WO2023243594A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2023243594A1
WO2023243594A1 PCT/JP2023/021716 JP2023021716W WO2023243594A1 WO 2023243594 A1 WO2023243594 A1 WO 2023243594A1 JP 2023021716 W JP2023021716 W JP 2023021716W WO 2023243594 A1 WO2023243594 A1 WO 2023243594A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
temperature
voltage
signal
value
Prior art date
Application number
PCT/JP2023/021716
Other languages
French (fr)
Japanese (ja)
Inventor
基 高原
淳史 細川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023243594A1 publication Critical patent/WO2023243594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to a power supply system.
  • Patent Document 1 proposes that each power supply device executes similar control without setting a master/slave relationship for multiple power supply devices connected in parallel. A control arrangement for balancing output currents is described.
  • each of a plurality of power supply devices connected in parallel generates a current correction detection signal (Vop) from a detection voltage (Vi) corresponding to the output current of each power supply device, and By connecting them with a common balance line, the average value of the current correction detection signals (Vop) of the plurality of power supply devices appears on the balance line as a balance voltage (Vbi). Further, in each of the plurality of power supply devices, the switching element is controlled so as to reduce the difference between the balanced voltage (Vbi) shared on the balance line and the current correction detection signal (Vop) in the power supply device. .
  • correction information from a detection voltage (Vi) to a current correction detection signal (Vop) is based on variations in resistance values of current detection resistors and amplification of an amplifier detected in an adjustment process for each of a plurality of power supply devices. It is stored in advance as an arithmetic expression or a conversion table so as to correct variations in the rate. This allows control to balance the output currents between the power supply devices without setting a master device.
  • the current balancing in Patent Document 1 depends on the accuracy of the above-mentioned correction information. For this reason, for example, if there is a difference between the ambient temperature in the adjustment process and the ambient temperature in the actual usage environment, the current will depend on the temperature characteristics of components such as the current detection resistor and signal correction section, and the current will change according to the correction information. There is a possibility that the effect of balancing may be reduced. Furthermore, since correction information is obtained with high precision for each power supply device, the adjustment process requires a lot of time, which may lead to a decrease in productivity.
  • Patent Document 1 precise control is required to balance the output currents in order to avoid shortening of life due to imbalance in temperature rise among a plurality of power supplies connected in parallel. As a result, there are concerns that a difference in lifespan will occur between power supply devices due to a decrease in control accuracy, or that an adjustment load for ensuring control accuracy that balances lifespans will increase.
  • the present disclosure has been made to solve such problems, and an object of the present disclosure is to provide a power supply system that supplies current to a load using a plurality of parallel-connected power supply devices through simple control.
  • the goal is to balance temperature rises between power supplies.
  • a power supply system includes a plurality of power supply devices whose outputs are connected in parallel.
  • Each of the plurality of power supply devices includes a converter section, a temperature detection section, an output voltage detection section, a switching control section, and a signal control section.
  • the converter section includes a semiconductor switching element and supplies an output voltage and an output current.
  • the temperature detection section measures the temperature of the converter section.
  • the output voltage detection section measures the output voltage of the converter section.
  • the switching control section generates a drive signal for controlling on/off of the semiconductor switching element according to constant voltage control that brings the detected voltage of the output voltage detection section close to the voltage command value.
  • the signal control section increases or decreases the voltage command value in the switching control section based on a comparison between the temperature detected by the temperature detection section and a temperature threshold.
  • Each signal control section mutually shares information related to the setting of the voltage command value in each power supply device. Further, among the plurality of power supply devices, in a power supply device in a first temperature state where the detected temperature is higher than the temperature threshold value, the signal control unit sets the voltage command value to the first voltage value. On the other hand, in a power supply device in a second temperature state where the detected temperature is below the temperature threshold, the voltage command value is set to a second voltage value higher than the first voltage value.
  • FIG. 1 is a block diagram illustrating a configuration example of a power supply system according to Embodiment 1.
  • FIG. 5 is a flowchart illustrating constant voltage control of each power supply device in the power supply system according to the first embodiment.
  • 2 is a diagram illustrating an example of the operation of the power supply system according to the first embodiment.
  • FIG. 7 is a conceptual diagram illustrating output control characteristics of each power supply device of the power supply system according to a modification of the first embodiment.
  • 5 is a flowchart illustrating control processing for CVCC control of each converter unit in the power supply system according to the first embodiment.
  • 7 is a conceptual diagram illustrating an operation example of a power supply system according to a modification of the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of a power supply system according to a second embodiment.
  • 8 is a flowchart for explaining the operations of the cumulative temperature calculating section and the cumulative temperature comparing section shown in FIG. 7.
  • FIG. 7 is a flowchart for explaining the additional operation of the signal control unit in the power supply system according to the second embodiment. 7 is a chart explaining an example of the operation of the power supply system according to Embodiment 2.
  • FIG. FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a third embodiment. 12 is a flowchart for explaining the operations of the cumulative temperature calculating section and the cumulative temperature determining section shown in FIG. 11.
  • FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a fourth embodiment.
  • FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a fifth embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a power supply system 100A according to the first embodiment.
  • the power supply system 100A includes a plurality of power supply devices connected in parallel. A configuration in which three power supply devices 1a to 1c are connected in parallel will be described below.
  • the outputs of the power supplies 1a to 1c are connected in parallel and supply an output voltage (DC) and an output current (DC) to a common load 120.
  • the input sides of the power supplies 1a to 1c are connected to a common power supply 110 (AC or DC).
  • the power source 110 is a power converter that converts an alternating current voltage from an AC power source into a direct current voltage, or a direct current power source using a power storage element such as a battery.
  • the input sides of the power supplies 1a to 1c can be connected to separate power supplies as long as the input voltage is common.
  • the power supply device 1a includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a signal control section 8a.
  • the converter section 3a includes at least one semiconductor switching element 10a, a rectifier diode 9a, and a smoothing capacitor 15a.
  • the converter section 3a converts the input voltage from the power supply 110 into an output voltage Voa through DC voltage conversion by switching (on/off) the semiconductor switching element 10a. Output voltage Voa and output current Ioa of converter section 3a are supplied to load 120.
  • the converter section 3a may have any circuit configuration, such as a forward converter or a flyback converter, as long as it performs DC voltage conversion through on/off control of semiconductor switching elements. Further, when the power source 110 is an AC power source, a rectifier circuit is further provided at the input stage of the converter section 3a.
  • the output voltage detection unit 5a measures the output voltage Voa of the converter unit 3a and outputs an output voltage signal Vva indicating the measured value of the output voltage Voa.
  • the "detection voltage” is indicated by the output voltage signal Vva.
  • a voltage dividing circuit using resistors can be applied to the output voltage detection section 5a, but any method can be applied as long as the output voltage Voa can be measured.
  • the output current detection unit 6a measures the output current Ioa of the converter unit 3a and outputs an output current signal Via indicating the measured value of the output current Ioa.
  • the "detection current" is indicated by the output current signal Via.
  • the temperature detection section 7a is placed close to a heat generating section such as a rectifier diode 9a, a smoothing capacitor 13a, or a substrate pattern (not shown), and measures the temperature of the location. Temperature detection section 7a outputs a temperature signal Vta indicating the temperature measurement value of converter section 3a. The "detected temperature” is indicated by the temperature signal Vta.
  • the temperature detection section 7a can be constructed by mounting a chip-type thermistor near the heat-generating part on the substrate, or by fixing a film-type or lead-type thermistor directly to the heat-generating part. Any method can be applied to the temperature detection section 7a as long as it is possible to measure the actual temperature of the converter section 3a.
  • the temperature detection part 7a it is possible to place it close to a specific part of the converter part 3a that is likely to generate heat or otherwise shorten its life due to temperature rise. be. Thereby, it is possible to accurately measure the temperature rise that affects the life of the power supply device 1a.
  • the switching control section 4a corresponds to a gate drive circuit for the semiconductor switching element 10a, and outputs a drive signal Sga for turning on and off the semiconductor switching element 10a.
  • the switching control unit 4a generates a drive signal Sga to perform constant voltage (CV) control to bring the output voltage Voa closer to the voltage command value Vo*.
  • the drive signal is used to adjust the on-period ratio (duty ratio) of the semiconductor switching element 10a by feedback control (typically proportional-integral (PI) control) of the deviation between the output voltage Voa and the voltage command value Vo*.
  • PI proportional-integral
  • the switching control section 4a has a function of increasing or decreasing the voltage command value Vo* according to a switching control signal Ssa from a signal control section 8a, which will be described later.
  • the first voltage value is a value lower than the second voltage value, and for example, V1 is a constant value or a constant percentage (for example, 0.5 (%)) of the rated value V0 of the output voltage to the load 120.
  • V2 is set to a value lower than the rated value V0 by a certain value or a certain percentage (for example, about 0.5 (%)).
  • L level a logic low level
  • H level when it is at a logic high level
  • Vo* is set to V2.
  • the switching control unit 4a can be configured by, for example, a general-purpose microcomputer or an IC (Integrated Circuit) having a power supply control function.
  • the signal control unit 8a receives the output voltage signal Vva from the output voltage detection unit 5a and the temperature signal Vta from the temperature detection unit 7a, and controls the voltage increase signal Sva, temperature increase signal Sta, and temperature for the converter unit 3a. An abnormality signal Sta* is generated.
  • Voltage increase signal Sva is set to H level when output voltage signal Vva is higher than voltage threshold VHt (voltage increase state), and set to L level when output voltage signal Vva is lower than voltage threshold VHt. be done.
  • the voltage threshold VHt is set between the first voltage value V1 and the second voltage value V2. Note that the voltage threshold VHt is set to a different value when the voltage increase signal Sva is at the L level and when the voltage increase signal Sva is at the H level so as to have a so-called hysteresis characteristic. Specifically, the voltage threshold VHt in the voltage rising state is set to a lower value than when not in the voltage rising state.
  • the temperature increase signal Sta is set to H level when the temperature signal Vta is higher than the temperature threshold VTHt (also referred to as a temperature increase state), and is set to H level when the temperature signal Vta is below the temperature threshold (normal temperature state or (also referred to as a temperature non-rise state) is set to L level.
  • the temperature threshold value VTHt is set to a different value when the temperature increase signal Sta is at the L level and when the temperature increase signal Sta is at the H level so as to have a so-called hysteresis characteristic.
  • the temperature threshold VTHt is set to a lower value when the temperature is rising than when the temperature is normal.
  • the temperature increase state corresponds to an example of the "first temperature state”
  • the temperature normal state or the temperature non-rise state corresponds to an example of the "second temperature state”.
  • the temperature abnormality signal Sta* is set to the H level when the temperature signal Vta is higher than the predetermined upper temperature limit VTHlm (also referred to as an over-high temperature state), and is set to the L level when Tva ⁇ THlim. Set. For example, when the temperature threshold value VTHt is set to correspond to around 80 [°C], the temperature upper limit value VTHlm is set to correspond to around 120 [°C].
  • the power supply device 1b includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a converter section 3b, a switching control section 4b, similar to the signal control section 8a. It includes an output voltage detection section 5b, an output current detection section 6b, a temperature detection section 7b, and a signal control section 8b.
  • Converter section 3b includes semiconductor switching element 10b, rectifier diode 9b, and smoothing capacitor 15b similar to semiconductor switching element 10a, rectifier diode 9a, and smoothing capacitor 15a.
  • the power supply device 1c includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a switching control section similar to the signal control section 8a. 4c, an output voltage detection section 5c, an output current detection section 6c, a temperature detection section 7c, and a signal control section 8c.
  • the converter section 3c includes a semiconductor switching element 10c, a rectifying diode 9c, and a smoothing capacitor 15c similar to the semiconductor switching element 10a, the rectifying diode 9a, and the smoothing capacitor 15a.
  • the first voltage value V1 and second voltage value V2 of the voltage command value Vo*, the above-mentioned voltage threshold value VHt, temperature threshold value VTHt, and temperature upper limit value VTHlm are common among the power supply devices 1a to 1c.
  • a voltage increase signal Svb is generated in the same manner as the voltage increase signal Sva by comparing the output voltage signal Vvb of the converter section 3b and the voltage threshold value VHt. Furthermore, by comparing the temperature signal Vtb of the converter section 3b with the temperature threshold value VTHt and the temperature upper limit value VTHlm, a temperature increase signal Stb and a temperature abnormality signal Stb* are generated in the same manner as the temperature increase signal Sta and the temperature abnormality signal Sta*. be done.
  • a voltage increase signal Svc, a temperature increase signal Stc, and a temperature abnormality signal Stc* are similarly generated based on the output voltage signal Vvc and temperature signal Vtc of the converter unit 3c.
  • the power supply system 100A further includes signal generation circuits 15t and 15v.
  • the signal generation circuit 15t generates an overall temperature abnormality signal Sto.
  • the signal generation circuit 15v generates an overall voltage status signal Svo.
  • the overall temperature abnormality signal Sto and overall voltage status signal Svo from the signal generation circuits 15t and 15v are input to each of the signal control units 8a to 8c and shared by the power supplies 1a to 1c.
  • the overall temperature abnormality signal Sto is set to H level when the temperature signal Vt (Vta to Vtc) exceeds the temperature upper limit value VTHlm in at least one of the power supply devices 1a to 1c.
  • the overall temperature abnormality signal Sto is set to the L level.
  • the signal generation circuit 15t is configured with a logical sum (OR) gate that receives the temperature abnormality signals Sta* to Stc* as input and outputs the overall temperature abnormality signal Sto.
  • the overall voltage status signal Svo is set to H level when the output voltage signal Vv (Vva to Vvc) exceeds the voltage threshold VHt in at least one of the power supply devices 1a to 1c.
  • the overall voltage state signal Svo is set to L level.
  • the signal generation circuit 15v is configured with a logical sum (OR) gate that receives the voltage increase signals Sva to Svc and outputs the overall voltage status signal Svo. Note that the functions of the signal generation circuits 15t and 15v may be provided inside each of the signal control units 8a to 8c.
  • the switching control signal is controlled according to the temperature state and output voltage state of the power supply devices 1a to 1c.
  • the voltage command value Vo* of each power supply device 1 (1a to 1c) is increased or decreased through Ss (Ssa to Sac).
  • FIG. 2 shows a flowchart illustrating constant voltage control of each power supply device in the power supply system according to the first embodiment. Since the constant voltage control processing in the power supply devices 1a to 1c is similar, in FIG. 2, the constant voltage control of the power supply device 1a executed by the signal control section 8a will be explained.
  • the signal control unit 8a sets the initial value of the switching control signal Ssa in step (hereinafter simply referred to as "S") 110.
  • the signal control unit 8a monitors the temperature signal Vta in S120.
  • S120 includes S121 in which the temperature signal Vta is compared with the temperature upper limit value VTHlm, and S122 in which the temperature signal Vta is compared with the temperature threshold value VTHt.
  • S121 is determined to be YES when the temperature signal Vta is less than or equal to the temperature upper limit value VTHlm, that is, when the temperature abnormality signal Sta* is at the L level.
  • the temperature signal Vta is higher than the temperature upper limit value VTHlm, that is, when the temperature abnormality signal Sta* is at H level (excessive high temperature state)
  • a NO determination is made in S121.
  • a YES determination is made in S122 when the temperature signal Vta is less than or equal to the temperature threshold VTHt, that is, when the temperature increase signal Sta is at L level (normal temperature state).
  • the temperature threshold VTHt that is, when the temperature increase signal Sta is at L level (normal temperature state).
  • a NO determination is made in S122 when the temperature signal Vta is higher than the temperature threshold VTHt, that is, when the temperature increase signal Sta is at the H level (temperature increase state).
  • the power supply device 1a is in an overtemperature state (NO determination in S121), a temperature increase state (YES determination in S121 and NO determination in S122), and a normal temperature (temperature non-rise) state ( It is determined whether the determination is YES in both S121 and S122).
  • the signal control unit 8a advances the process to S170 and sets the switching control signal Ssa to a stop signal for stopping (fixing OFF) the semiconductor switching element 10a of the converter unit 3a. Set.
  • the signal control unit 8a advances the process to S130 and checks the overall voltage state signal Svo. On the other hand, in the temperature rising state (NO determination in S122), after the switching control signal Ssa is set to L level in S125 in order to lower the voltage command value Vo* in the power supply 1a, The process proceeds to S130.
  • the signal control unit 8a determines YES in S130 when the overall voltage status signal Svo is at L level, that is, when the output voltage signal Vv (Vva to Vvc) of all the power supply devices 1a to 1c is equal to or lower than the voltage threshold VHt. As a determination, the process advances to S140.
  • the signal control unit 8a checks whether or not the temperature of the power supply device 1a is normal, as in S122. That is, when the temperature increase signal Sta is at the L level, a YES determination is made in S140, and when the temperature increase signal Sta is at the H level, a NO determination is made in S140.
  • the signal control unit 8a When the overall voltage status signal Svo is at the H level in S130, that is, when the output voltage signal Vv (Vva to Vvc) of at least one of the power supply devices 1a to 1c is higher than the voltage upper limit value VHlim, the signal control unit 8a performs S130. If the determination is NO, the process proceeds to S160. That is, the switching control signal Ssa is maintained at the level (L or H) at the time of determination in S130.
  • the signal control unit 8a checks the overall temperature abnormality signal Sto.
  • the overall temperature abnormality signal Sto is at the H level, that is, when at least one of the power supplies 1a to 1c is overheated (St>VTHlm) (NO determination in S160)
  • the process proceeds to S170,
  • the switching control signal Ssa is set to a stop signal.
  • the signal control units 8b and 8c also control the voltage of the converter units 3b and 3c by performing control processing in which the subscript “a” in FIG. 2 is replaced with “b” or “c”.
  • Command value Vo* can be set similarly.
  • FIG. 3 shows an example of the operation of the power supply system 100A according to the first embodiment.
  • state 1 corresponds to the state after initialization in S110 of FIG.
  • the voltage increase signal Sva of the power supply device 1a is at H level
  • the overall voltage status signal Svo is also at H level.
  • the temperature of the power supply device 1a has not yet increased, and the temperature increase signals Sta to Stc are all at L level.
  • the overall voltage state signal Svo changes from the H level to the L level in response to the voltage increase signal Sva going to the L level.
  • the switching control signals Ssb and Ssc are changed from the L level to the H level in S155 of FIG.
  • the voltage increase signal Svb changes from the H level to the L level in accordance with the decrease in the voltage command value Vo* in the power supply device 1b in state 5.
  • the switching control signal Ssc is maintained at H level, and as a result, the voltage increase signal Svc also remains at the H level.
  • the temperature increase signal Sta is at the L level, so in the power supply device 1a, the switching control signal Ssa changes from the L level to the H level in S155 of FIG. Accordingly, the overall voltage state signal Svo also changes from L level to H level.
  • the output voltage is intentionally adjusted between the power supplies 1a to 1c connected in parallel based on the temperature state of each power supply 1a to 1c. You can replace the power supply to make it more expensive.
  • the output current of the power supply with a relatively higher output voltage will increase. As a result, the temperature rise concentrates.
  • some of the power supplies that are not in a temperature rising state among the plurality of power supplies connected in parallel are turned on based on the comparison result between the temperature signals Vta to Vtc and the temperature threshold value VTHt. Instead, it is selected to intentionally increase its output voltage.
  • multiple power supplies 1a are adjusted so that the output current (amount of temperature rise) of a power supply device that is not in a temperature rising state is larger than the output current (amount of temperature rise) of a power supply device that is in a temperature rising state.
  • the parallel operation of ⁇ 1c can supply current to the load 120.
  • the temperature increase state of the power supply devices 1a to 1c is detected by the increase in the detected temperature by the temperature detection units 7a to 7c assuming thermistors, but when the temperature rises, the current increases, heat generation increases, and Events of increased measured values occur in sequence. Therefore, in a modification of the first embodiment, control for suppressing a temperature rise in response to a sudden increase in current will be described.
  • each of the converter sections 3a to 3c of the power supplies 1a to 1c has a so-called CVCC (Constant Voltage Constant Current) control function.
  • FIG. 4 is a conceptual diagram illustrating the output control characteristics of each power supply device of the power supply system according to a modification of the first embodiment.
  • the converter sections 3 (3a to 3c) of the power supplies 1a to 1c operate at the voltage command value Vo* as described in the first embodiment.
  • Execute constant voltage control according to On the other hand, when the output current Io reaches the upper limit current Ilm during CC control, the control shifts to CC (Constant Current) control in which output limitation is executed, such as limiting the duty ratio of the semiconductor switching elements 10 (10a to 10c). Due to the output restriction, the output power of the converter unit 3 is fixed, so the output voltage Vo decreases as the power consumption in the load 120 increases.
  • the output limit may be made stricter in stages so that the output current Io does not exceed the upper limit current Ilm.
  • FIG. 5 is a flowchart illustrating control processing for CVCC control of the converter section 3 (3a to 3c). The control process shown in FIG. 5 is executed by each of the switching control units 4a to 4c.
  • the switching control unit 4 (4a to 4c) determines whether the switching control signal Ss (Ssa to Ssc) is the stop signal set in S170 of FIG. .
  • the switching control signal Ss is a stop signal (YES in S210)
  • the switching control unit 4 (4a to 4c) controls the drive signal Sg (Sga ⁇ Sgc) is fixed at L level.
  • the semiconductor switching elements 10 (10a to 10c) are fixed in the off state.
  • the switching control unit 4 (4a to 4c) detects the output current signal Vi( Via to Vic) are compared with the determination value VIlm determined corresponding to the upper limit current Ilm in FIG. As a result, the output current Io and the upper limit current Ilm shown in FIG. 4 are compared in each of the power supply devices 1a to 1c.
  • the switching control unit 4 (4a to 4c) generates drive signals Sg (Sga to Sgc) to perform output restriction such as fixing the duty ratio to a certain limit value.
  • the output limitation may be performed so as to realize a so-called drooping characteristic in which the output voltage Vo decreases while the upper limit current Ilm remains the same, and both the output voltage Vo and the output current Io decrease. It may also be carried out so as to realize the so-called "foldback" characteristic.
  • the above-mentioned CVCC control represented by the drooping characteristic and the "F" characteristic is well known as a converter output control, but by combining it with the constant voltage control described in Embodiment 1, the When the output current Io rapidly increases in at least one of 1c, it is possible to quickly prevent a large temperature rise from occurring.
  • FIG. 6 shows a conceptual diagram illustrating an example of the operation of the power supply system according to a modification of the first embodiment.
  • the power supply 1a supplies 5 [A] corresponding to the upper limit current Ilm
  • the power supply 1b supplies 3 [A]
  • the power supply device 1c is supplying 2 [A].
  • the output power is limited in the constant current controlled power supply device 1a, so the output voltage is lower than in FIG. 6(a), and the output current is also reduced.
