATP、ADP、AMP、IMP、HxR、Hx)の量を測定した。具体的には、前記実施例2に記載の方法と同様にして実施した。この結果を、図4に示す。
 図4は、nt5e遺伝子について機能喪失しているヒラメのイノシン酸の量およびK値を示すグラフである。図4において、(A)は、熟成2日後のヒラメのイノシン酸の量を示し、(B)は、熟成2日後のヒラメのK値を示す。図4(A)において、横軸は、個体の種類を示し、縦軸は、イノシン酸の量を示す。図4(B)において、横軸は、個体の種類を示し、縦軸は、K値を示す。図4(A)に示すように、熟成2日後において、実施例4のヒラメ(GE)は、コントロールのヒラメ(野生型のヒラメ、WT)と比較して、イノシン酸の量が8%多かった。また、図4(B)に示すように、熟成2日後において、実施例4のヒラメ(GE)は、コントロールのヒラメ(野生型のヒラメ、WT)と比較して、K値が37%少なかった。以上のことから、本開示のヒラメは、野生型のヒラメと比較して、熟成2日後のヒラメ酸の分解活性が抑制されていること、鮮度の維持がされていることがわかった。
 以上のことから、本開示の魚類は、野生型の魚類と比較して、イノシン酸の分解活性が抑制されていること、および鮮度が保たれていることが分かった。
 以上、実施形態および実施例を参照して本開示を説明したが、本開示は、上記実施形態および実施例に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用される。
 この出願は、2022年6月15日に出願された日本出願特願2022-096417を基礎とする優先権を主張し、その開示の全てをここに取り込む。
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
<魚類>
(付記1)
エクト5’-ヌクレオチダーゼ(nt5e)遺伝子について、機能喪失している、魚類。
(付記2)
nt5e遺伝子の機能喪失体を含み、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された変異遺伝子である、付記1に記載の魚類。
(付記3)
前記機能喪失体は、前記正常なnt5e遺伝子の塩基配列において、少なくとも一部の塩基が欠失された変異遺伝子である、付記2に記載の魚類。
(付記4)
nt5e遺伝子の機能喪失体を含み、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異を含む変異遺伝子である、付記1から3のいずれかに記載の魚類。
(付記5)
nt5e遺伝子の機能喪失体を含み、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、ナンセンス突然変異を含む変異遺伝子である、付記1から4のいずれかに記載の魚類。
(付記6)
nt5e遺伝子の機能喪失体を含み、
前記機能喪失体は、正常なnt5e遺伝子の第1エキソンにおいて、変異を含む遺伝子である、付記1から5のいずれかに記載の魚類。
(付記7)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイの正常なnt5e遺伝子は、下記(Pn)のポリヌクレオチドを含む遺伝子である、付記2から6のいずれかに記載の魚類:
(Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
(Pn1)配列番号1の塩基配列からなるポリヌクレオチド;
(Pn2)前記(Pn1)の塩基配列において、
ノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn7)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記8)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子のエキソン1およびエキソン6の少なくとも一方に変異を有する変異遺伝子を含む、付記2から7のいずれかに記載の魚類。
(付記9)
前記マダイは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン6に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記8に記載の魚類。
(付記10)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、配列番号1の塩基配列における1014~1036番目の塩基に変異を有する変異遺伝子を含む、付記2から9のいずれかに記載の魚類。
(付記11)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグの正常なnt5e遺伝子は、下記(Pt)のポリヌクレオチドを含む遺伝子である、付記2から6のいずれかに記載の魚類:
(Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
(Pt1)配列番号3の塩基配列からなるポリヌクレオチド;
(Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt3)前記(Pt1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt7)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記12)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記2から6および11のいずれかに記載の魚類。
(付記13)
前記トラフグは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記12に記載の魚類。
(付記14)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、配列番号3の塩基配列における131~153番目の塩基に変異を有する、付記2から6および11から13のいずれかに記載の魚類。
(付記15)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアの正常なnt5e遺伝子は、下記(Po)のポリヌクレオチドを含む遺伝子である、付記2から6のいずれかに記載の魚類:
(Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
(Po1)配列番号5の塩基配列からなるポリヌクレオチド;
(Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po3)前記(Po1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po7)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記16)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記2から6および15のいずれかに記載の魚類。
(付記17)
前記ティラピアは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記16に記載の魚類。
(付記18)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、配列番号5の塩基配列における217~239番目の塩基に変異を有する、付記2から6および15から17のいずれかに記載の魚類。
(付記19)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメの正常なnt5e遺伝子は、下記(Pp)のポリヌクレオチドを含む遺伝子である、付記2から6のいずれかに記載の魚類:
(Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
(Pp1)配列番号11の塩基配列からなるポリヌクレオチド;
(Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp3)前記(Pp1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp7)配列番号12のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記20)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン4に変異を有する変異遺伝子を含む、付記2から6および19のいずれかに記載の魚類。
