WO2023243590A1 - Binder composition for power storage devices, slurry for all-solid-state secondary batteries, all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary batteries, method for producing solid electrolyte sheet for all-solid-state secondary batteries, method for producing all-solid-state secondary battery, slurry for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Binder composition for power storage devices, slurry for all-solid-state secondary batteries, all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary batteries, method for producing solid electrolyte sheet for all-solid-state secondary batteries, method for producing all-solid-state secondary battery, slurry for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
WO2023243590A1
WO2023243590A1 PCT/JP2023/021706 JP2023021706W WO2023243590A1 WO 2023243590 A1 WO2023243590 A1 WO 2023243590A1 JP 2023021706 W JP2023021706 W JP 2023021706W WO 2023243590 A1 WO2023243590 A1 WO 2023243590A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
secondary battery
mass
polymer
slurry
Prior art date
Application number
PCT/JP2023/021706
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 中山
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Publication of WO2023243590A1 publication Critical patent/WO2023243590A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a binder composition for an electricity storage device, a slurry for an all-solid secondary battery containing the binder composition, an all-solid secondary battery, a solid electrolyte sheet for an all-solid secondary battery, and a solid electrolyte for an all-solid secondary battery.
  • the present invention relates to a method for manufacturing a sheet, a method for manufacturing an all-solid-state secondary battery, and a slurry for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery containing the binder composition.
  • Lithium ion batteries, lithium ion capacitors, and the like are expected to be used as such power storage devices.
  • Electrodes used in such power storage devices are manufactured by applying a composition (slurry for power storage device electrodes) containing an active material and a polymer that functions as a binder onto the surface of a current collector and drying the composition.
  • a composition slurry for power storage device electrodes
  • a polymer that functions as a binder onto the surface of a current collector and drying the composition.
  • Ru Properties required of a polymer used as a binder include the ability to bond between active materials and the ability to adhere to an active material and a current collector. Another example is powder drop resistance, which prevents fine particles of the active material from falling off from the active material layer when the coated and dried composition coating film (hereinafter also referred to as "active material layer”) is cut.
  • active material layer Such a binder material exhibits good adhesion and reduces the internal resistance of the battery caused by the binder material, thereby imparting good charge/discharge characteristics to the electricity storage device.
  • All-solid-state secondary batteries use a solid electrolyte that exhibits high ionic conductivity, so there is no risk of leakage or fire, and they are safe and reliable. All-solid-state secondary batteries are also suitable for increasing energy density by stacking electrodes. Specifically, it is possible to create a battery with a structure in which an active material layer and a solid electrolyte layer are arranged and connected in series, and the metal package that seals the battery cells and the copper wires and bus bars that connect the battery cells can be omitted. As a result, the energy density of the battery can be significantly increased. Another advantage is that it is compatible with positive electrode materials that can be used at high potentials. All-solid-state secondary batteries are thus expected to be the ultimate battery that combines safety, high energy density, and long life.
  • the solubility of the polymer (A) in toluene at 25° C. and 1 atmosphere can be 1 g or more per 100 g of toluene.
  • the binder composition for an electricity storage device When the polymer (A) is subjected to differential scanning calorimetry (DSC) in accordance with JIS K7121:2012, an endothermic peak can be further observed in the temperature range of 80°C to 150°C.
  • DSC differential scanning calorimetry
  • the solid electrolyte may include a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
  • the method includes a step of applying the slurry for an all-solid-state secondary battery according to any of the above embodiments onto a base material and drying the slurry.
  • An all-solid-state secondary battery is manufactured using the method for manufacturing a solid electrolyte sheet for an all-solid-state secondary battery according to the above embodiment.
  • One embodiment of the slurry for lithium ion secondary battery electrodes according to the present invention is It contains the binder composition for a power storage device according to any of the above embodiments and an active material.
  • the active material can be a positive electrode active material.
  • the binder composition for a power storage device contains a polymer (A).
  • the polymer (A) may be in the form of a latex dispersed in a liquid medium (C), which will be described later, or may be in a state dissolved in the liquid medium (C). ) is preferable.
  • the stability of the composition prepared by mixing it with the active material hereinafter also referred to as "slurry" is good, and , is preferable because the slurry can be easily applied to the current collector.
  • the adhesion strength between the active materials increases and ionic conductivity improves. This allows the internal resistance to be reduced, making it easy to obtain a power storage device with excellent cycle life characteristics.
  • the polymer (A) contains repeating units derived from a conjugated diene compound (a1) when the total of repeating units contained in the polymer (A) is 100% by mass. ) (hereinafter also simply referred to as “repeat unit (a1)”) from 50 to 99% by mass, and a repeating unit (a2) derived from an aromatic vinyl compound (hereinafter also simply referred to as “repeat unit (a2)”). ) in an amount of 1 to 50% by mass.
  • the polymer (A) may contain, in addition to the repeating unit (a1) and the repeating unit (a2), a repeating unit derived from another monomer copolymerizable with these units.
  • Conjugated diene compounds include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, etc. One or more types selected from these can be used. Among these, 1,3-butadiene is particularly preferred.
  • Repeating unit (a2) derived from aromatic vinyl compound The content of the repeating unit (a2) derived from the aromatic vinyl compound is 1 to 50% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of the repeating unit (a2) is preferably 2% by mass, more preferably 4% by mass.
  • the upper limit of the content of the repeating unit (a2) is preferably 48% by mass, more preferably 45% by mass.
  • the permeability of the electrolytic solution can be improved, good repeated charge/discharge characteristics may be exhibited. Furthermore, it may exhibit good binding strength to graphite or the like used as an active material, and an electricity storage device electrode with excellent adhesion can be obtained.
  • repeating unit (a4) repeating unit (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound (hereinafter also simply referred to as “repeat unit (a5)”), ( The repeating unit (a6) derived from meth)acrylamide (hereinafter also simply referred to as “repeat unit (a6)”), the repeating unit (a7) derived from a compound having a sulfonic acid group (hereinafter simply referred to as “repeat unit (a7)”) ), repeating units derived from cationic monomers, etc.
  • the polymer (A) contains a repeating unit (a3) derived from an unsaturated carboxylic acid.
  • the content of the repeating unit (a3) derived from unsaturated carboxylic acid may be 0.1 to 10% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. preferable.
  • the lower limit of the content of the repeating unit (a3) is preferably 0.2% by mass, more preferably 0.3% by mass.
  • the upper limit of the content of the repeating unit (a3) is preferably 8% by mass, more preferably 6% by mass.
  • unsaturated carboxylic acids include, but are not limited to, monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid.
  • monocarboxylic acids and dicarboxylic acids including anhydrides
  • acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid One or more types selected from these can be used. Among these, it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
  • the affinity between the polymer (A) and the electrolyte becomes good, and the binder becomes an electrical resistance component in the electricity storage device. It may be possible to suppress the increase in internal resistance.
  • (meth)acrylic esters can be preferably used.
  • Specific examples of (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate.
  • methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, and di(meth)acrylate Preferably, it is one or more selected from ethylene glycol, and methyl (meth)acrylate is particularly preferable.
  • the polymer (A) may contain a repeating unit (a5) derived from an ⁇ , ⁇ -unsaturated nitrile compound.
  • the content of the repeating unit (a5) is preferably 0 to 10% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass.
  • the lower limit of the content of the repeating unit (a5) is preferably 0.5% by mass, more preferably 1% by mass.
  • the upper limit of the content of the repeating unit (a5) is preferably 9% by mass, more preferably 8% by mass.
  • the polymer (A) may contain a repeating unit (a6) derived from (meth)acrylamide.
  • (meth)acrylamide include, but are not limited to, acrylamide, methacrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, and N,N-diethylmethacrylamide.
  • amide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, diacetone acrylamide, maleic acid amide, acrylamide tert-butylsulfonic acid, etc. can be used, and one or more selected from these can be used.
  • the content ratio of the repeating unit (a6) derived from (meth)acrylamide is preferably 0 to 5% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass, More preferably, it is 1 to 4% by mass.
  • the polymer (A) contains the repeating unit (a6) within the above range the dispersibility of the active material and filler in the slurry may be improved. Further, the flexibility of the obtained active material layer may be moderate, and the adhesion between the current collector and the active material layer may be improved.
  • the polymer (A) may contain repeating units derived from a cationic monomer.
  • the cationic monomer is not particularly limited, but is at least one monomer selected from the group consisting of secondary amines (salts), tertiary amines (salts), and quaternary ammonium salts. It is preferable.
  • cationic monomers include 2-(dimethylamino)ethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate methyl chloride quaternary salt, 2-(diethylamino)ethyl (meth)acrylate, ( 3-(dimethylamino)propyl meth)acrylate, 3-(diethylamino)propyl (meth)acrylate, 4-(dimethylamino)phenyl (meth)acrylate, 2-[(3,5-meth)acrylate dimethylpyrazolyl)carbonylamino]ethyl, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl (meth)acrylate, 2-(1-aziridinyl)ethyl (meth)acrylate, methacroylcholine chloride , tris(2-acryloyloxyethyl) isocyanurate, 2-vinylpyridine
  • the weight average molecular weight (Mw) of the polymer (A) in terms of polystyrene determined by gel permeation chromatography (GPC) is 100,000 to 2,000,000.
  • the lower limit of the weight average molecular weight of the polymer (A) is preferably 120,000, more preferably 150,000.
  • the upper limit of the weight average molecular weight of the polymer (A) is preferably 1,800,000, more preferably 1,600,000.
  • the weight average molecular weight (Mw) of the polymer (A) is within the above range, the polymer (A) is easily dissolved in the liquid medium (C), so that the slurry prepared by mixing with the active material is stabilized.
  • the slurry can also be coated onto the current collector.
  • the binding properties between the active material, solid electrolyte, and filler such as a conductive aid due to the polymer (A) are improved, and an all-solid-state secondary battery with excellent charge/discharge characteristics is easily obtained.
  • the resistance to external forces such as pressing and bending of the electrode plate and solid electrolyte layer during production of an all-solid-state secondary battery is improved.
  • the solubility of the polymer (A) in toluene at 25° C. and 1 atmosphere is preferably 1 g or more per 100 g of toluene.
  • the solubility in toluene of 1 g or more in toluene means that the polymer (A) is soluble in the organic solvent.
  • the surface of the active material is easily coated with the polymer (A), which has excellent flexibility and adhesion, so that the active material does not fall off due to expansion and contraction during charging and discharging. Therefore, it is easy to obtain an electricity storage device that can effectively suppress the storage of electricity and exhibit good charge/discharge durability characteristics. It is also preferable because the stability of the slurry is improved and the applicability of the slurry to the current collector is also improved.
  • the polymer (A) preferably has a first endothermic peak in the temperature range of -80°C to 0°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. In addition to the first endothermic peak, the polymer (A) exhibits a second endothermic peak in the temperature range of 80°C to 150°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. It is more preferable to further have a peak. When the endothermic peak of the polymer (A) in DSC analysis is within the above range, the polymer (A) is preferable because it can impart better flexibility and binding properties to the active material layer.
  • the method for producing the polymer (A) is not particularly limited, but may be, for example, an emulsion polymerization method carried out in the presence of a known emulsifier, chain transfer agent, polymerization initiator, or the like.
  • emulsifiers include higher alcohol sulfate ester salts, alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyldiphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietate, naphthalene sulfonic acid/formalin.
  • Anionic surfactants such as condensates and sulfate ester salts of nonionic surfactants;
  • Nonionic surfactants such as alkyl esters of polyethylene glycol, alkyl phenyl ethers of polyethylene glycol, and alkyl ethers of polyethylene glycol; perfluorobutyl Examples include fluorine-based surfactants such as sulfonates, perfluoroalkyl group-containing phosphate esters, perfluoroalkyl group-containing carboxylates, and perfluoroalkyl ethylene oxide adducts, and 1 selected from these. More than one species can be used.
  • chain transfer agent and polymerization initiator compounds described in Japanese Patent No. 5999399 and the like can be used.
  • the emulsion polymerization method for synthesizing the polymer (A) may be carried out by one-stage polymerization, or may be carried out by multi-stage polymerization of two or more stages.
  • the mixture of the above monomers is mixed in the presence of a suitable emulsifier, chain transfer agent, polymerization initiator, etc., preferably at a temperature of 0 to 80°C, Emulsion polymerization can be performed, preferably with a polymerization time of 4 to 36 hours.
  • each stage of polymerization is preferably set as follows.
  • the proportion of the monomer used in the first stage polymerization is based on the total mass of the monomers (the sum of the mass of the monomer used in the first stage polymerization and the mass of the monomer used in the second stage polymerization). It is preferably in the range of 20 to 99% by mass, more preferably in the range of 25 to 99% by mass.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
  • - First-stage polymerization Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
  • Second stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
  • each stage of polymerization is preferably set as follows.
  • the types of monomers used in the second-stage polymerization and their usage ratios may be the same as or different from the monomer types and their usage ratios used in the first-stage polymerization.
  • the types of monomers used in the third stage polymerization and their usage ratios are the types of monomers used in the first stage polymerization and their usage ratios, and the types of monomers used in the second stage polymerization and their usage ratios. may be the same or different.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
  • - First-stage polymerization Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
  • Second stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
  • Third stage polymerization preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 9 hours.
  • This total solid content concentration is preferably 45% by mass or less, more preferably 40% by mass or less.
  • a neutralizing agent to the polymerization mixture to neutralize it after the emulsion polymerization is completed.
  • the neutralizing agent used here is not particularly limited, but includes, for example, metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia, and the like.
  • the solidification temperature is not particularly limited, but is preferably 40°C or higher and 90°C or lower, more preferably 45°C or higher and 80°C or lower.
  • the amount of water added to the water-containing crumb during washing with water is not particularly limited, but it effectively reduces the coagulant content (residual amount) in the final binder composition for power storage devices. From the viewpoint that it can be used, it is preferably 150 parts by mass or more and 10,000 parts by mass or less, more preferably 150 parts by mass or more and 5,000 parts by mass or less, based on 100 parts by mass of the polymer contained in the hydrous crumb. be.
  • the number of times of water washing is not particularly limited and may be one time, but preferably two or more times from the viewpoint of reducing the coagulant content (residual amount) in the finally obtained binder composition for power storage devices. It is 8 times or less, more preferably 3 times or more and 10 times or less.
  • the effect of removing the coagulant is small, the increase in the number of steps increases the impact of reduction in manufacturing efficiency.
  • the water-containing crumb that has undergone the above-mentioned washing step is dried to obtain a coagulated dried product containing a polymer and a coagulant.
  • the drying method that can be used in the drying process is not particularly limited, but for example, drying can be performed using a dryer such as a screw type extruder, kneader type dryer, expander dryer, hot air dryer, or vacuum dryer. can. Further, a drying method that combines these methods may also be used. Furthermore, before drying in the drying step, if necessary, the water-containing crumb may be filtered using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator, or the like.
  • the binder composition for a power storage device according to the present embodiment may contain additives other than the above-mentioned components as necessary.
  • additives include polymers other than polymer (A), antioxidants, thickeners, and the like.
  • antioxidants examples include compounds such as phenolic antioxidants, amine antioxidants, quinone antioxidants, organophosphorus antioxidants, sulfur antioxidants, and phenothiazine antioxidants. . Among these, phenolic antioxidants and amine antioxidants are preferred.
  • thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose; poly(meth)acrylic acid; ammonium salts or alkali metal salts of the cellulose compound or the poly(meth)acrylic acid; Examples include modified polyvinyl alcohol, polyethylene oxide; polyvinylpyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. Among these, cellulose polymers are preferred.
  • Examples of commercially available thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (all manufactured by Daicel Corporation).
  • the binder composition for an electricity storage device contains a thickener
  • the content of the thickener is 5% by mass or less with respect to 100% by mass of the total solid content of the binder composition for an electricity storage device.
  • the amount is preferably 0.1 to 3% by mass, and more preferably 0.1 to 3% by mass.
  • slurry for power storage devices for all-solid-state secondary batteries (hereinafter also referred to as “slurry for all-solid-state secondary batteries”) and slurry for power storage devices for producing active material layers of electrodes for lithium-ion secondary batteries are available. Slurry (hereinafter also referred to as “slurry for lithium ion secondary battery electrodes”) will be explained separately.
  • the sulfide-based solid electrolyte preferably contains a sulfur atom (S) and a metal element of Group 1 or Group 2 of the periodic table, has ionic conductivity, and has electronic insulation properties.
  • the lithium ion conductivity of the oxide solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S/cm or more, more preferably 1 ⁇ 10 ⁇ 5 S/cm or more, and particularly preferably 5 ⁇ 10 ⁇ 5 S/cm or more.
  • the negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions, etc., but examples include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, lithium alone, lithium aluminum alloys, etc. Examples include lithium alloys, metals that can form alloys with lithium, such as Sn, Si, and In. Among these, carbonaceous materials are preferably used from the viewpoint of reliability, and silicon-containing materials are preferably used from the viewpoint of increasing battery capacity.
  • Silicon-containing materials can store more lithium ions than commonly used graphite and acetylene black. That is, since the amount of lithium ions stored per unit weight increases, the battery capacity can be increased.
  • silicon-containing materials are known to undergo large volume changes as they absorb and release lithium ions, and repeating this expansion and contraction (repeated charging and discharging) increases the durability of the negative electrode active material layer. This may lead to insufficient contact, for example, or a shortened cycle life (battery life).
  • the negative electrode active material layer produced using the slurry for all-solid-state secondary batteries according to this embodiment exhibits high durability (strength) because the binder component follows even if such expansion and contraction are repeated. Therefore, it has the excellent effect of realizing good cycle life characteristics even under high voltage.
  • the average particle size of the negative electrode active material is not particularly limited, but from the viewpoint of increasing the contact area of the solid-solid interface, it is preferably 0.1 ⁇ m to 60 ⁇ m.
  • the above-mentioned pulverizer or classifier can be used.
  • the content ratio of the conductivity imparting agent is preferably 20 parts by mass or less, and 1 to 100 parts by mass, based on 100 parts by mass of the active material. More preferably, the amount is 15 parts by weight, and particularly preferably 2 to 10 parts by weight.
  • the slurry for all-solid-state secondary batteries according to the present embodiment can be manufactured by any method as long as it contains the above-mentioned binder composition for electricity storage devices and solid electrolyte. It may be something that has been done.
  • Preparation of the slurry for an all-solid-state secondary battery is preferably performed at least in part under reduced pressure. This can prevent bubbles from forming in the resulting positive electrode active material layer, negative electrode active material layer, or solid electrolyte layer.
  • the degree of pressure reduction is preferably about 5.0 ⁇ 10 3 to 5.0 ⁇ 10 5 Pa in terms of absolute pressure.
  • positive electrode slurry often contains polyvinylidene fluoride (PVDF) in order to suppress an increase in internal resistance.
  • PVDF polyvinylidene fluoride
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment can suppress an increase in internal resistance even when it contains only the above-mentioned polymer (A) as a polymer component.
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment may contain a polymer other than the polymer (A) or a thickener in order to further suppress an increase in internal resistance.
  • the components contained in the slurry for a lithium ion secondary battery electrode according to this embodiment will be explained below.
  • Binder Composition for Electricity Storage Devices The composition, physical properties, and manufacturing method of the binder composition for electricity storage devices are as described above, so explanations thereof will be omitted.
  • the content ratio of the polymer component in the slurry for a lithium ion secondary battery electrode according to the present embodiment is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, based on 100 parts by mass of the active material. parts, more preferably 1 to 7 parts by weight, particularly preferably 1.5 to 6 parts by weight.
  • the polymer component includes the polymer (A), a polymer other than the polymer (A) that is added as necessary, a thickener, and the like.
  • the active material used in the slurry for a lithium ion secondary battery electrode according to this embodiment includes a positive electrode active material and a negative electrode active material.
  • these include carbon materials, silicon materials, oxides containing lithium atoms, sulfur compounds, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, conductive polymers such as polyacene, A B Y O Z (However, A is an alkali metal or a transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin, and manganese, O represents an oxygen atom, and X, Y, and Z are numbers in the range of 1.10>X>0.05, 4.00>Y>0.85, and 5.00>Z>1.5, respectively.) and other complex metal oxides. metal oxides and the like. Specific examples of these include compounds described in Japanese Patent No. 5999399 and the like.
  • the slurry for lithium ion secondary battery electrodes according to the present embodiment can be used when producing either a positive electrode or a negative electrode, it is particularly preferable to use it for a positive electrode.
  • M is at least one selected from the group consisting of Mg, Ti, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Ge, and Sn.
  • A is at least one kind selected from the group consisting of Si, S, P, and V, and x is a number satisfying the relationship 0 ⁇ x ⁇ 1.
  • the value of x in the general formula (1) is selected according to the valences of M and A so that the valence of the general formula (2) as a whole becomes zero.
  • the average particle diameter of the olivine-type lithium-containing phosphoric acid compound is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 1 to 25 ⁇ m, and particularly preferably in the range of 1 to 20 ⁇ m.
  • the active material layer may contain active materials exemplified below.
  • a conductive polymer such as polyacene ;
  • A represents an oxygen atom, and
  • X, Y, and Z are numbers in the range of 1.10>X>0.05, 4.00>Y>0.85, and 5.00>Z>1.5, respectively.
  • Examples include composite metal oxides represented by and other metal oxides.
  • Examples of the composite metal oxide include lithium cobalt oxide, lithium nickel oxide, lithium manganate, ternary nickel cobalt lithium manganate, and the like.
  • the lithium ion secondary battery electrode produced using the lithium ion secondary battery electrode slurry according to the present embodiment exhibits good electrical characteristics even when an oxide containing lithium atoms is used as the positive electrode active material. Can be done. The reason for this is that the polymer (A) can strongly bind oxides containing lithium atoms, and at the same time maintain the state in which oxides containing lithium atoms are firmly bound even during charging and discharging. It is believed that there is.
  • the active material when producing a negative electrode, it is preferable that the active material contains a silicon material and/or a carbon material among the above-mentioned active materials, and a mixture of a silicon material and a carbon material is more preferable.
  • Silicon material has a large lithium storage capacity per unit weight compared to other active materials, so it can increase the storage capacity of the resulting power storage device, and as a result, the output and energy density of the power storage device can be increased. can do.
  • carbon materials have a smaller volume change due to charging and discharging than silicon materials, so by using a mixture of silicon materials and carbon materials as the negative electrode active material, the effect of volume changes of silicon materials can be alleviated. , it is possible to further improve the adhesion ability between the active material layer and the current collector.
  • silicon (Si) When silicon (Si) is used as an active material, while silicon has a high capacity, it undergoes a large volume change when occluding lithium. For this reason, the silicon material becomes finely powdered through repeated expansion and contraction, causing peeling from the current collector and separation of the active materials from each other, and the conductive network inside the active material layer is likely to be disrupted. Due to this property, the charge/discharge durability characteristics of the electricity storage device deteriorate extremely in a short period of time.
  • the electricity storage device electrode produced using the slurry for lithium ion secondary battery electrodes according to the present embodiment does not have the above-mentioned problems even when silicon material is used, and has good electrical performance. Characteristics can be shown. The reason for this is that the polymer (A) can strongly bind the silicon material, and at the same time, even if the silicon material expands in volume by occluding lithium, the polymer (A) expands and contracts, causing the silicon to bind. This is thought to be because the materials can be maintained in a strongly bonded state.
  • the content of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 2 to 50% by mass, even more preferably 3 to 45% by mass, and 10% by mass. It is particularly preferable to set the content to 40% by mass.
  • the content of the silicon material in 100% by mass of the active material is within the above range, an electricity storage device with an excellent balance between improvement in the output and energy density of the electricity storage device and charge/discharge durability characteristics can be obtained.
  • the shape of the active material is preferably particulate.
  • the average particle diameter of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the slurry for a lithium ion secondary battery electrode according to the present embodiment may optionally contain a polymer other than the polymer (A), a thickener, a liquid medium, and a conductivity imparting agent. , pH adjusters, corrosion inhibitors, antioxidants, cellulose fibers, and other components may be added. Polymers other than polymer (A) and thickeners should be appropriately selected from the compounds exemplified in the section "1.4. Other additives" above and used for the same purpose and content ratio. Can be done.
  • a liquid medium may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment.
  • the liquid medium to be added may be the same type as the liquid medium (C) contained in the binder composition for electricity storage devices, or may be different from the liquid medium (C) in the above "1.3. Liquid medium (C)". It is preferable to use a liquid medium selected from among the liquid media exemplified in Section 3.
  • the content ratio of the liquid medium (including the amount brought in from the binder composition for power storage devices) in the slurry for the lithium ion secondary battery electrode according to the present embodiment is determined by the solid content concentration in the slurry (the content of the liquid medium in the slurry other than the liquid medium in the slurry).
  • the ratio of the total mass of the components to the total mass of the slurry is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • a conductive additive may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of imparting conductivity and buffering changes in volume of the active material due to inflow and outflow of lithium ions. good.
  • a pH adjuster may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector.
  • pH adjusting agent examples include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, ammonium chloride, sodium hydroxide, potassium hydroxide, etc.
  • sulfuric acid, ammonium sulfate, sodium hydroxide, and potassium hydroxide are preferred.
  • a corrosion inhibitor may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector depending on the type of active material.
  • Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, molybdic acid.
  • Ammonium, sodium molybdate, potassium molybdate, etc. can be mentioned, and among these, ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate, and ammonium molybdate are preferable.
  • Cellulose fibers may be further added to the slurry for a lithium ion secondary battery electrode according to this embodiment.
  • As the cellulose fiber known ones can be used. By adding cellulose fibers, the adhesion of the active material to the current collector may be improved. It is thought that by fibrous cellulose fibers binding adjacent active materials to each other through line adhesion or line contact, it is possible to prevent the active materials from falling off and to improve the adhesion to the current collector.
  • the slurry for lithium ion secondary battery electrodes according to the present embodiment can be prepared by any method as long as it contains the above-mentioned binder composition for power storage devices and active material. It may be a manufactured product. From the viewpoint of producing a slurry with better dispersibility and stability more efficiently and at a lower cost, active materials and optional additive components used as necessary are added to the binder composition for power storage devices, and these are mixed. It is preferable to manufacture by.
  • a specific manufacturing method includes, for example, the method described in Japanese Patent No. 5999399.
  • Electrolyte sheet for all-solid secondary batteries, electrodes for all-solid secondary batteries, and all-solid secondary batteries 3.1.
  • Electrolyte sheet for all-solid-state secondary batteries A solid electrolyte sheet according to one embodiment of the present invention has a layer formed by applying and drying the above slurry for all-solid-state secondary batteries on a base material.
  • the solid electrolyte sheet according to the present embodiment can be produced by, for example, applying the slurry for an all-solid-state secondary battery onto a film serving as a base material using a blade method (for example, a doctor blade method), a calendar method, a spin coating method, a dip coating method, or the like. It can be manufactured by applying by an inkjet method, an offset method, a die coating method, a spray method, or the like, drying to form a layer, and then peeling off the film.
  • a film for example, a general film such as a PET film subjected to mold release treatment can be used.
  • Electrolyte sheets can also be molded.
  • the slurry for all-solid-state secondary batteries is applied so that the layer thickness is preferably in the range of 1 to 500 ⁇ m, more preferably in the range of 1 to 100 ⁇ m. It is preferable to do so.
  • the thickness of the layer is within the above range, conductive ions such as lithium ions move easily, resulting in high battery output. Further, when the thickness of the layer is within the above range, the entire battery can be made thinner, so that the capacity per unit volume can be increased.
  • the solid electrolyte sheet contains a positive electrode active material and a solid electrolyte
  • the solid electrolyte sheet has a function as a positive electrode active material layer.
  • the solid electrolyte sheet contains a negative electrode active material and a solid electrolyte
  • the solid electrolyte sheet has a function as a negative electrode active material layer.
  • the solid electrolyte sheet does not contain a positive electrode active material and a negative electrode active material but contains a solid electrolyte
  • the solid electrolyte sheet has a function as a solid electrolyte layer.
  • Electrode for all-solid-state secondary batteries includes a current collector, and the above-mentioned slurry for all-solid-state secondary batteries is applied and dried on the surface of the current collector. and an active material layer formed by.
  • Such an electrode for an all-solid-state secondary battery is made by applying the above-mentioned slurry for an all-solid-state secondary battery to the surface of a current collector such as metal foil to form a coating film, and then drying the coating film to form an active material. It can be manufactured by forming layers.
  • the electrode for an all-solid-state secondary battery manufactured in this way has an active material containing the above-mentioned polymer (A), solid electrolyte, and active material, and optional components added as necessary, on a current collector. Since the material layers are bonded together, it has excellent flexibility, abrasion resistance, and resistance to powder falling off, and also exhibits good charge-discharge durability characteristics.
  • the current collectors for the positive and negative electrodes it is preferable to use an electron conductor that does not undergo chemical changes.
  • As the current collector of the positive electrode aluminum, stainless steel, nickel, titanium, alloys thereof, etc., and aluminum or stainless steel whose surface is treated with carbon, nickel, titanium, or silver are preferable, and among these, Aluminum and aluminum alloys are more preferred.
  • As the current collector of the negative electrode aluminum, copper, stainless steel, nickel, titanium, and alloys thereof are preferable, and aluminum, copper, and copper alloys are more preferable.
  • the shape of the current collector is usually in the form of a film sheet, but nets, punched objects, lath bodies, porous bodies, foam bodies, molded bodies of fiber groups, etc. can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
  • a doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method, or the like can be used as a means for applying the slurry for an all-solid-state secondary battery onto a current collector.
  • the processing temperature is preferably 20 to 250°C, more preferably 50 to 150°C, and the processing time is 1 to 120 minutes.
  • the duration is preferably 5 to 60 minutes, and more preferably 5 to 60 minutes.
  • the active material layer formed on the current collector may be compressed by pressing.
  • a means for pressing a high-pressure super press, a soft calender, a 1-ton press, etc. can be used. Pressing conditions can be set as appropriate depending on the processing machine used.
  • the active material layer thus formed on the current collector has, for example, a thickness of 40 to 100 ⁇ m and a density of 1.3 to 2.0 g/cm 3 .
  • the electrode for an all-solid-state secondary battery manufactured in this way is an electrode for an all-solid-state secondary battery composed of a solid electrolyte layer sandwiched between a pair of electrodes, specifically an electrode for an all-solid-state secondary battery. It is suitably used as a positive electrode and/or a negative electrode. Moreover, the solid electrolyte layer formed using the above-mentioned slurry for an all-solid-state secondary battery is suitably used as a solid electrolyte layer for an all-solid-state secondary battery.