  • the output current of the power supply device 1a is decreasing, but when the output current becomes lower than the switching current that is preset to a value lower than the upper limit current Ilm, the power supply device 1a , it is possible to return from constant current control to constant voltage control.
  • the output current Io is suppressed to the upper limit current Ilm or less.
  • CVCC control which is further combined with constant current control, is applied to each of the power supplies 1a to 1c.
  • FIG. 7 is a block diagram illustrating a configuration example of a power supply system 100B according to the second embodiment.
  • T1 constant period
  • FIG. 8 shows a flowchart for explaining the operations of the cumulative temperature calculation units 11a to 11c and the cumulative temperature comparison unit 12 in the power supply system 100B. That is, the functions of the cumulative temperature calculation units 11a to 11c and the cumulative temperature comparison unit 12 can be realized by a microcomputer or the like executing the processing shown in FIG.
  • the cumulative temperature calculation units 11a to 11c add the acquired temperature signals Vta to Vtc to their respective integrated values.
  • the cumulative temperature calculation units 11a to 11c increase (increment) the count value i (i: integer) indicating the number of accumulated data by 1, and in S330, compare the incremented count value i with the determination value N1.
  • the judgment value N1 is predetermined so that the count value i reaches the judgment value N1 at every fixed period T1. Until the count value i reaches the determination value N1 (NO determination in S330), the processes of S310 to S330 are repeated.
  • the cumulative temperature comparison unit 12 executes a comparison process of the cumulative temperature signals Vtta to Vttc to extract some power supply devices that are in a relatively high temperature state.
  • the power supply device corresponding to the maximum value of the cumulative temperature signals Vtta to Vttc, ie, the power supply device with the highest temperature is extracted in S350. That is, the cumulative temperature comparison section 12 corresponds to an embodiment of a "temperature history comparison section".
  • the cumulative temperature comparison unit 12 sets the control signals Sttc to Sttc according to the comparison processing result in S350.
  • a portion of the control signals Stta to Sttc corresponding to the power supply device determined to be in a high temperature state is set to the H level, and the remaining portions are set to the L level.
  • Vva is the maximum value among the cumulative temperature signals Vtta to Vttc, that is, when it is determined that the power supply device 1a is in a high temperature state
  • the control signal Stta is set to H level
  • the control signal Sttb , Sttc are set to L level.
  • Control signals Stta to Sttc are input to signal control units 8a to 8c, respectively.
  • the signal control units 8a to 8c further execute the operations described below in response to the control signals Stta to Sttc from the cumulative temperature comparison unit 12.
  • FIG. 9 shows a flowchart illustrating additional operations of the signal control units 8a to 8c in the power supply system 100B according to the second embodiment.
  • the signal control unit 8 (8a to 8c) checks the level of the control signal Stt (Stta to Sttc) from the cumulative temperature comparison unit 12 in S410.
  • Stt H (when YES is determined in S410)
  • a standby time LT is provided in S420 when changing the switching control signal Ss (Ssa to Ssc) from the L level to the H level in S155 of FIG.
  • the control process shown in FIG. 2 is modified accordingly.
  • the standby time LT is shorter than the fixed period T1 of the cumulative temperature calculation units 11a to 11c, and is set within a range of about 1 second to 10 minutes, for example.
  • the standby time LT corresponds to the "first time".
  • S150 is determined to be YES during the constant voltage control control process (FIG. 2).
  • S155 that is, when the switching control signal Ss (Ssa to Ssc) changes from the L level to the H level, the waiting time LT is set.
  • the switching control signals Ss (Ssa to Ssc ) changes from L level to H level (S155).
  • FIG. 10 An example of the operation of the power supply system 100B according to the second embodiment will be described using FIG. 10.
  • the voltage increase signal Sva of the power supply device 1a is at H level
  • the overall voltage status signal Svo is also at H level.
  • the temperature of the power supply device 1a has not yet increased, and the temperature increase signals Sta to Stc are all at L level.
  • State 13 is similar to state 3 in FIG. That is, in response to the voltage command value Vo* of the converter section 3a being reduced in state 12, the voltage increase signal Sva of the power supply device 1a changes from the H level to the L level. As a result, the overall voltage state signal Svo changes from H level to L level.
  • the temperature rise signal Sta is still at the H level in state 13. Further, the power supplies 1b and 1c are in a state where the temperature is not rising, and the temperature rise signals Stb and Stc are at the L level. Therefore, in the power supply devices 1b and 1c, the determinations in S122, S122, S130, and S140 in FIG. 2 are all YES. That is, the conditions for switching control signals Ssb and Ssc to change from L level to H level are satisfied.
  • the standby time LT has elapsed since state 13. Therefore, in response to the switching control signal Ssb of the power supply device 1b changing from the L level to the H level, the voltage increase signal Svb also changes from the L level to the H level.
  • the temperature increase signal Stb of the power supply device 1b which has been determined to be in a high temperature state, changes from the L level to the H level before the temperature increase signal Stc of the power supply device 1c.
  • the switching control signal Ssb of the power supply device 1b changes from H level to L level.
  • the voltage increase signal Svb of the power supply device 1b changes from the H level to the L level.
  • the temperature increase signal Stc changes from the L level to the H level. Accordingly, the switching control signal Ssc of the power supply device 1c changes from the H level to the L level.
  • Embodiment 2 regarding the extraction of power supplies with standby time, an example was explained in which one power supply with the maximum cumulative temperature signal is extracted from three power supplies. It is possible to extract some power supplies that are in a relatively high temperature state from a plurality of power supplies under arbitrary conditions based on the temperature history (cumulative temperature signal).
  • the standby time LT can be adjusted to an appropriate value through actual machine tests or simulations, taking into consideration the size, heat load, load capacity, etc. of the power supply device.
  • the standby time LT is variably set so that the time becomes longer as the temperature increases, depending on the degree of the high temperature state, for example, the value of the cumulative temperature signal Vtt (Vtta to Vttc) of the power supply device determined to be in the high temperature state. may be done.
  • FIG. 11 is a block diagram illustrating a configuration example of a power supply system 100C according to the third embodiment.
  • power supply system 100C includes cumulative temperature calculation units 11a to 11c similar to those in the second embodiment, and cumulative temperature determination unit 13 in that it further includes an exchange information display section 14.
  • the cumulative temperature determining unit 13 determines the remaining life of the power supplies 1a to 1c, which is used to determine whether or not to replace the power supplies 1a to 1c, based on the cumulative temperature signals Vtta to Vttc, that is, the past temperature history. For example, the cumulative temperature determination unit 13 determines the remaining life of the power supplies 1a to 1c.
  • the replacement information display unit 14 is provided to display the determination result by the cumulative temperature determination unit 13, and can be configured with an LED (Light Emitting Diode) lamp, an LED segment, a liquid crystal display, or the like (not shown).
  • LED Light Emitting Diode
  • FIG. 12 shows a flowchart for explaining the operations of the cumulative temperature calculation units 11a to 11c and the cumulative temperature determination unit 13 in the power supply system 100C. That is, the functions of the cumulative temperature calculation units 11a to 11c and the cumulative temperature determination unit 13 can be realized by a microcomputer or the like executing the processing shown in FIG.
  • cumulative temperature calculation units 11a to 11c execute S310 to S330 similar to those in FIG. Calculate.
  • the constant period T1 can be about one hour.
  • step S520 the cumulative temperature determination unit 13 compares each of the cumulative temperature signals Vtta to Vttc for each fixed period with the specified temperature value Vjd.
  • the specified temperature value Vjd can be determined in consideration of the rated temperature. For example, a temperature slightly lower than the rated temperature (for example, 75°C) is set as the specified temperature (70°C), and it is made to correspond to the cumulative temperature signal Vtta to Vttc that is assumed when the specified temperature continues for 1 hour.
  • the specified temperature value Vjd can be set in advance.
  • the cumulative temperature determination unit 13 has temperature rise count values Na to Nc corresponding to each of the power supply devices 1a to 1b.
  • the temperature rise count values Na to Nc are updated in S530 according to the comparison result in S520. Specifically, the temperature rise count value N (Na to Nc) corresponding to the power supply device whose cumulative temperature signal Vtt (Vtta to Vttc) is equal to or higher than the specified temperature value Vjd is increased by 1 (incremented), while the remaining The temperature rise count value is maintained. For example, when Vtta>Vjd, Vttb ⁇ Vjd, and Vttc ⁇ Vjd, the temperature rise count value Na is incremented in S530, while the temperature rise count values Nb and Nc are maintained.
  • the cumulative temperature determination unit 13 compares the temperature rise count values Na to Nc updated in S530 with the upper limit number of times Nt. Then, when at least one of the temperature rise count values Na to Nc reaches the upper limit number of times Nt (when determining YES in S540), the cumulative temperature determination unit 13 determines that the temperature rise count value N (Na to Nc) has reached the upper limit number of times Nt. A power supply device that has reached Nt is identified and a replacement schedule signal Sch is generated.
  • the replacement schedule signal Sch generated in S550 is input from the cumulative temperature determination section 13 to the replacement information display section 14.
  • the replacement information display unit 14 displays a power supply device whose temperature rise count value N (Na to Nc) has reached the upper limit number of times Nt to notify the user as a power supply device scheduled to be replaced. do. For example, by selectively lighting up three LED lamps arranged corresponding to the power supplies 1a to 1c, it is possible to notify the user of the power supply to be replaced. Alternatively, it is also possible to notify the user of the power supply device scheduled for replacement by means of an LED segment, text display on a liquid crystal display, or the like.
  • Embodiment 3 it is possible to determine the pre-life for replacement of a plurality of parallel-connected power supply devices based on the past temperature history. This makes it possible to provide the user with information for considering the replacement schedule, thereby improving user convenience.
  • the second and third embodiments it is also possible to combine the second and third embodiments to create a configuration in which both the cumulative temperature comparison section 12 and the cumulative temperature determination section 13 are arranged. Furthermore, in the power supply system according to the second or third embodiment, and the power supply system according to the combination of the second and third embodiments, the CVCC control according to the modification of the first embodiment is applied to each of the power supply devices 1a to 1c. It is also possible to provide functions.
  • FIG. 13 is a block diagram illustrating a configuration example of a power supply system 100D according to the fourth embodiment.
  • power supply system 100D differs from power supply system 100C according to the third embodiment (FIG. 11) in that it further includes signal isolation circuit sections 16a to 16c. Further, in the power supply system 100D, the temperature detecting units 7a to 7c are arranged on the high voltage side in the converter units 3a to 3c having a non-insulated configuration due to the arrangement of the signal insulating circuit units 16a to 16c. It can be arranged so as to be directly attached to a heat generating part (circuit element) connected to a "path". Note that when the converter sections 3a to 3c are non-insulated, the high voltage side (positive electrode) terminal of the power supply 110 and the high voltage side (positive electrode) terminal of the load 120 are insulated by a transformer or the like. electrically connected.
  • the "high voltage side path” refers to the path through which current flows from the high voltage side (positive electrode) terminal of the power supply 110 to the high voltage side (positive electrode) terminal of the load 120 in each of the converter sections 3a to 3c. shall be indicated.
  • the temperature detecting parts 7a to 7c are attached to the connection parts with the high voltage side path. be able to.
  • each of converter sections 3a to 3c the path through which current returns from the low voltage side (negative electrode) terminal of load 120 to the low voltage side (negative electrode) terminal of power supply 110 is defined as a "low voltage side path.” shall be.
  • the converter sections 3a to 3c are configured of non-insulated type, since the output side (load side) of the converter sections 3a to 3c and the load 120 are connected in parallel, each of the converter sections 3a to 3c In this case, not all of the current flowing on the high voltage side (current flowing toward the load 120) returns as the current flowing on the low voltage side (current flowing toward the power supply 110). Therefore, in order to detect a temperature rise in the converter sections 3a to 3b, it is preferable that the temperature detection sections 7a to 7c accurately measure the temperature of the heat generating section on the high voltage side.
  • the temperature detection units 7a to 7c output temperature signals Vtha to Vthc indicating the measured temperature of the heat generating unit on the high voltage side.
  • the temperature signals Vtha to Vthc are voltage signals based on the potential on the high voltage side because the temperature detection parts 7a to 7c are directly attached to the heat generating part on the high voltage side. It is not possible to directly input the temperature to the signal control units 8a to 8c, cumulative temperature calculation units 11a to 11c, etc., which operate as a reference.
  • signal isolation circuit units 16a to 16c receive temperature signals Vtha to Vthc from temperature detection units 7a to 7c, and generate temperature signals Vtia to Vtic electrically insulated from the high voltage side of converter units 3a to 3c. Output.
  • the temperature signals Vtia to Vtic are generated to have the same amplitude values as the temperature signals Vtha to Vthc with the low voltage side potential as a reference.
  • the signal isolation circuit sections 16a to 16c can be constructed using photocouplers or the like, but any element and circuit configuration can be applied.
  • the temperature signals Vtia to Vtic output from the signal isolation circuit parts 16a to 16c are controlled by the signal control parts 8a to 8c and the cumulative temperature calculation parts 11a to 11a, similarly to the temperature signals Vta to Vtc in the third embodiment (FIG. 11). 11c.
  • the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c convert the temperature signals Vtia to Vtic from the signal isolation circuit units 16a to 16c into the temperature signals Vta to Vtic in FIG. It operates by using it as Vtc.
  • the temperature detection sections 7a to 7c are directly attached to the heat generating section on the high voltage side, and the implementation is performed based on the temperature (temperature signals Vtha to Vthc) measured with high precision.
  • Control can be performed by the power supply system 100C according to the third embodiment. As a result, temperature rises between power supplies can be further balanced by improving control accuracy.
  • the temperature signals Vtia to Vtic from the signal isolation circuit sections 16a to 16c can be used as the temperature signals Vta to Vtc input to the signal control sections 8a to 8c. be.
  • temperature signals Vtia to Vtic from signal isolation circuit units 16a to 16c are converted to temperature signals Vta input to signal control units 8a to 8c and cumulative temperature calculation units 11a to 11c. ⁇ Can be used as Vtc.
  • Embodiment 4 by appropriately combining Embodiment 4 with each of Embodiments 1 to 3 or a combination thereof, it is possible to improve the accuracy of temperature measurement by temperature detection units 7a to 7c. Thereby, as described above, temperature rises between the power supplies can be further balanced by improving control accuracy.
  • FIG. 14 is a block diagram illustrating a configuration example of a power supply system 100E according to the fifth embodiment.
  • power supply system 100E differs from power supply system 100C according to the third embodiment (FIG. 11) in that power supply devices 1a to 1c further include power isolation circuit units 17a to 17c.
  • Power insulation circuit sections 17a to 17c comprehensively describe circuit elements for electrically insulating between the output side (load side) of the converter sections 3a to 3c whose temperature is to be measured and the load 120. This can be realized, for example, by an insulated converter such as a flyback converter or a half-bridge converter, which is connected between the non-insulated converter sections 3a to 3c and the load 120.
  • the power isolation circuit sections 17a to 17c can be configured differently from the example shown in FIG. , may be realized by a transformer included in the converter sections 3a to 3c.
  • the temperature detection units 7a to 7c can be arranged so as to be directly attached to the heat generating unit on the “low voltage side” where signal insulation is not required.
  • the temperature signals Vtla to Vtlc output from the temperature detecting parts 7a to 7c directly attached to the heat generating part on the low voltage side are processed according to the third embodiment without passing through the signal isolation circuit parts 16a to 16c shown in FIG. Similar to the temperature signals Vta to Vtc in FIG. 11, these are input to the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c.
  • the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c convert the temperature signals Vtla to Vtlc from the temperature detection units 7a to 7c into the temperature signals Vta to Vtc in FIG. It operates as a.
  • temperature detection units 7a to 7c are arranged as heat generating parts on the low voltage side with respect to converter parts 3a to 3c configured to electrically insulate power supply 110 and load 120.
  • the power supply system 100C according to the third embodiment can be controlled based on the temperature (temperature signals Vtla to Vtlc) measured with high precision by directly attaching the power supply system 100C to the temperature signal Vtla to Vtlc. As a result, temperature rises between the power supplies can be further balanced by improving control accuracy without requiring a configuration for signal isolation.
  • the load 120 can be directly attached to the heat generating part on the low voltage side.
  • the temperature signals Vtla to Vtlc from the temperature detection units 7a to 7c can be used as the temperature signals Vta to Vtc input to the signal control units 8a to 8c. Also, in FIG. 1 (Embodiment 1) as well, by electrically insulating between the power supply 110 and the load 120 by the power insulation circuit parts 17a to 17c, the load 120 can be directly attached to the heat generating part on the low voltage side.
  • the temperature signals Vtla to Vtlc from the temperature detection units 7a to 7c can be used as the temperature signals Vta to Vtc input to the signal control units 8a to 8c. Also, in FIG.
  • the temperature signals Vtla to Vtlc from the temperature detection parts 7a to 7c directly attached to the heat generating part on the low voltage side can be It can be used as the temperature signals Vta to Vtc input to the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c.
  • Embodiment 5 by appropriately combining Embodiment 5 with each of Embodiments 1 to 3 or a combination thereof, it is possible to improve the accuracy of temperature measurement by temperature detection units 7a to 7c. Thereby, as described above, temperature rises between the power supply devices can be further balanced by improving control accuracy without requiring a configuration for signal isolation.
  • Embodiments 1 to 5 a configuration in which three power supply devices are connected in parallel is illustrated, but a power supply system in which two or four or more power supply devices are connected in parallel to supply power to a load is also possible. It is possible to apply Embodiment 1, a modification of Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4, Embodiment 5, or a combination thereof. .
  • 1a to 1c power supply device 3a to 3c converter section, 4a to 4c switching control section, 5a to 5c output voltage detection section, 6a to 6c output current detection section, 7a to 7c temperature detection section, 8 signal control section, 8a to 8c Signal control unit, 9a to 9c rectifier diode, 10a to 10c semiconductor switching element, 11a to 11c cumulative temperature calculation unit, 12 cumulative temperature comparison unit, 13 cumulative temperature determination unit, 14 replacement information display unit, 15a to 15c smoothing capacitor, 15t, 15v signal generation circuit, 16a to 16c signal isolation circuit section, 17a to 17c power isolation circuit section, 100A to 100C power supply system, 110 power supply, 120 load, Ilm upper limit current, Ioa to Ioc output current, LT standby time, Na ⁇ Nc Temperature rise count value, N1, VIlm Judgment value, Nt Upper limit number of times, Sch Replacement schedule signal, Sga ⁇ Sgc Drive signal, Ssa ⁇ Ssc Switching control signal, Sta,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A plurality of power supply devices (1A-1C), of which the outputs are connected in parallel with each other, have converter units (3a-3c) that are configured to include a plurality of semiconductor switching elements (10a-10c) and that supply output voltages and output currents. The converter units (3a-3c) are subjected to constant voltage control so as to cause the output voltages (Voa-Voc) to become closer to a voltage command value. Among the plurality of power supply devices (1a-1c), for a power supply device that is in a first temperature state of which a detected temperature is higher than a temperature threshold value, the voltage command value is set as a first voltage value. Meanwhile, for a power supply device that is in a second temperature state of which the detected temperature is equal to or lower than the temperature threshold value, the voltage command value is set as a second voltage value higher than the first voltage value.

Description

電源システムpower system
 本開示は、電源システムに関する。 The present disclosure relates to a power supply system.
 電源の大容量化のために、複数の電源装置を並列接続して負荷へ電力を供給するシステム構成が採用されている。この際に並列接続された複数の電源装置の間で部品ばらつき等に起因して出力電圧に差異が生じると、出力電圧が高くなる特定の電源装置において、出力電流の増加に伴う部品の温度上昇量の増大等により寿命が想定よりも短くなる虞がある。これにより、メンテナンス回数の増加等により、機器のライフサイクルコストの上昇が懸念される。 In order to increase the capacity of the power supply, a system configuration has been adopted in which multiple power supply devices are connected in parallel to supply power to the load. At this time, if a difference in output voltage occurs due to component variations among multiple power supplies connected in parallel, the temperature of the components will rise due to the increase in output current in a particular power supply with a high output voltage. There is a risk that the lifespan will be shorter than expected due to an increase in the amount. As a result, there is a concern that the life cycle cost of the equipment will increase due to an increase in the frequency of maintenance.
 これに対して、並列接続された複数の電源装置の間にマスター/スレーブ関係を設定して、出力電流の偏りを抑制する制御を導入すると、制御の複雑化に起因して、回路規模の大型化及び配線の増加等によって、電源システムのコストアップ及び大型化を招くことが懸念される。 On the other hand, if a master/slave relationship is established between multiple power supplies connected in parallel and control is introduced to suppress output current bias, the control becomes complicated and the circuit size becomes large. There is a concern that the increased cost and size of the power supply system will result from an increase in the number of connections and wiring.
 このため、特開2019-92244号公報(特許文献1)には、並列接続された複数の電源装置にマスター/スレーブの関係を設定することなく、各電源装置が同様の制御を実行することで出力電流を均衡化するための制御構成が記載されている。 For this reason, Japanese Unexamined Patent Publication No. 2019-92244 (Patent Document 1) proposes that each power supply device executes similar control without setting a master/slave relationship for multiple power supply devices connected in parallel. A control arrangement for balancing output currents is described.
 具体的には、特許文献1では、並列接続された複数の電源装置のそれぞれが、各自の出力電流に応じた検出電圧(Vi)から電流補正検出信号(Vop)を生成し、かつ、電源装置間を共通のバランス線で接続することによって、複数の電源装置の電流補正検出信号(Vop)の平均値がバランス電圧(Vbi)として当該バランス線上に現れる。更に、複数の電源装置の各々では、バランス線上で共有されたバランス電圧(Vbi)と、当該電源装置での電流補正検出信号(Vop)との差分を減少する様に、スイッチング素子が制御される。 Specifically, in Patent Document 1, each of a plurality of power supply devices connected in parallel generates a current correction detection signal (Vop) from a detection voltage (Vi) corresponding to the output current of each power supply device, and By connecting them with a common balance line, the average value of the current correction detection signals (Vop) of the plurality of power supply devices appears on the balance line as a balance voltage (Vbi). Further, in each of the plurality of power supply devices, the switching element is controlled so as to reduce the difference between the balanced voltage (Vbi) shared on the balance line and the current correction detection signal (Vop) in the power supply device. .
