WO2023243644A1 - Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member - Google Patents

Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member Download PDF

Info

Publication number
WO2023243644A1
WO2023243644A1 PCT/JP2023/021983 JP2023021983W WO2023243644A1 WO 2023243644 A1 WO2023243644 A1 WO 2023243644A1 JP 2023021983 W JP2023021983 W JP 2023021983W WO 2023243644 A1 WO2023243644 A1 WO 2023243644A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
vinyl aromatic
copolymer
modified
Prior art date
Application number
PCT/JP2023/021983
Other languages
French (fr)
Japanese (ja)
Inventor
正直 川辺
格 倉富
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023243644A1 publication Critical patent/WO2023243644A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes

Definitions

  • styrene resins such as synthetic rubber, ABS resin, MBS resin, and unsaturated polyester resin
  • functionality can be imparted to a thermoplastic resin by reacting a polyfunctional vinyl aromatic copolymer having a branched structure with a thermoplastic resin.
  • conjugated diene rubbers such as SBR (styrene-butadiene rubber), BR (butadiene rubber), IR (isoprene rubber), and styrene-isoprene rubber have excellent abrasion resistance, elasticity, and water resistance, and can be used as molding materials and resins. It is used for various purposes such as a modifier.
  • a method of modifying the butadiene-based polymer used as the raw material rubber by introducing a predetermined functional group into the butadiene-based polymer is used.
  • Various methods are being considered.
  • a block copolymer consisting of an ⁇ -methylstyrene block and a butadiene block is synthesized by living anionic polymerization using an organolithium compound as an initiator in a nonpolar solvent, and if necessary, a polyfunctional Discloses reacting a coupling agent.
  • 5,001,200 discloses star-block interpolymers having random copolymer blocks of conjugated dienes and monovinyl aromatic monomers, polyconjugated diene blocks, and functional groups derived from polyfunctional lithium-based initiators.
  • the techniques of Patent Documents 1 and 2 are considered to have the effect of ensuring the processability of rubber by introducing a branched structure into the rubber component.
  • no special measures have been taken to interact with the filler to ensure strength, and the contribution to strength is not sufficient.
  • Patent Document 3 a rubber composition in which a predetermined amount of carbon black is blended into a blended rubber containing a plurality of diene rubbers has a functional group that interacts with carbon black at the end of the molecular chain, and the diene rubber has a functional group that interacts with carbon black at the molecular chain end.
  • a rubber composition containing a low molecular weight functional group-containing polymer having a polymer structure similar to that of a rubber component since this technique involves blending a low molecular weight compound into the rubber, it does not contribute enough to the strength.
  • Patent Document 4 discloses crosslinked rubber particles containing a conjugated diene unit, an aromatic vinyl unit and a unit having at least two polymerizable unsaturated groups, and a conjugated diene/aromatic particle containing a conjugated diene unit having a specific bond structure.
  • Rubber compositions containing vinyl copolymer rubber are disclosed. However, at least one functional group among carboxylic acid groups, amino groups, hydroxyl groups, epoxy groups, and alkoxysilyl groups introduced into the three-dimensionally crosslinked crosslinked rubber particles is inside the insoluble network structure of the crosslinked rubber particles.
  • a conjugated diene rubber comprising an interpenetrating network structure polymer and a non-crosslinked polymer having structural units.
  • crosslinked polymers are three-dimensionally crosslinked polymers that are insoluble in solvents, they can also be used as interpenetrating network structure polymers with non-crosslinked polymers having structural units derived from conjugated diene compounds. Because the microgel is structurally fragile, the mechanical strength improvement effect was not sufficient.
  • Patent Document 6 discloses crosslinked polymer particles having polysiloxane on the particle surface and having an average particle diameter of 0.01 to 10 ⁇ m.
  • polysiloxane-modified crosslinked polymer particles are solvent-insoluble crosslinked polymer particles that are hard and brittle, so they cannot be used to modify conjugated diene copolymers synthesized by anionic polymerization. , it was not possible to improve the strength.
  • U.S. Pat. No. 5,002,201 discloses reacting a divinylidene polymerization initiator with a monomer to form an "omega, omega'-carbanion" living polymer molecule, and combining at least one living polymer molecule and at least one equivalent of a chain end modifier. It is disclosed that modified polymer molecules can be obtained by reacting.
  • Patent Document 9 describes an ethylene-styrene-divinylbenzene copolymer chain and a polystyrene chain obtained by anionic polymerization in the coexistence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer.
  • a modified resin composition is disclosed by blending an antioxidant, a silane coupling agent, and a radical initiator with a copolymer (cross copolymer) having the following properties and kneading the same.
  • the present invention contributes to the modification of resins by a method different from the methods disclosed in Patent Documents 10 to 14, and is particularly useful for rubber compositions such as tires, and improves properties such as strength and abrasion resistance.
  • This project proposes materials that can contribute to improvements.
  • the present invention solves the above problems and is a modified vinyl aromatic system having reactivity and solubility that can be used to produce a modified conjugated diene copolymer having a highly branched structure without producing a small amount of microgel as a by-product.
  • the object of the present invention is to provide a copolymer, a resin composition having a branched structure that has processability, strength, and homogeneity, a resin crosslinked product obtained by crosslinking the same, and a structural member.
  • the present invention contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d).
  • the active end of the vinyl aromatic copolymer is composed of structural units derived from one or more monomers selected from the group consisting of compound (a) and conjugated diene compound (b).
  • the present invention was completed based on the discovery that a copolymer modified with a group or a hydroxyl group can solve the above problems.
  • the present invention relates to a polymer comprising a structural unit derived from one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b), wherein the polymer contains Contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms, and derived from component (c) or component (d) 50 mol% or more of the structural units are groups R1 derived from the aromatic structure of component (c) or (d), and groups R2 or It is a multifunctional structural unit (e1) represented by the following formula (1) having R3,
  • R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms
  • R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms
  • R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms.
  • the polyfunctional structural unit (e1) represented by formula (1) is produced by the reaction of component (c) or component (d) with an organic alkali metal compound, It is preferable that R3 is a group partially containing a structure derived from an organic alkali metal compound or a hydrogen containing no structure.
  • the modified vinyl aromatic copolymer has 0.5 structural units derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. Contains 65.0 mol% or more and 35.0 mol% or less of structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b).
  • the present invention also provides an alkali metal compound and one or more compounds selected from a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d).
  • the present invention provides a modified vinyl aromatic copolymer obtained by reacting a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound with the modified vinyl aromatic copolymer described above. It is a conjugated diene copolymer.
  • the modified conjugated diene copolymer contains 0.001 to 6% by weight of the structural unit (A1) derived from the modified vinyl aromatic copolymer and 29 to 99% by weight of the structural unit (B1) derived from the conjugated diene compound. .999% by weight and 0 to 70% by weight of the structural unit (C1) derived from an aromatic vinyl compound.
  • the number average molecular weight (Mn ) is preferably 20% or more.
  • the present invention provides that at least one reinforcing agent selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black is added to 100 parts by weight of the modified conjugated diene copolymer.
  • This is a resin composition characterized by containing 0.5 to 200 parts by weight of a filler.
  • the modified vinyl aromatic copolymer of the present invention can be used as a raw material for a modified conjugated diene copolymer.
  • the crosslinked resin composition containing filler in this modified conjugated diene copolymer and crosslinking has excellent filler dispersibility, mechanical strength, and abrasion resistance, so it is suitable for tires (particularly tire treads). It is useful as an elastomer material for seismic isolation rubber, rubber hoses, rubber rollers, footwear materials, etc. It can also be applied to molding materials, resin modifiers, etc. Dielectric materials, insulating materials, heat-resistant materials, structural materials, adhesives, sealants, paints, coatings, sealants, printing inks, dispersions, etc.
  • a GPC chart showing a peak top molecular weight (Mp), a molecular weight twice Mp (2Mp), and a molecular weight three times Mp (3Mp) is shown.
  • the modified vinyl aromatic copolymer of the present invention contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms.
  • 50 mol% or more of the structural units derived from component (c) or (d) are represented by the above formula (1) produced by the reaction of component (c) or (d) with an organic alkali metal compound.
  • This polyfunctional structural unit (e1) or (e2) plays an important role as a crosslinking component that branches the copolymer and makes it polyfunctional.
  • a conjugated diene compound polymer is modified using a polyfunctional modified vinyl aromatic copolymer, a high-molecular-weight, multi-branched component is produced, and the abrasion resistance can be improved.
  • aromatic compounds (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms include xylene, trimethylbenzene, diethylbenzene, triethylbenzene, dipropylbenzene, tripropylbenzene, dimethylnaphthalene, trimethylnaphthalene.
  • the exemplified compounds are isomers such as m-isomer and p-isomer or mixtures of these isomers in which the di-substituted compound is the m-substituted compound, and the tri-substituted compound is the 1,2,4-3-substituted compound, or the 1,3,5-substituted compound. It may be an isomer such as a -3-substituted product or a mixture of these isomers.
  • These (c) and (d) can be used alone or in combination of two or more. In other words, (c) and (d) may be combined.
  • diisopropenylbenzene (m-form, p-form or a mixture of these isomers), divinylbenzene (m-form, p-form or a mixture of these isomers), xylene ( m-form, p-form or a mixture of these isomers), and diethylbenzene (m-form, p-form or a mixture of these isomers).
  • the monovinyl aromatic compound (a) which is a structural unit contained in the modified vinyl aromatic copolymer of the present invention, improves the solvent solubility, compatibility, and processability of the copolymer.
  • monovinyl aromatic compounds include vinyl aromatic compounds such as styrene, vinylnaphthalene, vinylbiphenyl, ⁇ -methylstyrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, Nuclear alkyl-substituted vinyl aromatic compounds such as o-ethylvinylbenzene, m-ethylvinylbenzene, and p-ethylvinylbenzene; cyclic vinyl aromatic compounds such as indene, acenaphthylene, benzothiophene, and coumaron; There are no restrictions.
  • conjugated diene compound a conjugated diene compound containing 4 to 12 carbon atoms per molecule is preferable, and a conjugated diene compound containing 4 to 8 carbon atoms is more preferable.
  • conjugated diene compounds include, but are not limited to, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1 , 3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferred from the viewpoint of ease of copolymerization reaction with aromatic vinyl compounds and ease of industrial availability. These may be used alone or in combination of two or more.
  • the modified vinyl aromatic copolymer of the present invention has a polymerization initiator having at least one functional group selected from the group consisting of an amino group (-NR), an alkoxysilyl group (Si-OR), and a hydroxyl group (-OH).
  • the amount of the modifier introduced per molecule corresponds to the "average number of functional groups per molecule.”
  • the modified vinyl aromatic copolymer of the present invention has an average number of functional groups per molecule of 2.0 or more. If the value obtained by dividing the number average molecular weight of the copolymer by the functional group equivalent is 2.0 or more, it can be determined that two or more molecules are functionalized.
  • the amount of the polymerization initiator or modifier having a functional group introduced is such that the average number of functional groups per molecule is preferably 2.0 to 20, more preferably 2.0 to 10.0, and even more preferably 2.0 to 10.0 at the terminal.
  • the number is 0 to 6.0. Particularly preferred is the terminal number of 2.0 to 4.0.
  • the modified vinyl aromatic copolymer of the present invention can be produced, for example, by the following method. That is, an organic alkali metal compound is reacted with one or more compounds selected from polyfunctional vinyl aromatic compounds (c) or aromatic compounds having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). an initiation reaction step of producing a polyfunctional anionic polymerization initiator; and polymerizing one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b).
  • the modified vinyl aromatic copolymer of the present invention is derived from a polyfunctional vinyl aromatic compound (c), an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d), or a monovinyl aromatic compound.
  • compounds other than conjugated diene compounds and aromatic vinyl compounds hereinafter also referred to as "other monomers" are used, and structural units derived from these other monomers (f) are copolymerized. Can be introduced during coalescence.
  • the above other monomer (f) preferably include acrylonitrile, methyl (meth)acrylate, ethyl (meth)acrylate, etc., but are not limited to these. isn't it. These can be used alone or in combination of two or more.
  • Other monomers (f) may be used in an amount of less than 30 mol% of the total monomers. Thereby, the structural units derived from other monomers (f) are introduced within a range of less than 30 mol % based on the total amount of structural units in the copolymer.
  • the content is preferably 10 mol% or less, more preferably 5 mol% or less.
  • an alkali metal compound and a polyfunctional vinyl aromatic compound (c) or an alkyl group having 1 to 3 carbon atoms are combined with 2 to 3 carbon atoms.
  • a polyfunctional anionic polymerization initiator is produced by reacting one or more compounds selected from the four aromatic compounds (d).
  • the structural unit of the polyfunctional anionic polymerization initiator produced in the above initiation reaction step becomes a polyfunctional structural unit (e1) represented by the following formula (1) through a polymerization step.
  • R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms
  • R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms
  • R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 3.
  • Polymer indicates the main polymer structural unit derived from component (a) or component (b).
  • 50 mol% or more of the structural units derived from component (c) or (d) are groups R1 derived from the aromatic structure of component (c) or (d), and component (c) or ( It is necessary that the polyfunctional structural unit (e1) represented by formula (1) has a group R2 or R3 derived from a component other than the aromatic structure of component d). Preferably it is 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more.
  • the proportion of polyfunctional structural units (e1) among the structural units derived from component (c) or component (d) is also referred to as the degree of polyfunctional structure.
  • (c) Component: polyfunctional vinyl aromatic compound (c)
  • Component (d) aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms Either or both of these are used as raw materials.
  • R2 is hydrogen at the ⁇ -position of a vinyl group or a hydrocarbon group having 1 to 6 carbon atoms.
  • butyl Li (C 4 H 9 Li) is used as the organic alkali metal compound of the initiator, active species are generated by the reaction between butyl Li and component (c), as shown in the reaction formula below. .
  • a pentyl group obtained by adding the carbon at the ⁇ -position of the vinyl group and the butyl group derived from butyl Li represents R3.
  • the reaction between component (d) and the organic alkali metal compound as an initiator becomes a chain transfer reaction as shown in the following reaction formula, for example, when butyl Li is used. .
  • the remaining hydrogen after one hydrogen is extracted from the carbon becomes R3.
  • the proportion of the polyfunctional structural unit (e1) represented by formula (1) (degree of polyfunctional structure) can be controlled and changed as desired.
  • this ratio is less than 50 mol%, a large amount of modified vinyl aromatic copolymer with an average number of functional groups per molecule of 1.0 will be included, and the conjugated diene (co)polymer will be When this polymer is used for modification of coalescence, the branching reaction does not proceed sufficiently, so that the molecular weight does not increase sufficiently, and the effect of improving strength and abrasion resistance tends to be small.
  • the residual vinyl content (mol%) derived from component (c) in the modified vinyl aromatic copolymer is the residual vinyl group derived from component (c) relative to the total content of component (c).
  • the content of the component is preferably 30 mol% or less, more preferably 20 mol% or less. It is particularly preferably at most 10 mol%, most preferably at most 5 mol%.
  • the organic alkali metal compound used in the initiation reaction step in the method for producing a modified vinyl aromatic copolymer of the present invention is not particularly limited, but, for example, an organic lithium compound is preferable. Specific examples of these include alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium, phenyllithium, stilbenelithium, naphthyllithium, etc. .
  • the amount of the organic alkali metal compound to be used is based on the vinyl group of one or more compounds selected from polyfunctional vinyl aromatic compounds (c) or aromatic compounds having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d).
  • the amount is preferably 0.5 to 1.0 times the total amount of alkyl groups. More preferably, it is 0.7 to 1.0 times the mole. If the amount of the alkali metal compound used is less than 0.5 times the mole, when this polymer is used to modify a conjugated diene (co)polymer, the branching reaction will not proceed sufficiently and the molecular weight will not increase sufficiently. , there is a tendency that the improvement effect on strength and wear resistance becomes smaller. On the other hand, if the alkali metal compound is used in an amount exceeding 1.0 times the molar amount, a gel component tends to be generated when this polymer is used to modify a conjugated diene (co)polymer.
  • the amount of the polyfunctional anionic polymerization initiator used is preferably 5.0 to 100 mmol per 100 g of monomer used for polymerization.
  • the initiation reaction step may be carried out using a mixture of an alkali metal compound and a compound having a functional group that interacts with silica. By carrying out the initiation reaction in the presence of the mixture, the polymerization initiation end of the modified vinyl aromatic copolymer of the present invention can be modified with a functional group that interacts with silica.
  • the functional group which interacts with silica means the group which has an element which interacts with silica, such as nitrogen, sulfur, phosphorus, and oxygen.
  • “Interaction” refers to the formation of covalent bonds between molecules, or intermolecular forces weaker than covalent bonds (e.g., ion-dipole interactions, dipole-dipole interactions, hydrogen bonds, van der Waals It means the formation of electromagnetic forces (such as electromagnetic forces) that act between molecules.
  • nitrogen-containing compounds such as secondary amine compounds are preferred.
  • nitrogen-containing compound examples include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane.
  • a polar compound may be added. By adding a polar compound, it participates in the initiation reaction and growth reaction, and is also effective in controlling the molecular weight and molecular weight distribution and promoting the polymerization reaction.
  • polar compounds include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, and 2,2-bis(2-oxolanyl)propane; Tertiary amine compounds such as methylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; alkali metal alkoxides such as potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, sodium amylate, etc.
  • Compounds include phosphine compounds such as triphenylphosphine. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound to be used is not particularly limited, and can be selected depending on the purpose and the like. Usually, the amount is preferably 0.01 to 100 mol per 1 mol of the alkali metal compound.
  • Copolymerization of a monomer containing a divinyl aromatic compound and a monovinyl aromatic compound is preferably carried out by solution polymerization in an inert solvent.
  • the polymerization solvent is not particularly limited, and for example, hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons are used.
  • the mode of the above polymerization reaction is not particularly limited, but it can be carried out in a batch mode (also referred to as a "batch mode"), a continuous mode, or the like.
  • a batch mode also referred to as a "batch mode"
  • continuous mode one or more connected reactors can be used.
  • the reactor used is a tank type, tube type, etc. equipped with a stirrer.
  • the molecular weight distribution of the obtained polymer is generally narrow, and Mw/Mn tends to be 1.0 or more and less than 3.0.
  • Mw/Mn tends to be 1.5 or more and 10 or less.
  • a compound (including a precursor) having at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group is added to the active terminal of the vinyl aromatic copolymer.
  • a functional group is introduced into the terminal end of the modified vinyl aromatic copolymer of the present invention by reacting with (also referred to as).
  • the terminal modification step may be carried out in the same reactor used in the polymerization step, or may be carried out by being transferred to the next reactor. If the polymerization process is continuous, it is carried out by transferring to the next reactor.
  • the terminal modification step is preferably carried out immediately following the polymerization step, and preferably within 5 minutes, the modifier is mixed and the reaction is carried out.
  • the reactor for the modification reaction is preferably one that allows sufficient stirring. Specifically, there are static mixer type reactors, stirrer-equipped tank type reactors, and the like.
  • the modifier having an amino group is not particularly limited, but specifically includes a compound having an amino group and a functional group bonding to the active end of the polymer in the molecule, and preferably having no active hydrogen.
  • the amino group is not particularly limited, but specifically, a functional group inert to alkali metals is preferable, such as a di-substituted amino group, i.e., a tertiary amine, a protected mono-substituted amino group, or a group containing two hydrogen atoms.
  • a protected amino group is preferred. Examples of protected monosubstituted amino groups or amino groups in which two hydrogens are protected include one hydrogen of a monosubstituted amino group or two hydrogens of an amino group each substituted with a trialkylsilyl group. The following can be mentioned.
  • Modifiers that form hydroxyl groups are not particularly limited, but specifically include compounds that have a functional group that binds to the active end of the polymer and that generates a hydroxyl group after the bonding reaction; Examples include compounds that have a functional group that does not bond and that later generates a hydroxyl group through a reaction such as hydrolysis, and are preferably compounds that do not have active hydrogen. Examples of the compound having a functional group that produces a hydroxyl group after the bonding reaction include compounds having a ketone group, an ester group, an amide group, an epoxy group, and the like. Moreover, examples of compounds having a functional group that generates a hydroxyl group through a reaction such as hydrolysis after a bonding reaction include compounds having an alkoxysilyl group, an aminosilyl group, and the like.
  • Examples include epoxy compounds having groups.
  • Compounds that combine with the active end of the polymer to form an alkoxysilyl group at the end of the polymer include, but are not particularly limited to, halogenated alkoxysilane compounds such as trimethoxychlorosilane, triethoxychlorosilane, and diphenoxydicrylorosilane.
  • Examples include polyfunctional alkoxysilane compounds such as bis(trimethoxysilyl)ethane and bis(3-triethoxysilylpropyl)ethane.
  • Compounds that combine with the active end of the polymer to form an amino group and an alkoxysilyl group at the end of the polymer include, but are not particularly limited to, 3-dimethylaminopropyltrimethoxysilane, 3-dimethylaminopropyldimethoxymethylsilane, 3-dimethylaminopropyldimethoxymethylsilane, -Alkoxysilane compounds to which an alkyl group having an amino substituent is bonded, such as dimethylaminopropyltriethoxysilane, bis(3-trimethoxysilylpropyl)methylamine, bis(3-triethoxysilylpropyl)methylamine; N-[ WO2007/3-(triethoxysilyl)-propyl]-N,N'-diethyl-N'-trimethylsilyl-ethane-1,2-diamine, 3-(4-trimethylsilyl-1-piperazinyl)propyltrieth
  • the modified vinyl aromatic copolymer of the present invention obtained by the above production method is modified with at least one reactive functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group. Therefore, although it may be molded and cured alone, it is preferable to use other polymerizable resins for functional group modification and synthesis of high molecular weight multibranched components.
  • the modified vinyl aromatic copolymer of the present invention can be used to obtain a conjugated diene copolymer (rubber) obtained by copolymerizing a conjugated diene compound alone and/or a conjugated diene compound and other monomers. , used for functional group modification and synthesis of high molecular weight hyperbranched components.
  • component (c) or component (d) when component (c) or component (d) is reacted with an organic alkali metal compound when starting the reaction, component (c) or component (d) is A multi-branched component that reacts with the organic alkali metal compound and serves as the origin of multiple branched chains is generated.
  • the proportion of the multibranched component derived from component (c) or component (d) is defined as the degree of polyfunctional structure derived from the initiator, and is expressed as a molar fraction with respect to the total amount of component (c) or component (d) in the raw material.
  • the degree of polyfunctional structure derived from the initiator is preferably 0.50 or more, more preferably 0.70 or more.
  • the amount of modifier introduced can be increased, so when this polymer is used to modify a conjugated diene (co)polymer, the dispersion of the filler is This is preferable because it has both properties and abrasion resistance.
  • the modified copolymer of the present invention is excellent as a modifier for conjugated diene (co)polymers (rubbers). Although the detailed mechanism is unknown, by introducing an appropriate amount of functional groups into the modified copolymer of the present invention, the rubber is modified, resulting in a modified conjugated diene copolymer (modified rubber). It is presumed that this tends to concentrate near the reinforcing filler, increasing the reinforcing effect of the reinforcing filler, and leading to improvement in the abrasion resistance of the resulting crosslinked product.
  • the affinity between the modified conjugated diene copolymer of the present invention and the reinforcing filler is improved, and the dispersion state of each component such as the reinforcing filler in the resin composition is improved. It is estimated that this will be ideal for improving the physical properties of the crosslinked product (for example, improving abrasion resistance, improving handling stability, dry grip performance, and wet grip performance).
  • the reinforcing filler will aggregate due to the interaction between the copolymers adsorbed on the reinforcing filler, and this copolymer will aggregate. It is presumed that the coalescence does not contribute to improving the affinity between the modified conjugated diene copolymer and the reinforcing filler.
  • the average number of functional groups per molecule of the modified vinyl aromatic copolymer is determined by the following formula from the functional group equivalent (g/eq) of the modified vinyl aromatic copolymer (A) and the number average molecular weight Mn in terms of styrene. It can be obtained by (1).
  • Average number of functional groups per molecule [(number average molecular weight Mn)/(average molecular weight of divinyl aromatic compound unit and monovinyl aromatic compound)]/(equivalent of functional group) (1)
  • the equivalent weight of the functional group of the modified vinyl aromatic copolymer (A) means the mass of the divinyl aromatic compound unit and monovinyl aromatic compound bonded per functional group.
  • the equivalent weight of the functional group can be calculated from the area ratio of the peak derived from the functional group and the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
  • the average number of functional groups per molecule in the modified vinyl aromatic copolymer (A) is preferably 2 to 20. More preferably, the number is 2 to 10. Particularly preferably 2 to 5 pieces. If the average number of functional groups per molecule exceeds 20, the viscosity increases when the reinforcing filler (D) is dispersed, processability deteriorates, and the wear resistance of the resulting crosslinked product tends to decrease. be. When the average number of functional groups per molecule is lower than 2, the dispersibility effect of the reinforcing filler (D) is poor, and it is difficult to improve the physical properties of the crosslinked product in which the reinforcing filler (D) can be dispersed. This tends to be less than ideal.
  • the amount of the modifier added into the modified vinyl aromatic copolymer (A) having at least one functional group selected from an amino group, an alkoxysilyl group, and a hydroxyl group can be determined by, for example, nuclear magnetic resonance spectroscopy. It can be determined using various analytical instruments such as methods.
  • the modified vinyl aromatic copolymer of the present invention has 0.0.5 structural units derived from a polyfunctional vinyl aromatic compound (c) and an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. Contains 5 to 35.0 mol%.
  • the structural unit consists only of structural units derived from (a), (b), (c) and (d)
  • the polyfunctional vinyl aromatic compound (c) and an alkyl group having 1 to 3 carbon atoms are The number of structural units derived from the aromatic compound (d), which has four, is 0.005 to 0.35 relative to the total of the structural units derived from (a), (b), (c), and (d). This molar fraction is calculated using the following formula (2).
  • the lower limit of the preferable content is 0.2 mol%, more preferably 0.4 mol%. and more preferably 0.6 mol%.
  • a preferable upper limit is 35 mol%, more preferably 30 mol%, and still more preferably 25 mol%.
  • the modified vinyl aromatic copolymer of the present invention has 65.0 to 99 structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b). Contains .5 mol%. In terms of mole fraction, it is 0.65 to 0.995. A preferable lower limit is 0.70. A more preferable lower limit is 0.75. Further, a preferable upper limit is 0.994, more preferably 0.993. Optimally, it is between 0.75 and 0.99.
  • the molar fraction of structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b) is the structural units (a), (b), (c ) and (d), it is calculated using the following formula (3). [(a)+(b)]/[(a)+(b)+(c)+(d)] (3) (Here, (a), (b), (c) and (d) are synonymous with formula (3).)
  • the preferable molar fraction of the structural units derived from (a) and (b) is as described above. is within the range of
  • the modified vinyl aromatic copolymer of the present invention can contain other structural units in addition to the above structural units. Details of other structural units can be understood from the description of the manufacturing method.
  • the Mn (number average molecular weight measured using gel permeation chromatography in terms of standard polystyrene) of the modified vinyl aromatic copolymer of the present invention is 500 to 30,000.
  • a preferable lower limit is 600, more preferably 700, still more preferably 800, particularly preferably 900.
  • a preferable upper limit is 25,000, more preferably 20,000, still more preferably 15,000, and particularly preferably 10,000.
  • Mn is less than 500, the amount of functional groups contained in the copolymer decreases, so the reactivity with the active end of the conjugated diene copolymer tends to decrease, and when it exceeds 30,000, In addition to becoming more likely to generate gel, moldability and tensile elongation at break tend to decrease.
  • the upper limit of the molecular weight distribution is preferably 10.0 or less, more preferably 5.0 or less. Particularly preferred is 3.0. When Mw/Mn exceeds 10.0, the processing characteristics of the copolymer rubber tend to deteriorate and gels tend to occur.
  • the modified vinyl aromatic copolymer of the present invention is soluble in a solvent selected from toluene, xylene, tetrahydrofuran, dichloroethane or chloroform, but advantageously any of the abovementioned solvents. It is preferable that 50 g or more of the solvent is dissolved in 100 g of these solvents. More preferably, it dissolves 80 g or more.
  • the obtained modified vinyl aromatic copolymer of the present invention has at least one reactive functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, so it can be molded and cured alone.
  • the modified vinyl aromatic copolymer of the present invention can be used to obtain a conjugated diene copolymer (rubber) obtained by copolymerizing a conjugated diene compound alone and/or a conjugated diene compound and other monomers. , used for functional group modification and synthesis of high molecular weight hyperbranched components.
  • a modified conjugated diene copolymer having a branched polymer type modifying group (A) based on the modified vinyl aromatic copolymer of the present invention is obtained.
  • aromatic vinyl compound (C) is not used, modified diene rubber such as butadiene rubber or isoprene rubber can be obtained, and by using aromatic vinyl compound (C), modified diene rubber such as modified SBR can be obtained.
  • a conjugated diene copolymer can be obtained.
  • the polymerization step for obtaining the modified conjugated diene copolymer of the present invention involves polymerizing the conjugated diene compound (B) using an alkali metal compound or alkaline earth metal compound as a polymerization initiator, or polymerizing the conjugated diene compound (B) and A polymerization step of copolymerizing an aromatic vinyl compound (C) to obtain a conjugated diene copolymer having an active end, and a branched polymer-type modified group (A) based on the modified vinyl aromatic copolymer. ).
  • conjugated diene compound (B) examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3 -heptadiene, 1,3-hexadiene, etc.
  • 1,3-butadiene and isoprene are preferred. These may be used alone or in combination of two or more.
  • aromatic vinyl compound (C) examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, vinylxylene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, tert- Butoxydimethylsilylstyrene, isopropoxydimethylsilylstyrene, and the like can be used alone or in combination of two or more, and among these, styrene is particularly preferred.
  • styrene-butadiene rubber SBR
  • butadiene rubber BR
  • isoprene is used as the conjugated diene compound (B) and there is no structural unit of the aromatic vinyl compound (C)
  • IR isoprene rubber
  • those having a styrene-butadiene rubber (SBR) structure are particularly preferred because they have excellent wear resistance, heat resistance, and aging resistance.
  • the polymerization step and terminal modification step can be performed in the same manner as the polymerization step and terminal modification step of the modified vinyl aromatic copolymer described above.
  • the polymerization initiator used in the polymerization step and the compound having a functional group used in the terminal modification step the above-mentioned polymerization initiators and compounds having a functional group can be used.
  • This polymerization or copolymerization of the conjugated diene compound (B) is preferably carried out by solution polymerization in an inert solvent.
  • the polymerization solvent is not particularly limited, and for example, hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons are used.
  • aliphatic hydrocarbons such as butane, pentane, hexane, and heptane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, and decalin
  • benzene, toluene Examples include hydrocarbon solvents consisting of aromatic hydrocarbons such as xylene and mixtures thereof. It is preferable that the above-mentioned conjugated diene compound and polymerization solvent are treated alone or as a mixture thereof with an organometallic compound. Thereby, arenes and acetylenes contained in the conjugated diene compound and the polymerization solvent can be treated. As a result, a polymer having a high concentration of active terminals can be obtained, and a high modification rate can be achieved.
  • the polymerization temperature when copolymerizing the conjugated diene compound (B) or the conjugated diene compound (B) and the aromatic vinyl compound (C) is not particularly limited as long as it is a temperature at which living anion polymerization proceeds, but productivity From the viewpoint of 0° C. or higher, the temperature is preferably 0° C. or higher, and the structural unit (c ) The temperature is preferably 120° C. or lower from the viewpoint of ensuring a sufficient reaction amount of the modified vinyl aromatic copolymer having the following. More preferably it is 50 to 100°C.
  • the modified conjugated diene polymer obtained as described above is obtained as a solution, after adding an antioxidant and additives as necessary, the solvent can be removed and dried by a normal method. can. Thereby, it can be used as a raw material for a resin composition described later.
  • methods include steam stripping and dehydration drying, and direct stripping methods using a drum dryer, flushing, and vent extruder.
  • water, methanol, ethanol, isopropanol, or other alcohol may be added as an additive to remove or neutralize ionic substances, or stearic acid, oleic acid, myristic acid, lauric acid, decanoic acid, Carboxylic acids such as citric acid and malic acid, aqueous inorganic acids, carbon dioxide gas, etc. may be added.
  • random copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof are not particularly limited, and include, for example, styrene-butadiene copolymer rubber or hydrogenated products thereof.
  • the weight average molecular weight of the various rubbery polymers mentioned above is preferably from 2,000 to 2,000,000, and from 5,000 to 1,500,000, from the viewpoint of the balance between performance and processing characteristics. is more preferable. Furthermore, a so-called liquid rubber having a low molecular weight can also be used. These rubbery polymers may be used alone or in combination of two or more.
  • the weight average molecular weight here is the weight average molecular weight (Mw) in terms of polystyrene obtained by gel permeation chromatography (GPC) measurement.
  • At least one reinforcing filler selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black is added to 100 parts by mass of raw rubber. Contains .5 to 200 parts by mass.
  • the silica-based inorganic filler contained in the resin composition it is preferable to use solid particles whose main constituent units are SiO 2 or silicate.
  • the main component means a component that accounts for 50% by mass or more of the whole, preferably a component that accounts for 70% by mass or more, and more preferably a component that accounts for 90% by mass or more.
  • silica-based inorganic fillers include inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wallasnite, montmorillonite, zeolite, and glass fiber.
  • the silica-based inorganic fillers may be used alone or in combination of two or more.
  • a silica-based inorganic filler whose surface has been made hydrophobic, and a mixture of a silica-based inorganic filler and an inorganic filler other than silica-based filler can also be used.
  • silica and glass fiber are preferred, and silica is more preferred.
  • silica with a BET nitrogen adsorption specific surface area (NSA) of less than 185 m 2 /g is preferably used as a reinforcing filler, and more preferably silica with a nitrogen adsorption specific surface area (NSA) of less than 150 m 2 /g is used.
  • NSA nitrogen adsorption specific surface area
  • Preferably, 50 m 2 /g or more is used. Within this range, there is a good balance between reinforcing properties and dispersibility.
  • a suitable particle size is used depending on the purpose.
  • the resin composition of the present invention other reinforcing fillers can be used in addition to the above-mentioned silica.
  • Other reinforcing fillers are not particularly limited, but metal oxides as reinforcing fillers have the chemical formula MxOy (M represents a metal atom, and x and y each represent an integer from 1 to 6).
  • the solid particles are the main component of the structure.
  • the main component means a component that accounts for 50% by mass or more of the whole, preferably a component that accounts for 70% by mass or more, and more preferably a component that accounts for 90% by mass or more.
  • the metal oxide for example, alumina, titanium oxide, magnesium oxide, zinc oxide, etc. can be used.
  • metal hydroxide as a reinforcing filler examples include aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
  • the above metal oxides and metal hydroxides as other reinforcing fillers may be used alone or in combination of two or more. Moreover, mixtures with inorganic fillers other than these can also be used.
  • a silane coupling agent may be used.
  • the silane coupling agent include, but are not limited to, compounds having both a silica affinity part and a polymer affinity part in the molecule, such as sulfide compounds, mercapto compounds, vinyl compounds, amino compounds, Examples include glycidoxy compounds, nitro compounds, chloro compounds, and the like.
  • hardness and modulus can be adjusted by using a plasticizer.
  • the plasticizer is not particularly limited, but for example, oils similar to the above-mentioned extender oil can be used, and in addition, various natural oils, synthetic oils, low molecular weight polymers, etc. can be used. Additionally, known processing aids can be used.
  • the resin composition of the present invention may be a resin composition further subjected to crosslinking treatment by adding a vulcanizing agent (crosslinking agent), a compounding agent, etc.
  • a crosslinking agent is not particularly limited, but for example, a sulfur-based vulcanizing agent, an organic peroxide, etc. can be used.
  • the sulfur-based vulcanizing agent include, but are not limited to, sulfur and morpholine disulfide.
  • the organic peroxide include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, and the like. T-butylcumyl peroxide, cumene hydroperoxide, etc. are used.
  • the amount of the vulcanizing agent used is not particularly limited, but it is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, based on 100 parts by weight of the conjugated diene copolymer.
  • the vulcanization method conventionally known methods can be applied, and the vulcanization temperature is preferably, for example, 120°C to 200°C, more preferably 140°C to 180°C.
  • a vulcanization accelerator or vulcanization aid may be added, and examples of the vulcanization accelerator include, but are not limited to, sulfenamide, thiazole, thiuram, thiourea, and guanidine.
  • a vulcanization accelerator containing at least one of a vulcanization accelerator based on a dithiocarbamate type, a dithiocarbamate type, an aldehyde-amine type, an aldehyde-ammonia type, an imidazoline type, or a xanthate type can be used.
  • the resin composition of the present invention can be produced by mixing the above components.
  • a modified conjugated diene copolymer at least one reinforcing filler selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black, and optionally a silane coupling agent.
  • a melt-kneading method using a general mixing machine such as an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a multi-screw extruder, etc. After dissolving and mixing each component, a solvent is added. Examples include a method of removing by heating.
  • melt-kneading methods using rolls, Banbury mixers, kneaders, and extruders are preferred from the viewpoint of productivity and good kneading properties. Further, it is possible to apply either a method of kneading the rubber component and various compounding agents at once or a method of mixing them in a plurality of batches.
  • the degree of polymer concentration ability on the surface of the filler can be expressed by the amount of bound rubber (bound rubber production ability) of the modified conjugated diene polymer at 25°C.
  • the amount of bound rubber in the resin composition after the above-mentioned kneading is preferably 15% by mass or more, more preferably 20% by mass or more from the viewpoint of improving wear resistance and fracture strength.
  • a rubber softener may be added to the resin composition of the present invention in order to improve processability.
  • the rubber softener mineral oil, liquid or low molecular weight synthetic softeners are suitable.
  • a mineral oil-based rubber softener called process oil or extender oil, which is used to soften, increase volume, and improve processability of rubber, is a mixture of aromatic rings, naphthenic rings, and paraffin chains. Those in which the number of carbon atoms in the paraffin chain accounts for 50% or more of the total carbons are called paraffinic, those in which the number of carbon atoms in the naphthene ring is 30 to 45% are called naphthenic, and those in which the number of aromatic carbons exceeds 30% are called aromatic. It is called a system.
  • the rubber softener used in this embodiment is preferably a naphthenic and/or paraffinic softener.
  • the amount of the rubber softener blended is not particularly limited, but is preferably 10 to 80 parts by weight, more preferably 20 to 50 parts by weight, based on 100 parts by weight of the conjugated diene copolymer.
  • the resin composition of the present invention may contain softeners and fillers other than those mentioned above, as well as heat stabilizers, antistatic agents, weather stabilizers, anti-aging agents, and coloring agents, within a range that does not impair the purpose of the present embodiment.
  • Various additives such as agents and lubricants may also be used.
  • Specific examples of the filler include calcium carbonate, magnesium carbonate, aluminum sulfate, barium sulfate, and the like.
  • softeners that may be added as needed to adjust the hardness and fluidity of the desired product include liquid paraffin, castor oil, and linseed oil.
  • Known materials can be used as the heat stabilizer, antistatic agent, weather stabilizer, anti-aging agent, colorant, and lubricant.
  • the crosslinked resin product of the present invention is obtained by crosslinking a resin composition.
  • tires are manufactured by extruding and molding a resin composition according to the shape of the tire (for example, tread shape), and heating and pressurizing this in a vulcanizer to produce a tread. By assembling the parts, the desired tire can be manufactured.
  • the resin composition of the present invention has excellent mechanical strength and abrasion resistance when made into a resin crosslinked product. Therefore, as described above, it can be suitably applied to treads of tires such as fuel-efficient tires, large tires, and high-performance tires, and structural members such as sidewall members. In addition to structural members, it can also be suitably used for rubber belts, rubber hoses, footwear materials, etc.
  • the area (%) of the hyperbranched component of the modified conjugated diene copolymer has a molecular weight that is twice the peak top molecular weight Mp of the uncoupled, unbranched diene copolymer. (2Mp) or more. Furthermore, the area (%) of 3 Mp or more indicates the area % of a molecular weight range that is three times the molecular weight (3 Mp) or more of the peak top molecular weight Mp of the uncoupled, unbranched diene copolymer.
  • Mooney viscosity It was determined in accordance with JIS K6300-1 using an L-shaped rotor, preheating for 1 minute, rotor operating time for 4 minutes, and a temperature of 100°C. 5) Gel content To a sample in which 0.5 g of copolymer rubber was dissolved in 100 mL of toluene, 1.0 g of 0.2 wt % Sudan III toluene solution was added and left for 1 hour. This sample solution is filtered through a 0.2 ⁇ m PTFE membrane filter, and the membrane filter is vacuum dried at 40°C. Visually observe the gel content colored with Sudan III on the membrane filter after drying. When the gel content is 0, it is marked as ⁇ , when it is 1 to 5, it is ⁇ , and when it is 6 or more, it is marked as ⁇ . did.
  • Example 1 Synthesis of modified vinyl aromatic copolymer (A-1) 270 ml (210.3 g) of ethylcyclohexane, 1.35 ml (7.0 mmol) of cocatalyst 2,2-di(2-tetrahydrofuryl)propane.
  • modified vinyl aromatic copolymer A-1 had Mn of 2940, Mw of 4140, and Mw/Mn of 1.41.
  • modified vinyl aromatic copolymer A-1 contained 4.35 mol% (6.50 wt. %), 60.87 mol% (59.91 wt%) of structural units derived from styrene, 26.09 mol% (16.79 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES).
  • Modifier bound to isoprene-derived units was 93.6 mol%.
  • TGA 350 thermogravimetric analysis
  • the Haze value measured using a measuring device was 0.02.
  • the mixture was stirred for 60 minutes to make it homogeneous.
  • the mixture was heated to 80° C. while blowing nitrogen gas, and stirring was continued for 3 hours to carry out suspension polymerization to obtain polymer particles (C-0).
  • the pH was adjusted to 8.0, 30 parts of methyltriethoxysilane (MTES: structural formula shown below) was added, and the mixture was vigorously stirred for about 30 minutes. Thereafter, the temperature of the reaction vessel was raised to 70° C., and the reaction was carried out for 3 hours to complete the condensation reaction and produce crosslinked polymer particles C-1. No coagulum formation was observed in this dispersion.
  • MTES methyltriethoxysilane
  • the average particle diameter of the obtained crosslinked polymer particles a was measured and found to be 1.9 ⁇ m.
  • the resulting water slurry of crosslinked polymer particles was centrifugally washed and subjected to elemental analysis by ESCA, the presence of Si element was observed.
  • Example 2 Synthesis of modified vinyl aromatic copolymer (D-1) 270 ml (210.3 g) of ethylcyclohexane and 1.35 ml (7.0 mmol) of 2,2-di(2-tetrahydrofuryl)propane were charged.
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 79°C.
  • 15 g of a cyclohexane solution containing 0.379 g of the modified vinyl aromatic copolymer (B-1) obtained in Comparative Example 1 as an SBR modifier was added, and the modification reaction was carried out at 60 ° C.
  • a denaturation reaction was carried out for 30 minutes under temperature conditions to obtain a polymer solution.
  • 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 79°C.
  • 15 g of a cyclohexane solution containing 0.466 g of the modified vinyl aromatic copolymer (C-1) obtained in Comparative Example 2 as an SBR modifier was added, and the modification reaction was carried out at 60 ° C.
  • a denaturation reaction was carried out for 30 minutes under temperature conditions to obtain a polymer solution.
  • 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 81°C.
  • 15 g of a cyclohexane solution containing 0.502 g of the modified vinyl aromatic copolymer (E-1) obtained in Example 3 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • Modifier bound to isoprene-derived units was 94.2 mol%.
  • TGA 350 thermogravimetric analysis
  • F-1 modified vinyl aromatic copolymer
  • modified vinyl aromatic copolymer G-1 had Mn of 2740, Mw of 4750, and Mw/Mn of 1.73.
  • modified vinyl aromatic copolymer G-1 contained 4.34 mol% (5.40 wt%) of structural units derived from divinylbenzene. , 0.15 mol% (0.18 wt%) of structural units derived from ethylvinylbenzene, 60.78 mol% (60.50 wt%) of structural units derived from styrene, and 26.05 mol% (60.50 wt%) of structural units derived from isoprene.
  • Modified vinyl aromatic copolymer 1 contains mol% (16.95wt%) and 8.68 mol% (16.96wt%) of structural units derived from diethylaminomethyltriethoxysilane (DEAMTES). It was confirmed that 2.28 modifiers were introduced per molecule. Since the polyfunctional structural unit (e1) represented by the above formula (1) is 4.21 mol% (5.24 wt%), the initiator-derived polyfunctional structural degree (e1/c) is 0.97. there were. In formula (1), R1 is phenyl, R2 is hydrogen, and R3 is sec-butyl.
  • Example 12 Synthesis of modified vinyl aromatic copolymer (H-1) 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of co-catalyst triethylamine were charged, and sec-butyllithium was heated at 30°C.
  • DEAMTES diethylaminomethyltriethoxysilane
  • modified vinyl aromatic copolymer H-1 had Mn of 4030, Mw of 9770, and Mw/Mn of 2.43.
  • modified vinyl aromatic copolymer H-1 contained 3.99 mol% (5.59 wt%) of structural units derived from divinylbenzene. , 0.13 mol% (0.19 wt%) of structural units derived from ethylvinylbenzene, 31.96 mol% (35.76 wt%) of structural units derived from styrene, and 55.92 mol% (35.76 wt%) of structural units derived from isoprene.
  • the structural unit derived from divinylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (H-1) was 0.12 mol % (0.17 wt %). Modifier bound to isoprene-derived units was 97.8 mol%.
  • TGA thermogravimetric analysis
  • TGA 350 the weight loss at 350°C
  • the Haze value measured using a measuring device was 0.02.
  • DEAMTES diethylaminomethyltriethoxysilane
  • modified vinyl aromatic copolymer I-1 had Mn of 1850, Mw of 3500, and Mw/Mn of 1.90.
  • modified vinyl aromatic copolymer I-1 contained 4.34 mol% (6.83 wt%) of structural units derived from divinylbenzene. , 0.15 mol% (0.23 wt%) of structural units derived from ethylvinylbenzene, 86.83 mol% (71.49 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). Contains 8.68 mol% (21.45 wt%) of structural units derived from .
  • the initiator-derived polyfunctional structural degree (e1/c) is 0.96. there were.
  • R1 is phenyl
  • R2 is hydrogen
  • R3 is 2-methylbutyl.
  • the structural unit derived from divinylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (H-1) was 0.17 mol % (0.27 wt %). Modifier bound to isoprene-derived units was 98.2 mol%.
  • TGA thermogravimetric analysis
  • Example 14 Synthesis of modified vinyl aromatic copolymer (J-1) 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium was added. After adding 35.38 ml of an n-hexane solution containing 2.95 g (46.0 mmol) of (the following structural formula) as a pure component, A solution prepared by dissolving 2.44 g (23.0 mmol) of pre-dried m-xylene (the structural formula of m-xylene is shown below) in 40.0 ml (31.2 g) of cyclohexane was added over 15 minutes.
  • J-1 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium
  • DEAMTES diethylaminomethyltriethoxysilane
  • modified vinyl aromatic copolymer J-1 had Mn of 2230, Mw of 4300, and Mw/Mn of 1.93.
  • modified vinyl aromatic copolymer J-1 contained 4.00 mol% (4.92 wt%) of m-xylene-derived structural units. ), 16.00 mol% (19.31 wt%) of structural units derived from styrene, 72.00 mol% (56.83 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). Contains 8.00 mol% (18.94 wt%) of structural units derived from .
  • the initiator-derived polyfunctional structural degree (e2/d) is 0.98. there were.
  • R1 is phenyl
  • R4 is hydrogen
  • R5 is hydrogen.
  • the amount of structural units derived from m-xylene having residual methyl groups contained in the modified vinyl aromatic copolymer (J-1) was 0.08 mol% (0.10 wt%).
  • Modifier bound to isoprene-derived units was 93.6 mol%.
  • TGA thermogravimetric analysis
  • Table 5 shows the analysis results of the copolymers of Examples 10 to 14.
  • Example 15 Synthesis of modified conjugated diene copolymer (F-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization.
  • F-2 modified conjugated diene copolymer
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C.
  • 15 g of a cyclohexane solution containing 0.487 g of the modified vinyl aromatic copolymer (F-1) obtained in Example 10 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out. The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
  • Example 16 Synthesis of modified conjugated diene copolymer (G-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization.
  • G-2 modified conjugated diene copolymer
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C.
  • 15 g of a cyclohexane solution containing 0.481 g of the modified vinyl aromatic copolymer (G-1) obtained in Example 11 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • Example 17 Synthesis of modified conjugated diene copolymer (H-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization.
  • Example 18 Synthesis of modified conjugated diene copolymer (I-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization.
  • the temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C.
  • 15 g of a cyclohexane solution containing 0.381 g of the modified vinyl aromatic copolymer (I-1) obtained in Example 13 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • Example 20 The modified conjugated diene copolymer (modified SBR) F-2 obtained in Example 15, process oil, carbon black, zinc oxide, stearic acid, and anti-aging agent were blended according to the formulation shown in Table 3, and Labo Plastomil was used. The mixture was kneaded for 4 minutes at 155° C. and 60 rpm. Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded using a Labo Plastomill at 70° C. and 60 rpm for 1 minute, followed by vulcanization to obtain a crosslinked rubber F-3. Table 7 shows the physical properties of the obtained crosslinked rubber.
  • Examples 21, 22, 23, and 24 Instead of modified conjugated diene copolymer (modified SBR) F-2, modified conjugated diene copolymer (modified SBR) G-2, H- synthesized in Example 16, Examples 17, 18, and 19 Crosslinked rubbers G-3, H-3, I-3, and J-3 were obtained in the same manner as in Example 20, except that 2, I-2, and J-2 were used. Table 7 shows the physical properties of the obtained crosslinked rubber.
  • the crosslinked rubber using the modified conjugated diene copolymer (modified SBR) of the example has an excellent round rubber index compared to the comparative example, and therefore has no inorganic filler. It can be seen that the material has improved dispersibility and loss during running, has excellent tensile strength and abrasion resistance, and can contribute to achieving both strength and abrasion resistance.
  • the modified vinyl aromatic copolymer of the present invention is particularly useful as a modifier for conjugated diene copolymers (SBR etc.).
  • SBR conjugated diene copolymers
  • the crosslinked rubber obtained by crosslinking the obtained modified conjugated diene copolymer (modified SBR, etc.) containing a filler has excellent filler dispersibility, mechanical strength, and abrasion resistance, so it is suitable for tires (treads). It is useful as an elastomer material for seismic isolation rubber, rubber hoses, rubber rollers, footwear materials, etc.
  • the modified vinyl aromatic copolymer of the present invention can be used as dielectric materials, insulating materials, heat-resistant materials, structural materials, adhesives, and sealants in fields such as electrical and electronic industries, space and aircraft industries, and architecture and construction industries.
  • the curable resin composition can be processed into films, sheets, and prepregs and used for plastic optical parts, touch panels, flat displays, film liquid crystal elements, and various optical elements such as optical waveguides and optical lenses. be. It can also be used as a modifier to modify the properties of thermoplastic resins or curable resin compositions, such as heat resistance, dielectric properties, adhesion/adhesion, and optical properties.