  • All-solid-state secondary battery can be manufactured using a known method. Specifically, the following manufacturing method can be used.
  • a slurry for an all-solid secondary battery positive electrode containing a solid electrolyte and a positive electrode active material is applied onto a current collector and dried to form a positive electrode active material layer, thereby producing a positive electrode for an all-solid secondary battery.
  • a slurry for an all-solid-state secondary battery solid electrolyte layer containing a solid electrolyte is applied to the surface of the positive electrode active material layer of the all-solid-state secondary battery positive electrode and dried to form a solid electrolyte layer.
  • an all-solid secondary battery negative electrode slurry containing a solid electrolyte and a negative electrode active material is applied onto the surface of the solid electrolyte layer and dried to form a negative electrode active material layer.
  • a negative electrode side current collector metal foil
  • a solid electrolyte sheet is produced on a release PET film and bonded onto the previously produced positive electrode for an all-solid-state secondary battery or negative electrode for an all-solid-state secondary battery. Thereafter, by peeling off the release PET, a desired all-solid-state secondary battery structure can be obtained.
  • each of the above compositions may be applied by a conventional method. At this time, it is preferable to perform a heat treatment after each coating of the slurry for the all-solid secondary battery positive electrode, the slurry for the all-solid secondary battery solid electrolyte layer, and the slurry for the all-solid secondary battery negative electrode.
  • the heating temperature is preferably higher than the glass transition temperature of the polymer (A).
  • the temperature is preferably 30°C or higher, more preferably 60°C or higher, and most preferably 100°C or higher.
  • the upper limit is preferably 300°C or less, more preferably 250°C or less.
  • the pressurizing pressure is preferably 5 kN/cm 2 or more, more preferably 10 kN/cm 2 or more, and particularly preferably 20 kN/cm 2 or more.
  • the discharge capacity refers to a value per weight of active material of an electrode, and in the case of a half cell, a value per weight of active material of a negative electrode.
  • the electrode for a lithium ion secondary battery manufactured in this way has an active material layer on the surface of the current collector containing the above-mentioned polymer (A), an active material, and optional components added as necessary. Since it is made by binding together, it has excellent repeated charging and discharging characteristics as well as excellent charging and discharging durability characteristics.
  • the current collector is not particularly limited as long as it is made of a conductive material, and examples include the current collector described in Japanese Patent No. 5999399.
  • the content of silicon element in 100% by mass of the active material layer is preferably 1 to 30% by mass, and 2% by mass. It is more preferably 20% by weight, and particularly preferably 3% to 10% by weight.
  • the content ratio of silicon element in the active material layer is within the above range, the storage capacity of a lithium ion secondary battery manufactured using the active material layer is improved, and the active material layer has a uniform distribution of silicon element. is obtained.
  • the content of silicon element in the active material layer can be measured, for example, by the method described in Japanese Patent No. 5999399.
  • Lithium ion secondary battery A lithium ion secondary battery according to an embodiment of the present invention is equipped with the above-mentioned lithium ion secondary battery electrode, further contains an electrolyte, and is manufactured using parts such as a separator according to a conventional method. can be manufactured.
  • a specific manufacturing method includes, for example, stacking a negative electrode and a positive electrode with a separator in between, rolling or folding them according to the shape of the battery, storing them in a battery container, and injecting an electrolyte into the battery container.
  • An example of this is a method of sealing the container.
  • the shape of the battery can be any appropriate shape, such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
  • the electrolyte may be liquid or gel, and depending on the type of active material, one may be selected from known electrolytes used in lithium ion secondary batteries that effectively exhibits battery functions.
  • the electrolyte can be a solution of an electrolyte dissolved in a suitable solvent. Examples of such electrolytes and solvents include compounds described in Japanese Patent No. 5999399 and the like.
  • known members for lithium ion secondary batteries can be used as the members other than the binder composition for an electricity storage device.
  • binder composition for power storage device A polymer (A1) dispersion was obtained by one-stage polymerization as shown below.
  • a monomer mixture consisting of 200 parts by mass of water, 50 parts by mass of 1,3-butadiene, and 50 parts by mass of styrene, 0.5 parts by mass of tert-dodecyl mercaptan as a chain transfer agent, and alkyldiphenyl ether as an emulsifier were placed in a reactor.
  • the polymer (A1) obtained above was added to anisole and stirred overnight to prepare a binder composition for a power storage device in which the polymer (A1) was dissolved in anisole.
  • the content of the polymer (A1) was adjusted to be 10% by mass when the entire binder composition for an electricity storage device is 100% by mass.
  • Example 2 ⁇ Examples 2, 4, 6 to 12, Comparative Examples 1 to 5>
  • Example 2 the same procedure as in Example 1 was carried out except that the types and amounts of monomers were as shown in Tables 1 to 2 below, respectively.
  • Each polymer was synthesized by polymerization, and each binder composition for an electricity storage device was obtained in the same manner as in Example 1.
  • a polymer (A3) dispersion was obtained by two-stage polymerization as shown below.
  • a reactor was charged with a monomer mixture consisting of 200 parts by mass of water, 60 parts by mass of 1,3-butadiene, 10 parts by mass of styrene, 2 parts by mass of methacrylic acid, and 3 parts by mass of methyl methacrylate, and tert- as a chain transfer agent.
  • the polymer (A3) obtained above was added to anisole and stirred overnight to prepare a binder composition for a power storage device in which the polymer (A3) was dissolved in anisole.
  • the content of the polymer (A3) was set to 10% by mass when the entire binder composition for an electricity storage device was 100% by mass.
  • Example 5 ⁇ Examples 5, 13, 14>
  • each polymer was synthesized by two-stage polymerization in the same manner as in Example 3, except that the types and amounts of monomers were as shown in Tables 1 and 2 below, respectively. Then, in the same manner as in Example 3, binder compositions for each power storage device were obtained.
  • a rotation-revolution mixer Alwatori Rentaro ARV-310, manufactured by THINKY
  • ⁇ Preparation of slurry for solid electrolyte layer of all-solid-state secondary battery> 100 parts by mass of sulfide glass consisting of Li 2 S and P 2 S 5 (Li 2 S/P 2 S 5 75 mol%/25 mol%, average particle size 5 ⁇ m) as a solid electrolyte, and the binder for power storage devices prepared above.
  • the composition was mixed with 2 parts by mass equivalent to the solid content, and anisole was further added as a liquid organic medium to adjust the solid content concentration to 55%. ) for 10 minutes to prepare a slurry for an all-solid-state secondary battery solid electrolyte layer.
  • ⁇ Preparation of slurry for all-solid-state secondary battery negative electrode> 65 parts by mass of artificial graphite (average particle size: 20 ⁇ m) as a negative electrode active material, sulfide glass consisting of Li 2 S and P 2 S 5 as a solid electrolyte (Li 2 S / P 2 S 5 75 mol% / 25 mol%, 35 parts by mass (average particle diameter 5 ⁇ m) and 2 parts by mass equivalent to the solid content of the binder composition for power storage devices prepared above were mixed, and anisole was further added as a liquid organic medium to adjust the solid content concentration to 65%. After that, the mixture was mixed for 10 minutes using a rotation-revolution mixer (Awatori Rentaro ARV-310, manufactured by THINKY) to prepare a slurry for an all-solid-state secondary battery negative electrode.
  • a rotation-revolution mixer Alwatori Rentaro ARV-310, manufactured by THINKY
  • the slurry for solid electrolyte for all-solid-state secondary batteries prepared above was applied onto a release PET film using a doctor blade method, anisole was evaporated under reduced pressure at 120°C, and the slurry was dried for 3 hours to a thickness of 0. A 1 mm solid electrolyte layer was prepared.
  • the slurry for the all-solid-state secondary battery negative electrode prepared above was applied onto a stainless steel foil using a doctor blade method, the anisole was evaporated under reduced pressure at 120°C, and the anode was dried for 3 hours to form a negative electrode with a thickness of 0.1 mm.
  • a negative electrode for an all-solid-state secondary battery on which an active material layer was formed was produced.
  • - 3 points If the number of broken particle traces is 6 or more and 10 or less, there are few coating defects due to residual emulsifier, which is good.
  • - 2 points If the number of broken particle traces is 11 or more and 15 or less, there will be some coating defects due to the residual emulsifier, making it difficult to use.
  • - 1 point If the number of broken particle traces is 16 or more, there are many coating defects due to residual emulsifier, and the product cannot be used.
  • Lithium ion conductivity is 0.5 x 10 -4 S/cm or more and less than 0.8 x 10 -4 S/cm.
  • - 3 points Lithium ion conductivity is 0.2 x 10 -4 S/cm or more and less than 0.5 x 10 -4 S/cm.
  • ⁇ 2 points Lithium ion conductivity is 0.1 ⁇ 10 ⁇ 4 S/cm or more and less than 0.2 ⁇ 10 ⁇ 4 S/cm.
  • ⁇ 1 point Less than 0.1 ⁇ 10 ⁇ 4 S/cm.
  • a negative electrode half cell was produced by stacking the two layers so that they were arranged between the laminates (1 mm).
  • a charge/discharge test was conducted on the obtained negative electrode half cell. Charging and discharging were performed at a rate of 0.1C in a potential range of 0.88 to -0.57V (vs. Li-In).
  • Capacity retention rate after 20 cycles was calculated using the following formula (4).
  • the evaluation criteria are as follows. The results are shown in Tables 1 and 2 below.
  • Capacity retention rate after 20 cycles (%) (B/A) x 100 (4)
  • X represents the time required to charge or discharge the rated capacity of electricity.
  • 0.1C means that the current value is rated capacity (Ah)/10 (h).
  • Capacity retention rate is 95% or more and 100% or less.
  • Capacity retention rate is 90% or more and less than 95%.
  • ⁇ 3 points Capacity retention rate is 85% or more and less than 90%.
  • ⁇ 2 points Capacity retention rate is 80% or more and less than 85%.
  • ⁇ 1 point Capacity retention rate is less than 80%.
  • Example 15 and 16 Comparative Examples 6 to 8 In Example 15, 2 parts by mass of the polymer (A1) synthesized in Example 1 was used as the negative electrode binder, and 2 parts by mass of the polymer (A3) synthesized in Example 3 was used as the positive electrode binder. The same evaluation as in Example 1 was performed. Further, for Example 16 and Comparative Examples 6 to 8, the same evaluation as in Example 1 was performed except that the polymers listed in Table 3 below were used. The results are shown in Table 3 below.
  • Tables 1 to 2 below show the polymer compositions, physical property measurement results, and evaluation results used in Examples 1 to 14 and Comparative Examples 1 to 5. shows.
  • Table 3 below shows the polymer component compositions used in Examples 15 and 16 and Comparative Examples 6 to 8, and the evaluation results. Note that the numerical values representing the polymer composition shown in Tables 1 to 3 below represent parts by mass.
  • a slurry containing the binder composition for an electricity storage device, an active material, and a solid electrolyte of the present invention is used as a slurry for an all-solid-state secondary battery.
  • the active material layer formed with the slurry has a good surface condition and excellent lithium ion conductivity, and when measuring peel strength, the active material layer itself becomes brittle and the active material and solid electrolyte No shedding or cracking occurred, and it was confirmed that the binder had sufficient binding properties between both the active material and the solid electrolyte.
  • the binder composition for power storage devices of the present invention electrodes for all-solid-state secondary batteries with excellent surface conditions, adhesion, and lithium ion conductivity can be produced, and the cycle life of all-solid-state secondary batteries can be improved. It was found that the characteristics could be improved.
  • binder composition for power storage devices The polymers synthesized above shown in Tables 4 to 6 below were added to N-methyl-2-pyrrolidone (NMP), and the polymers were stirred overnight. A binder composition for a power storage device was prepared by dissolving it in NMP. Here, the content of the polymer was set to 8% by mass when the entire binder composition for an electricity storage device was 100% by mass.
  • LFP (trade name "DY-1", manufactured by Tokukata Natmeisha) as a positive electrode active material 100 Parts by mass, 9 parts by mass of acetylene black, 1 part by mass of a thickener (trade name "CMC2200", manufactured by Daicel Corporation), and 74 parts by mass of NMP were added to prepare a slurry with a solid content concentration of approximately 50%. The mixture was stirred at 60 rpm for 1 hour. Note that LFP is an example of a positive electrode active material.
  • - 3 points If the number of broken particle traces is 6 or more and 10 or less, there are few coating defects due to residual emulsifier, which is good.
  • - 2 points If the number of broken particle traces is 11 or more and 15 or less, there will be some coating defects due to the residual emulsifier, making it difficult to use.
  • - 1 point If the number of broken particle traces is 16 or more, there are many coating defects due to residual emulsifier, and the product cannot be used.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery> The slurry for lithium ion secondary battery negative electrode prepared above was uniformly applied to the surface of a current collector made of copper foil with a thickness of 20 ⁇ m using a doctor blade method so that the film thickness after drying was 80 ⁇ m. It was dried at °C for 20 minutes. Thereafter, a negative electrode for a lithium ion secondary battery was obtained by pressing using a roll press machine so that the density of the formed film (negative electrode active material layer) was 1.9 g/cm 3 .
  • the negative electrode for a lithium ion secondary battery produced above is punched and molded into a circular shape with a diameter of 16.16 mm. Co., Ltd., trade name "HS Flat Cell”).
  • a separator made of a polypropylene porous membrane punched into a circular shape with a diameter of 24 mm was placed on top of the negative electrode for a lithium ion secondary battery.
  • the positive electrode for lithium ion secondary battery produced above was punched into a circular shape with a diameter of 15.95 mm and placed on top of the separator.
  • a lithium ion secondary battery was assembled by closing and sealing the exterior body of the bipolar coin cell with screws.
  • the time point was defined as the completion of charging (cutoff). Thereafter, discharging was started at a constant current (1.0 C), and the time when the voltage reached 2.5 V was defined as the completion of discharging (cutoff), and the discharge capacity of the first cycle was calculated. Charging and discharging was repeated 100 times in this manner. After repeating charging and discharging 100 times, charging and discharging were performed in the same manner as in the 0th cycle, and the 101st discharge capacity was evaluated. The rate of increase in resistance was calculated using the following formula (5), and evaluated using the following criteria. The results are shown in Tables 4 to 5 below.
  • Resistance increase rate (%) (101st cycle discharge capacity - 100th cycle discharge capacity) / (0th cycle discharge capacity - 1st cycle discharge capacity) x 100 (5) (Evaluation criteria) - 5 points: resistance increase rate is 100% or more and less than 110%.
  • ⁇ 4 points Resistance increase rate is 110% or more and less than 120%.
  • ⁇ 3 points Resistance increase rate is 120% or more and less than 130%.
  • ⁇ 2 points Resistance increase rate is 130% or more and less than 140%.
  • - 1 point resistance increase rate is 140% or more and less than 150%.
  • ⁇ 0 point resistance increase rate is 150% or more.
  • Capacity retention rate (%) (Discharge capacity at 100th cycle)/(Discharge capacity at 1st cycle) (6) (Evaluation criteria)
  • ⁇ 1 point Capacity retention rate is 75% or more and less than 80%.
  • Example 31 12.5 parts by mass of a binder composition for an electricity storage device containing the polymer (A5) synthesized in Example 5 (solid content equivalent: 8% by mass, as the polymer (A5) obtained above) Evaluation was the same as in Example 21, except that NMP was adjusted and added so that the solid content concentration of the slurry for lithium ion secondary battery positive electrode was 50%. was carried out. Further, in Examples 32 and 33, the same evaluation as in Example 21 was performed except that the polymers listed in Table 6 below were used.
  • Tables 4 to 5 below show the polymer compositions, physical property measurement results, and evaluation results used in Examples 17 to 30 and Comparative Examples 9 to 13. shows.
  • Table 6 below shows the composition of the polymer components used in Examples 31 to 33 and the results of each evaluation. Note that the numerical values representing the polymer composition shown in Tables 4 to 5 below represent parts by mass.
  • a slurry containing the binder composition for a power storage device of the present invention and an active material is used as a slurry for a lithium ion secondary battery electrode.
  • the active material layer formed with the slurry has a good surface condition, and when measuring peel strength, the active material layer itself becomes brittle and the active material or solid electrolyte falls off or cracks occur. It was confirmed that the binder had sufficient binding properties between both the active material and the solid electrolyte. Therefore, by using the binder composition for power storage devices of the present invention, electrodes for lithium ion secondary batteries with excellent surface conditions and adhesion can be produced, and the cycle life characteristics of lithium ion secondary batteries can be improved. Understood.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • the present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects).
  • the present invention includes configurations in which non-essential parts of the configurations described in the above embodiments are replaced with other configurations.
  • the present invention also includes configurations that have the same effects or can achieve the same objectives as the configurations described in the above embodiments.
  • the present invention also includes a configuration in which known technology is added to the configuration described in the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a binder composition for power storage devices, the binder composition enabling the production of a power storage device electrode that has excellent surface state, adhesion and ion conductivity, while being capable of improving the cycle life characteristics of a power storage device. A binder composition for power storage devices according to the present invention contains a polymer (A) and an emulsifying agent (B) in an amount of 30 ppm to 30,000 ppm relative to the total mass of the polymer (A); if the total of the repeating units contained in the polymer (A) is taken as 100% by mass, the polymer (A) contains 50% by mass to 99% by mass of a repeating unit (a1) that is derived from a conjugated diene compound and 1% by mass to 50% by mass of a repeating unit (a2) that is derived from an aromatic vinyl compound; and the weight average molecular weight (Mw) of the polymer (A) is 100,000 to 2,000,000.

Description

蓄電デバイス用バインダー組成物、全固体二次電池用スラリー、全固体二次電池、全固体二次電池用固体電解質シート、全固体二次電池用固体電解質シートの製造方法、及び全固体二次電池の製造方法、並びにリチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池Binder composition for power storage devices, slurry for all-solid secondary batteries, all-solid secondary batteries, solid electrolyte sheets for all-solid secondary batteries, methods for producing solid electrolyte sheets for all-solid secondary batteries, and all-solid secondary batteries manufacturing method, slurry for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、蓄電デバイス用バインダー組成物、該バインダー組成物を含有する全固体二次電池用スラリー、全固体二次電池、全固体二次電池用固体電解質シート、全固体二次電池用固体電解質シートの製造方法、及び全固体二次電池の製造方法、並びに該バインダー組成物を含有するリチウムイオン二次電池電極用スラリー、リチウムイオン二次電池用電極、及びリチウムイオン二次電池に関する。 The present invention relates to a binder composition for an electricity storage device, a slurry for an all-solid secondary battery containing the binder composition, an all-solid secondary battery, a solid electrolyte sheet for an all-solid secondary battery, and a solid electrolyte for an all-solid secondary battery. The present invention relates to a method for manufacturing a sheet, a method for manufacturing an all-solid-state secondary battery, and a slurry for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery containing the binder composition.
 近年、電子機器の駆動用電源として、高電圧かつ高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスとしては、リチウムイオン電池やリチウムイオンキャパシタなどが期待されている。 In recent years, power storage devices with high voltage and high energy density have been required as power sources for driving electronic devices. Lithium ion batteries, lithium ion capacitors, and the like are expected to be used as such power storage devices.
 このような蓄電デバイスに使用される電極は、活物質と、バインダーとして機能する重合体とを含有する組成物(蓄電デバイス電極用スラリー)を集電体の表面に塗布及び乾燥させることにより製造される。バインダーとして使用される重合体に要求される特性としては、活物質同士の結合能力及び活物質と集電体との密着能力が挙げられる。また、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)を裁断する際、活物質層から活物質の微粉などが脱落しない粉落ち耐性などを挙げることができる。このようなバインダー材料が良好な密着性を発現させて、該バインダー材料に起因する電池の内部抵抗を低減させることで、蓄電デバイスに良好な充放電特性を付与することができる。 Electrodes used in such power storage devices are manufactured by applying a composition (slurry for power storage device electrodes) containing an active material and a polymer that functions as a binder onto the surface of a current collector and drying the composition. Ru. Properties required of a polymer used as a binder include the ability to bond between active materials and the ability to adhere to an active material and a current collector. Another example is powder drop resistance, which prevents fine particles of the active material from falling off from the active material layer when the coated and dried composition coating film (hereinafter also referred to as "active material layer") is cut. Such a binder material exhibits good adhesion and reduces the internal resistance of the battery caused by the binder material, thereby imparting good charge/discharge characteristics to the electricity storage device.
 なお、上記の活物質同士の結合能力及び活物質と集電体との密着能力、並びに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。したがって、本明細書では、以下これらを包括して「密着性」という用語を用いて表す場合がある。 It has been empirically revealed that the quality of performance is almost proportional to the bonding ability between the active materials, the adhesion ability between the active materials and the current collector, and the resistance to powder falling off. Therefore, in this specification, these may be collectively expressed using the term "adhesion".
 現在、自動車などの駆動電源や家庭用蓄電池などに用いるため、大型リチウムイオン電池の研究が盛んに行われている。現在汎用されているリチウムイオン二次電池には、電解液が用いられているものが多いが、この電解液を固体電解質に置き換えることによって、構成材料の全てを固体とする全固体二次電池の開発が進められている。 Currently, large-scale lithium-ion batteries are being actively researched for use in drive power sources for automobiles and household storage batteries. Many of the currently widely used lithium ion secondary batteries use an electrolyte, but by replacing this electrolyte with a solid electrolyte, it is possible to create an all-solid-state secondary battery whose constituent materials are all solid. Development is underway.
 全固体二次電池は、高いイオン伝導性を示す固体電解質を用いるため、液漏れや発火の危険性がなく、安全性や信頼性に優れている。また、全固体二次電池は、電極のスタックによる高エネルギー密度化にも適している。具体的には、活物質層と固体電解質層とを並べて直列化した構造を持つ電池とすることができるとともに、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるので、電池のエネルギー密度を大幅に高めることができる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。このように、全固体二次電池は、安全性と高エネルギー密度、長寿命を兼ね備えた究極の電池として期待されている。 All-solid-state secondary batteries use a solid electrolyte that exhibits high ionic conductivity, so there is no risk of leakage or fire, and they are safe and reliable. All-solid-state secondary batteries are also suitable for increasing energy density by stacking electrodes. Specifically, it is possible to create a battery with a structure in which an active material layer and a solid electrolyte layer are arranged and connected in series, and the metal package that seals the battery cells and the copper wires and bus bars that connect the battery cells can be omitted. As a result, the energy density of the battery can be significantly increased. Another advantage is that it is compatible with positive electrode materials that can be used at high potentials. All-solid-state secondary batteries are thus expected to be the ultimate battery that combines safety, high energy density, and long life.
 その一方で、全固体二次電池を製造する際の課題も顕在化している。具体的には、電解質としての固体電解質と活物質との接触面積を増大させるために、それらを混合した混合物の加圧成型体とした場合には、該加圧成型体は硬くて脆い加工性に乏しいものとなる。また、活物質はリチウムイオンの吸蔵・放出により体積変化を伴うため、前記加圧成型体では、充放電サイクルに伴って活物質が剥離するなどし、顕著な容量低下が発生するなどの問題を有していた。そこで、成型性を高めるために、前記混合物にバインダー成分をさらに加えて成型性を向上させる技術が検討されている(例えば、特許文献1~3参照)。 On the other hand, issues in manufacturing all-solid-state secondary batteries have also become apparent. Specifically, in order to increase the contact area between a solid electrolyte as an electrolyte and an active material, when a mixture of the solid electrolyte and the active material is made into a pressure-molded body, the pressure-molded body is hard and brittle. will be deficient. In addition, since the active material changes in volume due to occlusion and desorption of lithium ions, the pressure-molded product has problems such as exfoliation of the active material during charging and discharging cycles, resulting in a significant decrease in capacity. had. Therefore, in order to improve the moldability, a technique is being considered in which a binder component is further added to the mixture to improve the moldability (see, for example, Patent Documents 1 to 3).
特開平11-86899号公報Japanese Patent Application Publication No. 11-86899 特公平7-87045号公報Special Publication No. 7-87045 国際公開第2009/107784号International Publication No. 2009/107784
 上記特許文献1~3に開示された高分子化合物からなるバインダー成分を加えることで成型性は向上すると考えられる。しかしながら、固体電解質の表面が高分子化合物に覆われることで、固体電解質間のイオン伝導が阻害されやすいことに加え、昨今の全固体二次電池に要求される高レベルのサイクル寿命特性を満足することができず、さらなる改善が要求されていた。また、前記混合物にバインダー成分を加えたスラリーを塗布すると、塗膜の表面に破泡によるクレーターが発生することがあった。このような表面欠陥は、製品の歩留まりの低下に繋がるため、防ぐ必要があった。 It is thought that moldability is improved by adding a binder component made of a polymer compound disclosed in Patent Documents 1 to 3 above. However, since the surface of the solid electrolyte is covered with a polymer compound, ionic conduction between the solid electrolytes is likely to be inhibited. could not be achieved, and further improvements were required. Furthermore, when a slurry prepared by adding a binder component to the above mixture is applied, craters may occur on the surface of the coating film due to broken bubbles. Since such surface defects lead to a decrease in product yield, it was necessary to prevent them.
 本発明に係る幾つかの態様は、表面状態、密着性及びイオン伝導性に優れた蓄電デバイス電極を作製でき、かつ、蓄電デバイスのサイクル寿命特性を向上させることができる蓄電デバイス用バインダー組成物を提供する。 Some embodiments of the present invention provide a binder composition for a power storage device that can produce a power storage device electrode with excellent surface condition, adhesion, and ionic conductivity, and can improve the cycle life characteristics of the power storage device. provide.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。 The present invention has been made to solve at least part of the above-mentioned problems, and can be realized as any of the following embodiments.
 本発明に係る蓄電デバイス用バインダー組成物の一態様は、
 重合体(A)と、該重合体(A)全質量に対して30~30,000ppmの乳化剤(B)と、を含有する蓄電デバイス用バインダー組成物であって、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
 共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、
 芳香族ビニル化合物に由来する繰り返し単位(a2)1~50質量%と、
を含有し、
 前記重合体(A)の重量平均分子量(Mw)が100,000~2,000,000である。
One embodiment of the binder composition for a power storage device according to the present invention is
A binder composition for a power storage device comprising a polymer (A) and an emulsifier (B) in an amount of 30 to 30,000 ppm based on the total mass of the polymer (A),
When the total number of repeating units contained in the polymer (A) is 100% by mass, the polymer (A) is
50 to 99% by mass of repeating units (a1) derived from a conjugated diene compound,
1 to 50% by mass of repeating units (a2) derived from an aromatic vinyl compound;
Contains
The weight average molecular weight (Mw) of the polymer (A) is 100,000 to 2,000,000.
 前記蓄電デバイス用バインダー組成物の一態様において、
 前記重合体(A)が、不飽和カルボン酸に由来する繰り返し単位(a3)0.1~10質量%を更に含有することができる。
In one embodiment of the binder composition for power storage devices,
The polymer (A) may further contain 0.1 to 10% by mass of a repeating unit (a3) derived from an unsaturated carboxylic acid.
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)の、25℃、1気圧におけるトルエンに対する溶解度が、トルエン100gに対して1g以上であることができる。
In any embodiment of the binder composition for an electricity storage device,
The solubility of the polymer (A) in toluene at 25° C. and 1 atmosphere can be 1 g or more per 100 g of toluene.
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、-80℃~0℃の温度範囲において吸熱ピークが観測されることができる。
In any embodiment of the binder composition for an electricity storage device,
When performing differential scanning calorimetry (DSC) on the polymer (A) in accordance with JIS K7121:2012, an endothermic peak can be observed in the temperature range of -80°C to 0°C.
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、80℃~150℃の温度範囲において吸熱ピークが更に観測されることができる。
In any embodiment of the binder composition for an electricity storage device,
When the polymer (A) is subjected to differential scanning calorimetry (DSC) in accordance with JIS K7121:2012, an endothermic peak can be further observed in the temperature range of 80°C to 150°C.
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 液状媒体(C)を更に含有することができる。
In any embodiment of the binder composition for an electricity storage device,
It can further contain a liquid medium (C).
 前記蓄電デバイス用バインダー組成物のいずれかの態様において、
 前記液状媒体(C)が、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類及びラクタム類よりなる群から選択される少なくとも1種であることができる。
In any embodiment of the binder composition for an electricity storage device,
The liquid medium (C) can be at least one selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and lactams. .
 本発明に係る全固体二次電池用スラリーの一態様は、
 前記いずれかの態様の蓄電デバイス用バインダー組成物と、固体電解質と、を含有する。
One embodiment of the slurry for an all-solid-state secondary battery according to the present invention is
It contains the binder composition for an electricity storage device according to any of the above embodiments, and a solid electrolyte.
 前記全固体二次電池用スラリーの一態様において、
 前記固体電解質として、硫化物系固体電解質又は酸化物系固体電解質を含有することができる。
In one embodiment of the slurry for an all-solid-state secondary battery,
The solid electrolyte may include a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
 本発明に係る全固体二次電池の一態様は、
 正極活物質層と、固体電解質層と、負極活物質層と、を少なくとも備え、
 前記正極活物質層、前記固体電解質層、及び前記負極活物質層の少なくともいずれか1層が、前記いずれかの態様の全固体二次電池用スラリーを塗布及び乾燥させて形成された層である。
One embodiment of the all-solid-state secondary battery according to the present invention is
Comprising at least a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer,
At least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer formed by applying and drying the slurry for an all-solid-state secondary battery according to any of the above embodiments. .
 本発明に係る全固体二次電池用固体電解質シートの一態様は、
 基材上に、前記いずれかの態様の全固体二次電池用スラリーを塗布及び乾燥させて形成された層を有する。
One embodiment of the solid electrolyte sheet for all-solid-state secondary batteries according to the present invention is
It has a layer formed by applying and drying the slurry for an all-solid-state secondary battery according to any of the above embodiments on a base material.
 本発明に係る全固体二次電池用固体電解質シートの製造方法の一態様は、
 前記いずれかの態様の全固体二次電池用スラリーを基材上に塗布及び乾燥させる工程を含む。
One aspect of the method for manufacturing a solid electrolyte sheet for an all-solid-state secondary battery according to the present invention is as follows:
The method includes a step of applying the slurry for an all-solid-state secondary battery according to any of the above embodiments onto a base material and drying the slurry.
 本発明に係る全固体二次電池の製造方法の一態様は、
 前記一態様の全固体二次電池用固体電解質シートの製造方法を介して全固体二次電池を製造する。
One aspect of the method for manufacturing an all-solid-state secondary battery according to the present invention is
An all-solid-state secondary battery is manufactured using the method for manufacturing a solid electrolyte sheet for an all-solid-state secondary battery according to the above embodiment.