 特許文献1では、検出電圧(Vi)から電流補正検出信号(Vop)への補正情報が、複数の電源装置毎に、調整工程で検出された、電流検出抵抗の抵抗値のばらつき及び増幅器の増幅率のばらつき等を補正する様に、演算式又は変換テーブルとして予め記憶される。これにより、マスター装置を設定することなく、電源装置間で出力電流を均衡化する制御が実現される。 In Patent Document 1, correction information from a detection voltage (Vi) to a current correction detection signal (Vop) is based on variations in resistance values of current detection resistors and amplification of an amplifier detected in an adjustment process for each of a plurality of power supply devices. It is stored in advance as an arithmetic expression or a conversion table so as to correct variations in the rate. This allows control to balance the output currents between the power supply devices without setting a master device.
特開2019-92244号公報JP2019-92244A
 しかしながら、特許文献1での電流均衡化は、上述の補正情報の精度に左右される。このため、例えば、調整工程における周囲温度と実使用環境での周囲温度との間に差異があると、電流検出抵抗及び信号補正部等の構成部品の温度特性に依存して、補正情報による電流均衡化の効果が低下する虞がある。又、電源装置ごとに高精度に補正情報を求めるために、調整工程に多くの時間を要することで生産性の低下も懸念される。 However, the current balancing in Patent Document 1 depends on the accuracy of the above-mentioned correction information. For this reason, for example, if there is a difference between the ambient temperature in the adjustment process and the ambient temperature in the actual usage environment, the current will depend on the temperature characteristics of components such as the current detection resistor and signal correction section, and the current will change according to the correction information. There is a possibility that the effect of balancing may be reduced. Furthermore, since correction information is obtained with high precision for each power supply device, the adjustment process requires a lot of time, which may lead to a decrease in productivity.
 即ち、特許文献1では、並列接続された複数の電源装置間での温度上昇の不均衡による寿命の短縮を避けるために、出力電流を均衡化するための精密な制御が必要である。この結果、制御精度の低下によって電源装置間で寿命に差異が生じてしまうこと、或いは、寿命を均衡化する制御精度を確保するための調整負荷の増大が懸念される。 That is, in Patent Document 1, precise control is required to balance the output currents in order to avoid shortening of life due to imbalance in temperature rise among a plurality of power supplies connected in parallel. As a result, there are concerns that a difference in lifespan will occur between power supply devices due to a decrease in control accuracy, or that an adjustment load for ensuring control accuracy that balances lifespans will increase.
 本開示は、このような問題点を解決するためになされたものであって、本開示の目的は、並列接続された複数の電源装置によって負荷で電流を供給する電源システムにおいて、簡易な制御によって電源装置間で温度上昇を均衡化することである。 The present disclosure has been made to solve such problems, and an object of the present disclosure is to provide a power supply system that supplies current to a load using a plurality of parallel-connected power supply devices through simple control. The goal is to balance temperature rises between power supplies.
 この開示のある局面では、電源システムが提供される。電源システムは、出力が並列接続された複数の電源装置を備える。複数の電源装置の各々は、コンバータ部と、温度検出部と、出力電圧検出部と、スイッチング制御部と、信号制御部とを含む。コンバータ部は、半導体スイッチング素子を含んで構成されて、出力電圧及び出力電流を供給する。温度検出部は、コンバータ部の温度を計測する。出力電圧検出部は、コンバータ部の出力電圧を計測する。スイッチング制御部は、出力電圧検出部の検出電圧を電圧指令値に近付ける定電圧制御に従って、半導体スイッチング素子のオンオフを制御するための駆動信号を生成する。信号制御部は、温度検出部による検出温度と温度閾値との比較に基づいて、スイッチング制御部での電圧指令値を上昇又は低下する。各信号制御部は、各電源装置での電圧指令値の設定に係る情報を互いに共有する。更に、複数の電源装置のうちの、検出温度が温度閾値よりも高い第1温度状態の電源装置では信号制御部が電圧指令値を第1電圧値に設定する。一方で、検出温度が温度閾値以下である第2温度状態の電源装置では電圧指令値を第1電圧値よりも高い第2電圧値に設定する。 In one aspect of this disclosure, a power supply system is provided. The power supply system includes a plurality of power supply devices whose outputs are connected in parallel. Each of the plurality of power supply devices includes a converter section, a temperature detection section, an output voltage detection section, a switching control section, and a signal control section. The converter section includes a semiconductor switching element and supplies an output voltage and an output current. The temperature detection section measures the temperature of the converter section. The output voltage detection section measures the output voltage of the converter section. The switching control section generates a drive signal for controlling on/off of the semiconductor switching element according to constant voltage control that brings the detected voltage of the output voltage detection section close to the voltage command value. The signal control section increases or decreases the voltage command value in the switching control section based on a comparison between the temperature detected by the temperature detection section and a temperature threshold. Each signal control section mutually shares information related to the setting of the voltage command value in each power supply device. Further, among the plurality of power supply devices, in a power supply device in a first temperature state where the detected temperature is higher than the temperature threshold value, the signal control unit sets the voltage command value to the first voltage value. On the other hand, in a power supply device in a second temperature state where the detected temperature is below the temperature threshold, the voltage command value is set to a second voltage value higher than the first voltage value.
 本開示によれば、並列接続された複数の電源装置によって負荷で電流を供給する電源システムにおいて、簡易な制御によって電源装置間で温度上昇を均衡化することができる。 According to the present disclosure, in a power supply system in which a plurality of power supply devices connected in parallel supply current to a load, temperature rises can be balanced among the power supply devices by simple control.
実施の形態1に係る電源システムの構成例を説明するブロック図である。1 is a block diagram illustrating a configuration example of a power supply system according to Embodiment 1. FIG. 実施の形態1に係る電源システムにおける各電源装置の定電圧制御を説明するフローチャートである。5 is a flowchart illustrating constant voltage control of each power supply device in the power supply system according to the first embodiment. 実施の形態1に係る電源システムの動作例を説明する図表である。2 is a diagram illustrating an example of the operation of the power supply system according to the first embodiment. 実施の形態1の変形例に係る電源システムの各電源装置の出力制御特性を説明する概念図である。FIG. 7 is a conceptual diagram illustrating output control characteristics of each power supply device of the power supply system according to a modification of the first embodiment. 実施の形態1に係る電源システムにおける各コンバータ部のCVCC制御のための制御処理を説明するフローチャートである。5 is a flowchart illustrating control processing for CVCC control of each converter unit in the power supply system according to the first embodiment. 実施の形態1の変形例に係る電源システムの動作例を説明する概念図である。7 is a conceptual diagram illustrating an operation example of a power supply system according to a modification of the first embodiment. FIG. 実施の形態2に係る電源システムの構成例を説明するブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a power supply system according to a second embodiment. 図7に示された累積温度算出部及び累積温度比較部の動作を説明するためのフローチャートである。8 is a flowchart for explaining the operations of the cumulative temperature calculating section and the cumulative temperature comparing section shown in FIG. 7. FIG. 実施の形態2に係る電源システムでの信号制御部の追加動作を説明するためのフローチャートである。7 is a flowchart for explaining the additional operation of the signal control unit in the power supply system according to the second embodiment. 実施の形態2に係る電源システムの動作例を説明する図表である。7 is a chart explaining an example of the operation of the power supply system according to Embodiment 2. FIG. 実施の形態3に係る電源システムの構成例を説明するブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a third embodiment. 図11に示された累積温度算出部及び累積温度判定部の動作を説明するためのフローチャートである。12 is a flowchart for explaining the operations of the cumulative temperature calculating section and the cumulative temperature determining section shown in FIG. 11. 実施の形態4に係る電源システムの構成例を説明するブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a fourth embodiment. 実施の形態5に係る電源システムの構成例を説明するブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a power supply system according to a fifth embodiment.
 以下に、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. In addition, below, the same code|symbol is attached|subjected to the same or equivalent part in a figure, and the description shall not be repeated in principle.
 実施の形態1.
 図1は、本実施の形態1に係る電源システム100Aの構成例を説明するブロック図である。
Embodiment 1.
FIG. 1 is a block diagram illustrating a configuration example of a power supply system 100A according to the first embodiment.
 図1に示される様に、電源システム100Aは、並列接続された複数台の電源装置を備える。以下では、3台の電源装置1a~1cが並列接続される構成が説明される。電源装置1a~1cの出力は並列接続されており、共通の負荷120に対して出力電圧(DC)及び出力電流(DC)を供給する。 As shown in FIG. 1, the power supply system 100A includes a plurality of power supply devices connected in parallel. A configuration in which three power supply devices 1a to 1c are connected in parallel will be described below. The outputs of the power supplies 1a to 1c are connected in parallel and supply an output voltage (DC) and an output current (DC) to a common load 120.
 図1の例では、電源装置1a~1cの入力側は、共通の電源110(AC又はDC)と接続される。本実施の形態では、電源110は、AC電源からの交流電圧を直流電圧に変換する電力変換器、又は、バッテリ等の蓄電素子による直流電源を想定して説明を進める。尚、電源装置1a~1cの入力側は、入力電圧が共通であれば、別個の電源と接続することも可能である。 In the example of FIG. 1, the input sides of the power supplies 1a to 1c are connected to a common power supply 110 (AC or DC). In this embodiment, the description will proceed assuming that the power source 110 is a power converter that converts an alternating current voltage from an AC power source into a direct current voltage, or a direct current power source using a power storage element such as a battery. Note that the input sides of the power supplies 1a to 1c can be connected to separate power supplies as long as the input voltage is common.
 電源装置1a~1cの構成は同様であるので、電源装置1aの構成を代表的に説明する。電源装置1aは、コンバータ部3a、スイッチング制御部4a、出力電圧検出部5a、出力電流検出部6a、温度検出部7a、及び、信号制御部8aを含む。 Since the configurations of the power supply devices 1a to 1c are similar, the configuration of the power supply device 1a will be described as a representative example. The power supply device 1a includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a signal control section 8a.
 コンバータ部3aは、少なくとも1つの半導体スイッチング素子10a、整流ダイオード9a、及び、平滑用コンデンサ15aを有する。コンバータ部3aは、電源110からの入力電圧を、半導体スイッチング素子10aのスイッチング(オン・オフ)による直流電圧変換によって出力電圧Voaに変換する。コンバータ部3aの出力電圧Voa及び出力電流Ioaは、負荷120へ供給される。 The converter section 3a includes at least one semiconductor switching element 10a, a rectifier diode 9a, and a smoothing capacitor 15a. The converter section 3a converts the input voltage from the power supply 110 into an output voltage Voa through DC voltage conversion by switching (on/off) the semiconductor switching element 10a. Output voltage Voa and output current Ioa of converter section 3a are supplied to load 120.
 コンバータ部3aは、半導体スイッチング素子のオンオフ制御によって直流電圧変換を行うものであれば、フォワードコンバータ、フライバックコンバータ等、任意の回路構成を適用することが可能である。又、電源110がAC電源である場合には、コンバータ部3aの入力段に整流回路が更に設けられる。 The converter section 3a may have any circuit configuration, such as a forward converter or a flyback converter, as long as it performs DC voltage conversion through on/off control of semiconductor switching elements. Further, when the power source 110 is an AC power source, a rectifier circuit is further provided at the input stage of the converter section 3a.
 出力電圧検出部5aは、コンバータ部3aの出力電圧Voaを計測して、出力電圧Voaの計測値を示す出力電圧信号Vvaを出力する。出力電圧信号Vvaによって「検出電圧」が示される。出力電圧検出部5aは、代表的には、抵抗器による用いた分圧回路を適用することが可能であるが、出力電圧Voaを計測可能であれば、任意の手法を適用することができる。 The output voltage detection unit 5a measures the output voltage Voa of the converter unit 3a and outputs an output voltage signal Vva indicating the measured value of the output voltage Voa. The "detection voltage" is indicated by the output voltage signal Vva. Typically, a voltage dividing circuit using resistors can be applied to the output voltage detection section 5a, but any method can be applied as long as the output voltage Voa can be measured.
 出力電流検出部6aは、コンバータ部3aの出力電流Ioaを計測して、出力電流Ioaの計測値を示す出力電流信号Viaを出力する。出力電流信号Viaによって「検出電流」が示される。出力電流検出部6aには、シャント抵抗、又は、カレントトランスを用いたフラックスゲートセンサを適用することが可能であるが、出力電流Ioaを計測可能であれば、任意の手法を適用することができる。 The output current detection unit 6a measures the output current Ioa of the converter unit 3a and outputs an output current signal Via indicating the measured value of the output current Ioa. The "detection current" is indicated by the output current signal Via. Although it is possible to apply a shunt resistor or a flux gate sensor using a current transformer to the output current detection section 6a, any method can be applied as long as the output current Ioa can be measured. .
 温度検出部7aは、例えば、整流ダイオード9a、平滑コンデンサ13a、又は基板パターン(図示せず)等の発熱部に近接配置されて、当該箇所の温度を計測する。温度検出部7aは、コンバータ部3aの温度計測値を示す温度信号Vtaを出力する。温度信号Vtaによって「検出温度」が示される。温度検出部7aには、チップ型のサーミスタを基板上の発熱部付近に実装する手法、又は、フィルム型或いはリード型のサーミスタを直接発熱部に固定する手法により構成することができる。温度検出部7aについても、コンバータ部3aの実際の温度を計測可能であれば、任意の手法を適用することができる。 The temperature detection section 7a is placed close to a heat generating section such as a rectifier diode 9a, a smoothing capacitor 13a, or a substrate pattern (not shown), and measures the temperature of the location. Temperature detection section 7a outputs a temperature signal Vta indicating the temperature measurement value of converter section 3a. The "detected temperature" is indicated by the temperature signal Vta. The temperature detection section 7a can be constructed by mounting a chip-type thermistor near the heat-generating part on the substrate, or by fixing a film-type or lead-type thermistor directly to the heat-generating part. Any method can be applied to the temperature detection section 7a as long as it is possible to measure the actual temperature of the converter section 3a.
 特に、基板に固定されたサーミスタを温度検出部7aとすると、コンバータ部3aの部品のうちの、発熱し易い等の、温度上昇による寿命短縮の原因となり易い特定部品に近接配置することが可能である。これにより、電源装置1aの寿命に影響を与える温度上昇を正確に測定することができる。 In particular, if a thermistor fixed to the board is used as the temperature detection part 7a, it is possible to place it close to a specific part of the converter part 3a that is likely to generate heat or otherwise shorten its life due to temperature rise. be. Thereby, it is possible to accurately measure the temperature rise that affects the life of the power supply device 1a.
 スイッチング制御部4aは、半導体スイッチング素子10aのゲート駆動回路に相当し、半導体スイッチング素子10aをオンオフするための駆動信号Sgaを出力する。スイッチング制御部4aは、出力電圧Voaを電圧指令値Vo*に近付ける定電圧(CV:Constant Voltage)制御を行う様に駆動信号Sgaを生成する。例えば、出力電圧Voa及び電圧指令値Vo*の偏差のフィードバック制御(代表的には、比例積分(PI)制御)により、半導体スイッチング素子10aのオン期間比(デューティ比)を調整する様に駆動信号Sgaは生成される。 The switching control section 4a corresponds to a gate drive circuit for the semiconductor switching element 10a, and outputs a drive signal Sga for turning on and off the semiconductor switching element 10a. The switching control unit 4a generates a drive signal Sga to perform constant voltage (CV) control to bring the output voltage Voa closer to the voltage command value Vo*. For example, the drive signal is used to adjust the on-period ratio (duty ratio) of the semiconductor switching element 10a by feedback control (typically proportional-integral (PI) control) of the deviation between the output voltage Voa and the voltage command value Vo*. Sga is generated.
 更に、スイッチング制御部4aは、後述する信号制御部8aからのスイッチング制御信号Ssaに応じて、電圧指令値Vo*を上昇又は低下させる機能を有する。例えば、電圧指令値Vo*は、スイッチング制御信号Ssaに応じて、第1電圧値V1及び第2電圧値V2の一方に設定される(Vo*=V1又はV2)。第1電圧値は、第2電圧値よりも低い値であり、例えば、V1は、負荷120への出力電圧の定格値V0に対して、一定値又は一定割合(例えば、0.5(%)程度))だけ低い値に設定され、V2は、当該定格値V0に対して、上記一定値又は一定割合(例えば、0.5(%)程度))だけ高い値に設定される。 Furthermore, the switching control section 4a has a function of increasing or decreasing the voltage command value Vo* according to a switching control signal Ssa from a signal control section 8a, which will be described later. For example, the voltage command value Vo* is set to one of the first voltage value V1 and the second voltage value V2 (Vo*=V1 or V2) according to the switching control signal Ssa. The first voltage value is a value lower than the second voltage value, and for example, V1 is a constant value or a constant percentage (for example, 0.5 (%)) of the rated value V0 of the output voltage to the load 120. V2 is set to a value lower than the rated value V0 by a certain value or a certain percentage (for example, about 0.5 (%)).
 一例として、スイッチング制御信号Ssaが論理ローレベル(以下、Lレベル)であるときには、Vo*=V1に設定され、論理ハイレベル(以下、Hレベル)であるときには、Vo*=V2に設定される。更に、スイッチング制御信号Ssaを複数ビットで構成することで、半導体スイッチング素子10aの停止(オフ固定)も指示することができる。スイッチング制御部4aは、例えば、汎用マイコン、又は、電源制御機能を有するIC(Integrated Circuit)によって構成することができる。 As an example, when the switching control signal Ssa is at a logic low level (hereinafter referred to as L level), Vo*=V1 is set, and when it is at a logic high level (hereinafter referred to as H level), Vo* is set to V2. . Furthermore, by configuring the switching control signal Ssa with a plurality of bits, it is possible to instruct the semiconductor switching element 10a to stop (fixed off). The switching control unit 4a can be configured by, for example, a general-purpose microcomputer or an IC (Integrated Circuit) having a power supply control function.
 信号制御部8aは、出力電圧検出部5aからの出力電圧信号Vvaと、温度検出部7aからの温度信号Vtaとを受けて、コンバータ部3aについての、電圧上昇信号Sva、温度上昇信号Sta及び温度異常信号Sta*を生成する。 The signal control unit 8a receives the output voltage signal Vva from the output voltage detection unit 5a and the temperature signal Vta from the temperature detection unit 7a, and controls the voltage increase signal Sva, temperature increase signal Sta, and temperature for the converter unit 3a. An abnormality signal Sta* is generated.
 電圧上昇信号Svaは、出力電圧信号Vvaが電圧閾値VHtよりも高いとき(電圧上昇状態)にHレベルに設定される一方で、出力電圧信号Vvaが電圧閾値VHtよりも低いときにLレベルに設定される。電圧閾値VHtは、第1電圧値V1及び第2電圧値V2の間に設定される。尚、上記電圧閾値VHtは、所謂ヒステリシス特性を有する様に、電圧上昇信号SvaがLレベルのときとHレベルときとで異なる値に設定される。具体的には、電圧上昇状態の電圧閾値VHtは、電圧上昇状態でないときよりも低い値に設定される。 Voltage increase signal Sva is set to H level when output voltage signal Vva is higher than voltage threshold VHt (voltage increase state), and set to L level when output voltage signal Vva is lower than voltage threshold VHt. be done. The voltage threshold VHt is set between the first voltage value V1 and the second voltage value V2. Note that the voltage threshold VHt is set to a different value when the voltage increase signal Sva is at the L level and when the voltage increase signal Sva is at the H level so as to have a so-called hysteresis characteristic. Specifically, the voltage threshold VHt in the voltage rising state is set to a lower value than when not in the voltage rising state.
 温度上昇信号Staは、温度信号Vtaが温度閾値VTHtよりも高いとき(温度上昇状態とも称する)にHレベルに設定される一方で、温度信号Vtaが温度閾値以下のとき(温度正常状態、又は、温度非上昇状態とも称する)にLレベルに設定される。尚、上記温度閾値VTHtは、所謂ヒステリシス特性を有する様に、温度上昇信号StaがLレベルのときとHレベルときとで異なる値に設定される。具体的には、温度閾値VTHtは、温度上昇状態のときには、温度正常状態のときよりも低い値に設定される。なお、温度上昇状態は「第1温度状態」の一実施例に対応し、温度正常状態、又は、温度非上昇状態は、「第2温度状態」の一実施例に対応する。 The temperature increase signal Sta is set to H level when the temperature signal Vta is higher than the temperature threshold VTHt (also referred to as a temperature increase state), and is set to H level when the temperature signal Vta is below the temperature threshold (normal temperature state or (also referred to as a temperature non-rise state) is set to L level. Note that the temperature threshold value VTHt is set to a different value when the temperature increase signal Sta is at the L level and when the temperature increase signal Sta is at the H level so as to have a so-called hysteresis characteristic. Specifically, the temperature threshold VTHt is set to a lower value when the temperature is rising than when the temperature is normal. Note that the temperature increase state corresponds to an example of the "first temperature state", and the temperature normal state or the temperature non-rise state corresponds to an example of the "second temperature state".
 温度異常信号Sta*は、温度信号Vtaが予め定められた温度上限値VTHlmよりも高いときに(過高温状態とも称する)、Hレベルに設定される一方で、Tva≦THlimのときはLレベルに設定される。例えば、温度閾値VTHtが80[℃]前後に対応して設定されるときには、温度上限値VTHlmは120[℃]程度に対応して設定される。 The temperature abnormality signal Sta* is set to the H level when the temperature signal Vta is higher than the predetermined upper temperature limit VTHlm (also referred to as an over-high temperature state), and is set to the L level when Tva≦THlim. Set. For example, when the temperature threshold value VTHt is set to correspond to around 80 [°C], the temperature upper limit value VTHlm is set to correspond to around 120 [°C].
 電源装置1bは、コンバータ部3a、スイッチング制御部4a、出力電圧検出部5a、出力電流検出部6a、温度検出部7a、及び、信号制御部8aと同様の、コンバータ部3b、スイッチング制御部4b、出力電圧検出部5b、出力電流検出部6b、温度検出部7b、及び、信号制御部8bを含む。コンバータ部3bは、半導体スイッチング素子10a、整流ダイオード9a、及び、平滑用コンデンサ15aと同様の、半導体スイッチング素子10b、整流ダイオード9b、及び、平滑用コンデンサ15bを有する。 The power supply device 1b includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a converter section 3b, a switching control section 4b, similar to the signal control section 8a. It includes an output voltage detection section 5b, an output current detection section 6b, a temperature detection section 7b, and a signal control section 8b. Converter section 3b includes semiconductor switching element 10b, rectifier diode 9b, and smoothing capacitor 15b similar to semiconductor switching element 10a, rectifier diode 9a, and smoothing capacitor 15a.
