WO2023243168A1 - Raw material transfer device - Google Patents
Raw material transfer device Download PDFInfo
- Publication number
- WO2023243168A1 WO2023243168A1 PCT/JP2023/010451 JP2023010451W WO2023243168A1 WO 2023243168 A1 WO2023243168 A1 WO 2023243168A1 JP 2023010451 W JP2023010451 W JP 2023010451W WO 2023243168 A1 WO2023243168 A1 WO 2023243168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- section
- guide
- guide part
- delivery device
- Prior art date
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 248
- 238000012546 transfer Methods 0.000 title claims abstract description 10
- 235000013339 cereals Nutrition 0.000 description 17
- 230000002950 deficient Effects 0.000 description 16
- 241000209094 Oryza Species 0.000 description 15
- 235000007164 Oryza sativa Nutrition 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 235000009566 rice Nutrition 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 4
- 235000010469 Glycine max Nutrition 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000036544 posture Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 2
- 235000021329 brown rice Nutrition 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 240000001417 Vigna umbellata Species 0.000 description 1
- 235000011453 Vigna umbellata Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G11/00—Chutes
- B65G11/10—Chutes flexible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G65/00—Loading or unloading
- B65G65/30—Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
- B65G65/34—Emptying devices
- B65G65/40—Devices for emptying otherwise than from the top
- B65G65/44—Devices for emptying otherwise than from the top using reciprocating conveyors, e.g. jigging conveyors
Definitions
- the present invention relates to a raw material delivery device for delivering raw materials supplied from a supply section to a conveying section, and in particular belongs to the technical field of a structure in which the raw materials supplied from the supply section are temporarily stored and then allowed to flow down.
- Patent Document 1 discloses a delivery device that includes an intermediate gutter that is slidable relative to a supply section.
- the slope of the conveyance section when changing the slope of the conveyance section according to the size and weight of the raw material, if the slope is made steeper, the distance between the supply section and the conveyance section is shortened, and the intermediate gutter becomes closer to the feed section. If the slope is made gentler, the distance between the supply part and the conveyance part becomes longer, so the intermediate gutter slides below the supply part and overlaps with the supply part. It is designed so that the portions are small.
- a relay gutter is installed between the supply section and the upper part of the conveyance section.
- a driving means for moving the relay gutter toward and away from the conveying section is provided, and the driving means automatically adjusts the position of the relay gutter according to the flow rate of the raw material.
- Patent Document 3 discloses providing a flow regulating plate made of an elastic material such as rubber within the conveyance section.
- the flow of the raw material flowing inside the conveyance section is regulated by a flow regulating plate to stabilize the flow of the raw material.
- Patent Document 4 discloses that a regulating plate is provided in the supply section to suppress powder dispersion of the raw material.
- an optical sorting machine that optically sorts raw materials is configured to use an optical device to sort out foreign substances contained in raw materials flowing through a conveying section, and to remove them using an ejector device.
- an optical device to sort out foreign substances contained in raw materials flowing through a conveying section, and to remove them using an ejector device.
- it is necessary to ensure that all raw materials flowing through the conveyance section are properly transferred from the supply section to the conveyance section. It is preferable to hand over the item without bouncing and without disturbing the posture.
- the driving means can automatically adjust the position of the relay gutter and cause the raw material to flow down at a constant speed to the same location in the conveyance section, so there is no need for adjustment work by the operator.
- multiple serial processes are required, such as the process of detecting the flow rate of the raw material, the process of determining the flow rate with a threshold value, the drive amount calculation, the process of issuing an operation command to the drive means, and the process of operating the drive means, for example, If the flow rate of the raw material suddenly changes, the real-time response may not be good, and it is conceivable that good delivery conditions cannot be maintained from the time the flow rate changes until the position adjustment of the relay gutter is completed.
- Another problem is that manufacturing costs increase due to the need for equipment such as sensors, control devices, and actuators.