 本発明に係るリチウムイオン二次電池電極用スラリーの一態様は、
 前記いずれかの態様の蓄電デバイス用バインダー組成物と、活物質と、を含有する。
One embodiment of the slurry for lithium ion secondary battery electrodes according to the present invention is
It contains the binder composition for a power storage device according to any of the above embodiments and an active material.
 前記リチウムイオン二次電池電極用スラリーの一態様において、
 前記活物質が正極活物質であることができる。
In one embodiment of the slurry for lithium ion secondary battery electrodes,
The active material can be a positive electrode active material.
 本発明に係るリチウムイオン二次電池用電極の一態様は、
 集電体と、前記集電体の表面に前記いずれかの態様のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備える。
One embodiment of the lithium ion secondary battery electrode according to the present invention is
The present invention includes a current collector, and an active material layer formed by applying and drying the slurry for a lithium ion secondary battery electrode according to any of the above embodiments on the surface of the current collector.
 本発明に係るリチウムイオン二次電池の一態様は、
 前記一態様のリチウムイオン二次電池用電極を備える。
One embodiment of the lithium ion secondary battery according to the present invention is
The electrode for a lithium ion secondary battery according to the above embodiment is provided.
 本発明に係る蓄電デバイス用バインダー組成物によれば、表面状態、密着性及びイオン伝導性に優れた蓄電デバイス電極を作製でき、かつ、サイクル寿命特性に優れた蓄電デバイスが提供される。 According to the binder composition for a power storage device according to the present invention, a power storage device electrode with excellent surface condition, adhesion, and ion conductivity can be produced, and a power storage device with excellent cycle life characteristics is provided.
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。 Hereinafter, preferred embodiments according to the present invention will be described in detail. It should be noted that the present invention is not limited to the embodiments described below, but should be understood to include various modifications that may be implemented without departing from the gist of the present invention.
 本明細書において、「(メタ)アクリル酸~」とは、「アクリル酸~」又は「メタクリル酸~」を表し、「~(メタ)アクリレート」とは、「~アクリレート」又は「~メタクリレート」を表し、「(メタ)アクリルアミド」とは、「アクリルアミド」又は「メタクリルアミド」を表す。 In this specification, "(meth)acrylic acid" refers to "acrylic acid" or "methacrylic acid", and "(meth)acrylate" refers to "acrylate" or "methacrylate". "(meth)acrylamide" represents "acrylamide" or "methacrylamide."
 本明細書において、「A~B」のように記載された数値範囲は、数値Aを下限値として含み、かつ、数値Bを上限値として含むものとして解釈される。 In this specification, a numerical range described as "A to B" is interpreted as including numerical value A as a lower limit value and numerical value B as an upper limit value.
 1.蓄電デバイス用バインダー組成物
 本発明の一実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)と、該重合体(A)全質量に対して30~30,000ppmの乳化剤(B)と、を含有する。以下、本実施形態に係る蓄電デバイス用バインダー組成物に含まれる成分について詳細に説明する。
1. Binder composition for power storage devices The binder composition for power storage devices according to one embodiment of the present invention comprises a polymer (A) and an emulsifier (B) in an amount of 30 to 30,000 ppm based on the total mass of the polymer (A). Contains. Hereinafter, the components contained in the binder composition for a power storage device according to the present embodiment will be described in detail.
 1.1.重合体(A)
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)を含有する。重合体(A)は、後述する液状媒体(C)中に分散されたラテックス状であってもよいし、液状媒体(C)中に溶解された状態であってもよいが、液状媒体(C)中に溶解された状態であることが好ましい。重合体(A)が液状媒体(C)中に溶解された状態であると、活物質と混合して作製される組成物(以下、「スラリー」ともいう。)の安定性が良好となり、また、集電体へのスラリーの塗布性が良好なるため好ましい。さらに、溶液状態であると活物質間の密着強度が高くなり、イオン伝導性が向上する。これにより、内部抵抗を低減させることができるので、サイクル寿命特性に優れた蓄電デバイスが得られやすい。
1.1. Polymer (A)
The binder composition for a power storage device according to this embodiment contains a polymer (A). The polymer (A) may be in the form of a latex dispersed in a liquid medium (C), which will be described later, or may be in a state dissolved in the liquid medium (C). ) is preferable. When the polymer (A) is dissolved in the liquid medium (C), the stability of the composition prepared by mixing it with the active material (hereinafter also referred to as "slurry") is good, and , is preferable because the slurry can be easily applied to the current collector. Furthermore, in a solution state, the adhesion strength between the active materials increases and ionic conductivity improves. This allows the internal resistance to be reduced, making it easy to obtain a power storage device with excellent cycle life characteristics.
 以下、重合体(A)を構成する繰り返し単位、重合体(A)の物性、製造方法の順に説明する。 Hereinafter, the repeating units constituting the polymer (A), the physical properties of the polymer (A), and the manufacturing method will be explained in this order.
 1.1.1.重合体(A)を構成する繰り返し単位
 重合体(A)は、該重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、共役ジエン化合物に由来する繰り返し単位(a1)(以下、単に「繰り返し単位(a1)」ともいう。)を50~99質量%、及び芳香族ビニル化合物に由来する繰り返し単位(a2)(以下、単に「繰り返し単位(a2)」ともいう。)を1~50質量%含有する。また、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。
1.1.1. Repeating units constituting the polymer (A) The polymer (A) contains repeating units derived from a conjugated diene compound (a1) when the total of repeating units contained in the polymer (A) is 100% by mass. ) (hereinafter also simply referred to as "repeat unit (a1)") from 50 to 99% by mass, and a repeating unit (a2) derived from an aromatic vinyl compound (hereinafter also simply referred to as "repeat unit (a2)"). ) in an amount of 1 to 50% by mass. Moreover, the polymer (A) may contain, in addition to the repeating unit (a1) and the repeating unit (a2), a repeating unit derived from another monomer copolymerizable with these units.
 1.1.1.1.共役ジエン化合物に由来する繰り返し単位(a1)
 共役ジエン化合物に由来する繰り返し単位(a1)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、50~99質量%である。繰り返し単位(a1)の含有割合の下限は、52質量%であることが好ましく、55質量%であることがより好ましい。繰り返し単位(a1)の含有割合の上限は、97質量%であることが好ましく、95質量%であることがより好ましい。重合体(A)が繰り返し単位(a1)を前記範囲内で含有することにより、活物質の分散性が良好となり、均質な活物質層の作製が可能となる。これにより、電極板の構造欠陥がなくなり、良好な繰り返し充放電特性を示すようになる。また、活物質の表面を被覆した重合体(A)に伸縮性を付与することができ、重合体(A)が伸縮することで密着性を向上できるので、良好な充放電耐久特性を示すようになる。
1.1.1.1. Repeating unit (a1) derived from a conjugated diene compound
The content of the repeating unit (a1) derived from the conjugated diene compound is 50 to 99% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass. The lower limit of the content of the repeating unit (a1) is preferably 52% by mass, more preferably 55% by mass. The upper limit of the content of the repeating unit (a1) is preferably 97% by mass, more preferably 95% by mass. When the polymer (A) contains the repeating unit (a1) within the above range, the dispersibility of the active material becomes good and a homogeneous active material layer can be produced. This eliminates structural defects in the electrode plate, resulting in good repeated charging and discharging characteristics. In addition, it is possible to impart elasticity to the polymer (A) that coats the surface of the active material, and as the polymer (A) expands and contracts, adhesion can be improved, so that it exhibits good charge-discharge durability characteristics. become.
 共役ジエン化合物としては、特に限定されないが、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、1,3-ブタジエンが特に好ましい。 Conjugated diene compounds include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, etc. One or more types selected from these can be used. Among these, 1,3-butadiene is particularly preferred.
 1.1.1.2.芳香族ビニル化合物に由来する繰り返し単位(a2)
 芳香族ビニル化合物に由来する繰り返し単位(a2)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、1~50質量%である。繰り返し単位(a2)の含有割合の下限は、2質量%であることが好ましく、4質量%であることがより好ましい。繰り返し単位(a2)の含有割合の上限は、48質量%であることが好ましく、45質量%であることがより好ましい。重合体(A)が繰り返し単位(a2)を前記範囲内で含有することにより、活物質層中に分散された重合体(A)同士の融着を抑制し、良好なスラリー特性を示すようになり、塗布性を向上させることができる。また、電解液の浸透性を向上できるため、良好な繰り返し充放電特性を示す場合がある。さらに、活物質として用いられるグラファイト等に対して良好な結着力を示す場合があり、密着性に優れた蓄電デバイス電極が得られる。
1.1.1.2. Repeating unit (a2) derived from aromatic vinyl compound
The content of the repeating unit (a2) derived from the aromatic vinyl compound is 1 to 50% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass. The lower limit of the content of the repeating unit (a2) is preferably 2% by mass, more preferably 4% by mass. The upper limit of the content of the repeating unit (a2) is preferably 48% by mass, more preferably 45% by mass. By containing the repeating unit (a2) within the above range, the polymer (A) suppresses fusion between the polymers (A) dispersed in the active material layer and exhibits good slurry properties. Therefore, the coating properties can be improved. Furthermore, since the permeability of the electrolytic solution can be improved, good repeated charge/discharge characteristics may be exhibited. Furthermore, it may exhibit good binding strength to graphite or the like used as an active material, and an electricity storage device electrode with excellent adhesion can be obtained.
 芳香族ビニル化合物としては、特に限定されないが、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロロスチレン、ジビニルベンゼン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、スチレンが特に好ましい。 Examples of the aromatic vinyl compound include, but are not limited to, styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, etc., and one or more selected from these may be used. be able to. Among these, styrene is particularly preferred.
 1.1.1.3.その他の繰り返し単位
 重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の他に、これらと共重合可能な他の単量体に由来する繰り返し単位を含有してもよい。このような繰り返し単位としては、例えば、不飽和カルボン酸に由来する繰り返し単位(a3)(以下、単に「繰り返し単位(a3)」ともいう。)、不飽和カルボン酸エステルに由来する繰り返し単位(a4)(以下、単に「繰り返し単位(a4)」ともいう。)、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)(以下、単に「繰り返し単位(a5)」ともいう。)、(メタ)アクリルアミドに由来する繰り返し単位(a6)(以下、単に「繰り返し単位(a6)」ともいう)、スルホン酸基を有する化合物に由来する繰り返し単位(a7)(以下、単に「繰り返し単位(a7)」ともいう)、カチオン性単量体に由来する繰り返し単位等が挙げられる。
1.1.1.3. Other Repeating Units In addition to repeating units (a1) and repeating units (a2), the polymer (A) may contain repeating units derived from other monomers copolymerizable with these units. Examples of such repeating units include repeating units (a3) derived from unsaturated carboxylic acids (hereinafter also simply referred to as "repeating units (a3)"), and repeating units derived from unsaturated carboxylic esters (a4). ) (hereinafter also simply referred to as "repeat unit (a4)"), repeating unit (a5) derived from an α,β-unsaturated nitrile compound (hereinafter also simply referred to as "repeat unit (a5)"), ( The repeating unit (a6) derived from meth)acrylamide (hereinafter also simply referred to as "repeat unit (a6)"), the repeating unit (a7) derived from a compound having a sulfonic acid group (hereinafter simply referred to as "repeat unit (a7)") ), repeating units derived from cationic monomers, etc.
<不飽和カルボン酸に由来する繰り返し単位(a3)>
 重合体(A)は、不飽和カルボン酸に由来する繰り返し単位(a3)を含有することが好ましい。不飽和カルボン酸に由来する繰り返し単位(a3)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0.1~10質量%であることが好ましい。繰り返し単位(a3)の含有割合の下限は、0.2質量%であることが好ましく、0.3質量%であることがより好ましい。繰り返し単位(a3)の含有割合の上限は、8質量%であることが好ましく、6質量%であることがより好ましい。重合体(A)が繰り返し単位(a3)を前記範囲内で含有することにより、集電体と活物質層との密着性を向上させることができ、電極の密着強度が向上する。また、活物質として用いられるケイ素材料との親和性を向上させ、該ケイ素材料の膨潤を抑制することで良好な充放電耐久特性を示すようになる。
<Repeating unit (a3) derived from unsaturated carboxylic acid>
It is preferable that the polymer (A) contains a repeating unit (a3) derived from an unsaturated carboxylic acid. The content of the repeating unit (a3) derived from unsaturated carboxylic acid may be 0.1 to 10% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. preferable. The lower limit of the content of the repeating unit (a3) is preferably 0.2% by mass, more preferably 0.3% by mass. The upper limit of the content of the repeating unit (a3) is preferably 8% by mass, more preferably 6% by mass. When the polymer (A) contains the repeating unit (a3) within the above range, the adhesion between the current collector and the active material layer can be improved, and the adhesion strength of the electrode can be improved. Furthermore, by improving the affinity with the silicon material used as an active material and suppressing the swelling of the silicon material, it exhibits good charge/discharge durability characteristics.
 不飽和カルボン酸としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の、モノカルボン酸及びジカルボン酸(無水物を含む。)等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、アクリル酸、メタクリル酸、及びイタコン酸から選択される1種以上を使用することが好ましい。 Examples of unsaturated carboxylic acids include, but are not limited to, monocarboxylic acids and dicarboxylic acids (including anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. One or more types selected from these can be used. Among these, it is preferable to use one or more selected from acrylic acid, methacrylic acid, and itaconic acid.
<不飽和カルボン酸エステルに由来する繰り返し単位(a4)>
 重合体(A)は、不飽和カルボン酸エステルに由来する繰り返し単位(a4)を含有してもよい。繰り返し単位(a4)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましい。繰り返し単位(a4)の含有割合の下限は、0.5質量%であることが好ましく、1質量%であることがより好ましい。繰り返し単位(a4)の含有割合の上限は、9質量%であることが好ましく、8質量%であることがより好ましい。重合体(A)が繰り返し単位(a4)を前記範囲内で含有することにより、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。
<Repeating unit (a4) derived from unsaturated carboxylic acid ester>
The polymer (A) may contain a repeating unit (a4) derived from an unsaturated carboxylic acid ester. The content ratio of the repeating unit (a4) is preferably 0 to 10% by mass when the total number of repeating units contained in the polymer (A) is 100% by mass. The lower limit of the content of the repeating unit (a4) is preferably 0.5% by mass, more preferably 1% by mass. The upper limit of the content of the repeating unit (a4) is preferably 9% by mass, more preferably 8% by mass. When the polymer (A) contains the repeating unit (a4) within the above range, the affinity between the polymer (A) and the electrolyte becomes good, and the binder becomes an electrical resistance component in the electricity storage device. It may be possible to suppress the increase in internal resistance.
 不飽和カルボン酸エステルの中でも、(メタ)アクリル酸エステルを好ましく使用することができる。(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、グリセリンモノ(メタ)アクリレート、及びグリセリンジ(メタ)アクリレート等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、及びジ(メタ)アクリル酸エチレングリコールから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。 Among unsaturated carboxylic esters, (meth)acrylic esters can be preferably used. Specific examples of (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -Butyl, isobutyl (meth)acrylate, n-amyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, ( n-octyl meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, Pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, allyl (meth)acrylate, hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-(meth)acrylate -Hydroxypropyl, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 5-hydroxypentyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, glycerin mono(meth)acrylate , glycerin di(meth)acrylate, etc., and one or more selected from these can be used. Among these, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, and di(meth)acrylate. Preferably, it is one or more selected from ethylene glycol, and methyl (meth)acrylate is particularly preferable.
<α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)>
 重合体(A)は、α,β-不飽和ニトリル化合物に由来する繰り返し単位(a5)を含有してもよい。繰り返し単位(a5)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましい。繰り返し単位(a5)の含有割合の下限は、0.5質量%であることが好ましく、1質量%であることがより好ましい。繰り返し単位(a5)の含有割合の上限は、9質量%であることが好ましく、8質量%であることがより好ましい。重合体(A)が繰り返し単位(a5)を前記範囲内で含有することにより、該重合体(A)の電解液への溶解を低減することができ、重合体(A)と電解液との親和性が良好となり、蓄電デバイス中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制できる場合がある。
<Repeating unit (a5) derived from α,β-unsaturated nitrile compound>
The polymer (A) may contain a repeating unit (a5) derived from an α,β-unsaturated nitrile compound. The content of the repeating unit (a5) is preferably 0 to 10% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass. The lower limit of the content of the repeating unit (a5) is preferably 0.5% by mass, more preferably 1% by mass. The upper limit of the content of the repeating unit (a5) is preferably 9% by mass, more preferably 8% by mass. When the polymer (A) contains the repeating unit (a5) within the above range, the dissolution of the polymer (A) in the electrolyte can be reduced, and the interaction between the polymer (A) and the electrolyte can be reduced. The affinity becomes good, and it may be possible to suppress an increase in internal resistance due to the binder becoming an electrical resistance component in the electricity storage device.
 α,β-不飽和ニトリル化合物としては、特に限定されないが、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等が挙げられ、これらの中から選択される1種以上を使用することができる。これらの中でも、アクリロニトリル及びメタクリロニトリルよりなる群から選択される1種以上が好ましく、アクリロニトリルが特に好ましい。 Examples of the α,β-unsaturated nitrile compound include, but are not limited to, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethyl acrylonitrile, vinylidene cyanide, and one or more selected from these. can be used. Among these, one or more selected from the group consisting of acrylonitrile and methacrylonitrile is preferred, and acrylonitrile is particularly preferred.
<(メタ)アクリルアミドに由来する繰り返し単位(a6)>
 重合体(A)は、(メタ)アクリルアミドに由来する繰り返し単位(a6)を含有してもよい。(メタ)アクリルアミドとしては、特に限定されないが、アクリルアミド、メタクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド、アクリルアミドtert-ブチルスルホン酸等を挙げることができ、これらの中から選択される1種以上を使用することができる。
<Repeating unit (a6) derived from (meth)acrylamide>
The polymer (A) may contain a repeating unit (a6) derived from (meth)acrylamide. Examples of (meth)acrylamide include, but are not limited to, acrylamide, methacrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, and N,N-diethylmethacrylamide. amide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, diacetone acrylamide, maleic acid amide, acrylamide tert-butylsulfonic acid, etc. can be used, and one or more selected from these can be used.
 (メタ)アクリルアミドに由来する繰り返し単位(a6)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~5質量%であることが好ましく、1~4質量%であることがより好ましい。重合体(A)が繰り返し単位(a6)を前記範囲内で含有することにより、活物質やフィラーのスラリー中の分散性が良好となる場合がある。また、得られる活物質層の柔軟性が適度となり、集電体と活物質層との密着性が向上する場合がある。 The content ratio of the repeating unit (a6) derived from (meth)acrylamide is preferably 0 to 5% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass, More preferably, it is 1 to 4% by mass. When the polymer (A) contains the repeating unit (a6) within the above range, the dispersibility of the active material and filler in the slurry may be improved. Further, the flexibility of the obtained active material layer may be moderate, and the adhesion between the current collector and the active material layer may be improved.
<スルホン酸基を有する化合物に由来する繰り返し単位(a7)>
 重合体(A)は、スルホン酸基を有する化合物に由来する繰り返し単位(a7)を含有してもよい。スルホン酸基を有する化合物としては、特に限定されないが、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、スルホブチル(メタ)アクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等の化合物、及びこれらのアルカリ塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
<Repeating unit (a7) derived from a compound having a sulfonic acid group>
The polymer (A) may contain a repeating unit (a7) derived from a compound having a sulfonic acid group. Examples of compounds having a sulfonic acid group include, but are not limited to, vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfoethyl (meth)acrylate, sulfopropyl (meth)acrylate, sulfobutyl (meth)acrylate, and 2-acrylamide-2. - Compounds such as methylpropanesulfonic acid, 2-hydroxy-3-acrylamidopropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and alkali salts thereof, and one type selected from these. or more can be used.
 スルホン酸基を有する化合物に由来する繰り返し単位(a7)の含有割合は、重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、0~10質量%であることが好ましく、1~6質量%であることがより好ましい。重合体(A)が繰り返し単位(a7)を前記範囲内で含有することにより、活物質やフィラーの分散性が良好となり、均一な活物質層や保護膜の作製が可能となるため、電極板の構造欠陥がなくなり、良好な充放電特性を示す場合がある。 The content of the repeating unit (a7) derived from a compound having a sulfonic acid group may be 0 to 10% by mass, when the total number of repeating units contained in the polymer (A) is 100% by mass. It is preferably 1 to 6% by mass, and more preferably 1 to 6% by mass. When the polymer (A) contains the repeating unit (a7) within the above range, the dispersibility of the active material and filler becomes good, and it becomes possible to produce a uniform active material layer and protective film. In some cases, structural defects are eliminated and good charge/discharge characteristics are exhibited.
<カチオン性単量体に由来する繰り返し単位>
 重合体(A)は、カチオン性単量体に由来する繰り返し単位を含有してもよい。カチオン性単量体としては、特に限定されないが、第二級アミン(塩)、第三級アミン(塩)及び第四級アンモニウム塩よりなる群から選択される少なくとも1種の単量体であることが好ましい。カチオン性単量体の具体例としては、(メタ)アクリル酸2-(ジメチルアミノ)エチル、ジメチルアミノエチル(メタ)アクリレート塩化メチル4級塩、(メタ)アクリル酸2-(ジエチルアミノ)エチル、(メタ)アクリル酸3-(ジメチルアミノ)プロピル、(メタ)アクリル酸3-(ジエチルアミノ)プロピル、(メタ)アクリル酸4-(ジメチルアミノ)フェニル、(メタ)アクリル酸2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、(メタ)アクリル酸2-(1-アジリジニル)エチル、メタクロイルコリンクロリド、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、2-ビニルピリジン、キナルジンレッド、1,2-ジ(2-ピリジル)エチレン、4’-ヒドラジノ-2-スチルバゾール二塩酸塩水和物、4-(4-ジメチルアミノスチリル)キノリン、1-ビニルイミダゾール、ジアリルアミン、ジアリルアミン塩酸塩、トリアリルアミン、ジアリルジメチルアンモニウムクロリド、ジクロルミド、N-アリルベンジルアミン、N-アリルアニリン、2,4-ジアミノ-6-ジアリルアミノ-1,3,5-トリアジン、N-trans-シンナミル-N-メチル-(1-ナフチルメチル)アミン塩酸塩、trans-N-(6,6-ジメチル-2-ヘプテン-4-イニル)-N-メチル-1-ナフチルメチルアミン塩酸塩等が挙げられ、これらの中から選択される1種以上を使用することができる。
<Repeat unit derived from cationic monomer>
The polymer (A) may contain repeating units derived from a cationic monomer. The cationic monomer is not particularly limited, but is at least one monomer selected from the group consisting of secondary amines (salts), tertiary amines (salts), and quaternary ammonium salts. It is preferable. Specific examples of cationic monomers include 2-(dimethylamino)ethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate methyl chloride quaternary salt, 2-(diethylamino)ethyl (meth)acrylate, ( 3-(dimethylamino)propyl meth)acrylate, 3-(diethylamino)propyl (meth)acrylate, 4-(dimethylamino)phenyl (meth)acrylate, 2-[(3,5-meth)acrylate dimethylpyrazolyl)carbonylamino]ethyl, 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl (meth)acrylate, 2-(1-aziridinyl)ethyl (meth)acrylate, methacroylcholine chloride , tris(2-acryloyloxyethyl) isocyanurate, 2-vinylpyridine, quinaldine red, 1,2-di(2-pyridyl)ethylene, 4'-hydrazino-2-stilbazole dihydrochloride hydrate, 4-( 4-dimethylaminostyryl)quinoline, 1-vinylimidazole, diallylamine, diallylamine hydrochloride, triallylamine, diallyldimethylammonium chloride, dichlormide, N-allylbenzylamine, N-allylaniline, 2,4-diamino-6-diallylamino -1,3,5-triazine, N-trans-cinnamyl-N-methyl-(1-naphthylmethyl)amine hydrochloride, trans-N-(6,6-dimethyl-2-hepten-4-ynyl)-N -methyl-1-naphthylmethylamine hydrochloride, etc., and one or more selected from these can be used.
 1.1.2.重合体(A)の物性
 1.1.2.1.重量平均分子量(Mw)
 重合体(A)の、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算の重量平均分子量(Mw)は、100,000~2,000,000である。重合体(A)の重量平均分子量の下限は、120,000であることが好ましく、150,000であることがより好ましい。重合体(A)の重量平均分子量の上限は、1,800,000であることが好ましく、1,600,000であることがより好ましい。重合体(A)の重量平均分子量(Mw)が前記範囲内であると、重合体(A)が液状媒体(C)に溶解しやすくなるので、活物質と混合して作製されるスラリーの安定性が良好となるとともに、集電体へのスラリーの塗布性が良好となる。また、重合体(A)による活物質や固体電解質、そして導電助剤等のフィラー間の結着性が向上し、充放電特性に優れた全固体二次電池が得られやすい。また、全固体二次電池作製時の電極板や固体電解質層のプレス、折り曲げ等の外力に対する耐性が向上する。
1.1.2. Physical properties of polymer (A) 1.1.2.1. Weight average molecular weight (Mw)
The weight average molecular weight (Mw) of the polymer (A) in terms of polystyrene determined by gel permeation chromatography (GPC) is 100,000 to 2,000,000. The lower limit of the weight average molecular weight of the polymer (A) is preferably 120,000, more preferably 150,000. The upper limit of the weight average molecular weight of the polymer (A) is preferably 1,800,000, more preferably 1,600,000. When the weight average molecular weight (Mw) of the polymer (A) is within the above range, the polymer (A) is easily dissolved in the liquid medium (C), so that the slurry prepared by mixing with the active material is stabilized. In addition to improving the properties, the slurry can also be coated onto the current collector. In addition, the binding properties between the active material, solid electrolyte, and filler such as a conductive aid due to the polymer (A) are improved, and an all-solid-state secondary battery with excellent charge/discharge characteristics is easily obtained. Furthermore, the resistance to external forces such as pressing and bending of the electrode plate and solid electrolyte layer during production of an all-solid-state secondary battery is improved.
 1.1.2.2.トルエンに対する溶解度
 重合体(A)の、25℃、1気圧におけるトルエンに対する溶解度は、トルエン100gに対し1g以上であることが好ましい。トルエンに対する溶解度がトルエンに対し1g以上であることは、重合体(A)が有機溶媒に対して可溶性であることを意味する。重合体(A)が有機溶媒に対して可溶性であると、柔軟性や密着性に優れる重合体(A)によって活物質の表面がコーティングされやすくなるので、充放電時における活物質の伸縮による脱落を効果的に抑制でき、良好な充放電耐久特性を示す蓄電デバイスが得られやすい。また、スラリーの安定性が良好となり、スラリーの集電体への塗布性も良好となるため好ましい。
1.1.2.2. Solubility in toluene The solubility of the polymer (A) in toluene at 25° C. and 1 atmosphere is preferably 1 g or more per 100 g of toluene. The solubility in toluene of 1 g or more in toluene means that the polymer (A) is soluble in the organic solvent. When the polymer (A) is soluble in an organic solvent, the surface of the active material is easily coated with the polymer (A), which has excellent flexibility and adhesion, so that the active material does not fall off due to expansion and contraction during charging and discharging. Therefore, it is easy to obtain an electricity storage device that can effectively suppress the storage of electricity and exhibit good charge/discharge durability characteristics. It is also preferable because the stability of the slurry is improved and the applicability of the slurry to the current collector is also improved.
 1.1.2.3.ガラス転移温度(Tg)
 重合体(A)は、JIS K7121:2012に準拠する示差走査熱量測定(DSC)によって測定したときに、-80℃~0℃の温度範囲において第1吸熱ピークを有することが好ましい。また、重合体(A)は、JIS K7121:2012に準拠する示差走査熱量測定(DSC)によって測定したときに、前記第1吸熱ピークに加えて、80℃~150℃の温度範囲において第2吸熱ピークを更に有することがより好ましい。DSC分析における重合体(A)の吸熱ピークが前記範囲内にある場合、重合体(A)は、活物質層に対してより良好な柔軟性及び結着性を付与することができるため好ましい。
1.1.2.3. Glass transition temperature (Tg)
The polymer (A) preferably has a first endothermic peak in the temperature range of -80°C to 0°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. In addition to the first endothermic peak, the polymer (A) exhibits a second endothermic peak in the temperature range of 80°C to 150°C when measured by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012. It is more preferable to further have a peak. When the endothermic peak of the polymer (A) in DSC analysis is within the above range, the polymer (A) is preferable because it can impart better flexibility and binding properties to the active material layer.
 1.1.3.重合体(A)の製造方法
<重合工程>
 重合体(A)の製造方法については、特に限定されないが、例えば公知の乳化剤、連鎖移動剤、重合開始剤などの存在下で行う乳化重合法によることができる。
1.1.3. Method for producing polymer (A) <Polymerization step>
The method for producing the polymer (A) is not particularly limited, but may be, for example, an emulsion polymerization method carried out in the presence of a known emulsifier, chain transfer agent, polymerization initiator, or the like.
 乳化剤としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される1種以上を使用することができる。 Examples of emulsifiers include higher alcohol sulfate ester salts, alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyldiphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietate, naphthalene sulfonic acid/formalin. Anionic surfactants such as condensates and sulfate ester salts of nonionic surfactants; Nonionic surfactants such as alkyl esters of polyethylene glycol, alkyl phenyl ethers of polyethylene glycol, and alkyl ethers of polyethylene glycol; perfluorobutyl Examples include fluorine-based surfactants such as sulfonates, perfluoroalkyl group-containing phosphate esters, perfluoroalkyl group-containing carboxylates, and perfluoroalkyl ethylene oxide adducts, and 1 selected from these. More than one species can be used.
 連鎖移動剤、及び重合開始剤としては、特許第5999399号公報等に記載された化合物を用いることができる。 As the chain transfer agent and polymerization initiator, compounds described in Japanese Patent No. 5999399 and the like can be used.
 重合体(A)を合成するための乳化重合法は、一段重合で行ってもよく、二段重合以上の多段重合で行ってもよい。 The emulsion polymerization method for synthesizing the polymer (A) may be carried out by one-stage polymerization, or may be carried out by multi-stage polymerization of two or more stages.
 重合体(A)の合成を一段重合によって行う場合、上記の単量体の混合物を、適当な乳化剤、連鎖移動剤、重合開始剤などの存在下で、好ましくは0~80℃の温度で、好ましくは4~36時間の重合時間の乳化重合によることができる。 When the polymer (A) is synthesized by one-step polymerization, the mixture of the above monomers is mixed in the presence of a suitable emulsifier, chain transfer agent, polymerization initiator, etc., preferably at a temperature of 0 to 80°C, Emulsion polymerization can be performed, preferably with a polymerization time of 4 to 36 hours.