 同様に、電源装置1cは、コンバータ部3a、スイッチング制御部4a、出力電圧検出部5a、出力電流検出部6a、温度検出部7a、及び、信号制御部8aと同様の、コンバータ部3c、スイッチング制御部4c、出力電圧検出部5c、出力電流検出部6c、温度検出部7c、及び、信号制御部8cを含む。又、コンバータ部3cは、半導体スイッチング素子10a、整流ダイオード9a、及び、平滑用コンデンサ15aと同様の、半導体スイッチング素子10c、整流ダイオード9c、及び、平滑用コンデンサ15cを有する。 Similarly, the power supply device 1c includes a converter section 3a, a switching control section 4a, an output voltage detection section 5a, an output current detection section 6a, a temperature detection section 7a, and a switching control section similar to the signal control section 8a. 4c, an output voltage detection section 5c, an output current detection section 6c, a temperature detection section 7c, and a signal control section 8c. Further, the converter section 3c includes a semiconductor switching element 10c, a rectifying diode 9c, and a smoothing capacitor 15c similar to the semiconductor switching element 10a, the rectifying diode 9a, and the smoothing capacitor 15a.
 電源装置1a~1cの間で、電圧指令値Vo*の第1電圧値V1及び第2電圧値V2と、上述の電圧閾値VHt、温度閾値VTHt、及び、温度上限値VTHlmとは共通である。 The first voltage value V1 and second voltage value V2 of the voltage command value Vo*, the above-mentioned voltage threshold value VHt, temperature threshold value VTHt, and temperature upper limit value VTHlm are common among the power supply devices 1a to 1c.
 従って、信号制御部8bでは、コンバータ部3bの出力電圧信号Vvbと電圧閾値VHtとの比較によって、電圧上昇信号Svbが、電圧上昇信号Svaと同様に生成される。更に、コンバータ部3bの温度信号Vtbと、温度閾値VTHt及び温度上限値VTHlmとの比較によって、温度上昇信号Stb及び温度異常信号Stb*が、温度上昇信号Sta及び温度異常信号Sta*と同様に生成される。 Therefore, in the signal control section 8b, a voltage increase signal Svb is generated in the same manner as the voltage increase signal Sva by comparing the output voltage signal Vvb of the converter section 3b and the voltage threshold value VHt. Furthermore, by comparing the temperature signal Vtb of the converter section 3b with the temperature threshold value VTHt and the temperature upper limit value VTHlm, a temperature increase signal Stb and a temperature abnormality signal Stb* are generated in the same manner as the temperature increase signal Sta and the temperature abnormality signal Sta*. be done.
 更に、信号制御部8cにおいても、コンバータ部3cの出力電圧信号Vvc及び温度信号Vtcに基づき、電圧上昇信号Svc、温度上昇信号Stc、及び温度異常信号Stc*が同様に生成される。 Further, in the signal control unit 8c, a voltage increase signal Svc, a temperature increase signal Stc, and a temperature abnormality signal Stc* are similarly generated based on the output voltage signal Vvc and temperature signal Vtc of the converter unit 3c.
 尚、以下では、各回路要素、各信号、各物理量(温度、電圧)等について、電源装置1a~1cを区別せずに包括的に記載する場合には、添字「a」、「b」、又は、「c」を省略するものとする。例えば、出力電圧Voa,Vob,Vocを包括する場合には、出力電圧Voとも表記する。 In addition, in the following, when describing each circuit element, each signal, each physical quantity (temperature, voltage), etc. comprehensively without distinguishing between the power supplies 1a to 1c, the subscripts "a", "b", Alternatively, "c" shall be omitted. For example, when output voltages Voa, Vob, and Voc are included, it is also written as output voltage Vo.
 電源システム100Aは、信号生成回路15t,15vを更に備える。信号生成回路15tは、全体温度異常信号Stoを生成する。信号生成回路15vは、全体電圧状態信号Svoを生成する。信号生成回路15t,15vからの全体温度異常信号Sto及び全体電圧状態信号Svoは、信号制御部8a~8cの各々に入力されて、電源装置1a~1cで共有される。 The power supply system 100A further includes signal generation circuits 15t and 15v. The signal generation circuit 15t generates an overall temperature abnormality signal Sto. The signal generation circuit 15v generates an overall voltage status signal Svo. The overall temperature abnormality signal Sto and overall voltage status signal Svo from the signal generation circuits 15t and 15v are input to each of the signal control units 8a to 8c and shared by the power supplies 1a to 1c.
 全体温度異常信号Stoは、電源装置1a~1cの少なくとも1つにおいて、温度信号Vt(Vta~Vtc)が温度上限値VTHlmを超えるとHレベルに設定される。一方で、電源装置1a~1cの全てにおいて温度信号Vt(Vta~Vtc)が温度上限値VTHlm以下であるときには、全体温度異常信号StoはLレベルに設定される。例えば、信号生成回路15tは、温度異常信号Sta*~Stc*を入力として、全体温度異常信号Stoを出力する論理和(OR)ゲートによって構成される。 The overall temperature abnormality signal Sto is set to H level when the temperature signal Vt (Vta to Vtc) exceeds the temperature upper limit value VTHlm in at least one of the power supply devices 1a to 1c. On the other hand, when the temperature signal Vt (Vta to Vtc) in all of the power supply devices 1a to 1c is equal to or lower than the temperature upper limit value VTHlm, the overall temperature abnormality signal Sto is set to the L level. For example, the signal generation circuit 15t is configured with a logical sum (OR) gate that receives the temperature abnormality signals Sta* to Stc* as input and outputs the overall temperature abnormality signal Sto.
 全体電圧状態信号Svoは、電源装置1a~1cの少なくとも1つにおいて、出力電圧信号Vv(Vva~Vvc)が電圧閾値VHtを超えるとHレベルに設定される。一方で、電源装置1a~1cの全てにおいて出力電圧信号Vv(Vva~Vvc)が電圧閾値VHt以下であるときには、全体電圧状態信号SvoはLレベルに設定される。例えば、信号生成回路15vは、電圧上昇信号Sva~Svcを入力として、全体電圧状態信号Svoを出力する論理和(OR)ゲートによって構成される。尚、信号生成回路15t,15vの機能は、信号制御部8a~8cの各々の内部に設けられてもよい。 The overall voltage status signal Svo is set to H level when the output voltage signal Vv (Vva to Vvc) exceeds the voltage threshold VHt in at least one of the power supply devices 1a to 1c. On the other hand, when the output voltage signals Vv (Vva to Vvc) of all of the power supply devices 1a to 1c are equal to or less than the voltage threshold VHt, the overall voltage state signal Svo is set to L level. For example, the signal generation circuit 15v is configured with a logical sum (OR) gate that receives the voltage increase signals Sva to Svc and outputs the overall voltage status signal Svo. Note that the functions of the signal generation circuits 15t and 15v may be provided inside each of the signal control units 8a to 8c.
 実施の形態1に係る電源システム100Aでは、各コンバータ部3において電圧指令値Vo*に従う定電圧制御が行われる下で、電源装置1a~1cの温度状態及び出力電圧状態に応じて、スイッチング制御信号Ss(Ssa~Sac)を通じて、各電源装置1(1a~1c)の電圧指令値Vo*が上昇又は低下される。 In the power supply system 100A according to the first embodiment, while constant voltage control is performed in each converter section 3 according to the voltage command value Vo*, the switching control signal is controlled according to the temperature state and output voltage state of the power supply devices 1a to 1c. The voltage command value Vo* of each power supply device 1 (1a to 1c) is increased or decreased through Ss (Ssa to Sac).
 図2には、実施の形態1に係る電源システムにおける各電源装置の定電圧制御を説明するフローチャートが示される。電源装置1a~1cにおける定電圧制御の処理は同様であるので、図2では、信号制御部8aによって実行される電源装置1aの定電圧制御について説明する。 FIG. 2 shows a flowchart illustrating constant voltage control of each power supply device in the power supply system according to the first embodiment. Since the constant voltage control processing in the power supply devices 1a to 1c is similar, in FIG. 2, the constant voltage control of the power supply device 1a executed by the signal control section 8a will be explained.
 図2を参照して、信号制御部8aは、電源システム100Aが起動されると、ステップ(以下、単に「S」と表記する)110により、スイッチング制御信号Ssaの初期値設定を行う。初期値設定は、スイッチング制御信号Ssa~Sacの一部がHレベル、残りがLレベルに設定されるように予め定められる。本明細書では、Ssa=H、Sab=Ssc=Lに初期設定されるものとする。 Referring to FIG. 2, when the power supply system 100A is activated, the signal control unit 8a sets the initial value of the switching control signal Ssa in step (hereinafter simply referred to as "S") 110. Initial value settings are predetermined so that some of the switching control signals Ssa to Sac are set to H level and the rest are set to L level. In this specification, it is assumed that Ssa=H and Sab=Ssc=L are initialized.
 信号制御部8aは、S120により、温度信号Vtaを監視する。S120は、温度信号Vtaを温度上限値VTHlmと比較するS121と、温度信号Vtaを温度閾値VTHtと比較するS122とを有する。 The signal control unit 8a monitors the temperature signal Vta in S120. S120 includes S121 in which the temperature signal Vta is compared with the temperature upper limit value VTHlm, and S122 in which the temperature signal Vta is compared with the temperature threshold value VTHt.
 S121は、温度信号Vtaが温度上限値VTHlm以下のとき、即ち、温度異常信号Sta*がLレベルのときにYESと判定される。一方で、温度信号Vtaが温度上限値VTHlmより高いとき、即ち、温度異常信号Sta*がHレベルのとき(過高温状態)には、S121はNO判定とされる。 S121 is determined to be YES when the temperature signal Vta is less than or equal to the temperature upper limit value VTHlm, that is, when the temperature abnormality signal Sta* is at the L level. On the other hand, when the temperature signal Vta is higher than the temperature upper limit value VTHlm, that is, when the temperature abnormality signal Sta* is at H level (excessive high temperature state), a NO determination is made in S121.
 S122は、温度信号Vtaが温度閾値VTHt以下のとき、即ち、温度上昇信号StaがLレベルのとき(温度正常状態)にYES判定とされる。一方で、温度信号Vtaが温度閾値VTHtよりも高いとき、即ち、温度上昇信号StaがHレベルのとき(温度上昇状態)には、S122はNO判定とされる。 A YES determination is made in S122 when the temperature signal Vta is less than or equal to the temperature threshold VTHt, that is, when the temperature increase signal Sta is at L level (normal temperature state). On the other hand, when the temperature signal Vta is higher than the temperature threshold VTHt, that is, when the temperature increase signal Sta is at the H level (temperature increase state), a NO determination is made in S122.
 S120(S121,S122)により、電源装置1aが過高温状態(S121がNO判定)、温度上昇状態(S121がYES判定、かつ、S122がNO判定)、及び、温度正常(温度非上昇)状態(S121,S122ともYES判定)のいずれであるかが判別される。 Through S120 (S121, S122), the power supply device 1a is in an overtemperature state (NO determination in S121), a temperature increase state (YES determination in S121 and NO determination in S122), and a normal temperature (temperature non-rise) state ( It is determined whether the determination is YES in both S121 and S122).
 信号制御部8aは、過高温状態(S121のNO判定時)では、S170に処理を進めて、コンバータ部3aの半導体スイッチング素子10aを停止(オフ固定)するための停止信号に、スイッチング制御信号Ssaを設定する。 In the over-temperature state (NO determination in S121), the signal control unit 8a advances the process to S170 and sets the switching control signal Ssa to a stop signal for stopping (fixing OFF) the semiconductor switching element 10a of the converter unit 3a. Set.
 信号制御部8aは、温度正常状態(S122のYES判定時)では、S130に処理を進めて、全体電圧状態信号Svoを確認する。これに対して、温度上昇状態(S122のNO判定時)には、S125により、電源装置1aでの電圧指令値Vo*を低下させるために、スイッチング制御信号SsaがLレベルに設定された後、処理がS130に進められる。 In the temperature normal state (YES determination in S122), the signal control unit 8a advances the process to S130 and checks the overall voltage state signal Svo. On the other hand, in the temperature rising state (NO determination in S122), after the switching control signal Ssa is set to L level in S125 in order to lower the voltage command value Vo* in the power supply 1a, The process proceeds to S130.
 信号制御部8aは、S130において全体電圧状態信号SvoがLレベルのとき、即ち、電源装置1a~1cの全てで出力電圧信号Vv(Vva~Vvc)が電圧閾値VHt以下であるとき、S130をYES判定として、S140に処理を進める。 The signal control unit 8a determines YES in S130 when the overall voltage status signal Svo is at L level, that is, when the output voltage signal Vv (Vva to Vvc) of all the power supply devices 1a to 1c is equal to or lower than the voltage threshold VHt. As a determination, the process advances to S140.
 信号制御部8aは、S140では、S122と同様に、電源装置1aが温度正常状態であるか否かを確認する。即ち、温度上昇信号StaがLレベルのときS140はYES判定とされ、温度上昇信号StaがHベルのときS140はNO判定とされる。 In S140, the signal control unit 8a checks whether or not the temperature of the power supply device 1a is normal, as in S122. That is, when the temperature increase signal Sta is at the L level, a YES determination is made in S140, and when the temperature increase signal Sta is at the H level, a NO determination is made in S140.
 S140のYES判定時、即ち、電源装置1aが温度正常状態(温度非上昇状態)であるときには、S150,S155により、スイッチング制御信号SsaがHレベルに設定される。具体的には、Ssa=Lのとき(S150のYES判定時)には、S155により、スイッチング制御信号SsaがLレベルからHレベルに変更される。これに応じて、全体電圧状態信号SvoもHレベルに変化する。一方で、Ssa=Hのとき(S150のNO判定時)には、S155はスキップされて、スイッチング制御信号SsaはHレベルに維持される。S150,S155によってスイッチング制御信号SsaがHレベル又はLレベルに設定されると、処理はS160に進められる。 When the determination is YES in S140, that is, when the power supply device 1a is in a normal temperature state (temperature not rising state), the switching control signal Ssa is set to H level in S150 and S155. Specifically, when Ssa=L (YES determination in S150), the switching control signal Ssa is changed from the L level to the H level in S155. Accordingly, the overall voltage state signal Svo also changes to H level. On the other hand, when Ssa=H (NO determination in S150), S155 is skipped and the switching control signal Ssa is maintained at H level. When the switching control signal Ssa is set to H level or L level in S150 and S155, the process proceeds to S160.
 S140のNO判定時、即ち、電源装置1aが温度上昇状態であるときには、S150,S155の処理はスキップされて,S145により、スイッチング制御信号SsaがLレベルに設定される。この様に、電源装置1aが温度上昇状態である場合には、S125及びS145の少なくとも一方により、Ssa=Lに設定される。 When the determination in S140 is NO, that is, when the temperature of the power supply device 1a is rising, the processing in S150 and S155 is skipped, and the switching control signal Ssa is set to the L level in S145. In this manner, when the temperature of the power supply device 1a is rising, Ssa=L is set by at least one of S125 and S145.
 信号制御部8aは、S130において全体電圧状態信号SvoがHレベルのとき、即ち、電源装置1a~1cの少なくともいずれかで出力電圧信号Vv(Vva~Vvc)が電圧上限値VHlimより高いときには、S130をNO判定として、S160に処理を進める。即ち、スイッチング制御信号Ssaは、S130の判定時点でのレベル(L又はH)に維持される。 When the overall voltage status signal Svo is at the H level in S130, that is, when the output voltage signal Vv (Vva to Vvc) of at least one of the power supply devices 1a to 1c is higher than the voltage upper limit value VHlim, the signal control unit 8a performs S130. If the determination is NO, the process proceeds to S160. That is, the switching control signal Ssa is maintained at the level (L or H) at the time of determination in S130.
 信号制御部8aは、S160では、全体温度異常信号Stoを確認する。全体温度異常信号StoがHレベルのとき、即ち、電源装置1a~1cの少なくともいずれかが過高温(St>VTHlm)のときには(S160のNO判定時)には、S170に処理が進められて、スイッチング制御信号Ssaは停止信号に設定される。これにより、電源装置1aが過高温状態でない場合でも、電源装置1b及び1cの少なくとも一方が過高温状態であれば、コンバータ部3aの半導体スイッチング素子10aはオフ状態に固定される。 In S160, the signal control unit 8a checks the overall temperature abnormality signal Sto. When the overall temperature abnormality signal Sto is at the H level, that is, when at least one of the power supplies 1a to 1c is overheated (St>VTHlm) (NO determination in S160), the process proceeds to S170, The switching control signal Ssa is set to a stop signal. Thereby, even if the power supply device 1a is not in an overheated state, if at least one of the power supply devices 1b and 1c is in an overheated state, the semiconductor switching element 10a of the converter section 3a is fixed in the off state.
 一方で、全体温度異常信号StoがLレベルのとき、即ち、電源装置1a~1cの全てが過高温状態ではないときには(S160のYES判定時)には、処理はS120へ戻される。これにより、電源装置1a~1cのいずれかで過高温状態が検出されるまで(S120又はS160がYES判定)、S120~S160の処理が繰り返し実行される。 On the other hand, when the overall temperature abnormality signal Sto is at the L level, that is, when all of the power supply devices 1a to 1c are not in an overtemperature state (YES in S160), the process returns to S120. As a result, the processes of S120 to S160 are repeatedly executed until an overtemperature state is detected in any of the power supply devices 1a to 1c (YES determination in S120 or S160).
 S120~S160の処理では、電源装置1aが温度上昇状態になると、スイッチング制御信号SsaがLレベルに設定されて、コンバータ部3aの電圧指令値Vo*が低下される(Vo*=V1)。 In the processes of S120 to S160, when the temperature of the power supply device 1a increases, the switching control signal Ssa is set to L level, and the voltage command value Vo* of the converter section 3a is decreased (Vo*=V1).
 又、電源装置1aが温度正常状態のときには、他の電源装置1a~1cの全てが電圧上昇状態ではないときに(Svo=Lレベル)、コンバータ部3aの電圧指令値Vo*が上昇される(Vo*=V2)。これにより、電源装置1a~1c全てでVo*=V2とならない様に制限することができる。又、初期設定(S110)では、スイッチング制御信号Ssa~Sscの一部ずつがHレベル及びLレベルに設定される。この結果、電源装置1a~1cの電圧指令値Vo*が、すべて第2電圧値V2又は第1電圧値V1で維持されない制御となる。つまり、電源装置1a~1cの電圧指令値Vo*が、第1電圧値V1又は第2電圧値V2に揃う状態が維持されない様に制御することができる。尚、図2の例とは異なる手法、例えば、スイッチング制御信号Ssa~Sscの現在のレベルを信号制御部8a~8c間で共有することで、電源装置1a~1cの電圧指令値Vo*が、第1電圧値V1又は第2電圧値V2に揃わない様に制御してもよい。 Further, when the temperature of the power supply device 1a is normal, and when all of the other power supply devices 1a to 1c are not in a voltage rising state (Svo=L level), the voltage command value Vo* of the converter section 3a is increased ( Vo*=V2). As a result, it is possible to restrict Vo*=V2 in all of the power supply devices 1a to 1c. Further, in the initial setting (S110), some of the switching control signals Ssa to Ssc are set to H level and L level. As a result, the voltage command values Vo* of the power supplies 1a to 1c are all controlled to not be maintained at the second voltage value V2 or the first voltage value V1. In other words, it is possible to control the voltage command values Vo* of the power supplies 1a to 1c so that they are not maintained equal to the first voltage value V1 or the second voltage value V2. Note that by using a method different from the example in FIG. 2, for example, by sharing the current levels of the switching control signals Ssa to Ssc between the signal control units 8a to 8c, the voltage command values Vo* of the power supplies 1a to 1c can be changed to The voltage may be controlled so as not to be equal to the first voltage value V1 or the second voltage value V2.
 電源装置1b、1cにおいても、信号制御部8b、8cが、図2中での添字「a」を「b」又は「c」に置換した制御処理を行うことで、コンバータ部3b、3cの電圧指令値Vo*を同様に設定することができる。 In the power supplies 1b and 1c, the signal control units 8b and 8c also control the voltage of the converter units 3b and 3c by performing control processing in which the subscript “a” in FIG. 2 is replaced with “b” or “c”. Command value Vo* can be set similarly.
 図3には、実施の形態1に係る電源システム100Aの動作例が示される。
 図3を参照して、状態1は、図2のS110での初期設定後の状態に対応する。電源装置1aでSsa=Hに設定される(Vo*=V2)一方で、電源装置1b、1cでは、Ssb=Ssc=Lに設定される(Vo*=V1)。これにより、電源装置1aの電圧上昇信号SvaがHレベルになっており、全体電圧状態信号SvoもHレベルになる。状態1では、電源装置1aの温度は上昇する前であり、温度上昇信号Sta~Stcは全てLレベルである。
FIG. 3 shows an example of the operation of the power supply system 100A according to the first embodiment.
Referring to FIG. 3, state 1 corresponds to the state after initialization in S110 of FIG. In the power supply device 1a, Ssa=H is set (Vo*=V2), while in the power supply devices 1b and 1c, Ssb=Ssc=L is set (Vo*=V1). As a result, the voltage increase signal Sva of the power supply device 1a is at H level, and the overall voltage status signal Svo is also at H level. In state 1, the temperature of the power supply device 1a has not yet increased, and the temperature increase signals Sta to Stc are all at L level.
 状態2では、状態1が継続して電源装置1aの温度が上昇することにより、温度上昇信号StaがLレベルからHレベルに変化する。これに応じて、図2のS125(S1222がNO判定)により、電源装置1aのスイッチング制御信号SsaがLレベルに設定されて、コンバータ部3aの電圧指令値Vo*が低下される(Vo*=V1)。 In state 2, as state 1 continues and the temperature of the power supply device 1a increases, the temperature increase signal Sta changes from L level to H level. Accordingly, in S125 of FIG. 2 (NO determination in S1222), the switching control signal Ssa of the power supply device 1a is set to the L level, and the voltage command value Vo* of the converter section 3a is decreased (Vo*= V1).
 状態3では、状態2にてコンバータ部3aの電圧指令値Vo*が低下されるのに応じて、電源装置1aの電圧上昇信号SvaがHレベルからLレベルに変化する。一方で、電源装置1aの温度は、電圧低下に遅れて下がるので、状態3では、温度上昇信号StaはまだHレベルである。 In state 3, in response to the voltage command value Vo* of converter section 3a being reduced in state 2, voltage increase signal Sva of power supply device 1a changes from H level to L level. On the other hand, the temperature of the power supply device 1a decreases with a delay of the voltage drop, so in state 3, the temperature increase signal Sta is still at the H level.
 状態3では、電圧上昇信号SvaがLレベルになったことに応じて、全体電圧状態信号SvoがHレベルからLレベルに変化する。これにより、温度正常状態である電源装置1b,1cにおいて(Stb=Stc=L)、図2のS155により、スイッチング制御信号Ssb,SscがLレベルからHレベルに変化される。この結果、コンバータ部3b,3cの電圧指令値Vo*が上昇される(Vo*=V2)。 In state 3, the overall voltage state signal Svo changes from the H level to the L level in response to the voltage increase signal Sva going to the L level. As a result, in the power supply devices 1b and 1c in a normal temperature state (Stb=Stc=L), the switching control signals Ssb and Ssc are changed from the L level to the H level in S155 of FIG. As a result, voltage command value Vo* of converter sections 3b and 3c is increased (Vo*=V2).