Abstract

The present invention provides: a modified vinyl aromatic copolymer having reactivity and solubility which make the copolymer usable in the production of a copolymer rubber; and a copolymer rubber material which is obtained from the modified vinyl aromatic copolymer, and which exhibits processability, strength and homogeneity at the same time. According to the present invention, structural units that are derived from a multifunctional vinyl aromatic compound (c) or an aromatic compound (d) that has 2 to 4 alkyl groups having 1 to 3 carbon atoms are contained in a polymer; and 50% by mole or more of the structural units derived from the component (c) or the component (d) are multifunctional structural units (e1) which are represented by formula (1) and have a group R1 that is derived from the aromatic structure of the component (c) or the component (d), and a group R2 or R3 that is derived from the component (c) or the component (d) excluding the aromatic structure. In the formula, R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms; R2 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms; R3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms; and n represents an integer of 1 to 3. Meanwhile, "Polymer" in the formula represents a main polymer structural unit that is derived from the component (a) or the component (b). The present invention provides a modified vinyl aromatic copolymer which is characterized in that: an end of the above-described polymer is modified with at least one functional group that is selected from the group consisting of an amino group, an alkoxysilyl group and a hydroxyl group; the average number of functional groups per one molecule is 2.0 or more; and the number-average molecular weight Mn is 500 to 30,000. 