- Patent Document 3 a flow regulating plate is provided in the conveying section, but since the flow regulating plate is located in the vertical middle part of the conveying section, it is used as a member for transferring the raw material from the supply section to the conveying section. It does not work and it is not possible to achieve good delivery.
- the regulation plate of Patent Document 4 is a member for regulating the flow of raw materials within the supply section, and is not a member for delivering raw materials to the conveyance section, so its contribution to good delivery is low.
- the present invention has been made in view of these points, and its purpose is to achieve a simple and low-cost transfer of raw materials when transferring the raw materials from the supply section to the conveyance section.
- the purpose is to stabilize the flowing state.
- the first aspect is based on a raw material delivery device that delivers raw materials supplied from a supply section to a conveyance section that forms a downstream surface for the raw materials.
- the delivery device includes a guide section that guides the raw material supplied from the supply section to the downstream surface.
- the guide part is flexible and bends downward when a predetermined amount or more of the raw material accumulates on the guide part to form a gap between the downstream end of the guide part and the downstream surface through which the raw material can pass. have.
- the raw material supplied from the supply section is guided toward the conveyance section by the guide section, the raw material temporarily accumulates on the guide section.
- the guide part bends downward due to the weight of the raw material, creating a gap between the downstream end of the guide part and the downstream surface of the conveying part through which the raw material can pass. is formed, so the raw material accumulated on the guide part passes through the gap and flows down the flow down surface of the conveying part.
- the gap between the downstream end of the guide part and the downstream surface of the conveying part increases as the amount of raw material accumulated on the guide part increases. I see, it expands, but the more it decreases, the more it shrinks. This gap changes immediately when the amount of raw material accumulated on the guide part changes, so the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap is controlled by utilizing the flexibility of the guide portion, the manufacturing cost is lower than when a conventional electric drive means is provided.
- the posture of the raw material is less likely to be disturbed when it is transferred from the supply section to the conveyance section, and the bouncing of the raw material when it reaches the conveyance section is also suppressed. Therefore, the delivery from the supply section to the conveyance section is improved.
- the delivery device includes a support part that supports the guide part so that the guide part can swing freely in the vertical direction, and a biasing member that applies an upward biasing force to the guide part. It has a section.
- the biasing force of the biasing section causes the guide section to swing downward when a predetermined amount or more of the raw material accumulates on the guide section, thereby forming a gap between the guide section and the downstream surface through which the raw material can pass. It is set as follows.
- the guide part swings downward against the biasing force of the biasing part, and the guide part and the downstream surface of the conveying part A gap is formed between them through which the raw material can pass. Since this gap changes depending on the difference between the urging force of the urging section and the weight of the temporarily accumulated raw material, the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap is controlled using the biasing force of the biasing section, the manufacturing cost is lower than when a conventional electric drive means is provided.
- a gap smaller than the outer diameter of the raw material can be formed between the downstream end of the guide part and the downstream surface. That is, since the downstream end of the guide part and the downstream surface are separated from each other in advance, there is no frictional resistance between them, and the guide part bends and deforms as intended and swings. Furthermore, when the raw material accumulated on the guide part is less than a predetermined amount, the raw material can be prevented from flowing through the gap, and at least a predetermined amount of the raw material can be accumulated on the guide part. By flowing the once stored raw material through the gap, the effect of improving the delivery from the supply section to the conveyance section as described above becomes even more remarkable.
- an angle formed by an imaginary extended surface extending along the guide part until it intersects with the downstream surface and the downstream surface above the imaginary extended surface is 90 degrees.
- the difference in level between the supply section and the guide section is reduced. Furthermore, in the second aspect, by arranging the swing center of the guide section adjacent to the downstream end of the supply section, the difference in level between the supply section and the guide section is reduced. Therefore, the raw material supplied from the supply section can be smoothly delivered to the guide section.