 状態4では、状態3においてSsb=Ssc=Hに設定されたことで、電源装置1b,1cの電圧上昇信号Svb,SvcがLレベルからHレベルに変化する。これに伴い、全体電圧状態信号SvoはHレベルに設定される。一方で、Ssa=Lの下で動作した電源装置1aでは、温度が低下して温度上昇信号StaがLレベルに変化する。しかしながら、Svo=Hであるので、電源装置1aのスイッチング制御信号SsaはLレベルに維持されることになる。 In state 4, since Ssb=Ssc=H was set in state 3, the voltage increase signals Svb and Svc of power supply devices 1b and 1c change from L level to H level. Accordingly, the overall voltage state signal Svo is set to H level. On the other hand, in the power supply device 1a operated under Ssa=L, the temperature decreases and the temperature increase signal Sta changes to the L level. However, since Svo=H, the switching control signal Ssa of the power supply device 1a is maintained at the L level.
 状態5では、状態4でのSsb=Ssc=Hの動作が継続される下で、電源装置1bの温度が先に上昇して、電源装置1cの温度上昇信号Stcよりも先に、温度上昇信号StbがLレベルからHレベルに変化している。これに応じて、電源装置1bにおいて、図2のS125(S1222がYES判定)により、スイッチング制御信号SsbがLレベルに設定されて、コンバータ部3bの電圧指令値Vo*が低下される。 In state 5, while the operation of Ssb=Ssc=H in state 4 continues, the temperature of the power supply 1b rises first, and the temperature rise signal Stc of the power supply 1c rises. Stb is changing from L level to H level. Accordingly, in the power supply device 1b, the switching control signal Ssb is set to the L level in S125 of FIG. 2 (YES determination in S1222), and the voltage command value Vo* of the converter section 3b is decreased.
 状態6では、状態5における電源装置1bでの電圧指令値Vo*の低下に応じて、電圧上昇信号SvbがHレベルからLレベルに変化する。一方で、電源装置1cでは、温度上昇信号StcがLレベルのままであるので、スイッチング制御信号Ssc=Hに維持されており、その結果、電圧上昇信号SvcもHレベルのままである。 In state 6, the voltage increase signal Svb changes from the H level to the L level in accordance with the decrease in the voltage command value Vo* in the power supply device 1b in state 5. On the other hand, in the power supply device 1c, since the temperature increase signal Stc remains at the L level, the switching control signal Ssc is maintained at H level, and as a result, the voltage increase signal Svc also remains at the H level.
 状態7では、Ssc=Hに設定されている電源装置1cの温度が上昇して、温度上昇信号StcがLレベルからHレベルに変化する。これに応じて、電源装置1cにおいて、図2のS125(S122がNO判定)により、スイッチング制御信号SscがLレベルに設定されて、コンバータ部3cの電圧指令値Vo*が低下される。 In state 7, the temperature of the power supply device 1c, which is set to Ssc=H, rises, and the temperature rise signal Stc changes from L level to H level. Accordingly, in the power supply device 1c, the switching control signal Ssc is set to the L level in S125 of FIG. 2 (NO determination in S122), and the voltage command value Vo* of the converter section 3c is decreased.
 状態8では、状態7においてSsc=Lに設定されたことで、電源装置1cの電圧上昇信号SvcがHレベルからLレベルに変化する。これにより、電圧上昇信号Sva~Svcの全てがLレベルとなったので、全体電圧状態信号SvoがLレベルに復帰する。 In state 8, since Ssc=L was set in state 7, the voltage increase signal Svc of the power supply device 1c changes from H level to L level. As a result, all of the voltage increase signals Sva to Svc have become the L level, so the overall voltage state signal Svo returns to the L level.
 状態8では、温度上昇信号StaがLレベルであるので、電源装置1aでは図2のS155によりスイッチング制御信号SsaがLレベルからHレベルに変化する。これに応じて、全体電圧状態信号SvoもLレベルからHレベルに変化する。一方で、温度上昇信号Stb,StcがまだHレベルである電源装置1b,1cでは、スイッチング制御信号Ssb,SscはLレベルでの動作(Vo*=V1)が継続されるため、電圧上昇信号Svb.SvcはLレベルに維持されている。 In state 8, the temperature increase signal Sta is at the L level, so in the power supply device 1a, the switching control signal Ssa changes from the L level to the H level in S155 of FIG. Accordingly, the overall voltage state signal Svo also changes from L level to H level. On the other hand, in the power supply devices 1b and 1c in which the temperature increase signals Stb and Stc are still at H level, the switching control signals Ssb and Ssc continue to operate at L level (Vo*=V1), so that the voltage increase signal Svb .. Svc is maintained at L level.
 この様に、図2及び図3で説明した定電圧制御によれば、並列接続された電源装置1a~1cの間で、各電源装置1a~1cの温度状態に基づいて、出力電圧を意図的に高くする電源装置を入れ換えることができる。これに対して、製造ばらつきや部品の温度依存性等に起因して出力電圧が異なる複数の電源装置を単に並列接続した場合には、出力電圧が相対的に高い電源装置の出力電流が増大して、温度上昇が集中する。 In this way, according to the constant voltage control explained in FIGS. 2 and 3, the output voltage is intentionally adjusted between the power supplies 1a to 1c connected in parallel based on the temperature state of each power supply 1a to 1c. You can replace the power supply to make it more expensive. On the other hand, if multiple power supplies with different output voltages are simply connected in parallel due to manufacturing variations or component temperature dependence, the output current of the power supply with a relatively higher output voltage will increase. As a result, the temperature rise concentrates.
 実施の形態1に係る電源システムでは、温度信号Vta~Vtcと温度閾値VTHtとの比較結果に基づいて、並列接続された複数の電源装置のうちの、温度上昇状態でない一部の電源装置が入れ換わりで選択されて、その出力電圧が意図的に高められる。これにより、温度上昇状態でない電源装置の出力電流(温度上昇量)が、温度上昇状態である電源装置の出力電流(温度上昇量)よりも大きくなる様に調整した下で、複数の電源装置1a~1cの並列動作によって、負荷120に電流を供給することができる。 In the power supply system according to the first embodiment, some of the power supplies that are not in a temperature rising state among the plurality of power supplies connected in parallel are turned on based on the comparison result between the temperature signals Vta to Vtc and the temperature threshold value VTHt. Instead, it is selected to intentionally increase its output voltage. As a result, multiple power supplies 1a are adjusted so that the output current (amount of temperature rise) of a power supply device that is not in a temperature rising state is larger than the output current (amount of temperature rise) of a power supply device that is in a temperature rising state. The parallel operation of ~1c can supply current to the load 120.
 この結果、並列接続された複数の電源装置によって負荷に電流を供給する電源システムにおいて、簡易な制御によって複数の電源装置の温度上昇を均衡化することができる。これにより、特定の電源装置に温度上昇が集中することにより電源装置間で寿命が偏ることを防止できる。 As a result, in a power supply system that supplies current to a load using a plurality of power supply devices connected in parallel, temperature increases in the plurality of power supply devices can be balanced by simple control. Thereby, it is possible to prevent uneven lifespans among power supply devices due to concentration of temperature rise in a specific power supply device.
 更に、いずれかの電源装置において、温度上限値VTHlmを超える過高温状態が検出されたときには、電源システム100A全体を停止する保護動作が実現される。更に、上述した様に、温度閾値VTHt及び電圧閾値VHtにヒステリシス特性を設けることで、電圧指令値Vo*が頻繁変化することを防止して、定電圧制御を安定動作させることができる。 Furthermore, when an overtemperature state exceeding the upper temperature limit VTHlm is detected in any of the power supply devices, a protection operation is implemented in which the entire power supply system 100A is stopped. Further, as described above, by providing the temperature threshold value VTHt and the voltage threshold value VHt with hysteresis characteristics, it is possible to prevent the voltage command value Vo* from changing frequently and to stably operate the constant voltage control.
 実施の形態1の変形例.
 実施の形態1では、サーミスタを想定した温度検出部7a~7cによる検出温度の上昇によって電源装置1a~1cの温度上昇状態を検知したが、温度上昇時には、電流増大、発熱増大、及び、サーミスタによる計測値上昇の事象が順に発生する。このため、実施の形態1の変形例では、電流の急激な増大に対応して温度上昇を抑制するための制御について説明する。
Modification of Embodiment 1.
In the first embodiment, the temperature increase state of the power supply devices 1a to 1c is detected by the increase in the detected temperature by the temperature detection units 7a to 7c assuming thermistors, but when the temperature rises, the current increases, heat generation increases, and Events of increased measured values occur in sequence. Therefore, in a modification of the first embodiment, control for suppressing a temperature rise in response to a sudden increase in current will be described.
 実施の形態1の変形例では、電源装置1a~1cのコンバータ部3a~3cの各々が、所謂、CVCC(Constant Voltage Constant Current)制御機能を有する。 In a modification of the first embodiment, each of the converter sections 3a to 3c of the power supplies 1a to 1c has a so-called CVCC (Constant Voltage Constant Current) control function.
 図4は、実施の形態1の変形例に係る電源システムの各電源装置の出力制御特性を説明する概念図である。 FIG. 4 is a conceptual diagram illustrating the output control characteristics of each power supply device of the power supply system according to a modification of the first embodiment.
 図4を参照して、電源装置1a~1cのコンバータ部3(3a~3c)は、出力電流Ioが上限電流Ilmより低い範囲では、実施の形態1で説明した様に、電圧指令値Vo*に従う定電圧制御を実行する。一方で、CC制御中に出力電流Ioが上限電流Ilmに達すると、半導体スイッチング素子10(10a~10c)のデューティ比を制限する等の出力制限を実行するCC(Constant Current)制御に移行する。当該出力制限により、コンバータ部3の出力電力は固定されるので、負荷120での電力消費の増加に応じて、出力電圧Voは低下することなる。出力制限は、出力電流Ioが上限電流Ilmを超えない様に、段階的に厳しくされてもよい。 Referring to FIG. 4, in the range where the output current Io is lower than the upper limit current Ilm, the converter sections 3 (3a to 3c) of the power supplies 1a to 1c operate at the voltage command value Vo* as described in the first embodiment. Execute constant voltage control according to On the other hand, when the output current Io reaches the upper limit current Ilm during CC control, the control shifts to CC (Constant Current) control in which output limitation is executed, such as limiting the duty ratio of the semiconductor switching elements 10 (10a to 10c). Due to the output restriction, the output power of the converter unit 3 is fixed, so the output voltage Vo decreases as the power consumption in the load 120 increases. The output limit may be made stricter in stages so that the output current Io does not exceed the upper limit current Ilm.
 図5は、コンバータ部3(3a~3c)のCVCC制御のための制御処理を説明するフローチャートである。図5に示された制御処理は、スイッチング制御部4a~4cの各々で実行される。 FIG. 5 is a flowchart illustrating control processing for CVCC control of the converter section 3 (3a to 3c). The control process shown in FIG. 5 is executed by each of the switching control units 4a to 4c.
 図5を参照して、スイッチング制御部4(4a~4c)は、S210では、スイッチング制御信号Ss(Ssa~Ssc)が、図2のS170で設定された停止信号であるか否かを判定する。スイッチング制御部4(4a~4c)は、スイッチング制御信号Ssが停止信号である場合(S210のYES判定時)には、S220により、対応のコンバータ部3(3a~3c)の駆動信号Sg(Sga~Sgc)をLレベルに固定する。これにより、半導体スイッチング素子10(10a~10c)がオフ状態に固定される。 Referring to FIG. 5, in S210, the switching control unit 4 (4a to 4c) determines whether the switching control signal Ss (Ssa to Ssc) is the stop signal set in S170 of FIG. . When the switching control signal Ss is a stop signal (YES in S210), the switching control unit 4 (4a to 4c) controls the drive signal Sg (Sga ~Sgc) is fixed at L level. As a result, the semiconductor switching elements 10 (10a to 10c) are fixed in the off state.
 スイッチング制御部4(4a~4c)は、スイッチング制御信号Ssが停止信号でない場合(S210のNO判定時)には、S215により、出力電流検出部6(6a~6c)からの出力電流信号Vi(Via~Vic)を、図4の上限電流Ilmに対応して定められた判定値VIlmと比較する。これにより、電源装置1a~1cの各々において、図4中の出力電流Ioと上限電流Ilmとの比較が行われる。 If the switching control signal Ss is not a stop signal (NO determination in S210), the switching control unit 4 (4a to 4c) detects the output current signal Vi( Via to Vic) are compared with the determination value VIlm determined corresponding to the upper limit current Ilm in FIG. As a result, the output current Io and the upper limit current Ilm shown in FIG. 4 are compared in each of the power supply devices 1a to 1c.
 Vi(Via~Vic)<VIlm、即ち、出力電流Io(Ioa~Ioc)が上限電流Ilmより小さいときには(S215のYES判定時)、S230に処理が進められる。スイッチング制御部4(4a~4c)は、S230では、出力電圧Vo(Voa~Voc)を図2(実施の形態1)に沿って設定された電圧指令値Vo*に近付ける定電圧制御に従って、駆動信号Sg(Sga~Sgc)を生成する。 When Vi (Via to Vic)<VIlm, that is, the output current Io (Ioa to Ioc) is smaller than the upper limit current Ilm (YES in S215), the process proceeds to S230. In S230, the switching control unit 4 (4a to 4c) is driven according to constant voltage control to bring the output voltage Vo (Voa to Voc) closer to the voltage command value Vo* set in accordance with FIG. 2 (Embodiment 1). A signal Sg (Sga to Sgc) is generated.
 一方で、Vi(Via~Vic)≧VIlm、即ち、出力電流Io(Ioa~Ioc)が上限電流Ilmに達したときには(S215のNO判定時)、S240に処理が進められる。スイッチング制御部4(4a~4c)は、S240では、デューティ比を一定の制限値に固定する等の出力制限を行う様に駆動信号Sg(Sga~Sgc)を生成する。出力制限は、図4に示される様に、上限電流Ilmのままで出力電圧Voが低下する、所謂垂下特性が実現する様に行われてもよく、出力電圧Vo及び出力電流Ioの両方が低下する、所謂「フ」の字特性が実現する様に行われてもよい。 On the other hand, when Vi (Via to Vic)≧VIlm, that is, when the output current Io (Ioa to Ioc) reaches the upper limit current Ilm (NO determination in S215), the process proceeds to S240. In S240, the switching control unit 4 (4a to 4c) generates drive signals Sg (Sga to Sgc) to perform output restriction such as fixing the duty ratio to a certain limit value. As shown in FIG. 4, the output limitation may be performed so as to realize a so-called drooping characteristic in which the output voltage Vo decreases while the upper limit current Ilm remains the same, and both the output voltage Vo and the output current Io decrease. It may also be carried out so as to realize the so-called "foldback" characteristic.
 尚、垂下特性及び「フ」の特性に代表される上述のCVCC制御は、コンバータの出力制御としては公知であるが、実施の形態1で説明した定電圧制御と組み合わせることで、電源装置1a~1cの少なくともいずれかで出力電流Ioが急速に増加した場合において、大きな温度上昇が生じるのを速やかに防止できる。 Note that the above-mentioned CVCC control represented by the drooping characteristic and the "F" characteristic is well known as a converter output control, but by combining it with the constant voltage control described in Embodiment 1, the When the output current Io rapidly increases in at least one of 1c, it is possible to quickly prevent a large temperature rise from occurring.
 図6には、実施の形態1の変形例に係る電源システムの動作例を説明する概念図が示される。 FIG. 6 shows a conceptual diagram illustrating an example of the operation of the power supply system according to a modification of the first embodiment.
 図6(a)では、電源装置1a~1cが定電圧制御で動作しており、コンバータ部3aでは電圧指令値Vo*=V2である一方で、コンバータ部3b,3cでは、電圧指令値Vo*=V1である。例えば、負荷120の消費電流が10[A]である下で、図6(a)では、電源装置1aが上限電流Ilm相当の5[A]を供給し、電源装置1bが3[A]、電源装置1cが2[A]を供給しているものとする。 In FIG. 6(a), the power supplies 1a to 1c operate under constant voltage control, and while the converter section 3a has a voltage command value Vo*=V2, the converter sections 3b and 3c have a voltage command value Vo*. =V1. For example, in FIG. 6A, when the current consumption of the load 120 is 10 [A], the power supply 1a supplies 5 [A] corresponding to the upper limit current Ilm, and the power supply 1b supplies 3 [A], It is assumed that the power supply device 1c is supplying 2 [A].
 図6(a)において、電源装置1aの出力電流が上限電流Ilmに達することにより、電源装置1aは、定電圧制御から定電流制御に移行する。 In FIG. 6(a), when the output current of the power supply device 1a reaches the upper limit current Ilm, the power supply device 1a shifts from constant voltage control to constant current control.
 これにより、図6(b)では、定電流制御される電源装置1aでは、出力電力が制限されるため、出力電圧が図6(a)よりも低下し、出力電流も減少する。電源装置1b,1cは定電圧制御で動作するが、例えば、図6(a)で出力電圧が相対的に低く、温度上昇が小さい電源装置1cの出力電圧が高められる(電圧指令値Vo*=V2)。一方で、電源装置1bでは、電圧指令値Vo*=V1である。 As a result, in FIG. 6(b), the output power is limited in the constant current controlled power supply device 1a, so the output voltage is lower than in FIG. 6(a), and the output current is also reduced. The power supplies 1b and 1c operate under constant voltage control, but for example, in FIG. 6A, the output voltage of the power supply 1c whose output voltage is relatively low and whose temperature rise is small is increased (voltage command value Vo*= V2). On the other hand, in the power supply device 1b, the voltage command value Vo*=V1.
 図6(b)では、電源装置1aの出力電流が低下する一方で、主に電源装置1cの出力電流が増加することで、負荷120に対して合計10[A]の電流が供給される。 In FIG. 6(b), while the output current of the power supply device 1a decreases, the output current of the power supply device 1c mainly increases, so that a total of 10 [A] of current is supplied to the load 120.
 図6(b)の状態では、電源装置1aの出力電流が低下しているが、当該出力電流が、上限電流Ilmよりも低い値に予め設定された切替電流よりも低下すると、電源装置1aは、定電流制御から定電圧制御に復帰することができる。 In the state of FIG. 6(b), the output current of the power supply device 1a is decreasing, but when the output current becomes lower than the switching current that is preset to a value lower than the upper limit current Ilm, the power supply device 1a , it is possible to return from constant current control to constant voltage control.
 この様に、実施の形態1の変形例に係る電源システムでは、実施の形態1での温度信号Vta~Vtcの監視に基づく定電圧制御に加えて、出力電流Ioを上限電流Ilm以下に抑制するための定電流制御を更に組み合わせたCVCC制御が電源装置1a~1cの各々に適用される。これにより、負荷変動等によって特定の電源装置の出力電流が増大した場合に、温度上昇が集中することをより速やかに防止できる。これにより、電源装置間の温度上昇を更に均衡化することができるので、電源装置間で寿命が偏ることを更に確実に防止することができる。 In this way, in the power supply system according to the modification of the first embodiment, in addition to the constant voltage control based on the monitoring of the temperature signals Vta to Vtc in the first embodiment, the output current Io is suppressed to the upper limit current Ilm or less. CVCC control, which is further combined with constant current control, is applied to each of the power supplies 1a to 1c. Thereby, when the output current of a specific power supply device increases due to load fluctuation or the like, concentration of temperature rise can be more quickly prevented. This makes it possible to further balance the temperature rise between the power supply devices, thereby further reliably preventing uneven lifespans among the power supply devices.
 特に、サーミスタによる温度検出に応じて出力電圧を低下させる定電圧制御のみでは、コンバータ部3(3a~3b)の出力を低下するのに一般的には秒オーダの時間を要する一方で、定電流制御による出力低下は、ミリ秒(ms)で起動することが可能である。従って、複数の電源装置間での定常的な出力の偏りの防止に加えて、負荷変動等で一部の電源装置に急激な電流増加が生じた場合にも、特定の電源装置への出力電流の集中、即ち、温度上昇の集中を回避することができる。 In particular, with only constant voltage control that reduces the output voltage in response to temperature detection by a thermistor, it generally takes time on the order of seconds to reduce the output of the converter section 3 (3a to 3b), while the constant current Controlled power reduction can be triggered in milliseconds (ms). Therefore, in addition to preventing steady output imbalance between multiple power supplies, even if a sudden increase in current occurs in some power supplies due to load fluctuations, the output current to a specific power supply can be reduced. In other words, concentration of temperature rise can be avoided.
 実施の形態2.
 図7は、実施の形態2に係る電源システム100Bの構成例を説明するブロック図である。
Embodiment 2.
FIG. 7 is a block diagram illustrating a configuration example of a power supply system 100B according to the second embodiment.
 図7を参照して、電源システム100Bは、実施の形態1に係る電源システム100A(図1)と比較して、累計温度算出部11a~11cと、累計温度比較部12とを更に備える点で異なる。累計温度算出部11a~11cには、温度検出部7a~7cからの温度信号Vta~Vtcがそれぞれ入力される。累計温度算出部11a~11cは、予め定められた一定周期T1(例えば、T1=1時間程度)で、温度信号Vta~Vtcのそれぞれの積算値を示す累計温度信号Vtta~Vttcをそれぞれ出力する。累計温度比較部12は、累計温度算出部11a~11cからの累計温度信号Vtta~Vttcに基づき、電源装置1a~1cの制御信号Stta~Sttcを生成する。 Referring to FIG. 7, power supply system 100B is different from power supply system 100A (FIG. 1) according to the first embodiment in that it further includes cumulative temperature calculation units 11a to 11c and cumulative temperature comparison unit 12. different. Temperature signals Vta to Vtc from temperature detection units 7a to 7c are input to cumulative temperature calculation units 11a to 11c, respectively. The cumulative temperature calculation units 11a to 11c each output cumulative temperature signals Vtta to Vttc indicating the respective integrated values of the temperature signals Vta to Vtc at a predetermined constant period T1 (for example, T1=about 1 hour). The cumulative temperature comparison unit 12 generates control signals Stta to Sttc for the power supplies 1a to 1c based on the cumulative temperature signals Vtta to Vttc from the cumulative temperature calculation units 11a to 11c.