(付記21)
前記ヒラメは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン4に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記20に記載の魚類。
(付記22)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、配列番号11の塩基配列における605~627番目の塩基に変異を有する、付記2から6および19から21のいずれかに記載の魚類。
(付記23)
前記魚類は、ヒレナマズ(Clarias garienpinus)であり、
前記ヒレナマズの正常なnt5e遺伝子は、下記(Pq)のポリヌクレオチドを含む遺伝子である、付記2から6のいずれかに記載の魚類:
(Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
(Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
(Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq3)前記(Pq1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq7)配列番号26のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記24)
前記機能喪失体は、イノシン酸の分解活性が低下した変異NT5Eタンパク質をコードする、付記2から6、8から10、12から14、16から18、および20から22のいずれかに記載の魚類。
(付記25)
前記魚類は、フグ科、タイ科、サケ科、コイ科、ハタ科、ヒラメ科、ヒレナマズ科、およびカワスズメ科からなる群から選択された魚類である、付記1から6のいずれかに記載の魚類。
<魚類の部分>
(付記26)
付記1から25のいずれかに記載の魚類の部分。
(付記27)
前記部分は、可食部である、付記26に記載の魚類の部分。
<魚類の生産方法>
(付記28)
下記(a)工程を含む、魚類の生産方法:
(a)付記1から25のいずれかに記載の魚類と、他の魚類とを交配する交配工程。
(付記29)
下記(b)工程を含む、付記28に記載の生産方法:
(b)前記(a)工程より得られた魚類またはその後代系統から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失している魚類を選抜する選抜工程。
(付記30)
前記(a)工程に先立って、下記(x)工程を含む、付記28または29に記載の生産方法:
(x)対象の魚類から、付記1から25のいずれかに記載の魚類を選抜する工程。
(付記31)
前記(x)工程における選抜は、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子の機能喪失体を含む魚類の選抜である、付記30に記載の生産方法。
(付記32)
前記(a)工程に先立って、下記(y)工程を含む、付記28または29に記載の生産方法:
(y)対象の魚類から、付記1から25のいずれかに記載の魚類を作出する作出工程。
<熟成が促進された魚類の生産方法>
(付記33)
熟成が促進された魚類の生産方法であって、
対象の魚類のエクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失させる機能喪失工程を含む、生産方法。
(付記34)
前記機能喪失工程では、前記対象の魚類のnt5e遺伝子に機能喪失変異を導入し、前記nt5e遺伝子の機能喪失体を含む魚類を作出する、付記33に記載の生産方法。
(付記35)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された変異遺伝子である、付記34に記載の生産方法。
(付記36)
前記機能喪失体は、前記正常なnt5e遺伝子の塩基配列において、少なくとも一部の塩基が欠失された変異遺伝子である、付記35に記載の生産方法。
(付記37)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異を含む変異遺伝子である、付記34から36のいずれかに記載の生産方法。
(付記38)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、ナンセンス突然変異を含む変異遺伝子である、付記34から37のいずれかに記載の生産方法。
(付記39)
前記機能喪失体は、正常なnt5e遺伝子の第1エキソンにおいて、変異を含む変異遺伝子である、付記34から38のいずれかに記載の生産方法。
(付記40)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイの正常なnt5e遺伝子は、下記(Pn)のポリヌクレオチドを含む遺伝子である、付記34から39のいずれかに記載の生産方法:
(Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
(Pn1)配列番号1のいずれかの塩基配列からなるポリヌクレオチド;
(Pn2)前記(Pn1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn3)前記(Pn1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn4)前記(Pn1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn5)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pn6)配列番号2のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn7)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記41)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子のエキソン6に変異を有する変異遺伝子を含む、付記34から40のいずれかに記載の生産方法。
(付記42)
前記マダイは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン6に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記41に記載の生産方法。
(付記43)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、配列番号1の塩基配列における1014~1036番目の塩基に変異を有する変異遺伝子を含む、付記34から42のいずれかに記載の生産方法。
(付記44)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグの正常なnt5e遺伝子は、下記(Pt)のポリヌクレオチドを含む遺伝子である、付記34から39のいずれかに記載の生産方法:
(Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
(Pt1)配列番号3のいずれかの塩基配列からなるポリヌクレオチド;
(Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt3)前記(Pt1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt7)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記45)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記34から39および44のいずれかに記載の生産方法。
(付記46)
前記トラフグは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記45に記載の生産方法。
(付記47)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、配列番号3の塩基配列における131~153番目の塩基に変異を有する、付記34から39および44から46のいずれかに記載の生産方法。
(付記43)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアの正常なnt5e遺伝子は、下記(Po)のポリヌクレオチドを含む遺伝子である、付記34から39のいずれかに記載の生産方法:
(Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
(Po1)配列番号5のいずれかの塩基配列からなるポリヌクレオチド;
(Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po3)前記(Po1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po7)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記49)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記34から39および48のいずれかに記載の生産方法。
(付記50)
前記ティラピアは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記49に記載の生産方法。
(付記51)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、配列番号5の塩基配列における217~239番目の塩基に変異を有する、付記34から39および48から50のいずれかに記載の魚類。
(付記52)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメの正常なnt5e遺伝子は、下記(Pp)のポリヌクレオチドを含む遺伝子である、付記34から39のいずれかに記載の魚類:
(Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
(Pp1)配列番号11の塩基配列からなるポリヌクレオチド;
(Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp3)前記(Pp1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp7)配列番号12のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記53)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン4に変異を有する変異遺伝子を含む、付記34から39および52のいずれか一項に記載の魚類。
(付記54)
前記ヒラメは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン4に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記53に記載の魚類。
(付記55)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、配列番号11の塩基配列における605~627番目の塩基に変異を有する、付記34から39および52から54のいずれかに記載の魚類。
(付記56)
前記魚類は、ヒレナマズ(Clarias garienpinus)であり、
前記ヒレナマズの正常なnt5e遺伝子は、下記(Pq)のポリヌクレオチドを含む遺伝子である、請求項34から39のいずれか一項に記載の魚類:
(Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
(Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
(Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq3)前記(Pq1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq7)配列番号26のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記57)
前記機能喪失体は、イノシン酸の分解活性が低下した変異NT5Eタンパク質をコードする、付記24から29、41から43、45から47、49から51、および53から55のいずれかに記載の生産方法。
(付記58)
前記作出工程は、
 対象の魚類のnt5e遺伝子に変異を導入する導入工程と、
 前記変異が導入された対象の魚類から、前記nt5e遺伝子の機能喪失体を含む魚類を、熟成が促進された魚類として選抜する選抜工程と、
を含む、付記34から57のいずれかに記載の生産方法。
<魚肉の熟成におけるイノシン酸含有量の増強方法>
(付記59)
魚肉の熟成におけるイノシン酸含有量の増強方法であって、
魚肉を熟成させる熟成工程を含み、
前記魚肉は、付記1から25のいずれかに記載の魚類の魚肉、および/または、付記26または27に記載の魚類の可食部の魚肉である、増強方法。
(付記60)
前記熟成工程において、前記魚肉の熟成期間は、1~31日間である、付記59に記載の増強方法。
<熟成が促進された魚類のスクリーニング方法>
(付記61)
被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類を、熟成が促進された魚類として選抜する選抜工程を含む、熟成が促進された魚類のスクリーニング方法。
(付記62)
前記選抜工程では、nt5e遺伝子の機能喪失体を含む被検魚類を、熟成が促進された魚類として選抜する、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された変異遺伝子である、付記61に記載のスクリーニング方法。
(付記63)
前記機能喪失体は、前記正常なnt5e遺伝子の塩基配列において、少なくとも一部の塩基が欠失された変異遺伝子である、付記62に記載のスクリーニング方法。
(付記64)
前記選抜工程では、nt5e遺伝子の機能喪失体を含む被検魚類を、熟成が促進された魚類として選抜し、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異を含む変異遺伝子である、付記62から63のいずれかに記載のスクリーニング方法。
(付記65)
前記選抜工程では、nt5e遺伝子の機能喪失体を含む被検魚類を、熟成が促進された魚類として選抜し、
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、ナンセンス突然変異を含む変異遺伝子である、付記62から64のいずれかに記載のスクリーニング方法。
(付記66)
前記選抜工程では、nt5e遺伝子の機能喪失体を含む被検魚類を、熟成が促進された魚類として選抜し、
前記機能喪失体は、正常なnt5e遺伝子の第1エキソンにおいて、変異を含む変異遺伝子である、付記62から65のいずれかに記載のスクリーニング方法。
(付記67)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイの正常なnt5e遺伝子は、下記(Pn)のポリヌクレオチドを含む遺伝子である、付記62から66のいずれかに記載のスクリーニング方法:
(Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
(Pn1)配列番号1のいずれかの塩基配列からなるポリヌクレオチド;
(Pn2)前記(Pn1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn3)前記(Pn1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn4)前記(Pn1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn5)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pn6)配列番号2のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn7)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記68)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子のエキソン6に変異を有する変異遺伝子を含む、付記62から67のいずれかに記載のスクリーニング方法。
(付記69)
前記マダイは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン6に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記68に記載のスクリーニング方法。