- the guide part when a predetermined amount or more of the raw material accumulates on the guide part, the guide part is bent and deformed downward, forming a gap through which the raw material can pass. Further, in the second aspect, when a predetermined amount or more of the raw material accumulates on the guide part, the guide part can be swung downward to form a gap through which the raw material can pass. Therefore, when transferring the raw material from the supply section to the conveying section, it is possible to achieve a simple and low-cost transfer without the need for an electric drive means, and it is possible to achieve a good transfer and to stabilize the flow of the raw material. .
- FIG. 1 is a schematic cross-sectional view of a color sorter equipped with a raw material delivery device according to Embodiment 1 of the present invention.
- FIG. 3 is an enlarged sectional view of the raw material delivery device.
- FIG. 2 is a diagram corresponding to FIG. 2 showing a case where less than a predetermined amount of raw material accumulates on the guide portion.
- FIG. 2 is a diagram corresponding to FIG. 2 showing a case where more than a predetermined amount of raw material has accumulated on the guide portion.
- FIG. 2 is a diagram corresponding to FIG. 2 showing a case where the flow rate of the raw material is increased.
- FIG. 3 is a schematic diagram used when calculating a necessary biasing force.
- FIG. 2 is a diagram corresponding to FIG.
- FIG. 10 is a diagram corresponding to FIG. 10 showing a case where less than a predetermined amount of raw material accumulates on the guide portion.
- FIG. 10 is a diagram corresponding to FIG. 10 showing a case where more than a predetermined amount of raw material has accumulated on the guide part.
- FIG. 10 is a diagram corresponding to FIG. 10 showing a case where the flow rate of the raw material is increased.
- FIG. 2 is a diagram corresponding to a modification of Embodiment 2;
- FIG. FIG. 3 is a sectional view of a rice huller according to Embodiment 3 of the present invention. It is a graph showing the raw material scattering rate of Embodiment 1 and a conventional example. It is a graph which shows the raw material scattering rate of Embodiment 2 and a conventional example. It is a graph showing the scattering rate of soybeans. It is a graph showing the relationship between scattering rate and sorting rate.
- the inclined chute 102 has a predetermined width that is wider than the width of the vibrating feeder 101b, is arranged in an inclined position below the downstream side of the vibrating feeder 101b, and allows the raw material supplied from the vibrating feeder 101b to naturally flow down.
- the inclined chute 102 includes a flat inclined plate part 102b forming a downstream surface 102a of the raw material, and side plate parts 102c rising from both sides of the inclined plate part 102b in the width direction.
- the slope of the inclined chute 102 is adjustable. Note that instead of the inclined chute 102, a belt-type conveyance section may be used.
- the arithmetic device 110 is electrically connected to the ejector drive device 111, and an output signal from the arithmetic device 110 is input to the ejector drive device 111. That is, the signal of the determination result by the arithmetic unit 110 is output to the ejector drive device 111 that eliminates defective products.
- the ejector drive device 111 is electrically connected to the ejector device 112 and is configured to output a rejection signal to the ejector device 112. When the ejector device 112 receives the rejection signal, it injects compressed air toward the fall trajectory L1 of the raw material just as the defective product passes in front of it, thereby blowing away the defective product. This method is also well known.
- the raw material delivery device 1 is a device that can achieve the above-mentioned good delivery, or a delivery very close to it, when delivering the raw material supplied from the supply unit 101 to the inclined chute 102.
- the raw material delivery device 1 includes a guide part 2 that guides the raw material supplied from the vibrating feeder 101b to the downstream surface 102a of the inclined chute 102, and a guide part 2 that guides the raw material supplied from the vibrating feeder 101b to the downstream surface 102a of the inclined chute 102. It includes a support part 3 that supports the upstream side portion of the guide part 2 so as to be swingable, and an urging part 4 that applies an upward biasing force to the guide part 2.
- the guide section 2 is composed of a gutter-like member that extends from the downstream end of the vibrating feeder 101b toward the downstream surface 102a of the inclined chute 102 while tilting downward.