 重合体(A)の合成を二段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。 When the polymer (A) is synthesized by two-stage polymerization, each stage of polymerization is preferably set as follows.
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量の合計)に対して、20~99質量%の範囲とすることが好ましく、25~99質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、凝固後の蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。 The proportion of the monomer used in the first stage polymerization is based on the total mass of the monomers (the sum of the mass of the monomer used in the first stage polymerization and the mass of the monomer used in the second stage polymerization). It is preferably in the range of 20 to 99% by mass, more preferably in the range of 25 to 99% by mass. By carrying out the first-stage polymerization at such a proportion of monomers, it is possible to obtain particles of the polymer (A) that have excellent dispersion stability and are less likely to form aggregates, and also to provide a binder for electricity storage devices after coagulation. This is preferable because the increase in viscosity of the composition over time is also suppressed.
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。 The types of monomers used in the second-stage polymerization and their usage ratios may be the same as or different from the monomer types and their usage ratios used in the first-stage polymerization.
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは0~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは0~80℃の温度;好ましくは2~18時間の重合時間。
The polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
- First-stage polymerization: Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
- Second stage polymerization; preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
 重合体(A)の合成を三段重合によって行う場合、各段階の重合は以下のように設定することが好ましい。 When the polymer (A) is synthesized by three-stage polymerization, each stage of polymerization is preferably set as follows.
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量と三段目重合に使用する単量体の質量の合計)に対して、20~90質量%の範囲とすることが好ましく、25~80質量%の範囲とすることがより好ましい。一段目重合をこのような単量体の使用割合で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができるとともに、凝固後の蓄電デバイス用バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。 The ratio of the monomers used in the first stage polymerization is determined by the total mass of the monomers (the mass of the monomers used in the first stage polymerization, the mass of the monomers used in the second stage polymerization, and the mass of the monomers used in the third stage polymerization). It is preferably in the range of 20 to 90% by mass, more preferably in the range of 25 to 80% by mass, based on the total mass of monomers used in (1). By carrying out the first-stage polymerization at such a proportion of monomers, it is possible to obtain particles of the polymer (A) that have excellent dispersion stability and are less likely to form aggregates, and also to provide a binder for electricity storage devices after coagulation. This is preferable because the increase in viscosity of the composition over time is also suppressed.
 二段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。 The types of monomers used in the second-stage polymerization and their usage ratios may be the same as or different from the monomer types and their usage ratios used in the first-stage polymerization.
 三段目重合に使用する単量体の種類及びその使用割合は、一段目重合に使用する単量体の種類及びその使用割合、二段目重合に使用する単量体の種類及びその使用割合と同じであってもよく、異なっていてもよい。 The types of monomers used in the third stage polymerization and their usage ratios are the types of monomers used in the first stage polymerization and their usage ratios, and the types of monomers used in the second stage polymerization and their usage ratios. may be the same or different.
 各段階の重合条件は、得られる重合体(A)の粒子の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは0~80℃の温度:好ましくは2~36時間の重合時間:好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは0~80℃の温度;好ましくは2~18時間の重合時間。
・三段目重合;好ましくは0~80℃の温度;好ましくは2~9時間の重合時間。
The polymerization conditions at each stage are preferably as follows from the viewpoint of dispersibility of particles of the resulting polymer (A).
- First-stage polymerization: Preferably a temperature of 0 to 80°C; a polymerization time of preferably 2 to 36 hours; a polymerization conversion rate of preferably 50% by mass or more, more preferably 60% by mass or more.
- Second stage polymerization; preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 18 hours.
- Third stage polymerization; preferably a temperature of 0 to 80°C; preferably a polymerization time of 2 to 9 hours.
 乳化重合における全固形分濃度を50質量%以下とすることにより、得られる重合体(A)の粒子の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。 By controlling the total solids concentration in emulsion polymerization to 50% by mass or less, the polymerization reaction can proceed while the particles of the resulting polymer (A) have good dispersion stability. This total solid content concentration is preferably 45% by mass or less, more preferably 40% by mass or less.
 重合体(A)の合成を一段重合で行う場合であっても、多段重合で行う場合であっても、乳化重合終了後には重合混合物に中和剤を添加して中和することが好ましい。ここで使用する中和剤としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニア等が挙げられる。 Regardless of whether the polymer (A) is synthesized by one-stage polymerization or multi-stage polymerization, it is preferable to add a neutralizing agent to the polymerization mixture to neutralize it after the emulsion polymerization is completed. The neutralizing agent used here is not particularly limited, but includes, for example, metal hydroxides such as sodium hydroxide and potassium hydroxide; ammonia, and the like.
<凝固工程>
 次いで、上述の重合工程において得られた乳化重合液に凝固剤を添加することにより重合体を凝固させ、含水クラム(重合体と、凝固剤と、水とを含む凝固物)を得る。
<Coagulation process>
Next, a coagulant is added to the emulsion polymerization liquid obtained in the above polymerization step to coagulate the polymer, thereby obtaining a hydrous crumb (a coagulated product containing a polymer, a coagulant, and water).
 凝固剤としては、1価以上3価以下の金属塩を好適に用いることができ、例えば、硫酸マグネシウム、塩化ナトリウム、塩化カルシウムが挙げられる。これらの中でも、塩化ナトリウム、塩化カルシウムが好ましい。凝固剤の使用量は、乳化重合液中の重合体100質量部に対して、好ましくは1質量部以上20質量部以下、より好ましくは2質量部以上15質量部以下である。 As the coagulant, a metal salt having a valence of 1 or more and 3 or less can be suitably used, and examples thereof include magnesium sulfate, sodium chloride, and calcium chloride. Among these, sodium chloride and calcium chloride are preferred. The amount of the coagulant used is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, based on 100 parts by mass of the polymer in the emulsion polymerization solution.
 凝固温度は特に限定されないが、好ましくは40℃以上90℃以下、より好ましくは45℃以上80℃以下である。 The solidification temperature is not particularly limited, but is preferably 40°C or higher and 90°C or lower, more preferably 45°C or higher and 80°C or lower.
<洗浄工程>
 次いで、上述の凝固工程において得られた含水クラムを洗浄する。含水クラムを洗浄することにより、重合体以外の成分(凝固剤等)の残留量を低減することができる。
<Cleaning process>
Next, the water-containing crumb obtained in the above-mentioned coagulation step is washed. By washing the water-containing crumb, the residual amount of components other than the polymer (coagulant, etc.) can be reduced.
 洗浄方法としては、特に限定されないが、洗浄液として水を使用し、含水クラムとともに添加した水を混合することにより水洗を行う方法が挙げられる。水洗時の温度は、特に限定されないが、好ましくは5℃以上70℃以下、より好ましくは10℃以上60℃以下である。また、混合時間は、特に限定されないが、好ましくは1分以上60分以下、より好ましくは2分以上45分以下である。 The washing method is not particularly limited, but includes a method in which water is used as a washing liquid and water is mixed with water-containing crumbs. The temperature during water washing is not particularly limited, but is preferably 5°C or higher and 70°C or lower, more preferably 10°C or higher and 60°C or lower. Further, the mixing time is not particularly limited, but is preferably 1 minute or more and 60 minutes or less, more preferably 2 minutes or more and 45 minutes or less.
 そして、水洗時に、含水クラムに対して添加する水の量としては、特に限定されないが、最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を効果的に低減することができるという観点より、含水クラム中に含まれる重合体100質量部に対して、好ましくは150質量部以上10,000質量部以下、より好ましくは150質量部以上5,000質量部以下である。 The amount of water added to the water-containing crumb during washing with water is not particularly limited, but it effectively reduces the coagulant content (residual amount) in the final binder composition for power storage devices. From the viewpoint that it can be used, it is preferably 150 parts by mass or more and 10,000 parts by mass or less, more preferably 150 parts by mass or more and 5,000 parts by mass or less, based on 100 parts by mass of the polymer contained in the hydrous crumb. be.
 水洗回数としては、特に限定されず、1回でもよいが、最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を低減するという観点から、好ましくは2回以上8回以下、より好ましくは3回以上10回以下である。なお、最終的に得られる蓄電デバイス用バインダー組成物中の凝固剤の含有量(残留量)を低減するという観点からは、水洗回数が多い方が望ましいが、前記範囲を超えて洗浄を行っても、凝固剤の除去効果が小さい一方で、工程数が増加してしまうことにより製造効率の低下の影響が大きくなってしまう。さらに、より凝固剤の含有量(残留量)を低下させるためには、一旦トルエンなどの有機溶媒に溶解させた後、メタノール中に投入する等の方法で凝固させる等のまったく別の工程が必要となる。従って、工業的に製造効率の良い凝固水洗方式で行うことが好ましく、水洗回数は前記範囲内とすることが好ましい。また、洗浄工程においては、水洗を行った後、さらに洗浄液として酸を使用した酸洗浄を行ってもよい。 The number of times of water washing is not particularly limited and may be one time, but preferably two or more times from the viewpoint of reducing the coagulant content (residual amount) in the finally obtained binder composition for power storage devices. It is 8 times or less, more preferably 3 times or more and 10 times or less. In addition, from the viewpoint of reducing the content (residual amount) of coagulant in the finally obtained binder composition for power storage devices, it is preferable to wash with water more often, but if washing exceeds the above range. However, while the effect of removing the coagulant is small, the increase in the number of steps increases the impact of reduction in manufacturing efficiency. Furthermore, in order to further reduce the coagulant content (residual amount), a completely different process is required, such as dissolving it in an organic solvent such as toluene and then coagulating it by pouring it into methanol. becomes. Therefore, it is preferable to carry out the coagulation washing method, which is industrially efficient in production, and the number of washings is preferably within the above range. In the cleaning step, after washing with water, acid washing may be performed using an acid as a cleaning liquid.
<乾燥工程>
 次いで、上述の洗浄工程を経た含水クラムを乾燥して、重合体と凝固剤を含む凝固乾燥物を得る。乾燥工程で使用可能な乾燥方法としては、特に限定されないが、例えば、スクリュー型押出機、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いて乾燥させることができる。また、これらを組み合わせた乾燥方法を用いてもよい。さらに、乾燥工程により乾燥を行う前に、必要に応じて、含水クラムに対し、回転式スクリーン、振動スクリーンなどの篩;遠心脱水機などを用いたろ別を行ってもよい。
<Drying process>
Next, the water-containing crumb that has undergone the above-mentioned washing step is dried to obtain a coagulated dried product containing a polymer and a coagulant. The drying method that can be used in the drying process is not particularly limited, but for example, drying can be performed using a dryer such as a screw type extruder, kneader type dryer, expander dryer, hot air dryer, or vacuum dryer. can. Further, a drying method that combines these methods may also be used. Furthermore, before drying in the drying step, if necessary, the water-containing crumb may be filtered using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator, or the like.
 乾燥工程における乾燥温度は、特に限定されず、乾燥に用いる乾燥機に応じて異なるが、例えば熱風乾燥機を用いる場合には、乾燥温度は60℃以上200℃以下とすることが好ましく、70℃以上180℃以下とすることがより好ましい。 The drying temperature in the drying step is not particularly limited and varies depending on the dryer used for drying, but for example, when using a hot air dryer, the drying temperature is preferably 60 ° C. or more and 200 ° C. or less, and 70 ° C. More preferably, the temperature is 180°C or less.
 1.2.乳化剤(B)
 本実施形態に係る蓄電デバイス用バインダー組成物は、該重合体(A)全質量に対して30~30,000ppmの乳化剤(B)を含有する。乳化剤(B)の含有割合の下限値は、前記重合体(A)全質量に対し、50ppmであることが好ましく、100ppmであることがより好ましい。乳化剤(B)の含有割合の上限値は、前記重合体(A)全質量に対し、25,000ppmであることが好ましく、20,000ppmであることがより好ましい。乳化剤(B)を前記割合で含有することにより、スラリー塗膜におけるバインダー同士の融着を抑制できるので、内部抵抗上昇が抑制され、良好な繰り返し充放電特性を示すようになる。また、スラリー塗膜の表面に乳化剤由来の破泡によるクレーターが発生するのを抑制することができる。
1.2. Emulsifier (B)
The binder composition for a power storage device according to the present embodiment contains 30 to 30,000 ppm of emulsifier (B) based on the total mass of the polymer (A). The lower limit of the content of the emulsifier (B) is preferably 50 ppm, more preferably 100 ppm, based on the total mass of the polymer (A). The upper limit of the content of the emulsifier (B) is preferably 25,000 ppm, more preferably 20,000 ppm, based on the total mass of the polymer (A). By containing the emulsifier (B) in the above ratio, it is possible to suppress the fusion of the binders in the slurry coating film, thereby suppressing an increase in internal resistance and exhibiting good repeated charge/discharge characteristics. Furthermore, it is possible to suppress the generation of craters on the surface of the slurry coating film due to foam breakage originating from the emulsifier.
 上述のように、重合体(A)を重合する際に乳化剤を用いるが、その後の凝固工程や洗浄工程等の条件により残留乳化剤量が変化する。そのため、残留乳化剤を適切に管理していないのが一般的である。本願発明の蓄電デバイス用バインダー組成物は、製造工程において乳化剤量を適切に管理することで、良好な電池特性が発現することを見出した。すなわち、乳化剤量が前記上限値以下であると、スラリー塗膜の表面に乳化剤由来の破泡によるクレーターが発生するのを効果的に抑制することができる。また、乳化剤量が前記下限値以上であると、スラリー塗膜におけるバインダー同士の融着を抑制できるようになり、内部抵抗上昇が抑制されるため、良好な繰り返し充放電特性を示すようになる。特に、負極及び固体電解質層は電子導電パスが維持できなくなると、リチウムイオン伝導性が低下し、抵抗が増大するため、バインダー同士の融着による導電パスの阻害を抑制することが重要である。 As mentioned above, an emulsifier is used when polymerizing the polymer (A), but the amount of residual emulsifier changes depending on the conditions of the subsequent coagulation step, washing step, etc. Therefore, residual emulsifiers are generally not properly managed. It has been found that the binder composition for an electricity storage device of the present invention exhibits good battery characteristics by appropriately controlling the amount of emulsifier in the manufacturing process. That is, when the emulsifier amount is below the upper limit, it is possible to effectively suppress the generation of craters on the surface of the slurry coating film due to foam breakage derived from the emulsifier. Furthermore, when the amount of emulsifier is at least the lower limit, it becomes possible to suppress the fusion of the binders in the slurry coating film, suppressing the increase in internal resistance, and thus exhibiting good repeated charge/discharge characteristics. In particular, when the negative electrode and the solid electrolyte layer are unable to maintain an electronic conduction path, the lithium ion conductivity decreases and the resistance increases, so it is important to suppress the inhibition of the conduction path due to fusion of binders.
 乳化剤(B)としては、上記重合工程で例示した乳化剤が挙げられる。これらの中でも、アニオン性界面活性剤であることが好ましく、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩であることがより好ましい。 Examples of the emulsifier (B) include the emulsifiers exemplified in the polymerization step above. Among these, anionic surfactants are preferred, and alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyldiphenyl ether disulfonates, aliphatic sulfonates, and aliphatic carboxylates are more preferred.
 1.3.液状媒体(C)
 本実施形態に係る蓄電デバイス用バインダー組成物は、液状媒体(C)を含有してもよい。液状媒体(C)としては、特に限定されないが、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素;シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン等の脂環式炭化水素;トルエン、キシレン、メシチレン、ナフタレン、テトラリン等の芳香族炭化水素;メチルヘキシルケトン、ジプロピルケトン等のケトン類;酢酸ブチル、酪酸ブチル、ブタン酸メチル等のエステル類;ジブチルエーテル、テトラヒドロフラン、アニソール等のエーテル類;N-メチル-2-ピロリドン、2-ピロリドン等のラクタム類;水を含有する水系媒体などを用いることができる。これらの溶媒は、1種単独であるいは2種類以上を組み合わせて用いることができる。
1.3. Liquid medium (C)
The binder composition for an electricity storage device according to this embodiment may contain a liquid medium (C). The liquid medium (C) is not particularly limited, but includes aliphatic hydrocarbons such as hexane, heptane, octane, decane, and dodecane; alicyclic hydrocarbons such as cyclohexane, cycloheptane, cyclooctane, and cyclodecane; toluene, xylene, Aromatic hydrocarbons such as mesitylene, naphthalene, and tetralin; Ketones such as methylhexyl ketone and dipropyl ketone; Esters such as butyl acetate, butyl butyrate, and methyl butanoate; Ethers such as dibutyl ether, tetrahydrofuran, and anisole; - Lactams such as methyl-2-pyrrolidone and 2-pyrrolidone; an aqueous medium containing water, etc. can be used. These solvents can be used alone or in combination of two or more.
 本実施形態に係る蓄電デバイス用バインダー組成物中の液状媒体(C)の含有割合は、重合体(A)100質量部に対し、100~10,000質量部であることが好ましく、500~2,000質量部であることがより好ましい。液状媒体(C)の含有割合が前記下限値以上であると、スラリーを調製する際に、重合体(A)と活物質との混合性が良好となる。一方、液状媒体(C)の含有割合が前記上限値以下であると、活物質層を製造する際に、スラリーの塗布性が良好となり、塗布後の乾燥処理において重合体(A)や活物質の濃度勾配が生じにくい。また、固体電解質層を製造する際に、固体電解質と蓄電デバイス用バインダー組成物とを含有するスラリーの塗布性が良好となり、塗布後の乾燥処置において重合体(A)や固体電解質の濃度勾配が生じにくい。 The content ratio of the liquid medium (C) in the binder composition for an electricity storage device according to the present embodiment is preferably 100 to 10,000 parts by mass, and 500 to 2 parts by mass, based on 100 parts by mass of the polymer (A). ,000 parts by mass is more preferable. When the content ratio of the liquid medium (C) is equal to or higher than the lower limit value, the miscibility of the polymer (A) and the active material becomes good when preparing a slurry. On the other hand, when the content ratio of the liquid medium (C) is below the above-mentioned upper limit, the coating properties of the slurry will be good when manufacturing the active material layer, and the polymer (A) and the active material will be coated in the drying process after coating. Concentration gradients are less likely to occur. In addition, when producing a solid electrolyte layer, the coating properties of the slurry containing the solid electrolyte and the binder composition for power storage devices are improved, and the concentration gradient of the polymer (A) and the solid electrolyte is reduced in the drying treatment after coating. Hard to occur.
 1.4.その他の添加剤
 本実施形態に係る蓄電デバイス用バインダー組成物は、必要に応じて上述した成分以外の添加剤を含有することができる。このような添加剤としては、例えば重合体(A)以外の重合体、酸化防止剤、増粘剤等が挙げられる。
1.4. Other Additives The binder composition for a power storage device according to the present embodiment may contain additives other than the above-mentioned components as necessary. Examples of such additives include polymers other than polymer (A), antioxidants, thickeners, and the like.
<重合体(A)以外の重合体>
 本実施形態に係る蓄電デバイス用バインダー組成物は、重合体(A)以外の重合体を含有してもよい。このような重合体としては、特に限定されないが、不飽和カルボン酸エステル又はこれらの誘導体を構成単位として含むアクリル系重合体、PVDF(ポリフッ化ビニリデン)等のフッ素系重合体等が挙げられる。これらの重合体は、1種単独で用いてもよく、2種以上併用してもよい。これらの重合体を含有することにより、柔軟性や密着性がより向上する場合がある。
<Polymer other than polymer (A)>
The binder composition for a power storage device according to this embodiment may contain a polymer other than the polymer (A). Examples of such polymers include, but are not particularly limited to, acrylic polymers containing unsaturated carboxylic acid esters or derivatives thereof as constituent units, fluorine polymers such as PVDF (polyvinylidene fluoride), and the like. These polymers may be used alone or in combination of two or more. By containing these polymers, flexibility and adhesion may be further improved.
<酸化防止剤>
 本実施形態に係る蓄電デバイス用バインダー組成物は、酸化防止剤を含有してもよい。酸化防止剤を含有することにより、得られる蓄電デバイスの低温サイクル特性及び低温出力特性を更に向上できる場合がある。また、重合体成分の耐酸化性を更に向上させることができる場合がある。
<Antioxidant>
The binder composition for a power storage device according to this embodiment may contain an antioxidant. By containing an antioxidant, the low-temperature cycle characteristics and low-temperature output characteristics of the resulting electricity storage device may be further improved. Moreover, the oxidation resistance of the polymer component may be further improved.
 酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、有機リン系酸化防止剤、硫黄系酸化防止剤、フェノチアジン系酸化防止剤などの化合物が挙げられる。これらの中でも、フェノール系酸化防止剤、アミン系酸化防止剤が好ましい。 Examples of antioxidants include compounds such as phenolic antioxidants, amine antioxidants, quinone antioxidants, organophosphorus antioxidants, sulfur antioxidants, and phenothiazine antioxidants. . Among these, phenolic antioxidants and amine antioxidants are preferred.
<増粘剤>
 本実施形態に係る蓄電デバイス用バインダー組成物は、増粘剤を含有してもよい。増粘剤を含有することにより、スラリーの塗布性や得られる蓄電デバイスの充放電特性等をさらに向上できる場合がある。
<Thickener>
The binder composition for an electricity storage device according to this embodiment may contain a thickener. By containing a thickener, it may be possible to further improve the coating properties of the slurry and the charge/discharge characteristics of the resulting electricity storage device.
 増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー;ポリ(メタ)アクリル酸;前記セルロース化合物又は前記ポリ(メタ)アクリル酸のアンモニウム塩もしくはアルカリ金属塩;変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの中でも、セルロース系ポリマーが好ましい。 Examples of thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose; poly(meth)acrylic acid; ammonium salts or alkali metal salts of the cellulose compound or the poly(meth)acrylic acid; Examples include modified polyvinyl alcohol, polyethylene oxide; polyvinylpyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. Among these, cellulose polymers are preferred.
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。 Examples of commercially available thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (all manufactured by Daicel Corporation).
 本実施形態に係る蓄電デバイス用バインダー組成物が増粘剤を含有する場合、増粘剤の含有割合は、蓄電デバイス用バインダー組成物の全固形分量100質量%に対して、5質量%以下であることが好ましく、0.1~3質量%であることがより好ましい。 When the binder composition for an electricity storage device according to the present embodiment contains a thickener, the content of the thickener is 5% by mass or less with respect to 100% by mass of the total solid content of the binder composition for an electricity storage device. The amount is preferably 0.1 to 3% by mass, and more preferably 0.1 to 3% by mass.
 2.蓄電デバイス用スラリー
 本発明の一実施形態に係る蓄電デバイス用スラリーは、上述の蓄電デバイス用バインダー組成物を含有するものである。上述の蓄電デバイス用バインダー組成物は、全固体二次電池向けの正極活物質層及び負極活物質層のいずれの活物質層を形成するための材料として使用することもできるし、また固体電解質層を形成するための材料として使用することもできる。また、リチウムイオン二次電池向けの活物質同士の結合能力及び活物質と集電体との密着能力並びに粉落ち耐性を向上させたリチウムイオン二次電池用電極(活物質層)を作製するための材料として使用することもできる。そのため、全固体二次電池向けの蓄電デバイス用スラリー(以下、「全固体二次電池用スラリー」ともいう。)と、リチウムイオン二次電池用電極の活物質層を作製するための蓄電デバイス用スラリー(以下、「リチウムイオン二次電池電極用スラリー」ともいう。)と、に分けて説明する。
2. Slurry for Power Storage Devices A slurry for power storage devices according to one embodiment of the present invention contains the above-described binder composition for power storage devices. The binder composition for power storage devices described above can be used as a material for forming either a positive electrode active material layer or a negative electrode active material layer for an all-solid-state secondary battery, and can also be used as a material for forming a solid electrolyte layer. It can also be used as a material for forming. In addition, in order to produce an electrode (active material layer) for lithium ion secondary batteries that has improved bonding ability between active materials, adhesion ability between active materials and current collectors, and powder drop resistance for lithium ion secondary batteries. It can also be used as a material. Therefore, slurry for power storage devices for all-solid-state secondary batteries (hereinafter also referred to as "slurry for all-solid-state secondary batteries") and slurry for power storage devices for producing active material layers of electrodes for lithium-ion secondary batteries are available. Slurry (hereinafter also referred to as "slurry for lithium ion secondary battery electrodes") will be explained separately.
 2.1.全固体二次電池用スラリー
 本発明の一実施形態に係る全固体二次電池用スラリーは、上述の蓄電デバイス用バインダー組成物と、固体電解質と、を含有する。本実施形態に係る全固体二次電池用スラリーは、正極活物質層及び負極活物質層のいずれの活物質層を形成するための材料として使用することもできるし、また固体電解質層を形成するための材料として使用することもできる。
2.1. Slurry for All-Solid Secondary Battery The slurry for all-solid secondary battery according to one embodiment of the present invention contains the above-described binder composition for an electricity storage device and a solid electrolyte. The slurry for an all-solid-state secondary battery according to the present embodiment can be used as a material for forming either a positive electrode active material layer or a negative electrode active material layer, and can also be used to form a solid electrolyte layer. It can also be used as a material for
 正極活物質層を作製するための全固体二次電池用スラリーは、上述の蓄電デバイス用バインダー組成物と、固体電解質と、正極活物質と、を含有する。また、負極活物質層を作製するための全固体二次電池用スラリーは、上述の蓄電デバイス用バインダー組成物と、固体電解質と、負極活物質と、を含有する。さらに、固体電解質層を作製するための全固体二次電池用スラリーは、上述の蓄電デバイス用バインダー組成物と、固体電解質と、を含有する。以下、本実施形態に係る全固体二次電池用スラリーに含まれ得る成分について説明する。 The slurry for an all-solid-state secondary battery for producing a positive electrode active material layer contains the above-described binder composition for an electricity storage device, a solid electrolyte, and a positive electrode active material. Moreover, the slurry for an all-solid-state secondary battery for producing a negative electrode active material layer contains the above-described binder composition for an electricity storage device, a solid electrolyte, and a negative electrode active material. Furthermore, the slurry for an all-solid-state secondary battery for producing a solid electrolyte layer contains the above-described binder composition for an electricity storage device and a solid electrolyte. Hereinafter, components that may be included in the slurry for an all-solid-state secondary battery according to this embodiment will be explained.
 2.1.1.蓄電デバイス用バインダー組成物
 蓄電デバイス用バインダー組成物の組成、物性、製造方法については、上述した通りであるので説明を省略する。
2.1.1. Binder Composition for Electricity Storage Devices The composition, physical properties, and manufacturing method of the binder composition for electricity storage devices are as described above, so explanations thereof will be omitted.
 本実施形態に係る全固体二次電池用スラリー中の重合体成分の含有割合は、活物質及び固体電解質の合計100質量部に対し、好ましくは0.5~10質量部であり、より好ましくは1~8質量部であり、さらに好ましくは1~7質量部であり、特に好ましくは1.5~6質量部である。重合体成分の含有割合が前記範囲内にあると、スラリー中の活物質及び固体電解質の分散性が良好となり、スラリーの塗布性も優れたものとなる。ここで、重合体成分には、重合体(A)、必要に応じて添加される重合体(A)以外の重合体、及び増粘剤等が含まれる。 The content ratio of the polymer component in the slurry for an all-solid-state secondary battery according to the present embodiment is preferably 0.5 to 10 parts by mass, more preferably 100 parts by mass in total of the active material and solid electrolyte. The amount is 1 to 8 parts by weight, more preferably 1 to 7 parts by weight, particularly preferably 1.5 to 6 parts by weight. When the content ratio of the polymer component is within the above range, the active material and solid electrolyte in the slurry will have good dispersibility, and the slurry will also have excellent coatability. Here, the polymer component includes the polymer (A), a polymer other than the polymer (A) that is added as necessary, a thickener, and the like.
 2.1.2.固体電解質
 本実施形態に係る全固体二次電池用スラリーは、固体電解質を含有する。固体電解質としては、一般に全固体二次電池に使用される固体電解質を適宜選択して用いることができるが、硫化物系固体電解質又は酸化物系固体電解質であることが好ましい。
2.1.2. Solid Electrolyte The all-solid-state secondary battery slurry according to this embodiment contains a solid electrolyte. As the solid electrolyte, solid electrolytes generally used in all-solid secondary batteries can be appropriately selected and used, but sulfide-based solid electrolytes or oxide-based solid electrolytes are preferred.
 固体電解質の平均粒径の下限としては、0.01μmであることが好ましく、0.1μmであることがより好ましい。固体電解質の平均粒径の上限としては、100μmであることが好ましく、50μmであることがより好ましい。 The lower limit of the average particle size of the solid electrolyte is preferably 0.01 μm, more preferably 0.1 μm. The upper limit of the average particle size of the solid electrolyte is preferably 100 μm, more preferably 50 μm.
 本実施形態に係る全固体二次電池用スラリーにおいて、固体電解質の含有割合の下限は、電池性能と界面抵抗の低減・維持効果の両立の観点から、固形成分の合計を100質量部としたときに、50質量部であることが好ましく、70質量部であることがより好ましく、90質量部であることが特に好ましい。固体電解質の含有割合の上限は、同様の観点から、固形成分の合計を100質量部としたときに、99.9質量部であることが好ましく、99.5質量部であることがより好ましく、99.0質量部であることが特に好ましい。ただし、前記正極活物質又は前記負極活物質とともに用いるときには、その総和が上記の濃度範囲となることが好ましい。 In the slurry for an all-solid-state secondary battery according to the present embodiment, the lower limit of the solid electrolyte content is set when the total solid component is 100 parts by mass, from the viewpoint of achieving both battery performance and interfacial resistance reduction/maintenance effects. The amount is preferably 50 parts by weight, more preferably 70 parts by weight, and particularly preferably 90 parts by weight. From the same point of view, the upper limit of the content of the solid electrolyte is preferably 99.9 parts by mass, more preferably 99.5 parts by mass, when the total solid component is 100 parts by mass, Particularly preferred is 99.0 parts by mass. However, when used together with the positive electrode active material or the negative electrode active material, it is preferable that the total concentration falls within the above concentration range.