Description

変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、樹脂組成物、樹脂架橋物及び構造部材Modified vinyl aromatic copolymer and method for producing the same, modified conjugated diene copolymer obtained therefrom, resin composition, crosslinked resin product, and structural member
 本発明は、変性ビニル芳香族系共重合体及びその製造方法、並びに、加工性に優れ、かつ、引張強度と耐摩耗性に優れる変性共役ジエン系共重合体、及びこれから得られる樹脂組成物、それを架橋した樹脂架橋物、及び構造部材に関する。 The present invention relates to a modified vinyl aromatic copolymer, a method for producing the same, a modified conjugated diene copolymer having excellent processability, tensile strength and abrasion resistance, and a resin composition obtained therefrom. The present invention relates to a resin crosslinked product obtained by crosslinking the same, and a structural member.
 ビニル基を分子内に複数有する化合物は、重合により分子間の架橋反応が進行しやすい。この特性を利用して、このような化合物を重合系に添加し共重合させることで架橋体を形成して、重合物を不溶化させたり機能性を付与させたりすることが可能である。
 例えば、ビニル基を分子内に複数有する化合物としてはジビニルベンゼンが挙げられるが、これをスチレン重合系に少量加えて共重合させ、さらにスルホン酸基等の官能基を導入することでイオン交換樹脂として使用することができる。その他、合成ゴム、ABS樹脂、MBS樹脂、不飽和ポリエステル樹脂などのスチレン系樹脂の架橋剤や、ポリエチレンの変性剤として使用される。
 また、別の例としては、分岐構造を有する多官能ビニル芳香族系共重合体と熱可塑性樹脂と反応させることで、熱可塑性樹脂に機能性を付与することも期待される。
 例えば、SBR(スチレン-ブタジエンゴム)、BR(ブタジエンゴム)、IR(イソプレンゴム)、スチレン-イソプレンゴム等の共役ジエン系ゴムは、耐摩耗性、弾性、耐水性に優れ、成型材料、樹脂の改質剤等の様々な用途に用いられている。
A compound having a plurality of vinyl groups in its molecule tends to undergo intermolecular crosslinking reaction due to polymerization. Utilizing this property, such a compound can be added to a polymerization system and copolymerized to form a crosslinked product, thereby making the polymer insoluble or imparting functionality.
For example, divinylbenzene is an example of a compound that has multiple vinyl groups in its molecule, and by adding a small amount of this to a styrene polymerization system and copolymerizing it, and further introducing functional groups such as sulfonic acid groups, it can be used as an ion exchange resin. can be used. In addition, it is used as a crosslinking agent for styrene resins such as synthetic rubber, ABS resin, MBS resin, and unsaturated polyester resin, and as a modifier for polyethylene.
In addition, as another example, it is expected that functionality can be imparted to a thermoplastic resin by reacting a polyfunctional vinyl aromatic copolymer having a branched structure with a thermoplastic resin.
For example, conjugated diene rubbers such as SBR (styrene-butadiene rubber), BR (butadiene rubber), IR (isoprene rubber), and styrene-isoprene rubber have excellent abrasion resistance, elasticity, and water resistance, and can be used as molding materials and resins. It is used for various purposes such as a modifier.
 この共役ジエンゴムの主要な用途の一つとして、自動車用のタイヤが挙げられる。タイヤにおいて要求される特性としては、機械的強度、耐摩耗性、ウェットグリップ性等(以下、併せて、強度等ともいう。)が挙げられる。更に近年では、省エネ性能、つまり低燃費性に優れるタイヤ(いわゆる「エコタイヤ」)の開発が活発に行われてきている。このエコタイヤは、強度等に加え、転がり抵抗が小さいことが要求される。 One of the main uses of this conjugated diene rubber is automobile tires. Properties required for tires include mechanical strength, abrasion resistance, wet grip properties, etc. (hereinafter also referred to as strength etc.). Furthermore, in recent years, there has been active development of tires (so-called "eco-tires") that have excellent energy-saving performance, that is, low fuel consumption. In addition to strength, this eco-tire is required to have low rolling resistance.
 タイヤの強度等を担保するために、共役ジエンゴムにカーボンブラックやシリカ等のフィラー(補強用充填剤)を添加することが知られているが、タイヤの強度等を更に向上させるとともに、優れた転がり抵抗を付与する材料として、末端変性溶液重合型SBR(末端変性S-SBR)が注目されている。末端変性S-SBRは、SBRの分子末端に官能基を有し、この分子末端の官能基がフィラーと相互作用する。この相互作用により、SBR中のフィラーの分散性が向上するとともに、SBRの分子末端が拘束されて運動性が低下する。その結果、タイヤのヒステリシスロス(内部摩擦)が低減し、転がり抵抗が低下する。この特性を活かし、強度等と低転がり抵抗を兼ね備えたエコタイヤの開発が行われている。 It is known that fillers (reinforcing fillers) such as carbon black and silica are added to conjugated diene rubber to ensure tire strength. Terminal-modified solution polymerization type SBR (terminal-modified S-SBR) is attracting attention as a material that imparts resistance. Terminal-modified S-SBR has a functional group at the molecular end of SBR, and this functional group at the molecular end interacts with the filler. This interaction improves the dispersibility of the filler in SBR, and also restricts the molecular terminals of SBR and reduces its mobility. As a result, the tire's hysteresis loss (internal friction) is reduced and rolling resistance is reduced. Taking advantage of this characteristic, eco-tires that have both strength and low rolling resistance are being developed.
 このようなゴム組成物においては、原料ゴムとして用いる重合体とフィラーとの親和性を改良する目的で、例えば、原料ゴムであるブタジエン系重合体に所定の官能基を導入し、変性する方法が種々検討されている。
 例えば、特許文献1では、非極性溶媒中で有機リチウム化合物を開始剤として用い、リビングアニオン重合により、α-メチルスチレンブロックとブタジエンブロックからなるブロック共重合体を合成し、更に必要により多官能性カップリング剤を反応させることを開示する。
 特許文献2では、共役ジエン及びモノビニル芳香族モノマーのランダムコポリマーブロックと、ポリ共役ジエンブロックと、多官能性リチウム系開始剤由来の官能基とを有する、星形-ブロックインターポリマーを開示する。
 特許文献1及び2の技術は、ゴム成分に分岐構造を導入することで、ゴムの加工性を担保する効果があると考えられる。しかし、強度を担保するためのフィラーとの相互作用については、特段の工夫はなく、強度に対する寄与は十分ではない。
 特許文献3では、複数のジエン系ゴムを含むブレンドゴムに所定量のカーボンブラックを配合したゴム組成物に、分子鎖末端にカーボンブラックと相互作用のある官能基を有し、かつジエン系ゴムのゴム成分に類似するポリマー構造からなる低分子量の官能基含有ポリマーを配合してなるゴム組成物を開示する。しかし、この技術は、低分子量化合物をゴムに対して配合するため、強度に対する寄与としては十分ではない。
 特許文献4では、共役ジエン単位、芳香族ビニル単位及び少なくとも2個の重合性不飽和基を有する単位を含む架橋ゴム粒子、並びに、特定の結合構造を有する共役ジエン単位を含む共役ジエン/芳香族ビニル共重合ゴムを含有するゴム組成物を開示する。しかし、3次元架橋された架橋ゴム粒子に導入されたカルボン酸基、アミノ基、ヒドロキシル基、エポキシ基及びアルコキシシリル基のうちの少なくとも1種の官能基は架橋ゴム粒子の不溶性のネットワーク構造の内部に入り込んで、架橋ゴム粒子の外部の無機充填剤の分散性に寄与できないものがあり、官能基導入の効果は十分なものではなかった。
 特許文献5には、ホモポリマーのガラス転移温度が10℃以上となるエチレン性不飽和化合物に由来する構造単位および架橋性化合物に由来する構造単位を有する架橋重合体と、共役ジエン化合物に由来する構造単位を有する非架橋重合体とによって構成された相互侵入網目構造型ポリマーよりなる共役ジエン系ゴムを開示する。しかし、架橋重合体は、3次元架橋された溶剤に不溶性の重合体であることに由来して、共役ジエン化合物に由来する構造単位を有する非架橋重合体によって相互侵入網目構造型ポリマーとしても、構造的に脆いマイクロゲルを持つため、機械的強度の改善効果は十分なものではなかった。
 特許文献6には、粒子表面にポリシロキサンを有し、かつ平均粒子径が0.01~10μmにあることを特徴とする架橋ポリマー粒子が開示されている。しかし、ポリシロキサン変性架橋ポリマー粒子は、溶剤不溶性の架橋ポリマー粒子であり、硬質で脆い特性の架橋ポリマー粒子であるために、アニオン重合で合成される共役ジエン系共重合体の改質に使用すると、強度を改善することができるものではなかった。
 特許文献7には、ジビニリデン重合開始剤をモノマーと反応させて、「オメガ,オメガ’-カルバニオン」リビングポリマー分子を形成させ、少なくとも1つのリビングポリマー分子と少なくとも1当量の鎖末端部変性剤とを反応させることによって、変性ポリマー分子が得られることを開示する。しかし、ジビニルベンゼンを後添加でカップリング剤として添加すると、ミクロなゲルを生成し、強度改善の効果が十分ではないという課題があった。
 特許文献8には、アミノメチル化ポリスチレンを1%のジビニルベンゼンで架橋させたポリマーを塩化メチレンで膨潤させた後、トリレン2,4-ジイソシアナート(TDI)を反応させ、シリル化フェロセニルジホスフィン配位子を含有する架橋ポリマーを開示する。しかし、架橋ポリマーは溶剤可溶性がないことが示唆されており、溶剤可溶性の分岐ポリマーは想起し得ないものであった。
 特許文献9には、配位重合により得られるエチレン-スチレン-ジビニルベンゼン共重合体とスチレンモノマーの共存下でアニオン重合を行うことにより得られる、エチレン-スチレン-ジビニルベンゼン共重合体鎖とポリスチレン鎖を有する共重合体(クロス共重合体)に、酸化防止剤、シランカップリング剤、ラジカル開始剤を配合し、混錬することにより、変性した樹脂組成物を開示する。しかし、クロス共重合体は、ジビニルベンゼン含量が0.5モル%を大きく下回るものであり、さらに、後添加されたシランカップリング剤がクロス共重合体の末端を変性しているかを教えるものはなく、共役ジエン系リビング重合体をカップリングさせて、共役ジエン系重合体の特性を改良できる可能性は示唆されてもいなかった。
In such rubber compositions, in order to improve the affinity between the polymer used as the raw material rubber and the filler, for example, a method of modifying the butadiene-based polymer used as the raw material rubber by introducing a predetermined functional group into the butadiene-based polymer is used. Various methods are being considered.
For example, in Patent Document 1, a block copolymer consisting of an α-methylstyrene block and a butadiene block is synthesized by living anionic polymerization using an organolithium compound as an initiator in a nonpolar solvent, and if necessary, a polyfunctional Discloses reacting a coupling agent.
US Pat. No. 5,001,200 discloses star-block interpolymers having random copolymer blocks of conjugated dienes and monovinyl aromatic monomers, polyconjugated diene blocks, and functional groups derived from polyfunctional lithium-based initiators.
The techniques of Patent Documents 1 and 2 are considered to have the effect of ensuring the processability of rubber by introducing a branched structure into the rubber component. However, no special measures have been taken to interact with the filler to ensure strength, and the contribution to strength is not sufficient.
In Patent Document 3, a rubber composition in which a predetermined amount of carbon black is blended into a blended rubber containing a plurality of diene rubbers has a functional group that interacts with carbon black at the end of the molecular chain, and the diene rubber has a functional group that interacts with carbon black at the molecular chain end. Disclosed is a rubber composition containing a low molecular weight functional group-containing polymer having a polymer structure similar to that of a rubber component. However, since this technique involves blending a low molecular weight compound into the rubber, it does not contribute enough to the strength.
Patent Document 4 discloses crosslinked rubber particles containing a conjugated diene unit, an aromatic vinyl unit and a unit having at least two polymerizable unsaturated groups, and a conjugated diene/aromatic particle containing a conjugated diene unit having a specific bond structure. Rubber compositions containing vinyl copolymer rubber are disclosed. However, at least one functional group among carboxylic acid groups, amino groups, hydroxyl groups, epoxy groups, and alkoxysilyl groups introduced into the three-dimensionally crosslinked crosslinked rubber particles is inside the insoluble network structure of the crosslinked rubber particles. Some of the inorganic fillers get into the crosslinked rubber particles and cannot contribute to the dispersibility of the inorganic fillers outside the crosslinked rubber particles, so the effect of introducing functional groups was not sufficient.
Patent Document 5 describes a crosslinked polymer having a structural unit derived from an ethylenically unsaturated compound whose homopolymer has a glass transition temperature of 10° C. or higher and a structural unit derived from a crosslinkable compound, and a crosslinked polymer having a structural unit derived from a crosslinkable compound, and a crosslinked polymer having a structural unit derived from a crosslinkable compound. Disclosed is a conjugated diene rubber comprising an interpenetrating network structure polymer and a non-crosslinked polymer having structural units. However, since crosslinked polymers are three-dimensionally crosslinked polymers that are insoluble in solvents, they can also be used as interpenetrating network structure polymers with non-crosslinked polymers having structural units derived from conjugated diene compounds. Because the microgel is structurally fragile, the mechanical strength improvement effect was not sufficient.
Patent Document 6 discloses crosslinked polymer particles having polysiloxane on the particle surface and having an average particle diameter of 0.01 to 10 μm. However, polysiloxane-modified crosslinked polymer particles are solvent-insoluble crosslinked polymer particles that are hard and brittle, so they cannot be used to modify conjugated diene copolymers synthesized by anionic polymerization. , it was not possible to improve the strength.
U.S. Pat. No. 5,002,201 discloses reacting a divinylidene polymerization initiator with a monomer to form an "omega, omega'-carbanion" living polymer molecule, and combining at least one living polymer molecule and at least one equivalent of a chain end modifier. It is disclosed that modified polymer molecules can be obtained by reacting. However, when divinylbenzene is added as a coupling agent as a post-addition, microgels are formed, resulting in the problem that the strength improvement effect is not sufficient.
Patent Document 8 discloses that a polymer obtained by crosslinking aminomethylated polystyrene with 1% divinylbenzene is swollen with methylene chloride, and then reacted with tolylene 2,4-diisocyanate (TDI) to form silylated ferrocenyl. Crosslinked polymers containing diphosphine ligands are disclosed. However, it has been suggested that crosslinked polymers are not soluble in solvents, and branched polymers that are soluble in solvents could not be imagined.
Patent Document 9 describes an ethylene-styrene-divinylbenzene copolymer chain and a polystyrene chain obtained by anionic polymerization in the coexistence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer. A modified resin composition is disclosed by blending an antioxidant, a silane coupling agent, and a radical initiator with a copolymer (cross copolymer) having the following properties and kneading the same. However, the divinylbenzene content of the cross copolymer is much less than 0.5 mol%, and there is no evidence that the silane coupling agent added afterward has modified the terminals of the cross copolymer. Furthermore, the possibility of improving the properties of conjugated diene polymers by coupling living conjugated diene polymers has not been suggested.
 そこで、本出願人は、上記課題に鑑み、分岐構造及びフィラーとの相互作用機能を併せ持つ、特定の多官能ビニル芳香族共重合体を、共役ジエンゴムの構成単位とすることで、加工性、強度及び均質性を兼ね備えた共重合体ゴムを提供できることを開示している(特許文献10)。さらに、特許文献11~14において、インダン構造単位やシクロオレフィン化合物由来の構造単位やスチレン由来の構造単位を必須とする多官能ビニル芳香族共重合体を提案している。
 本発明は、特許文献10~14に開示された手法とは異なる手法によって、樹脂の改質に資するものであり、特にタイヤ等のゴム組成物に有用であり、強度や耐摩耗性といった特性の向上に寄与できる材料を提案するものである。
Therefore, in view of the above problems, the applicant has developed a specific polyfunctional vinyl aromatic copolymer, which has both a branched structure and an interaction function with fillers, as a constituent unit of a conjugated diene rubber to improve processability and strength. It is disclosed that a copolymer rubber having both high and homogeneous properties can be provided (Patent Document 10). Furthermore, Patent Documents 11 to 14 propose polyfunctional vinyl aromatic copolymers that essentially include indane structural units, structural units derived from cycloolefin compounds, and structural units derived from styrene.
The present invention contributes to the modification of resins by a method different from the methods disclosed in Patent Documents 10 to 14, and is particularly useful for rubber compositions such as tires, and improves properties such as strength and abrasion resistance. This project proposes materials that can contribute to improvements.
特開2003-73434号公報Japanese Patent Application Publication No. 2003-73434 特表2004-517202号公報Special Publication No. 2004-517202 特開2005-213381号公報Japanese Patent Application Publication No. 2005-213381 国際公開2002/000779号International Publication No. 2002/000779 特開2013-155268号公報Japanese Patent Application Publication No. 2013-155268 特開平7-207029号公報Japanese Patent Application Publication No. 7-207029 特表2016-530361号公報Special Publication No. 2016-530361 特開平8-259584号公報Japanese Patent Application Publication No. 8-259584 特開2012-92197号公報JP2012-92197A 国際公開2018/084128号International Publication 2018/084128 特開2004-123873号公報Japanese Patent Application Publication No. 2004-123873 特開2018-39995号公報Japanese Patent Application Publication No. 2018-39995 国際公開2018/181842号International Publication 2018/181842 国際公開2020/67336号International Publication 2020/67336
 本発明は、かかる課題を解決し、ミクロゲルの少量副生もなく、高度の分岐構造を有する変性共役ジエン系共重合体の製造に使用することの出来る反応性と可溶性を有する変性ビニル芳香族系共重合体と、加工性、強度及び均質性を兼ね備えた分岐構造を有する樹脂組成物、それを架橋した樹脂架橋物、及び構造部材を提供することを目的とする。 The present invention solves the above problems and is a modified vinyl aromatic system having reactivity and solubility that can be used to produce a modified conjugated diene copolymer having a highly branched structure without producing a small amount of microgel as a by-product. The object of the present invention is to provide a copolymer, a resin composition having a branched structure that has processability, strength, and homogeneity, a resin crosslinked product obtained by crosslinking the same, and a structural member.
 本発明者らは、鋭意検討を重ねた結果、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を含有し、(c)成分又は(d)成分に由来する構造単位の50モル%以上が下記式(1)で表される多官能構造単位(e1)となっている重合体であって、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位からなるビニル芳香族系共重合体の活性末端を、アミノ基、アルコキシシリル基又は水酸基で変性した共重合体が上記の課題を解決し得ることを見出し、本発明を完成した。 As a result of extensive studies, the present inventors found that the present invention contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). A polymer in which 50 mol% or more of the structural units derived from component (c) or component (d) is a polyfunctional structural unit (e1) represented by the following formula (1), which has a monovinyl aromatic The active end of the vinyl aromatic copolymer is composed of structural units derived from one or more monomers selected from the group consisting of compound (a) and conjugated diene compound (b). The present invention was completed based on the discovery that a copolymer modified with a group or a hydroxyl group can solve the above problems.
 本発明は、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位からなる重合体であって、当該重合体中に多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を含有し、(c)成分又は(d)成分に由来する構造単位の50モル%以上が、(c)成分又は(d)成分の芳香族構造に由来する基R1、及び(c)成分又は(d)成分の芳香族構造以外に由来する基R2又はR3を有する下記式(1)で表される多官能構造単位(e1)となっており、
Figure JPOXMLDOC01-appb-C000002
 ここで、R1は炭素数6~30の芳香族炭化水素基を示し、R2は水素又は炭素数1~6の炭化水素基、R3は水素又は炭素数1~6の炭化水素基を示す。nは1~3の整数を示す。なお、Polymerは(a)成分又は(b)成分に由来する主たる重合体構造単位を示す。
 さらに当該重合体の末端が、アミノ基、アルコキシシリル基及び水酸基からなる群より選ばれる少なくとも1種の官能基により変性され、一分子当たり平均官能基数が2.0個以上である、数平均分子量Mnが500~30,000であることを特徴とする変性ビニル芳香族系共重合体である。
The present invention relates to a polymer comprising a structural unit derived from one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b), wherein the polymer contains Contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms, and derived from component (c) or component (d) 50 mol% or more of the structural units are groups R1 derived from the aromatic structure of component (c) or (d), and groups R2 or It is a multifunctional structural unit (e1) represented by the following formula (1) having R3,
Figure JPOXMLDOC01-appb-C000002
Here, R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. n represents an integer from 1 to 3. Note that Polymer indicates the main polymer structural unit derived from component (a) or component (b).
Furthermore, the terminal of the polymer is modified with at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, and the number average molecular weight is such that the average number of functional groups per molecule is 2.0 or more. This is a modified vinyl aromatic copolymer characterized by an Mn of 500 to 30,000.
 上記変性ビニル芳香族系共重合体は、(c)成分又は(d)成分が有機アルカリ金属化合物と反応することによって、式(1)で表される多官能構造単位(e1)が生成され、R3が有機アルカリ金属化合物に由来する構造を一部に含有する基若しくは非含有の水素であることが好ましい。
 上記変性ビニル芳香族系共重合体は、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を0.5モル%以上、35.0モル%以下含有し、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位を65.0モル%以上、99.5モル%以下含有することがよく、重量平均分子量Mwと数平均分子量Mnの比で表される分子量分布(Mw/Mn)が10.0以下であることがよい。また、上記官能基の一分子当たりの平均数は2~20個の範囲であることができる。
 上記モノビニル芳香族化合物としては、スチレン、ビニルナフタレン、ビニルビフェニル、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、m-エチルビニルベンゼン、インデン又はp-エチルビニルベンゼンが挙げられる。
In the modified vinyl aromatic copolymer, the polyfunctional structural unit (e1) represented by formula (1) is produced by the reaction of component (c) or component (d) with an organic alkali metal compound, It is preferable that R3 is a group partially containing a structure derived from an organic alkali metal compound or a hydrogen containing no structure.
The modified vinyl aromatic copolymer has 0.5 structural units derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. Contains 65.0 mol% or more and 35.0 mol% or less of structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b). The content is preferably mol % or more and 99.5 mol % or less, and the molecular weight distribution (Mw/Mn) represented by the ratio of weight average molecular weight Mw to number average molecular weight Mn is preferably 10.0 or less. Further, the average number of the functional groups per molecule can be in the range of 2 to 20.
Examples of the monovinyl aromatic compound include styrene, vinylnaphthalene, vinylbiphenyl, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, m-ethylvinylbenzene, indene or p-ethylvinylbenzene.
 また、本発明は、アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物を反応させることにより多官能アニオン重合開始剤を生成させる開始反応工程と、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体を重合して、前記式(1)で表される多官能構造単位(e1)と活性末端を有するビニル芳香族系共重合体を得る重合工程と、前記ビニル芳香族系共重合体の活性末端に、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基を有する化合物、又はそれらの前駆体化合物を反応させて官能基を形成する末端変成工程と、を含むことを特徴とする請求項1~5のいずれかに記載の変性ビニル芳香族系共重合体の製造方法である。 The present invention also provides an alkali metal compound and one or more compounds selected from a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). an initiation reaction step of producing a polyfunctional anionic polymerization initiator by reacting; and polymerizing one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b). , a polymerization step for obtaining a vinyl aromatic copolymer having a polyfunctional structural unit (e1) represented by the formula (1) and an active end; and an amino group at the active end of the vinyl aromatic copolymer. , an alkoxysilyl group, and a hydroxyl group, or a terminal modification step of reacting a compound having at least one functional group selected from the group consisting of an alkoxysilyl group and a hydroxyl group, or a precursor compound thereof to form a functional group. A method for producing a modified vinyl aromatic copolymer according to any one of Items 1 to 5.
 更に、本発明は、共役ジエン化合物の重合体、又は共役ジエン化合物と芳香族ビニル化合物の共重合体に、上記の変性ビニル芳香族系共重合体を反応させて得られることを特徴とする変性共役ジエン系共重合体である。 Furthermore, the present invention provides a modified vinyl aromatic copolymer obtained by reacting a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound with the modified vinyl aromatic copolymer described above. It is a conjugated diene copolymer.
 上記変性共役ジエン系共重合体は、変性ビニル芳香族系共重合体に由来する構造単位(A1)を0.001~6重量%、共役ジエン化合物に由来する構造単位(B1)を29~99.999重量%及び芳香族ビニル化合物に由来する構造単位(C1)を0~70重量%含有することができる。そして、ゲルパーミエーションクロマトグラフィー(GPC)測定によって得られる微分分子量分布曲線において、全面積を100%とした場合に、最も低分子量側のピークの3倍以上(3Mp以上)の数平均分子量(Mn)を有する領域の面積が20%以上であることがよい。 The modified conjugated diene copolymer contains 0.001 to 6% by weight of the structural unit (A1) derived from the modified vinyl aromatic copolymer and 29 to 99% by weight of the structural unit (B1) derived from the conjugated diene compound. .999% by weight and 0 to 70% by weight of the structural unit (C1) derived from an aromatic vinyl compound. In the differential molecular weight distribution curve obtained by gel permeation chromatography (GPC) measurement, when the total area is taken as 100%, the number average molecular weight (Mn ) is preferably 20% or more.
 また、本発明は、上記の変性共役ジエン系共重合体100重量部に対し、シリカ系無機充填剤、金属酸化物、金属水酸化物及びカーボンブラックからなる群より選ばれる少なくとも1種の補強性充填剤を0.5~200重量部含有することを特徴とする樹脂組成物である。 In addition, the present invention provides that at least one reinforcing agent selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black is added to 100 parts by weight of the modified conjugated diene copolymer. This is a resin composition characterized by containing 0.5 to 200 parts by weight of a filler.
 樹脂組成物は架橋剤を更に含有することができる。また、本発明は架橋剤を更に含有する樹脂組成物を架橋してなることを特徴とする樹脂架橋物である。
 また、本発明はこの樹脂架橋物を含むことを特徴とする構造部材である。
The resin composition can further contain a crosslinking agent. Further, the present invention is a crosslinked resin product characterized by being formed by crosslinking a resin composition further containing a crosslinking agent.
Moreover, the present invention is a structural member characterized by containing this resin crosslinked product.
 本発明の変性ビニル芳香族系共重合体は、変性共役ジエン系共重合体の原料として使用することができる。更に、この変性共役ジエン系共重合体にフィラーを含有し、架橋させた架橋樹脂組成物は、フィラーの分散性に優れ、機械的強度、耐摩耗性に優れることから、タイヤ(特にタイヤトレッド)、免震用ゴム、ゴムホース、ゴムローラー、履物材料等のエラストマー材料として有用である。また、成型材料、樹脂の改質剤等に適用できる。電気・電子産業、宇宙・航空機産業、建築・建設産業等の分野において、誘電材料、絶縁材料、耐熱材料、構造材料、接着剤、封止剤、塗料、コーティング剤、シーリング材、印刷インキ、分散剤等として提供することができる。
 また、本発明の変性ビニル芳香族系共重合体を含有する硬化性樹脂組成物をコーティングしたフィルム及びシートは、プラスチック光学部品、タッチパネル、フラットディスプレイ、フィルム液晶素子などで好適に使用される。本発明の変性ビニル芳香族系共重合体は、フィルム、シート及びプリプレグの主材として使用される熱可塑性樹脂又は硬化性樹脂組成物の耐熱性、誘電特性、接着性・密着性及び光学特性等の特性を改質する改質剤として使用することもできる。また、本発明の多官能ビニル芳香族共重合体を主材として含有する硬化性樹脂組成物を、フィルム、シート及びプリプレグに加工して使用することもできる。更に、本発明の変性ビニル芳香族系共重合体を含有する硬化性樹脂組成物は光導波路や光学レンズを始めとする各種光学素子として使用することもできる。
The modified vinyl aromatic copolymer of the present invention can be used as a raw material for a modified conjugated diene copolymer. Furthermore, the crosslinked resin composition containing filler in this modified conjugated diene copolymer and crosslinking has excellent filler dispersibility, mechanical strength, and abrasion resistance, so it is suitable for tires (particularly tire treads). It is useful as an elastomer material for seismic isolation rubber, rubber hoses, rubber rollers, footwear materials, etc. It can also be applied to molding materials, resin modifiers, etc. Dielectric materials, insulating materials, heat-resistant materials, structural materials, adhesives, sealants, paints, coatings, sealants, printing inks, dispersions, etc. in the electrical/electronic industry, space/aircraft industry, architecture/construction industry, etc. It can be provided as an agent, etc.
Furthermore, films and sheets coated with the curable resin composition containing the modified vinyl aromatic copolymer of the present invention are suitably used in plastic optical parts, touch panels, flat displays, film liquid crystal devices, and the like. The modified vinyl aromatic copolymer of the present invention has properties such as heat resistance, dielectric properties, adhesion/adhesion, and optical properties of thermoplastic resins or curable resin compositions used as main materials for films, sheets, and prepregs. It can also be used as a modifier to modify the properties of. Furthermore, the curable resin composition containing the polyfunctional vinyl aromatic copolymer of the present invention as a main material can be processed into films, sheets, and prepregs for use. Furthermore, the curable resin composition containing the modified vinyl aromatic copolymer of the present invention can also be used as various optical elements such as optical waveguides and optical lenses.
ピークトップ分子量(Mp)、Mpの2倍の分子量(2Mp)、及びMpの3倍の分子量(3Mp)を示すGPCチャートを示す。A GPC chart showing a peak top molecular weight (Mp), a molecular weight twice Mp (2Mp), and a molecular weight three times Mp (3Mp) is shown.
 本発明の変性ビニル芳香族系共重合体(以下、変性共重合体又は共重合体ともいう。)は、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位からなる重合体であって、当該重合体中に多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を含有し、化合物(c)又は化合物(d)に由来する構造単位の50モル%以上が、(c)成分又は(d)成分の芳香族構造に由来する基R1、及び(c)成分又は(d)成分の芳香族構造以外に由来する基R2又はR3を有する下記式(1)で表される多官能構造単位(e1)となっており、
Figure JPOXMLDOC01-appb-C000003
 ここで、R1は炭素数6~30の芳香族炭化水素基を示し、R2は水素又は炭素数1~6の炭化水素基、R3は水素又は炭素数1~6の炭化水素基を示す。nは1~3の整数を示す。なお、Polymerは(a)成分又は(b)成分に由来する主たる重合体構造単位を示す。
 さらに当該重合体の末端が、アミノ基、アルコキシシリル基及び水酸基からなる群より選ばれる少なくとも1種の官能基により変性され、一分子当たり平均官能基数が2.0個以上である、数平均分子量Mnが500~30,000となっている。
The modified vinyl aromatic copolymer (hereinafter also referred to as a modified copolymer or copolymer) of the present invention is one selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b). A polymer consisting of structural units derived from more than one type of monomer, which contains a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms. Contains a structural unit derived from compound (d), and 50 mol% or more of the structural unit derived from compound (c) or compound (d) is derived from the aromatic structure of component (c) or component (d). It is a polyfunctional structural unit (e1) represented by the following formula (1) having a group R1 and a group R2 or R3 derived from a component other than the aromatic structure of the component (c) or the component (d),
Figure JPOXMLDOC01-appb-C000003
Here, R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. n represents an integer of 1 to 3. Note that Polymer indicates the main polymer structural unit derived from component (a) or component (b).
Furthermore, the terminal of the polymer is modified with at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, and the number average molecular weight is such that the average number of functional groups per molecule is 2.0 or more. Mn is 500 to 30,000.
 本発明の変性ビニル芳香族系共重合体は、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を含有し、(c)成分又は(d)成分に由来する構造単位の50モル%以上が、(c)成分又は(d)成分と有機アルカリ金属化合物との反応によって生成する上記式(1)で表される多官能構造単位(e1)となっており、この多官能構造単位(e1)又は(e2)は、共重合体を分岐させ、多官能とさせる架橋成分として重要な役割を果たす。多官能な変性ビニル芳香族系共重合体を使用して、共役ジエン化合物の重合体類の変性を行うと、高分子量の多分岐成分を生成し、耐磨耗性の向上が可能となる。 The modified vinyl aromatic copolymer of the present invention contains a structural unit derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. However, 50 mol% or more of the structural units derived from component (c) or (d) are represented by the above formula (1) produced by the reaction of component (c) or (d) with an organic alkali metal compound. This polyfunctional structural unit (e1) or (e2) plays an important role as a crosslinking component that branches the copolymer and makes it polyfunctional. When a conjugated diene compound polymer is modified using a polyfunctional modified vinyl aromatic copolymer, a high-molecular-weight, multi-branched component is produced, and the abrasion resistance can be improved.
 多官能ビニル芳香族化合物(c)の例としては、ジイソプロペニルベンゼン、ジビニルベンゼン、ジイソプロペニルナフタレン、ジビニルナフタレン、ジイソプロペニルビフェニル、ジビニルビフェニルが好ましく使用されるが、これらに限定されるものではない。例示した化合物は、各々、m-体、p-体などの異性体又はこれらの異性体混合物であってもよい。
 また、炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)の例としては、キシレン、トリメチルベンゼン、ジエチルベンゼン、トリエチルベンゼン、ジプロピルベンゼン、トリプロピルベンゼン、ジメチルナフタレン、トリメチルナフタレン、ジエチルナフタレン、トリエチルナフタレン、ジプロピルナフタレン、トリプロピルナフタレン、ジメチルビフェニル、トリメチルビフェニル、ジエチルビフェニル、トリエチルビフェニル、ジプロピルビフェニル、トリプロピルビフェニルが好ましく使用されるが、これらに限定されるものではない。例示した化合物は、各々、ジ置換体がm-体、p-体などの異性体又はこれらの異性体混合物、トリ置換体が1,2,4位-3置換体、又は1,3,5位-3置換体などの異性体又はこれらの異性体混合物であってもよい。
 これら(c)及び(d)は、単独又は2種以上を組み合わせて用いることができる。つまり、(c)及び(d)を組み合わせてもよい。成形加工性の観点から、より好ましくはジイソプロペニルベンゼン(m-体、p-体又はこれらの異性体混合物)、ジビニルベンゼン(m-体、p-体又はこれらの異性体混合物)、キシレン(m-体、p-体又はこれらの異性体混合物)、ジエチルベンゼン(m-体、p-体又はこれらの異性体混合物)である。
Examples of the polyfunctional vinyl aromatic compound (c) preferably include diisopropenylbenzene, divinylbenzene, diisopropenylnaphthalene, divinylnaphthalene, diisopropenylbiphenyl, and divinylbiphenyl, but are not limited to these. isn't it. Each of the exemplified compounds may be an isomer such as an m-form or a p-form, or a mixture of these isomers.
Examples of aromatic compounds (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms include xylene, trimethylbenzene, diethylbenzene, triethylbenzene, dipropylbenzene, tripropylbenzene, dimethylnaphthalene, trimethylnaphthalene. , diethylnaphthalene, triethylnaphthalene, dipropylnaphthalene, tripropylnaphthalene, dimethylbiphenyl, trimethylbiphenyl, diethylbiphenyl, triethylbiphenyl, dipropylbiphenyl, and tripropylbiphenyl are preferably used, but are not limited to these. The exemplified compounds are isomers such as m-isomer and p-isomer or mixtures of these isomers in which the di-substituted compound is the m-substituted compound, and the tri-substituted compound is the 1,2,4-3-substituted compound, or the 1,3,5-substituted compound. It may be an isomer such as a -3-substituted product or a mixture of these isomers.
These (c) and (d) can be used alone or in combination of two or more. In other words, (c) and (d) may be combined. From the viewpoint of moldability, diisopropenylbenzene (m-form, p-form or a mixture of these isomers), divinylbenzene (m-form, p-form or a mixture of these isomers), xylene ( m-form, p-form or a mixture of these isomers), and diethylbenzene (m-form, p-form or a mixture of these isomers).
 一方、本発明の変性ビニル芳香族系共重合体に含まれる構造単位であるモノビニル芳香族化合物(a)は、共重合体の溶剤可溶性、相溶性、及び加工性を改善する。モノビニル芳香族化合物の例としては、スチレン、ビニルナフタレン、ビニルビフェニル、α-メチルスチレンなどのビニル芳香族化合物;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルビニルベンゼン、m-エチルビニルベンゼン、p-エチルビニルベンゼンなどの核アルキル置換ビニル芳香族化合物;インデン、アセナフチレン、ベンゾチオフェン、クマロンなどの環状ビニル芳香族化合物などが挙げられるが、これらに制限されるものではない。
 共重合体のゲル化を防ぎ、溶媒への溶解性、相溶性、加工性の改善するために、特にスチレン、エチルビニルベンゼン、エチルビニルビフェニル、エチルビニルナフタレン、及びインデンがコスト及び入手の容易さの観点から、好まれて使用される。例示した化合物は、各々、m-体、p-体などの異性体又はこれらの異性体混合物であってもよい。
 相溶性とコストの観点から、より好ましくは、スチレン、エチルビニルベンゼン(m-体、p-体又はこれらの異性体混合物)、p-メチルスチレンである。
On the other hand, the monovinyl aromatic compound (a), which is a structural unit contained in the modified vinyl aromatic copolymer of the present invention, improves the solvent solubility, compatibility, and processability of the copolymer. Examples of monovinyl aromatic compounds include vinyl aromatic compounds such as styrene, vinylnaphthalene, vinylbiphenyl, α-methylstyrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, Nuclear alkyl-substituted vinyl aromatic compounds such as o-ethylvinylbenzene, m-ethylvinylbenzene, and p-ethylvinylbenzene; cyclic vinyl aromatic compounds such as indene, acenaphthylene, benzothiophene, and coumaron; There are no restrictions.
Styrene, ethylvinylbenzene, ethylvinylbiphenyl, ethylvinylnaphthalene, and indene, in particular, are used to prevent copolymers from gelling and to improve solvent solubility, compatibility, and processability due to their cost and availability. From this point of view, it is preferred and used. Each of the exemplified compounds may be an isomer such as an m-form or a p-form, or a mixture of these isomers.
From the viewpoint of compatibility and cost, styrene, ethylvinylbenzene (m-form, p-form or isomer mixture thereof), and p-methylstyrene are more preferred.
 本発明の変性ビニル芳香族系共重合体に含まれる構造単位である共役ジエン化合物(b)は、1)変性ビニル芳香族系共重合体に導入される変性基の導入効率を高めると共に、2)活性末端を有する共役ジエン化合物の重合体、又は、活性末端を有する共役ジエン化合物と芳香族ビニル化合物の共重合体に、変性ビニル芳香族系共重合体を反応させる際に、変性ビニル芳香族系共重合体の末端変性基の反応性を高める機能を有している。 The conjugated diene compound (b), which is a structural unit contained in the modified vinyl aromatic copolymer of the present invention, 1) increases the introduction efficiency of the modifying group introduced into the modified vinyl aromatic copolymer, and 2) ) When reacting a modified vinyl aromatic copolymer with a polymer of a conjugated diene compound having an active end or a copolymer of a conjugated diene compound with an active end and an aromatic vinyl compound, the modified vinyl aromatic It has the function of increasing the reactivity of the terminal modified group of the system copolymer.
 共役ジエン化合物としては、1分子当り4~12の炭素原子を含む共役ジエン化合物が好ましく、より好ましくは4~8の炭素原子を含む共役ジエン化合物である。このような共役ジエン化合物としては、以下のものに限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、芳香族ビニル化合物との共重合反応の容易さ、及び、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。 As the conjugated diene compound, a conjugated diene compound containing 4 to 12 carbon atoms per molecule is preferable, and a conjugated diene compound containing 4 to 8 carbon atoms is more preferable. Such conjugated diene compounds include, but are not limited to, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1 , 3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. Among these, 1,3-butadiene and isoprene are preferred from the viewpoint of ease of copolymerization reaction with aromatic vinyl compounds and ease of industrial availability. These may be used alone or in combination of two or more.
 本発明の変性ビニル芳香族系共重合体は、アミノ基(-NR)、アルコキシシリル基(Si-OR)及び水酸基(-OH)からなる群より選ばれる少なくとも1種の官能基を有する重合開始剤又は変性剤により変性され、一分子当たりの変性剤導入量は、「一分子当たり平均官能基数」に相当する。本発明の変性ビニル芳香族系共重合体は、一分子当たり平均官能基数が2.0個以上である。共重合体の数平均分子量を官能基当量で割ったときの値が、2.0以上であれば、2個以上が官能基化されていると判断できる。官能基を有する重合開始剤又は変性剤による導入量は、一分子あたり平均官能基数が好ましくは2.0~20個、より好ましくは2.0~10.0個、さらに好ましくは末端の2.0~6.0個である。特に好ましくは末端の2.0~4.0個である。 The modified vinyl aromatic copolymer of the present invention has a polymerization initiator having at least one functional group selected from the group consisting of an amino group (-NR), an alkoxysilyl group (Si-OR), and a hydroxyl group (-OH). The amount of the modifier introduced per molecule corresponds to the "average number of functional groups per molecule." The modified vinyl aromatic copolymer of the present invention has an average number of functional groups per molecule of 2.0 or more. If the value obtained by dividing the number average molecular weight of the copolymer by the functional group equivalent is 2.0 or more, it can be determined that two or more molecules are functionalized. The amount of the polymerization initiator or modifier having a functional group introduced is such that the average number of functional groups per molecule is preferably 2.0 to 20, more preferably 2.0 to 10.0, and even more preferably 2.0 to 10.0 at the terminal. The number is 0 to 6.0. Particularly preferred is the terminal number of 2.0 to 4.0.
 本発明の変性ビニル芳香族系共重合体は、例えば、以下の方法により製造することができる。
 すなわち、有機アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物とを反応させることにより多官能アニオン重合開始剤を生成させる開始反応工程と、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体を重合して、前記式(1)で表される多官能構造単位(e1)と活性末端を有するビニル芳香族系共重合体を得る重合工程と、前記ビニル芳香族系共重合体の活性末端に、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基を有する化合物、又はそれらの前駆体化合物を反応させて官能基を形成する末端変成工程と、を含む方法によって製造できる。
The modified vinyl aromatic copolymer of the present invention can be produced, for example, by the following method.
That is, an organic alkali metal compound is reacted with one or more compounds selected from polyfunctional vinyl aromatic compounds (c) or aromatic compounds having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). an initiation reaction step of producing a polyfunctional anionic polymerization initiator; and polymerizing one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b). A polymerization step for obtaining a vinyl aromatic copolymer having a polyfunctional structural unit (e1) represented by formula (1) and an active end, and an amino group, an alkoxy It can be produced by a method including a terminal modification step of reacting a compound having at least one functional group selected from the group consisting of a silyl group and a hydroxyl group, or a precursor compound thereof to form a functional group.
 本発明の変性ビニル芳香族系共重合体は、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)、モノビニル芳香族化合物に由来する構造単位(a)、及び、共役ジエン系化合物に由来する構造単位(b)を含有する共重合体であるが、(a)~(d)成分に由来する構造単位の効果を損なわない範囲内で、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「その他の単量体」とも言う。)を使用し、これらのその他の単量体(f)に由来する構造単位を共重合体中に導入することができる。 The modified vinyl aromatic copolymer of the present invention is derived from a polyfunctional vinyl aromatic compound (c), an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d), or a monovinyl aromatic compound. A copolymer containing a structural unit (a) derived from a conjugated diene compound and a structural unit (b) derived from a conjugated diene compound, but within a range that does not impair the effects of the structural units derived from components (a) to (d). In this method, compounds other than conjugated diene compounds and aromatic vinyl compounds (hereinafter also referred to as "other monomers") are used, and structural units derived from these other monomers (f) are copolymerized. Can be introduced during coalescence.