 図8には、電源システム100Bにおける累計温度算出部11a~11c及び累計温度比較部12の動作を説明するためのフローチャートが示される。即ち、累計温度算出部11a~11c及び累計温度比較部12の機能は、マイクロコンピュータ等が図8に示された処理を実行することによって実現することができる。 FIG. 8 shows a flowchart for explaining the operations of the cumulative temperature calculation units 11a to 11c and the cumulative temperature comparison unit 12 in the power supply system 100B. That is, the functions of the cumulative temperature calculation units 11a to 11c and the cumulative temperature comparison unit 12 can be realized by a microcomputer or the like executing the processing shown in FIG.
 図8を参照して、S310では、累計温度算出部11a~11cが、温度検出部7a~7cのそれぞれからの温度信号Vta~Vtcを一定周期T2(例えば、T2=10秒)で取得する。累計温度算出部11a~11cは、取得した温度信号Vta~Vtcをそれぞれの積算値に加算する。累計温度算出部11a~11cは、S320では、積算したデータ数を示すカウント値i(i:整数)を1増加(インクリメント)すると、S330により、インクリメント後のカウント値iを判定値N1と比較する。判定値N1は、一定周期T1毎にカウント値iが判定値N1に達する様に予め決められる。カウント値iが判定値N1に達するまでの間(S330のNO判定時)、S310~S330の処理が繰り返される。 Referring to FIG. 8, in S310, cumulative temperature calculation units 11a to 11c acquire temperature signals Vta to Vtc from temperature detection units 7a to 7c, respectively, at a constant period T2 (for example, T2=10 seconds). The cumulative temperature calculation units 11a to 11c add the acquired temperature signals Vta to Vtc to their respective integrated values. In S320, the cumulative temperature calculation units 11a to 11c increase (increment) the count value i (i: integer) indicating the number of accumulated data by 1, and in S330, compare the incremented count value i with the determination value N1. . The judgment value N1 is predetermined so that the count value i reaches the judgment value N1 at every fixed period T1. Until the count value i reaches the determination value N1 (NO determination in S330), the processes of S310 to S330 are repeated.
 カウント値iが判定値N1に達すると、即ち、一定周期T1分の積算値が求められると、S330がYES判定とされて、処理は、S340に進められる。S340では、累計温度信号Vtta~Vttcが、累計温度算出部11a~11cから累計温度比較部12へ入力される。又、累計温度算出部11a~11cにおいて、カウント値i及び累計温度信号Vtta~Vttc(積算値)がクリアされる(i=0,Vtta=Vttb=Vttc=0)。 When the count value i reaches the determination value N1, that is, when the integrated value for the constant period T1 is determined, a YES determination is made in S330, and the process proceeds to S340. In S340, the cumulative temperature signals Vtta to Vttc are input to the cumulative temperature comparison unit 12 from the cumulative temperature calculation units 11a to 11c. Further, in the cumulative temperature calculation units 11a to 11c, the count value i and the cumulative temperature signals Vtta to Vttc (integrated values) are cleared (i=0, Vtta=Vttb=Vttc=0).
 S340に続いて、S350では、累計温度比較部12が、累計温度信号Vtta~Vttcの比較処理を実行して、相対的に高温状態である一部の電源装置を抽出する。例えば、累計温度信号Vtta~Vttcの最大値に対応する電源装置、即ち、最も高温の電源装置が、S350で抽出される。即ち、累計温度比較部12は「温度履歴比較部」の一実施例に対応する。 Following S340, in S350, the cumulative temperature comparison unit 12 executes a comparison process of the cumulative temperature signals Vtta to Vttc to extract some power supply devices that are in a relatively high temperature state. For example, the power supply device corresponding to the maximum value of the cumulative temperature signals Vtta to Vttc, ie, the power supply device with the highest temperature, is extracted in S350. That is, the cumulative temperature comparison section 12 corresponds to an embodiment of a "temperature history comparison section".
 累計温度比較部12は、S360では、S350での比較処理結果に従って制御信号Sttc~Sttcを設定する。制御信号Stta~Sttcは、高温状態と判断された電源装置に対応した一部がHレベルに設定され、残りはLレベルに設定される。例えば、累計温度信号Vtta~VttcのうちVvaが最大値である場合、即ち、電源装置1aが高温状態と判断された場合には、制御信号SttaがHレベルに設定される一方で、制御信号Sttb,SttcはLレベルに設定される。制御信号Stta~Sttcは、信号制御部8a~8cにそれぞれ入力される。 In S360, the cumulative temperature comparison unit 12 sets the control signals Sttc to Sttc according to the comparison processing result in S350. A portion of the control signals Stta to Sttc corresponding to the power supply device determined to be in a high temperature state is set to the H level, and the remaining portions are set to the L level. For example, when Vva is the maximum value among the cumulative temperature signals Vtta to Vttc, that is, when it is determined that the power supply device 1a is in a high temperature state, the control signal Stta is set to H level, while the control signal Sttb , Sttc are set to L level. Control signals Stta to Sttc are input to signal control units 8a to 8c, respectively.
 実施の形態2に係る電源システム100Bでは、信号制御部8a~8cは、累計温度比較部12からの制御信号Stta~Sttcに応じて、以下に説明する動作を更に実行する。 In the power supply system 100B according to the second embodiment, the signal control units 8a to 8c further execute the operations described below in response to the control signals Stta to Sttc from the cumulative temperature comparison unit 12.
 図9には、実施の形態2に係る電源システム100Bにおける信号制御部8a~8cの追加動作を説明するフローチャートが示される。 FIG. 9 shows a flowchart illustrating additional operations of the signal control units 8a to 8c in the power supply system 100B according to the second embodiment.
 図9を参照して、信号制御部8(8a~8c)は、S410において、累計温度比較部12からの制御信号Stt(Stta~Sttc)のレベルを確認する。Stt=Hのとき(S410のYES判定時)には、S420により、図2のS155において、スイッチング制御信号Ss(Ssa~Ssc)をLレベルからHレベルに変更する際に、待機時間LTを設ける様に、図2の制御処理を修正する。待機時間LTは、累計温度算出部11a~11cでの一定周期T1よりも短く、例えば、1秒~10分程度の範囲内で設定される。待機時間LTは「第1の時間」に対応する。 Referring to FIG. 9, the signal control unit 8 (8a to 8c) checks the level of the control signal Stt (Stta to Sttc) from the cumulative temperature comparison unit 12 in S410. When Stt=H (when YES is determined in S410), a standby time LT is provided in S420 when changing the switching control signal Ss (Ssa to Ssc) from the L level to the H level in S155 of FIG. The control process shown in FIG. 2 is modified accordingly. The standby time LT is shorter than the fixed period T1 of the cumulative temperature calculation units 11a to 11c, and is set within a range of about 1 second to 10 minutes, for example. The standby time LT corresponds to the "first time".
 これに対して、Stt=Lのとき(S410のNO判定時)には、S430により、S420の様な待機時間は設定されない。或いは、S420よりも短い待機時間(「第2の時間」に相当)が設けられてもよい。待機時間を設定しないことは「第2の時間」をゼロに設定することを意味する。 On the other hand, when Stt=L (NO determination in S410), a standby time like S420 is not set in S430. Alternatively, a shorter standby time (corresponding to the "second time") than S420 may be provided. Not setting the standby time means setting the "second time" to zero.
 この結果、実施の形態2に係る電源システム100Bでは、電源装置1a~1bのうちの高温状態と判断された電源装置において、定電圧制御の制御処理(図2)の際に、S150がYES判定とされて処理がS155に進められるとき、即ち、スイッチング制御信号Ss(Ssa~Ssc)がLレベルからHレベルに変化する際に、待機時間LTが設定される。一方で、高温状態と判断されていないその他の電源装置では、S150のYES判定時には、実施の形態1で説明したのと同様に、待機時間が設けられることなく、スイッチング制御信号Ss(Ssa~Ssc)がLレベルからHレベルに変化する(S155)。 As a result, in the power supply system 100B according to the second embodiment, in the power supply device determined to be in a high temperature state among the power supply devices 1a to 1b, S150 is determined to be YES during the constant voltage control control process (FIG. 2). When the process proceeds to S155, that is, when the switching control signal Ss (Ssa to Ssc) changes from the L level to the H level, the waiting time LT is set. On the other hand, in other power supply devices that are not determined to be in a high temperature state, when the determination is YES in S150, the switching control signals Ss (Ssa to Ssc ) changes from L level to H level (S155).
 次に、図10を用いて、実施の形態2に係る電源システム100Bの動作例を説明する。尚、図10の動作例では、図8のS350により、電源装置1bが高温状態の電源装置として抽出されている(Sttb=H,Stta=Sttc=L)ものとする。 Next, an example of the operation of the power supply system 100B according to the second embodiment will be described using FIG. 10. In the operation example of FIG. 10, it is assumed that the power supply device 1b has been extracted as a high temperature power supply device in S350 of FIG. 8 (Sttb=H, Stta=Sttc=L).
 図10を参照して、状態11は、図3の状態1と同様であり、電源装置1aでSsa=Hに設定される(Vo*=V2)一方で、電源装置1b、1cでは、Ssb=Ssc=Lに設定されている(Vo*=V1)。これにより、電源装置1aの電圧上昇信号SvaがHレベルになっており、全体電圧状態信号SvoもHレベルである。状態11では、電源装置1aの温度は上昇する前であり、温度上昇信号Sta~Stcは全てLレベルである。 Referring to FIG. 10, state 11 is similar to state 1 in FIG. 3, in which Ssa=H is set (Vo*=V2) in power supply device 1a, while Ssb=H in power supply devices 1b and 1c. Ssc=L is set (Vo*=V1). As a result, the voltage increase signal Sva of the power supply device 1a is at H level, and the overall voltage status signal Svo is also at H level. In state 11, the temperature of the power supply device 1a has not yet increased, and the temperature increase signals Sta to Stc are all at L level.
 状態12では、図3の状態2と同様に、状態11で出力電圧が上昇されている電源装置1aの温度が上昇することによって、温度上昇信号StaがLレベルからHレベルに変化する。これに応じて、図2のS125(S122がYES判定)により、電源装置1aのスイッチング制御信号SsaがLレベルに設定されて、コンバータ部3aの電圧指令値Vo*が低下される(Vo*=V1)。 In state 12, similar to state 2 in FIG. 3, the temperature increase signal Sta changes from L level to H level as the temperature of the power supply device 1a whose output voltage has been increased in state 11 increases. Accordingly, in S125 of FIG. 2 (YES determination in S122), the switching control signal Ssa of the power supply device 1a is set to L level, and the voltage command value Vo* of the converter section 3a is decreased (Vo*= V1).
 状態13は、図3の状態3と同様である。即ち、状態12にてコンバータ部3aの電圧指令値Vo*が低下されるのに応じて、電源装置1aの電圧上昇信号SvaがHレベルからLレベルに変化する。これにより、全体電圧状態信号SvoがHレベルからLレベルに変化する。 State 13 is similar to state 3 in FIG. That is, in response to the voltage command value Vo* of the converter section 3a being reduced in state 12, the voltage increase signal Sva of the power supply device 1a changes from the H level to the L level. As a result, the overall voltage state signal Svo changes from H level to L level.
 電源装置1aの温度は、電圧低下に遅れて下がるので、状態13では、温度上昇信号StaはまだHレベルである。又、電源装置1b,1cは温度非上昇状態であり、温度上昇信号Stb,StcはLレベルである。従って、電源装置1b及び1cでは、図2のS122,S122,S130,S140が全てYES判定となる。即ち、スイッチング制御信号Ssb,Sscについては、LレベルからHレベルへ変化する条件が成立することになる。 Since the temperature of the power supply device 1a falls with a delay to the voltage drop, the temperature rise signal Sta is still at the H level in state 13. Further, the power supplies 1b and 1c are in a state where the temperature is not rising, and the temperature rise signals Stb and Stc are at the L level. Therefore, in the power supply devices 1b and 1c, the determinations in S122, S122, S130, and S140 in FIG. 2 are all YES. That is, the conditions for switching control signals Ssb and Ssc to change from L level to H level are satisfied.
 従って、状態13直後の状態14では、制御信号Sttc=Lの電源装置1cでは、待機時間を設けることなく、スイッチング制御信号SscがLレベルからHレベルに変化することに応じて、電圧上昇信号SvcがLレベルからHレベルに変化する。これに対して、制御信号Sttb=Hの電源装置1bでは、待機時間LTの経過前であるため、スイッチング制御信号SsbはLレベルに維持される。この結果、電圧上昇信号Svbは、状態13と同様にLレベルのままである。 Therefore, in state 14 immediately after state 13, in the power supply device 1c with control signal Sttc=L, in response to the switching control signal Ssc changing from the L level to the H level, the voltage increase signal Svc is changes from L level to H level. On the other hand, in the power supply device 1b where the control signal Sttb=H, the switching control signal Ssb is maintained at the L level because the standby time LT has not yet elapsed. As a result, the voltage increase signal Svb remains at the L level as in state 13.
 状態15では、状態13から待機時間LTが経過している。このため、電源装置1bのスイッチング制御信号SsbがLレベルからHレベルに変化することに応じて、電圧上昇信号SvbもLレベルからHレベルに変化している。 In state 15, the standby time LT has elapsed since state 13. Therefore, in response to the switching control signal Ssb of the power supply device 1b changing from the L level to the H level, the voltage increase signal Svb also changes from the L level to the H level.
 状態16では、高温状態と判断されていた電源装置1bの温度上昇信号Stbが、電源装置1cの温度上昇信号Stcよりも先に、LレベルからHレベルに変化する。これにより、電源装置1bのスイッチング制御信号SsbはHレベルからLレベルに変化する。 In state 16, the temperature increase signal Stb of the power supply device 1b, which has been determined to be in a high temperature state, changes from the L level to the H level before the temperature increase signal Stc of the power supply device 1c. As a result, the switching control signal Ssb of the power supply device 1b changes from H level to L level.
 これにより、状態17では、電源装置1bの電圧上昇信号SvbがHレベルからLレベルに変化する。又、スイッチング制御信号Ssc=Hに設定される電源装置1cでも温度上昇信号StcがLレベルからHレベルに変化している。これに応じて、電源装置1cのスイッチング制御信号SscはHレベルからLレベルに変化する。 As a result, in state 17, the voltage increase signal Svb of the power supply device 1b changes from the H level to the L level. Further, even in the power supply device 1c where the switching control signal Ssc is set to H, the temperature increase signal Stc changes from the L level to the H level. Accordingly, the switching control signal Ssc of the power supply device 1c changes from the H level to the L level.
 これにより、状態18では、再び、電源装置1a~1cのスイッチング制御信号Ssa~Sscが全てLレベルになり、全体電圧状態信号SvoはLレベルに復帰する。一方で、電源装置1b,1cの温度低下には遅れがあるので、温度上昇信号Sta(電源装置1a)がLレベルである一方で、温度上昇信号Stb,StcはHレベルのままである。このため、スイッチング制御信号Ssb,SscがLレベルである一方でスイッチング制御信号SsaのみがHレベルに変化される。 As a result, in state 18, all the switching control signals Ssa to Ssc of the power supply devices 1a to 1c become L level again, and the overall voltage state signal Svo returns to L level. On the other hand, since there is a delay in the temperature reduction of the power supplies 1b and 1c, the temperature increase signal Sta (power supply 1a) is at the L level, while the temperature increase signals Stb and Stc remain at the H level. Therefore, while the switching control signals Ssb and Ssc are at the L level, only the switching control signal Ssa is changed to the H level.
 状態19では、状態18で設定されたスイッチング制御信号Ssa~Sscに従って、電源装置1aの電圧上昇信号SvaはHレベルである一方で、電源装置1b,1cの電圧上昇信号Svb,SvcはLレベルである。温度上昇信号Sta~Stcは、状態18から変わっていない。 In state 19, according to the switching control signals Ssa to Ssc set in state 18, voltage increase signal Sva of power supply device 1a is at H level, while voltage increase signals Svb and Svc of power supply devices 1b and 1c are at L level. be. The temperature increase signals Sta to Stc have not changed from state 18.
 尚、電源装置1a~1cの温度状況が変化して、累計温度信号Vtta~Vttcの大小関係が変化すると、相対的に高温状態と判断される電源装置が変わることで(S350)、スイッチング制御信号Ssa~Sscの設定も変化する。この制御を組み合わせることによって、相対的に高温状態である電源装置(例えば、累計温度信号Vtta~Vttcの最大値に対応する電源装置)では、出力電圧が上昇される条件が成立したときでも、実際に出力電圧が上昇されて温度が上昇するタイミングを遅らせることができる。これにより、一定時間の温度履歴についても考慮に入れることで、電源装置1a~1cの間で高温状態となる期間長についても均衡化することが期待できる。 Note that when the temperature status of the power supplies 1a to 1c changes and the magnitude relationship of the cumulative temperature signals Vtta to Vttc changes, the power supply determined to be in a relatively high temperature state changes (S350), and the switching control signal The settings of Ssa to Ssc also change. By combining this control, in a power supply device that is in a relatively high temperature state (for example, a power supply device that corresponds to the maximum value of the cumulative temperature signal Vtta to Vttc), even when the conditions for increasing the output voltage are met, the actual By increasing the output voltage, it is possible to delay the timing at which the temperature rises. As a result, by taking into consideration the temperature history over a certain period of time, it is expected that the length of the period in which the power supply devices 1a to 1c are in a high temperature state can be balanced.
 この様に、実施の形態2に係る電源システムでは、実施の形態1と同様に、簡易な制御によって電源装置間の温度上昇を均衡化することができるとともに、過去の温度履歴を考慮に入れて、並列接続された電源装置間での温度上昇を更に均衡化することができる。 In this way, in the power supply system according to the second embodiment, as in the first embodiment, it is possible to balance the temperature rise between the power supply devices by simple control, and also to take into account the past temperature history. , the temperature rise between parallel-connected power supplies can be further balanced.
 実施の形態2では、待機時間が設けられる電源装置の抽出について、3台の電源装置のうちの累計温度信号が最大となる1台の電源装置を抽出する例を説明したが、並列接続された複数の電源装置から、相対的に高温状態である一部の電源装置を、温度履歴(累計温度信号)に基づいて任意の条件で抽出することが可能である。 In Embodiment 2, regarding the extraction of power supplies with standby time, an example was explained in which one power supply with the maximum cumulative temperature signal is extracted from three power supplies. It is possible to extract some power supplies that are in a relatively high temperature state from a plurality of power supplies under arbitrary conditions based on the temperature history (cumulative temperature signal).
 又、待機時間LTについては、電源装置のサイズ及び熱負荷、又は、負荷容量等を考慮して、実機試験又はシミュレーションによって適切な値に適合することができる。尚、待機時間LTは、高温状態の度合、例えば、高温状態と判断された電源装置の累計温度信号Vtt(Vtta~Vttc)の値に応じて、高温時程長い時間となる様に可変に設定されてもよい。 Furthermore, the standby time LT can be adjusted to an appropriate value through actual machine tests or simulations, taking into consideration the size, heat load, load capacity, etc. of the power supply device. Note that the standby time LT is variably set so that the time becomes longer as the temperature increases, depending on the degree of the high temperature state, for example, the value of the cumulative temperature signal Vtt (Vtta to Vttc) of the power supply device determined to be in the high temperature state. may be done.
 実施の形態3.
 図11は、実施の形態3に係る電源システム100Cの構成例を説明するブロック図である。
Embodiment 3.
FIG. 11 is a block diagram illustrating a configuration example of a power supply system 100C according to the third embodiment.
 図11を参照して、電源システム100Cは、実施の形態1に係る電源システム100A(図1)と比較して、実施の形態2と同様の累計温度算出部11a~11cと、累計温度判定部13と、交換情報表示部14とを更に備える点で異なる。 Referring to FIG. 11, compared to power supply system 100A (FIG. 1) according to the first embodiment, power supply system 100C includes cumulative temperature calculation units 11a to 11c similar to those in the second embodiment, and cumulative temperature determination unit 13 in that it further includes an exchange information display section 14.
 累計温度算出部11a~11cは、図7と同様に、予め定められた周期T1(例えば、T1=1時間程度)の累計温度信号Vtta~Vttcをそれぞれ出力する。累計温度判定部13は、累計温度信号Vtta~Vttc、即ち、過去の温度履歴に基づいて、電源装置1a~1cの交換要否の判断に用いられる余寿命を判定する。例えば、累計温度判定部13では、電源装置1a~1cの余寿命が判定される。 The cumulative temperature calculation units 11a to 11c respectively output cumulative temperature signals Vtta to Vttc with a predetermined period T1 (for example, T1=about 1 hour), as in FIG. 7. The cumulative temperature determining unit 13 determines the remaining life of the power supplies 1a to 1c, which is used to determine whether or not to replace the power supplies 1a to 1c, based on the cumulative temperature signals Vtta to Vttc, that is, the past temperature history. For example, the cumulative temperature determination unit 13 determines the remaining life of the power supplies 1a to 1c.
 交換情報表示部14は、累計温度判定部13による判定結果を表示するために設けられ、図示しない、LED(Light Emitting Diode)ランプ、LEDセグメント、又は、液晶ディスプレイ等で構成することができる。 The replacement information display unit 14 is provided to display the determination result by the cumulative temperature determination unit 13, and can be configured with an LED (Light Emitting Diode) lamp, an LED segment, a liquid crystal display, or the like (not shown).
 図12には、電源システム100Cにおける累計温度算出部11a~11c及び累計温度判定部13の動作を説明するためのフローチャートが示される。即ち、累計温度算出部11a~11c及び累計温度判定部13の機能は、マイクロコンピュータ等が図12に示された処理を実行することで実現できる。 FIG. 12 shows a flowchart for explaining the operations of the cumulative temperature calculation units 11a to 11c and the cumulative temperature determination unit 13 in the power supply system 100C. That is, the functions of the cumulative temperature calculation units 11a to 11c and the cumulative temperature determination unit 13 can be realized by a microcomputer or the like executing the processing shown in FIG.
 図12を参照して、累計温度算出部11a~11cは、図7と同様のS310~S330を実行して、一定周期T1毎の温度信号Vta~Vtcの積算値として、累計温度信号Vtta~Vttcを算出する。実施の形態3においても、一定周期T1は1時間程度とすることができる。 Referring to FIG. 12, cumulative temperature calculation units 11a to 11c execute S310 to S330 similar to those in FIG. Calculate. In the third embodiment as well, the constant period T1 can be about one hour.
 S510により、一定周期T1毎に、累計温度信号Vtta~Vttcが、累計温度算出部11a~11cから累計温度判定部13に入力される。又、S510では、S340(図8)と同様に、累計温度算出部11a~11cにおいて、カウント値i及び累計温度信号Vtta~Vttcがクリアされる(i=0,Vtta=Vttb=Vttc=0)。 At S510, the cumulative temperature signals Vtta to Vttc are input to the cumulative temperature determining unit 13 from the cumulative temperature calculating units 11a to 11c at every fixed period T1. Further, in S510, the count value i and the cumulative temperature signals Vtta to Vttc are cleared in the cumulative temperature calculation units 11a to 11c (i=0, Vtta=Vttb=Vttc=0), similarly to S340 (FIG. 8). .