<硫化物系固体電解質>
 硫化物系固体電解質は、硫黄原子(S)及び周期表第1族又は第2族の金属元素を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。このような硫化物系固体電解質としては、例えば、下記一般式(1)で表される組成式の硫化物系固体電解質を挙げることができる。
 Li ・・・・・(1)
(式(1)中、Mは、B、Zn、Si、Cu、Ga及びGeから選択される元素を表す。a~dは各元素の組成比を表し、a:b:c:d=1~12:0~1:1:2~9を満たす。)
<Sulfide solid electrolyte>
The sulfide-based solid electrolyte preferably contains a sulfur atom (S) and a metal element of Group 1 or Group 2 of the periodic table, has ionic conductivity, and has electronic insulation properties. Examples of such a sulfide-based solid electrolyte include a sulfide-based solid electrolyte having a composition formula represented by the following general formula (1).
Li a M b P c S d ...(1)
(In formula (1), M represents an element selected from B, Zn, Si, Cu, Ga, and Ge. a to d represent the composition ratio of each element, a:b:c:d=1 ~12:0~1:1:2~9 is satisfied.)
 上記一般式(1)中、Li、M、P及びSの組成比は、好ましくはb=0である。より好ましくはb=0、かつ、a:c:d=1~9:1:3~7である。さらに好ましくはb=0、かつ、a:c:d=1.5~4:1:3.25~4.5である。各元素の組成比は、後述するように、硫化物系固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 In the above general formula (1), the composition ratio of Li, M, P, and S is preferably b=0. More preferably b=0 and a:c:d=1 to 9:1:3 to 7. More preferably b=0 and a:c:d=1.5-4:1:3.25-4.5. The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compounds when producing the sulfide-based solid electrolyte, as will be described later.
 硫化物系固体電解質は、非結晶(ガラス)であってもよく、結晶(ガラスセラミックス)であってもよく、一部のみが結晶化していてもよい。 The sulfide-based solid electrolyte may be amorphous (glass), crystalline (glass ceramics), or only partially crystallized.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~80:20である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高くすることができる。硫化物系固体電解質のリチウムイオン伝導度は、1×10-4S/cm以上が好ましく、1×10-3S/cm以上がより好ましい。 The ratio of Li 2 S to P 2 S 5 in Li-P-S glass and Li-P-S glass ceramic is a molar ratio of Li 2 S:P 2 S 5 , preferably 65:35 to 65:35. The ratio is 85:15, more preferably 68:32 to 80:20. By setting the ratio of Li 2 S to P 2 S 5 within this range, lithium ion conductivity can be increased. The lithium ion conductivity of the sulfide-based solid electrolyte is preferably 1×10 −4 S/cm or more, more preferably 1×10 −3 S/cm or more.
 このような化合物としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。具体例としては、LiS-P、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。中でも、LiS-P、LiS-GeS-Ga、LiS-GeS-P、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPOからなる結晶及び/又は非結晶の原料組成物が、高いリチウムイオン伝導性を有するため好ましい。 Examples of such compounds include those made using a raw material composition containing Li 2 S and a sulfide of an element of Groups 13 to 15. Specific examples include Li 2 S-P 2 S 5 , Li 2 S-GeS 2 , Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3 , Li 2 S-GeS 2 -Ga 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-GeS 2 -Sb 2 S 5 , Li 2 S-GeS 2 -Al 2 S 3 , Li 2 S-SiS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S-SiS 2 -P 2 S 5 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 Examples include S-SiS 2 -Li 3 PO 4 and Li 10 GeP 2 S 12 . Among them, Li 2 S-P 2 S 5 , Li 2 S-GeS 2 -Ga 2 S 3 , Li 2 S-GeS 2 -P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 , Li 2 S Crystalline and/or amorphous raw material compositions consisting of -SiS 2 -Li 4 SiO 4 and Li 2 S-SiS 2 -Li 3 PO 4 are preferred because they have high lithium ion conductivity.
 このような原料組成物を用いて硫化物系固体電解質を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法及び溶融急冷法を挙げることができる。中でも、常温での処理が可能になり、製造工程を簡略化できるため、メカニカルミリング法が好ましい。 An example of a method for synthesizing a sulfide-based solid electrolyte using such a raw material composition is an amorphization method. Examples of the amorphization method include a mechanical milling method and a melt quenching method. Among these, the mechanical milling method is preferred because it allows processing at room temperature and simplifies the manufacturing process.
<酸化物系固体電解質>
 酸化物系固体電解質は、酸素原子(O)及び周期表第1族又は第2族の金属元素を含み、イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。このような酸化物系固体電解質としては、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LiLaZr12(LLZ)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li(1+xb+yb)(Al,Ga)xb(Ti,Ge)(2-xb)Siyb(3-yb)12(ただし、0≦xb≦1、0≦yb≦1)、ガーネット型結晶構造を有するLiLaZr12が挙げられる。
<Oxide-based solid electrolyte>
The oxide solid electrolyte preferably contains an oxygen atom (O) and a metal element of Group 1 or Group 2 of the periodic table, has ionic conductivity, and has electronic insulation properties. Examples of such oxide-based solid electrolytes include Li xa La ya TiO 3 [xa=0.3-0.7, ya=0.3-0.7] (LLT), Li 7 La 3 Zr 2 O 12 (LLZ), Li 3.5 Zn 0.25 GeO 4 having a LISICON (Lithium super ionic conductor) type crystal structure, L having a NASICON (Natrium super ionic conductor) type crystal structure iTi 2 P 3 O 12 , Li ( 1+xb+yb) (Al, Ga) xb (Ti, Ge) (2-xb) Si yb P (3-yb) O 12 (0≦xb≦1, 0≦yb≦1), has a garnet-type crystal structure Examples include Li 7 La 3 Zr 2 O 12 .
 また、酸化物系固体電解質としては、Li、P及びOを含むリン化合物も好ましい。例えば、リン酸リチウム(LiPO)、リン酸リチウムの酸素原子の一部を窒素原子で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる少なくとも1種を示す。)が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる少なくとも1種を示す。)等も好ましく用いることができる。 Further, as the oxide-based solid electrolyte, a phosphorus compound containing Li, P, and O is also preferable. For example, lithium phosphate (Li 3 PO 4 ), LiPON in which some of the oxygen atoms of lithium phosphate are replaced with nitrogen atoms, LiPOD (D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, At least one selected from Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au. Furthermore, LiAON (A represents at least one selected from Si, B, Ge, Al, C, and Ga) can also be preferably used.
 これらの中でも、Li(1+xb+yb)(Al,Ga)xb(Ti,Ge)(2-xb)Siyb(3-yb)12(ただし、0≦xb≦1、0≦yb≦1である)は、高いリチウムイオン伝導性を有し、化学的に安定で取り扱いが容易なため好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, Li (1+xb+yb) (Al, Ga) xb (Ti, Ge) (2-xb) Si yb P (3-yb) O 12 (0≦xb≦1, 0≦yb≦1 ) is preferable because it has high lithium ion conductivity, is chemically stable, and easy to handle. These may be used alone or in combination of two or more.
 酸化物系固体電解質のリチウムイオン伝導度は、1×10-6S/cm以上が好ましく、1×10-5S/cm以上がより好ましく、5×10-5S/cm以上が特に好ましい。 The lithium ion conductivity of the oxide solid electrolyte is preferably 1×10 −6 S/cm or more, more preferably 1×10 −5 S/cm or more, and particularly preferably 5×10 −5 S/cm or more.
 2.1.3.活物質
<正極活物質>
 正極活物質としては、例えば、MnO、MoO、V、V13、Fe、Fe、Li(1-x)CoO、Li(1-x)NiO、LiCoSn、Li(1-x)Co(1-y)Ni、Li(1+x)Ni1/3Co1/3Mn1/3、TiS、TiS、MoS、FeS、CuF、NiF等の無機化合物;フッ化カーボン、グラファイト、気相成長炭素繊維及び/又はその粉砕物、PAN系炭素繊維及び/又はその粉砕物、ピッチ系炭素繊維及び/又はその粉砕物等の炭素材料;ポリアセチレン、ポリ-p-フェニレン等の導電性高分子などを用いることができる。これらの正極活物質は、1種を単独で用いてもよく、又は2種以上組み合わせて用いてもよい。
2.1.3. Active material <positive electrode active material>
Examples of positive electrode active materials include MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4 , Li (1-x) CoO 2 , Li (1-x) NiO 2 , Li x Co y Sn z O 2 , Li (1-x) Co (1-y) Ni y O 2 , Li (1+x) Ni 1/3 Co 1/3 Mn 1/3 O 2 , TiS 2 , Inorganic compounds such as TiS 3 , MoS 3 , FeS 2 , CuF 2 , NiF 2 , etc.; carbon fluoride, graphite, vapor-grown carbon fibers and/or their pulverized products, PAN-based carbon fibers and/or their pulverized products, pitch-based Carbon materials such as carbon fibers and/or pulverized products thereof; conductive polymers such as polyacetylene and poly-p-phenylene, etc. can be used. These positive electrode active materials may be used alone or in combination of two or more.
 正極活物質の平均粒径は、特に限定されないが、固固界面の接触面積を増加させる観点から、0.1μm~50μmであることが好ましい。正極活物質を所望の平均粒径とするためには、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、旋回気流型ジェットミル等の粉砕機や、篩、風力分級機等の分級機を用いればよい。粉砕時には、必要に応じて、水又はメタノール等の溶媒を共存させた湿式粉砕を行ってもよい。分級は、乾式、湿式ともに用いることができる。また、焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶媒にて洗浄した後使用してもよい。 The average particle size of the positive electrode active material is not particularly limited, but from the viewpoint of increasing the contact area of the solid-solid interface, it is preferably 0.1 μm to 50 μm. In order to make the positive electrode active material have a desired average particle size, a crusher such as a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, or a swirling air jet mill, or a classifier such as a sieve or a wind classifier can be used. good. At the time of pulverization, wet pulverization may be performed in the presence of a solvent such as water or methanol, if necessary. Both dry and wet classification can be used. Further, the positive electrode active material obtained by the calcination method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質層を作製するための全固体二次電池用スラリーにおいて、正極活物質の含有割合は、固形成分の合計を100質量部としたときに、20~90質量部であることが好ましく、40~80質量部であることがより好ましい。 In the all-solid-state secondary battery slurry for producing the positive electrode active material layer, the content ratio of the positive electrode active material is preferably 20 to 90 parts by mass when the total solid component is 100 parts by mass, More preferably, it is 40 to 80 parts by mass.
<負極活物質>
 負極活物質としては、可逆的にリチウムイオン等を吸蔵・放出できるものであれば特に限定されないが、例えば炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、Sn、Si若しくはIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、信頼性の点から炭素質材料が、電池容量を大きくできる点からケイ素含有材料が好ましく用いられる。
<Negative electrode active material>
The negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions, etc., but examples include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, lithium alone, lithium aluminum alloys, etc. Examples include lithium alloys, metals that can form alloys with lithium, such as Sn, Si, and In. Among these, carbonaceous materials are preferably used from the viewpoint of reliability, and silicon-containing materials are preferably used from the viewpoint of increasing battery capacity.
 炭素質材料としては、実質的に炭素からなる材料であれば特に限定されないが、例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらには、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material is not particularly limited as long as it is a material that essentially consists of carbon, but examples include petroleum pitch, natural graphite, artificial graphite such as vapor-grown graphite, and PAN resin and furfuryl alcohol resin. Examples include carbonaceous materials obtained by firing various synthetic resins. Furthermore, various carbon fibers such as PAN carbon fiber, cellulose carbon fiber, pitch carbon fiber, vapor grown carbon fiber, dehydrated PVA carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase carbon fiber, etc. Microspheres, graphite whiskers, tabular graphite, etc. may also be mentioned.
 ケイ素含有材料は、一般的に用いられる黒鉛やアセチレンブラックに比べて、より多くのリチウムイオンを吸蔵できる。すなわち、単位重量当たりのリチウムイオン吸蔵量が増加するため、電池容量を大きくすることができる。その一方で、ケイ素含有材料は、リチウムイオンの吸蔵、放出に伴う体積変化が大きいことが知られており、この膨張・収縮を繰り返すこと(充放電を繰り返すこと)によって、負極活物質層の耐久性が不足し、例えば接触不足を起こしやすくなったり、サイクル寿命(電池寿命)が短くなったりすることがある。本実施形態に係る全固体二次電池用スラリーを用いて作製された負極活物質層は、このような膨張・収縮が繰り返されてもバインダー成分が追従することによって高い耐久性(強度)が発揮されるので、高電圧下においても良好なサイクル寿命特性を実現できるという優れた効果を奏する。 Silicon-containing materials can store more lithium ions than commonly used graphite and acetylene black. That is, since the amount of lithium ions stored per unit weight increases, the battery capacity can be increased. On the other hand, silicon-containing materials are known to undergo large volume changes as they absorb and release lithium ions, and repeating this expansion and contraction (repeated charging and discharging) increases the durability of the negative electrode active material layer. This may lead to insufficient contact, for example, or a shortened cycle life (battery life). The negative electrode active material layer produced using the slurry for all-solid-state secondary batteries according to this embodiment exhibits high durability (strength) because the binder component follows even if such expansion and contraction are repeated. Therefore, it has the excellent effect of realizing good cycle life characteristics even under high voltage.
 負極活物質の平均粒径は、特に限定されないが、固固界面の接触面積を増加させる観点から、0.1μm~60μmであることが好ましい。負極活物質を所望の平均粒径とするためには、上記例示した粉砕機や分級機を用いることができる。 The average particle size of the negative electrode active material is not particularly limited, but from the viewpoint of increasing the contact area of the solid-solid interface, it is preferably 0.1 μm to 60 μm. In order to make the negative electrode active material have a desired average particle size, the above-mentioned pulverizer or classifier can be used.
 負極活物質層を作製するための全固体二次電池用スラリーにおいて、負極活物質の含有割合は、固形成分の合計を100質量部としたときに、20~90質量部であることが好ましく、40~80質量部であることがより好ましい。 In the all-solid-state secondary battery slurry for producing the negative electrode active material layer, the content ratio of the negative electrode active material is preferably 20 to 90 parts by mass when the total solid component is 100 parts by mass, More preferably, it is 40 to 80 parts by mass.
 2.1.4.その他の成分
<導電助剤>
 導電助剤は、電子の導電性を助ける効果を有するため、正極活物質層又は負極活物質層を形成するための全固体二次電池用スラリーに添加される。導電助剤の具体例としては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン、カーボンナノチューブ等のカーボンが挙げられる。これらの中でも、アセチレンブラック、ファーネスブラック、カーボンナノチューブが好ましい。本実施形態に係る全固体二次電池用スラリーが導電付与剤を含有する場合、導電付与剤の含有割合は、活物質100質量部に対して、20質量部以下であることが好ましく、1~15質量部であることがより好ましく、2~10質量部であることが特に好ましい。
2.1.4. Other components <conductivity aid>
Since the conductive additive has the effect of assisting electron conductivity, it is added to the slurry for an all-solid-state secondary battery for forming a positive electrode active material layer or a negative electrode active material layer. Specific examples of the conductive aid include carbon such as activated carbon, acetylene black, Ketjen black, furnace black, graphite, carbon fiber, fullerene, and carbon nanotubes. Among these, acetylene black, furnace black, and carbon nanotubes are preferred. When the slurry for an all-solid-state secondary battery according to the present embodiment contains a conductivity imparting agent, the content ratio of the conductivity imparting agent is preferably 20 parts by mass or less, and 1 to 100 parts by mass, based on 100 parts by mass of the active material. More preferably, the amount is 15 parts by weight, and particularly preferably 2 to 10 parts by weight.
<増粘剤>
 増粘剤の具体例としては、上述の蓄電デバイス用バインダー組成物のところで例示した増粘剤と同様の増粘剤が挙げられる。本実施形態に係る全固体二次電池用スラリーが増粘剤を含有する場合、増粘剤の含有割合は、全固体二次電池用スラリーの全固形分量100質量部に対して、5質量部以下であることが好ましく、0.1~3質量部であることがより好ましい。
<Thickener>
Specific examples of the thickener include the same thickeners as those exemplified in the binder composition for power storage devices described above. When the slurry for an all-solid-state secondary battery according to the present embodiment contains a thickener, the content ratio of the thickener is 5 parts by mass with respect to 100 parts by mass of the total solid content of the slurry for an all-solid-state secondary battery. The amount is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 3 parts by mass.
<液状媒体>
 液状媒体の具体例としては、上述の蓄電デバイス用バインダー組成物のところで例示した液状媒体(C)と同様の液状媒体が挙げられる。本実施形態に係る全固体二次電池用スラリーに液状媒体を添加する場合、蓄電デバイス用バインダー組成物に含まれる液状媒体(C)と同一の液状媒体を添加してもよく、異なる液状媒体を添加してもよいが、同一の液状媒体を添加することが好ましい。
<Liquid medium>
Specific examples of the liquid medium include the same liquid medium as the liquid medium (C) exemplified in the above-mentioned binder composition for power storage devices. When adding a liquid medium to the slurry for an all-solid-state secondary battery according to the present embodiment, the same liquid medium as the liquid medium (C) contained in the binder composition for an electricity storage device may be added, or a different liquid medium may be added. Although they may be added, it is preferable to add the same liquid medium.
 2.1.5.全固体二次電池用スラリーの調製方法
 本実施形態に係る全固体二次電池用スラリーは、上述の蓄電デバイス用バインダー組成物と固体電解質とを含有するものである限り、どのような方法によって製造されたものであってもよい。
2.1.5. Method for preparing slurry for all-solid-state secondary batteries The slurry for all-solid-state secondary batteries according to the present embodiment can be manufactured by any method as long as it contains the above-mentioned binder composition for electricity storage devices and solid electrolyte. It may be something that has been done.
 しかしながら、より良好な分散性及び安定性を有するスラリーを、より効率的かつ安価に製造するとの観点から、上述の蓄電デバイス用バインダー組成物に、固体電解質及び必要に応じて用いられる任意添加成分を加え、これらを混合することにより製造することが好ましい。蓄電デバイス用バインダー組成物とそれ以外の成分とを混合するためには、公知の手法による撹拌によって行うことができる。 However, from the viewpoint of producing a slurry with better dispersibility and stability more efficiently and at a lower cost, a solid electrolyte and optional additive components used as necessary are added to the above-mentioned binder composition for power storage devices. In addition, it is preferable to manufacture by mixing these. The binder composition for an electricity storage device and other components can be mixed by stirring using a known method.
 全固体二次電池用スラリーを製造するための混合撹拌手段としては、スラリー中に固体電解質粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、ビーズミル、サンドミル、脱泡機、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。 As a mixing and stirring means for producing a slurry for an all-solid-state secondary battery, a mixer capable of stirring to such an extent that no aggregates of solid electrolyte particles remain in the slurry and necessary and sufficient dispersion conditions are selected. There is a need. The degree of dispersion can be measured using a particle gauge, but it is preferable to mix and disperse so that there are no aggregates larger than at least 100 μm. Examples of mixers that meet these conditions include ball mills, bead mills, sand mills, defoaming machines, pigment dispersion machines, crushers, ultrasonic dispersion machines, homogenizers, planetary mixers, Hobart mixers, etc. can.
 全固体二次電池用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で行うことが好ましい。これにより、得られる正極活物質層、負極活物質層又は固体電解質層内に気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10~5.0×10Pa程度とすることが好ましい。 Preparation of the slurry for an all-solid-state secondary battery (mixing operation of each component) is preferably performed at least in part under reduced pressure. This can prevent bubbles from forming in the resulting positive electrode active material layer, negative electrode active material layer, or solid electrolyte layer. The degree of pressure reduction is preferably about 5.0×10 3 to 5.0×10 5 Pa in terms of absolute pressure.
 2.2.リチウムイオン二次電池電極用スラリー
 本発明の一実施形態に係るリチウムイオン二次電池電極用スラリーは、上述の蓄電デバイス用バインダー組成物と、活物質と、を含有する。本実施形態に係るリチウムイオン二次電池電極用スラリーは、リチウムイオン二次電池正極における正極活物質層及びリチウムイオン二次電池負極における負極活物質層のいずれの活物質層を形成するための材料としても使用することができる。
2.2. Slurry for Lithium Ion Secondary Battery Electrode A slurry for a lithium ion secondary battery electrode according to an embodiment of the present invention contains the above-described binder composition for an electricity storage device and an active material. The slurry for a lithium ion secondary battery electrode according to the present embodiment is a material for forming any of the active material layers of the positive electrode active material layer in the lithium ion secondary battery positive electrode and the negative electrode active material layer in the lithium ion secondary battery negative electrode. It can also be used as
 一般的に、正極用スラリーは、内部抵抗の上昇を抑制させるために、ポリフッ化ビニリデン(PVDF)を含有することが多い。一方、本実施形態に係るリチウムイオン二次電池電極用スラリーは、重合体成分として上述した重合体(A)のみを含有する場合であっても内部抵抗の上昇を抑制させることができる。もちろん、本実施形態に係るリチウムイオン二次電池電極用スラリーは、更に内部抵抗の上昇を抑制させるために、重合体(A)以外の重合体や増粘剤を含有してもよい。以下、本実施形態に係るリチウムイオン二次電池電極用スラリーに含まれる成分について説明する。 In general, positive electrode slurry often contains polyvinylidene fluoride (PVDF) in order to suppress an increase in internal resistance. On the other hand, the slurry for a lithium ion secondary battery electrode according to the present embodiment can suppress an increase in internal resistance even when it contains only the above-mentioned polymer (A) as a polymer component. Of course, the slurry for a lithium ion secondary battery electrode according to the present embodiment may contain a polymer other than the polymer (A) or a thickener in order to further suppress an increase in internal resistance. The components contained in the slurry for a lithium ion secondary battery electrode according to this embodiment will be explained below.
 2.2.1.蓄電デバイス用バインダー組成物
 蓄電デバイス用バインダー組成物の組成、物性、製造方法については、上述した通りであるので説明を省略する。
2.2.1. Binder Composition for Electricity Storage Devices The composition, physical properties, and manufacturing method of the binder composition for electricity storage devices are as described above, so explanations thereof will be omitted.
 本実施形態に係るリチウムイオン二次電池電極用スラリー中の重合体成分の含有割合は、活物質100質量部に対し、好ましくは0.5~10質量部であり、より好ましくは1~8質量部であり、さらに好ましくは1~7質量部であり、特に好ましくは1.5~6質量部である。重合体成分の含有割合が前記範囲内にあると、スラリー中の活物質の分散性が良好となり、スラリーの塗布性も優れたものとなる。ここで、重合体成分には、重合体(A)、必要に応じて添加される重合体(A)以外の重合体、及び増粘剤等が含まれる。 The content ratio of the polymer component in the slurry for a lithium ion secondary battery electrode according to the present embodiment is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, based on 100 parts by mass of the active material. parts, more preferably 1 to 7 parts by weight, particularly preferably 1.5 to 6 parts by weight. When the content of the polymer component is within the above range, the active material in the slurry will have good dispersibility and the slurry will have excellent coatability. Here, the polymer component includes the polymer (A), a polymer other than the polymer (A) that is added as necessary, a thickener, and the like.
 2.2.2.活物質
 本実施形態に係るリチウムイオン二次電池電極用スラリーに使用される活物質としては、正極活物質及び負極活物質が挙げられる。これらの具体例としては、例えば、炭素材料、ケイ素材料、リチウム原子を含む酸化物、硫黄化合物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物、ポリアセン等の導電性高分子、A(但し、Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。これらの具体例としては、特許第5999399号公報等に記載された化合物が挙げられる。
2.2.2. Active Material The active material used in the slurry for a lithium ion secondary battery electrode according to this embodiment includes a positive electrode active material and a negative electrode active material. Specific examples of these include carbon materials, silicon materials, oxides containing lithium atoms, sulfur compounds, lead compounds, tin compounds, arsenic compounds, antimony compounds, aluminum compounds, conductive polymers such as polyacene, A B Y O Z (However, A is an alkali metal or a transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin, and manganese, O represents an oxygen atom, and X, Y, and Z are numbers in the range of 1.10>X>0.05, 4.00>Y>0.85, and 5.00>Z>1.5, respectively.) and other complex metal oxides. metal oxides and the like. Specific examples of these include compounds described in Japanese Patent No. 5999399 and the like.
 本実施形態に係るリチウムイオン二次電池電極用スラリーは、正極及び負極のいずれの電極を作製する際にも使用することができるが、特に正極に使用することが好ましい。 Although the slurry for lithium ion secondary battery electrodes according to the present embodiment can be used when producing either a positive electrode or a negative electrode, it is particularly preferable to use it for a positive electrode.
 正極を作製する場合には、上記例示した活物質の中でもリチウム原子を含む酸化物であることが好ましい。リチウム原子を含む酸化物としては、例えば、下記一般式(2)で表され、かつ、オリビン型結晶構造を有するリチウム原子含有酸化物(オリビン型リチウム含有リン酸化合物)から選択される1種以上が挙げられる。 When producing a positive electrode, it is preferable to use an oxide containing a lithium atom among the active materials listed above. Examples of the lithium atom-containing oxide include one or more lithium atom-containing oxides (olivine-type lithium-containing phosphoric acid compounds) that are represented by the following general formula (2) and have an olivine-type crystal structure. can be mentioned.
 Li1-x(AO) ・・・・・(2)
(式(2)中、Mは、Mg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、Ge及びSnよりなる群から選択される少なくとも1種の金属のイオンであり、Aは、Si、S、P及びVよりなる群から選択される少なくとも1種であり、xは0<x<1の関係を満たす数である。)
 なお、前記一般式(1)におけるxの値は、M及びAの価数に応じて、前記一般式(2)全体の価数が0価となるように選択される。
Li 1-x M x (AO 4 )...(2)
(In formula (2), M is at least one selected from the group consisting of Mg, Ti, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Ge, and Sn. (A is at least one kind selected from the group consisting of Si, S, P, and V, and x is a number satisfying the relationship 0<x<1.)
Note that the value of x in the general formula (1) is selected according to the valences of M and A so that the valence of the general formula (2) as a whole becomes zero.
 オリビン型リチウム含有リン酸化合物としては、例えばLiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどが挙げられる。これらのうち、特にLiFePO(リン酸鉄リチウム)は、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。 Examples of olivine-type lithium-containing phosphate compounds include LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like. . Among these, LiFePO 4 (lithium iron phosphate) is particularly preferred because the iron compound as a raw material is easily available and is inexpensive.
 オリビン型リチウム含有リン酸化合物の平均粒子径は、1~30μmの範囲にあることが好ましく、1~25μmの範囲にあることがより好ましく、1~20μmの範囲にあることが特に好ましい。 The average particle diameter of the olivine-type lithium-containing phosphoric acid compound is preferably in the range of 1 to 30 μm, more preferably in the range of 1 to 25 μm, and particularly preferably in the range of 1 to 20 μm.
 また、活物質層中には、以下に例示する活物質を含んでもよい。例えばポリアセン等の導電性高分子;A(但し、Aはアルカリ金属又は遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、Y及びZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。 Further, the active material layer may contain active materials exemplified below. For example , a conductive polymer such as polyacene ; A represents an oxygen atom, and X, Y, and Z are numbers in the range of 1.10>X>0.05, 4.00>Y>0.85, and 5.00>Z>1.5, respectively.) Examples include composite metal oxides represented by and other metal oxides.
 前記複合金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム等が挙げられる。 Examples of the composite metal oxide include lithium cobalt oxide, lithium nickel oxide, lithium manganate, ternary nickel cobalt lithium manganate, and the like.
 本実施形態に係るリチウムイオン二次電池電極用スラリーを用いて作製されたリチウムイオン二次電池電極は、正極活物質としてリチウム原子を含む酸化物を使用した場合でも良好な電気的特性を示すことができる。この理由としては、重合体(A)がリチウム原子を含む酸化物を強固に結着できると同時に、充放電中においてもリチウム原子を含む酸化物を強固に結着させた状態を維持できるからであると考えられる。 The lithium ion secondary battery electrode produced using the lithium ion secondary battery electrode slurry according to the present embodiment exhibits good electrical characteristics even when an oxide containing lithium atoms is used as the positive electrode active material. Can be done. The reason for this is that the polymer (A) can strongly bind oxides containing lithium atoms, and at the same time maintain the state in which oxides containing lithium atoms are firmly bound even during charging and discharging. It is believed that there is.
 一方、負極を作製する場合には、上記例示した活物質の中でもケイ素材料及び/又は炭素材料を含有するものであることが好ましく、ケイ素材料と炭素材料の混合物であることがより好ましい。ケイ素材料は、単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力及びエネルギー密度を高くすることができる。一方、炭素材料は、充放電に伴う体積変化がケイ素材料よりも小さいので、負極活物質としてケイ素材料と炭素材料の混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、活物質層と集電体との密着能力をより向上させることができる。 On the other hand, when producing a negative electrode, it is preferable that the active material contains a silicon material and/or a carbon material among the above-mentioned active materials, and a mixture of a silicon material and a carbon material is more preferable. Silicon material has a large lithium storage capacity per unit weight compared to other active materials, so it can increase the storage capacity of the resulting power storage device, and as a result, the output and energy density of the power storage device can be increased. can do. On the other hand, carbon materials have a smaller volume change due to charging and discharging than silicon materials, so by using a mixture of silicon materials and carbon materials as the negative electrode active material, the effect of volume changes of silicon materials can be alleviated. , it is possible to further improve the adhesion ability between the active material layer and the current collector.
 シリコン(Si)を活物質として使用する場合、シリコンは、高容量である一方、リチウムを吸蔵する際に大きな体積変化を生じる。このため、ケイ素材料は膨張と収縮の繰り返しによって微粉化し、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断されやすいという性質がある。この性質により、蓄電デバイスの充放電耐久特性が短時間で極端に劣化してしまうのである。 When silicon (Si) is used as an active material, while silicon has a high capacity, it undergoes a large volume change when occluding lithium. For this reason, the silicon material becomes finely powdered through repeated expansion and contraction, causing peeling from the current collector and separation of the active materials from each other, and the conductive network inside the active material layer is likely to be disrupted. Due to this property, the charge/discharge durability characteristics of the electricity storage device deteriorate extremely in a short period of time.
 この点において、本実施形態に係るリチウムイオン二次電池電極用スラリーを用いて作製された蓄電デバイス電極は、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。この理由としては、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持できるからであると考えられる。 In this respect, the electricity storage device electrode produced using the slurry for lithium ion secondary battery electrodes according to the present embodiment does not have the above-mentioned problems even when silicon material is used, and has good electrical performance. Characteristics can be shown. The reason for this is that the polymer (A) can strongly bind the silicon material, and at the same time, even if the silicon material expands in volume by occluding lithium, the polymer (A) expands and contracts, causing the silicon to bind. This is thought to be because the materials can be maintained in a strongly bonded state.