 上記のその他の単量体(f)の具体例としては、好ましくは、アクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる等が挙げられるが、これらに制限されるものではない。これらは単独で又は2種以上を組合せて用いることができる。その他の単量体(f)は、全単量体の30モル%未満の範囲内で使用されることがよい。それにより、その他の単量体(f)に由来する構造単位は、共重合体中の構造単位の総量に対して30モル%未満の範囲内で導入される。10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。 Specific examples of the above other monomer (f) preferably include acrylonitrile, methyl (meth)acrylate, ethyl (meth)acrylate, etc., but are not limited to these. isn't it. These can be used alone or in combination of two or more. Other monomers (f) may be used in an amount of less than 30 mol% of the total monomers. Thereby, the structural units derived from other monomers (f) are introduced within a range of less than 30 mol % based on the total amount of structural units in the copolymer. The content is preferably 10 mol% or less, more preferably 5 mol% or less.
 本発明の変性ビニル芳香族系共重合体の製造方法では、その開始反応工程に於いて、アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物を反応させることにより多官能アニオン重合開始剤を生成させる。 In the method for producing a modified vinyl aromatic copolymer of the present invention, in the initiation reaction step, an alkali metal compound and a polyfunctional vinyl aromatic compound (c) or an alkyl group having 1 to 3 carbon atoms are combined with 2 to 3 carbon atoms. A polyfunctional anionic polymerization initiator is produced by reacting one or more compounds selected from the four aromatic compounds (d).
 上記の開始反応工程に於いて生成する多官能アニオン重合開始剤の構造単位が、重合工程を経て、下記式(1)で表される多官能構造単位(e1)となる。
Figure JPOXMLDOC01-appb-C000004
 式(1)において、R1は炭素数6~30の芳香族炭化水素基を示し、R2は水素又は炭素数1~6の炭化水素基、R3は水素又は炭素数1~6の炭化水素基を示す。nは1~3の整数を示す。なお、Polymerは(a)成分又は(b)成分に由来する主たる重合体構造単位を示す。
 ここで、(c)成分又は(d)成分に由来する構造単位の50モル%以上が、(c)成分又は(d)成分の芳香族構造に由来する基R1、及び(c)成分又は(d)成分の芳香族構造以外に由来する基R2又はR3を有する式(1)で表される多官能構造単位(e1)となることが必要である。好ましくは70モル%以上であり、より好ましくは80モル%以上であり、特に好ましくは90モル%以上である。(c)成分又は(d)成分に由来する構造単位のうち、多官能構造単位(e1)の割合を、多官能構造度ともいう。
 本発明の変性ビニル芳香族系共重合体において、
(c)成分:多官能ビニル芳香族化合物(c)
(d)成分:炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)
のいずれか、あるいは、両方を原料として使用する。
 (c)成分を原料として使用した場合には、R2はビニル基のα位の水素又は炭素数1~6の炭化水素基である。そして、例えば、開始剤の有機アルカリ金属化合物としてブチルLi(CLi)を使用した場合、下記反応式で示すように、ブチルLiと(c)成分との反応により活性種が生成する。このため、ビニル基のβ位の炭素とブチルLi由来のブチル基を足したペンチル基がR3を示す。
Figure JPOXMLDOC01-appb-C000005
 一方、(d)成分を使用した場合には、(d)成分と開始剤の有機アルカリ金属化合物との反応は、例えばブチルLiを使用した場合、下記反応式で示すような連鎖移動反応となる。この場合、炭素から水素が一つ引き抜かれた後に残った水素がR3となる。
Figure JPOXMLDOC01-appb-C000006
The structural unit of the polyfunctional anionic polymerization initiator produced in the above initiation reaction step becomes a polyfunctional structural unit (e1) represented by the following formula (1) through a polymerization step.
Figure JPOXMLDOC01-appb-C000004
In formula (1), R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. show. n represents an integer of 1 to 3. Note that Polymer indicates the main polymer structural unit derived from component (a) or component (b).
Here, 50 mol% or more of the structural units derived from component (c) or (d) are groups R1 derived from the aromatic structure of component (c) or (d), and component (c) or ( It is necessary that the polyfunctional structural unit (e1) represented by formula (1) has a group R2 or R3 derived from a component other than the aromatic structure of component d). Preferably it is 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more. The proportion of polyfunctional structural units (e1) among the structural units derived from component (c) or component (d) is also referred to as the degree of polyfunctional structure.
In the modified vinyl aromatic copolymer of the present invention,
(c) Component: polyfunctional vinyl aromatic compound (c)
Component (d): aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms
Either or both of these are used as raw materials.
When component (c) is used as a raw material, R2 is hydrogen at the α-position of a vinyl group or a hydrocarbon group having 1 to 6 carbon atoms. For example, when butyl Li (C 4 H 9 Li) is used as the organic alkali metal compound of the initiator, active species are generated by the reaction between butyl Li and component (c), as shown in the reaction formula below. . Therefore, a pentyl group obtained by adding the carbon at the β-position of the vinyl group and the butyl group derived from butyl Li represents R3.
Figure JPOXMLDOC01-appb-C000005
On the other hand, when component (d) is used, the reaction between component (d) and the organic alkali metal compound as an initiator becomes a chain transfer reaction as shown in the following reaction formula, for example, when butyl Li is used. . In this case, the remaining hydrogen after one hydrogen is extracted from the carbon becomes R3.
Figure JPOXMLDOC01-appb-C000006
 (c)成分又は(d)成分に由来する構造単位の内、式(1)で表される多官能構造単位(e1)の占める割合(多官能構造度)は、任意に制御して変えられるパラメーターであるが、この比率が50モル%より小さいと、一分子あたりの平均官能基数が1.0個の変性ビニル芳香族系共重合体が多く含まれることとなり、共役ジエン系(共)重合体の変性にこの重合体を使用した場合、分岐反応が十分進行しないため、分子量が十分に増大せず、強度や耐摩耗性に対する改善効果が小さくなるという傾向を生じる。
 変性ビニル芳香族系共重合体における(c)成分に由来する残存ビニル含有量(モル%)は、(c)成分の総含有量に対する(c)成分に由来する残存ビニル基を含有する(c)成分の含有量を示すが、好ましくは30モル%以下、より好ましくは20モル%以下である。特に好ましくは10モル%以下、最も好ましくは5モル%以下である。ここで、残存ビニル含有量を30モル%以下の範囲に抑えることにより、変性剤の導入量を高めることから、共役ジエン系(共)重合体の変性にこの重合体を使用した場合、分子量が増大すると共に官能基数が高められるため、フィラーの分散性と耐摩耗性を両立するため好ましい。
Among the structural units derived from component (c) or component (d), the proportion of the polyfunctional structural unit (e1) represented by formula (1) (degree of polyfunctional structure) can be controlled and changed as desired. As a parameter, if this ratio is less than 50 mol%, a large amount of modified vinyl aromatic copolymer with an average number of functional groups per molecule of 1.0 will be included, and the conjugated diene (co)polymer will be When this polymer is used for modification of coalescence, the branching reaction does not proceed sufficiently, so that the molecular weight does not increase sufficiently, and the effect of improving strength and abrasion resistance tends to be small.
The residual vinyl content (mol%) derived from component (c) in the modified vinyl aromatic copolymer is the residual vinyl group derived from component (c) relative to the total content of component (c). ) The content of the component is preferably 30 mol% or less, more preferably 20 mol% or less. It is particularly preferably at most 10 mol%, most preferably at most 5 mol%. By suppressing the residual vinyl content to 30 mol% or less, the amount of modifier introduced can be increased, so when this polymer is used to modify a conjugated diene (co)polymer, the molecular weight As the number of functional groups increases, the number of functional groups increases, which is preferable in order to achieve both filler dispersibility and abrasion resistance.
 本発明の変性ビニル芳香族系共重合体の製造方法に於ける、開始反応工程で使用される有機アルカリ金属化合物は、特に制限されないが、例えば、有機リチウム化合物が好ましい。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム、フェニルリチウム、スチルベンリチウム、ナフチルリチウム等が挙げられる。
 有機アルカリ金属化合物の使用量は、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物のビニル基及びアルキル基の総量に対して、0.5~1.0倍モルとすることが好ましい。より好ましくは0.7~1.0倍モルである。アルカリ金属化合物の使用量が0.5倍モル未満となると、共役ジエン系(共)重合体の変性にこの重合体を使用した場合、分岐反応が十分進行しないため、分子量が十分に増大せず、強度や耐摩耗性に対する改善効果が小さくなるという傾向を生じる。一方、アルカリ金属化合物を、1.0倍モルを越えて使用すると、共役ジエン系(共)重合体の変性にこの重合体を使用した場合、ゲル分が生成するようになるという傾向を生じる。
 アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物を反応させることにより得られる多官能アニオン重合開始剤の使用量は、重合に使用するモノマー100gに対して、5.0~100mmolとすることが好ましい。
 開始反応工程で、アルカリ金属化合物と、シリカと相互作用する官能基を有する化合物との混合物を用いて行ってもよい。当該混合物の存在下で開始反応を行うことにより、本発明の変性ビニル芳香族系共重合体の重合開始末端を、シリカと相互作用を有する官能基で変性することができる。なお、本明細書に於いて、「シリカと相互作用する官能基」とは、窒素、硫黄、リン、酸素などのシリカと相互作用する元素を有する基を意味する。「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。
 重合開始末端の変性に用いる、シリカと相互作用する官能基を有する化合物としては、中でも、第2級アミン化合物などの窒素含有化合物が好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。
The organic alkali metal compound used in the initiation reaction step in the method for producing a modified vinyl aromatic copolymer of the present invention is not particularly limited, but, for example, an organic lithium compound is preferable. Specific examples of these include alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium, phenyllithium, stilbenelithium, naphthyllithium, etc. .
The amount of the organic alkali metal compound to be used is based on the vinyl group of one or more compounds selected from polyfunctional vinyl aromatic compounds (c) or aromatic compounds having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). The amount is preferably 0.5 to 1.0 times the total amount of alkyl groups. More preferably, it is 0.7 to 1.0 times the mole. If the amount of the alkali metal compound used is less than 0.5 times the mole, when this polymer is used to modify a conjugated diene (co)polymer, the branching reaction will not proceed sufficiently and the molecular weight will not increase sufficiently. , there is a tendency that the improvement effect on strength and wear resistance becomes smaller. On the other hand, if the alkali metal compound is used in an amount exceeding 1.0 times the molar amount, a gel component tends to be generated when this polymer is used to modify a conjugated diene (co)polymer.
Obtained by reacting an alkali metal compound with one or more compounds selected from polyfunctional vinyl aromatic compounds (c) or aromatic compounds having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d) The amount of the polyfunctional anionic polymerization initiator used is preferably 5.0 to 100 mmol per 100 g of monomer used for polymerization.
The initiation reaction step may be carried out using a mixture of an alkali metal compound and a compound having a functional group that interacts with silica. By carrying out the initiation reaction in the presence of the mixture, the polymerization initiation end of the modified vinyl aromatic copolymer of the present invention can be modified with a functional group that interacts with silica. In addition, in this specification, "the functional group which interacts with silica" means the group which has an element which interacts with silica, such as nitrogen, sulfur, phosphorus, and oxygen. "Interaction" refers to the formation of covalent bonds between molecules, or intermolecular forces weaker than covalent bonds (e.g., ion-dipole interactions, dipole-dipole interactions, hydrogen bonds, van der Waals It means the formation of electromagnetic forces (such as electromagnetic forces) that act between molecules.
Among the compounds having a functional group that interacts with silica and used for modifying the polymerization initiation terminal, nitrogen-containing compounds such as secondary amine compounds are preferred. Specific examples of the nitrogen-containing compound include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane.
 上記開始反応工程では、極性化合物を添加してもよい。極性化合物を添加することにより、開始反応と成長反応に関与し、分子量・分子量分布の制御や、重合反応の促進等にも効果がある。
 極性化合物としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等が挙げられる。これらの極性化合物は、単独で用いてもよく、2種以上組み合わせて用いてもよい。
 極性化合物の使用量は、特に限定されず、目的等に応じて選択することができる。通常、アルカリ金属化合物1モルに対して0.01~100モルであることが好ましい。
In the initiation reaction step, a polar compound may be added. By adding a polar compound, it participates in the initiation reaction and growth reaction, and is also effective in controlling the molecular weight and molecular weight distribution and promoting the polymerization reaction.
Examples of polar compounds include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, and 2,2-bis(2-oxolanyl)propane; Tertiary amine compounds such as methylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; alkali metal alkoxides such as potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, sodium amylate, etc. Compounds include phosphine compounds such as triphenylphosphine. These polar compounds may be used alone or in combination of two or more.
The amount of the polar compound to be used is not particularly limited, and can be selected depending on the purpose and the like. Usually, the amount is preferably 0.01 to 100 mol per 1 mol of the alkali metal compound.
 ジビニル芳香族化合物と、モノビニル芳香族化合物を含む単量体の共重合は、不活性溶媒中で溶液重合により行うことが好ましい。重合溶媒としては、特に限定されず、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が用いられる。具体的には、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、デカリン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素系溶媒が挙げられる。
 上記単量体及び重合溶媒は、それぞれ単独であるいはこれらの混合液を、有機金属化合物を用いて処理しておくことが好ましい。これにより、ジビニル芳香族化合物と、モノビニル芳香族化合物等の単量体や、重合溶媒に含まれているアレン類やアセチレン類を処理できる。その結果、高濃度の活性末端を有する重合体が得られるようになり、高い変性率を達成できるようになる。
Copolymerization of a monomer containing a divinyl aromatic compound and a monovinyl aromatic compound is preferably carried out by solution polymerization in an inert solvent. The polymerization solvent is not particularly limited, and for example, hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons are used. Specifically, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, and decalin; benzene, toluene, Examples include hydrocarbon solvents consisting of aromatic hydrocarbons such as xylene and mixtures thereof.
It is preferable that the above monomer and polymerization solvent are treated individually or as a mixture thereof with an organometallic compound. Thereby, monomers such as divinyl aromatic compounds and monovinyl aromatic compounds, and arenes and acetylenes contained in the polymerization solvent can be treated. As a result, a polymer having a high concentration of active terminals can be obtained, and a high modification rate can be achieved.
 共重合する際の重合温度はリビングアニオン重合が進行する温度であれば、特に限定されないが、生産性の観点から、-20℃~150℃であることが好ましく、重合終了後に末端変性工程において、活性末端への反応量を充分に確保する観点から、-20℃~120℃であることが好ましい。より好ましくは0℃~100℃である。 The polymerization temperature during copolymerization is not particularly limited as long as it is a temperature at which living anion polymerization proceeds, but from the viewpoint of productivity, it is preferably -20 ° C. to 150 ° C. In the terminal modification step after the completion of polymerization, From the viewpoint of ensuring a sufficient amount of reaction to the active end, the temperature is preferably -20°C to 120°C. More preferably it is 0°C to 100°C.
 上記重合反応の様式としては、特に限定されないが、回分式(「バッチ式」ともいう。)、連続式等の重合様式で行うことができる。連続式においては、1個又は2個以上の連結された反応器を用いることができる。反応器は、撹拌機付きの槽型、管型等のものが用いられる。回分式では、得られる重合体の分子量分布が一般に狭く、Mw/Mnでは1.0以上、3.0未満となりやすい。また、連続式では一般に分子量分布が広く、Mw/Mnでは1.5以上、10以下となりやすい。 The mode of the above polymerization reaction is not particularly limited, but it can be carried out in a batch mode (also referred to as a "batch mode"), a continuous mode, or the like. In continuous mode, one or more connected reactors can be used. The reactor used is a tank type, tube type, etc. equipped with a stirrer. In the batch method, the molecular weight distribution of the obtained polymer is generally narrow, and Mw/Mn tends to be 1.0 or more and less than 3.0. Further, in a continuous type, the molecular weight distribution is generally wide, and Mw/Mn tends to be 1.5 or more and 10 or less.
 本発明の製造方法では、重合工程で成分(c)又は成分(d)と有機アルカリ金属化合物との反応によって生成する式(1)で表される多官能構造単位(e1)と活性末端を有するビニル芳香族系共重合体を得た後、この活性末端に、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基を有する化合物(前駆体を含み、これらを変性剤ともいう)を反応させることにより、本発明の変性ビニル芳香族系共重合体の末端に官能基を導入する。
 変性剤は、共重合体の活性末端に反応し、本発明においては、共役ジエン化合物(b)由来の活性末端に結合する。共役ジエン化合物(b)由来の活性末端に結合する変性剤が、50モル%以上であることが、変性共役ジエン系共重合体の分子量を増大させ、自動車タイヤとして使用する場合、耐摩耗性を向上させる上で好ましい。好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上、特に好ましくは90モル%以上である。
In the production method of the present invention, the polyfunctional structural unit (e1) represented by the formula (1) produced by the reaction of component (c) or component (d) with an organic alkali metal compound in the polymerization step and an active terminal. After obtaining the vinyl aromatic copolymer, a compound (including a precursor) having at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group is added to the active terminal of the vinyl aromatic copolymer. A functional group is introduced into the terminal end of the modified vinyl aromatic copolymer of the present invention by reacting with (also referred to as).
The modifier reacts with the active end of the copolymer, and in the present invention binds to the active end derived from the conjugated diene compound (b). The content of the modifier bonded to the active end derived from the conjugated diene compound (b) is 50 mol% or more, which increases the molecular weight of the modified conjugated diene copolymer and improves its wear resistance when used as an automobile tire. It is preferable to improve the performance. Preferably it is 70 mol% or more, more preferably 80 mol% or more, still more preferably 85 mol% or more, particularly preferably 90 mol% or more.
 活性末端に官能基を有する化合物(前駆体を含む)を反応させる際の、反応温度、反応時間等については、特に限定されないが、-20℃~120℃で、30秒以上反応させることが好ましい。
 官能基を有する変性剤の添加量は、特に限定されないが、開始反応工程に於いて、アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物を反応させることにより得られる多官能アニオン重合開始剤により誘導される活性種の当量数に対して、官能基を有する変性剤の合計モル数が、0.3~6倍となる範囲であることが好ましい。より好ましい下限は0.5であり、さらに好ましくは0.7であり、特に好ましくは0.9である。一方、より好ましい上限は3倍であり、さらに好ましくは2倍であり、特に好ましくは1.5倍である。添加量が0.3倍以上であれば、目的とする変性ビニル芳香族共重合体において十分な変性率を得る観点から好ましい。
The reaction temperature, reaction time, etc. when reacting a compound having a functional group at the active end (including a precursor) are not particularly limited, but it is preferable to react at -20°C to 120°C for 30 seconds or more. .
The amount of the modifier having a functional group to be added is not particularly limited, but in the initiation reaction step, the alkali metal compound and the polyfunctional vinyl aromatic compound (c) or the alkyl group having 1 to 3 carbon atoms are combined with 2 to 4 The sum of the modifiers having functional groups relative to the equivalent number of active species induced by the polyfunctional anionic polymerization initiator obtained by reacting one or more compounds selected from the aromatic compounds (d) The number of moles is preferably in a range of 0.3 to 6 times. The lower limit is more preferably 0.5, still more preferably 0.7, particularly preferably 0.9. On the other hand, a more preferable upper limit is 3 times, still more preferably 2 times, and particularly preferably 1.5 times. If the amount added is 0.3 times or more, it is preferable from the viewpoint of obtaining a sufficient modification rate in the target modified vinyl aromatic copolymer.
 末端変性工程は、重合工程が回分式の場合は、重合工程で用いた反応器中で続いて変性反応を行っても、次の反応器に移送して行ってもよい。重合工程が連続式の場合は次の反応器に移送して行う。末端変性工程は、好ましくは重合工程に引き続いて、直ちに行い、好ましくは5分以内に変性剤を混合して反応を行わせる。変性反応のための反応器は十分な撹拌が行われるものが好ましい。具体的には、スタティックミキサー型反応器、攪拌機付漕型反応器等がある。 When the polymerization process is a batch process, the terminal modification step may be carried out in the same reactor used in the polymerization step, or may be carried out by being transferred to the next reactor. If the polymerization process is continuous, it is carried out by transferring to the next reactor. The terminal modification step is preferably carried out immediately following the polymerization step, and preferably within 5 minutes, the modifier is mixed and the reaction is carried out. The reactor for the modification reaction is preferably one that allows sufficient stirring. Specifically, there are static mixer type reactors, stirrer-equipped tank type reactors, and the like.
 末端変性工程は、ビニル芳香族系共重合体の活性末端に、アミノ基、アルコキシシリル基、水酸基から選ばれる少なくとも1種の官能基を有する変性剤を反応させて変性する工程である。変性剤は、官能基としてアミノ基、アルコキシシリル基又は水酸基を有することを必須とし、本発明の目的を阻害しない限り、他の官能基、例えばハロゲン基、ケトン基、エステル基、アミド基、エポキシ基を有してもよい。 The terminal modification step is a step in which the active end of the vinyl aromatic copolymer is reacted with a modifier having at least one functional group selected from an amino group, an alkoxysilyl group, and a hydroxyl group. The modifier must have an amino group, an alkoxysilyl group, or a hydroxyl group as a functional group, and other functional groups, such as a halogen group, a ketone group, an ester group, an amide group, and an epoxy group, must be used as a functional group. It may have a group.
 アミノ基を有する変性剤としては、特に限定されないが、具体的には、分子内にアミノ基及び重合体活性末端と結合する官能基を有し、好ましくは活性水素を有しない化合物が挙げられる。アミノ基としては、特に限定されないが、具体的には、アルカリ金属に対し不活性な官能基が好ましく、2置換アミノ基、すなわち第3級アミン、保護された1置換アミノ基、2個の水素が保護されたアミノ基が好ましい。なお、保護された1置換アミノ基又は2個の水素が保護されたアミノ基の例としては、1置換アミノ基の1個の水素又はアミノ基の2個の水素をトリアルキルシリル基でそれぞれ置換したものが挙げられる。 The modifier having an amino group is not particularly limited, but specifically includes a compound having an amino group and a functional group bonding to the active end of the polymer in the molecule, and preferably having no active hydrogen. The amino group is not particularly limited, but specifically, a functional group inert to alkali metals is preferable, such as a di-substituted amino group, i.e., a tertiary amine, a protected mono-substituted amino group, or a group containing two hydrogen atoms. A protected amino group is preferred. Examples of protected monosubstituted amino groups or amino groups in which two hydrogens are protected include one hydrogen of a monosubstituted amino group or two hydrogens of an amino group each substituted with a trialkylsilyl group. The following can be mentioned.
 アルコキシシリル基を有する変性剤としては、特に限定されないが、具体的には、分子内に複数のアルコキシシリル基を有する化合物(これには複数のアルコキシ基が結合したシリル基を有する化合物を含む)、及び、分子内にアルコキシシリル基及び重合体活性末端と結合する官能基を有する化合物が挙げられる。なお、これらは、活性水素を有しない化合物であることが好ましい。 The modifier having an alkoxysilyl group is not particularly limited, but specifically, a compound having a plurality of alkoxysilyl groups in the molecule (this includes a compound having a silyl group to which a plurality of alkoxy groups are bonded) and compounds having an alkoxysilyl group and a functional group bonding to the polymer active end in the molecule. Note that these are preferably compounds that do not have active hydrogen.
 水酸基を形成する変性剤としては、特に限定されないが、具体的には、重合体活性末端と結合する官能基であって、結合反応後に水酸基が生成する官能基を有する化合物、重合体活性末端と結合しない官能基であって、後に加水分解等の反応によって水酸基が生成する官能基を有する化合物が挙げられ、活性水素を有しない化合物であることが好ましい。
 結合反応後に水酸基が生成する官能基を有する化合物としては、ケトン基、エステル基、アミド基、エポキシ基等を有する化合物が挙げられる。また、結合反応後に加水分解等の反応によって水酸基が生成する官能基を有する化合物としては、アルコキシシリル基、アミノシリル基等を有する化合物が挙げられる。
Modifiers that form hydroxyl groups are not particularly limited, but specifically include compounds that have a functional group that binds to the active end of the polymer and that generates a hydroxyl group after the bonding reaction; Examples include compounds that have a functional group that does not bond and that later generates a hydroxyl group through a reaction such as hydrolysis, and are preferably compounds that do not have active hydrogen.
Examples of the compound having a functional group that produces a hydroxyl group after the bonding reaction include compounds having a ketone group, an ester group, an amide group, an epoxy group, and the like. Moreover, examples of compounds having a functional group that generates a hydroxyl group through a reaction such as hydrolysis after a bonding reaction include compounds having an alkoxysilyl group, an aminosilyl group, and the like.
 変性剤の具体的な例を以下に示す。重合体活性末端と結合して重合体の末端にアミノ基を形成する化合物としては、特に限定されないが、N,N’-ジシクロヘキシルカルボジイミド等のC=N二重結合化合物が例示される。
 重合体活性末端と結合して重合体の末端にアミノ基及び水酸基を形成する化合物としては、特に限定されないが、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーズケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン等のアミノ基を有するケトン化合物;N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状尿素化合物;環状アミド、すなわちラクタム化合物;N,N,N’,N’-テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のアミノ基含有エポキシ化合物;特開2001-131227に記載の含窒素複素環式基を有するエポキシ化合物等が例示される。
 重合体活性末端と結合して重合体の末端にアルコキシシリル基を形成する化合物としては、特に限定されないが、トリメトキクロロシシラン、トリエトキシクロロシラン、ジフェノキシジクリロロシラン等のハロゲン化アルコキシシラン化合物;ビス(トリメトキシシリル)エタン、ビス(3-トリエトキシシリルプロピル)エタン等の多官能アルコキシシラン化合物等が例示される。
 重合体活性末端と結合して重合体の末端にアルコキシシリル基及び水酸基を形成する化合物としては、特に限定されないが、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランエポキシ基及びアルコキシシリル基を分子内に有するポリシロキサン化合物等が例示される。
Specific examples of the modifier are shown below. The compound that binds to the active end of the polymer to form an amino group at the end of the polymer is not particularly limited, but examples include C=N double bond compounds such as N,N'-dicyclohexylcarbodiimide.
The compound that binds to the active end of the polymer to form an amino group and a hydroxyl group at the end of the polymer is not particularly limited, but N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone ( Ketone compounds having an amino group such as Michler's ketone), N,N,N',N'-tetraethyl-4,4'-diaminobenzophenone; cyclic urea compounds such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone Cyclic amides, ie, lactam compounds; Amino group-containing epoxy compounds such as N,N,N',N'-tetraglycidyl-1,3-bisaminomethylcyclohexane; Nitrogen-containing heterocyclics described in JP-A No. 2001-131227 Examples include epoxy compounds having groups.
Compounds that combine with the active end of the polymer to form an alkoxysilyl group at the end of the polymer include, but are not particularly limited to, halogenated alkoxysilane compounds such as trimethoxychlorosilane, triethoxychlorosilane, and diphenoxydicrylorosilane. ; Examples include polyfunctional alkoxysilane compounds such as bis(trimethoxysilyl)ethane and bis(3-triethoxysilylpropyl)ethane.
Compounds that combine with the active end of the polymer to form an alkoxysilyl group and a hydroxyl group at the end of the polymer include, but are not particularly limited to, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane epoxy Examples include polysiloxane compounds having a group and an alkoxysilyl group in the molecule.
 重合体活性末端と結合して重合体の末端にアミノ基及びアルコキシシリル基を形成する化合物としては、特に限定されないが、3-ジメチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルジメトキシメチルシラン、3-ジメチルアミノプロピルトリエトキシシラン、ビス(3-トリメトキシシリルプロピル)メチルアミン、ビス(3-トリエトキシシリルプロピル)メチルアミン等のアミノ置換基を有するアルキル基が結合したアルコキシシラン化合物;N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、3-(4-トリメチルシリル-1-ピペラジニル)プロピルトリエトキシシラン等のWO2007/034785号に記載の保護された1置換アミノ基が結合したアルコキシシラン化合物;N-〔2-(トリメトキシシラニル)-エチル〕-N,N’,N’-トリメチルエタン-1,2-ジアミン、1-〔3-(トリエトキシシラニル)-プロピル〕-4-メチルピペラジン、2-(トリメトキシシラニル)-1,3-ジメチルイミダゾリジン、ビス-(3-ジメチルアミノプロピル)-ジメトキシシラン等のWO2008/013090に記載の複数の置換アミノ基が結合したアルコキシシラン化合物;1,4-ビス〔3-(トリメトキシシリル)プロピル〕ピペラジン、1,4-ビス〔3-(トリエトキシシリル)プロピル〕ピペラジン等のWO2011/040312に記載の含窒素複素環が結合したアルコキシシラン化合物;3-〔N,N-ビス(トリメチルシリル)アミノ〕プロピルトリメトキシシラン、3-〔N,N-ビス(トリメチルシリル)アミノ〕プロピルメチルジエトキシシラン、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタン等のWO2011/129425号に記載のアザシラン基が結合したアルコキシシラン化合物等が例示される。
 重合体活性末端と結合して重合体の末端に水酸基を形成する化合物としては、特に限定されないが、エチレンオキサイド、プロピレンオキサイド等のエポキシ化合物;ベンゾフェノン等のケトン化合物等が例示される。
Compounds that combine with the active end of the polymer to form an amino group and an alkoxysilyl group at the end of the polymer include, but are not particularly limited to, 3-dimethylaminopropyltrimethoxysilane, 3-dimethylaminopropyldimethoxymethylsilane, 3-dimethylaminopropyldimethoxymethylsilane, -Alkoxysilane compounds to which an alkyl group having an amino substituent is bonded, such as dimethylaminopropyltriethoxysilane, bis(3-trimethoxysilylpropyl)methylamine, bis(3-triethoxysilylpropyl)methylamine; N-[ WO2007/3-(triethoxysilyl)-propyl]-N,N'-diethyl-N'-trimethylsilyl-ethane-1,2-diamine, 3-(4-trimethylsilyl-1-piperazinyl)propyltriethoxysilane, etc. Alkoxysilane compound to which a protected monosubstituted amino group is bonded as described in No. 034785; N-[2-(trimethoxysilanyl)-ethyl]-N,N',N'-trimethylethane-1,2-diamine , 1-[3-(triethoxysilanyl)-propyl]-4-methylpiperazine, 2-(trimethoxysilanyl)-1,3-dimethylimidazolidine, bis-(3-dimethylaminopropyl)-dimethoxysilane Alkoxysilane compounds with multiple substituted amino groups bonded as described in WO2008/013090 such as 1,4-bis[3-(trimethoxysilyl)propyl]piperazine, 1,4-bis[3-(triethoxysilyl) Alkoxysilane compounds bonded with nitrogen-containing heterocycles described in WO2011/040312 such as [propyl]piperazine; 3-[N,N-bis(trimethylsilyl)amino]propyltrimethoxysilane, ) amino] propylmethyldiethoxysilane, 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1-aza-2-silacyclopentane, 2,2-diethoxy-1-(3-triethoxysilyl Examples include alkoxysilane compounds bonded with azasilane groups described in WO2011/129425 such as propyl)-1-aza-2-silacyclopentane.
The compound that binds to the active end of the polymer to form a hydroxyl group at the end of the polymer is not particularly limited, but examples thereof include epoxy compounds such as ethylene oxide and propylene oxide; ketone compounds such as benzophenone.
 上記の製造方法によって得られる本発明の変性ビニル芳香族共重合体は、反応性の、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基によって変性されている。よって、単独で成形、硬化させてもよいが、他の重合性樹脂を官能基変性及び高分子量の多分岐成分合成に利用することがよい。特に、本発明の変性ビニル芳香族共重合体は、共役ジエン化合物単独、及び/又は、共役ジエン化合物と他の単量体と共重合させた共役ジエン系共重合体(ゴム)を得る際に、官能基変性及び高分子量の多分岐成分合成のために使用される。
 本発明の変性ビニル芳香族共重合体は、反応を開始させる際に、(c)成分又は(d)成分を有機アルカリ金属化合物と反応させると、(c)成分又は(d)成分が複数の有機アルカリ金属化合物と反応した、複数の分岐鎖の起点となる多分岐成分が生成する。この(c)成分又は(d)成分由来の多分岐成分の割合を、開始剤由来多官能構造度と定義し、原料の(c)成分又は(d)成分の総量に対するモル分率で表す。開始剤由来多官能構造度は、好ましくは0.50以上、より好ましくは0.70以上である。さらに好ましくは0.80以上であり、特に好ましくは0.90以上である。開始剤由来多官能構造度を0.50以上にすることにより、変性剤の導入量を高められることから、共役ジエン系(共)重合体の変性にこの重合体を使用した場合、フィラーの分散性と耐摩耗性が両立するため好ましい。
The modified vinyl aromatic copolymer of the present invention obtained by the above production method is modified with at least one reactive functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group. Therefore, although it may be molded and cured alone, it is preferable to use other polymerizable resins for functional group modification and synthesis of high molecular weight multibranched components. In particular, the modified vinyl aromatic copolymer of the present invention can be used to obtain a conjugated diene copolymer (rubber) obtained by copolymerizing a conjugated diene compound alone and/or a conjugated diene compound and other monomers. , used for functional group modification and synthesis of high molecular weight hyperbranched components.
In the modified vinyl aromatic copolymer of the present invention, when component (c) or component (d) is reacted with an organic alkali metal compound when starting the reaction, component (c) or component (d) is A multi-branched component that reacts with the organic alkali metal compound and serves as the origin of multiple branched chains is generated. The proportion of the multibranched component derived from component (c) or component (d) is defined as the degree of polyfunctional structure derived from the initiator, and is expressed as a molar fraction with respect to the total amount of component (c) or component (d) in the raw material. The degree of polyfunctional structure derived from the initiator is preferably 0.50 or more, more preferably 0.70 or more. More preferably, it is 0.80 or more, particularly preferably 0.90 or more. By setting the degree of polyfunctional structure derived from the initiator to 0.50 or more, the amount of modifier introduced can be increased, so when this polymer is used to modify a conjugated diene (co)polymer, the dispersion of the filler is This is preferable because it has both properties and abrasion resistance.
 本発明の変性共重合体は、共役ジエン系(共)重合体(ゴム)の改質剤として優れる。その詳細なメカニズムは不明であるが、本発明の変性共重合体に適切な量の官能基が導入されていることにより、ゴムが改質されて、変性共役ジエン系共重合体(変性ゴム)となり、これが補強性充填剤近傍に集中しやすくなり、補強性充填剤の補強効果が大きくなり、得られる架橋物の耐摩耗性の向上につながると推定される。
 また、変性ゴムを介することで、本発明の変性共役ジエン系共重合体と補強性充填剤との親和性が向上し、樹脂組成物中の補強性充填剤等各成分の分散状態が、得られる架橋物の物性向上(例えば、耐摩耗性の向上、操縦安定性の向上、ドライグリップ性能、ウェットグリップ性能)のためには理想的になると推定される。
 一方、変性共役ジエン系共重合体としてその官能基数が大きくなり過ぎると、補強性充填剤に吸着した共重合体同士の相互作用により、補強性充填剤を凝集させてしまうこととなり、この共重合体が、変性共役ジエン系共重合体と補強性充填剤との親和性向上に寄与しないものと推定される。
The modified copolymer of the present invention is excellent as a modifier for conjugated diene (co)polymers (rubbers). Although the detailed mechanism is unknown, by introducing an appropriate amount of functional groups into the modified copolymer of the present invention, the rubber is modified, resulting in a modified conjugated diene copolymer (modified rubber). It is presumed that this tends to concentrate near the reinforcing filler, increasing the reinforcing effect of the reinforcing filler, and leading to improvement in the abrasion resistance of the resulting crosslinked product.
Furthermore, by using the modified rubber, the affinity between the modified conjugated diene copolymer of the present invention and the reinforcing filler is improved, and the dispersion state of each component such as the reinforcing filler in the resin composition is improved. It is estimated that this will be ideal for improving the physical properties of the crosslinked product (for example, improving abrasion resistance, improving handling stability, dry grip performance, and wet grip performance).
On the other hand, if the number of functional groups in the modified conjugated diene copolymer becomes too large, the reinforcing filler will aggregate due to the interaction between the copolymers adsorbed on the reinforcing filler, and this copolymer will aggregate. It is presumed that the coalescence does not contribute to improving the affinity between the modified conjugated diene copolymer and the reinforcing filler.
 変性ビニル芳香族系共重合体一分子当たりの平均官能基数は、変性ビニル芳香族系共重合体(A)の官能基の当量(g/eq)とスチレン換算の数平均分子量Mnより、下記数式(1)によって求めることができる。
 一分子当たりの平均官能基数=[(数平均分子量Mn)/(ジビニル芳香族化合物単位及びモノビニル芳香族化合物の平均分子量)]/(官能基の当量)  (1)
 なお、変性ビニル芳香族系共重合体(A)の官能基の当量は、官能基1個当たりに結合しているジビニル芳香族化合物単位及びモノビニル芳香族化合物の質量を意味する。官能基の当量は、H-NMR又は13C-NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出することができる。
The average number of functional groups per molecule of the modified vinyl aromatic copolymer is determined by the following formula from the functional group equivalent (g/eq) of the modified vinyl aromatic copolymer (A) and the number average molecular weight Mn in terms of styrene. It can be obtained by (1).
Average number of functional groups per molecule = [(number average molecular weight Mn)/(average molecular weight of divinyl aromatic compound unit and monovinyl aromatic compound)]/(equivalent of functional group) (1)
Note that the equivalent weight of the functional group of the modified vinyl aromatic copolymer (A) means the mass of the divinyl aromatic compound unit and monovinyl aromatic compound bonded per functional group. The equivalent weight of the functional group can be calculated from the area ratio of the peak derived from the functional group and the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR.
 変性ビニル芳香族系共重合体(A)における一分子当たりの平均官能基数は、2~20個であることが好ましい。より好ましくは、2~10個である。特に好ましくは2~5個である。一分子当たりの平均官能基数が20個を超えると、補強性充填剤(D)を分散させたときの粘度の上昇、加工性が悪化し、得られる架橋物の耐摩耗性も低下する傾向にある。一分子当たりの平均官能基数が2個より低い場合には、補強性充填剤(D)の分散性効果に乏しく、補強性充填剤(D)などの分散状態が得られる架橋物の物性向上のためには理想的にならない傾向にある。なお、変性ビニル芳香族系共重合体(A)中に付加されたアミノ基、アルコキシシリル基、水酸基から選ばれる少なくとも1種の官能基を有する変性剤の導入量は、例えば、核磁気共鳴分光法等の各種分析機器を用いて求めることができる。 The average number of functional groups per molecule in the modified vinyl aromatic copolymer (A) is preferably 2 to 20. More preferably, the number is 2 to 10. Particularly preferably 2 to 5 pieces. If the average number of functional groups per molecule exceeds 20, the viscosity increases when the reinforcing filler (D) is dispersed, processability deteriorates, and the wear resistance of the resulting crosslinked product tends to decrease. be. When the average number of functional groups per molecule is lower than 2, the dispersibility effect of the reinforcing filler (D) is poor, and it is difficult to improve the physical properties of the crosslinked product in which the reinforcing filler (D) can be dispersed. This tends to be less than ideal. The amount of the modifier added into the modified vinyl aromatic copolymer (A) having at least one functional group selected from an amino group, an alkoxysilyl group, and a hydroxyl group can be determined by, for example, nuclear magnetic resonance spectroscopy. It can be determined using various analytical instruments such as methods.
 本発明の変性ビニル芳香族共重合体は、多官能ビニル芳香族化合物(c)及び炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を0.5~35.0モル%含有する。
 構造単位が、(a)、(b)、(c)及び(d)由来の構造単位だけからなる場合は、多官能ビニル芳香族化合物(c)及び炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位は、(a)、(b)、(c)及び(d)由来の構造単位の総和に対して0.005~0.35となる。このモル分率は、下記数式(2)で計算される。
 [(c)+(d)]/[(a)+(b)+(c)+(d)]   (2)
(ここで、(a):モノビニル芳香族化合物(a)に由来する構造単位のモル分率、(b):共役ジエン化合物(b)に由来する構造単位、(c):ジビニル芳香族化合物(c)に由来する構造単位のモル分率、及び、炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位のモル分率である。)
 上記モル分率は、好ましい下限は0.006、より好ましくは0.007である。また、好ましい上限は、0.35、より好ましくは0.30である。最適には、0.01~0.25である。
 なお、(a)、(b)、(c)及び(d)に由来する以外の構造単位を含む場合においては、好ましい含有率の下限は0.2モル%、より好ましくは0.4モル%であり、更に好ましくは0.6モル%である。また、好ましい上限は、35モル%、より好ましくは30モル%であり、更に好ましくは25モル%である。
The modified vinyl aromatic copolymer of the present invention has 0.0.5 structural units derived from a polyfunctional vinyl aromatic compound (c) and an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. Contains 5 to 35.0 mol%.
When the structural unit consists only of structural units derived from (a), (b), (c) and (d), the polyfunctional vinyl aromatic compound (c) and an alkyl group having 1 to 3 carbon atoms are The number of structural units derived from the aromatic compound (d), which has four, is 0.005 to 0.35 relative to the total of the structural units derived from (a), (b), (c), and (d). This molar fraction is calculated using the following formula (2).
[(c)+(d)]/[(a)+(b)+(c)+(d)] (2)
(Here, (a): molar fraction of structural units derived from monovinyl aromatic compound (a), (b): structural units derived from conjugated diene compound (b), (c): divinyl aromatic compound ( The mole fraction of the structural unit derived from c) and the mole fraction of the structural unit derived from the aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms.)
The lower limit of the above mole fraction is preferably 0.006, more preferably 0.007. Moreover, a preferable upper limit is 0.35, more preferably 0.30. Optimally, it is between 0.01 and 0.25.
In addition, when containing structural units other than those derived from (a), (b), (c) and (d), the lower limit of the preferable content is 0.2 mol%, more preferably 0.4 mol%. and more preferably 0.6 mol%. Moreover, a preferable upper limit is 35 mol%, more preferably 30 mol%, and still more preferably 25 mol%.
 本発明の変性ビニル芳香族共重合体は、モノビニル芳香族化合物(a)及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位を65.0~99.5モル%含有する。モル分率で言えば、0.65~0.995である。好ましい下限は0.70である。より好ましい下限は0.75である。また、好ましい上限は、0.994、より好ましくは0.993である。最適には、0.75~0.99である。 The modified vinyl aromatic copolymer of the present invention has 65.0 to 99 structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b). Contains .5 mol%. In terms of mole fraction, it is 0.65 to 0.995. A preferable lower limit is 0.70. A more preferable lower limit is 0.75. Further, a preferable upper limit is 0.994, more preferably 0.993. Optimally, it is between 0.75 and 0.99.