 累計温度判定部13は、S520により、一定周期毎の累計温度信号Vtta~Vttcの各々を、温度規定値Vjdと比較する。温度規定値Vjdは、定格温度を考慮して定めることができる。例えば、定格温度(例えば、75℃)よりも少し低い温度を規定温度(70℃)に定めるとともに、当該規定温度が1時間継続したときに想定される累計温度信号Vtta~Vttcに対応させて、温度規定値Vjdを予め設定することができる。 In step S520, the cumulative temperature determination unit 13 compares each of the cumulative temperature signals Vtta to Vttc for each fixed period with the specified temperature value Vjd. The specified temperature value Vjd can be determined in consideration of the rated temperature. For example, a temperature slightly lower than the rated temperature (for example, 75°C) is set as the specified temperature (70°C), and it is made to correspond to the cumulative temperature signal Vtta to Vttc that is assumed when the specified temperature continues for 1 hour. The specified temperature value Vjd can be set in advance.
 累計温度判定部13は、電源装置1a~1bのそれぞれに対応する温度上昇カウント値Na~Ncを有する。Na~Ncは、電源システム100Cの使用開始時に初期値(Na=Nb=Nc=0)に設定される整数で示される。 The cumulative temperature determination unit 13 has temperature rise count values Na to Nc corresponding to each of the power supply devices 1a to 1b. Na to Nc are indicated by integers that are set to initial values (Na=Nb=Nc=0) when the power supply system 100C starts to be used.
 累計温度信号Vtta~Vttcのいずれかが温度規定値Vjd以上であると(S520のYES判定時)、S530により、S520での比較結果に応じて、温度上昇カウント値Na~Ncが更新される。具体的には、累計温度信号Vtt(Vtta~Vttc)が温度規定値Vjd以上である電源装置に対応する温度上昇カウント値N(Na~Nc)が1増加(インクリメント)される一方で、残りの温度上昇カウント値は維持される。例えば、Vtta>Vjd、Vttb<Vjd、かつ、Vttc<Vjdのときには、S530にて、温度上昇カウント値Naがインクリメントされる一方で、温度上昇カウント値Nb,Ncは維持される。 If any of the cumulative temperature signals Vtta to Vttc is equal to or higher than the specified temperature value Vjd (YES in S520), the temperature rise count values Na to Nc are updated in S530 according to the comparison result in S520. Specifically, the temperature rise count value N (Na to Nc) corresponding to the power supply device whose cumulative temperature signal Vtt (Vtta to Vttc) is equal to or higher than the specified temperature value Vjd is increased by 1 (incremented), while the remaining The temperature rise count value is maintained. For example, when Vtta>Vjd, Vttb<Vjd, and Vttc<Vjd, the temperature rise count value Na is incremented in S530, while the temperature rise count values Nb and Nc are maintained.
 S530に続いて、S540では、累計温度判定部13は、S530による更新後の温度上昇カウント値Na~Ncを上限回数Ntと比較する。そして、温度上昇カウント値Na~Ncの少なくとも1つが上限回数Ntに達すると(S540のYES判定時)、累計温度判定部13は、S550により、温度上昇カウント値N(Na~Nc)が上限回数Ntに達した電源装置を特定して、交換予定信号Schを生成する。 Following S530, in S540, the cumulative temperature determination unit 13 compares the temperature rise count values Na to Nc updated in S530 with the upper limit number of times Nt. Then, when at least one of the temperature rise count values Na to Nc reaches the upper limit number of times Nt (when determining YES in S540), the cumulative temperature determination unit 13 determines that the temperature rise count value N (Na to Nc) has reached the upper limit number of times Nt. A power supply device that has reached Nt is identified and a replacement schedule signal Sch is generated.
 これに対して、温度上昇カウント値Na~Ncの全てが上限回数Ntより小さいとき(S540のNO判定時)には、S550をスキップして、当該周期(T1)での処理が終了される。又、S520において、累計温度信号Vva~Vvcの全てが温度規定値Vjdより小さいときには(S520のNO判定時)、S560により、温度上昇カウント値Na~Ncの値が維持されて、当該周期(T1)での処理が終了される。 On the other hand, when all of the temperature rise count values Na to Nc are smaller than the upper limit number of times Nt (NO determination in S540), S550 is skipped and the processing in the corresponding cycle (T1) is ended. Further, in S520, when all of the cumulative temperature signals Vva to Vvc are smaller than the specified temperature value Vjd (NO determination in S520), the values of the temperature rise count values Na to Nc are maintained in S560, and the period (T1 ) is finished.
 再び図11を参照して、S550で生成された交換予定信号Schは、累計温度判定部13から交換情報表示部14に入力される。交換情報表示部14は、交換予定信号Schに基づき、温度上昇カウント値N(Na~Nc)が上限回数Ntに達した電源装置を、交換予定の電源装置としてユーザに報知するための表示を実行する。例えば、電源装置1a~1cにそれぞれ対応して配置された3個のLEDランプを選択的に点灯することで、交換予定の電源装置をユーザに報知できる。或いは、LEDセグメント、又は、液晶ディスプレイへの文字表示等によって、交換予定の電源装置をユーザに報知することも可能である。 Referring again to FIG. 11, the replacement schedule signal Sch generated in S550 is input from the cumulative temperature determination section 13 to the replacement information display section 14. Based on the replacement schedule signal Sch, the replacement information display unit 14 displays a power supply device whose temperature rise count value N (Na to Nc) has reached the upper limit number of times Nt to notify the user as a power supply device scheduled to be replaced. do. For example, by selectively lighting up three LED lamps arranged corresponding to the power supplies 1a to 1c, it is possible to notify the user of the power supply to be replaced. Alternatively, it is also possible to notify the user of the power supply device scheduled for replacement by means of an LED segment, text display on a liquid crystal display, or the like.
 この様に、実施の形態3に係る電源システムによれば、並列接続された複数の電源装置について、過去の温度履歴に基づいて、交換のための予寿命判定を行うことが可能となる。これにより、ユーザに交換予定を検討する情報を供することができるので、ユーザ利便性を向上することができる。 In this way, according to the power supply system according to Embodiment 3, it is possible to determine the pre-life for replacement of a plurality of parallel-connected power supply devices based on the past temperature history. This makes it possible to provide the user with information for considering the replacement schedule, thereby improving user convenience.
 尚、実施の形態2及び3を組み合わせて、累計温度比較部12及び累計温度判定部13の両方を配置する構成とすることも可能である。又、実施の形態2或いは3に係る電源システム、並びに、実施の形態2及び3の組み合わせに係る電源システムにおいて、各電源装置1a~1cの各々に、実施の形態1の変形例に係るCVCC制御機能を持たせることも可能である。 Note that it is also possible to combine the second and third embodiments to create a configuration in which both the cumulative temperature comparison section 12 and the cumulative temperature determination section 13 are arranged. Furthermore, in the power supply system according to the second or third embodiment, and the power supply system according to the combination of the second and third embodiments, the CVCC control according to the modification of the first embodiment is applied to each of the power supply devices 1a to 1c. It is also possible to provide functions.
 実施の形態4.
 図13は、実施の形態4に係る電源システム100Dの構成例を説明するブロック図である。
Embodiment 4.
FIG. 13 is a block diagram illustrating a configuration example of a power supply system 100D according to the fourth embodiment.
 図13を参照して、電源システム100Dは、実施の形態3に係る電源システム100C(図11)と比較して、信号絶縁回路部16a~16cを更に備える点で異なる。さらに、電源システム100Dでは、温度検出部7a~7cは、信号絶縁回路部16a~16cが配置されることにより、非絶縁型の構成を有するコンバータ部3a~3cの内部において、「高電圧側の経路」に接続された発熱部(回路要素)に直接取り付ける様に、配置することができる。なお、コンバータ部3a~3cが非絶縁型である場合には、電源110の高電圧側(正極)端子と、負荷120の高電圧側(正極)端子との間は、トランス等によって絶縁されておらず、電気的に接続されている。 Referring to FIG. 13, power supply system 100D differs from power supply system 100C according to the third embodiment (FIG. 11) in that it further includes signal isolation circuit sections 16a to 16c. Further, in the power supply system 100D, the temperature detecting units 7a to 7c are arranged on the high voltage side in the converter units 3a to 3c having a non-insulated configuration due to the arrangement of the signal insulating circuit units 16a to 16c. It can be arranged so as to be directly attached to a heat generating part (circuit element) connected to a "path". Note that when the converter sections 3a to 3c are non-insulated, the high voltage side (positive electrode) terminal of the power supply 110 and the high voltage side (positive electrode) terminal of the load 120 are insulated by a transformer or the like. electrically connected.
 ここで「高電圧側の経路」は、コンバータ部3a~3cの各々において、上述した電源110の高電圧側(正極)端子から負荷120の高電圧側(正極)端子への電流が流れる経路を示すものとする。例えば、上述した、整流ダイオード9a、平滑コンデンサ13a、又は基板パターン(図示せず)等の発熱部のうち、上記高電圧側の経路との接続部位に対して、温度検出部7a~7cを取り付けることができる。 Here, the "high voltage side path" refers to the path through which current flows from the high voltage side (positive electrode) terminal of the power supply 110 to the high voltage side (positive electrode) terminal of the load 120 in each of the converter sections 3a to 3c. shall be indicated. For example, among the above-mentioned heat generating parts such as the rectifier diode 9a, the smoothing capacitor 13a, or the substrate pattern (not shown), the temperature detecting parts 7a to 7c are attached to the connection parts with the high voltage side path. be able to.
 同様に、コンバータ部3a~3cの各々において、負荷120の低電圧側(負極)端子から電源110の低電圧側(負極)端子へ電流が戻る経路を「低電圧側の経路」と定義することとする。コンバータ部3a~3cが非絶縁型で構成される場合には、コンバータ部3a~3cの出力側(負荷側)と負荷120との間が並列接続されているため、コンバータ部3a~3cの各々において、高電圧側を流れる電流(負荷120へ向かって流れる電流)の全てが、低電圧側を流れる電流(電源110へ向かって流れる電流)として戻ってくるとは限らない。このため、コンバータ部3a~3bの温度上昇を検知するためには、温度検出部7a~7cは、高電圧側の発熱部の温度を正確に測定することが好ましい。 Similarly, in each of converter sections 3a to 3c, the path through which current returns from the low voltage side (negative electrode) terminal of load 120 to the low voltage side (negative electrode) terminal of power supply 110 is defined as a "low voltage side path." shall be. When the converter sections 3a to 3c are configured of non-insulated type, since the output side (load side) of the converter sections 3a to 3c and the load 120 are connected in parallel, each of the converter sections 3a to 3c In this case, not all of the current flowing on the high voltage side (current flowing toward the load 120) returns as the current flowing on the low voltage side (current flowing toward the power supply 110). Therefore, in order to detect a temperature rise in the converter sections 3a to 3b, it is preferable that the temperature detection sections 7a to 7c accurately measure the temperature of the heat generating section on the high voltage side.
 図13では、温度検出部7a~7cは、当該高電圧側の発熱部の温度計測値を示す温度信号Vtha~Vthcを出力する。温度信号Vtha~Vthcは、温度検出部7a~7cが高電圧側の発熱部に直接取り付けられているため、上記高電圧側の電位を基準とする電圧信号となるので、低電圧側の電位を基準として動作する、信号制御部8a~8c、累計温度算出部11a~11c等に直接入力することができない。 In FIG. 13, the temperature detection units 7a to 7c output temperature signals Vtha to Vthc indicating the measured temperature of the heat generating unit on the high voltage side. The temperature signals Vtha to Vthc are voltage signals based on the potential on the high voltage side because the temperature detection parts 7a to 7c are directly attached to the heat generating part on the high voltage side. It is not possible to directly input the temperature to the signal control units 8a to 8c, cumulative temperature calculation units 11a to 11c, etc., which operate as a reference.
 したがって、信号絶縁回路部16a~16cは、温度検出部7a~7cからの温度信号Vtha~Vthcを受けて、コンバータ部3a~3cの高電圧側と電気的に絶縁された温度信号Vtia~Vticを出力する。温度信号Vtia~Vticは、低電圧側の電位を基準として、温度信号Vtha~Vthcと同様の振幅値を有する様に生成される。例えば、信号絶縁回路部16a~16cは、フォトカプラ等によって構成可能であるが、任意の素子及び回路構成の適用が可能である。 Therefore, signal isolation circuit units 16a to 16c receive temperature signals Vtha to Vthc from temperature detection units 7a to 7c, and generate temperature signals Vtia to Vtic electrically insulated from the high voltage side of converter units 3a to 3c. Output. The temperature signals Vtia to Vtic are generated to have the same amplitude values as the temperature signals Vtha to Vthc with the low voltage side potential as a reference. For example, the signal isolation circuit sections 16a to 16c can be constructed using photocouplers or the like, but any element and circuit configuration can be applied.
 信号絶縁回路部16a~16cから出力された温度信号Vtia~Vticは、実施の形態3(図11)での温度信号Vta~Vtcと同様に、信号制御部8a~8c及び累計温度算出部11a~11cに入力される。実施の形態4に係る電源システム100Dでは、信号制御部8a~8c及び累計温度算出部11a~11cは、信号絶縁回路部16a~16cからの温度信号Vtia~Vticを、図11における温度信号Vta~Vtcとして用いて動作する。 The temperature signals Vtia to Vtic output from the signal isolation circuit parts 16a to 16c are controlled by the signal control parts 8a to 8c and the cumulative temperature calculation parts 11a to 11a, similarly to the temperature signals Vta to Vtc in the third embodiment (FIG. 11). 11c. In the power supply system 100D according to the fourth embodiment, the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c convert the temperature signals Vtia to Vtic from the signal isolation circuit units 16a to 16c into the temperature signals Vta to Vtic in FIG. It operates by using it as Vtc.
 従って、実施の形態4に係る電源システムでは、温度検出部7a~7cを高電圧側の発熱部に直接取り付けることで高精度に測定された温度(温度信号Vtha~Vthc)に基づいて、実施の形態3に係る電源システム100Cでの制御を行うことができる。この結果、制御の正確性を向上することによって、電源装置間の温度上昇を更に均衡化することができる。 Therefore, in the power supply system according to the fourth embodiment, the temperature detection sections 7a to 7c are directly attached to the heat generating section on the high voltage side, and the implementation is performed based on the temperature (temperature signals Vtha to Vthc) measured with high precision. Control can be performed by the power supply system 100C according to the third embodiment. As a result, temperature rises between power supplies can be further balanced by improving control accuracy.
 なお、図1(実施の形態1)においても、信号絶縁回路部16a~16cからの温度信号Vtia~Vticを、信号制御部8a~8cに入力される温度信号Vta~Vtcとして用いることが可能である。また、図7(実施の形態2)においても、信号絶縁回路部16a~16cからの温度信号Vtia~Vticを、信号制御部8a~8c及び累計温度算出部11a~11cに入力される温度信号Vta~Vtcとして用いることが可能である。 Note that also in FIG. 1 (Embodiment 1), the temperature signals Vtia to Vtic from the signal isolation circuit sections 16a to 16c can be used as the temperature signals Vta to Vtc input to the signal control sections 8a to 8c. be. Also, in FIG. 7 (Embodiment 2), temperature signals Vtia to Vtic from signal isolation circuit units 16a to 16c are converted to temperature signals Vta input to signal control units 8a to 8c and cumulative temperature calculation units 11a to 11c. ~ Can be used as Vtc.
 すなわち、実施の形態1~3の各々、又は、これらの組み合わせに対して、実施の形態4を適宜組み合わせることで、温度検出部7a~7cによる温度測定を高精度化することができる。これにより、上述した様に、制御の正確性を向上することによって、電源装置間の温度上昇を更に均衡化することができる。 That is, by appropriately combining Embodiment 4 with each of Embodiments 1 to 3 or a combination thereof, it is possible to improve the accuracy of temperature measurement by temperature detection units 7a to 7c. Thereby, as described above, temperature rises between the power supplies can be further balanced by improving control accuracy.
 実施の形態5.
 図14は、実施の形態5に係る電源システム100Eの構成例を説明するブロック図である。
Embodiment 5.
FIG. 14 is a block diagram illustrating a configuration example of a power supply system 100E according to the fifth embodiment.
 図14を参照して、電源システム100Eは、実施の形態3に係る電源システム100C(図11)と比較して、電源装置1a~1cが電力絶縁回路部17a~17cを更に備える点で異なる。電力絶縁回路部17a~17cは、温度測定対象のコンバータ部3a~3cの出力側(負荷側)と負荷120との間を電気的に絶縁するための回路要素を包括的に記載するものであり、例えば、非絶縁型のコンバータ部3a~3cと、負荷120との間に接続された、フライバックコンバータやハーフブリッジコンバータ等の絶縁型のコンバータによって実現することができる。 Referring to FIG. 14, power supply system 100E differs from power supply system 100C according to the third embodiment (FIG. 11) in that power supply devices 1a to 1c further include power isolation circuit units 17a to 17c. Power insulation circuit sections 17a to 17c comprehensively describe circuit elements for electrically insulating between the output side (load side) of the converter sections 3a to 3c whose temperature is to be measured and the load 120. This can be realized, for example, by an insulated converter such as a flyback converter or a half-bridge converter, which is connected between the non-insulated converter sections 3a to 3c and the load 120.
 あるいは、コンバータ部3a~3cそのものを、トランスを内包する、フライバックコンバータやハーフブリッジコンバータ等の絶縁型のコンバータによって構成することで、電力絶縁回路部17a~17cは、図17の例示とは異なり、コンバータ部3a~3cに内包されたトランスによって実現されてもよい。 Alternatively, by configuring the converter sections 3a to 3c themselves with an isolated converter such as a flyback converter or a half bridge converter that includes a transformer, the power isolation circuit sections 17a to 17c can be configured differently from the example shown in FIG. , may be realized by a transformer included in the converter sections 3a to 3c.
 電力絶縁回路部17a~17cによって電源110と負荷120との間が電気的に絶縁されることにより、コンバータ部3a~3cの各々において、高電圧側を流れる電流(負荷120へ向かって流れる電流)と、低電圧側を流れる電流(電源110へ向かって流れる電流)とが等しくなる。この結果、コンバータ部3a~3bの温度上昇の検知については、高電圧側及び低温側のいずれの発熱部の温度を測定しても、同等の結果を得ることが可能となる。 By electrically insulating between the power supply 110 and the load 120 by the power insulation circuit parts 17a to 17c, current flowing on the high voltage side (current flowing toward the load 120) in each of the converter parts 3a to 3c and the current flowing on the low voltage side (the current flowing toward the power supply 110) are equal. As a result, when detecting a temperature rise in the converter sections 3a to 3b, it is possible to obtain the same results regardless of whether the temperature of the heat generating section on the high voltage side or the low temperature side is measured.
 このため、電源システム100Eでは、温度検出部7a~7cは、信号絶縁が不要な「低電圧側」の発熱部に直接取り付ける様に、配置することができる。低電圧側の発熱部に直接取り付けられた温度検出部7a~7cから出力された温度信号Vtla~Vtlcは、図13に示された信号絶縁回路部16a~16cを介することなく、実施の形態3(図11)での温度信号Vta~Vtcと同様に、信号制御部8a~8c及び累計温度算出部11a~11cに入力される。 Therefore, in the power supply system 100E, the temperature detection units 7a to 7c can be arranged so as to be directly attached to the heat generating unit on the “low voltage side” where signal insulation is not required. The temperature signals Vtla to Vtlc output from the temperature detecting parts 7a to 7c directly attached to the heat generating part on the low voltage side are processed according to the third embodiment without passing through the signal isolation circuit parts 16a to 16c shown in FIG. Similar to the temperature signals Vta to Vtc in FIG. 11, these are input to the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c.
 実施の形態5に係る電源システム100Eでは、信号制御部8a~8c及び累計温度算出部11a~11cは、温度検出部7a~7cからの温度信号Vtla~Vtlcを、図11における温度信号Vta~Vtcとして用いて動作する。 In the power supply system 100E according to the fifth embodiment, the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c convert the temperature signals Vtla to Vtlc from the temperature detection units 7a to 7c into the temperature signals Vta to Vtc in FIG. It operates as a.
 従って、実施の形態5に係る電源システムでは、電源110及び負荷120を電気的に絶縁する様に構成されたコンバータ部3a~3cに対して、温度検出部7a~7cを低電圧側の発熱部に直接取り付けることで高精度に測定された温度(温度信号Vtla~Vtlc)に基づいて、実施の形態3に係る電源システム100Cでの制御を行うことができる。この結果、信号絶縁のための構成を要することなく、制御の正確性を向上することによって、電源装置間の温度上昇を更に均衡化することができる。 Therefore, in the power supply system according to the fifth embodiment, temperature detection units 7a to 7c are arranged as heat generating parts on the low voltage side with respect to converter parts 3a to 3c configured to electrically insulate power supply 110 and load 120. The power supply system 100C according to the third embodiment can be controlled based on the temperature (temperature signals Vtla to Vtlc) measured with high precision by directly attaching the power supply system 100C to the temperature signal Vtla to Vtlc. As a result, temperature rises between the power supplies can be further balanced by improving control accuracy without requiring a configuration for signal isolation.
 なお、図1(実施の形態1)においても、電力絶縁回路部17a~17cによって、電源110と負荷120との間を電気的に絶縁することで、低電圧側の発熱部に直接取り付けられた温度検出部7a~7cによる温度信号Vtla~Vtlcを、信号制御部8a~8cに入力される温度信号Vta~Vtcとして用いることが可能である。また、図7(実施の形態2)においても、電力絶縁回路部17a~17cを設けることにより、低電圧側の発熱部に直接取り付けられた温度検出部7a~7cによる温度信号Vtla~Vtlcを、信号制御部8a~8c及び累計温度算出部11a~11cに入力される温度信号Vta~Vtcとして用いることが可能である。 In addition, in FIG. 1 (Embodiment 1) as well, by electrically insulating between the power supply 110 and the load 120 by the power insulation circuit parts 17a to 17c, the load 120 can be directly attached to the heat generating part on the low voltage side. The temperature signals Vtla to Vtlc from the temperature detection units 7a to 7c can be used as the temperature signals Vta to Vtc input to the signal control units 8a to 8c. Also, in FIG. 7 (Embodiment 2), by providing the power insulation circuit parts 17a to 17c, the temperature signals Vtla to Vtlc from the temperature detection parts 7a to 7c directly attached to the heat generating part on the low voltage side can be It can be used as the temperature signals Vta to Vtc input to the signal control units 8a to 8c and the cumulative temperature calculation units 11a to 11c.