(付記70)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、配列番号1の塩基配列における1014~1036番目の塩基に変異を有する変異遺伝子を含む、付記62から69のいずれかに記載のスクリーニング方法。
(付記71)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグの正常なnt5e遺伝子は、下記(Pt)のポリヌクレオチドを含む遺伝子である、付記62から66のいずれかに記載のスクリーニング方法:
(Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
(Pt1)配列番号3のいずれかの塩基配列からなるポリヌクレオチド;
(Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt3)前記(Pt1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt7)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記72)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記62から66および71のいずれかに記載のスクリーニング方法。
(付記73)
前記トラフグは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記72に記載のスクリーニング方法。
(付記74)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、配列番号3の塩基配列における131~153番目の塩基に変異を有する、付記62から66および71から73のいずれかに記載のスクリーニング方法。
(付記75)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアの正常なnt5e遺伝子は、下記(Po)のポリヌクレオチドを含む遺伝子である、付記62から66のいずれかに記載のスクリーニング方法:
(Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
(Po1)配列番号5のいずれかの塩基配列からなるポリヌクレオチド;
(Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po3)前記(Po1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po7)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記76)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記62から66および75のいずれかに記載のスクリーニング方法。
(付記77)
前記ティラピアは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記76に記載のスクリーニング方法。
(付記78)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、配列番号5の塩基配列における217~239番目の塩基に変異を有する、付記62から66および75から77のいずれかに記載のスクリーニング方法。
(付記79)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメの正常なnt5e遺伝子は、下記(Pp)のポリヌクレオチドを含む遺伝子である、付記62から66のいずれかに記載のスクリーニング方法:
(Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
(Pp1)配列番号11のいずれかの塩基配列からなるポリヌクレオチド;
(Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp3)前記(Pp1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp7)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記80)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン4に変異を有する変異遺伝子を含む、付記62から66および79のいずれかに記載のスクリーニング方法。
(付記81)
前記ヒラメは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン4に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記80に記載のスクリーニング方法。
(付記82)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、配列番号11の塩基配列における605~627番目の塩基に変異を有する、付記62から66および79から81のいずれかに記載のスクリーニング方法。
(付記83)
前記魚類は、ヒレナマズ(Clarias garienpinus)であり、
前記ヒレナマズの正常なnt5e遺伝子は、下記(Pq)のポリヌクレオチドを含む遺伝子である、付記62から66のいずれかに記載のスクリーニング方法:
(Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
(Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
(Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq3)前記(Pq1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq7)配列番号26のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
<魚類の生産方法>
(付記84)
被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類をスクリーニングするスクリーニング工程を含み、
前記スクリーニング工程は、付記62から78のいずれかに記載のスクリーニング方法により実施される、魚類の生産方法。
<魚類>
(付記85)
付記28から58および84のいずれかに記載の生産方法により得られる、魚類。
<検出方法>
(付記86)
被検魚類において、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失しているかを検出する検出工程を含む、魚類の熟成促進能の検出方法。
(付記87)
前記検出工程では、前記被検魚類において、nt5e遺伝子の機能喪失体が存在しているかを検出する検出工程を含む、付記86に記載の検出方法。
(付記88)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された変異遺伝子である、付記87に記載の検出方法。
(付記89)
前記機能喪失体は、前記正常なnt5e遺伝子の塩基配列において、少なくとも一部の塩基が欠失された変異遺伝子である、付記88に記載の検出方法。
(付記90)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異を含む変異遺伝子である、付記87から89のいずれかに記載の検出方法。
(付記91)
前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、ナンセンス突然変異を含む変異遺伝子である、付記87から90のいずれかに記載の検出方法。
(付記92)
前記機能喪失体は、正常なnt5e遺伝子の第1エキソンにおいて、変異を含む変異遺伝子である、付記87から91のいずれかに記載の検出方法。
(付記93)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイの正常なnt5e遺伝子は、下記(Pn)のポリヌクレオチドを含む遺伝子である、付記87から92のいずれかに記載の検出方法:
(Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
(Pn1)配列番号1のいずれかの塩基配列からなるポリヌクレオチド;