 モノビニル芳香族化合物(a)及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位のモル分率は、構造単位(a)、(b)、(c)及び(d)だけからなる場合は、下記数式(3)で計算される。
 [(a)+(b)]/[(a)+(b)+(c)+(d)]  (3)
(ここで、(a)、(b)、(c)及び(d)は、数式(3)と同義である。)
 なお、(a)、(b)、(c)及び(d)由来の構造単位以外の構造単位を含む場合に
おいても、(a)及び(b)由来の構造単位の好ましいモル分率は、上記の範囲である。
The molar fraction of structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b) is the structural units (a), (b), (c ) and (d), it is calculated using the following formula (3).
[(a)+(b)]/[(a)+(b)+(c)+(d)] (3)
(Here, (a), (b), (c) and (d) are synonymous with formula (3).)
In addition, even when structural units other than the structural units derived from (a), (b), (c) and (d) are included, the preferable molar fraction of the structural units derived from (a) and (b) is as described above. is within the range of
 本発明の変性ビニル芳香族共重合体には、上記構造単位に加えて、他の構造単位を含有することができる。他の構造単位の詳細は製造方法の説明から理解される。 The modified vinyl aromatic copolymer of the present invention can contain other structural units in addition to the above structural units. Details of other structural units can be understood from the description of the manufacturing method.
 本発明の変性ビニル芳香族共重合体のMn(ゲル浸透クロマトグラフィーを用いて測定される標準ポリスチレン換算の数平均分子量)は、500~30,000である。好ましい下限は600であり、より好ましくは700であり、さらに好ましくは800であり、特に好ましくは900である。一方、好ましい上限は25,000であり、より好ましくは20,000であり、さらに好ましくは15,000であり、特に好ましくは10,000である。Mnが500未満であると共重合体中に含まれる官能基量が減るため、共役ジエン系共重合体の活性末端との反応性が低下する傾向にあり、また、30,000を超えると、ゲルが生成しやすくなる他、成形加工性や引張破断伸びが低下する傾向にある。分子量分布(Mw/Mn)の好ましい上限は、10.0以下であり、より好ましくは5.0以下である。特に好ましくは3.0である。Mw/Mnが10.0を超えると、共重合ゴムの加工特性が悪化する傾向にある他、ゲルが発生する傾向にある。 The Mn (number average molecular weight measured using gel permeation chromatography in terms of standard polystyrene) of the modified vinyl aromatic copolymer of the present invention is 500 to 30,000. A preferable lower limit is 600, more preferably 700, still more preferably 800, particularly preferably 900. On the other hand, a preferable upper limit is 25,000, more preferably 20,000, still more preferably 15,000, and particularly preferably 10,000. When Mn is less than 500, the amount of functional groups contained in the copolymer decreases, so the reactivity with the active end of the conjugated diene copolymer tends to decrease, and when it exceeds 30,000, In addition to becoming more likely to generate gel, moldability and tensile elongation at break tend to decrease. The upper limit of the molecular weight distribution (Mw/Mn) is preferably 10.0 or less, more preferably 5.0 or less. Particularly preferred is 3.0. When Mw/Mn exceeds 10.0, the processing characteristics of the copolymer rubber tend to deteriorate and gels tend to occur.
 本発明の変性ビニル芳香族共重合体は、トルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムから選ばれる溶剤に可溶であるが、有利には上記溶剤のいずれにも可溶である。そして、これらの溶剤100gに50g以上溶解するものであることがよい。より好ましくは80g以上溶解するものである。 The modified vinyl aromatic copolymer of the present invention is soluble in a solvent selected from toluene, xylene, tetrahydrofuran, dichloroethane or chloroform, but advantageously any of the abovementioned solvents. It is preferable that 50 g or more of the solvent is dissolved in 100 g of these solvents. More preferably, it dissolves 80 g or more.
 得られる本発明の変性ビニル芳香族共重合体は、反応性の、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基を有するので、単独で成形、硬化させてもよいが、他の重合性樹脂を官能基変性及び高分子量の多分岐成分合成に利用することがよい。特に、本発明の変性ビニル芳香族共重合体は、共役ジエン化合物単独、及び/又は、共役ジエン化合物と他の単量体と共重合させた共役ジエン系共重合体(ゴム)を得る際に、官能基変性及び高分子量の多分岐成分合成のために使用される。 The obtained modified vinyl aromatic copolymer of the present invention has at least one reactive functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, so it can be molded and cured alone. However, it is preferable to use other polymerizable resins for functional group modification and synthesis of high molecular weight, multi-branched components. In particular, the modified vinyl aromatic copolymer of the present invention can be used to obtain a conjugated diene copolymer (rubber) obtained by copolymerizing a conjugated diene compound alone and/or a conjugated diene compound and other monomers. , used for functional group modification and synthesis of high molecular weight hyperbranched components.
 原料として本発明の多官能ビニル芳香族共重合体(A)と、1)共役ジエン化合物(B)、又は2)共役ジエン化合物(B)及び芳香族ビニル化合物(C)を共重合させることにより、本発明の変性ビニル芳香族系共重合体に基づく分岐高分子型変性基(A)を有する変性共役ジエン系共重合体が得られる。芳香族ビニル化合物(C)を使用しない場合は、ブタジエンゴムやイソプレンゴムのような変性ジエン系ゴムを得ることができ、芳香族ビニル化合物(C)を使用することにより、変性SBRのような変性共役ジエン系共重合体を得ることができる。これらの変性共役ジエン系共重合体は、ゴムの特性を示すので、変性共重合体ゴムともいう。 By copolymerizing the polyfunctional vinyl aromatic copolymer (A) of the present invention as a raw material with 1) a conjugated diene compound (B), or 2) a conjugated diene compound (B) and an aromatic vinyl compound (C). , a modified conjugated diene copolymer having a branched polymer type modifying group (A) based on the modified vinyl aromatic copolymer of the present invention is obtained. When aromatic vinyl compound (C) is not used, modified diene rubber such as butadiene rubber or isoprene rubber can be obtained, and by using aromatic vinyl compound (C), modified diene rubber such as modified SBR can be obtained. A conjugated diene copolymer can be obtained. These modified conjugated diene copolymers exhibit rubber properties and are therefore also referred to as modified copolymer rubbers.
 本発明の変性共役ジエン系共重合体を得る重合工程は、アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物(B)を重合、又は、共役ジエン化合物(B)及び芳香族ビニル化合物(C)と、を共重合して、活性末端を有する共役ジエン系共重合体を得る重合工程と、前記変性ビニル芳香族系共重合体に基づく分岐高分子型変性基(A)を導入する末端変性工程とからなっている。 The polymerization step for obtaining the modified conjugated diene copolymer of the present invention involves polymerizing the conjugated diene compound (B) using an alkali metal compound or alkaline earth metal compound as a polymerization initiator, or polymerizing the conjugated diene compound (B) and A polymerization step of copolymerizing an aromatic vinyl compound (C) to obtain a conjugated diene copolymer having an active end, and a branched polymer-type modified group (A) based on the modified vinyl aromatic copolymer. ).)
 共役ジエン化合物(B)としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘプタジエン、1,3-ヘキサジエン等が挙げられる。これらの中で、1,3-ブタジエン、イソプレンが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the conjugated diene compound (B) include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3 -heptadiene, 1,3-hexadiene, etc. Among these, 1,3-butadiene and isoprene are preferred. These may be used alone or in combination of two or more.
 芳香族ビニル化合物(C)としては、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ビニルキシレン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレン、tert-ブトキシジメチルシリルスチレンおよびイソプロポキシジメチルシリルスチレンなどを、単独でまたは2種以上を組み合わせて用いることができるが、これらの中では、特にスチレンが好ましい。 Examples of the aromatic vinyl compound (C) include styrene, α-methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, vinylxylene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene, tert- Butoxydimethylsilylstyrene, isopropoxydimethylsilylstyrene, and the like can be used alone or in combination of two or more, and among these, styrene is particularly preferred.
 共役ジエン化合物(B)として、1,3‐ブタジエンを使用し、芳香族ビニル化合物としてスチレンを使用する場合は、いわゆるスチレン‐ブタジエンゴム(SBR)が得られる。また、芳香族ビニル化合物としてスチレンを使用しない場合で、共役ジエン化合物(B)として、1,3‐ブタジエンを使用する場合は、いわゆるブタジエンゴム(BR)が得られる。共役ジエン化合物(B)としてイソプレンを使用し、芳香族ビニル化合物(C)の構造単位がない場合は、イソプレンゴム(IR)となる。中でもスチレン‐ブタジエンゴム(SBR)構造を有すると、耐摩耗性、耐熱性、耐老化性に優れ、特に好ましい。 When 1,3-butadiene is used as the conjugated diene compound (B) and styrene is used as the aromatic vinyl compound, so-called styrene-butadiene rubber (SBR) is obtained. Furthermore, when styrene is not used as the aromatic vinyl compound and 1,3-butadiene is used as the conjugated diene compound (B), so-called butadiene rubber (BR) is obtained. When isoprene is used as the conjugated diene compound (B) and there is no structural unit of the aromatic vinyl compound (C), it becomes isoprene rubber (IR). Among these, those having a styrene-butadiene rubber (SBR) structure are particularly preferred because they have excellent wear resistance, heat resistance, and aging resistance.
 本発明の変性共役ジエン系共重合体の製造方法において、重合工程及び末端変性工程は、上述した変性ビニル芳香族共重合体の重合工程及び末端変性工程と同様に行うことができる。重合工程で使用する重合開始剤、末端変性工程で使用する官能基を有する化合物も、上述した重合開始剤や官能基を有する化合物を使用することができる。 In the method for producing a modified conjugated diene copolymer of the present invention, the polymerization step and terminal modification step can be performed in the same manner as the polymerization step and terminal modification step of the modified vinyl aromatic copolymer described above. As the polymerization initiator used in the polymerization step and the compound having a functional group used in the terminal modification step, the above-mentioned polymerization initiators and compounds having a functional group can be used.
 この重合は、共役ジエン化合物(B)の重合又は共重合は、不活性溶媒中で溶液重合により行うことが好ましい。重合溶媒としては、特に限定されず、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が用いられる。具体的には、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、デカリン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素系溶媒が挙げられる。
 上記した共役ジエン系化合物及び重合溶媒は、それぞれ単独であるいはこれらの混合液を、有機金属化合物を用いて処理しておくことが好ましい。これにより、共役ジエン化合物や重合溶媒に含まれているアレン類やアセチレン類を処理できる。その結果、高濃度の活性末端を有する重合体が得られるようになり、高い変性率を達成できるようになる。
This polymerization or copolymerization of the conjugated diene compound (B) is preferably carried out by solution polymerization in an inert solvent. The polymerization solvent is not particularly limited, and for example, hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons are used. Specifically, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, and decalin; benzene, toluene, Examples include hydrocarbon solvents consisting of aromatic hydrocarbons such as xylene and mixtures thereof.
It is preferable that the above-mentioned conjugated diene compound and polymerization solvent are treated alone or as a mixture thereof with an organometallic compound. Thereby, arenes and acetylenes contained in the conjugated diene compound and the polymerization solvent can be treated. As a result, a polymer having a high concentration of active terminals can be obtained, and a high modification rate can be achieved.
 共役ジエン化合物(B)又は、共役ジエン化合物(B)と芳香族ビニル化合物(C)とを共重合する際の重合温度はリビングアニオン重合が進行する温度であれば、特に限定されないが、生産性の観点から、0℃以上であることが好ましく、重合終了後の活性末端に対する、本発明の前記式(2)及び/又は式(3)で表されるシラン系官能基からなる構造単位(c)を有する変性ビニル芳香族系共重合体の反応量を充分に確保する観点から、120℃以下であることが好ましい。より好ましくは50~100℃である。
 共役ジエン化合物(B)又は、共役ジエン化合物(B)と芳香族ビニル化合物(C)とを共重合する際の重合様式としては、特に限定されないが、回分式(「バッチ式」ともいう。)、連続式等の重合様式で行うことができる。連続式においては、1個又は2個以上の連結された反応器を用いることができる。反応器は、撹拌機付きの槽型、管型等のものが用いられる。回分式では、得られる重合体の分子量分布が一般に狭く、Mw/Mnでは1.0以上、1.8未満となりやすい。また、連続式では一般に分子量分布が広く、Mw/Mnでは1.8以上、3以下となりやすい。
The polymerization temperature when copolymerizing the conjugated diene compound (B) or the conjugated diene compound (B) and the aromatic vinyl compound (C) is not particularly limited as long as it is a temperature at which living anion polymerization proceeds, but productivity From the viewpoint of 0° C. or higher, the temperature is preferably 0° C. or higher, and the structural unit (c ) The temperature is preferably 120° C. or lower from the viewpoint of ensuring a sufficient reaction amount of the modified vinyl aromatic copolymer having the following. More preferably it is 50 to 100°C.
The polymerization mode when copolymerizing the conjugated diene compound (B) or the conjugated diene compound (B) and the aromatic vinyl compound (C) is not particularly limited, but may be a batch method (also referred to as a "batch method"). The polymerization can be carried out in a continuous polymerization mode. In continuous mode, one or more connected reactors can be used. The reactor used is a tank type, tube type, etc. equipped with a stirrer. In the batch method, the molecular weight distribution of the obtained polymer is generally narrow, and Mw/Mn tends to be 1.0 or more and less than 1.8. Further, in a continuous type, the molecular weight distribution is generally wide, and Mw/Mn tends to be 1.8 or more and 3 or less.
 本発明の変性共役ジエン系共重合体の重量平均分子量(ポリスチレン換算)は、加工性や物性を考慮して10万~200万が好ましく、15万~100万がより好ましい。重量平均分子量は、ポリスチレン系ゲルを充填剤としたカラムを用いたGPCを使用してクロマトグラムを測定し、標準ポリスチレンを使用した検量線により求めることができる。
 ゲルパーミエーションクロマトグラフィー(GPC)測定によって得られる微分分子量分布曲線において、全面積を100%とした場合に、最も低分子量側のピークの3倍以上(3Mp以上)の数平均分子量(Mn)を有する領域の面積が20%以上であることがよい。より好ましくは40面積%以上である。特に好ましくは60面積%以上である。
The weight average molecular weight (in terms of polystyrene) of the modified conjugated diene copolymer of the present invention is preferably 100,000 to 2,000,000, more preferably 150,000 to 1,000,000 in consideration of processability and physical properties. The weight average molecular weight can be determined by measuring a chromatogram using GPC using a column using polystyrene gel as a packing material, and using a calibration curve using standard polystyrene.
In the differential molecular weight distribution curve obtained by gel permeation chromatography (GPC) measurement, when the total area is taken as 100%, the number average molecular weight (Mn) is three times or more (3 Mp or more) of the lowest molecular weight peak. It is preferable that the area of the region is 20% or more. More preferably, it is 40 area % or more. Particularly preferably, it is 60 area % or more.
 本発明の変性共役ジエン系共重合体は、変性ビニル芳香族系共重合体に由来する構造単位(A1)を0.001~6重量%、共役ジエン化合物に由来する構造単位(B1)を29~99.999重量%及び芳香族ビニル化合物に由来する構造単位(C1)を0~70重量%含有するとよい。
 変性ビニル芳香族系共重合体(A)に由来する構造単位(A1)は、好ましくは0.001~5重量%、より好ましくは0.005~5重量%、更に好ましくは0.01~5重量%、最適には0.001~1重量%である。共役ジエン化合物(B)に由来する構造単位(B1)は、29~99.999重量%であり、好ましくは80~99.999重量%であり、より好ましくは90~99.995重量%、更に好ましくは95~99.99重量%である。
 芳香族ビニル化合物(C)を使用する場合は、構造単位(A1)は、上記と同様の範囲であり、構造単位(B1)は30~97.999重量%、好ましくは45~94.995重量%であり、更に好ましくは55~89.99重量%である。芳香族ビニル化合物(C)に由来する構造単位(C1)は、2~50重量%、好ましくは5~45重量%であり、更に好ましくは10~40重量%である。
The modified conjugated diene copolymer of the present invention contains 0.001 to 6% by weight of the structural unit (A1) derived from the modified vinyl aromatic copolymer and 29% by weight of the structural unit (B1) derived from the conjugated diene compound. It is preferable to contain the structural unit (C1) derived from an aromatic vinyl compound in an amount of 0 to 70% by weight.
The structural unit (A1) derived from the modified vinyl aromatic copolymer (A) is preferably 0.001 to 5% by weight, more preferably 0.005 to 5% by weight, even more preferably 0.01 to 5% by weight. % by weight, optimally from 0.001 to 1% by weight. The structural unit (B1) derived from the conjugated diene compound (B) is 29 to 99.999% by weight, preferably 80 to 99.999% by weight, more preferably 90 to 99.995% by weight, and Preferably it is 95 to 99.99% by weight.
When using the aromatic vinyl compound (C), the structural unit (A1) is in the same range as above, and the structural unit (B1) is 30 to 97.999% by weight, preferably 45 to 94.995% by weight. %, more preferably 55 to 89.99% by weight. The structural unit (C1) derived from the aromatic vinyl compound (C) is 2 to 50% by weight, preferably 5 to 45% by weight, and more preferably 10 to 40% by weight.
 変性共役ジエン系共重合体のミクロ構造(シス、トランス、ビニル結合量)は極性化合物等の使用により任意に変えることができるが、末端が変性される前の状態において、共役ジエン単位中に占めるビニル結合(1,2-結合)の含有量は、10~80モル%が好ましい。本発明の変性共役ジエン系共重合体を後述する樹脂組成物とし、更にこれを架橋させて、自動車タイヤとして使用する場合、転がり抵抗性能と耐摩耗性を高度にバランスさせるには、20~75モル%が好ましく、25~75モル%がより好ましく、25~70モル%が更に好ましい。最適には25~45モル%である。このとき、共役ジエン結合単位中に占めるシス結合とトランス結合との質量比は、シス結合/トランス結合=1/1.1~1.5が好ましい。 The microstructure (cis, trans, vinyl bond content) of the modified conjugated diene copolymer can be changed arbitrarily by using polar compounds, etc., but before the terminal is modified, the amount of conjugated diene units The content of vinyl bonds (1,2-bonds) is preferably 10 to 80 mol%. When the modified conjugated diene copolymer of the present invention is used as a resin composition as described below and further crosslinked to form an automobile tire, in order to achieve a high balance between rolling resistance performance and abrasion resistance, The amount is preferably mol%, more preferably 25 to 75 mol%, and even more preferably 25 to 70 mol%. Optimally, it is between 25 and 45 mol%. At this time, the mass ratio of cis bonds to trans bonds in the conjugated diene bond unit is preferably cis bonds/trans bonds=1/1.1 to 1.5.
 上述した重合方法により得られる変性共役ジエン系共重合体の重合体溶液に、必要に応じて反応停止剤を添加してもよい。反応停止剤としては、例えば、メタノール、エタノール、プロパノール等のアルコール類;ステアリン酸、ラウリン酸、オクタン酸等の有機酸;水等が使用できる。 If necessary, a reaction terminator may be added to the polymer solution of the modified conjugated diene copolymer obtained by the above-described polymerization method. Examples of the reaction terminator that can be used include alcohols such as methanol, ethanol, and propanol; organic acids such as stearic acid, lauric acid, and octanoic acid; and water.
 変性共役ジエン系共重合体の重合反応を行った後、必要に応じて重合体に含まれる金属類を脱灰してもよい。脱灰の方法としては、例えば、水、有機酸、無機酸、過酸化水素等の酸化剤等を、重合体溶液に接触させて金属類を抽出し、その後水層を分離する方法が用いられる。 After carrying out the polymerization reaction of the modified conjugated diene copolymer, the metals contained in the polymer may be deashed if necessary. As a deashing method, for example, a method is used in which metals are extracted by bringing water, an organic acid, an inorganic acid, an oxidizing agent such as hydrogen peroxide into contact with a polymer solution, and then the aqueous layer is separated. .
 上述のようにして得られた変性共役ジエン系重合体は、溶液として得られる場合、必要に応じて酸化防止剤、添加剤を加えた後、通常の方法で溶媒の除去、乾燥を行うことができる。これにより、後述する樹脂組成物の原料とすることができる。具体的には、スチームストリッピング及び脱水乾燥による方法、ドラムドライヤー、フラッシング及びベント押出し機による直脱法などである。 When the modified conjugated diene polymer obtained as described above is obtained as a solution, after adding an antioxidant and additives as necessary, the solvent can be removed and dried by a normal method. can. Thereby, it can be used as a raw material for a resin composition described later. Specifically, methods include steam stripping and dehydration drying, and direct stripping methods using a drum dryer, flushing, and vent extruder.
 酸化防止剤としては、特に限定されず、公知のものを用いることができる。酸化防止剤としては、フェノール系安定剤、リン系安定剤、イオウ系安定剤等が挙げられる。具体的に例示を行うと、例えば2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。 The antioxidant is not particularly limited, and any known antioxidant can be used. Examples of the antioxidant include phenol stabilizers, phosphorus stabilizers, sulfur stabilizers, and the like. Specific examples include 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3-(4'-hydroxy-3',5'-di-tert-butylphenol) ) Propinate, 2-methyl-4,6-bis[(octylthio)methyl]phenol, and other antioxidants are preferred.
 必要に応じ、添加剤として、イオン性物質を除去、あるいは中和するために、水、メタノール、エタノール、イソプロパノール等のアルコールを加えたり、ステアリン酸、オレイン酸、ミリスチン酸、ラウリン酸、デカン酸、クエン酸、リンゴ酸等のカルボン酸、無機酸水溶液、炭酸ガス等を加えたりしてもよい。 If necessary, water, methanol, ethanol, isopropanol, or other alcohol may be added as an additive to remove or neutralize ionic substances, or stearic acid, oleic acid, myristic acid, lauric acid, decanoic acid, Carboxylic acids such as citric acid and malic acid, aqueous inorganic acids, carbon dioxide gas, etc. may be added.
 本発明の樹脂組成物は、変性共役ジエン系重合体を20質量部以上含む原料ゴム100質量部と、フィラー5~200質量部と、を含有する。 The resin composition of the present invention contains 100 parts by mass of raw rubber containing 20 parts by mass or more of a modified conjugated diene polymer, and 5 to 200 parts by mass of filler.
 原料ゴム100質量部中の変性共役ジエン系重合体含有量は、20質量部以上であり、好ましくは40質量部以上、より好ましくは50質量部以上、さらに好ましくは60質量部以上である。20質量部以上であると、本発明の目的とするフィラー分散性が優れ、本実施形態の樹脂組成物を加硫化組成物とした場合、引っ張り特性、粘弾性特性などの性能が優れ、タイヤ用の材料として用いた場合、当該タイヤにおいて優れた燃費性能、グリップ性能、耐摩耗性、剛性が得られる。また、該変性共役ジエン系重合体の含有量は、好ましくは90質量部以下、より好ましくは80質量部以下である。90質量部以下とすることにより、本発明の未加硫の樹脂組成物のムーニー粘度を下げて加工性が向上する。 The content of the modified conjugated diene polymer in 100 parts by mass of the raw rubber is 20 parts by mass or more, preferably 40 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 60 parts by mass or more. When the amount is 20 parts by mass or more, the filler dispersibility that is the object of the present invention is excellent, and when the resin composition of this embodiment is made into a vulcanized composition, it has excellent properties such as tensile properties and viscoelastic properties, and is suitable for use in tires. When used as a material for tires, excellent fuel efficiency, grip performance, wear resistance, and rigidity can be obtained in the tires. Further, the content of the modified conjugated diene polymer is preferably 90 parts by mass or less, more preferably 80 parts by mass or less. When the amount is 90 parts by mass or less, the Mooney viscosity of the unvulcanized resin composition of the present invention is lowered and the processability is improved.
 変性共役ジエン系重合体以外の原料ゴムとしては、特に限定されず、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、その他の共役ジエン系共重合体又はその水素添加物、非ジエン系重合体、天然ゴム等が挙げられる。 The raw material rubber other than the modified conjugated diene polymer is not particularly limited, and includes, for example, a conjugated diene polymer or its hydrogenated product, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or its hydrogenated product. Examples include block copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof, other conjugated diene copolymers or hydrogenated products thereof, non-diene polymers, natural rubber, and the like.
 共役ジエン系重合体又はその水素添加物の具体例としては、特に制限されず、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物等が挙げられる。 Specific examples of the conjugated diene polymer or its hydrogenated product are not particularly limited, and include butadiene rubber or its hydrogenated product, isoprene rubber or its hydrogenated product, and the like.
 共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物の具体例としては、特に制限されず、例えば、スチレン-ブタジエン共重合ゴム又はその水素添加物が挙げられる。 Specific examples of random copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof are not particularly limited, and include, for example, styrene-butadiene copolymer rubber or hydrogenated products thereof.
 共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物の具体例としては、特に制限されず、例えば、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマーが挙げられる。 Specific examples of block copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof are not particularly limited, and include, for example, styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene blocks. Examples include styrenic elastomers such as copolymers or hydrogenated products thereof.
 その他の共役ジエン系共重合体又はその水素添加物の具体例としては、特に制限されず、例えば、アクリロニトリル-ブタジエンゴム又はその水素添加物等が挙げられる。 Specific examples of other conjugated diene copolymers or hydrogenated products thereof are not particularly limited, and include, for example, acrylonitrile-butadiene rubber or hydrogenated products thereof.
 非ジエン系重合体としては、特に制限されず、例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴム等が挙げられる。 Non-diene polymers are not particularly limited, and include, for example, olefin elastomers such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber, and butyl rubber. , brominated butyl rubber, acrylic rubber, fluororubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, α,β-unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber, etc. .
 本発明において、変性共役ジエン系重合体が変性スチレン-ブタジエンゴムである場合は他のゴムとしてはポリブタジエンが好ましい。また、変性ブタジエン系重合体が変性ポリブタジエンである場合は他のゴムとしては天然ゴム又はポリイソプレンゴムが好ましい。 In the present invention, when the modified conjugated diene polymer is a modified styrene-butadiene rubber, the other rubber is preferably polybutadiene. Further, when the modified butadiene-based polymer is modified polybutadiene, natural rubber or polyisoprene rubber is preferable as the other rubber.
 上述した各種ゴム状重合体の重量平均分子量は、性能と加工特性のバランスの観点から、2,000~2,000,000であることが好ましく、5,000~1,500,000であることがより好ましい。また、低分子量のいわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。ここでいう重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)測定によって得られるポリスチレン換算の重量平均分子量(Mw)である。 The weight average molecular weight of the various rubbery polymers mentioned above is preferably from 2,000 to 2,000,000, and from 5,000 to 1,500,000, from the viewpoint of the balance between performance and processing characteristics. is more preferable. Furthermore, a so-called liquid rubber having a low molecular weight can also be used. These rubbery polymers may be used alone or in combination of two or more. The weight average molecular weight here is the weight average molecular weight (Mw) in terms of polystyrene obtained by gel permeation chromatography (GPC) measurement.
 原料ゴムに対してフィラーの使用量は、フィラーを多く用いると、硬さ、モジュラスが上昇し、用途に応じ所望の物性となるように調整される。この範囲内であればフィラーの分散が良く加工性が良い。タイヤ用途では好ましくは、フィラーは5~150質量部であり、履物用途では、好ましくは30~200質量部である。本実施形態の範囲では、柔らかいものから硬いものまで広く対応可能である。 The amount of filler used relative to the raw rubber is adjusted so that the more filler is used, the higher the hardness and modulus will be, and the desired physical properties will be achieved depending on the application. Within this range, filler is well dispersed and processability is good. For tire applications the filler is preferably between 5 and 150 parts by weight, and for footwear applications preferably between 30 and 200 parts by weight. Within the scope of this embodiment, it is possible to cover a wide range of materials from soft to hard.
 本発明の樹脂組成物では、原料ゴム100質量部に対して、シリカ系無機充填剤、金属酸化物、金属水酸化物及びカーボンブラックからなる群より選ばれる少なくとも1種の補強性充填剤を0.5~200質量部含む。 In the resin composition of the present invention, at least one reinforcing filler selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black is added to 100 parts by mass of raw rubber. Contains .5 to 200 parts by mass.
 樹脂組成物に含有されるシリカ系無機充填剤としては、SiO又はケイ酸塩を構成単位の主成分とする固体粒子を使用することが好ましい。ここで、主成分とは、全体の50質量%以上を占める成分を意味し、好ましくは70質量%以上を占める成分であり、より好ましくは90質量%以上を占める成分である。 As the silica-based inorganic filler contained in the resin composition, it is preferable to use solid particles whose main constituent units are SiO 2 or silicate. Here, the main component means a component that accounts for 50% by mass or more of the whole, preferably a component that accounts for 70% by mass or more, and more preferably a component that accounts for 90% by mass or more.
 シリカ系無機充填剤の具体例としては、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラスナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質等が挙げられる。シリカ系無機充填剤は、1種単独で用いてもよく、2種以上併用してもよい。また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も使用できる。これらの中で、シリカ及びガラス繊維が好ましく、シリカがより好ましい。 Specific examples of silica-based inorganic fillers include inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wallasnite, montmorillonite, zeolite, and glass fiber. The silica-based inorganic fillers may be used alone or in combination of two or more. Furthermore, a silica-based inorganic filler whose surface has been made hydrophobic, and a mixture of a silica-based inorganic filler and an inorganic filler other than silica-based filler can also be used. Among these, silica and glass fiber are preferred, and silica is more preferred.
 シリカとしては、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカ等が使用できるが、それらの中でも、破壊特性の改良とウェットスキッド抵抗性能との両立がより優れている点から、湿式シリカが好ましい。
 シリカとしては、BET比表面積が50~500m/gのシリカが使用される。このようなシリカを配合することによって、優れた低燃費性、耐摩耗性、ウェットスキッド性能及び操縦安定性が得られる。
 その他、高い比表面積のシリカすなわち微粒径シリカを用いてもよく分散させることが可能である。微粒径シリカとしては、CTAB(セチルトリメチルアンモニウムブロミド)比表面積が180m/g以上、BET比表面積が185m/g以上のシリカを含有することができる。平均一次粒子径は、例えば25nm以下である。このような微粒径シリカを配合することによって、本実施形態の樹脂組成物において、優れた低燃費性、耐摩耗性、ウェットスキッド性能及び操縦安定性が得られる。
As the silica, dry silica, wet silica, synthetic silicate silica, etc. can be used, and among these, wet silica is preferable because it is more excellent in both improving fracture characteristics and wet skid resistance performance.
As the silica, silica having a BET specific surface area of 50 to 500 m 2 /g is used. By blending such silica, excellent fuel efficiency, wear resistance, wet skid performance, and handling stability can be obtained.
In addition, silica having a high specific surface area, that is, silica having a fine particle size, can also be used to achieve good dispersion. The fine particle size silica may contain silica having a CTAB (cetyltrimethylammonium bromide) specific surface area of 180 m 2 /g or more and a BET specific surface area of 185 m 2 /g or more. The average primary particle diameter is, for example, 25 nm or less. By blending such fine particle size silica, excellent fuel efficiency, wear resistance, wet skid performance, and handling stability can be obtained in the resin composition of this embodiment.
 微粒径シリカのアグリゲートサイズは、特に制限されず、30nm以上とすることができ、このようなアグリゲートサイズを有することにより、良好な分散性を有しながら、優れた補強性、低燃費性、耐摩耗性、ウェットスキッド性能及び操縦安定性を与えることができる。アグリゲートサイズは、凝集体径又は最大頻度ストークス相当径とも呼ばれているものであり、複数の一次粒子が連なって構成されるシリカの凝集体を一つの粒子と見なした場合の粒子径に相当するものである。アグリゲートサイズは、例えば、BI-XDC(Brookhaven Instruments Corporation製)等のディスク遠心沈降式粒度分布測定装置を用いて測定できる。具体的には特開2011-132307に記載されている方法により測定できる。
 微粒径シリカの平均一次粒子径は、特に制限されず、好ましくは25nm以下である。
The aggregate size of fine particle size silica is not particularly limited and can be 30 nm or more, and by having such an aggregate size, it has excellent reinforcing properties and low fuel consumption while having good dispersibility. properties, abrasion resistance, wet skid performance, and handling stability. The aggregate size is also called the aggregate diameter or maximum frequency Stokes equivalent diameter, and is the particle diameter when a silica aggregate composed of multiple primary particles is considered as one particle. It is equivalent. The aggregate size can be measured using, for example, a disk centrifugal sedimentation type particle size distribution analyzer such as BI-XDC (manufactured by Brookhaven Instruments Corporation). Specifically, it can be measured by the method described in JP-A No. 2011-132307.
The average primary particle size of the fine particle size silica is not particularly limited, and is preferably 25 nm or less.
 本発明の樹脂組成物における、上記微粒径シリカの配合量は、特に制限されず、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは15質量部以上、さらに好ましくは20質量部以上、さらにより好ましくは25質量部以上、よりさらに好ましくは30質量部以上である。5質量部以上であれば、上記微粒子シリカを配合した効果が充分に得られる。該微粒径シリカの配合量は、200質量部以下、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは60質量部以下、さらにより好ましくは55質量部以下である。200質量部以下であれば、実質上良好な加工性が得られる。 The amount of the fine particle size silica in the resin composition of the present invention is not particularly limited, and is preferably 5 parts by mass or more, more preferably 15 parts by mass or more, even more preferably The amount is 20 parts by mass or more, even more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more. If the amount is 5 parts by mass or more, the effect of blending the above-mentioned particulate silica can be sufficiently obtained. The blending amount of the fine particle size silica is 200 parts by mass or less, preferably 100 parts by mass or less, more preferably 80 parts by mass or less, still more preferably 60 parts by mass or less, and even more preferably 55 parts by mass or less. If it is 200 parts by mass or less, substantially good workability can be obtained.
 本発明の樹脂組成物は、好ましくは、さらに補強性充填剤としてBET比表面積185m/g未満のシリカ又はカーボンブラックを5~100質量部含む上記の樹脂組成物である。 The resin composition of the present invention preferably further contains 5 to 100 parts by mass of silica or carbon black having a BET specific surface area of less than 185 m 2 /g as a reinforcing filler.
 本発明の樹脂組成物において、さらに補強性充填剤としてBET法窒素吸着比表面積(N2SA)が185m/g未満のシリカが好ましく用いられ、さらに好ましくは150m/g未満のシリカが用いられ、好ましくは50m/g以上が用いられる。この範囲において補強性と分散性のバランスが良い。また、用途に応じて、好適な粒径のものが用いられる。 In the resin composition of the present invention, silica with a BET nitrogen adsorption specific surface area (NSA) of less than 185 m 2 /g is preferably used as a reinforcing filler, and more preferably silica with a nitrogen adsorption specific surface area (NSA) of less than 150 m 2 /g is used. Preferably, 50 m 2 /g or more is used. Within this range, there is a good balance between reinforcing properties and dispersibility. Moreover, a suitable particle size is used depending on the purpose.
 カーボンブラックとしては、ASTMによるゴム用カーボンブラックの分類からN110、N220、N330、N339、N550、N660等があり、用途に応じて選択される。カーボンブラックを併用することにより、補強性を高めることができるとともに、タイヤトレッド用途に用いた場合においてドライグリップ性能を向上させることができる。カーボンブラックはBET法窒素吸着比表面積(N2SA)が、好ましくは185m/g未満のものが用いられ、好ましくは30m/g以上であり、より好ましくは50~130m/gの範囲である。この範囲において補強性と分散性のバランスが良い。タイヤトレッド用途に用いた場合においてさらに好ましくはN220、N330、N339である。 As carbon black, there are N110, N220, N330, N339, N550, N660, etc. according to ASTM's classification of carbon black for rubber, and these are selected depending on the purpose. By using carbon black in combination, reinforcing properties can be enhanced, and dry grip performance can be improved when used in tire tread applications. The carbon black used has a BET nitrogen adsorption specific surface area (NSA) of preferably less than 185 m 2 /g, preferably 30 m 2 /g or more, and more preferably a range of 50 to 130 m 2 /g. . Within this range, there is a good balance between reinforcing properties and dispersibility. When used in tire tread applications, N220, N330, and N339 are more preferred.
 さらに、本発明の樹脂組成物においては、上述したシリカの他、さらに他の補強性充填剤を用いることができる。他の補強性充填剤としては、特に制限されないが、補強性充填剤としての金属酸化物は、化学式MxOy(Mは金属原子を表し、x,yは各々1~6の整数を表す。)を構成の主成分とする固体粒子であることが好ましい。ここで、主成分とは、全体の50質量%以上を占める成分を意味し、好ましくは70質量%以上を占める成分であり、より好ましくは90質量%以上を占める成分である。
 金属酸化物としては、例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等を用いることができる。
 補強性充填剤としての金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
 上記のその他の補強性充填剤としての金属酸化物や金属水酸化物は、1種単独で用いてもよく、2種以上併用してもよい。また、これら以外の無機充填剤との混合物も使用できる。
Furthermore, in the resin composition of the present invention, other reinforcing fillers can be used in addition to the above-mentioned silica. Other reinforcing fillers are not particularly limited, but metal oxides as reinforcing fillers have the chemical formula MxOy (M represents a metal atom, and x and y each represent an integer from 1 to 6). Preferably, the solid particles are the main component of the structure. Here, the main component means a component that accounts for 50% by mass or more of the whole, preferably a component that accounts for 70% by mass or more, and more preferably a component that accounts for 90% by mass or more.
As the metal oxide, for example, alumina, titanium oxide, magnesium oxide, zinc oxide, etc. can be used.
Examples of the metal hydroxide as a reinforcing filler include aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
The above metal oxides and metal hydroxides as other reinforcing fillers may be used alone or in combination of two or more. Moreover, mixtures with inorganic fillers other than these can also be used.
 本発明の樹脂組成物においては、シランカップリング剤を用いてもよい。シランカップリング剤としては、特に制限されないが、例えば、分子中にシリカ親和部とポリマー親和部の両方を有する化合物であり、例えば、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、アミノ系化合物、グリシドキシ系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。
 スルフィド系化合物としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。
 メルカプト系化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランなどが挙げられる。
 ビニル系化合物としては、例えばビニルトリエトキシシラン、ビニルトリメトキシシランなどが挙げられる。
 アミノ系化合物としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシランなどが挙げられる。
 グリシドキシ系化合物としては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランなどが挙げられる。
 ニトロ系化合物としては、例えば、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等が挙げられる。
 クロロ系化合物としては、例えば、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシランなどが挙げられる。
 その他の化合物としては、例えば、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、ヘキサデシルトリメトキシシランなどが挙げられる。
In the resin composition of the present invention, a silane coupling agent may be used. Examples of the silane coupling agent include, but are not limited to, compounds having both a silica affinity part and a polymer affinity part in the molecule, such as sulfide compounds, mercapto compounds, vinyl compounds, amino compounds, Examples include glycidoxy compounds, nitro compounds, chloro compounds, and the like.
Examples of sulfide compounds include bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, and bis(2-trimethoxysilylpropyl)tetrasulfide. silylethyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-trimethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyltetrasulfide, 2-trimethoxysilylethyl-N,N-dimethylthiocarbamoyl Tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, 3-octanoylthio-1 -Propyltriethoxysilane and the like.
Examples of the mercapto compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane.
Examples of vinyl compounds include vinyltriethoxysilane and vinyltrimethoxysilane.
Examples of amino compounds include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, and 3-(2-aminoethyl)aminopropyltrimethoxy. Examples include silane.
Examples of glycidoxy compounds include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropylmethyldimethoxysilane. Can be mentioned.
Examples of the nitro compound include 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane.
Examples of the chloro-based compound include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, and 2-chloroethyltriethoxysilane.
Examples of other compounds include octyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, and hexadecyltrimethoxysilane.
 これらシランカップリング剤は、1種単独で用いてもよく、2種以上を併用してもよい。これらシランカップリング剤の中でも、補強効果が大きい観点から、スルフィド系化合物及びメルカプト系化合物等の硫黄を含有するシランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、3-メルカプトプロピルトリメトキシシランがより好ましい。
 シランカップリング剤の配合量は、シリカ100質量部に対し、1~20質量部、好ましくは2~15質量部である。シランカップリング剤をこの範囲で配合すると、シリカの分散性がより改善され、加工性が良くなり、さらに耐摩耗性が向上する等加硫ゴムの性能が改良される。
These silane coupling agents may be used alone or in combination of two or more. Among these silane coupling agents, sulfur-containing silane coupling agents such as sulfide compounds and mercapto compounds are preferred from the viewpoint of a large reinforcing effect, and bis(3-triethoxysilylpropyl) disulfide, bis(3- More preferred are triethoxysilylpropyl) tetrasulfide and 3-mercaptopropyltrimethoxysilane.
The amount of the silane coupling agent blended is 1 to 20 parts by weight, preferably 2 to 15 parts by weight, per 100 parts by weight of silica. When the silane coupling agent is blended within this range, the dispersibility of silica is further improved, processability is improved, and the performance of the vulcanized rubber is improved, such as improved abrasion resistance.
 本発明の樹脂組成物において、可塑剤を用いることにより、硬さ、モジュラスの調整は可能である。可塑剤としては、特に制限されないが、例えば、上記の伸展油と同様のオイルが使用可能であり、そのほかに、種々の天然物オイル、合成オイル、低分子量重合体等を用いることができる。また、公知の加工助剤を用いることができる。 In the resin composition of the present invention, hardness and modulus can be adjusted by using a plasticizer. The plasticizer is not particularly limited, but for example, oils similar to the above-mentioned extender oil can be used, and in addition, various natural oils, synthetic oils, low molecular weight polymers, etc. can be used. Additionally, known processing aids can be used.