 活物質100質量%中に占めるケイ素材料の含有割合は、1質量%以上とすることが好ましく、2~50質量%とすることがより好ましく、3~45質量%とすることが更に好ましく、10~40質量%とすることが特に好ましい。活物質100質量%中に占めるケイ素材料の含有割合が前記範囲内であると、蓄電デバイスの出力及びエネルギー密度の向上と充放電耐久特性とのバランスに優れた蓄電デバイスが得られる。 The content of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, more preferably 2 to 50% by mass, even more preferably 3 to 45% by mass, and 10% by mass. It is particularly preferable to set the content to 40% by mass. When the content of the silicon material in 100% by mass of the active material is within the above range, an electricity storage device with an excellent balance between improvement in the output and energy density of the electricity storage device and charge/discharge durability characteristics can be obtained.
 活物質の形状は、粒子状であることが好ましい。活物質の平均粒子径は、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。 The shape of the active material is preferably particulate. The average particle diameter of the active material is preferably 0.1 to 100 μm, more preferably 1 to 20 μm.
 2.2.3.その他の成分
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、上述した成分以外に、必要に応じて、重合体(A)以外の重合体、増粘剤、液状媒体、導電付与剤、pH調整剤、腐食防止剤、酸化防止剤、セルロースファイバー等の成分を添加してもよい。重合体(A)以外の重合体及び増粘剤としては、上記「1.4.その他の添加剤」の項で例示した化合物の中から適宜選択して、同様の目的及び含有割合で用いることができる。
2.2.3. Other Components In addition to the above-mentioned components, the slurry for a lithium ion secondary battery electrode according to the present embodiment may optionally contain a polymer other than the polymer (A), a thickener, a liquid medium, and a conductivity imparting agent. , pH adjusters, corrosion inhibitors, antioxidants, cellulose fibers, and other components may be added. Polymers other than polymer (A) and thickeners should be appropriately selected from the compounds exemplified in the section "1.4. Other additives" above and used for the same purpose and content ratio. Can be done.
<液状媒体>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、蓄電デバイス用バインダー組成物からの持ち込み分に加えて、液状媒体を更に添加してもよい。添加される液状媒体は、蓄電デバイス用バインダー組成物に含まれていた液状媒体(C)と同種であってもよく、異なってもよいが、上記「1.3.液状媒体(C)」の項で例示した液状媒体の中から選択して使用されることが好ましい。
<Liquid medium>
In addition to the amount brought in from the binder composition for power storage devices, a liquid medium may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment. The liquid medium to be added may be the same type as the liquid medium (C) contained in the binder composition for electricity storage devices, or may be different from the liquid medium (C) in the above "1.3. Liquid medium (C)". It is preferable to use a liquid medium selected from among the liquid media exemplified in Section 3.
 本実施形態に係るリチウムイオン二次電池電極用スラリーにおける液状媒体(蓄電デバイス用バインダー組成物からの持ち込み分を含む。)の含有割合は、スラリー中の固形分濃度(スラリー中の液状媒体以外の成分の合計質量がスラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。 The content ratio of the liquid medium (including the amount brought in from the binder composition for power storage devices) in the slurry for the lithium ion secondary battery electrode according to the present embodiment is determined by the solid content concentration in the slurry (the content of the liquid medium in the slurry other than the liquid medium in the slurry The ratio of the total mass of the components to the total mass of the slurry (the same applies hereinafter) is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
<導電助剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、導電性を付与するとともに、リチウムイオンの出入りによる活物質の体積変化を緩衝させることを目的として、導電助剤を更に添加してもよい。
<Conductivity aid>
A conductive additive may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of imparting conductivity and buffering changes in volume of the active material due to inflow and outflow of lithium ions. good.
 導電助剤の具体例としては、上述の「2.1.4.その他の成分」の項で例示した導電助剤と同様のものが挙げられる。導電助剤の含有割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に好ましくは2~10質量部である。 Specific examples of the conductive aid include those similar to the conductive aid exemplified in the section of "2.1.4. Other components" above. The content of the conductive additive is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass, based on 100 parts by mass of the active material.
<pH調整剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、pH調整剤を更に添加してもよい。
<pH adjuster>
Depending on the type of active material, a pH adjuster may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector.
 pH調整剤としては、例えば、塩酸、リン酸、硫酸、酢酸、ギ酸、リン酸アンモニウム、硫酸アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、塩化アンモニウム、水酸化ナトリウム、水酸化カリウム等を挙げることができ、これらの中でも、硫酸、硫酸アンモニウム、水酸化ナトリウム、水酸化カリウムが好ましい。また、重合体(A)の製造方法中に記載した中和剤の中から選択して使用することもできる。 Examples of the pH adjusting agent include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium formate, ammonium chloride, sodium hydroxide, potassium hydroxide, etc. Among these, sulfuric acid, ammonium sulfate, sodium hydroxide, and potassium hydroxide are preferred. Moreover, it is also possible to use a neutralizing agent selected from among the neutralizing agents described in the method for producing the polymer (A).
<腐食防止剤>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、活物質の種類に応じて集電体の腐食を抑制することを目的として、腐食防止剤を更に添加してもよい。
<Corrosion inhibitor>
A corrosion inhibitor may be further added to the slurry for a lithium ion secondary battery electrode according to the present embodiment for the purpose of suppressing corrosion of the current collector depending on the type of active material.
 腐食防止剤としては、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、パラタングステン酸カリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム等を挙げることができ、これらの中でもパラタングステン酸アンモニウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、モリブデン酸アンモニウムが好ましい。 Corrosion inhibitors include ammonium metavanadate, sodium metavanadate, potassium metavanadate, ammonium metatungstate, sodium metatungstate, potassium metatungstate, ammonium paratungstate, sodium paratungstate, potassium paratungstate, molybdic acid. Ammonium, sodium molybdate, potassium molybdate, etc. can be mentioned, and among these, ammonium paratungstate, ammonium metavanadate, sodium metavanadate, potassium metavanadate, and ammonium molybdate are preferable.
<セルロースファイバー>
 本実施形態に係るリチウムイオン二次電池電極用スラリーには、セルロースファイバーを更に添加してもよい。セルロースファイバーとしては公知のものを用いることができる。セルロースファイバーを添加することにより、活物質の集電体に対する密着性を向上できる場合がある。繊維状のセルロースファイバーが線接着又は線接触によって隣接する活物質同士を繊維状結着させることにより、活物質の脱落を防止できるとともに、集電体に対する密着性を向上できると考えられる。
<Cellulose fiber>
Cellulose fibers may be further added to the slurry for a lithium ion secondary battery electrode according to this embodiment. As the cellulose fiber, known ones can be used. By adding cellulose fibers, the adhesion of the active material to the current collector may be improved. It is thought that by fibrous cellulose fibers binding adjacent active materials to each other through line adhesion or line contact, it is possible to prevent the active materials from falling off and to improve the adhesion to the current collector.
 2.2.4.リチウムイオン二次電池電極用スラリーの調製方法
 本実施形態に係るリチウムイオン二次電池電極用スラリーは、上述の蓄電デバイス用バインダー組成物及び活物質を含有するものである限り、どのような方法によって製造されたものであってもよい。より良好な分散性及び安定性を有するスラリーを、より効率的かつ安価に製造する観点から、蓄電デバイス用バインダー組成物に、活物質及び必要に応じて用いられる任意添加成分を加え、これらを混合することにより製造することが好ましい。具体的な製造方法としては、例えば特許第5999399号公報等に記載された方法が挙げられる。
2.2.4. Method for preparing slurry for lithium ion secondary battery electrodes The slurry for lithium ion secondary battery electrodes according to the present embodiment can be prepared by any method as long as it contains the above-mentioned binder composition for power storage devices and active material. It may be a manufactured product. From the viewpoint of producing a slurry with better dispersibility and stability more efficiently and at a lower cost, active materials and optional additive components used as necessary are added to the binder composition for power storage devices, and these are mixed. It is preferable to manufacture by. A specific manufacturing method includes, for example, the method described in Japanese Patent No. 5999399.
 3.全固体二次電池用電解質シート、全固体二次電池用電極及び全固体二次電池
 3.1.全固体二次電池用電解質シート
 本発明の一実施形態に係る固体電解質シートは、基材上に上述の全固体二次電池用スラリーを塗布及び乾燥させて形成された層を有するものである。
3. Electrolyte sheet for all-solid secondary batteries, electrodes for all-solid secondary batteries, and all-solid secondary batteries 3.1. Electrolyte sheet for all-solid-state secondary batteries A solid electrolyte sheet according to one embodiment of the present invention has a layer formed by applying and drying the above slurry for all-solid-state secondary batteries on a base material.
 本実施形態に係る固体電解質シートは、例えば、基材となるフィルム上に上述の全固体二次電池用スラリーを、ブレード法(例えばドクターブレード法)、カレンダー法、スピンコート法、ディップコート法、インクジェット法、オフセット法、ダイコート法、又はスプレー法等により塗布し、乾燥させて層を形成した後、該フィルムを剥離することによって製造することができる。このようなフィルムとしては、例えば離型処理したPETフィルム等の一般的なものを用いることができる。 The solid electrolyte sheet according to the present embodiment can be produced by, for example, applying the slurry for an all-solid-state secondary battery onto a film serving as a base material using a blade method (for example, a doctor blade method), a calendar method, a spin coating method, a dip coating method, or the like. It can be manufactured by applying by an inkjet method, an offset method, a die coating method, a spray method, or the like, drying to form a layer, and then peeling off the film. As such a film, for example, a general film such as a PET film subjected to mold release treatment can be used.
 または、固体電解質シートを積層する相手のグリーンシート、もしくは、その他の全固体二次電池の構成部材の表面に、固体電解質を含有する全固体二次電池用スラリーを直接塗布、乾燥させて、固体電解質シートを成型することもできる。 Alternatively, a slurry for an all-solid-state secondary battery containing a solid electrolyte is directly applied to the surface of the green sheet on which the solid electrolyte sheet is to be laminated, or other constituent members of an all-solid-state secondary battery, and dried to form a solid state. Electrolyte sheets can also be molded.
 本実施形態に係る固体電解質シートを製造する際には、層の厚さが好ましくは1~500μm、より好ましくは1~100μmの範囲となるように、上述の全固体二次電池用スラリーを塗布することが好ましい。層の厚さが前記範囲内であると、リチウムイオン等の伝導イオンが移動しやすくなるので、電池の出力が高くなる。また、層の厚さが前記範囲内であると、電池全体を薄厚化することができるので、単位体積当たりの容量を大きくすることができる。 When producing the solid electrolyte sheet according to this embodiment, the slurry for all-solid-state secondary batteries is applied so that the layer thickness is preferably in the range of 1 to 500 μm, more preferably in the range of 1 to 100 μm. It is preferable to do so. When the thickness of the layer is within the above range, conductive ions such as lithium ions move easily, resulting in high battery output. Further, when the thickness of the layer is within the above range, the entire battery can be made thinner, so that the capacity per unit volume can be increased.
 全固体二次電池用スラリーの乾燥は、特に限定されず、加熱乾燥、減圧乾燥、加熱減圧乾燥等のいずれの手段も用いることができる。乾燥雰囲気は、特に限定されず、例えば大気雰囲気下で行うことができる。 Drying of the slurry for an all-solid-state secondary battery is not particularly limited, and any means such as heating drying, vacuum drying, heating and vacuum drying, etc. can be used. The drying atmosphere is not particularly limited, and the drying can be performed, for example, in an air atmosphere.
 固体電解質シートに正極活物質及び固体電解質が含まれる場合には、固体電解質シートは正極活物質層としての機能を有する。固体電解質シートに負極活物質及び固体電解質が含まれる場合には、固体電解質シートは負極活物質層としての機能を有する。また、固体電解質シートに正極活物質及び負極活物質が含まれず、固体電解質が含まれる場合には、固体電解質シートは固体電解質層としての機能を有する。 When the solid electrolyte sheet contains a positive electrode active material and a solid electrolyte, the solid electrolyte sheet has a function as a positive electrode active material layer. When the solid electrolyte sheet contains a negative electrode active material and a solid electrolyte, the solid electrolyte sheet has a function as a negative electrode active material layer. Further, when the solid electrolyte sheet does not contain a positive electrode active material and a negative electrode active material but contains a solid electrolyte, the solid electrolyte sheet has a function as a solid electrolyte layer.
 3.2.全固体二次電池用電極
 本発明の一実施形態に係る全固体二次電池用電極は、集電体と、前記集電体の表面上に上述の全固体二次電池用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるものである。かかる全固体二次電池用電極は、金属箔などの集電体の表面に、上述の全固体二次電池用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造された全固体二次電池用電極は、集電体上に、上述の重合体(A)、固体電解質、及び活物質、さらに必要に応じて添加した任意成分を含有する活物質層が結着されてなるものであるから、柔軟性、耐擦性及び粉落ち耐性に優れるとともに、良好な充放電耐久特性を示す。
3.2. Electrode for all-solid-state secondary batteries An electrode for all-solid-state secondary batteries according to an embodiment of the present invention includes a current collector, and the above-mentioned slurry for all-solid-state secondary batteries is applied and dried on the surface of the current collector. and an active material layer formed by. Such an electrode for an all-solid-state secondary battery is made by applying the above-mentioned slurry for an all-solid-state secondary battery to the surface of a current collector such as metal foil to form a coating film, and then drying the coating film to form an active material. It can be manufactured by forming layers. The electrode for an all-solid-state secondary battery manufactured in this way has an active material containing the above-mentioned polymer (A), solid electrolyte, and active material, and optional components added as necessary, on a current collector. Since the material layers are bonded together, it has excellent flexibility, abrasion resistance, and resistance to powder falling off, and also exhibits good charge-discharge durability characteristics.
 正極・負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタン、及びこれらの合金等や、アルミニウム、ステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、これらの中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタン、及びこれらの合金が好ましく、アルミニウム、銅、銅合金がより好ましい。 As the current collectors for the positive and negative electrodes, it is preferable to use an electron conductor that does not undergo chemical changes. As the current collector of the positive electrode, aluminum, stainless steel, nickel, titanium, alloys thereof, etc., and aluminum or stainless steel whose surface is treated with carbon, nickel, titanium, or silver are preferable, and among these, Aluminum and aluminum alloys are more preferred. As the current collector of the negative electrode, aluminum, copper, stainless steel, nickel, titanium, and alloys thereof are preferable, and aluminum, copper, and copper alloys are more preferable.
 集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。 The shape of the current collector is usually in the form of a film sheet, but nets, punched objects, lath bodies, porous bodies, foam bodies, molded bodies of fiber groups, etc. can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Further, it is also preferable that the surface of the current collector is made uneven by surface treatment.
 全固体二次電池用スラリーを集電体上に塗布する手段としては、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、又はエアーナイフ法等を利用することができる。全固体二次電池用スラリーの塗布膜の乾燥処理の条件としては、処理温度は20~250℃であることが好ましく、50~150℃であることがより好ましく、処理時間は1~120分間であることが好ましく、5~60分間であることがより好ましい。 A doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method, or the like can be used as a means for applying the slurry for an all-solid-state secondary battery onto a current collector. As for the conditions for drying the coating film of the slurry for all-solid-state secondary batteries, the processing temperature is preferably 20 to 250°C, more preferably 50 to 150°C, and the processing time is 1 to 120 minutes. The duration is preferably 5 to 60 minutes, and more preferably 5 to 60 minutes.
 また、集電体上に形成された活物質層をプレス加工して圧縮してもよい。プレス加工する手段としては、高圧スーパープレス、ソフトカレンダー、1トンプレス機等を利用することができる。プレス加工の条件は、用いる加工機に応じて適宜設定することができる。 Alternatively, the active material layer formed on the current collector may be compressed by pressing. As a means for pressing, a high-pressure super press, a soft calender, a 1-ton press, etc. can be used. Pressing conditions can be set as appropriate depending on the processing machine used.
 このようにして集電体上に形成された活物質層は、例えば、厚みが40~100μmであり、密度が1.3~2.0g/cmである。 The active material layer thus formed on the current collector has, for example, a thickness of 40 to 100 μm and a density of 1.3 to 2.0 g/cm 3 .
 このようにして製造された全固体二次電池用電極は、一対の電極間に固体電解質層が挟持されて構成される全固体二次電池における電極、具体的には全固体二次電池用の正極及び/又は負極として好適に用いられる。また、上述の全固体二次電池用スラリーを用いて形成された固体電解質層は、全固体二次電池用の固体電解質層として好適に用いられる。 The electrode for an all-solid-state secondary battery manufactured in this way is an electrode for an all-solid-state secondary battery composed of a solid electrolyte layer sandwiched between a pair of electrodes, specifically an electrode for an all-solid-state secondary battery. It is suitably used as a positive electrode and/or a negative electrode. Moreover, the solid electrolyte layer formed using the above-mentioned slurry for an all-solid-state secondary battery is suitably used as a solid electrolyte layer for an all-solid-state secondary battery.
 3.3.全固体二次電池
 本発明の一実施形態に係る全固体二次電池は、公知の方法を用いて製造することができる。具体的には、以下のような製造方法を用いることができる。
3.3. All-solid-state secondary battery The all-solid-state secondary battery according to one embodiment of the present invention can be manufactured using a known method. Specifically, the following manufacturing method can be used.
 まず、固体電解質及び正極活物質を含有する全固体二次電池正極用スラリーを集電体上に塗布及び乾燥させて正極活物質層を形成し、全固体二次電池用正極を作製する。次いで、該全固体二次電池用正極の正極活物質層の表面に、固体電解質を含有する全固体二次電池固体電解質層用スラリーを塗布及び乾燥させて固体電解質層を形成する。さらに、同様にして固体電解質及び負極活物質を含有する全固体二次電池負極用スラリーを固体電解質層の表面に塗布及び乾燥させて負極活物質層を形成する。最後に、該負極活物質層の表面に負極側の集電体(金属箔)を載置することで、所望の全固体二次電池の構造を得ることができる。 First, a slurry for an all-solid secondary battery positive electrode containing a solid electrolyte and a positive electrode active material is applied onto a current collector and dried to form a positive electrode active material layer, thereby producing a positive electrode for an all-solid secondary battery. Next, a slurry for an all-solid-state secondary battery solid electrolyte layer containing a solid electrolyte is applied to the surface of the positive electrode active material layer of the all-solid-state secondary battery positive electrode and dried to form a solid electrolyte layer. Furthermore, in the same manner, an all-solid secondary battery negative electrode slurry containing a solid electrolyte and a negative electrode active material is applied onto the surface of the solid electrolyte layer and dried to form a negative electrode active material layer. Finally, by placing a negative electrode side current collector (metal foil) on the surface of the negative electrode active material layer, a desired all-solid-state secondary battery structure can be obtained.
 また、固体電解質シートを離型PETフィルム上に作製し、予め作製しておいた全固体二次電池用正極又は全固体二次電池用負極の上に貼り合わせる。その後、離型PETを剥離することで、所望の全固体二次電池の構造を得ることもできる。なお、上記の各組成物の塗布方法は常法によればよい。このとき、全固体二次電池正極用スラリー、全固体二次電池固体電解質層用スラリー、及び全固体二次電池負極用スラリーのそれぞれの塗布の後に、それぞれ加熱処理を施すことが好ましい。加熱温度は重合体(A)のガラス転移温度以上であることが好ましい。具体的には30℃以上が好ましく、60℃以上がより好ましく、100℃以上であることが最も好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲内で加熱することで、重合体(A)を軟化させるとともに、その形状を維持することができる。これにより、全固体二次電池において、良好な結着性とイオン伝導性を得ることができる。 In addition, a solid electrolyte sheet is produced on a release PET film and bonded onto the previously produced positive electrode for an all-solid-state secondary battery or negative electrode for an all-solid-state secondary battery. Thereafter, by peeling off the release PET, a desired all-solid-state secondary battery structure can be obtained. Incidentally, each of the above compositions may be applied by a conventional method. At this time, it is preferable to perform a heat treatment after each coating of the slurry for the all-solid secondary battery positive electrode, the slurry for the all-solid secondary battery solid electrolyte layer, and the slurry for the all-solid secondary battery negative electrode. The heating temperature is preferably higher than the glass transition temperature of the polymer (A). Specifically, the temperature is preferably 30°C or higher, more preferably 60°C or higher, and most preferably 100°C or higher. The upper limit is preferably 300°C or less, more preferably 250°C or less. By heating within such a temperature range, the polymer (A) can be softened and its shape can be maintained. Thereby, good binding properties and ion conductivity can be obtained in the all-solid-state secondary battery.
 また、加熱しながら加圧することも好ましい。加圧圧力としては5kN/cm以上が好ましく、10kN/cm以上であることがより好ましく、20kN/cm以上であることが特に好ましい。なお、本明細書中において、放電容量とは、電極の活物質重量あたりの値を示し、ハーフセルにおいては負極の活物質重量あたりの値を示す。 It is also preferable to pressurize while heating. The pressurizing pressure is preferably 5 kN/cm 2 or more, more preferably 10 kN/cm 2 or more, and particularly preferably 20 kN/cm 2 or more. Note that in this specification, the discharge capacity refers to a value per weight of active material of an electrode, and in the case of a half cell, a value per weight of active material of a negative electrode.
 4.リチウムイオン二次電池用電極及びリチウムイオン二次電池
 4.1.リチウムイオン二次電池用電極
 本発明の一実施形態に係るリチウムイオン二次電池用電極は、集電体と、前記集電体の表面に上述のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるものである。かかるリチウムイオン二次電池用電極は、金属箔などの集電体の表面に、上述のリチウムイオン二次電池電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造されたリチウムイオン二次電池用電極は、集電体の表面に、上述の重合体(A)、活物質、及び必要に応じて添加された任意成分を含有する活物質層が結着されてなるものであるため、繰り返し充放電特性に優れ、かつ、充放電耐久特性に優れている。
4. Electrode for lithium ion secondary battery and lithium ion secondary battery 4.1. Electrode for Lithium Ion Secondary Battery An electrode for a lithium ion secondary battery according to an embodiment of the present invention includes a current collector, and the above slurry for a lithium ion secondary battery electrode is applied and dried on the surface of the current collector. and an active material layer formed by. Such electrodes for lithium ion secondary batteries are made by applying the above-mentioned slurry for lithium ion secondary battery electrodes on the surface of a current collector such as metal foil to form a coating film, and then drying the coating film to make it active. It can be manufactured by forming a material layer. The electrode for a lithium ion secondary battery manufactured in this way has an active material layer on the surface of the current collector containing the above-mentioned polymer (A), an active material, and optional components added as necessary. Since it is made by binding together, it has excellent repeated charging and discharging characteristics as well as excellent charging and discharging durability characteristics.
 集電体としては、導電性材料からなるものであれば特に制限されないが、例えば特許第5999399号公報等に記載された集電体が挙げられる。 The current collector is not particularly limited as long as it is made of a conductive material, and examples include the current collector described in Japanese Patent No. 5999399.
 本実施形態に係るリチウムイオン二次電池用電極において、活物質としてケイ素材料を用いる場合、活物質層100質量%中のシリコン元素の含有割合は、1~30質量%であることが好ましく、2~20質量%であることがより好ましく、3~10質量%であることが特に好ましい。活物質層中のシリコン元素の含有割合が前記範囲内であると、それを用いて作製されるリチウムイオン二次電池の蓄電容量が向上することに加え、シリコン元素の分布が均一な活物質層が得られる。活物質層中のシリコン元素の含有量は、例えば特許第5999399号公報等に記載された方法により測定することができる。 In the electrode for a lithium ion secondary battery according to the present embodiment, when a silicon material is used as the active material, the content of silicon element in 100% by mass of the active material layer is preferably 1 to 30% by mass, and 2% by mass. It is more preferably 20% by weight, and particularly preferably 3% to 10% by weight. When the content ratio of silicon element in the active material layer is within the above range, the storage capacity of a lithium ion secondary battery manufactured using the active material layer is improved, and the active material layer has a uniform distribution of silicon element. is obtained. The content of silicon element in the active material layer can be measured, for example, by the method described in Japanese Patent No. 5999399.
 4.2.リチウムイオン二次電池
 本発明の一実施形態に係るリチウムイオン二次電池は、上述のリチウムイオン二次電池用電極を備え、更に電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
4.2. Lithium ion secondary battery A lithium ion secondary battery according to an embodiment of the present invention is equipped with the above-mentioned lithium ion secondary battery electrode, further contains an electrolyte, and is manufactured using parts such as a separator according to a conventional method. can be manufactured. A specific manufacturing method includes, for example, stacking a negative electrode and a positive electrode with a separator in between, rolling or folding them according to the shape of the battery, storing them in a battery container, and injecting an electrolyte into the battery container. An example of this is a method of sealing the container. The shape of the battery can be any appropriate shape, such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、リチウムイオン二次電池に用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。このような電解質や溶媒については、例えば特許第5999399号公報等に記載された化合物が挙げられる。 The electrolyte may be liquid or gel, and depending on the type of active material, one may be selected from known electrolytes used in lithium ion secondary batteries that effectively exhibits battery functions. . The electrolyte can be a solution of an electrolyte dissolved in a suitable solvent. Examples of such electrolytes and solvents include compounds described in Japanese Patent No. 5999399 and the like.
 本実施形態に係るリチウムイオン二次電池において、蓄電デバイス用バインダー組成物以外の部材は、公知のリチウムイオン二次電池用の部材を用いることが可能である。 In the lithium ion secondary battery according to the present embodiment, known members for lithium ion secondary batteries can be used as the members other than the binder composition for an electricity storage device.
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
5. Examples Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. "Parts" and "%" in Examples and Comparative Examples are based on mass unless otherwise specified.
 5.1.実施例1~14、比較例1~5
 5.1.1.蓄電デバイス用バインダー組成物の調製
<実施例1>
 以下に示すような一段重合により、重合体(A1)分散液を得た。反応器に、水200質量部と、1,3-ブタジエン50質量部、スチレン50質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.5質量部と、乳化剤としてアルキルジフェニルエーテルスルホン酸ナトリウム3質量部と、重合開始剤としてクメンハイドロパーオキサイド0.02質量部とエチレンジアミン四酢酸四ナトリウム塩0.01質量部と硫酸鉄(II)七水和物0.006質量部とナトリウムホルムアルデヒドスルホキシレート0.03質量部を仕込み、撹拌しながら15℃で10時間重合し、重合体(A1)分散液を得た。このときの重合体の転化率は73%であった。
5.1. Examples 1 to 14, Comparative Examples 1 to 5
5.1.1. Preparation of binder composition for power storage device <Example 1>
A polymer (A1) dispersion was obtained by one-stage polymerization as shown below. In a reactor, a monomer mixture consisting of 200 parts by mass of water, 50 parts by mass of 1,3-butadiene, and 50 parts by mass of styrene, 0.5 parts by mass of tert-dodecyl mercaptan as a chain transfer agent, and alkyldiphenyl ether as an emulsifier were placed in a reactor. 3 parts by mass of sodium sulfonate, 0.02 parts by mass of cumene hydroperoxide as a polymerization initiator, 0.01 parts by mass of ethylenediaminetetraacetic acid tetrasodium salt, 0.006 parts by mass of iron(II) sulfate heptahydrate, and sodium. 0.03 parts by mass of formaldehyde sulfoxylate was added and polymerized at 15° C. for 10 hours with stirring to obtain a polymer (A1) dispersion. The conversion rate of the polymer at this time was 73%.
 次いで、老化防止剤として2,6-ジ-tert-ブチル-p-クレゾール1質量部を添加し、0.5%塩化カルシウム水溶液3000質量部に重合体(A1)分散液を滴下した。得られた凝集物を水洗し、得られた凝集物中の一部を80℃で乾燥し、凝集物中に含まれる乳化剤量を分析した。その後、同様の作業を繰り返し、凝集物中に残っている乳化剤量の減少がみられなかったところで、残りの凝集物すべてを80℃で乾燥し、全量回収した。全量回収した凝集物中に含まれる乳化剤量は、重合体(A1)100質量部に対し15,220ppmであった。 Next, 1 part by mass of 2,6-di-tert-butyl-p-cresol was added as an anti-aging agent, and the polymer (A1) dispersion was dropped into 3000 parts by mass of a 0.5% calcium chloride aqueous solution. The obtained aggregate was washed with water, a portion of the obtained aggregate was dried at 80°C, and the amount of emulsifier contained in the aggregate was analyzed. Thereafter, the same operation was repeated, and when no decrease in the amount of emulsifier remaining in the aggregates was observed, all remaining aggregates were dried at 80° C. and the entire amount was recovered. The amount of emulsifier contained in the total amount of collected aggregate was 15,220 ppm based on 100 parts by mass of polymer (A1).
 上記で得られた重合体(A1)をアニソール中に添加し、一晩撹拌することにより、重合体(A1)をアニソールに溶解させた蓄電デバイス用バインダー組成物を調製した。ここで、蓄電デバイス用バインダー組成物全体を100質量%としたときに、重合体(A1)の含有量が10質量%となるように調整した。 The polymer (A1) obtained above was added to anisole and stirred overnight to prepare a binder composition for a power storage device in which the polymer (A1) was dissolved in anisole. Here, the content of the polymer (A1) was adjusted to be 10% by mass when the entire binder composition for an electricity storage device is 100% by mass.
<実施例2、4、6~12、比較例1~5>
 実施例2、4、6~12、比較例1~5においては、単量体の種類及び量をそれぞれ下表1~下表2に記載の通りとした以外は、実施例1と同様に一段重合により各重合体を合成し、実施例1と同様にして各蓄電デバイス用バインダー組成物を得た。
<Examples 2, 4, 6 to 12, Comparative Examples 1 to 5>
In Examples 2, 4, 6 to 12 and Comparative Examples 1 to 5, the same procedure as in Example 1 was carried out except that the types and amounts of monomers were as shown in Tables 1 to 2 below, respectively. Each polymer was synthesized by polymerization, and each binder composition for an electricity storage device was obtained in the same manner as in Example 1.