(Pn2)前記(Pn1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn3)前記(Pn1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn4)前記(Pn1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn5)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pn6)配列番号2のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pn7)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記94)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子のエキソン6に変異を有する変異遺伝子を含む、付記87から93のいずれかに記載の検出方法。
(付記95)
前記マダイは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン6に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記94に記載の検出方法。
(付記96)
前記魚類は、マダイ(Pagrus major)であり、
前記マダイは、nt5e遺伝子の機能喪失体として、配列番号1の塩基配列における1014~1036番目の塩基に変異を有する変異遺伝子を含む、付記87から95のいずれかに記載の検出方法。
(付記97)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグの正常なnt5e遺伝子は、下記(Pt)のポリヌクレオチドを含む遺伝子である、付記87から92のいずれかに記載の検出方法:
(Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
(Pt1)配列番号3のいずれかの塩基配列からなるポリヌクレオチド;
(Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt3)前記(Pt1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pt7)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記98)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記87から92および97のいずれかに記載の検出方法。
(付記99)
前記トラフグは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記98に記載の検出方法。
(付記100)
前記魚類は、トラフグ(Takifugu rubripes)であり、
前記トラフグは、nt5e遺伝子の機能喪失体として、配列番号3の塩基配列における131~153番目の塩基に変異を有する、付記87から92および97から99のいずれかに記載の検出方法。
(付記101)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアの正常なnt5e遺伝子は、下記(Po)のポリヌクレオチドを含む遺伝子である、付記87から92のいずれかに記載の検出方法:
(Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
(Po1)配列番号5のいずれかの塩基配列からなるポリヌクレオチド;
(Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po3)前記(Po1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Po7)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記102)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、付記87から92および101のいずれかに記載の検出方法。
(付記103)
前記ティラピアは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記102に記載の検出方法。
(付記104)
前記魚類は、ティラピア(Oreochromis niloticus)であり、
前記ティラピアは、nt5e遺伝子の機能喪失体として、配列番号5の塩基配列における217~239番目の塩基に変異を有する、付記87から92および101から103のいずれかに記載の検出方法。
(付記105)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメの正常なnt5e遺伝子は、下記(Pp)のポリヌクレオチドを含む遺伝子である、付記87から92のいずれかに記載の検出方法:
(Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
(Pp1)配列番号11のいずれかの塩基配列からなるポリヌクレオチド;
(Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp3)前記(Pp1)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pp7)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記106)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン4に変異を有する変異遺伝子を含む、付記87から92および105のいずれかに記載の検出方法。
(付記107)
前記ヒラメは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン4に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、付記106に記載の検出方法。
(付記108)
前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
前記ヒラメは、nt5e遺伝子の機能喪失体として、配列番号11の塩基配列における605~627番目の塩基に変異を有する、付記87から92および105から107のいずれかに記載の検出方法。
(付記109)
前記魚類は、ヒレナマズ(Clarias garienpinus)であり、
前記ヒレナマズの正常なnt5e遺伝子は、下記(Pq)のポリヌクレオチドを含む遺伝子である、付記87から92のいずれかに記載の検出方法:
(Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
(Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
(Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq3)前記(Pq1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
(Pq7)配列番号26のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
(付記110)
前記機能喪失体は、イノシン酸の分解活性が低下した変異NT5Eタンパク質をコードする、付記87から92、94から96、98から100、102から104、および106から108のいずれかに記載の検出方法。
<加工食品>
(付記111)
付記1から25および85のいずれかに記載の魚類を用いた、魚類の加工食品。
 以上のように、本開示の魚類は、熟成が促進される。したがって、本発明は、例えば、魚類の育種分野、水産分野等において極めて有用である。

 

Claims (33)

  1. エクト5’-ヌクレオチダーゼ(nt5e)遺伝子について、機能喪失している、魚類。
  2. nt5e遺伝子の機能喪失体を含み、
    前記機能喪失体は、正常なnt5e遺伝子の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された変異遺伝子である、請求項1に記載の魚類。
  3. 前記機能喪失体は、前記正常なnt5e遺伝子の塩基配列において、少なくとも一部の塩基が欠失された変異遺伝子である、請求項2に記載の魚類。
  4. nt5e遺伝子の機能喪失体を含み、
    前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異を含む変異遺伝子である、請求項1から3のいずれか一項に記載の魚類。