 本発明の樹脂組成物は、加硫剤(架橋剤)、配合剤等を加えて、架橋処理をさらに施した樹脂組成物としてもよい。このような架橋剤としては、特に制限されないが、例えば、硫黄系加硫剤、有機過酸化物等が用いられる。
 硫黄系加硫剤としては、特に制限されないが、例えば、硫黄、モルホリンジスルフィド等が用いられ、有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、クメンハイドロパーオキサイド等が用いられる。
 加硫剤の使用量は、特に限定されないが、共役ジエン系共重合体100質量部に対し、0.01~20質量部であることが好ましく、0.1~15質量部がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、例えば、120℃~200℃であることが好ましく、140℃~180℃がより好ましい。
 必要に応じて、加硫促進剤又は加硫助剤を配合してもよく、加硫促進剤としては、特に制限されないが、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアジニン系、ジチオカルバミン酸系、アルデヒド-アミン系又はアルデヒド-アンモニア系、イミダゾリン系、もしくは、キサンテート系加硫促進剤のうち少なくとも1つを含有するものを使用することができる。
The resin composition of the present invention may be a resin composition further subjected to crosslinking treatment by adding a vulcanizing agent (crosslinking agent), a compounding agent, etc. Such a crosslinking agent is not particularly limited, but for example, a sulfur-based vulcanizing agent, an organic peroxide, etc. can be used.
Examples of the sulfur-based vulcanizing agent include, but are not limited to, sulfur and morpholine disulfide. Examples of the organic peroxide include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, and the like. T-butylcumyl peroxide, cumene hydroperoxide, etc. are used.
The amount of the vulcanizing agent used is not particularly limited, but it is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, based on 100 parts by weight of the conjugated diene copolymer. As the vulcanization method, conventionally known methods can be applied, and the vulcanization temperature is preferably, for example, 120°C to 200°C, more preferably 140°C to 180°C.
If necessary, a vulcanization accelerator or vulcanization aid may be added, and examples of the vulcanization accelerator include, but are not limited to, sulfenamide, thiazole, thiuram, thiourea, and guanidine. A vulcanization accelerator containing at least one of a vulcanization accelerator based on a dithiocarbamate type, a dithiocarbamate type, an aldehyde-amine type, an aldehyde-ammonia type, an imidazoline type, or a xanthate type can be used.
 さらに、必要に応じて加硫助剤を配合してもよく、加硫助剤としては、特に制限されないが、例えば、酸化亜鉛、ステアリン酸等を使用することができる。またさらに、老化防止剤を用いることができる。 Further, a vulcanization aid may be blended as necessary, and the vulcanization aid is not particularly limited, but for example, zinc oxide, stearic acid, etc. can be used. Furthermore, anti-aging agents can be used.
 本発明の樹脂組成物は、上記各成分を混合することにより製造することができる。
 変性共役ジエン系共重合体と、シリカ系無機充填剤、金属酸化物、金属水酸化物及びカーボンブラックからなる群より選ばれる少なくとも1種の補強性充填剤、及び、所望によりシランカップリング剤とを混合する方法については、特に限定されるものではない。例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法等が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。また、ゴム成分と各種配合剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
The resin composition of the present invention can be produced by mixing the above components.
A modified conjugated diene copolymer, at least one reinforcing filler selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black, and optionally a silane coupling agent. There are no particular limitations on the method of mixing. For example, a melt-kneading method using a general mixing machine such as an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a multi-screw extruder, etc. After dissolving and mixing each component, a solvent is added. Examples include a method of removing by heating. Among these, melt-kneading methods using rolls, Banbury mixers, kneaders, and extruders are preferred from the viewpoint of productivity and good kneading properties. Further, it is possible to apply either a method of kneading the rubber component and various compounding agents at once or a method of mixing them in a plurality of batches.
 本発明において、充填材表面へのポリマー濃縮能の程度については、変性共役ジエン系重合体の25℃におけるバウンドラバー量(バウンドラバー生成能)で表すことができる。上述した混練終了後の樹脂組成物中のバウンドラバー量は、耐摩耗性及び破壊強度の改善の観点から、15質量%以上が好ましく、20質量%以上がより好ましい。 In the present invention, the degree of polymer concentration ability on the surface of the filler can be expressed by the amount of bound rubber (bound rubber production ability) of the modified conjugated diene polymer at 25°C. The amount of bound rubber in the resin composition after the above-mentioned kneading is preferably 15% by mass or more, more preferably 20% by mass or more from the viewpoint of improving wear resistance and fracture strength.
 樹脂組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が使用できる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。 The resin composition may be a vulcanized composition subjected to vulcanization treatment using a vulcanizing agent. As the vulcanizing agent, for example, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds can be used. Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
 加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系等の加硫促進剤が挙げられる。加硫助剤としては、亜鉛華、ステアリン酸等を使用できる。 During vulcanization, a vulcanization accelerator may be used as necessary. As the vulcanization accelerator, conventionally known materials can be used, such as sulfenamide type, guanidine type, thiuram type, aldehyde-amine type, aldehyde-ammonia type, thiazole type, thiourea type, dithiocarbamate type. Vulcanization accelerators such as As the vulcanization aid, zinc white, stearic acid, etc. can be used.
 本発明態の樹脂組成物には、加工性の改良を図るために、ゴム用軟化剤を配合してもよい。ゴム用軟化剤としては、鉱物油、液状若しくは低分子量の合成軟化剤が好適である。 A rubber softener may be added to the resin composition of the present invention in order to improve processability. As the rubber softener, mineral oil, liquid or low molecular weight synthetic softeners are suitable.
 ゴムの軟化、増容、加工性の改良を図るために使用される、プロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30~45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。本実施の形態において用いるゴム用軟化剤としては、ナフテン系及び/又はパラフィン系のものが好ましい。 A mineral oil-based rubber softener called process oil or extender oil, which is used to soften, increase volume, and improve processability of rubber, is a mixture of aromatic rings, naphthenic rings, and paraffin chains. Those in which the number of carbon atoms in the paraffin chain accounts for 50% or more of the total carbons are called paraffinic, those in which the number of carbon atoms in the naphthene ring is 30 to 45% are called naphthenic, and those in which the number of aromatic carbons exceeds 30% are called aromatic. It is called a system. The rubber softener used in this embodiment is preferably a naphthenic and/or paraffinic softener.
 ゴム用軟化剤の配合量は、特に限定されないが、共役ジエン系共重合体100質量部に対し、10~80質量部であることが好ましく、20~50質量部がより好ましい。 The amount of the rubber softener blended is not particularly limited, but is preferably 10 to 80 parts by weight, more preferably 20 to 50 parts by weight, based on 100 parts by weight of the conjugated diene copolymer.
 本発明の樹脂組成物には、本実施の形態の目的を損なわない範囲内で、上述した以外の軟化剤や充填剤、更に耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。充填剤としては、具体的には炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウム等が挙げられる。
 目的とする製品の硬さや流動性を調節するために、必要に応じて配合する軟化剤としては、例えば、流動パラフィン、ヒマシ油、アマニ油等が挙げられる。耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤としては、公知の材料を適用できる。
The resin composition of the present invention may contain softeners and fillers other than those mentioned above, as well as heat stabilizers, antistatic agents, weather stabilizers, anti-aging agents, and coloring agents, within a range that does not impair the purpose of the present embodiment. Various additives such as agents and lubricants may also be used. Specific examples of the filler include calcium carbonate, magnesium carbonate, aluminum sulfate, barium sulfate, and the like.
Examples of softeners that may be added as needed to adjust the hardness and fluidity of the desired product include liquid paraffin, castor oil, and linseed oil. Known materials can be used as the heat stabilizer, antistatic agent, weather stabilizer, anti-aging agent, colorant, and lubricant.
 本発明の樹脂架橋物は、樹脂組成物を架橋処理することによって得られる。例えば、タイヤは、樹脂組成物をタイヤの形状(例えばトレッド形状)に応じて押出加工して成形し、これを加硫機中で加熱加圧することによって、トレッドを製造し、このトレッドと他の部品を組み立てることにより、目的とするタイヤを製造することができる。 The crosslinked resin product of the present invention is obtained by crosslinking a resin composition. For example, tires are manufactured by extruding and molding a resin composition according to the shape of the tire (for example, tread shape), and heating and pressurizing this in a vulcanizer to produce a tread. By assembling the parts, the desired tire can be manufactured.
 本発明の樹脂組成物は、樹脂架橋物とした際に機械的強度および耐摩耗性に優れる。そのため、上述の通り、低燃費タイヤ、大型タイヤ、高性能タイヤなどのタイヤのトレッドや、サイドウォール部材等の構造部材に好適に適用できる。また、構造部材の他にも、ゴムベルト、ゴムホース、履物用材料等にも好適に使用できる。 The resin composition of the present invention has excellent mechanical strength and abrasion resistance when made into a resin crosslinked product. Therefore, as described above, it can be suitably applied to treads of tires such as fuel-efficient tires, large tires, and high-performance tires, and structural members such as sidewall members. In addition to structural members, it can also be suitably used for rubber belts, rubber hoses, footwear materials, etc.
 以下、本発明について実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各例中の部は特に記載がない場合いずれも重量部であり、各物性の評価は以下に示す方法によって行った。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. In addition, all parts in each example are parts by weight unless otherwise specified, and evaluation of each physical property was performed by the method shown below.
1)分子量及び分子量分布、並びに多分岐成分の面積(%)及び3Mp以上の面積(%)
 分子量及び分子量分布測定は、GPC(東ソー製、HLC-8220GPC)を使用し、分析カラムとして、東ソー製、TSKgel MultiporeHXL-M:2本、TSKgel G1000HXL:1本、ガードカラムにTSKguardcolumn MP(XL):1本を使用し、溶媒にテトラヒドロフラン(THF)、流量1.0ml/min、カラム温度38℃、単分散ポリスチレンによる検量線を用いて行った。
 また、変性共役ジエン系共重合体の多分岐成分の面積(%)は、図1に示すように、カップリングしていない分岐のないジエン系共重合体のピークトップ分子量Mpの2倍の分子量(2Mp)以上の分子量範囲の面積%を示す。さらに、3Mp以上の面積(%)は、カップリングしていない分岐のないジエン系共重合体のピークトップ分子量Mpの3倍の分子量(3Mp)以上の分子量範囲の面積%を示す。
1) Molecular weight and molecular weight distribution, area (%) of hyperbranched components and area (%) of 3 Mp or more
Molecular weight and molecular weight distribution measurements were performed using GPC (HLC-8220GPC, manufactured by Tosoh), and the analytical columns were TSKgel MultiporeH XL -M (manufactured by Tosoh): 2, TSKgel G1000H XL : 1, and the guard column was TSKguardcolumn MP (XL). ): using tetrahydrofuran (THF) as a solvent, a flow rate of 1.0 ml/min, a column temperature of 38° C., and a calibration curve using monodisperse polystyrene.
In addition, as shown in Figure 1, the area (%) of the hyperbranched component of the modified conjugated diene copolymer has a molecular weight that is twice the peak top molecular weight Mp of the uncoupled, unbranched diene copolymer. (2Mp) or more. Furthermore, the area (%) of 3 Mp or more indicates the area % of a molecular weight range that is three times the molecular weight (3 Mp) or more of the peak top molecular weight Mp of the uncoupled, unbranched diene copolymer.
2)変性ビニル芳香族共重合体の構造
 日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及びH-NMR分析により決定した。溶媒としてクロロホルム-dを使用し、テトラメチルシランの共鳴線を内部標準として使用した。
3)溶剤可溶性(シクロヘキサン)
 変性ビニル芳香族系共重合体 5.0gをシクロヘキサン 95.0gに溶解させ、グラスフィルターにてろ過し、ろ過後のグラスフィルターを30gのシクロヘキサンで洗浄し、グラスフィルターを60℃で真空乾燥させた。そして前記フィルター上のポリマー分の重量を算出し、ポリマー分の乾燥重量が、0.025g未満の場合を〇、0.025g以上、0.25g未満の場合を△、0.25g以上の場合を×とした。
2) Structure of modified vinyl aromatic copolymer Determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d 1 was used as the solvent and the resonance line of tetramethylsilane was used as the internal standard.
3) Solvent soluble (cyclohexane)
5.0 g of modified vinyl aromatic copolymer was dissolved in 95.0 g of cyclohexane, filtered through a glass filter, the filtered glass filter was washed with 30 g of cyclohexane, and the glass filter was vacuum dried at 60°C. . Then, the weight of the polymer on the filter is calculated. If the dry weight of the polymer is less than 0.025g, it is ○, if it is 0.025g or more and less than 0.25g, it is △, and if it is 0.25g or more, it is ×
4)ムーニー粘度
 JIS K6300‐1に従って、L形ローター、予熱1分、ローター作動時間4分、温度100℃ で求めた。
5)ゲル分
 共重合体ゴム 0.5gをトルエン 100mLに溶解させたサンプルに、0.2wt%のスダンIIIトルエン溶液を1.0g添加し、1時間放置する。このサンプル溶液を0.2μmのPTFE製メンブレンフィルターでろ過し、メンブレンフィルターを40℃で真空乾燥させる。乾燥後のメンブレンフィルター上のスダンIIIで着色されたゲル分を目視にて観察し、ゲル分が、0個の場合を〇、1~5個の場合を△、6個以上の場合を×とした。
4) Mooney viscosity It was determined in accordance with JIS K6300-1 using an L-shaped rotor, preheating for 1 minute, rotor operating time for 4 minutes, and a temperature of 100°C.
5) Gel content To a sample in which 0.5 g of copolymer rubber was dissolved in 100 mL of toluene, 1.0 g of 0.2 wt % Sudan III toluene solution was added and left for 1 hour. This sample solution is filtered through a 0.2 μm PTFE membrane filter, and the membrane filter is vacuum dried at 40°C. Visually observe the gel content colored with Sudan III on the membrane filter after drying. When the gel content is 0, it is marked as ○, when it is 1 to 5, it is △, and when it is 6 or more, it is marked as ×. did.
6)熱重量測定(TGA)
 JIS K7120に準じて行い、350℃における重量減少(TGA350)を求めた。
6) Thermogravimetry (TGA)
The weight loss (TGA 350 ) at 350°C was determined according to JIS K7120.
7)Haze
 共重合体ゴム 0.5gをトルエン 100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置(日本電色社製、SZ-Σ90)を用いHaze値を測定した。
7) Haze
A sample in which 0.5 g of copolymer rubber was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance measuring device (manufactured by Nippon Denshoku Co., Ltd., using toluene as a reference sample). The Haze value was measured using SZ-Σ90).
8)共役ジエン系共重合体(SBR)のビニル結合の含有量
 試料を二硫化炭素溶液とし、溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定し、所定の波数における吸光度によりハンプトン(スチレン-ブタジエン共重合体)の方法の計算式に従い、共役ジエン系共重合体(SBR)中のビニル結合量(%)を求めた。装置は、パーキンエルマー社製のSpectrum100を用いた。
8) Content of vinyl bonds in conjugated diene copolymer (SBR) Using a carbon disulfide solution as the sample, measure the infrared spectrum in the range of 600 to 1000 cm-1 using a solution cell, and calculate the absorbance at a predetermined wave number. The amount of vinyl bonds (%) in the conjugated diene copolymer (SBR) was determined according to the calculation formula of the Hampton (styrene-butadiene copolymer) method. The device used was Spectrum 100 manufactured by PerkinElmer.
9)バウンドラバー量
 混練後の未加硫ゴム0.4gを2mm角に切り出し、トルエン50mLとともにサンプル管に入れ、48時間室温にて静置させた。その後、グラスフィルターにて抽出し、トルエン溶液部分とゴム部分とをそれぞれ乾燥させた。そして前記フィルター上のゴム部分の重さを算出し、バウンドラバー量とした。さらに乾燥させたトルエン溶液部分をクロロホルムに溶かし、プロトンNMRにてポリブタジエンの割合を算出し、この値を用いて実際の配合部数から逆算することにより、ポリブタジエンのバウンドラバー量を求めた。比較例3のバウンドラバー量を100として指数表示した。
9) Amount of Bound Rubber After kneading, 0.4 g of unvulcanized rubber was cut into 2 mm square pieces, placed in a sample tube together with 50 mL of toluene, and allowed to stand at room temperature for 48 hours. Thereafter, extraction was performed using a glass filter, and the toluene solution portion and the rubber portion were each dried. Then, the weight of the rubber portion on the filter was calculated and determined as the amount of bound rubber. Furthermore, the dried toluene solution portion was dissolved in chloroform, the proportion of polybutadiene was calculated by proton NMR, and this value was used to calculate back from the actual number of blended parts to determine the amount of bound rubber of polybutadiene. The bound rubber amount of Comparative Example 3 was set as 100 and expressed as an index.
10)引張強度
 JIS K6251の引張試験法により300%モジュラスを測定し、比較例3で得られた架橋ゴムの測定値を100として、指数化した。指数値が大きいほど引張り強度に優れることを示す。
10) Tensile Strength The 300% modulus was measured by the tensile test method of JIS K6251, and the measured value of the crosslinked rubber obtained in Comparative Example 3 was set as 100, and was converted into an index. The larger the index value, the better the tensile strength.
11)耐摩耗性
 JIS K6264に準拠したランボーン型摩耗試験機を使用した方法を用い、スリップ率が25%の摩耗量を測定し、比較例3で得られた架橋ゴムの測定値を100として、指数化した。測定温度は室温とした。指数値が大きいほど耐摩耗性は良好である。
11) Abrasion resistance Using a method using a Lambourn type abrasion tester based on JIS K6264, the amount of wear at a slip rate of 25% was measured, and the measured value of the crosslinked rubber obtained in Comparative Example 3 was set as 100. Indexed. The measurement temperature was room temperature. The larger the index value, the better the wear resistance.
 実施例で使用した原料またはその略号は次のとおり。
DVB-810;ジビニルベンゼン成分とエチルビニルベンゼン成分の混合物;ジビニルベンゼン成分含有率81.0wt%、日鉄ケミカル&マテリアル製)
The raw materials or their abbreviations used in the examples are as follows.
DVB-810; mixture of divinylbenzene component and ethylvinylbenzene component; divinylbenzene component content 81.0wt%, manufactured by Nippon Steel Chemical & Materials)
実施例1 変性ビニル芳香族系共重合体(A-1)の合成
 エチルシクロヘキサン 270ml(210.3g)、助触媒2,2-ジ(2-テトラヒドロフリル)プロパン 1.35ml(7.0mmol)を装入し、30℃において、n-ブチルリチウム(下記構造式)を純分として2.24g(35.0mmol)含むn-ヘキサン溶液21.9mlを添加した後、
Figure JPOXMLDOC01-appb-C000007
予め不純物を除去した1,3-ジイソプロペニルベンゼン(下記構造式) 2.77g(17.5mmol)をエチルシクロヘキサン 40ml(31.2g)に溶解させた溶液を1hrかけて添加した。そのまま、30℃で30min撹拌を継続した。
Figure JPOXMLDOC01-appb-C000008
 次に、スチレン(下記構造式) 25.5g(0.245mol)を、エチルシクロヘキサン10ml(7.8g)に溶解させた溶液を30minかけて添加し、第1段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000009
 重合熱により反応溶液の温度が上昇し、最高温度は67℃に達した。重合反応終了後、重合溶液を少量サンプルして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン(下記構造式)7.15g(105mmol)を添加して、30℃で第2段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000010
第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは1940、Mwは2410、Mw/Mnは1.24であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 8.73g(35.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 8.27g(70.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000011
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 A-1を固形分換算の収量で41.74g(収率:98.0wt%)を得た。
 変性ビニル芳香族系共重合体 A-1の分析結果を表1に示す。
Example 1 Synthesis of modified vinyl aromatic copolymer (A-1) 270 ml (210.3 g) of ethylcyclohexane, 1.35 ml (7.0 mmol) of cocatalyst 2,2-di(2-tetrahydrofuryl)propane. After charging and adding 21.9 ml of n-hexane solution containing 2.24 g (35.0 mmol) of n-butyllithium (the following structural formula) as a pure component at 30°C,
Figure JPOXMLDOC01-appb-C000007
A solution prepared by dissolving 2.77 g (17.5 mmol) of 1,3-diisopropenylbenzene (the following structural formula) from which impurities had been removed in 40 ml (31.2 g) of ethylcyclohexane was added over 1 hour. Stirring was continued for 30 minutes at 30°C.
Figure JPOXMLDOC01-appb-C000008
Next, a solution of 25.5 g (0.245 mol) of styrene (the following structural formula) dissolved in 10 ml (7.8 g) of ethylcyclohexane was added over 30 minutes to initiate the first stage polymerization.
Figure JPOXMLDOC01-appb-C000009
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 67°C. After the polymerization reaction was completed, a small sample of the polymerization solution was analyzed by gas chromatography (GC), and no unreacted monomer was observed, confirming that the polymerization conversion rate was approximately 100%.
Next, 7.15 g (105 mmol) of isoprene (the following structural formula) was added as an additional monomer to the reactor, and the second stage of polymerization was started at 30°C.
Figure JPOXMLDOC01-appb-C000010
After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 1940, Mw of 2410, and Mw/Mn of 1.24 at the end of the second stage of polymerization.
Next, 8.73 g (35.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 8.27 g (70.0 mmol) of succinic acid as a neutralizing agent was added, stirred, and then filtered.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000011
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 41.74 g (yield: 98.0 wt%) of modified vinyl aromatic copolymer A-1 was obtained in terms of solid content.
Table 1 shows the analysis results of modified vinyl aromatic copolymer A-1.
 得られた変性ビニル芳香族系共重合体 A-1のMnは2940、Mwは4140、Mw/Mnは1.41であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 A-1には、ジイソプロペニルベンゼン由来の構造単位を4.35モル%(6.50wt%)、スチレンに由来する構造単位を60.87モル%(59.91wt%)、イソプレンに由来する構造単位を26.09モル%(16.79wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.70モル%(16.79wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.42個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は4.22モル%(6.31wt%)であることから、多官能構造度(e1/c)は0.97であった。式(1)において、R1はフェニル、R2はメチル、R3はn-ペンチルである。変性ビニル芳香族系共重合体(A-1)中に含まれる残存ビニル基を持つジイソプロペニルベンゼン由来の構造単位は、1.31モル%(1.92wt%)であった。イソプレン由来単位に結合した変性剤は、93.6モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.64wt%であった。変性ビニル芳香族系共重合体(A-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.02であった。
The obtained modified vinyl aromatic copolymer A-1 had Mn of 2940, Mw of 4140, and Mw/Mn of 1.41. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer A-1 contained 4.35 mol% (6.50 wt. %), 60.87 mol% (59.91 wt%) of structural units derived from styrene, 26.09 mol% (16.79 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). ) Contains 8.70 mol % (16.79 wt %) of structural units derived from ), and it was confirmed that 2.42 modifiers were introduced per molecule of the modified vinyl aromatic copolymer. did. Since the polyfunctional structural unit (e1) represented by the formula (1) was 4.22 mol% (6.31 wt%), the polyfunctional structural degree (e1/c) was 0.97. In formula (1), R1 is phenyl, R2 is methyl, and R3 is n-pentyl. The structural unit derived from diisopropenylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (A-1) was 1.31 mol% (1.92 wt%). Modifier bound to isoprene-derived units was 93.6 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 0.64 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (A-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.02.
比較例1 変性ビニル芳香族系共重合体(B-1)の合成
 ジビニルベンゼン(1,4-ジビニルベンゼン及び1,3-ジビニルベンゼンの混合物、以下の例も同様) 4.37モル(630.2mL)、エチルビニルベンゼン(1-エチル-4-ビニルベンゼン、及び1-エチル-3-ビニルベンゼンの混合物、以下の例も同様) 3.34モル(457.5mL)、アニソール(下記構造式)6.90モル(749.9mL)、トルエン 345mLを3.0Lの反応器内に投入し、50℃で103.5ミリモル(13.0mL)の三フッ化ホウ素のジエチルエーテル錯体を添加し、5時間反応させた。
Figure JPOXMLDOC01-appb-C000012
重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体B-1 945.3gが得られたことを確認した。
Comparative Example 1 Synthesis of modified vinyl aromatic copolymer (B-1) Divinylbenzene (mixture of 1,4-divinylbenzene and 1,3-divinylbenzene, the same applies to the following examples) 4.37 mol (630. 2 mL), ethylvinylbenzene (a mixture of 1-ethyl-4-vinylbenzene and 1-ethyl-3-vinylbenzene, the same applies to the following examples) 3.34 mol (457.5 mL), anisole (the following structural formula) 6.90 mol (749.9 mL) and 345 mL of toluene were charged into a 3.0 L reactor, and 103.5 mmol (13.0 mL) of boron trifluoride diethyl ether complex was added at 50°C. Allowed time to react.
Figure JPOXMLDOC01-appb-C000012
After stopping the polymerization solution with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, devolatilized under reduced pressure at 60° C., and the polymer was recovered. The obtained polymer was weighed and it was confirmed that 945.3 g of copolymer B-1 was obtained.
 得られた共重合体B-1のMnは624、Mwは2360、Mw/Mnは3.79であり、ランダム共重合体であった。13C‐NMR及びH‐NMR分析を行うことにより、共重合体B-1のNMRチャートには、主鎖末端にアニソール由来のベンゼン環が結合した末端基の共鳴線が観察された。
 元素分析結果と標準ポリスチレン換算の数平均分子量から算出される可溶性多官能ビニル芳香族重合体のアニソール由来の構造単位の導入量は1.6(個/分子)であった。また、ジビニルベンゼン由来の構造単位を61.3モル%及びエチルビニルベンゼン由来の構造単位を合計38.7モル%含有していた(末端構造単位を除く)。共重合体B-1中に含まれるビニル基含有量は、34.8モル%であった(末端構造単位を除く)。さらに、前記式(1)で表される有機アルカリ金属化合物に由来する有機基を複数有する多官能構造単位(e1)は観察されなかった。
 また、硬化物のTMA測定の結果、明確なTgは観察されなかった、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は3.70wt%、耐熱変色性は○であった。
 共重合体B-1はトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
The obtained copolymer B-1 had Mn of 624, Mw of 2360, and Mw/Mn of 3.79, and was a random copolymer. By performing 13 C-NMR and 1 H-NMR analysis, a resonance line of a terminal group in which a benzene ring derived from anisole was bonded to the terminal of the main chain was observed in the NMR chart of copolymer B-1.
The amount of anisole-derived structural units introduced into the soluble polyfunctional vinyl aromatic polymer calculated from the elemental analysis results and the number average molecular weight in terms of standard polystyrene was 1.6 (units/molecule). Further, it contained 61.3 mol% of structural units derived from divinylbenzene and 38.7 mol% in total of structural units derived from ethylvinylbenzene (excluding terminal structural units). The vinyl group content contained in copolymer B-1 was 34.8 mol% (excluding terminal structural units). Furthermore, the polyfunctional structural unit (e1) having a plurality of organic groups derived from the organic alkali metal compound represented by the above formula (1) was not observed.
Further, as a result of TMA measurement of the cured product, no clear Tg was observed, and the softening temperature was 300° C. or higher. As a result of TGA measurement, the weight loss at 350° C. was 3.70 wt%, and the heat discoloration resistance was rated ◯.
Copolymer B-1 was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel formation was observed.
比較例2 ポリシロキサン変性架橋ポリマー粒子(C-1)の合成
 ジビニルベンゼン(純度56%、残余の38%はエチルビニルベンゼン、残余の6%は不純物、以下このジビニルベンゼンを使用)45部、スチレン55部、ドデシルベンゼンスルホン酸ナトリウム3部、ポリビニルアルコール0.5部、イオン交換水1000部、α,α′-アゾイソブチロニトリル0.7部を反応容器に仕込み、ホモミキサーにより15,000rpmで60分撹拌して均一とした。次に窒素ガスを吹き込みながら80℃に加熱し、3時間撹拌を続けて懸濁重合を行ない、重合体粒子(C-0)を得た。次に反応容器の温度を25℃に保った状態でpHを8.0に調整し、メチルトリエトキシシラン(MTES:下記構造式)を30部添加し、約30分間にわたって強く撹拌した。
Figure JPOXMLDOC01-appb-C000013
その後、反応容器を70℃に昇温し、3時間反応させて縮合反応を完結させ架橋ポリマー粒子C-1を製造した。この分散体においては凝固物の発生は観察されなかった。得られた架橋ポリマー粒子aの平均粒子径を測定したところ、1.9μmであった。できた架橋ポリマー粒子の水スラリーを遠心洗浄後、ESCAにより元素分析したところ、Si元素の存在が観察された。
Comparative Example 2 Synthesis of polysiloxane-modified crosslinked polymer particles (C-1) 45 parts of divinylbenzene (purity 56%, remaining 38% is ethylvinylbenzene, remaining 6% is impurity, this divinylbenzene will be used hereinafter), styrene 55 parts of sodium dodecylbenzenesulfonate, 3 parts of sodium dodecylbenzenesulfonate, 0.5 parts of polyvinyl alcohol, 1000 parts of ion-exchanged water, and 0.7 parts of α,α'-azoisobutyronitrile were charged into a reaction vessel, and the mixture was heated at 15,000 rpm using a homomixer. The mixture was stirred for 60 minutes to make it homogeneous. Next, the mixture was heated to 80° C. while blowing nitrogen gas, and stirring was continued for 3 hours to carry out suspension polymerization to obtain polymer particles (C-0). Next, while maintaining the temperature of the reaction vessel at 25° C., the pH was adjusted to 8.0, 30 parts of methyltriethoxysilane (MTES: structural formula shown below) was added, and the mixture was vigorously stirred for about 30 minutes.
Figure JPOXMLDOC01-appb-C000013
Thereafter, the temperature of the reaction vessel was raised to 70° C., and the reaction was carried out for 3 hours to complete the condensation reaction and produce crosslinked polymer particles C-1. No coagulum formation was observed in this dispersion. The average particle diameter of the obtained crosslinked polymer particles a was measured and found to be 1.9 μm. When the resulting water slurry of crosslinked polymer particles was centrifugally washed and subjected to elemental analysis by ESCA, the presence of Si element was observed.
実施例2 変性ビニル芳香族系共重合体(D-1)の合成
 エチルシクロヘキサン 270ml(210.3g)、2,2-ジ(2-テトラヒドロフリル)プロパン 1.35ml(7.0mmol)を装入し、30℃において、n-ブチルリチウムを純分として2.24g(35.0mmol)を含むn-ヘキサン溶液21.9mlを添加した後、予め不純物を除去したDVB-810(下記にジビニルベンゼン、エチルビニルベンゼンの構造式を示す) 2.82g(ジビニルベンゼン(m-体とp-体の混合物)成分17.5mmol、エチルビニルベンゼン(m-体とp-体の混合物)成分4.16mmol)を、エチルシクロヘキサン 40ml(31.2g)に溶解させた溶液を1hrかけて添加した。そのまま、30℃で30min撹拌を継続した。
Figure JPOXMLDOC01-appb-C000014
 次に、スチレン 25.5g(0.245mol)をエチルシクロヘキサン10ml(7.8g)に溶解させた溶液を30minかけて添加し、第1段階の重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は62℃に達した。重合反応終了後、重合溶液を少量サンプルして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン 7.15g(105mmol)を添加して、30℃で第2段階の重合を開始した。第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは1970、Mwは2630、Mw/Mnは1.34であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 8.73g(35.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、コハク酸 8.27g(70.0mmol)を添加、撹拌した後、ろ過を行った。
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 D-1を固形分換算の収量で38.51g(収率:96.7wt%)を得た。
 変性ビニル芳香族系共重合体 D-1の分析結果を表1に示す。
Example 2 Synthesis of modified vinyl aromatic copolymer (D-1) 270 ml (210.3 g) of ethylcyclohexane and 1.35 ml (7.0 mmol) of 2,2-di(2-tetrahydrofuryl)propane were charged. Then, at 30°C, 21.9 ml of n-hexane solution containing 2.24 g (35.0 mmol) of pure n-butyllithium was added, and then DVB-810 from which impurities had been removed in advance (divinylbenzene, divinylbenzene, Shows the structural formula of ethylvinylbenzene) 2.82g (divinylbenzene (mixture of m-form and p-form) component 17.5 mmol, ethylvinylbenzene (mixture of m-form and p-form) component 4.16 mmol) A solution of was dissolved in 40 ml (31.2 g) of ethylcyclohexane was added over 1 hour. Stirring was continued for 30 minutes at 30°C.
Figure JPOXMLDOC01-appb-C000014
Next, a solution of 25.5 g (0.245 mol) of styrene dissolved in 10 ml (7.8 g) of ethylcyclohexane was added over 30 minutes to initiate the first stage of polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 62°C. After the polymerization reaction was completed, a small sample of the polymerization solution was analyzed by gas chromatography (GC), and no unreacted monomer was observed, confirming that the polymerization conversion rate was approximately 100%.
Next, 7.15 g (105 mmol) of isoprene was added as an additional monomer to the reactor to initiate the second stage polymerization at 30°C. After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had an Mn of 1970, an Mw of 2630, and an Mw/Mn of 1.34 at the end of the second stage of polymerization.
Next, 8.73 g (35.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 8.27 g (70.0 mmol) of succinic acid was added, stirred, and then filtered.
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 38.51 g (yield: 96.7 wt%) of modified vinyl aromatic copolymer D-1 was obtained in terms of solid content.
Table 1 shows the analysis results of modified vinyl aromatic copolymer D-1.
 得られた変性ビニル芳香族系共重合体 D-1のMnは2650、Mwは3910、Mw/Mnは1.48であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 D-1には、ジビニルベンゼン由来の構造単位を4.50モル%(5.34wt%)、エチルビニルベンゼン由来の構造単位を1.03モル%(1.27wt%)、スチレンに由来する構造単位を60.25モル%(59.84wt%)、イソプレンに由来する構造単位を25.82モル%(16.77wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.61モル%(16.77wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.33個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)の含有量は3.33モル%(3.95wt%)であることから、多官能構造度(e1/c)は0.74であった。式(1)において、R1はフェニル、R2は水素、R3はn-ペンチルである。変性ビニル芳香族系共重合体(D-1)中に含まれる残存ビニル基を持つジビニルベンゼン由来の構造単位の含有量は、1.82モル%(0.21wt%)であった。イソプレン由来単位に結合した変性剤は、89.3モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.78wt%であった。変性ビニル芳香族系共重合体(D-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.06であった。
The obtained modified vinyl aromatic copolymer D-1 had Mn of 2650, Mw of 3910, and Mw/Mn of 1.48. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer D-1 contained 4.50 mol% (5.34 wt%) of structural units derived from divinylbenzene. , 1.03 mol% (1.27 wt%) of structural units derived from ethylvinylbenzene, 60.25 mol% (59.84 wt%) of structural units derived from styrene, and 25.82 mol% (59.84 wt%) of structural units derived from isoprene. Modified vinyl aromatic copolymer 1 contains mol% (16.77wt%) and 8.61 mol% (16.77wt%) of structural units derived from diethylaminomethyltriethoxysilane (DEAMTES). It was confirmed that 2.33 modifiers were introduced per molecule. Since the content of the polyfunctional structural unit (e1) represented by the formula (1) is 3.33 mol% (3.95 wt%), the polyfunctional structural degree (e1/c) is 0.74. there were. In formula (1), R1 is phenyl, R2 is hydrogen, and R3 is n-pentyl. The content of divinylbenzene-derived structural units having residual vinyl groups contained in the modified vinyl aromatic copolymer (D-1) was 1.82 mol% (0.21 wt%). Modifier bound to isoprene-derived units was 89.3 mol%.
As a result of thermogravimetry (TGA), the weight loss (TGA 350 ) at 350° C. was 0.78 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (D-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.06.
実施例3 変性ビニル芳香族系共重合体(E-1)の合成
 エチルシクロヘキサン 270ml(210.3g)、2,2-ジ(2-テトラヒドロフリル)プロパン 1.35ml(7.0mmol)を装入し、30℃において、n-ブチルリチウムを純分として2.24g(35.0mmol)を含むn-ヘキサン溶液21.9mlを添加した後、予め不純物を除去した1,3-ジイソプロペニルベンゼン 2.77g(17.5mmol)をエチルシクロヘキサン 40ml(31.2g)に溶解させた溶液を1hrかけて添加した。そのまま、30℃で30min撹拌を継続した。
 次に、スチレン 25.5g(0.245mol)をエチルシクロヘキサン10ml(7.8g)に溶解させた溶液を30minかけて添加し、第1段階の重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は64℃に達した。重合反応終了後、重合溶液を少量サンプルして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン7.15g(105mmol)を添加して、30℃で第2段階の重合を開始した。第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは2010、Mwは2490、Mw/Mnは1.24であった。
 次に、変性剤として下記構造式で示される3-グリシドキシプロピルトリエトキシシラン(GPTES)9.74g(35.0mmol)を、添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。
Figure JPOXMLDOC01-appb-C000015
重合反応完了後、コハク酸 8.27g(70.0mmol)を添加、撹拌した後、ろ過を行った。
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 E-1を固形分換算の収量で42.89g(収率:97.6wt%)を得た。
 変性ビニル芳香族系共重合体 E-1の分析結果を表1に示す。
Example 3 Synthesis of modified vinyl aromatic copolymer (E-1) 270 ml (210.3 g) of ethylcyclohexane and 1.35 ml (7.0 mmol) of 2,2-di(2-tetrahydrofuryl)propane were charged. Then, at 30°C, 21.9 ml of n-hexane solution containing 2.24 g (35.0 mmol) of pure n-butyllithium was added, and then 1,3-diisopropenylbenzene 2 from which impurities had been removed in advance was added. A solution of .77 g (17.5 mmol) dissolved in 40 ml (31.2 g) of ethylcyclohexane was added over 1 hour. Stirring was continued for 30 minutes at 30°C.
Next, a solution of 25.5 g (0.245 mol) of styrene dissolved in 10 ml (7.8 g) of ethylcyclohexane was added over 30 minutes to initiate the first stage of polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 64°C. After the polymerization reaction was completed, a small sample of the polymerization solution was analyzed by gas chromatography (GC), and no unreacted monomer was observed, confirming that the polymerization conversion rate was approximately 100%.
Next, 7.15 g (105 mmol) of isoprene was added as an additional monomer to the reactor to initiate the second stage polymerization at 30°C. After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 2010, Mw of 2490, and Mw/Mn of 1.24 at the end of the second stage of polymerization.
Next, 9.74 g (35.0 mmol) of 3-glycidoxypropyltriethoxysilane (GPTES) shown by the following structural formula was added as a modifier, and a modification reaction was carried out for 2 hours. A polymer solution containing coalescence was obtained.
Figure JPOXMLDOC01-appb-C000015
After the polymerization reaction was completed, 8.27 g (70.0 mmol) of succinic acid was added, stirred, and then filtered.
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 42.89 g (yield: 97.6 wt%) of modified vinyl aromatic copolymer E-1 was obtained in terms of solid content.
Table 1 shows the analysis results of modified vinyl aromatic copolymer E-1.
 得られた変性ビニル芳香族系共重合体 E-1のMnは3170、Mwは4600、Mw/Mnは1.45であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 E-1には、ジイソプロペニルベンゼン由来の構造単位を4.35モル%(6.30wt%)、スチレンに由来する構造単位を60.87モル%(58.07wt%)、イソプレンに由来する構造単位を26.09モル%(16.28wt%)、及び、3-グリシドキシプロピルトリエトキシシラン(GPTES)に由来する構造単位を8.70モル%(19.35wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.53個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)の含有量は4.26モル%(6.17wt%)であることから、多官能構造度(e1/c)は0.98であった。式(1)において、R1はフェニル、R2はメチル、R3はn-ペンチルである。変性ビニル芳香族系共重合体(A-1)中に含まれる残存ビニル基を持つジイソプロペニルベンゼン由来の構造単位含有量は、0.94モル%(1.32wt%)であった。イソプレン由来単位に結合した変性剤は、94.2モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.81wt%であった。変性ビニル芳香族系共重合体(E-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.03であった。
The obtained modified vinyl aromatic copolymer E-1 had Mn of 3170, Mw of 4600, and Mw/Mn of 1.45. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer E-1 contained 4.35 mol% (6.30 wt. %), 60.87 mol% (58.07 wt%) of structural units derived from styrene, 26.09 mol% (16.28 wt%) of structural units derived from isoprene, and Contains 8.70 mol% (19.35 wt%) of structural units derived from ethoxysilane (GPTES), and 2.53 modifiers are introduced per molecule of the modified vinyl aromatic copolymer. I confirmed that there is. Since the content of the polyfunctional structural unit (e1) represented by the above formula (1) is 4.26 mol% (6.17 wt%), the polyfunctional structural degree (e1/c) is 0.98. there were. In formula (1), R1 is phenyl, R2 is methyl, and R3 is n-pentyl. The content of structural units derived from diisopropenylbenzene having residual vinyl groups contained in the modified vinyl aromatic copolymer (A-1) was 0.94 mol% (1.32 wt%). Modifier bound to isoprene-derived units was 94.2 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 0.81 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (E-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.03.
 実施例1、2及び3、並びに、比較例1及び2の共重合体の分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
Table 1 shows the analysis results of the copolymers of Examples 1, 2, and 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000016
実施例4 変性共役ジエン系共重合体(A-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は73℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例1で得られた変性ビニル芳香族系共重合体(A-1) 0.487gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)A-2を得た。
 変性共役ジエン系共重合体A-2の分析結果を表2に示す。
Example 4 Synthesis of modified conjugated diene copolymer (A-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 73°C. After the completion of the polymerization reaction, 15 g of a cyclohexane solution containing 0.487 g of the modified vinyl aromatic copolymer (A-1) obtained in Example 1 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer (modified SBR) A-2 was obtained.
Table 2 shows the analysis results of modified conjugated diene copolymer A-2.
比較例3 変性共役ジエン系共重合体(B-2)の合成
  窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は79℃に達した。重合反応終了後、SBR変性剤として比較例1で得られた変性ビニル芳香族系共重合体(B-1) 0.379gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体B-2を得た。
 変性共役ジエン系共重合体(変性SBR)B-2の分析結果を表2に示す。
Comparative Example 3 Synthesis of modified conjugated diene copolymer (B-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 79°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.379 g of the modified vinyl aromatic copolymer (B-1) obtained in Comparative Example 1 as an SBR modifier was added, and the modification reaction was carried out at 60 ° C. A denaturation reaction was carried out for 30 minutes under temperature conditions to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer B-2 was obtained.
Table 2 shows the analysis results of modified conjugated diene copolymer (modified SBR) B-2.