<実施例3>
 以下に示すような二段重合により、重合体(A3)分散液を得た。反応器に、水200質量部と、1,3-ブタジエン60質量部、スチレン10質量部、メタクリル酸2質量部、及びメチルメタクリレート3質量部からなる単量体混合物と、連鎖移動剤としてtert-ドデシルメルカプタン0.5質量部と、乳化剤としてジアルキルスルホコハク酸ナトリウム0.1質量部と、重合開始剤としてクメンハイドロパーオキサイド0.02質量部とエチレンジアミン四酢酸四ナトリウム塩0.01質量部と硫酸鉄(II)七水和物0.006質量部とナトリウムホルムアルデヒドスルホキシレート0.03質量部を仕込み、撹拌しながら15℃で10時間重合した。このときの重合転化率は74%であった。
<Example 3>
A polymer (A3) dispersion was obtained by two-stage polymerization as shown below. A reactor was charged with a monomer mixture consisting of 200 parts by mass of water, 60 parts by mass of 1,3-butadiene, 10 parts by mass of styrene, 2 parts by mass of methacrylic acid, and 3 parts by mass of methyl methacrylate, and tert- as a chain transfer agent. 0.5 parts by mass of dodecyl mercaptan, 0.1 parts by mass of sodium dialkylsulfosuccinate as an emulsifier, 0.02 parts by mass of cumene hydroperoxide as a polymerization initiator, 0.01 parts by mass of ethylenediaminetetraacetic acid tetrasodium salt, and iron sulfate. (II) 0.006 parts by mass of heptahydrate and 0.03 parts by mass of sodium formaldehyde sulfoxylate were charged and polymerized at 15° C. for 10 hours with stirring. The polymerization conversion rate at this time was 74%.
 次いで、未反応量単量体を除去した後、1,3-ブタジエンを5質量部、スチレンを15質量部、メチルメタクリレートを5質量部添加し、重合開始剤としてtert-ブチルハイドロパーオキサイド0.2質量部とエチレンジアミン四酢酸四ナトリウム塩0.03質量部と硫酸鉄(II)七水和物0.008質量部とナトリウムホルムアルデヒドスルホキシレート0.6質量部を仕込み、撹拌しながら5℃で10時間重合し、重合体(A3)分散液を得た。この二段階目の仕込みモノマーに対する重合転化率は96%であった。 Next, after removing unreacted monomers, 5 parts by mass of 1,3-butadiene, 15 parts by mass of styrene, and 5 parts by mass of methyl methacrylate were added, and 0.0% of tert-butyl hydroperoxide was added as a polymerization initiator. 2 parts by mass, 0.03 parts by mass of ethylenediaminetetraacetic acid tetrasodium salt, 0.008 parts by mass of iron(II) sulfate heptahydrate, and 0.6 parts by mass of sodium formaldehyde sulfoxylate, and heated at 5°C with stirring. Polymerization was carried out for 10 hours to obtain a polymer (A3) dispersion. The polymerization conversion rate of the monomer charged in this second stage was 96%.
 次いで、老化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを1質量部添加し、0.5%塩化カルシウム水溶液3000質量部に重合体(A3)分散液を滴下した。得られた凝集物を水洗し、得られた凝集物中の一部を80℃で乾燥し、凝集物中に含まれる乳化剤量を分析した。その後、同様の作業を繰り返し、凝集物中に残っている乳化剤量の減少がみられなかったところで、残りの凝集物すべてを80℃で乾燥し、全量回収した。全量回収した凝集物中に含まれる乳化剤量は、重合体(A3)100質量部に対し30ppmであった。 Next, 1 part by mass of 2,6-di-tert-butyl-p-cresol was added as an anti-aging agent, and the polymer (A3) dispersion was dropped into 3000 parts by mass of a 0.5% aqueous calcium chloride solution. The obtained aggregate was washed with water, a portion of the obtained aggregate was dried at 80°C, and the amount of emulsifier contained in the aggregate was analyzed. Thereafter, the same operation was repeated, and when no decrease in the amount of emulsifier remaining in the aggregates was observed, all remaining aggregates were dried at 80° C. and the entire amount was recovered. The amount of emulsifier contained in the total amount of collected aggregate was 30 ppm based on 100 parts by mass of polymer (A3).
 上記で得られた重合体(A3)をアニソール中に添加し、一晩撹拌することにより、重合体(A3)をアニソールに溶解させた蓄電デバイス用バインダー組成物を調製した。ここで、蓄電デバイス用バインダー組成物全体を100質量%としたときに、重合体(A3)の含有量が10質量%となるようにした。 The polymer (A3) obtained above was added to anisole and stirred overnight to prepare a binder composition for a power storage device in which the polymer (A3) was dissolved in anisole. Here, the content of the polymer (A3) was set to 10% by mass when the entire binder composition for an electricity storage device was 100% by mass.
<実施例5、13、14>
 実施例5、13、14においては、単量体の種類及び量をそれぞれ下表1~下表2に記載の通りとした以外は、実施例3と同様に二段重合により各重合体を合成し、実施例3と同様にして各蓄電デバイス用バインダー組成物を得た。
<Examples 5, 13, 14>
In Examples 5, 13, and 14, each polymer was synthesized by two-stage polymerization in the same manner as in Example 3, except that the types and amounts of monomers were as shown in Tables 1 and 2 below, respectively. Then, in the same manner as in Example 3, binder compositions for each power storage device were obtained.
 5.1.2.蓄電デバイス用バインダー組成物の物性評価
<重合転化率の測定方法>
 上記の各重合体の合成における重合転化率は、以下のようにして測定した。
 所定時間、重合した反応溶液を抜き取り、あらかじめ重量を計測したアルミ皿(X(g))へ入れて反応溶液の重量(Y(g))を計量した。これを熱風乾燥機を用いて、155℃で15分間乾燥させた。アルミ皿を取り出し、放冷後、アルミ皿の重量(Z(g))を計量した。このようにして計量された重量X、Y、及びZの値から下記式(3)により重合転化率(%)を算出した。
 重合転化率(%)=((Z-X)/Y)×100   (3)
5.1.2. Evaluation of physical properties of binder composition for power storage devices <Method for measuring polymerization conversion rate>
The polymerization conversion rate in the synthesis of each of the above polymers was measured as follows.
After a predetermined period of time, the polymerized reaction solution was taken out and placed in an aluminum dish (X (g)) whose weight had been measured in advance, and the weight (Y (g)) of the reaction solution was measured. This was dried at 155° C. for 15 minutes using a hot air dryer. The aluminum plate was taken out, and after being left to cool, the weight (Z (g)) of the aluminum plate was measured. From the weights X, Y, and Z thus measured, the polymerization conversion rate (%) was calculated using the following formula (3).
Polymerization conversion rate (%) = ((Z-X)/Y) x 100 (3)
<重量平均分子量(Mw)>
 温度条件50℃において、ゲルパーミエーションクロマトグラフィー(GPC、カラム:商品名「GMHHR-H」、東ソー株式会社製)によって測定を行い、ポリスチレン換算の重量平均分子量(Mw)を求めた。その結果を下表1~下表2に示す。
<Weight average molecular weight (Mw)>
Measurement was performed by gel permeation chromatography (GPC, column: trade name "GMHHR-H", manufactured by Tosoh Corporation) at a temperature of 50° C. to determine the weight average molecular weight (Mw) in terms of polystyrene. The results are shown in Tables 1 and 2 below.
<トルエン溶解性の評価>
 上記で得られた重合体分散液を塩化カルシウム水溶液に添加し、水洗工程及び乾燥工程を経て凝固した重合体を得た。得られた重合体が1質量%となるようにトルエンを加えて希釈した。こうして得られた重合体1質量%トルエン溶液について、1気圧、23℃での透明度を目視にて確認した。その結果を下表1~下表2に示す。重合体1質量%トルエン溶液が透明である場合は「溶解」と判断し「A」と表記し、重合体1質量%トルエン溶液が半透明ないし白濁している場合は「不溶」と判断し「B」と表記した。
<Evaluation of toluene solubility>
The polymer dispersion obtained above was added to an aqueous calcium chloride solution, and a coagulated polymer was obtained through a water washing step and a drying step. Toluene was added to dilute the obtained polymer to 1% by mass. The transparency of the thus obtained 1% by mass toluene solution of the polymer was visually confirmed at 1 atm and 23°C. The results are shown in Tables 1 and 2 below. If the 1% by mass toluene solution of the polymer is transparent, it is determined to be "dissolved" and marked as "A", and if the 1% by mass toluene solution of the polymer is translucent or cloudy, it is determined to be "insoluble". It was written as "B".
<示差走査熱量測定(DSC)>
 上記で得られた各重合体について、JIS K7121:2012に準拠して示差走査熱量計(NETZSCH社製、DSC204F1 Phoenix)を用いて測定し、吸熱ピークの温度を求めた。その結果を下表1~下表2に示す。なお、表中において、「Tanδ-1」は第1吸熱ピーク温度を表し、「Tanδ-2」は第2吸熱ピーク温度を表す。
<Differential scanning calorimetry (DSC)>
Each of the polymers obtained above was measured using a differential scanning calorimeter (DSC204F1 Phoenix, manufactured by NETZSCH) in accordance with JIS K7121:2012 to determine the temperature of the endothermic peak. The results are shown in Tables 1 and 2 below. In the table, "Tan δ-1" represents the first endothermic peak temperature, and "Tan δ-2" represents the second endothermic peak temperature.
 5.1.3.全固体二次電池用スラリーの調製
<全固体二次電池正極用スラリーの調製>
 正極活物質としてLiCoO(平均粒子径:10μm)70質量部と、固体電解質としてLiSとPからなる硫化物ガラス(LiS/P=75mol%/25mol%、平均粒子径5μm)30質量部と、導電助剤としてアセチレンブラック2質量部と、上記で調製した蓄電デバイス用バインダー組成物を固形分相当で2質量部とを混合し、さらに液状有機媒体としてアニソールを加えて、固形分濃度を75%に調整した後に自転公転ミキサー(THINKY社製、あわとり練太郎ARV-310)で10分間混合して全固体二次電池正極用スラリーを調製した。
5.1.3. Preparation of slurry for all-solid-state secondary battery <Preparation of slurry for all-solid-state secondary battery positive electrode>
70 parts by mass of LiCoO 2 (average particle size: 10 μm) as a positive electrode active material, and sulfide glass consisting of Li 2 S and P 2 S 5 as a solid electrolyte (Li 2 S/P 2 S 5 = 75 mol%/25 mol%, 30 parts by mass (average particle diameter 5 μm), 2 parts by mass of acetylene black as a conductive aid, and 2 parts by mass equivalent to the solid content of the binder composition for power storage devices prepared above were mixed, and anisole was further added as a liquid organic medium. was added to adjust the solid content concentration to 75%, and then mixed for 10 minutes using a rotation-revolution mixer (Awatori Rentaro ARV-310, manufactured by THINKY) to prepare a slurry for an all-solid secondary battery positive electrode.
<全固体二次電池固体電解質層用スラリーの調製>
 固体電解質としてLiSとPからなる硫化物ガラス(LiS/P=75mol%/25mol%、平均粒子径5μm)100質量部と、上記で調製した蓄電デバイス用バインダー組成物を固形分相当で2質量部とを混合し、さらに液状有機媒体としてアニソールを加えて、固形分濃度を55%に調整した後に自転公転ミキサー(THINKY社製、あわとり練太郎ARV-310)で10分間混合して全固体二次電池固体電解質層用スラリーを調製した。
<Preparation of slurry for solid electrolyte layer of all-solid-state secondary battery>
100 parts by mass of sulfide glass consisting of Li 2 S and P 2 S 5 (Li 2 S/P 2 S 5 = 75 mol%/25 mol%, average particle size 5 μm) as a solid electrolyte, and the binder for power storage devices prepared above. The composition was mixed with 2 parts by mass equivalent to the solid content, and anisole was further added as a liquid organic medium to adjust the solid content concentration to 55%. ) for 10 minutes to prepare a slurry for an all-solid-state secondary battery solid electrolyte layer.
<全固体二次電池負極用スラリーの調製>
 負極活物質としての人造黒鉛(平均粒子径:20μm)65質量部、固体電解質としてLiSとPからなる硫化物ガラス(LiS/P=75mol%/25mol%、平均粒子径5μm)35質量部、上記で調製した蓄電デバイス用バインダー組成物を固形分相当で2質量部とを混合し、さらに液状有機媒体としてアニソールを加えて、固形分濃度を65%に調整した後に自転公転ミキサー(THINKY社製、あわとり練太郎ARV-310)で10分間混合して全固体二次電池負極用スラリーを調製した。
<Preparation of slurry for all-solid-state secondary battery negative electrode>
65 parts by mass of artificial graphite (average particle size: 20 μm) as a negative electrode active material, sulfide glass consisting of Li 2 S and P 2 S 5 as a solid electrolyte (Li 2 S / P 2 S 5 = 75 mol% / 25 mol%, 35 parts by mass (average particle diameter 5 μm) and 2 parts by mass equivalent to the solid content of the binder composition for power storage devices prepared above were mixed, and anisole was further added as a liquid organic medium to adjust the solid content concentration to 65%. After that, the mixture was mixed for 10 minutes using a rotation-revolution mixer (Awatori Rentaro ARV-310, manufactured by THINKY) to prepare a slurry for an all-solid-state secondary battery negative electrode.
 5.1.4.正負極・固体電解質層の作製及び評価
<正負極・固体電解質層の作製>
 上記で調製した全固体二次電池正極用スラリーをドクターブレード法によりアルミニウム箔上に塗布し、120℃の減圧下でアニソールを蒸発させて3時間かけて乾燥することにより、厚み0.1mmの正極活物質層が形成された全固体二次電池用正極を作製した。
 上記で調製した全固体二次電池固体電解質用スラリーをドクターブレード法により離型PETフィルム上に塗布し、120℃の減圧下でアニソールを蒸発させて3時間かけて乾燥することにより、厚み0.1mmの固体電解質層を作製した。
 上記で調製した全固体二次電池負極用スラリーをドクターブレード法によりステンレス箔上に塗布し、120℃の減圧下でアニソールを蒸発させて3時間かけて乾燥することにより、厚み0.1mmの負極活物質層が形成された全固体二次電池用負極を作製した。
5.1.4. Preparation and evaluation of positive and negative electrodes and solid electrolyte layers <Preparation of positive and negative electrodes and solid electrolyte layers>
The slurry for the all-solid-state secondary battery positive electrode prepared above was applied onto an aluminum foil using a doctor blade method, the anisole was evaporated under reduced pressure at 120°C, and the slurry was dried for 3 hours to form a positive electrode with a thickness of 0.1 mm. A positive electrode for an all-solid-state secondary battery on which an active material layer was formed was produced.
The slurry for solid electrolyte for all-solid-state secondary batteries prepared above was applied onto a release PET film using a doctor blade method, anisole was evaporated under reduced pressure at 120°C, and the slurry was dried for 3 hours to a thickness of 0. A 1 mm solid electrolyte layer was prepared.
The slurry for the all-solid-state secondary battery negative electrode prepared above was applied onto a stainless steel foil using a doctor blade method, the anisole was evaporated under reduced pressure at 120°C, and the anode was dried for 3 hours to form a negative electrode with a thickness of 0.1 mm. A negative electrode for an all-solid-state secondary battery on which an active material layer was formed was produced.
<電極の状態の評価>
 上記で得られた全固体二次電池用正極を10cm×10cmに切り取り、その表面の破泡された痕数を目視によって数えた。評価基準は以下の通りである。評価結果を下表1~下表2に示す。
(評価基準)
・5点:破泡された粒子痕個数が0個以下であれば、残留した乳化剤による塗工不良が全くなく、良好である。
・4点:破泡された粒子痕個数が1個以上5個以下であれば、残留した乳化剤による塗工不良がほぼなく、良好である。
・3点:破泡された粒子痕個数が6個以上10個以下であれば、残留した乳化剤による塗工不良が少なく、良好である。
・2点:破泡された粒子痕個数が11個以上15個以下であれば、残留した乳化剤による塗工不良が若干あり、使用しづらい。
・1点:破泡された粒子痕個数が16個以上であれば、残留した乳化剤による塗工不良が多く、使用不可である。
<Evaluation of electrode condition>
The positive electrode for an all-solid-state secondary battery obtained above was cut into a size of 10 cm x 10 cm, and the number of broken bubbles on its surface was counted visually. The evaluation criteria are as follows. The evaluation results are shown in Tables 1 and 2 below.
(Evaluation criteria)
- 5 points: If the number of broken particle traces is 0 or less, there is no coating defect due to residual emulsifier, which is good.
- 4 points: If the number of broken particle traces is 1 or more and 5 or less, there is almost no coating defect due to residual emulsifier, which is good.
- 3 points: If the number of broken particle traces is 6 or more and 10 or less, there are few coating defects due to residual emulsifier, which is good.
- 2 points: If the number of broken particle traces is 11 or more and 15 or less, there will be some coating defects due to the residual emulsifier, making it difficult to use.
- 1 point: If the number of broken particle traces is 16 or more, there are many coating defects due to residual emulsifier, and the product cannot be used.
<正極塗工層の密着強度の評価>
 上記で得られた全固体二次電池用正極のアルミニウム箔上に形成された正極活物質層について、正極活物質層上に幅20mmのテープを貼り、これを剥離角度90°、剥離速度50mm/minの条件で剥離するときの剥離強度を測定した。評価基準は下記の通りである。結果を下表1~下表2に示す。
(評価基準)
・5点:剥離強度が20N/m以上。
・4点:剥離強度が10N/m以上20N/m未満。
・3点:剥離強度が5N/m以上10N/m未満。
・2点:剥離強度が3N/m以上5N/m未満。
・1点:剥離強度が3N/m未満。
<Evaluation of adhesion strength of positive electrode coating layer>
Regarding the positive electrode active material layer formed on the aluminum foil of the positive electrode for an all-solid-state secondary battery obtained above, a tape with a width of 20 mm was pasted on the positive electrode active material layer, and the tape was peeled at a peeling angle of 90° and a peeling speed of 50 mm/ The peel strength was measured when peeling was performed under conditions of min. The evaluation criteria are as follows. The results are shown in Tables 1 and 2 below.
(Evaluation criteria)
- 5 points: Peel strength is 20 N/m or more.
- 4 points: Peel strength is 10 N/m or more and less than 20 N/m.
- 3 points: Peel strength is 5 N/m or more and less than 10 N/m.
- 2 points: Peel strength is 3 N/m or more and less than 5 N/m.
- 1 point: Peel strength is less than 3 N/m.
<固体電解質層のリチウムイオン伝導度測定>
 PETフィルムから剥がした固体電解質層を2枚のステンレス鋼製の平板からなるセルで挟み、インピーダンスアナライザーを使用して測定し、ナイキストプロットからリチウムイオン伝導度を算出した。評価基準は下記の通りである。結果を下表1~下表2に示す。リチウムイオン伝導度が大きい程、電池性能が良好な全固体二次電池が得られることを示す。
(評価基準)
・5点:リチウムイオン伝導度が0.8×10-4S/cm以上1.0×10-4S/cm以下。
・4点:リチウムイオン伝導度が0.5×10-4S/cm以上0.8×10-4S/cm未満。
・3点:リチウムイオン伝導度が0.2×10-4S/cm以上0.5×10-4S/cm未満。
・2点:リチウムイオン伝導度が0.1×10-4S/cm以上0.2×10-4S/cm未満。
・1点:0.1×10-4S/cm未満。
<Measurement of lithium ion conductivity of solid electrolyte layer>
The solid electrolyte layer peeled off from the PET film was sandwiched between two stainless steel flat plates and measured using an impedance analyzer, and the lithium ion conductivity was calculated from the Nyquist plot. The evaluation criteria are as follows. The results are shown in Tables 1 and 2 below. It shows that the higher the lithium ion conductivity, the better the battery performance can be obtained in an all-solid-state secondary battery.
(Evaluation criteria)
- 5 points: Lithium ion conductivity is 0.8 x 10 -4 S/cm or more and 1.0 x 10 -4 S/cm or less.
- 4 points: Lithium ion conductivity is 0.5 x 10 -4 S/cm or more and less than 0.8 x 10 -4 S/cm.
- 3 points: Lithium ion conductivity is 0.2 x 10 -4 S/cm or more and less than 0.5 x 10 -4 S/cm.
・2 points: Lithium ion conductivity is 0.1×10 −4 S/cm or more and less than 0.2×10 −4 S/cm.
・1 point: Less than 0.1×10 −4 S/cm.
<負極ハーフセルの作製及び電気化学評価>
 硫化物ガラス(LiS/P=75mol%/25mol%、平均粒子径5μm)単独からなる層が、作製した負極塗工シートとLi(厚み0.2mm)-In(厚み0.1mm)積層体の間に配置されるようにそれぞれ積層することで、負極ハーフセルを作製した。
 得られた負極ハーフセルに対して充放電試験を実施した。充放電は、0.88~-0.57V(vs.Li-In)の電位範囲で、0.1Cレートで測定を行った。この0.1Cレートの充放電を繰り返し行い、1サイクル目の放電容量をA(mAh/g)、20サイクル目の放電容量をB(mAh/g)としたとき、20サイクル後の容量維持率を下記式(4)によって算出した。評価基準は以下の通りである。結果を下表1~下表2に示す。
 20サイクル後の容量維持率(%)=(B/A)×100   (4)
 なお、CレートのCとは時間率であり、(1/X)C=定格容量(Ah)/X(h)と定義される。Xは定格容量分の電気を充電又は放電する際の時間を表す。例えば、0.1Cとは、電流値が定格容量(Ah)/10(h)であることを意味する。
(評価基準)
・5点:容量維持率が95%以上100%以下。
・4点:容量維持率が90%以上95%未満。
・3点:容量維持率が85%以上90%未満。
・2点:容量維持率が80%以上85%未満。
・1点:容量維持率が80%未満。
<Preparation of negative electrode half cell and electrochemical evaluation>
A layer consisting solely of sulfide glass (Li 2 S/P 2 S 5 = 75 mol%/25 mol%, average particle size 5 μm) was formed between the prepared negative electrode coated sheet and Li (thickness 0.2 mm)-In (thickness 0.2 mm). A negative electrode half cell was produced by stacking the two layers so that they were arranged between the laminates (1 mm).
A charge/discharge test was conducted on the obtained negative electrode half cell. Charging and discharging were performed at a rate of 0.1C in a potential range of 0.88 to -0.57V (vs. Li-In). When this 0.1C rate charging and discharging is repeated and the discharge capacity of the 1st cycle is A (mAh/g) and the discharge capacity of the 20th cycle is B (mAh/g), the capacity retention rate after 20 cycles was calculated using the following formula (4). The evaluation criteria are as follows. The results are shown in Tables 1 and 2 below.
Capacity retention rate after 20 cycles (%) = (B/A) x 100 (4)
Note that C in the C rate is a time rate, and is defined as (1/X)C=rated capacity (Ah)/X(h). X represents the time required to charge or discharge the rated capacity of electricity. For example, 0.1C means that the current value is rated capacity (Ah)/10 (h).
(Evaluation criteria)
・5 points: Capacity retention rate is 95% or more and 100% or less.
・4 points: Capacity retention rate is 90% or more and less than 95%.
・3 points: Capacity retention rate is 85% or more and less than 90%.
・2 points: Capacity retention rate is 80% or more and less than 85%.
・1 point: Capacity retention rate is less than 80%.
 5.2.実施例15、16、比較例6~8
 実施例15では、実施例1で合成した重合体(A1)2質量部を負極バインダーとして使用し、実施例3で合成した重合体(A3)2質量部を正極バインダーとして使用した以外は、実施例1と同様の評価を実施した。また、実施例16及び比較例6~8についても下表3中に記載の重合体を使用した以外は、実施例1と同様の評価を実施した。結果を下表3に示す。
5.2. Examples 15 and 16, Comparative Examples 6 to 8
In Example 15, 2 parts by mass of the polymer (A1) synthesized in Example 1 was used as the negative electrode binder, and 2 parts by mass of the polymer (A3) synthesized in Example 3 was used as the positive electrode binder. The same evaluation as in Example 1 was performed. Further, for Example 16 and Comparative Examples 6 to 8, the same evaluation as in Example 1 was performed except that the polymers listed in Table 3 below were used. The results are shown in Table 3 below.
 5.3.実施例1~16、比較例1~8の評価結果
 下表1~下表2に、実施例1~14及び比較例1~5で使用した重合体組成、各物性測定結果、及び各評価結果を示す。下表3に、実施例15、16及び比較例6~8で使用した重合体成分組成、及び各評価結果を示す。なお、下表1~下表3中に示された重合体組成を表す数値は、質量部を表す。
5.3. Evaluation results of Examples 1 to 16 and Comparative Examples 1 to 8 Tables 1 to 2 below show the polymer compositions, physical property measurement results, and evaluation results used in Examples 1 to 14 and Comparative Examples 1 to 5. shows. Table 3 below shows the polymer component compositions used in Examples 15 and 16 and Comparative Examples 6 to 8, and the evaluation results. Note that the numerical values representing the polymer composition shown in Tables 1 to 3 below represent parts by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、上表1~上表2の実施例番号及び比較例番号の下の行に、それぞれの例で合成された重合体番号を記載した。上表1~上表3における単量体、乳化剤、重合体は、それぞれ以下の化合物を表す。
<単量体>
(共役ジエン化合物)
・BD:1,3-ブタジエン
(芳香族ビニル化合物)
・ST:スチレン
(不飽和カルボン酸)
・TA:イタコン酸
・AA:アクリル酸
・MAA:メタクリル酸
(不飽和カルボン酸エステル)
・MMA:メタクリル酸メチル
・BA:アクリル酸ブチル
・2EHA:アクリル酸2-エチルヘキシル
・CHMA:メタクリル酸シクロヘキシル
(α,β-不飽和ニトリル化合物)
・AN:アクリロニトリル
((メタ)アクリルアミド)
・AAM:アクリルアミド
・MAM:メタクリルアミド
(スルホン酸基を有する化合物)
・スチレンスルホン酸ナトリウム
<乳化剤>
(スルホン酸系乳化剤)
・アルカンスルホン酸ナトリウム:商品名「ラテムル PS」、花王株式会社製
・アルキルジフェニルエーテルスルホン酸ナトリウム:商品名「ぺレックス SS-L」、花王株式会社製
・ドデシルベンゼンスルホン酸ナトリウム:商品名「ネオぺレックス G-65」、花王株式会社製
・ジアルキルスルホコハク酸ナトリウム:商品名「ぺレックス TR」、花王株式会社製(カルボン酸系乳化剤)
・半硬化牛脂脂肪酸ソーダ石鹸:商品名「NSソープ」、花王株式会社製
・ロジン酸カリウム:商品名「デイプロジン A-100」、東邦化学株式会社製
<重合体>
・PVdF:商品名「HSV900」、アルケマ社製、ポリフッ化ビニリデン
In addition, in the rows below the Example numbers and Comparative Example numbers in Tables 1 and 2 above, the numbers of the polymers synthesized in each example are listed. The monomers, emulsifiers, and polymers in Tables 1 to 3 above each represent the following compounds.
<Monomer>
(conjugated diene compound)
・BD: 1,3-butadiene (aromatic vinyl compound)
・ST: Styrene (unsaturated carboxylic acid)
・TA: itaconic acid ・AA: acrylic acid ・MAA: methacrylic acid (unsaturated carboxylic acid ester)
・MMA: Methyl methacrylate ・BA: Butyl acrylate ・2EHA: 2-ethylhexyl acrylate ・CHMA: Cyclohexyl methacrylate (α,β-unsaturated nitrile compound)
・AN: Acrylonitrile ((meth)acrylamide)
・AAM: Acrylamide ・MAM: Methacrylamide (compound with sulfonic acid group)
・Sodium styrene sulfonate <emulsifier>
(Sulfonic acid emulsifier)
・Sodium alkanesulfonate: Product name “Latemul PS”, manufactured by Kao Corporation ・Sodium alkyldiphenyl ether sulfonate: Product name “Perex SS-L”, manufactured by Kao Corporation ・Sodium dodecylbenzenesulfonate: Product name “Neope” Rex G-65'', manufactured by Kao Corporation, sodium dialkyl sulfosuccinate: trade name ``Perex TR'', manufactured by Kao Corporation (carboxylic acid emulsifier)
・Semi-hardened beef tallow fatty acid soda soap: Product name “NS Soap”, manufactured by Kao Corporation ・Potassium rosin acid: Product name “Diprosin A-100”, manufactured by Toho Chemical Co., Ltd. <Polymer>
・PVdF: Product name “HSV900”, manufactured by Arkema, polyvinylidene fluoride
 実施例1~実施例16においては、全固体二次電池用スラリーとして、本発明の蓄電デバイス用バインダー組成物、活物質、及び固体電解質が含有されてなるものが用いられている。その結果、当該スラリーによって形成された活物質層は、表面状態が良好であり、リチウムイオン伝導性に優れており、剥離強度の測定の際に活物質層自体が脆くなって活物質や固体電解質の脱落、あるいはクラックなどが生じることがなく、活物質及び固体電解質のいずれの間においてもバインダーに十分な結着性が得られていることが確認された。したがって、本発明の蓄電デバイス用バインダー組成物を用いることにより、表面状態、密着性及びリチウムイオン伝導性に優れた全固体二次電池用電極を作製でき、かつ、全固体二次電池のサイクル寿命特性を向上できることがわかった。 In Examples 1 to 16, a slurry containing the binder composition for an electricity storage device, an active material, and a solid electrolyte of the present invention is used as a slurry for an all-solid-state secondary battery. As a result, the active material layer formed with the slurry has a good surface condition and excellent lithium ion conductivity, and when measuring peel strength, the active material layer itself becomes brittle and the active material and solid electrolyte No shedding or cracking occurred, and it was confirmed that the binder had sufficient binding properties between both the active material and the solid electrolyte. Therefore, by using the binder composition for power storage devices of the present invention, electrodes for all-solid-state secondary batteries with excellent surface conditions, adhesion, and lithium ion conductivity can be produced, and the cycle life of all-solid-state secondary batteries can be improved. It was found that the characteristics could be improved.
 5.4.実施例17~30、比較例9~13
 5.4.1.蓄電デバイス用バインダー組成物の調製
 下表4~下表6に示す上記で合成した重合体をN-メチル-2-ピロリドン(NMP)中に添加し、一晩中撹拌することにより、重合体をNMPに溶解させた蓄電デバイス用バインダー組成物を調製した。ここで、蓄電デバイス用バインダー組成物全体を100質量%としたときに、重合体の含有量が8質量%となるようにした。
5.4. Examples 17-30, Comparative Examples 9-13
5.4.1. Preparation of binder composition for power storage devices The polymers synthesized above shown in Tables 4 to 6 below were added to N-methyl-2-pyrrolidone (NMP), and the polymers were stirred overnight. A binder composition for a power storage device was prepared by dissolving it in NMP. Here, the content of the polymer was set to 8% by mass when the entire binder composition for an electricity storage device was 100% by mass.