  5. nt5e遺伝子の機能喪失体を含み、
    前記機能喪失体は、正常なnt5e遺伝子の塩基配列に対して、ナンセンス突然変異を含む変異遺伝子である、請求項1から4のいずれか一項に記載の魚類。
  6. nt5e遺伝子の機能喪失体を含み、
    前記機能喪失体は、正常なnt5e遺伝子の第1エキソンにおいて、変異を含む遺伝子である、請求項1から5のいずれか一項に記載の魚類。
  7. 前記魚類は、マダイ(Pagrus major)であり、
    前記マダイの正常なnt5e遺伝子は、下記(Pn)のポリヌクレオチドを含む遺伝子である、請求項2から6のいずれか一項に記載の魚類:
    (Pn)下記(Pn1)~(Pn7)のいずれかのポリヌクレオチド:
    (Pn1)配列番号1の塩基配列からなるポリヌクレオチド;
    (Pn2)前記(Pn1)の塩基配列において、
    ノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pn7)配列番号2のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
  8. 前記魚類は、マダイ(Pagrus major)であり、
    前記マダイは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子のエキソン1およびエキソン6の少なくとも一方に変異を有する変異遺伝子を含む、請求項2から7のいずれか一項に記載の魚類。
  9. 前記マダイは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン6に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、請求項8に記載の魚類。
  10. 前記魚類は、マダイ(Pagrus major)であり、
    前記マダイは、nt5e遺伝子の機能喪失体として、配列番号1の塩基配列における1014~1036番目の塩基に変異を有する変異遺伝子を含む、請求項2から9のいずれか一項に記載の魚類。
  11. 前記魚類は、トラフグ(Takifugu rubripes)であり、
    前記トラフグの正常なnt5e遺伝子は、下記(Pt)のポリヌクレオチドを含む遺伝子である、請求項2から6のいずれか一項に記載の魚類:
    (Pt)下記(Pt1)~(Pt7)のいずれかのポリヌクレオチド:
    (Pt1)配列番号3の塩基配列からなるポリヌクレオチド;
    (Pt2)前記(Pt1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pt3)前記(Pt1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pt4)前記(Pt1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pt5)配列番号4のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (Pt6)配列番号4のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pt7)配列番号4のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
  12. 前記魚類は、トラフグ(Takifugu rubripes)であり、
    前記トラフグは、nt5e遺伝子の機能喪失体として、正常なnt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、請求項2から6および11のいずれか一項に記載の魚類。
  13. 前記トラフグは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、請求項12に記載の魚類。
  14. 前記魚類は、トラフグ(Takifugu rubripes)であり、
    前記トラフグは、nt5e遺伝子の機能喪失体として、配列番号3の塩基配列における131~153番目の塩基に変異を有する、請求項2から6および11から13のいずれか一項に記載の魚類。
  15. 前記魚類は、ティラピア(Oreochromis niloticus)であり、
    前記ティラピアの正常なnt5e遺伝子は、下記(Po)のポリヌクレオチドを含む遺伝子である、請求項2から6のいずれか一項に記載の魚類:
    (Po)下記(Po1)~(Po7)のいずれかのポリヌクレオチド:
    (Po1)配列番号5の塩基配列からなるポリヌクレオチド;
    (Po2)前記(Po1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Po3)前記(Po1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Po4)前記(Po1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Po5)配列番号6のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (Po6)配列番号6のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Po7)配列番号6のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
  16. 前記魚類は、ティラピア(Oreochromis niloticus)であり、
    前記ティラピアは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン1に変異を有する変異遺伝子を含む、請求項2から6および15のいずれか一項に記載の魚類。
  17. 前記ティラピアは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン1に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、請求項16に記載の魚類。
  18. 前記魚類は、ティラピア(Oreochromis niloticus)であり、
    前記ティラピアは、nt5e遺伝子の機能喪失体として、配列番号5の塩基配列における217~239番目の塩基に変異を有する、請求項2から6および15から17のいずれか一項に記載の魚類。
  19. 前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
    前記ヒラメの正常なnt5e遺伝子は、下記(Pp)のポリヌクレオチドを含む遺伝子である、請求項2から6のいずれか一項に記載の魚類:
    (Pp)下記(Pp1)~(Pp7)のいずれかのポリヌクレオチド:
    (Pp1)配列番号11の塩基配列からなるポリヌクレオチド;
    (Pp2)前記(Pp1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pp3)前記(Pp1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pp4)前記(Pp1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pp5)配列番号12のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (Pp6)配列番号12のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pp7)配列番号12のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
  20. 前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
    前記ヒラメは、nt5e遺伝子の機能喪失体として、nt5e遺伝子の正常遺伝子のエキソン4に変異を有する変異遺伝子を含む、請求項2から6および19のいずれか一項に記載の魚類。
  21. 前記ヒラメは、nt5e遺伝子の機能喪失体として、前記正常なnt5e遺伝子のエキソン4に変異を有し、かつ前記正常なnt5e遺伝子の塩基配列に対して、フレームシフト突然変異またはナンセンス突然変異を有する変異遺伝子を含む、請求項20に記載の魚類。