比較例4 変性共役ジエン系共重合体(C-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は79℃に達した。重合反応終了後、SBR変性剤として比較例2で得られた変性ビニル芳香族系共重合体(C-1) 0.466gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体C-2を得た。
 変性共役ジエン系共重合体(変性SBR)C-2の分析結果を表2に示す。
Comparative Example 4 Synthesis of modified conjugated diene copolymer (C-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 79°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.466 g of the modified vinyl aromatic copolymer (C-1) obtained in Comparative Example 2 as an SBR modifier was added, and the modification reaction was carried out at 60 ° C. A denaturation reaction was carried out for 30 minutes under temperature conditions to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based copolymer was dried in vacuum. Polymer C-2 was obtained.
Table 2 shows the analysis results of modified conjugated diene copolymer (modified SBR) C-2.
実施例5 変性共役ジエン系共重合体(D-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は75℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例2で得られた変性ビニル芳香族系共重合体(D-1) 0.455gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体D-2を得た。
 変性共役ジエン系共重合体(変性SBR)D-2の分析結果を表2に示す。
Example 5 Synthesis of modified conjugated diene copolymer (D-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 75°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.455 g of the modified vinyl aromatic copolymer (D-1) obtained in Example 2 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based copolymer was dried in vacuum. Polymer D-2 was obtained.
Table 2 shows the analysis results of modified conjugated diene copolymer (modified SBR) D-2.
実施例6 変性共役ジエン系共重合体(E-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は81℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例3で得られた変性ビニル芳香族系共重合体(E-1) 0.502gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体E-2を得た。
 変性共役ジエン系共重合体(変性SBR)E-2の分析結果を表2に示す。
Example 6 Synthesis of modified conjugated diene copolymer (E-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 81°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.502 g of the modified vinyl aromatic copolymer (E-1) obtained in Example 3 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer E-2 was obtained.
Table 2 shows the analysis results of modified conjugated diene copolymer (modified SBR) E-2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
実施例7
 実施例4で得られた変性共役ジエン系共重合体(変性SBR)A-2、プロセスオイル、カーボンブラック、酸化亜鉛、ステアリン酸及び老化防止剤を配合し、ラボプラストミルを用い、155℃、60rpmで4分間混練した。
 得られた混練物に、硫黄と加硫促進剤を加え、ラボプラストミルを用い、70℃、60rpmで1分間混練し、加硫して架橋ゴムA-3を得た。
 各添加物の配合割合を表3に示し、得られた架橋ゴムの物性を表4に示す。
Example 7
The modified conjugated diene copolymer (modified SBR) A-2 obtained in Example 4, process oil, carbon black, zinc oxide, stearic acid, and anti-aging agent were blended, and the mixture was heated at 155°C using a Labo Plastomill. The mixture was kneaded for 4 minutes at 60 rpm.
Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded using a Labo Plastomill at 70° C. and 60 rpm for 1 minute, followed by vulcanization to obtain a crosslinked rubber A-3.
Table 3 shows the blending ratio of each additive, and Table 4 shows the physical properties of the obtained crosslinked rubber.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 なお、使用した添加剤は、以下のとおり。
シリカ:エボニックデグサ社製、ULTRASIL 7000
カーボンブラック:新日化カーボン製 ニテロン#200IS
酸化亜鉛:堺化学製 酸化亜鉛2種
ステアリン酸:富士フィルム和光純薬製
老化防止剤:大内新興化学工業製 ノクラック6C
硫黄:鶴見化学工業製 粉末硫黄 JIS2種
加硫促進剤A:大内新興化学工業製 ノクセラーCZ-G
加硫促進剤B:大内新興化学工業製 ノクセラーDP
The additives used are as follows.
Silica: Evonik Degussa, ULTRASIL 7000
Carbon black: Niteron #200IS manufactured by Nichinka Carbon Co., Ltd.
Zinc oxide: Manufactured by Sakai Chemicals Zinc oxide type 2 Stearic acid: Manufactured by Fuji Film Wako Pure Chemical Industries Antioxidant: Manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Nocrack 6C
Sulfur: Powdered sulfur manufactured by Tsurumi Chemical Industry JIS Class 2 vulcanization accelerator A: Noxeler CZ-G manufactured by Ouchi Shinko Chemical Industry
Vulcanization accelerator B: Noxela DP manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
実施例8、9、比較例5、6
 変性共役ジエン系共重合体(変性SBR)A-2の代わりに、実施例5、実施例6、又は比較例3、比較例4で合成した変性共役ジエン系共重合体(変性SBR)B-2、C-2、D-2及びE-2を使用した以外は、実施例7と同様の手法で架橋ゴムB-3、C-3、D-3、E-3を得た。
 得られた架橋ゴムの物性を表4に示す。
Examples 8 and 9, Comparative Examples 5 and 6
Instead of the modified conjugated diene copolymer (modified SBR) A-2, the modified conjugated diene copolymer (modified SBR) B- synthesized in Example 5, Example 6, or Comparative Example 3 or Comparative Example 4 Crosslinked rubbers B-3, C-3, D-3, and E-3 were obtained in the same manner as in Example 7, except that 2, C-2, D-2, and E-2 were used.
Table 4 shows the physical properties of the obtained crosslinked rubber.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
実施例10 変性ビニル芳香族系共重合体(F-1)の合成
 シクロヘキサン 270ml(210.3g)、助触媒トリエチルアミン 5.08ml(35.0mmol)を装入し、30℃において、sec-ブチルリチウム(下記構造式)を純分として2.24g(35.0mmol)含むn-ヘキサン溶液21.9mlを添加した後、
Figure JPOXMLDOC01-appb-C000020
予め不純物を除去した1,3-ジイソプロペニルベンゼン(下記構造式) 2.77g(17.5mmol)をシクロヘキサン 40ml(31.2g)に溶解させた溶液を3hrかけて添加した。そのまま、30℃で2hr撹拌を継続した。
Figure JPOXMLDOC01-appb-C000021
 次に、スチレン(下記構造式) 25.5g(0.245mol)を、シクロヘキサン10ml(7.8g)に溶解させた溶液を30minかけて添加し、第1段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000022
 重合熱により反応溶液の温度が上昇し、最高温度は62℃に達した。重合反応終了後、重合溶液を少量サンプルして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン(下記構造式)7.15g(105mmol)を15minかけて添加して、30℃で第2段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000023
第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは1870、Mwは2410、Mw/Mnは1.29であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 8.73g(35.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 8.27g(70.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000024
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 F-1を固形分換算の収量で41.31g(収率:97.0wt%)を得た。
 変性ビニル芳香族系共重合体 F-1の分析結果を表5に示す。
Example 10 Synthesis of modified vinyl aromatic copolymer (F-1) 270 ml (210.3 g) of cyclohexane and 5.08 ml (35.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium was added. After adding 21.9 ml of n-hexane solution containing 2.24 g (35.0 mmol) of (the following structural formula) as pure content,
Figure JPOXMLDOC01-appb-C000020
A solution prepared by dissolving 2.77 g (17.5 mmol) of 1,3-diisopropenylbenzene (the following structural formula) from which impurities had been removed in 40 ml (31.2 g) of cyclohexane was added over 3 hours. Stirring was continued for 2 hours at 30°C.
Figure JPOXMLDOC01-appb-C000021
Next, a solution of 25.5 g (0.245 mol) of styrene (the following structural formula) dissolved in 10 ml (7.8 g) of cyclohexane was added over 30 minutes to initiate the first stage of polymerization.
Figure JPOXMLDOC01-appb-C000022
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 62°C. After the polymerization reaction was completed, a small sample of the polymerization solution was analyzed by gas chromatography (GC), and no unreacted monomer was observed, confirming that the polymerization conversion rate was approximately 100%.
Next, 7.15 g (105 mmol) of isoprene (the following structural formula) was added as an additional monomer to the reactor over 15 minutes to initiate the second stage polymerization at 30°C.
Figure JPOXMLDOC01-appb-C000023
After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 1870, Mw of 2410, and Mw/Mn of 1.29 at the end of the second stage of polymerization.
Next, 8.73 g (35.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 8.27 g (70.0 mmol) of succinic acid as a neutralizing agent was added, stirred, and then filtered.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000024
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 41.31 g (yield: 97.0 wt%) of modified vinyl aromatic copolymer F-1 was obtained in terms of solid content.
Table 5 shows the analysis results of modified vinyl aromatic copolymer F-1.
 得られた変性ビニル芳香族系共重合体 F-1のMnは2760、Mwは4080、Mw/Mnは1.48であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 F-1には、ジイソプロペニルベンゼン由来の構造単位を4.35モル%(6.50wt%)、スチレンに由来する構造単位を60.87モル%(59.91wt%)、イソプレンに由来する構造単位を26.09モル%(16.79wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.70モル%(16.79wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.27個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は4.18モル%(6.24wt%)であることから、開始剤由来多官能構造度(e1/c)は0.96であった。式(1)において、R1はフェニル、R2はメチル、R3は2-メチルブチルである。変性ビニル芳香族系共重合体(F-1)中に含まれる残存ビニル基を持つジイソプロペニルベンゼン由来の構造単位は、0.17モル%(0.26wt%)であった。イソプレン由来単位に結合した変性剤は、94.2モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.82wt%であった。変性ビニル芳香族系共重合体(F-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.01であった。
The obtained modified vinyl aromatic copolymer F-1 had Mn of 2760, Mw of 4080, and Mw/Mn of 1.48. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer F-1 contained 4.35 mol% (6.50 wt. %), 60.87 mol% (59.91 wt%) of structural units derived from styrene, 26.09 mol% (16.79 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). ) Contains 8.70 mol % (16.79 wt %) of structural units derived from ), and it was confirmed that 2.27 modifiers were introduced per molecule of the modified vinyl aromatic copolymer. did. Since the polyfunctional structural unit (e1) represented by the above formula (1) is 4.18 mol% (6.24 wt%), the initiator-derived polyfunctional structural degree (e1/c) is 0.96. there were. In formula (1), R1 is phenyl, R2 is methyl, and R3 is 2-methylbutyl. The structural unit derived from diisopropenylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (F-1) was 0.17 mol% (0.26 wt%). Modifier bound to isoprene-derived units was 94.2 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 0.82 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (F-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.01.
実施例11 変性ビニル芳香族系共重合体(G-1)の合成
 シクロヘキサン 100ml(77.9g)、助触媒トリエチルアミン 6.68ml(46.0mmol)を装入し、30℃において、sec-ブチルリチウム(下記構造式)を純分として2.95g(46.0mmol)含むn-ヘキサン溶液35.38mlを添加した後、
Figure JPOXMLDOC01-appb-C000025
予め不純物を除去したDVB-960(下記にジビニルベンゼン、エチルビニルベンゼンの構造式を示す) 3.10g(ジビニルベンゼン(m-体とp-体の混合物)成分23.0mmol、エチルビニルベンゼン(m-体とp-体の混合物)成分0.77mmol)を、シクロヘキサン 90.7ml(70.7g)に溶解させた溶液を2hrかけて添加した。そのまま、30℃で1hr撹拌を継続した。
Figure JPOXMLDOC01-appb-C000026
 次に、スチレン(下記構造式) 33.5g(0.322mol)を、30minかけて添加し、第1段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000027
 重合熱により反応溶液の温度が上昇し、最高温度は59℃に達した。重合反応終了後、重合溶液を少量サンプリングして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン(下記構造式)9.40g(138mmol)を30minかけて添加して、30℃で第2段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000028
第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは2610、Mwは3260、Mw/Mnは1.25であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 11.47g(46.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 10.86g(92.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000029
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 G-1を固形分換算の収量で53.12g(収率:96.0wt%)を得た。
 変性ビニル芳香族系共重合体 G-1の分析結果を表5に示す。
Example 11 Synthesis of modified vinyl aromatic copolymer (G-1) 100 ml (77.9 g) of cyclohexane and 6.68 ml (46.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium was added. After adding 35.38 ml of an n-hexane solution containing 2.95 g (46.0 mmol) of (the following structural formula) as a pure component,
Figure JPOXMLDOC01-appb-C000025
3.10 g of DVB-960 from which impurities have been removed (the structural formulas of divinylbenzene and ethylvinylbenzene are shown below) (23.0 mmol of divinylbenzene (mixture of m-form and p-form), ethylvinylbenzene (m A solution prepared by dissolving 0.77 mmol of the component (mixture of - and p-isomers) in 90.7 ml (70.7 g) of cyclohexane was added over 2 hours. Stirring was continued for 1 hour at 30°C.
Figure JPOXMLDOC01-appb-C000026
Next, 33.5 g (0.322 mol) of styrene (the following structural formula) was added over 30 minutes to start the first stage of polymerization.
Figure JPOXMLDOC01-appb-C000027
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 59°C. After the polymerization reaction was completed, a small amount of the polymerization solution was sampled and analyzed by gas chromatography (GC), and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%.
Next, 9.40 g (138 mmol) of isoprene (the following structural formula) was added as an additional monomer to the reactor over 30 minutes to initiate the second stage of polymerization at 30°C.
Figure JPOXMLDOC01-appb-C000028
After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 2610, Mw of 3260, and Mw/Mn of 1.25 at the end of the second stage of polymerization.
Next, 11.47 g (46.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 10.86 g (92.0 mmol) of succinic acid as a neutralizing agent was added and stirred, followed by filtration.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000029
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 53.12 g (yield: 96.0 wt%) of modified vinyl aromatic copolymer G-1 was obtained in terms of solid content.
Table 5 shows the analysis results of modified vinyl aromatic copolymer G-1.
 得られた変性ビニル芳香族系共重合体 G-1のMnは2740、Mwは4750、Mw/Mnは1.73であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 G-1には、ジビニルベンゼン由来の構造単位を4.34モル%(5.40wt%)、エチルビニルベンゼン由来の構造単位を0.15モル%(0.18wt%)、スチレンに由来する構造単位を60.78モル%(60.50wt%)、イソプレンに由来する構造単位を26.05モル%(16.95wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.68モル%(16.96wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.28個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は4.21モル%(5.24wt%)であることから、開始剤由来多官能構造度(e1/c)は0.97であった。式(1)において、R1はフェニル、R2は水素、R3はsec-ブチルである。変性ビニル芳香族系共重合体(G-1)中に含まれる残存ビニル基を持つジビニルベンゼン由来の構造単位は、0.13モル%(0.16wt%)であった。イソプレン由来単位に結合した変性剤は、95.6モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.95wt%であった。変性ビニル芳香族系共重合体(G-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.03であった。
The obtained modified vinyl aromatic copolymer G-1 had Mn of 2740, Mw of 4750, and Mw/Mn of 1.73. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer G-1 contained 4.34 mol% (5.40 wt%) of structural units derived from divinylbenzene. , 0.15 mol% (0.18 wt%) of structural units derived from ethylvinylbenzene, 60.78 mol% (60.50 wt%) of structural units derived from styrene, and 26.05 mol% (60.50 wt%) of structural units derived from isoprene. Modified vinyl aromatic copolymer 1 contains mol% (16.95wt%) and 8.68 mol% (16.96wt%) of structural units derived from diethylaminomethyltriethoxysilane (DEAMTES). It was confirmed that 2.28 modifiers were introduced per molecule. Since the polyfunctional structural unit (e1) represented by the above formula (1) is 4.21 mol% (5.24 wt%), the initiator-derived polyfunctional structural degree (e1/c) is 0.97. there were. In formula (1), R1 is phenyl, R2 is hydrogen, and R3 is sec-butyl. The structural unit derived from divinylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (G-1) was 0.13 mol% (0.16 wt%). Modifier bound to isoprene-derived units was 95.6 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss (TGA 350 ) at 350° C. was 0.95 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (G-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.03.
実施例12 変性ビニル芳香族系共重合体(H-1)の合成
 シクロヘキサン 220ml(171.4g)、助触媒トリエチルアミン 6.68ml(46.0mmol)を装入し、30℃において、sec-ブチルリチウム(下記構造式)を純分として2.95g(46.0mmol)含むn-ヘキサン溶液35.38mlを添加した後、
Figure JPOXMLDOC01-appb-C000030
予め不純物を除去したDVB-960(下記にジビニルベンゼン、エチルビニルベンゼンの構造式を示す) 3.10g(ジビニルベンゼン(m-体とp-体の混合物)成分23.0mmol、エチルビニルベンゼン(m-体とp-体の混合物)成分0.77mmol)を、シクロヘキサン 90.7ml(70.7g)に溶解させた溶液を2hrかけて添加した。そのまま、30℃で1hr撹拌を継続した。
Figure JPOXMLDOC01-appb-C000031
 次に、スチレン(下記構造式)19.2g(0.184mol)及びイソプレン(下記構造式)12.5g(0.184mol)を、30minかけて添加し、第1段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000032
 重合熱により反応溶液の温度が上昇し、最高温度は56℃に達した。重合反応終了後、重合溶液を少量サンプリングして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン(下記構造式)9.40g(138mmol)を30minかけて添加して、30℃で第2段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000033
第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは2500、Mwは3140、Mw/Mnは1.26であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 11.47g(46.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 10.86g(92.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000034
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 H-1を固形分換算の収量で51.9g(収率:97.0wt%)を得た。
 変性ビニル芳香族系共重合体 H-1の分析結果を表5に示す。
Example 12 Synthesis of modified vinyl aromatic copolymer (H-1) 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of co-catalyst triethylamine were charged, and sec-butyllithium was heated at 30°C. After adding 35.38 ml of an n-hexane solution containing 2.95 g (46.0 mmol) of (the following structural formula) as a pure component,
Figure JPOXMLDOC01-appb-C000030
3.10 g of DVB-960 from which impurities have been removed (the structural formulas of divinylbenzene and ethylvinylbenzene are shown below) (23.0 mmol of divinylbenzene (mixture of m-form and p-form), ethylvinylbenzene (m A solution prepared by dissolving 0.77 mmol of the component (mixture of - and p-isomers) in 90.7 ml (70.7 g) of cyclohexane was added over 2 hours. Stirring was continued for 1 hour at 30°C.
Figure JPOXMLDOC01-appb-C000031
Next, 19.2 g (0.184 mol) of styrene (the following structural formula) and 12.5 g (0.184 mol) of isoprene (the following structural formula) were added over 30 minutes to initiate the first stage polymerization.
Figure JPOXMLDOC01-appb-C000032
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 56°C. After the polymerization reaction was completed, a small amount of the polymerization solution was sampled and analyzed by gas chromatography (GC), and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%.
Next, 9.40 g (138 mmol) of isoprene (the following structural formula) was added as an additional monomer to the reactor over 30 minutes to initiate the second stage of polymerization at 30°C.
Figure JPOXMLDOC01-appb-C000033
After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 2500, Mw of 3140, and Mw/Mn of 1.26 at the end of the second stage of polymerization.
Next, 11.47 g (46.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 10.86 g (92.0 mmol) of succinic acid as a neutralizing agent was added and stirred, followed by filtration.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000034
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 51.9 g (yield: 97.0 wt%) of modified vinyl aromatic copolymer H-1 was obtained in terms of solid content.
Table 5 shows the analysis results of modified vinyl aromatic copolymer H-1.
 得られた変性ビニル芳香族系共重合体 H-1のMnは4030、Mwは9770、Mw/Mnは2.43であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 H-1には、ジビニルベンゼン由来の構造単位を3.99モル%(5.59wt%)、エチルビニルベンゼン由来の構造単位を0.13モル%(0.19wt%)、スチレンに由来する構造単位を31.96モル%(35.76wt%)、イソプレンに由来する構造単位を55.92モル%(40.93wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を7.99モル%(17.54wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、3.46個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は3.87モル%(5.42wt%)であることから、開始剤由来多官能構造度(e1/c)は0.97であった。式(1)において、R1はフェニル、R2は水素、R3は2-メチルブチルである。変性ビニル芳香族系共重合体(H-1)中に含まれる残存ビニル基を持つジビニルベンゼン由来の構造単位は、0.12モル%(0.17wt%)であった。イソプレン由来単位に結合した変性剤は、97.8モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.89wt%であった。変性ビニル芳香族系共重合体(H-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.02であった。
The obtained modified vinyl aromatic copolymer H-1 had Mn of 4030, Mw of 9770, and Mw/Mn of 2.43. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer H-1 contained 3.99 mol% (5.59 wt%) of structural units derived from divinylbenzene. , 0.13 mol% (0.19 wt%) of structural units derived from ethylvinylbenzene, 31.96 mol% (35.76 wt%) of structural units derived from styrene, and 55.92 mol% (35.76 wt%) of structural units derived from isoprene. Modified vinyl aromatic copolymer 1 contains mol% (40.93 wt%) and 7.99 mol% (17.54 wt%) of structural units derived from diethylaminomethyltriethoxysilane (DEAMTES). It was confirmed that 3.46 modifiers were introduced per molecule. Since the polyfunctional structural unit (e1) represented by the above formula (1) is 3.87 mol% (5.42 wt%), the initiator-derived polyfunctional structural degree (e1/c) is 0.97. there were. In formula (1), R1 is phenyl, R2 is hydrogen, and R3 is 2-methylbutyl. The structural unit derived from divinylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (H-1) was 0.12 mol % (0.17 wt %). Modifier bound to isoprene-derived units was 97.8 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 0.89 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (H-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.02.
実施例13 変性ビニル芳香族系共重合体(I-1)の合成
 シクロヘキサン 220ml(171.4g)、助触媒トリエチルアミン 6.68ml(46.0mmol)を装入し、30℃において、sec-ブチルリチウム(下記構造式)を純分として2.95g(46.0mmol)含むn-ヘキサン溶液35.38mlを添加した後、
Figure JPOXMLDOC01-appb-C000035
予め不純物を除去したDVB-960(下記にジビニルベンゼン、エチルビニルベンゼンの構造式を示す) 3.10g(ジビニルベンゼン(m-体とp-体の混合物)成分23.0mmol、エチルビニルベンゼン(m-体とp-体の混合物)成分0.77mmol)を、シクロヘキサン 90.7ml(70.7g)に溶解させた溶液を2hrかけて添加した。そのまま、30℃で1hr撹拌を継続した。
Figure JPOXMLDOC01-appb-C000036
 次に、イソプレン(下記構造式) 31.34g(0.46mol)を、60minかけて添加し、重合を開始した。
Figure JPOXMLDOC01-appb-C000037
 重合熱により反応溶液の温度が上昇し、最高温度は42℃に達した。重合反応終了後、重合溶液を少量サンプリングして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、重合を終えた時点の共重合体のMnは1680、Mwは2320、Mw/Mnは1.38であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 11.47g(46.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 10.86g(92.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000038
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 I-1を固形分換算の収量で41.6g(収率:95.0wt%)を得た。
 変性ビニル芳香族系共重合体 I-1の分析結果を表5に示す。
Example 13 Synthesis of modified vinyl aromatic copolymer (I-1) 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium was added. After adding 35.38 ml of an n-hexane solution containing 2.95 g (46.0 mmol) of (the following structural formula) as a pure component,
Figure JPOXMLDOC01-appb-C000035
3.10 g of DVB-960 from which impurities have been removed (the structural formulas of divinylbenzene and ethylvinylbenzene are shown below) (23.0 mmol of divinylbenzene (mixture of m-form and p-form), ethylvinylbenzene (m A solution prepared by dissolving 0.77 mmol of the component (mixture of - and p-isomers) in 90.7 ml (70.7 g) of cyclohexane was added over 2 hours. Stirring was continued for 1 hour at 30°C.
Figure JPOXMLDOC01-appb-C000036
Next, 31.34 g (0.46 mol) of isoprene (the following structural formula) was added over 60 minutes to initiate polymerization.
Figure JPOXMLDOC01-appb-C000037
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 42°C. After the polymerization reaction was completed, a small amount of the polymerization solution was sampled and analyzed by gas chromatography (GC), and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 1680, Mw of 2320, and Mw/Mn of 1.38 at the time the polymerization was completed.
Next, 11.47 g (46.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 10.86 g (92.0 mmol) of succinic acid as a neutralizing agent was added and stirred, followed by filtration.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000038
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 41.6 g (yield: 95.0 wt%) of modified vinyl aromatic copolymer I-1 was obtained in terms of solid content.
Table 5 shows the analysis results of modified vinyl aromatic copolymer I-1.
 得られた変性ビニル芳香族系共重合体 I-1のMnは1850、Mwは3500、Mw/Mnは1.90であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 I-1には、ジビニルベンゼン由来の構造単位を4.34モル%(6.83wt%)、エチルビニルベンゼン由来の構造単位を0.15モル%(0.23wt%)、イソプレンに由来する構造単位を86.83モル%(71.49wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.68モル%(21.45wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、1.94個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は4.17モル%(6.56wt%)であることから、開始剤由来多官能構造度(e1/c)は0.96であった。式(1)において、R1はフェニル、R2は水素、R3は2-メチルブチルである。変性ビニル芳香族系共重合体(H-1)中に含まれる残存ビニル基を持つジビニルベンゼン由来の構造単位は、0.17モル%(0.27wt%)であった。イソプレン由来単位に結合した変性剤は、98.2モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は1.17wt%であった。変性ビニル芳香族系共重合体(H-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.04であった。
The obtained modified vinyl aromatic copolymer I-1 had Mn of 1850, Mw of 3500, and Mw/Mn of 1.90. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer I-1 contained 4.34 mol% (6.83 wt%) of structural units derived from divinylbenzene. , 0.15 mol% (0.23 wt%) of structural units derived from ethylvinylbenzene, 86.83 mol% (71.49 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). Contains 8.68 mol% (21.45 wt%) of structural units derived from . Since the polyfunctional structural unit (e1) represented by the formula (1) is 4.17 mol% (6.56 wt%), the initiator-derived polyfunctional structural degree (e1/c) is 0.96. there were. In formula (1), R1 is phenyl, R2 is hydrogen, and R3 is 2-methylbutyl. The structural unit derived from divinylbenzene having a residual vinyl group contained in the modified vinyl aromatic copolymer (H-1) was 0.17 mol % (0.27 wt %). Modifier bound to isoprene-derived units was 98.2 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 1.17 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (H-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.04.
実施例14 変性ビニル芳香族系共重合体(J-1)の合成
 シクロヘキサン 220ml(171.4g)、助触媒トリエチルアミン 6.68ml(46.0mmol)を装入し、30℃において、sec-ブチルリチウム(下記構造式)を純分として2.95g(46.0mmol)含むn-ヘキサン溶液35.38mlを添加した後、
Figure JPOXMLDOC01-appb-C000039
予め乾燥させたm-キシレン(下記にm-キシレンの構造式を示す) 2.44g(23.0mmol)を、シクロヘキサン 40.0ml(31.2g)に溶解させた溶液を15minかけて添加した。そのまま、30℃で1hr撹拌を継続した。
Figure JPOXMLDOC01-appb-C000040
 次に、スチレン(下記構造式) 9.6g(0.092mol)及びイソプレン(下記構造式) 18.8g(0.276mol)を、30minかけて添加し、第1段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000041
 重合熱により反応溶液の温度が上昇し、最高温度は58℃に達した。重合反応終了後、重合溶液を少量サンプリングして、ガスクロマトグラフ(GC)にて分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。
 次に、反応器に追加モノマーとしてイソプレン(下記構造式)9.40g(138mmol)を30minかけて添加して、30℃で第2段階の重合を開始した。
Figure JPOXMLDOC01-appb-C000042
第2段階の重合反応の終了後、重合溶液を少量サンプルして、GC分析を行ったところ、未反応のモノマーは観察されず、重合転化率はほぼ100%であることを確認した。GPC分析を行ったところ、第2段階の重合を終えた時点の共重合体のMnは1540、Mwは2130、Mw/Mnは1.38であった。
 次に、変性剤としてジエチルアミノメチルトリエトキシシラン(DEAMTES) 11.47g(46.0mmol)を添加して2時間変性反応させ、変性ビニル芳香族系共重合体含有ポリマー溶液を得た。重合反応完了後、中和剤コハク酸 10.86g(92.0mmol)を添加、撹拌した後、ろ過を行った。
 ここで、DEAMTESは、下記構造式に示すように、アルコキシシリル基と同時にアミノ基を有する変性剤である。
Figure JPOXMLDOC01-appb-C000043
 得られた重合溶液を脱揮することにより濃縮した後、エチルシクロヘキサンに溶解させたところ、ゲルないしミクロゲルの生成は認められなかった。その結果、変性ビニル芳香族系共重合体 J-1を固形分換算の収量で47.6g(収率:96.0wt%)を得た。
 変性ビニル芳香族系共重合体 J-1の分析結果を表5に示す。
Example 14 Synthesis of modified vinyl aromatic copolymer (J-1) 220 ml (171.4 g) of cyclohexane and 6.68 ml (46.0 mmol) of cocatalyst triethylamine were charged, and at 30°C, sec-butyllithium was added. After adding 35.38 ml of an n-hexane solution containing 2.95 g (46.0 mmol) of (the following structural formula) as a pure component,
Figure JPOXMLDOC01-appb-C000039
A solution prepared by dissolving 2.44 g (23.0 mmol) of pre-dried m-xylene (the structural formula of m-xylene is shown below) in 40.0 ml (31.2 g) of cyclohexane was added over 15 minutes. Stirring was continued for 1 hour at 30°C.
Figure JPOXMLDOC01-appb-C000040
Next, 9.6 g (0.092 mol) of styrene (the following structural formula) and 18.8 g (0.276 mol) of isoprene (the following structural formula) were added over 30 minutes to initiate the first stage polymerization.
Figure JPOXMLDOC01-appb-C000041
The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 58°C. After the polymerization reaction was completed, a small amount of the polymerization solution was sampled and analyzed by gas chromatography (GC), and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%.
Next, 9.40 g (138 mmol) of isoprene (the following structural formula) was added as an additional monomer to the reactor over 30 minutes to initiate the second stage of polymerization at 30°C.
Figure JPOXMLDOC01-appb-C000042
After the second stage polymerization reaction was completed, a small sample of the polymerization solution was subjected to GC analysis, and it was confirmed that no unreacted monomer was observed and the polymerization conversion rate was approximately 100%. GPC analysis revealed that the copolymer had Mn of 1540, Mw of 2130, and Mw/Mn of 1.38 at the end of the second stage of polymerization.
Next, 11.47 g (46.0 mmol) of diethylaminomethyltriethoxysilane (DEAMTES) was added as a modifier and a modification reaction was carried out for 2 hours to obtain a polymer solution containing a modified vinyl aromatic copolymer. After the polymerization reaction was completed, 10.86 g (92.0 mmol) of succinic acid as a neutralizing agent was added and stirred, followed by filtration.
Here, DEAMTES is a modifier having both an alkoxysilyl group and an amino group, as shown in the structural formula below.
Figure JPOXMLDOC01-appb-C000043
When the obtained polymerization solution was concentrated by devolatilization and then dissolved in ethylcyclohexane, no formation of gel or microgel was observed. As a result, 47.6 g (yield: 96.0 wt%) of modified vinyl aromatic copolymer J-1 was obtained in terms of solid content.
Table 5 shows the analysis results of modified vinyl aromatic copolymer J-1.
 得られた変性ビニル芳香族系共重合体 J-1のMnは2230、Mwは4300、Mw/Mnは1.93であった。GC分析、13C‐NMR及びH‐NMR分析を行うことにより、変性ビニル芳香族系共重合体 J-1には、m-キシレン由来の構造単位を4.00モル%(4.92wt%)、スチレンに由来する構造単位を16.00モル%(19.31wt%)、イソプレンに由来する構造単位を72.00モル%(56.83wt%)、及び、ジエチルアミノメチルトリエトキシシラン(DEAMTES)に由来する構造単位を8.00モル%(18.94wt%)含有しており、変性ビニル芳香族系共重合体1分子当たり、2.07個の変性剤が導入されていることを確認した。前記式(1)で表される多官能構造単位(e1)は3.92モル%(4.82wt%)であることから、開始剤由来多官能構造度(e2/d)は0.98であった。式(1)において、R1はフェニル、R4は水素、R5は水素である。変性ビニル芳香族系共重合体(J-1)中に含まれる残存メチル基を持つm-キシレン由来の構造単位は、0.08モル%(0.10wt%)であった。イソプレン由来単位に結合した変性剤は、93.6モル%であった。
 熱重量測定(TGA)の結果、350℃における重量減少(TGA350)は0.96wt%であった。変性ビニル芳香族系共重合体(H-1) 0.5gをトルエン100gに溶解させたサンプルを石英セルに入れ、そのHaze(濁り度)を、トルエンを基準サンプルとして、積分球式光線透過率測定装置を用い測定したときのHaze値は、0.04であった。
The obtained modified vinyl aromatic copolymer J-1 had Mn of 2230, Mw of 4300, and Mw/Mn of 1.93. By performing GC analysis, 13 C-NMR and 1 H-NMR analysis, modified vinyl aromatic copolymer J-1 contained 4.00 mol% (4.92 wt%) of m-xylene-derived structural units. ), 16.00 mol% (19.31 wt%) of structural units derived from styrene, 72.00 mol% (56.83 wt%) of structural units derived from isoprene, and diethylaminomethyltriethoxysilane (DEAMTES). Contains 8.00 mol% (18.94 wt%) of structural units derived from . Since the polyfunctional structural unit (e1) represented by the above formula (1) is 3.92 mol% (4.82 wt%), the initiator-derived polyfunctional structural degree (e2/d) is 0.98. there were. In formula (1), R1 is phenyl, R4 is hydrogen, and R5 is hydrogen. The amount of structural units derived from m-xylene having residual methyl groups contained in the modified vinyl aromatic copolymer (J-1) was 0.08 mol% (0.10 wt%). Modifier bound to isoprene-derived units was 93.6 mol%.
As a result of thermogravimetric analysis (TGA), the weight loss at 350°C (TGA 350 ) was 0.96 wt%. A sample in which 0.5 g of modified vinyl aromatic copolymer (H-1) was dissolved in 100 g of toluene was placed in a quartz cell, and its haze (turbidity) was measured using an integrating sphere light transmittance method using toluene as a reference sample. The Haze value measured using a measuring device was 0.04.
 実施例10~14の共重合体の分析結果を表5に示す。
Figure JPOXMLDOC01-appb-T000044
Table 5 shows the analysis results of the copolymers of Examples 10 to 14.
Figure JPOXMLDOC01-appb-T000044
実施例15 変性共役ジエン系共重合体(F-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は68℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例10で得られた変性ビニル芳香族系共重合体(F-1) 0.487gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)F-2を得た。
 変性共役ジエン系共重合体F-2の分析結果を表6に示す。
Example 15 Synthesis of modified conjugated diene copolymer (F-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.487 g of the modified vinyl aromatic copolymer (F-1) obtained in Example 10 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer (modified SBR) F-2 was obtained.
Table 6 shows the analysis results of modified conjugated diene copolymer F-2.
実施例16 変性共役ジエン系共重合体(G-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は68℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例11で得られた変性ビニル芳香族系共重合体(G-1) 0.481gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)G-2を得た。
 変性共役ジエン系共重合体G-2の分析結果を表6に示す。
Example 16 Synthesis of modified conjugated diene copolymer (G-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.481 g of the modified vinyl aromatic copolymer (G-1) obtained in Example 11 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Further, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based copolymer was dried in vacuum. Polymer (modified SBR) G-2 was obtained.
Table 6 shows the analysis results of modified conjugated diene copolymer G-2.
実施例17 変性共役ジエン系共重合体(H-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は68℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例12で得られた変性ビニル芳香族系共重合体(H-1) 0.466gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)H-2を得た。
 変性共役ジエン系共重合体H-2の分析結果を表6に示す。
Example 17 Synthesis of modified conjugated diene copolymer (H-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.466 g of the modified vinyl aromatic copolymer (H-1) obtained in Example 12 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer (modified SBR) H-2 was obtained.
Table 6 shows the analysis results of modified conjugated diene copolymer H-2.
実施例18 変性共役ジエン系共重合体(I-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は68℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例13で得られた変性ビニル芳香族系共重合体(I-1) 0.381gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)I-2を得た。
 変性共役ジエン系共重合体I-2の分析結果を表6に示す。
Example 18 Synthesis of modified conjugated diene copolymer (I-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.381 g of the modified vinyl aromatic copolymer (I-1) obtained in Example 13 was used as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Further, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based copolymer was dried in vacuum. Polymer (modified SBR) I-2 was obtained.
Table 6 shows the analysis results of modified conjugated diene copolymer I-2.
実施例19 変性共役ジエン系共重合体(J-2)の合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン580g、2,2-ジ(2-テトラヒドロフリル)プロパン30.7mg(0.16mmol)を含むシクロヘキサン溶液5gを装入し、50℃において、n-ブチルリチウムを純分として51.2mg(0.80mmol)を含むシクロヘキサン溶液15gを添加した後、予め不純物を除去したスチレン34.29g、1,3-ブタジエン80.00gを添加して重合を開始した。重合熱により反応溶液の温度が上昇し、最高温度は68℃に達した。重合反応終了後、得られたスチレン-ブタジエンゴム(SBR)を変性するSBR変性剤として実施例14で得られた変性ビニル芳香族系共重合体(J-1) 0.432gを含むシクロヘキサン溶液15gを添加し、変性反応を実施した、60℃の温度条件で30分間の変性反応を実施して重合体溶液を得た。
 さらに3-グリシドキシプロピルトリエトキシシラン(GPTES)を0.40mmol添加して30分間変性反応させ、変性共役ジエン系共重合体含有ポリマー溶液を得た。
 得られた重合溶液に、酸化防止剤として2,6-ジ-tert-4-ヒドロキシトルエンを0.045g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系共重合体(変性SBR)J-2を得た。
 変性共役ジエン系共重合体J-2の分析結果を表6に示す。
Example 19 Synthesis of modified conjugated diene copolymer (J-2) Into a nitrogen-purged autoclave reactor, 580 g of cyclohexane and 30.7 mg (0.16 mmol) of 2,2-di(2-tetrahydrofuryl)propane were added. After adding 15 g of a cyclohexane solution containing 51.2 mg (0.80 mmol) of n-butyllithium as a pure component at 50°C, 34.29 g of styrene from which impurities had been removed in advance, 1 , 3-butadiene (80.00 g) was added to initiate polymerization. The temperature of the reaction solution increased due to the heat of polymerization, and the maximum temperature reached 68°C. After the polymerization reaction was completed, 15 g of a cyclohexane solution containing 0.432 g of the modified vinyl aromatic copolymer (J-1) obtained in Example 14 was added as an SBR modifier to modify the obtained styrene-butadiene rubber (SBR). was added and a modification reaction was carried out.The modification reaction was carried out for 30 minutes at a temperature of 60°C to obtain a polymer solution.
Furthermore, 0.40 mmol of 3-glycidoxypropyltriethoxysilane (GPTES) was added and a modification reaction was carried out for 30 minutes to obtain a polymer solution containing a modified conjugated diene copolymer.
After adding 0.045 g of 2,6-di-tert-4-hydroxytoluene as an antioxidant to the obtained polymerization solution, the solvent was removed by steam stripping, and the modified conjugated diene-based conjugate was vacuum dried. Polymer (modified SBR) J-2 was obtained.
Table 6 shows the analysis results of modified conjugated diene copolymer J-2.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
実施例20
 実施例15で得られた変性共役ジエン系共重合体(変性SBR)F-2、プロセスオイル、カーボンブラック、酸化亜鉛、ステアリン酸及び老化防止剤を表3に示す配合により配合し、ラボプラストミルを用い、155℃、60rpmで4分間混練した。
 得られた混練物に、硫黄と加硫促進剤を加え、ラボプラストミルを用い、70℃、60rpmで1分間混練し、加硫して架橋ゴムF-3を得た。
 得られた架橋ゴムの物性を表7に示す。
Example 20
The modified conjugated diene copolymer (modified SBR) F-2 obtained in Example 15, process oil, carbon black, zinc oxide, stearic acid, and anti-aging agent were blended according to the formulation shown in Table 3, and Labo Plastomil was used. The mixture was kneaded for 4 minutes at 155° C. and 60 rpm.
Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and the mixture was kneaded using a Labo Plastomill at 70° C. and 60 rpm for 1 minute, followed by vulcanization to obtain a crosslinked rubber F-3.
Table 7 shows the physical properties of the obtained crosslinked rubber.
実施例21、22、23、及び24
 変性共役ジエン系共重合体(変性SBR)F-2の代わりに、実施例16、実施例17、18、及び19で合成した変性共役ジエン系共重合体(変性SBR)G-2、H-2、I-2及びJ-2を使用した以外は、実施例20と同様の手法で架橋ゴムG-3、H-3、I-3、J-3を得た。
 得られた架橋ゴムの物性を表7に示す。
Examples 21, 22, 23, and 24
Instead of modified conjugated diene copolymer (modified SBR) F-2, modified conjugated diene copolymer (modified SBR) G-2, H- synthesized in Example 16, Examples 17, 18, and 19 Crosslinked rubbers G-3, H-3, I-3, and J-3 were obtained in the same manner as in Example 20, except that 2, I-2, and J-2 were used.
Table 7 shows the physical properties of the obtained crosslinked rubber.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表4及び表7によれば、実施例の変性共役ジエン共重合体(変性SBR)を使用した架橋ゴムは、比較例に比べて、ラウンドラバー指数に優れることに由来して、無機充填剤の分散性と走行時のロスが改善され、引張強度、耐摩耗性に優れ、強度と耐摩耗性の両立に寄与できる材料であることが分かる。 According to Tables 4 and 7, the crosslinked rubber using the modified conjugated diene copolymer (modified SBR) of the example has an excellent round rubber index compared to the comparative example, and therefore has no inorganic filler. It can be seen that the material has improved dispersibility and loss during running, has excellent tensile strength and abrasion resistance, and can contribute to achieving both strength and abrasion resistance.
 本発明の変性ビニル芳香族系共重合体は、特に共役ジエン系共重合体(SBR等)の変性剤として有用である。得られた変性共役ジエン系共重合体(変性SBR等)にフィラーを含有し架橋させた架橋ゴムは、フィラーの分散性に優れ、機械的強度、耐摩耗性に優れることから、タイヤ(トレッド)、免震用ゴム、ゴムホース、ゴムローラー、履物材料等のエラストマー材料として有用である。
 本発明の変性ビニル芳香族系共重合体は、電気・電子産業、宇宙・航空機産業、建築・建設産業等の分野において、誘電材料、絶縁材料、耐熱材料、構造材料、接着剤、封止剤、塗料、コーティング剤、シーリング材、印刷インキ、分散剤等としても有用である。その硬化性樹脂組成物をフィルム、シート及びプリプレグに加工して、プラスチック光学部品、タッチパネル、フラットディスプレイ、フィルム液晶素子、さらには光導波路や光学レンズを始めとする各種光学素子などにも利用可能である。熱可塑性樹脂又は硬化性樹脂組成物の耐熱性、誘電特性、接着性・密着性及び光学特性等の特性を改質する改質剤として使用することもできる。
 