 すなわち、実施の形態1~3の各々、又は、これらの組み合わせに対して、実施の形態5を適宜組み合わせることで、温度検出部7a~7cによる温度測定を高精度化することができる。これにより、上述した様に、信号絶縁のための構成を要することなく、制御の正確性を向上することによって、電源装置間の温度上昇を更に均衡化することができる。 That is, by appropriately combining Embodiment 5 with each of Embodiments 1 to 3 or a combination thereof, it is possible to improve the accuracy of temperature measurement by temperature detection units 7a to 7c. Thereby, as described above, temperature rises between the power supply devices can be further balanced by improving control accuracy without requiring a configuration for signal isolation.
 なお、以上で説明した複数の実施の形態について、明細書内で言及されていない組み合わせを含めて、不整合や矛盾が生じない範囲内で、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている点についても、確認的に記載する。 Regarding the multiple embodiments described above, the configurations described in each embodiment may be combined as appropriate, including combinations not mentioned in the specification, to the extent that no inconsistency or contradiction occurs. Also, the points that have been planned from the beginning of the application will be stated for confirmation.
 又、実施の形態1~5では、3台の電源装置が並列接続される構成を例示したが、2台、又は、4台以上の電源装置が並列接続されて負荷へ電力を供給する電源システムにおいて、実施の形態1、実施の形態1の変形例、実施の形態2、実施の形態3、実施の形態4、及び、実施の形態5、或いは、これらの組み合わせを適用することが可能である。 Further, in Embodiments 1 to 5, a configuration in which three power supply devices are connected in parallel is illustrated, but a power supply system in which two or four or more power supply devices are connected in parallel to supply power to a load is also possible. It is possible to apply Embodiment 1, a modification of Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4, Embodiment 5, or a combination thereof. .
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1a~1c 電源装置、3a~3c コンバータ部、4a~4c スイッチング制御部、5a~5c 出力電圧検出部、6a~6c 出力電流検出部、7a~7c 温度検出部、8 信号制御部、8a~8c 信号制御部、9a~9c 整流ダイオード、10a~10c 半導体スイッチング素子、11a~11c 累計温度算出部、12 累計温度比較部、13 累計温度判定部、14 交換情報表示部、15a~15c 平滑用コンデンサ、15t,15v 信号生成回路、16a~16c 信号絶縁回路部、17a~17c 電力絶縁回路部、100A~100C 電源システム、110 電源、120 負荷、Ilm 上限電流、Ioa~Ioc 出力電流、LT 待機時間、Na~Nc 温度上昇カウント値、N1,VIlm 判定値、Nt 上限回数、Sch 交換予定信号、Sga~Sgc 駆動信号、Ssa~Ssc スイッチング制御信号、Sta,Stb,Stc 温度上昇信号、Sta*~Stc* 温度異常信号、Sto 全体温度異常信号、Stta~Sttc 制御信号、Sva~Svc 電圧上昇信号、Svo 全体電圧状態信号、VHlim 電圧上限値、VHt 電圧閾値、VTHlm 温度上限値、VTHt 温度閾値、Via~Vic 出力電流信号、Voa~Voc 出力電圧、Vo* 電圧指令値、Vt,Vta~Vtc,Vtha~Vthc,Vtla~Vtlc 温度信号、Vtia~Vtic 温度信号(絶縁後)、Vtta~Vttc 累計温度信号、Vva~Vvc 出力電圧信号。 1a to 1c power supply device, 3a to 3c converter section, 4a to 4c switching control section, 5a to 5c output voltage detection section, 6a to 6c output current detection section, 7a to 7c temperature detection section, 8 signal control section, 8a to 8c Signal control unit, 9a to 9c rectifier diode, 10a to 10c semiconductor switching element, 11a to 11c cumulative temperature calculation unit, 12 cumulative temperature comparison unit, 13 cumulative temperature determination unit, 14 replacement information display unit, 15a to 15c smoothing capacitor, 15t, 15v signal generation circuit, 16a to 16c signal isolation circuit section, 17a to 17c power isolation circuit section, 100A to 100C power supply system, 110 power supply, 120 load, Ilm upper limit current, Ioa to Ioc output current, LT standby time, Na ~Nc Temperature rise count value, N1, VIlm Judgment value, Nt Upper limit number of times, Sch Replacement schedule signal, Sga ~ Sgc Drive signal, Ssa ~ Ssc Switching control signal, Sta, Stb, Stc Temperature rise signal, Sta*~Stc* Temperature Abnormal signal, Sto overall temperature abnormal signal, Sta~Sttc control signal, Sva~Svc voltage increase signal, Svo overall voltage status signal, VHlim voltage upper limit, VHt voltage threshold, VTHlm temperature upper limit, VTHt temperature threshold, Via~Vic output Current signal, Voa~Voc output voltage, Vo* voltage command value, Vt, Vta~Vtc, Vtha~Vthc, Vtla~Vtlc temperature signal, Vtia~Vtic temperature signal (after insulation), Vtta~Vttc cumulative temperature signal, Vva~ Vvc Output voltage signal.

Claims (16)

  1.  電源システムであって、
     出力が並列接続された複数の電源装置を備え、
     前記複数の電源装置の各々は、
     半導体スイッチング素子を含んで構成されて、出力電圧及び出力電流を供給するコンバータ部と、
     前記コンバータ部の温度を計測する温度検出部と、
     前記コンバータ部の出力電圧を計測する出力電圧検出部と、
     前記出力電圧検出部の検出電圧を電圧指令値に近付ける定電圧制御に従って、前記半導体スイッチング素子を制御するための駆動信号を生成するスイッチング制御部と、
     前記温度検出部による検出温度と温度閾値との比較に基づいて、前記スイッチング制御部での前記電圧指令値を上昇又は低下するための信号制御部とを含み、
     各前記信号制御部は、各前記電源装置での前記電圧指令値の設定に係る情報を互いに共有し、
     前記複数の電源装置のうちの、前記検出温度が前記温度閾値よりも高い第1温度状態の電源装置では、前記信号制御部が前記電圧指令値を第1電圧値に設定する一方で、前記検出温度が前記温度閾値以下である第2温度状態の電源装置では、前記信号制御部が前記電圧指令値を前記第1電圧値よりも高い第2電圧値に設定する、電源システム。
    A power supply system,
    Equipped with multiple power supplies with outputs connected in parallel,
    Each of the plurality of power supplies includes:
    a converter section configured to include a semiconductor switching element and supply an output voltage and an output current;
    a temperature detection unit that measures the temperature of the converter unit;
    an output voltage detection unit that measures the output voltage of the converter unit;
    a switching control unit that generates a drive signal for controlling the semiconductor switching element according to constant voltage control that brings the detected voltage of the output voltage detection unit close to a voltage command value;
    a signal control unit for increasing or decreasing the voltage command value in the switching control unit based on a comparison between the temperature detected by the temperature detection unit and a temperature threshold;
    Each of the signal control units mutually shares information related to the setting of the voltage command value in each of the power supply devices,
    Among the plurality of power supply devices, in a power supply device in a first temperature state where the detected temperature is higher than the temperature threshold value, the signal control unit sets the voltage command value to the first voltage value, while the detected temperature is higher than the temperature threshold value. In the power supply system in a second temperature state where the temperature is below the temperature threshold, the signal control unit sets the voltage command value to a second voltage value higher than the first voltage value.
  2.  前記信号制御部は、前記出力電圧検出部による前記検出電圧と出力電圧閾値との比較を更に実行し、
     前記信号制御部は、前記電圧指令値が前記第1電圧値である場合には、前記検出温度が前記温度閾値以下であり、かつ、前記複数の電源装置の全てにおいて前記検出電圧が前記出力電圧閾値以下であるときに、前記電圧指令値を前記第1電圧値から前記第2電圧値に上昇させる、請求項1記載の電源システム。
    The signal control unit further performs a comparison between the detected voltage by the output voltage detection unit and an output voltage threshold,
    The signal control unit may be configured such that when the voltage command value is the first voltage value, the detected temperature is equal to or lower than the temperature threshold, and the detected voltage is equal to or lower than the output voltage in all of the plurality of power supply devices. The power supply system according to claim 1, wherein the voltage command value is increased from the first voltage value to the second voltage value when the voltage command value is equal to or less than a threshold value.
  3.  前記温度閾値は、前記第1温度状態であるときは、前記第2温度状態のときよりも低い値に設定される、請求項1又は2に記載の電源システム。 The power supply system according to claim 1 or 2, wherein the temperature threshold is set to a lower value when the temperature is in the first temperature state than when the temperature is in the second temperature state.
  4.  前記コンバータ部は、前記半導体スイッチング素子のオンオフ制御によって直流電圧変換を実行するように構成され、
     各前記信号制御部は、前記検出温度を温度上限値と更に比較し、前記複数の電源装置の少なくともいずれかにおいて前記検出温度が前記温度上限値よりも高いことが検出されると、前記コンバータ部の前記半導体スイッチング素子をオフ状態に固定するように前記駆動信号を生成する、請求項1~3のいずれか1項に記載の電源システム。
    The converter section is configured to perform DC voltage conversion by on/off control of the semiconductor switching element,
    Each of the signal control units further compares the detected temperature with a temperature upper limit value, and when it is detected that the detected temperature is higher than the temperature upper limit value in at least one of the plurality of power supply devices, the converter unit The power supply system according to any one of claims 1 to 3, wherein the drive signal is generated so as to fix the semiconductor switching element in an off state.
  5.  前記電源システムの起動時において、前記複数の電源装置の前記電圧指令値の初期値は、全て前記電圧指令値が、前記第1電圧値及び前記第2電圧値の一方に揃わない様に設定される、請求項1~4のいずれか1項に記載の電源システム。 At the time of startup of the power supply system, the initial values of the voltage command values of the plurality of power supply devices are all set so that the voltage command values are not equal to one of the first voltage value and the second voltage value. The power supply system according to any one of claims 1 to 4.
  6.  前記温度検出部は、前記コンバータ部の構成部品が実装される基板に固定されたサーミスタを含む、請求項1~5のいずれか1項に記載の電源システム。 The power supply system according to any one of claims 1 to 5, wherein the temperature detection section includes a thermistor fixed to a substrate on which components of the converter section are mounted.
  7.  前記第1電圧値は、前記複数の電源装置の出力と接続された負荷への供給電圧の定格値よりも低く、
     前記第2電圧値は、前記定格値よりも高い、請求項1~6のいずれか1項に記載の電源システム。
    The first voltage value is lower than a rated value of a supply voltage to a load connected to the output of the plurality of power supply devices,
    The power supply system according to any one of claims 1 to 6, wherein the second voltage value is higher than the rated value.
  8.  前記複数の電源装置の各々は、
     前記コンバータ部の出力電流を計測する出力電流検出部を更に含み、
     各前記信号制御部は、
     前記出力電流検出部によって検出された前記出力電流が予め定められた上限電流に達すると前記出力電流をこれ以上増加させないためにコンバータ部の出力を制限する様に前記駆動信号を生成する、請求項1~7のいずれか1項に記載の電源システム。
    Each of the plurality of power supplies includes:
    further comprising an output current detection unit that measures the output current of the converter unit,
    Each of the signal control units includes:
    The drive signal is generated so as to limit the output of the converter section in order to prevent the output current from increasing any further when the output current detected by the output current detection section reaches a predetermined upper limit current. 8. The power supply system according to any one of 1 to 7.
  9.  前記複数の電源装置のそれぞれでの前記温度検出部の検出温度の履歴を比較して、前記複数の電源装置から、相対的に高温状態である一部の電源装置を抽出するための温度履歴比較部を更に備え、
     前記一部の電源装置に含まれる各前記信号制御部は、前記検出温度の上昇に伴って前記電圧指令値を前記第1電圧値から前記第2電圧値に上昇させる際に、第1の時間が経過した後に、前記電圧指令値を上昇させ、
     前記一部の電源装置に含まれない前記信号制御部は、前記検出温度の上昇に伴って前記電圧指令値を前記第1電圧値から前記第2電圧値に上昇させる際に、前記第1の時間よりも短い第2の時間が経過した後に、前記電圧指令値を上昇させる、請求項1~8のいずれか1項に記載の電源システム。
    Temperature history comparison for extracting some power supply devices in a relatively high temperature state from the plurality of power supply devices by comparing the history of the temperature detected by the temperature detection unit in each of the plurality of power supply devices. further comprising:
    Each of the signal control units included in some of the power supply devices increases the voltage command value for a first time period when increasing the voltage command value from the first voltage value to the second voltage value as the detected temperature increases. elapses, the voltage command value is increased,
    The signal control unit, which is not included in some of the power supply devices, increases the voltage command value from the first voltage value when increasing the voltage command value from the first voltage value to the second voltage value as the detected temperature increases. The power supply system according to any one of claims 1 to 8, wherein the voltage command value is increased after a second time period shorter than the current time period has elapsed.
  10.  前記複数の電源装置の各々は、
     予め定められた一定周期毎で前記検出温度の積算値を出力する累計温度算出部を更に含み、
     前記温度履歴比較部は、前記複数の電源装置のそれぞれの前記積算値の比較に基づいて、前記一部の電源装置を抽出する、請求項9記載の電源システム。
    Each of the plurality of power supplies includes:
    further comprising a cumulative temperature calculation unit that outputs the cumulative value of the detected temperature at every predetermined period,
    The power supply system according to claim 9, wherein the temperature history comparison unit extracts the part of the power supply devices based on a comparison of the integrated values of each of the plurality of power supply devices.
  11.  前記複数の電源装置の各々の前記温度検出部の検出温度の履歴を用いて、前記複数の電源装置の交換要否に係る余寿命を判定するための温度履歴判定部と、
     前記温度履歴判定部での判定結果をユーザに報知するための表示部とを更に備える、請求項1~9のいずれか1項に記載の電源システム。
    a temperature history determination unit for determining the remaining life of the plurality of power supply devices as to whether or not they need to be replaced, using a history of detected temperatures of the temperature detection unit of each of the plurality of power supply devices;
    The power supply system according to any one of claims 1 to 9, further comprising a display unit for notifying a user of the determination result by the temperature history determination unit.
  12.  前記複数の電源装置の各々は、
     予め定められた一定周期毎で前記検出温度の積算値を出力する累計温度算出部を更に含み、
     前記温度履歴判定部は、前記複数の電源装置毎に、前記累計温度算出部から出力された前記一定周期での前記積算値が予め定められた判定値を超えた回数をカウントし、カウントされた回数が予め定められた上限回数に達すると、当該電源装置の交換が必要と判定する、請求項11記載の電源システム。
    Each of the plurality of power supplies includes:
    further comprising a cumulative temperature calculation unit that outputs the cumulative value of the detected temperature at every predetermined period,
    The temperature history determination unit counts, for each of the plurality of power supply devices, the number of times the integrated value outputted from the cumulative temperature calculation unit in the certain period exceeds a predetermined determination value. The power supply system according to claim 11, wherein when the number of times reaches a predetermined upper limit number of times, it is determined that the power supply device needs to be replaced.
  13.  前記複数の電源装置の各々は、電源と、前記複数の電源装置の出力と接続された負荷との間に接続され、
     前記複数の電源装置の各々の前記コンバータ部は、非絶縁型のコンバータで構成され、
     前記温度検出部は、前記コンバータ部において前記電源から前記負荷へ向かう電流が流れる高電圧側に接続された回路要素に対して直接取り付けられ、
     前記複数の電源装置の各々は、
     前記検出温度を示す前記温度検出部からの出力信号を絶縁して、前記信号制御部に入力するための信号絶縁回路部を更に備える、請求項1~9のいずれか1項に記載の電源システム。
    Each of the plurality of power supply devices is connected between a power source and a load connected to an output of the plurality of power supply devices,
    The converter section of each of the plurality of power supply devices is configured with a non-insulated converter,
    The temperature detection section is attached directly to a circuit element connected to a high voltage side of the converter section through which current flows from the power supply to the load,
    Each of the plurality of power supplies includes:
    The power supply system according to any one of claims 1 to 9, further comprising a signal isolation circuit section for insulating an output signal from the temperature detection section indicating the detected temperature and inputting it to the signal control section. .
  14.  前記複数の電源装置の各々は、電源と、前記複数の電源装置の出力と接続された負荷との間に接続され、
     前記複数の電源装置の各々の前記コンバータ部は、非絶縁型のコンバータで構成され、
     前記温度検出部は、前記コンバータ部において前記電源から前記負荷へ向かう電流が流れる高電圧側の経路に接続された回路要素に対して直接取り付けられ、
     前記複数の電源装置の各々は、
     前記検出温度を示す前記温度検出部からの出力信号を絶縁して、前記信号制御部及び前記累計温度算出部に入力するための信号絶縁回路部を更に備える、請求項10又は12に記載の電源システム。
    Each of the plurality of power supply devices is connected between a power source and a load connected to an output of the plurality of power supply devices,
    The converter section of each of the plurality of power supply devices is configured with a non-insulated converter,
    The temperature detection unit is attached directly to a circuit element connected to a high voltage side path through which current flows from the power supply to the load in the converter unit,
    Each of the plurality of power supplies includes:
    The power supply according to claim 10 or 12, further comprising a signal insulation circuit section for insulating an output signal from the temperature detection section indicating the detected temperature and inputting the signal to the signal control section and the cumulative temperature calculation section. system.
  15.  前記複数の電源装置の各々は、電源と、前記複数の電源装置の出力と接続された負荷との間に接続され、
     前記複数の電源装置の各々は、前記電源と前記負荷との間を電気的に絶縁するための電力絶縁回路部を更に備え、
     前記温度検出部は、前記複数の電源装置の各々の前記コンバータ部において前記電源へ向かう電流が流れる低電圧側の経路に接続された回路要素に直接取り付けられ、
     前記検出温度を示す前記温度検出部からの出力信号は、信号絶縁を伴わずに、前記信号制御部に入力される、請求項1~9のいずれか1項に記載の電源システム。
    Each of the plurality of power supply devices is connected between a power source and a load connected to an output of the plurality of power supply devices,
    Each of the plurality of power supply devices further includes a power isolation circuit section for electrically insulating between the power supply and the load,
    The temperature detection unit is directly attached to a circuit element connected to a low voltage side path through which a current toward the power supply flows in the converter unit of each of the plurality of power supply devices,
    The power supply system according to any one of claims 1 to 9, wherein an output signal from the temperature detection unit indicating the detected temperature is input to the signal control unit without signal insulation.
  16.  前記複数の電源装置の各々は、電源と、前記複数の電源装置の出力と接続された負荷との間に接続され、
     前記複数の電源装置の各々は、前記電源と前記負荷との間を電気的に絶縁するための電力絶縁回路部を更に備え、
     前記温度検出部は、前記複数の電源装置の各々の前記コンバータ部において前記電源へ向かう電流が流れる低電圧側の経路に接続された回路要素に直接取り付けられ、
     前記検出温度を示す前記温度検出部からの出力信号は、信号絶縁を伴わずに、前記信号制御部及び前記累計温度算出部に入力される、請求項10又は12に記載の電源システム。
    Each of the plurality of power supply devices is connected between a power source and a load connected to an output of the plurality of power supply devices,
    Each of the plurality of power supply devices further includes a power isolation circuit section for electrically insulating between the power supply and the load,
    The temperature detection unit is directly attached to a circuit element connected to a low voltage side path through which a current toward the power supply flows in the converter unit of each of the plurality of power supply devices,
    The power supply system according to claim 10 or 12, wherein an output signal from the temperature detection unit indicating the detected temperature is input to the signal control unit and the cumulative temperature calculation unit without signal insulation.
PCT/JP2023/021716 2022-06-16 2023-06-12 Power supply system WO2023243594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097238 2022-06-16
JP2022-097238 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023243594A1 true WO2023243594A1 (en) 2023-12-21

Family

ID=89191288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021716 WO2023243594A1 (en) 2022-06-16 2023-06-12 Power supply system

Country Status (1)

Country Link
WO (1) WO2023243594A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027798A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Power supply system, and electric vehicle equipped with the same
JP2009148032A (en) * 2007-12-12 2009-07-02 Tdk-Lambda Corp Parallel power system
JP2019169997A (en) * 2018-03-22 2019-10-03 株式会社オートネットワーク技術研究所 On-vehicle multi-phase converter
JP2021145427A (en) * 2020-03-11 2021-09-24 株式会社オートネットワーク技術研究所 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027798A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Power supply system, and electric vehicle equipped with the same
JP2009148032A (en) * 2007-12-12 2009-07-02 Tdk-Lambda Corp Parallel power system
JP2019169997A (en) * 2018-03-22 2019-10-03 株式会社オートネットワーク技術研究所 On-vehicle multi-phase converter
JP2021145427A (en) * 2020-03-11 2021-09-24 株式会社オートネットワーク技術研究所 Power conversion device

Similar Documents

Publication Publication Date Title
KR101677730B1 (en) Led light emitting device
JP4249225B2 (en) Current detection circuit for induction heating equipment
US8427850B2 (en) Switching power supply device with a switching control circuit
US7295451B2 (en) Switching power supply having dual current feedback
JP7241945B2 (en) WIRELESS POWER SUPPLY DEVICE AND METHOD FOR MEASURING CURRENT OF WIRELESS POWER SUPPLY DEVICE
US8963430B2 (en) Circuit for detection and control of LED string operation
WO2008086050A2 (en) Electronic circuit for driving a diode load
JP2008527961A (en) Power supply paralleling compensated droop method (C-droop method)
US8456094B2 (en) Light emitting device open/short detection circuit
JP2012210013A (en) Power supply device
KR20130086277A (en) Power supply device
US20050280391A1 (en) System for supplying operating voltage to CPU
US7288951B1 (en) Burn-in system having multiple power modes
KR20000011274A (en) Power source device for arc processing
US8338758B2 (en) Heater power control circuit and burn-in apparatus using the same
KR20130139387A (en) Lighting equipment using led and control method of the same
US7336513B1 (en) Method of compensating output voltage distortion of half-bridge inverter and device based on the method
WO2023243594A1 (en) Power supply system
JP2006087235A (en) Power factor improvement connection and control circuit thereof
JP2008109802A (en) Power supply device
US20100149712A1 (en) Digital Overcurrent Protection Device for a Power Supply Device and Related Power Supply Device
JP2000323177A (en) Charge control device
JP2007060787A (en) Power supply transformer protection system
KR20150002131A (en) Protection Circuit, Circuit Protection Method Using the same and Display Device
US20210021196A1 (en) Insulated power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823884

Country of ref document: EP

Kind code of ref document: A1