  22. 前記魚類は、ヒラメ(Paralichthys olivaceus)であり、
    前記ヒラメは、nt5e遺伝子の機能喪失体として、配列番号11の塩基配列における605~627番目の塩基に変異を有する、請求項2から6および19から21のいずれか一項に記載の魚類。
  23. 前記魚類は、ヒレナマズ(Clarias garienpinus)であり、
    前記ヒレナマズの正常なnt5e遺伝子は、下記(Pq)のポリヌクレオチドを含む遺伝子である、請求項2から6のいずれか一項に記載の魚類:
    (Pq)下記(Pq1)~(Pq7)のいずれかのポリヌクレオチド:
    (Pq1)配列番号25の塩基配列からなるポリヌクレオチド;
    (Pq2)前記(Pq1)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pq3)前記(Pq1)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pq4)前記(Pq1)の塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドに、相補的な塩基配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pq5)配列番号26のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (Pq6)配列番号26のアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド;
    (Pq7)配列番号26のアミノ酸配列に対して、90%以上の同一性を有するアミノ酸配列からなり、イノシン酸の分解活性を有するタンパク質をコードするポリヌクレオチド。
  24. 前記機能喪失体は、イノシン酸の分解活性が低下した変異NT5Eタンパク質をコードする、請求項2から6、8から10、12から14、16から18、および20から22のいずれか一項に記載の魚類。
  25. 前記魚類は、フグ科、タイ科、サケ科、コイ科、ハタ科、ヒラメ科、ヒレナマズ科、およびカワスズメ科からなる群から選択された魚類である、請求項1から6のいずれか一項に記載の魚類。
  26. 請求項1から25のいずれか一項に記載の魚類の部分。
  27. 下記(a)工程を含む、魚類の生産方法:
    (a)請求項1から25のいずれかに記載の魚類と、他の魚類とを交配する交配工程。
  28. 熟成が促進された魚類の生産方法であって、
    対象の魚類のエクト5’-ヌクレオチダーゼ(nt5e)遺伝子を機能喪失させる機能喪失工程を含む、生産方法。
  29. 魚肉の熟成におけるイノシン酸含有量の増強方法であって、
    魚肉を熟成させる熟成工程を含み、
    前記魚肉は、請求項1から25のいずれか一項に記載の魚類の魚肉、および/または、請求項21に記載の魚類の可食部の魚肉である、増強方法。
  30. 被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類を、熟成が促進された魚類として選抜する選抜工程を含む、熟成が促進された魚類のスクリーニング方法。
  31. 被検魚類から、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失している被検魚類をスクリーニングするスクリーニング工程を含み、
    前記スクリーニング工程は、請求項30に記載のスクリーニング方法により実施される、魚類の生産方法。
  32. 被検魚類において、エクト5’-ヌクレオチダーゼ(nt5e)遺伝子が機能喪失しているかを検出する検出工程を含む、魚類の熟成促進能の検出方法。
  33. 請求項1から25のいずれか一項に記載の魚類を用いた、魚類の加工食品。

     
PCT/JP2023/022090 2022-06-15 2023-06-14 魚類、魚類の生産方法、および熟成が促進された魚類の生産方法 WO2023243660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380023318.9A CN118804681A (zh) 2022-06-15 2023-06-14 鱼类、鱼类的生产方法和熟化加速的鱼类的生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096417 2022-06-15
JP2022-096417 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243660A1 true WO2023243660A1 (ja) 2023-12-21

Family

ID=89191385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022090 WO2023243660A1 (ja) 2022-06-15 2023-06-14 魚類、魚類の生産方法、および熟成が促進された魚類の生産方法

Country Status (2)

Country Link
CN (1) CN118804681A (ja)
WO (1) WO2023243660A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143146A (ja) * 2017-03-03 2018-09-20 独立行政法人家畜改良センター ウシ個体における屠畜後の肉中イノシン酸含量の判定方法
WO2019066052A1 (ja) * 2017-09-28 2019-04-04 国立大学法人京都大学 魚類および魚類の生産方法
CN113180205A (zh) * 2021-04-30 2021-07-30 大连工业大学 一种稳定肌苷酸的鱼肉预处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143146A (ja) * 2017-03-03 2018-09-20 独立行政法人家畜改良センター ウシ個体における屠畜後の肉中イノシン酸含量の判定方法
WO2019066052A1 (ja) * 2017-09-28 2019-04-04 国立大学法人京都大学 魚類および魚類の生産方法
CN113180205A (zh) * 2021-04-30 2021-07-30 大连工业大学 一种稳定肌苷酸的鱼肉预处理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOMATSU TOMOHIKO; KOMATSU MASATAKA; UEMOTO YOSHINOBU: "The NT5E gene variant strongly affects the degradation rate of inosine 5′-monophosphate under postmortem conditions in Japanese Black beef", MEAT SCIENCE., ELSEVIER SCIENCE., GB, vol. 158, 26 July 2019 (2019-07-26), GB , XP085813362, ISSN: 0309-1740, DOI: 10.1016/j.meatsci.2019.107893 *
MINAMI SHUNSUKE, TAKATORI MUNESHIGE, SHIRAYAMA AKIRA, OKITA AYUKI, NAKAMURA YUSA, TAKAHASHI KIGEN: "Taste components and texture of long-term aged fish and shellfish sashimi", NIPPON SUISAN GAKKAISHI - BULLETIN OF THE JAPANESE SOCIETY OF SCIENTIFIC FISHERIES, NIPPON SUISAN GAKKAI, TOKYO, JP, vol. 86, no. 5, 15 September 2020 (2020-09-15), JP , pages 418 - 426, XP093118040, ISSN: 0021-5392, DOI: 10.2331/suisan.20-00014 *