The modified vinyl aromatic copolymer of the present invention is particularly useful as a modifier for conjugated diene copolymers (SBR etc.). The crosslinked rubber obtained by crosslinking the obtained modified conjugated diene copolymer (modified SBR, etc.) containing a filler has excellent filler dispersibility, mechanical strength, and abrasion resistance, so it is suitable for tires (treads). It is useful as an elastomer material for seismic isolation rubber, rubber hoses, rubber rollers, footwear materials, etc.
The modified vinyl aromatic copolymer of the present invention can be used as dielectric materials, insulating materials, heat-resistant materials, structural materials, adhesives, and sealants in fields such as electrical and electronic industries, space and aircraft industries, and architecture and construction industries. It is also useful as a paint, coating agent, sealant, printing ink, dispersant, etc. The curable resin composition can be processed into films, sheets, and prepregs and used for plastic optical parts, touch panels, flat displays, film liquid crystal elements, and various optical elements such as optical waveguides and optical lenses. be. It can also be used as a modifier to modify the properties of thermoplastic resins or curable resin compositions, such as heat resistance, dielectric properties, adhesion/adhesion, and optical properties.

Claims (14)

  1.  モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位からなる重合体であって、当該重合体中に多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を含有し、(c)成分又は(d)成分に由来する構造単位の50モル%以上が、(c)成分又は(d)成分の芳香族構造に由来する基R1、及び(c)成分又は(d)成分の芳香族構造以外に由来する基R2又はR3を有する下記式(1)で表される多官能構造単位(e1)となっており、
    Figure JPOXMLDOC01-appb-C000001
     ここで、R1は炭素数6~30の芳香族炭化水素基を示し、R2は水素又は炭素数1~6の炭化水素基、R3は水素又は炭素数1~6の炭化水素基を示す。nは1~3の整数を示す。なお、Polymerは(a)成分又は(b)成分に由来する主たる重合体構造単位を示す。
     さらに当該重合体の末端が、アミノ基、アルコキシシリル基及び水酸基からなる群より選ばれる少なくとも1種の官能基により変性され、一分子当たり平均官能基数が2.0個以上である、数平均分子量Mnが500~30,000であることを特徴とする変性ビニル芳香族系共重合体。
    A polymer consisting of structural units derived from one or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b), wherein the polymer contains a polyfunctional vinyl aromatic compound. Contains a structural unit derived from a group compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms, and contains a structural unit derived from component (c) or component (d). The following in which 50 mol% or more has a group R1 derived from the aromatic structure of component (c) or (d), and a group R2 or R3 derived from a component other than the aromatic structure of component (c) or (d) It is a multifunctional structural unit (e1) represented by formula (1),
    Figure JPOXMLDOC01-appb-C000001
    Here, R1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, R2 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and R3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. n represents an integer from 1 to 3. Note that Polymer indicates the main polymer structural unit derived from component (a) or component (b).
    Furthermore, the terminal of the polymer is modified with at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, and the number average molecular weight is such that the average number of functional groups per molecule is 2.0 or more. A modified vinyl aromatic copolymer having an Mn of 500 to 30,000.
  2.  (c)成分又は(d)成分が有機アルカリ金属化合物と反応することによって、式(1)で表される多官能構造単位(e1)が生成され、R3が有機アルカリ金属化合物に由来する基であることを特徴とする請求項1に記載の変性ビニル芳香族系共重合体。 When component (c) or component (d) reacts with the organic alkali metal compound, a polyfunctional structural unit (e1) represented by formula (1) is produced, and R3 is a group derived from the organic alkali metal compound. The modified vinyl aromatic copolymer according to claim 1, characterized in that:
  3.  多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)に由来する構造単位を0.5モル%以上、35.0モル%以下含有し、モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体に由来する構造単位を65.0モル%以上、99.5モル%以下含有していることを特徴とする請求項1に記載の変性ビニル芳香族系共重合体。 Contains 0.5 mol% or more and 35.0 mol% or less of structural units derived from a polyfunctional vinyl aromatic compound (c) or an aromatic compound (d) having 2 to 4 alkyl groups having 1 to 3 carbon atoms. and contains 65.0 mol% or more and 99.5 mol% or less of structural units derived from one or more monomers selected from the group consisting of monovinyl aromatic compounds (a) and conjugated diene compounds (b). The modified vinyl aromatic copolymer according to claim 1, characterized in that:
  4.  重量平均分子量Mwと数平均分子量Mnの比で表される分子量分布(Mw/Mn)が10.0以下である請求項1に記載の変性ビニル芳香族系共重合体。 The modified vinyl aromatic copolymer according to claim 1, wherein the molecular weight distribution (Mw/Mn) represented by the ratio of weight average molecular weight Mw to number average molecular weight Mn is 10.0 or less.
  5.  一分子当たりの平均官能基数は2~20個の範囲である請求項1に記載の変性ビニル芳香族系共重合体。 The modified vinyl aromatic copolymer according to claim 1, wherein the average number of functional groups per molecule is in the range of 2 to 20.
  6.  モノビニル芳香族化合物が、スチレン、ビニルナフタレン、ビニルビフェニル、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、m-エチルビニルベンゼン、インデン及びp-エチルビニルベンゼンからなる群から選ばれる1種以上の単量体である請求項1に記載の変性ビニル芳香族系共重合体。 The monovinyl aromatic compound is selected from the group consisting of styrene, vinylnaphthalene, vinylbiphenyl, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, m-ethylvinylbenzene, indene and p-ethylvinylbenzene. The modified vinyl aromatic copolymer according to claim 1, which is one or more monomers.
  7.  アルカリ金属化合物と、多官能ビニル芳香族化合物(c)又は炭素数1~3のアルキル基を2~4個有する芳香族化合物(d)から選ばれる1種以上の化合物を反応させることにより多官能アニオン重合開始剤を生成させる開始反応工程と、
     モノビニル芳香族化合物(a)、及び共役ジエン化合物(b)からなる群から選ばれる1種以上の単量体を重合して、前記式(1)で表される多官能構造単位(e1)と活性末端を有するビニル芳香族系共重合体を得る重合工程と、
     前記ビニル芳香族系共重合体の活性末端に、アミノ基、アルコキシシリル基、水酸基からなる群より選ばれる少なくとも1種の官能基を有する化合物、又はそれらの前駆体化合物を反応させて官能基を形成する末端変成工程と、を含むことを特徴とする請求項1~6のいずれかに記載の変性ビニル芳香族系共重合体の製造方法。
    A polyfunctional compound is produced by reacting an alkali metal compound with one or more compounds selected from a polyfunctional vinyl aromatic compound (c) or an aromatic compound having 2 to 4 alkyl groups having 1 to 3 carbon atoms (d). an initiation reaction step of producing an anionic polymerization initiator;
    One or more monomers selected from the group consisting of a monovinyl aromatic compound (a) and a conjugated diene compound (b) are polymerized to form a polyfunctional structural unit (e1) represented by the above formula (1). a polymerization step to obtain a vinyl aromatic copolymer having an active end;
    A functional group is formed by reacting a compound having at least one functional group selected from the group consisting of an amino group, an alkoxysilyl group, and a hydroxyl group, or a precursor compound thereof, with the active end of the vinyl aromatic copolymer. The method for producing a modified vinyl aromatic copolymer according to any one of claims 1 to 6, characterized in that it comprises a terminal modification step of forming a modified vinyl aromatic copolymer.
  8.  共役ジエン化合物の重合体、又は共役ジエン化合物と芳香族ビニル化合物の共重合体と、請求項1に記載の変性ビニル芳香族系共重合体との反応生成物であることを特徴とする変性共役ジエン系共重合体。 A modified conjugate characterized by being a reaction product of a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and the modified vinyl aromatic copolymer according to claim 1. Diene copolymer.
  9.  変性ビニル芳香族系共重合体に由来する構造単位(A1)を0.001~6重量%、共役ジエン化合物に由来する構造単位(B1)を29~99.999重量%及び芳香族ビニル化合物に由来する構造単位(C1)を0~70重量%含有する請求項8に記載の変性共役ジエン系共重合体。 0.001 to 6% by weight of the structural unit (A1) derived from the modified vinyl aromatic copolymer, 29 to 99.999% by weight of the structural unit (B1) derived from the conjugated diene compound, and the aromatic vinyl compound. The modified conjugated diene copolymer according to claim 8, containing 0 to 70% by weight of the derived structural unit (C1).
  10.  ゲルパーミエーションクロマトグラフィー(GPC)測定によって得られる微分分子量分布曲線において、全面積を100%とした場合に、最も低分子量側のピークの3倍以上の数平均分子量(Mn)を有する領域の面積が20%以上である請求項78に記載の変性共役ジエン系共重合体。 In the differential molecular weight distribution curve obtained by gel permeation chromatography (GPC) measurement, the area of the region having a number average molecular weight (Mn) three times or more of the lowest molecular weight peak, when the total area is 100%. The modified conjugated diene copolymer according to claim 78, wherein the amount is 20% or more.
  11.  請求項8~10のいずれか一項に記載の変性共役ジエン系共重合体100重量部に対し、シリカ系無機充填剤、金属酸化物、金属水酸化物及びカーボンブラックからなる群より選ばれる少なくとも1種の補強性充填剤を0.5~200重量部含有することを特徴とする樹脂組成物。 At least one selected from the group consisting of silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon black, based on 100 parts by weight of the modified conjugated diene copolymer according to any one of claims 8 to 10. A resin composition containing 0.5 to 200 parts by weight of one type of reinforcing filler.
  12.  架橋剤を更に含有する請求項11に記載の樹脂組成物。 The resin composition according to claim 11, further comprising a crosslinking agent.
  13.  請求項12に記載の樹脂組成物を架橋してなることを特徴とする樹脂架橋物。 A crosslinked resin product obtained by crosslinking the resin composition according to claim 12.
  14.  請求項13に記載の樹脂架橋物を含むことを特徴とする構造部材。
     
     
    A structural member comprising the resin crosslinked product according to claim 13.

PCT/JP2023/021983 2022-06-15 2023-06-13 Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member WO2023243644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096908 2022-06-15
JP2022-096908 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243644A1 true WO2023243644A1 (en) 2023-12-21

Family

ID=89191357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021983 WO2023243644A1 (en) 2022-06-15 2023-06-13 Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member

Country Status (1)

Country Link
WO (1) WO2023243644A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207029A (en) * 1994-01-19 1995-08-08 Japan Synthetic Rubber Co Ltd Cross-linked polymer particle and its production
JP2010270212A (en) * 2009-05-20 2010-12-02 Bridgestone Corp Modifier, method for producing modified conjugated diene polymer, modified conjugated diene polymer, rubber composition, and pneumatic tire
JP2011080023A (en) * 2009-10-09 2011-04-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and winter tire
WO2013047718A1 (en) * 2011-09-30 2013-04-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP2013087181A (en) * 2011-10-17 2013-05-13 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
JP2013155268A (en) * 2012-01-30 2013-08-15 Jsr Corp Conjugated diene-based rubber and method for producing the same, rubber composition, rubber elastomer and tire
JP2016530361A (en) * 2013-07-22 2016-09-29 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymerization initiator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207029A (en) * 1994-01-19 1995-08-08 Japan Synthetic Rubber Co Ltd Cross-linked polymer particle and its production
JP2010270212A (en) * 2009-05-20 2010-12-02 Bridgestone Corp Modifier, method for producing modified conjugated diene polymer, modified conjugated diene polymer, rubber composition, and pneumatic tire
JP2011080023A (en) * 2009-10-09 2011-04-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and winter tire
WO2013047718A1 (en) * 2011-09-30 2013-04-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP2013087181A (en) * 2011-10-17 2013-05-13 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
JP2013155268A (en) * 2012-01-30 2013-08-15 Jsr Corp Conjugated diene-based rubber and method for producing the same, rubber composition, rubber elastomer and tire
JP2016530361A (en) * 2013-07-22 2016-09-29 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymerization initiator

Similar Documents

Publication Publication Date Title
JP5520829B2 (en) Modified conjugated diene polymer, production method thereof, modified conjugated diene polymer composition, and tire
TWI648294B (en) Modified conjugated diene polymer, rubber composition, and tire
KR101432412B1 (en) Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
WO2016199779A1 (en) Modified conjugated diene polymer, method for producing same, rubber composition and tire
WO2016133154A1 (en) Modified conjugated diene polymer and method for producing same, rubber composition, and tire
KR102141469B1 (en) Modified conjugated diene polymer and rubber composition thereof, and tire
WO2020262371A1 (en) Modified vinylaromatic copolymer, production method therefor, modified conjugated-diene copolymer obtained therefrom and composition thereof, crosslinked rubber object, and tire member
JP2013129693A (en) Method for producing modified conjugated diene polymer and composition of modified conjugated diene polymer
BR112013012201B1 (en) polymers functionalized by end groups, use of 1-oxa-2-silacycloalkanes as functionalization reagents, process to produce polymers functionalized by end groups, use of polymers functionalized by end groups, vulcanizable rubber compositions, use of vulcanizable rubber compositions, tire and mold
US9109071B2 (en) Process for producing conjugated diene rubber and composite of the same rubber
CN112771089B (en) Polyfunctional vinyl aromatic copolymer and process for producing the same, conjugated diene copolymer and composition thereof, crosslinked product, and tire member
TWI673288B (en) Modified conjugated diene polymer, polymer composition and rubber composition
JP2011219699A (en) Modified conjugated diene-based rubber composition and method for producing modified conjugated diene-based rubber composition
KR20170076588A (en) Polymer compound, preparation method of modified conjugated diene polymer using the polymer compound and modified conjugated diene polymer
KR102536506B1 (en) Conjugated diene polymer, method for producing conjugated diene polymer, conjugated diene polymer composition, and rubber composition
CN111465647A (en) Rubber composition and tire
WO2023243644A1 (en) Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member
WO2023100993A1 (en) Modified vinyl aromatic copolymer, method for producing same, modified conjugated diene copolymer obtained from same, resin composition, crosslinked resin and structural member
JP5866155B2 (en) Conjugated diene polymer, process for producing the same, and conjugated diene polymer composition
TW202411274A (en) Modified vinyl aromatic copolymer and method for producing the same, modified conjugated diene copolymer obtained therefrom, resin composition, resin crosslinked product, and structural member
JP2023155806A (en) Modified conjugated diene-based polymer, production method for modified conjugated diene-based polymer, modified conjugated diene-based polymer composition, and rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823934

Country of ref document: EP

Kind code of ref document: A1