 5.4.2.リチウムイオン二次電池正極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、重合体をNMPに溶解させた蓄電デバイス用バインダー組成物を37.5質量部(固形分換算値8%、上記で得られた重合体としては3質量部に相当)、正極活物質としてLFP(商品名「DY-1」、徳方納米社製)100質量部、アセチレンブラック9質量部、増粘剤(商品名「CMC2200」、株式会社ダイセル製)1質量部、及びNMP74質量部を投入し、固形分濃度が約50%のスラリーになるように調製し、60rpmで1時間撹拌を行った。なお、LFPは、正極活物質の一例である。
5.4.2. Preparation of slurry for positive electrode of lithium ion secondary battery A binder composition for power storage devices in which a polymer was dissolved in NMP was added to a twin-screw planetary mixer (manufactured by Primix Co., Ltd., trade name "TK Hibismix 2P-03"). 37.5 parts by mass (solid content equivalent to 8%, equivalent to 3 parts by mass as the polymer obtained above), LFP (trade name "DY-1", manufactured by Tokukata Natmeisha) as a positive electrode active material 100 Parts by mass, 9 parts by mass of acetylene black, 1 part by mass of a thickener (trade name "CMC2200", manufactured by Daicel Corporation), and 74 parts by mass of NMP were added to prepare a slurry with a solid content concentration of approximately 50%. The mixture was stirred at 60 rpm for 1 hour. Note that LFP is an example of a positive electrode active material.
 その後、1時間撹拌してペーストを得た後、撹拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下(約5.0×10Pa)において1800rpmで1.5分間撹拌混合することにより、リチウムイオン二次電池正極用スラリーを調製した。 After that, after stirring for 1 hour to obtain a paste, using a stirring defoaming machine (manufactured by Shinky Co., Ltd., trade name "Awatori Rentaro"), the mixture was heated at 200 rpm for 2 minutes, 1800 rpm for 5 minutes, and further under vacuum. (approximately 5.0×10 3 Pa) and stirring and mixing at 1800 rpm for 1.5 minutes to prepare a slurry for a positive electrode of a lithium ion secondary battery.
 5.4.3.リチウムイオン二次電池用正極の作製及び物性評価
<リチウムイオン二次電池用正極の作製>
 厚み20μmのアルミニウム箔からなる集電体の表面に、上記で得られたリチウムイオン二次電池正極用スラリーを、乾燥後の膜厚が100μmとなるように、ドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、形成された膜(正極活物質層)の密度が3.0g/cmになるように、ロールプレス機を用いてプレス加工することにより、リチウムイオン二次電池用正極を得た。
5.4.3. Preparation and physical property evaluation of positive electrode for lithium ion secondary battery <Preparation of positive electrode for lithium ion secondary battery>
On the surface of a current collector made of aluminum foil with a thickness of 20 μm, the slurry for a lithium ion secondary battery positive electrode obtained above was uniformly applied by a doctor blade method so that the film thickness after drying was 100 μm, It was dried at 120°C for 20 minutes. Thereafter, a positive electrode for a lithium ion secondary battery was obtained by pressing using a roll press machine so that the density of the formed film (positive electrode active material layer) was 3.0 g/cm 3 .
<電極の状態の評価>
 上記で得られたリチウムイオン二次電池用正極を10cm×10cmに切り取り、その表面の破泡された痕数を目視によって数えた。評価基準は以下の通りである。評価結果を下表4~下表5に示す。活物質層の損傷が見られないものは、残留した乳化剤による塗工不良が減少し、良好なサイクル特性を示す。
(評価基準)
・5点:破泡された粒子痕個数が0個以下であれば、残留した乳化剤による塗工不良が全くなく、良好である。
・4点:破泡された粒子痕個数が1個以上5個以下であれば、残留した乳化剤による塗工不良がほぼなく、良好である。
・3点:破泡された粒子痕個数が6個以上10個以下であれば、残留した乳化剤による塗工不良が少なく、良好である。
・2点:破泡された粒子痕個数が11個以上15個以下であれば、残留した乳化剤による塗工不良が若干あり、使用しづらい。
・1点:破泡された粒子痕個数が16個以上であれば、残留した乳化剤による塗工不良が多く、使用不可である。
<Evaluation of electrode condition>
The positive electrode for a lithium ion secondary battery obtained above was cut into a size of 10 cm x 10 cm, and the number of broken bubbles on the surface was counted visually. The evaluation criteria are as follows. The evaluation results are shown in Tables 4 to 5 below. In cases where no damage to the active material layer is observed, coating defects due to residual emulsifier are reduced and good cycle characteristics are exhibited.
(Evaluation criteria)
- 5 points: If the number of broken particle traces is 0 or less, there is no coating defect due to residual emulsifier, which is good.
- 4 points: If the number of broken particle traces is 1 or more and 5 or less, there is almost no coating defect due to residual emulsifier, which is good.
- 3 points: If the number of broken particle traces is 6 or more and 10 or less, there are few coating defects due to residual emulsifier, which is good.
- 2 points: If the number of broken particle traces is 11 or more and 15 or less, there will be some coating defects due to the residual emulsifier, making it difficult to use.
- 1 point: If the number of broken particle traces is 16 or more, there are many coating defects due to residual emulsifier, and the product cannot be used.
<密着強度の評価>
 上記で得られたリチウムイオン二次電池用正極の表面に、ナイフを用いて活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ10本入れて碁盤目の切り込みを作った。この切り込みに幅18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ」(登録商標)JIS Z1522:2009に規定)を貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で評価した。評価基準は以下の通りである。評価結果を下表4~下表5に示す。
(評価基準)
・5点:活物質層の脱落が0個である。
・4点:活物質層の脱落が1~5個である。
・3点:活物質層の脱落が6~20個である。
・2点:活物質層の脱落が21~40個である。
・1点:活物質層の脱落が41個以上である。
<Evaluation of adhesion strength>
On the surface of the positive electrode for a lithium ion secondary battery obtained above, a grid pattern was created by using a knife to make 10 vertical and horizontal cuts at 2 mm intervals from the active material layer to the depth reaching the current collector. . An adhesive tape with a width of 18 mm (manufactured by Nichiban Co., Ltd., product name "Cello Tape" (registered trademark) specified in JIS Z1522:2009) was applied to this incision and immediately peeled off, and the degree of fallout of the active material was visually evaluated. did. The evaluation criteria are as follows. The evaluation results are shown in Tables 4 to 5 below.
(Evaluation criteria)
- 5 points: 0 active material layers fell off.
- 4 points: 1 to 5 active material layers have fallen off.
- 3 points: 6 to 20 active material layers have fallen off.
- 2 points: 21 to 40 active material layers have fallen off.
- 1 point: 41 or more active material layers have fallen off.
 5.4.4.リチウムイオン二次電池の作製及び物性評価
<リチウムイオン二次電池負極用スラリーの調製>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC2200」、株式会社ダイセル製)1質量部(固形分換算)、負極活物質としてのグラファイト100質量部(固形分換算)、及び水68質量部を投入し、60rpmで1時間撹拌を行った。
5.4.4. Fabrication and physical property evaluation of lithium ion secondary battery <Preparation of slurry for lithium ion secondary battery negative electrode>
A twin-screw planetary mixer (manufactured by Primix Co., Ltd., trade name "TK Hibismix 2P-03"), 1 part by mass (solid content equivalent) of a thickener (trade name "CMC2200", made by Daicel Corporation), and a negative electrode. 100 parts by mass of graphite (solid content equivalent) as an active material and 68 parts by mass of water were added, and stirring was performed at 60 rpm for 1 hour.
 次いで、SBR(商品名「TRD105A」、株式会社ENEOSマテリアル製)を2質量部(固形分換算)に相当する量だけ加え、さらに1時間撹拌し、ペーストを得た。得られたペーストに水を投入し、固形分を50%に調整した後、撹拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間撹拌混合することにより、リチウムイオン二次電池負極用スラリーを調製した。 Next, SBR (trade name "TRD105A", manufactured by ENEOS Materials Co., Ltd.) was added in an amount equivalent to 2 parts by mass (solid content equivalent), and the mixture was further stirred for 1 hour to obtain a paste. After adding water to the obtained paste and adjusting the solid content to 50%, it was stirred at 200 rpm for 2 minutes at 1800 rpm using a stirring defoaming machine (manufactured by Shinky Co., Ltd., trade name "Awatori Rentaro"). A slurry for a lithium ion secondary battery negative electrode was prepared by stirring and mixing for 5 minutes at 1,800 rpm under vacuum for 1.5 minutes.
<リチウムイオン二次電池用負極の作製>
 厚み20μmの銅箔よりなる集電体の表面に、上記で調製したリチウムイオン二次電池負極用スラリーを、乾燥後の膜厚が80μmとなるように、ドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、形成された膜(負極活物質層)の密度が1.9g/cmになるように、ロールプレス機を用いてプレス加工することにより、リチウムイオン二次電池用負極を得た。
<Preparation of negative electrode for lithium ion secondary battery>
The slurry for lithium ion secondary battery negative electrode prepared above was uniformly applied to the surface of a current collector made of copper foil with a thickness of 20 μm using a doctor blade method so that the film thickness after drying was 80 μm. It was dried at ℃ for 20 minutes. Thereafter, a negative electrode for a lithium ion secondary battery was obtained by pressing using a roll press machine so that the density of the formed film (negative electrode active material layer) was 1.9 g/cm 3 .
<リチウムイオン二次電池の組立て>
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記で作製したリチウムイオン二次電池用負極を直径16.16mmの円形に打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmの円形に打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を、リチウムイオン二次電池用負極の上に重ねて載置した。さらに、空気が入らないように電解液を500μL注入した後、上記で作製したリチウムイオン二次電池用正極を直径15.95mmの円形に打ち抜き成形したものを、セパレータの上に重ねて載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン二次電池を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
<Assembling the lithium ion secondary battery>
In a glove box that has been replaced with Ar so that the dew point is -80°C or less, the negative electrode for a lithium ion secondary battery produced above is punched and molded into a circular shape with a diameter of 16.16 mm. Co., Ltd., trade name "HS Flat Cell"). Next, a separator made of a polypropylene porous membrane punched into a circular shape with a diameter of 24 mm (manufactured by Celguard Co., Ltd., trade name "Celguard #2400") was placed on top of the negative electrode for a lithium ion secondary battery. Furthermore, after injecting 500 μL of electrolyte to prevent air from entering, the positive electrode for lithium ion secondary battery produced above was punched into a circular shape with a diameter of 15.95 mm and placed on top of the separator. A lithium ion secondary battery was assembled by closing and sealing the exterior body of the bipolar coin cell with screws. The electrolytic solution used here was a solution in which LiPF 6 was dissolved at a concentration of 1 mol/L in a solvent of ethylene carbonate/ethyl methyl carbonate = 1/1 (mass ratio).
<抵抗上昇率の評価>
 上記で作製したリチウムイオン二次電池につき、25℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(0.05C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、0サイクル目の放電容量を算出した。さらに、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。100回充放電を繰り返した後、0サイクル目と同様に充放電を行い、101回目の放電容量を評価し、下記式(5)により抵抗上昇率を算出し、下記の基準で評価した。結果を下表4~下表5に示す。
 抵抗上昇率(%)=(101サイクル目の放電容量-100サイクル目の放電容量)/(0サイクル目の放電容量-1サイクル目の放電容量)×100   (5)
(評価基準)
・5点:抵抗上昇率が100%以上~110%未満。
・4点:抵抗上昇率が110%以上~120%未満。
・3点:抵抗上昇率が120%以上~130%未満。
・2点:抵抗上昇率が130%以上~140%未満。
・1点:抵抗上昇率が140%以上~150%未満。
・0点:抵抗上昇率が150%以上。
<Evaluation of resistance increase rate>
For the lithium ion secondary battery produced above, charging was started at constant current (1.0C) in a constant temperature bath controlled at 25℃, and when the voltage reached 3.8V, it was continued to be charged at constant voltage. Charging was continued at (3.8 V), and the time when the current value reached 0.01 C was defined as the completion of charging (cutoff). Thereafter, discharge was started at a constant current (0.05 C), and the time when the voltage reached 2.5 V was defined as the completion of discharge (cutoff), and the discharge capacity at the 0th cycle was calculated. Furthermore, charging was started at a constant current (1.0C), and when the voltage reached 3.8V, charging was continued at a constant voltage (3.8V), and the current value became 0.01C. The time point was defined as the completion of charging (cutoff). Thereafter, discharging was started at a constant current (1.0 C), and the time when the voltage reached 2.5 V was defined as the completion of discharging (cutoff), and the discharge capacity of the first cycle was calculated. Charging and discharging was repeated 100 times in this manner. After repeating charging and discharging 100 times, charging and discharging were performed in the same manner as in the 0th cycle, and the 101st discharge capacity was evaluated.The rate of increase in resistance was calculated using the following formula (5), and evaluated using the following criteria. The results are shown in Tables 4 to 5 below.
Resistance increase rate (%) = (101st cycle discharge capacity - 100th cycle discharge capacity) / (0th cycle discharge capacity - 1st cycle discharge capacity) x 100 (5)
(Evaluation criteria)
- 5 points: resistance increase rate is 100% or more and less than 110%.
・4 points: Resistance increase rate is 110% or more and less than 120%.
・3 points: Resistance increase rate is 120% or more and less than 130%.
・2 points: Resistance increase rate is 130% or more and less than 140%.
- 1 point: resistance increase rate is 140% or more and less than 150%.
・0 point: resistance increase rate is 150% or more.
<サイクル特性の評価>
 上記で作製したリチウムイオン二次電池につき、25℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が3.8Vになった時点で引き続き定電圧(3.8V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が2.5Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返した。下記式(6)により容量保持率を計算し、下記の基準で評価した。結果を下表4~下表5に示す。
 容量保持率(%)
 =(100サイクル目の放電容量)/(1サイクル目の放電容量)   (6)
(評価基準)
・5点:容量保持率が95%以上。
・4点:容量保持率が90%以上~95%未満。
・3点:容量保持率が85%以上~90%未満。
・2点:容量保持率が80%以上~85%未満。
・1点:容量保持率が75%以上~80%未満。
・0点:容量保持率が75%未満。
<Evaluation of cycle characteristics>
For the lithium ion secondary battery produced above, charging was started at constant current (1.0C) in a constant temperature bath controlled at 25℃, and when the voltage reached 3.8V, it was continued to be charged at constant voltage. Charging was continued at (3.8 V), and the time when the current value reached 0.01 C was defined as the completion of charging (cutoff). Thereafter, discharging was started at a constant current (1.0 C), and the time when the voltage reached 2.5 V was defined as the completion of discharging (cutoff), and the discharge capacity of the first cycle was calculated. Charging and discharging was repeated 100 times in this manner. The capacity retention rate was calculated using the following formula (6) and evaluated based on the following criteria. The results are shown in Tables 4 to 5 below.
Capacity retention rate (%)
=(Discharge capacity at 100th cycle)/(Discharge capacity at 1st cycle) (6)
(Evaluation criteria)
・5 points: Capacity retention rate is 95% or more.
・4 points: Capacity retention rate is 90% or more and less than 95%.
・3 points: Capacity retention rate is 85% or more and less than 90%.
・2 points: Capacity retention rate is 80% or more and less than 85%.
・1 point: Capacity retention rate is 75% or more and less than 80%.
- 0 points: Capacity retention rate is less than 75%.
 5.5.実施例31~33
 実施例31では、実施例5で合成した重合体(A5)を含有する蓄電デバイス用バインダー組成物12.5質量部(固形分換算値8質量%、上記で得られた重合体(A5)としては1質量部に相当)を正極バインダーとして使用し、リチウムイオン二次電池正極用スラリーの固形分濃度が50%となるようにNMPを調整して添加した以外は、実施例21と同様の評価を実施した。また、実施例32及び33についても下表6中に記載の重合体を使用した以外は、実施例21と同様の評価を実施した。
5.5. Examples 31-33
In Example 31, 12.5 parts by mass of a binder composition for an electricity storage device containing the polymer (A5) synthesized in Example 5 (solid content equivalent: 8% by mass, as the polymer (A5) obtained above) Evaluation was the same as in Example 21, except that NMP was adjusted and added so that the solid content concentration of the slurry for lithium ion secondary battery positive electrode was 50%. was carried out. Further, in Examples 32 and 33, the same evaluation as in Example 21 was performed except that the polymers listed in Table 6 below were used.
 5.6.実施例17~33、比較例9~13の評価結果
 下表4~下表5に、実施例17~30及び比較例9~13で使用した重合体組成、各物性測定結果、及び各評価結果を示す。下表6に、実施例31~33で使用した重合体成分組成、及び各評価結果を示す。なお、下表4~下表5中に示された重合体組成を表す数値は、質量部を表す。
5.6. Evaluation results of Examples 17 to 33 and Comparative Examples 9 to 13 Tables 4 to 5 below show the polymer compositions, physical property measurement results, and evaluation results used in Examples 17 to 30 and Comparative Examples 9 to 13. shows. Table 6 below shows the composition of the polymer components used in Examples 31 to 33 and the results of each evaluation. Note that the numerical values representing the polymer composition shown in Tables 4 to 5 below represent parts by mass.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、上表4~上表5の実施例番号及び比較例番号の下の行に、それぞれの例で使用した重合体の番号を記載した。上表4~上表6における単量体、乳化剤、重合体は、上表1~上表3における化合物と同様である。 In addition, in the rows below the example numbers and comparative example numbers in Tables 4 and 5 above, the numbers of the polymers used in each example are listed. The monomers, emulsifiers, and polymers in Tables 4 to 6 above are the same as the compounds in Tables 1 to 3 above.
 実施例17~実施例33においては、リチウムイオン二次電池電極用スラリーとして、本発明の蓄電デバイス用バインダー組成物、及び活物質が含有されてなるものが用いられている。その結果、当該スラリーによって形成された活物質層は、表面状態が良好であり、剥離強度の測定の際に活物質層自体が脆くなって活物質や固体電解質の脱落、あるいはクラックなどが生じることがなく、活物質及び固体電解質のいずれの間においてもバインダーに十分な結着性が得られていることが確認された。したがって、本発明の蓄電デバイス用バインダー組成物を用いることにより、表面状態及び密着性に優れたリチウムイオン二次電池用電極を作製でき、かつ、リチウムイオン二次電池のサイクル寿命特性を向上できることがわかった。 In Examples 17 to 33, a slurry containing the binder composition for a power storage device of the present invention and an active material is used as a slurry for a lithium ion secondary battery electrode. As a result, the active material layer formed with the slurry has a good surface condition, and when measuring peel strength, the active material layer itself becomes brittle and the active material or solid electrolyte falls off or cracks occur. It was confirmed that the binder had sufficient binding properties between both the active material and the solid electrolyte. Therefore, by using the binder composition for power storage devices of the present invention, electrodes for lithium ion secondary batteries with excellent surface conditions and adhesion can be produced, and the cycle life characteristics of lithium ion secondary batteries can be improved. Understood.
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 
The present invention is not limited to the above-described embodiments, and various modifications are possible. The present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects). Furthermore, the present invention includes configurations in which non-essential parts of the configurations described in the above embodiments are replaced with other configurations. Furthermore, the present invention also includes configurations that have the same effects or can achieve the same objectives as the configurations described in the above embodiments. Furthermore, the present invention also includes a configuration in which known technology is added to the configuration described in the above embodiments.

Claims (17)

  1.  重合体(A)と、該重合体(A)全質量に対して30~30,000ppmの乳化剤(B)と、を含有する蓄電デバイス用バインダー組成物であって、
     前記重合体(A)中に含まれる繰り返し単位の合計を100質量%としたときに、前記重合体(A)が、
     共役ジエン化合物に由来する繰り返し単位(a1)50~99質量%と、
     芳香族ビニル化合物に由来する繰り返し単位(a2)1~50質量%と、
    を含有し、
     前記重合体(A)の重量平均分子量(Mw)が100,000~2,000,000である、蓄電デバイス用バインダー組成物。
    A binder composition for a power storage device comprising a polymer (A) and an emulsifier (B) in an amount of 30 to 30,000 ppm based on the total mass of the polymer (A),
    When the total number of repeating units contained in the polymer (A) is 100% by mass, the polymer (A) is
    50 to 99% by mass of repeating units (a1) derived from a conjugated diene compound,
    1 to 50% by mass of repeating units (a2) derived from an aromatic vinyl compound;
    Contains
    A binder composition for a power storage device, wherein the polymer (A) has a weight average molecular weight (Mw) of 100,000 to 2,000,000.
  2.  前記重合体(A)が、不飽和カルボン酸に由来する繰り返し単位(a3)0.1~10質量%を更に含有する、請求項1に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electricity storage device according to claim 1, wherein the polymer (A) further contains 0.1 to 10% by mass of a repeating unit (a3) derived from an unsaturated carboxylic acid.
  3.  前記重合体(A)の、25℃、1気圧におけるトルエンに対する溶解度が、トルエン100gに対して1g以上である、請求項1に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electricity storage device according to claim 1, wherein the polymer (A) has a solubility in toluene at 25°C and 1 atm of 1 g or more per 100 g of toluene.
  4.  前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、-80℃~0℃の温度範囲において吸熱ピークが観測される、請求項1に記載の蓄電デバイス用バインダー組成物。 Claim 1, wherein when the polymer (A) is subjected to differential scanning calorimetry (DSC) in accordance with JIS K7121:2012, an endothermic peak is observed in the temperature range of -80°C to 0°C. The binder composition for an electricity storage device as described above.
  5.  前記重合体(A)について、JIS K7121:2012に準拠して示差走査熱量測定(DSC)を行ったときに、80℃~150℃の温度範囲において吸熱ピークが更に観測される、請求項4に記載の蓄電デバイス用バインダー組成物。 Claim 4, wherein when the polymer (A) is subjected to differential scanning calorimetry (DSC) in accordance with JIS K7121:2012, an endothermic peak is further observed in a temperature range of 80°C to 150°C. The binder composition for an electricity storage device as described above.
  6.  液状媒体(C)を更に含有する、請求項1ないし請求項5のいずれか一項に記載の蓄電デバイス用バインダー組成物。 The binder composition for an electricity storage device according to any one of claims 1 to 5, further comprising a liquid medium (C).
  7.  前記液状媒体(C)が、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ケトン類、エステル類、エーテル類及びラクタム類よりなる群から選択される少なくとも1種である、請求項6に記載の蓄電デバイス用バインダー組成物。 The liquid medium (C) is at least one selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and lactams. 6. The binder composition for an electricity storage device according to 6.
  8.  請求項6に記載の蓄電デバイス用バインダー組成物と、固体電解質と、を含有する全固体二次電池用スラリー。 A slurry for an all-solid-state secondary battery containing the binder composition for an electricity storage device according to claim 6 and a solid electrolyte.
  9.  前記固体電解質として、硫化物系固体電解質又は酸化物系固体電解質を含有する、請求項8に記載の全固体二次電池用スラリー。 The slurry for an all-solid-state secondary battery according to claim 8, which contains a sulfide-based solid electrolyte or an oxide-based solid electrolyte as the solid electrolyte.
  10.  正極活物質層と、固体電解質層と、負極活物質層と、を少なくとも備える全固体二次電池において、
     前記正極活物質層、前記固体電解質層、及び前記負極活物質層の少なくともいずれか1層が、請求項8に記載の全固体二次電池用スラリーを塗布及び乾燥させて形成された層である、全固体二次電池。
    An all-solid-state secondary battery comprising at least a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer,
    At least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is a layer formed by applying and drying the slurry for an all-solid-state secondary battery according to claim 8. , all-solid-state secondary battery.
  11.  基材上に、請求項8に記載の全固体二次電池用スラリーを塗布及び乾燥させて形成された層を有する、全固体二次電池用固体電解質シート。 A solid electrolyte sheet for an all-solid-state secondary battery, comprising a layer formed by applying and drying the slurry for an all-solid-state secondary battery according to claim 8 on a base material.
  12.  請求項8に記載の全固体二次電池用スラリーを基材上に塗布及び乾燥させる工程を含む、全固体二次電池用固体電解質シートの製造方法。 A method for producing a solid electrolyte sheet for an all-solid-state secondary battery, comprising a step of applying the slurry for an all-solid-state secondary battery according to claim 8 onto a base material and drying the slurry.
  13.  請求項12に記載の全固体二次電池用固体電解質シートの製造方法を介して全固体二次電池を製造する、全固体二次電池の製造方法。 A method for manufacturing an all-solid-state secondary battery, which comprises manufacturing an all-solid-state secondary battery using the method for manufacturing a solid electrolyte sheet for an all-solid-state secondary battery according to claim 12.
  14.  請求項6に記載の蓄電デバイス用バインダー組成物と、活物質と、を含有するリチウムイオン二次電池電極用スラリー。 A slurry for a lithium ion secondary battery electrode, comprising the binder composition for an electricity storage device according to claim 6 and an active material.
  15.  前記活物質が正極活物質である、請求項14に記載のリチウムイオン二次電池電極用スラリー。 The slurry for a lithium ion secondary battery electrode according to claim 14, wherein the active material is a positive electrode active material.
  16.  集電体と、前記集電体の表面に請求項14に記載のリチウムイオン二次電池電極用スラリーが塗布及び乾燥されて形成された活物質層と、を備えるリチウムイオン二次電池用電極。 An electrode for a lithium ion secondary battery, comprising: a current collector; and an active material layer formed by applying and drying the slurry for a lithium ion secondary battery electrode according to claim 14 on the surface of the current collector.
  17.  請求項16に記載のリチウムイオン二次電池用電極を備えるリチウムイオン二次電池。
     
    A lithium ion secondary battery comprising the lithium ion secondary battery electrode according to claim 16.
PCT/JP2023/021706 2022-06-13 2023-06-12 Binder composition for power storage devices, slurry for all-solid-state secondary batteries, all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary batteries, method for producing solid electrolyte sheet for all-solid-state secondary batteries, method for producing all-solid-state secondary battery, slurry for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery WO2023243590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095090 2022-06-13
JP2022095090 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243590A1 true WO2023243590A1 (en) 2023-12-21

Family

ID=89191281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021706 WO2023243590A1 (en) 2022-06-13 2023-06-12 Binder composition for power storage devices, slurry for all-solid-state secondary batteries, all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary batteries, method for producing solid electrolyte sheet for all-solid-state secondary batteries, method for producing all-solid-state secondary battery, slurry for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2023243590A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250123A (en) * 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd Aqueous binder for forming battery electrode
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
JP2016027549A (en) * 2014-06-30 2016-02-18 パナソニック株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and manufacturing method for the same
WO2016170768A1 (en) * 2015-04-23 2016-10-27 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017084663A (en) * 2015-10-29 2017-05-18 株式会社日本触媒 Anion-conducting film
WO2018163776A1 (en) * 2017-03-10 2018-09-13 日本ゼオン株式会社 Binder for all-solid-state batteries, binder composition for all-solid-state batteries and method for producing binder composition for all-solid-state batteries
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
US20210242490A1 (en) * 2020-01-31 2021-08-05 Samsung Sdi Co., Ltd. All-solid secondary battery and method of preparing same
JP2021523520A (en) * 2019-01-17 2021-09-02 エルジー・ケム・リミテッド Electrodes for secondary batteries, their manufacturing methods, and secondary batteries including them
JP2021182534A (en) * 2020-05-20 2021-11-25 住友化学株式会社 Adhesive separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
US20220052319A1 (en) * 2020-03-03 2022-02-17 Ningde Amperex Technology Limited Electrochemical device and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250123A (en) * 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd Aqueous binder for forming battery electrode
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
JP2016027549A (en) * 2014-06-30 2016-02-18 パナソニック株式会社 Negative electrode plate for nonaqueous electrolyte secondary battery and manufacturing method for the same
WO2016170768A1 (en) * 2015-04-23 2016-10-27 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017084663A (en) * 2015-10-29 2017-05-18 株式会社日本触媒 Anion-conducting film
WO2018163776A1 (en) * 2017-03-10 2018-09-13 日本ゼオン株式会社 Binder for all-solid-state batteries, binder composition for all-solid-state batteries and method for producing binder composition for all-solid-state batteries
WO2019230592A1 (en) * 2018-05-31 2019-12-05 富士フイルム株式会社 Current collector having easily adhering layer, electrode, all-solid-state secondary battery, electronic device, electric vehicle, and methods for manufacturing current collector having easily adhering layer, electrode and all-solid-state secondary battery
JP2021523520A (en) * 2019-01-17 2021-09-02 エルジー・ケム・リミテッド Electrodes for secondary batteries, their manufacturing methods, and secondary batteries including them
US20210242490A1 (en) * 2020-01-31 2021-08-05 Samsung Sdi Co., Ltd. All-solid secondary battery and method of preparing same
US20220052319A1 (en) * 2020-03-03 2022-02-17 Ningde Amperex Technology Limited Electrochemical device and electronic device
JP2021182534A (en) * 2020-05-20 2021-11-25 住友化学株式会社 Adhesive separator for non-aqueous electrolyte secondary battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6988948B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
JP7306268B2 (en) Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
KR101959520B1 (en) Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
KR101762604B1 (en) Positive electrode for secondary battery, and secondary battery
CN106663813B (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP5534245B2 (en) Positive electrode for secondary battery and secondary battery
JP6760074B2 (en) Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6520720B2 (en) Binder composition for lithium ion secondary battery negative electrode, slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6536564B2 (en) Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery porous film, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20230034420A (en) All-solid secondary battery
JP5652313B2 (en) Negative electrode slurry composition for lithium secondary battery, method for producing negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2013008485A (en) Positive electrode for secondary battery and secondary battery
JP2014165131A (en) Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP6428342B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20190016021A (en) Binder compositions for solid electrolyte batteries and slurry compositions for solid electrolyte batteries
WO2020203042A1 (en) Binder for solid-state secondary battery, binder composition for solid-state secondary battery, slurry for solid-state secondary battery, solid electrolytic sheet for solid-state secondary battery, and production methods therefor, and solid-state secondary battery and production method therefor
US20230275231A1 (en) Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
JP2018006333A (en) Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery
KR20220047803A (en) The composition for electrical storage devices, the slurry for electrical storage device electrodes, the electrical storage device electrode, and the electrical storage device
CN116632246A (en) Slurry composition for secondary battery positive electrode, and secondary battery
WO2023243590A1 (en) Binder composition for power storage devices, slurry for all-solid-state secondary batteries, all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary batteries, method for producing solid electrolyte sheet for all-solid-state secondary batteries, method for producing all-solid-state secondary battery, slurry for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2024009866A1 (en) Binder composition for power storage device, slurry for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN112385062B (en) Composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
WO2024075601A1 (en) Binder composition for power storage device, slurry for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2023049607A (en) Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823880

Country of ref document: EP

Kind code of ref document: A1