MURAKAMI YU, ANDO MASASHI, FUTAMATA RYOTA, HORIBE TOMOHISA, UEDA KAZUMITSU, KINOSHITA MASATO, KOBAYASHI TORU: "Targeted deletion of ecto-5′-nucleotidase results in retention of inosine monophosphate content in postmortem muscle of medaka (Oryzias latipes)", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 12, no. 1, US , XP093118041, ISSN: 2045-2322, DOI: 10.1038/s41598-022-22029-y *
ROSEMBERG, D.B. RICO, E.P. SENGER, M.R. ARIZI, M.D.B. DIAS, R.D. BOGO, M.R. BONAN, C.D.: "Acute and subchronic copper treatments alter extracellular nucleotide hydrolysis in zebrafish brain membranes", TOXICOLOGY, LIMERICK, IR, vol. 236, no. 1-2, 23 May 2007 (2007-05-23), IR , pages 132 - 139, XP022093945, ISSN: 0300-483X, DOI: 10.1016/j.tox.2007.04.006 *

Also Published As

Publication number Publication date
CN118804681A (zh) 2024-10-18

Similar Documents

Publication Publication Date Title
France et al. DNA sequence variation of mitochondrial large-subunit rRNA
Höss et al. Molecular phylogeny of the extinct ground sloth Mylodon darwinii.
Pang et al. Major histocompatibility complex class IIA and IIB genes of Nile tilapia Oreochromis niloticus: genomic structure, molecular polymorphism and expression patterns
Gusmão et al. A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analyses
Zhang et al. Induced gynogenesis in grass carp (Ctenopharyngodon idellus) using irradiated sperm of allotetraploid hybrids
Liu et al. Evidence for the formation of the male gynogenetic fish
Liu et al. Molecular characterization and gene expression of the channel catfish ferritin H subunit after bacterial infection and iron treatment
Wang et al. The establishment of an autotetraploid fish lineage produced by female allotetraploid hybrids× male homodiploid hybrids derived from Cyprinus carpio (♀)× Megalobrama amblycephala (♂)
Mao et al. Further evidence for paternal DNA transmission in gynogenetic grass carp
Ren et al. Transcript profiles of mitochondrial and cytoplasmic manganese superoxide dismutases in Exopalaemon carinicauda under ammonia stress
Calderón et al. Genetic divergence and assortative mating between colour morphs of the sea urchin Paracentrotus gaimardi
CN108218974B (zh) 一种曼氏无针乌贼神经肽及其用途
WO2023243660A1 (ja) 魚類、魚類の生産方法、および熟成が促進された魚類の生産方法
Mor et al. Picornaviruses of fish
Liu et al. MHC class IIα alleles associated with resistance to Aeromonas hydrophila in purse red common carp, Cyprinus carpio Linnaeus.
Heglasová et al. An amended description of two Gyrodactylus species (Platyhelminthes: Monogenea) parasitizing Antarctic Notothenioid fish
Duggan et al. The origins of Melanoides tuberculata (Müller, 1774) in New Zealand's aquarium trade and non-indigenous population.
Nugroho et al. Isolation of greater amberjack microsatellite DNA and their application as genetic marker to species of genus Seriola from Japan
Nkongho et al. Morphological and molecular characterization of some wild and cultured Clarias (Clariidae, Siluriformes) fish species from Cameroon
Xiao et al. Genetic variation and population structure of willowy flounder Tanakius kitaharai collected from Aomori, Ibaraki and Niigata in Northern Japan
Mendel et al. Genetically influenced resistance to stress and disease in salmonids in relation to present-day breeding practice-a short review
Ren et al. Cloning of catalase gene and antioxidant genes in Scophthalmus maximus response to metalloprotease of Vibrio anguillarum stress
Sánchez et al. Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis) revealed by sequence data of the mitochondrial DNA control region and microsatellite markers
Goulielmos et al. Characterization of two alcohol dehydrogenase (Adh) loci from the olive fruit fly, Bactrocera (Dacus) oleae and implications for Adh duplication in dipteran insects
KR101753963B1 (ko) 칼모듈린 인트론 다형성을 이용한 전복류의 치패단계 종 판별법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024528915

Country of ref document: JP

Kind code of ref document: A