- Each side plate portion 2b is provided with a rising side plate portion 2b.
- the side plate portion 2b is for preventing the raw material from leaking to the side, and may be provided as necessary, or only one side may be provided. If there is no side plate portion 2b, the guide portion 2 has a simple plate shape.
- the bottom plate portion 2a is made of, for example, an acrylic flat plate.
- the material constituting the guide portion 2 is preferably a material that does not generate static electricity, and may be, for example, metal.
- the guide portion 2 may be provided with a heater (not shown) to prevent dirt, or may be subjected to surface treatment to prevent dirt.
- the upper surface of the bottom plate portion 2a of the guide portion 2 may be provided with a groove (not shown) extending in the direction in which the raw material is guided.
- the support part 3 is composed of a support shaft that extends horizontally along the width direction of the guide part 2.
- the support section 3 is a member that forms the swing center of the guide section 2, and is attached below the downstream end of the vibrating feeder 101b of the supply section 101.
- the upstream end of the guide section 2 is rotatably connected to the support section 3, so that the guide section 2 can be swung such that the downstream end moves in the vertical direction with the upstream end section as the center of oscillation. be able to move.
- the movement locus of the downstream end of the guide section 2 has an arc shape with the support section 3 as the center. Note that the upstream end of the guide section 2 may be fixed to the support section 3, and the support section 3 may be rotatably connected to the downstream end of the vibrating feeder 101b. can be moved.
- the biasing part 4 is made of an elastic member such as a spring or rubber, and can be composed of a single spring, a single rubber, or a combination of a spring and rubber.
- an example will be described in which the biasing section 4 is made of a torsion spring, but the biasing section 4 may be composed of a spring other than a torsion spring, rubber, or the like. Since the biasing section 4 is composed of a torsion spring, the biasing section 4 includes a first arm 4a, a second arm 4b, and an elastic force generating section 4c that generates an elastic force between these arms 4a and 4b. have.
- a spring fixing member 5 to which the first arm 4a of the urging section 4 is fixed is provided below the downstream end of the vibratory feeder 101b.
- the spring fixing member 5 is fixed, for example, to a frame member, a casing, or the like that constitutes a part of the raw material delivery device 1.
- the second arm 4b of the biasing section 4 is fixed to the lower surface of the bottom plate section 2a of the guide section 2. Thereby, the biasing section 4 always biases the guide section 2 upward.
- the biasing part 4 when the biasing part 4 is configured with a coil spring, one end of the coil spring is fixed to the spring fixing member 5, and the other end of the coil spring is fixed to the lower surface of the bottom plate part 2a of the guide part 2. good.
- the urging part 4 when the urging part 4 is configured with a leaf spring, one end of the leaf spring is fixed to the spring fixing member 5, and the other end of the leaf spring is fixed to the lower surface of the bottom plate part 2a of the guide part 2. do it.
- the biasing force may be applied by pulling the guide portion 2 upward using a tension spring, rubber, or the like.
- the gap S1 is the narrowest. That is, the inclination angle of the guide part 2 is set so that the gap S1 becomes the narrowest when there is no raw material on the guide part 2.
- the guide part 2 swings downward without interfering with the downstream surface 102a of the inclined chute 102.
- the angle A becomes smaller than 90 degrees, the downstream edge of the guide section 2 moves away from the downstream surface 102a, and the gap S1 widens (Fig. 4 , shown in Figure 5).
- the angle A becomes smaller than 90 degrees, the slope of the guide section 2 will become too steep, and the raw material supplied from the vibrating feeder 101b may accelerate on the guide section 2 and become likely to bounce. It is preferable that the angle is 90 degrees or less. On the other hand, if the angle A is larger than 90 degrees, when the guide section 2 attempts to swing downward, the downstream end of the guide section 2 will contact and interfere with the downstream surface 102a of the inclined chute 102, causing the guide section 2 will no longer swing downwards. Therefore, in this example, the angle A when the guide part 2 is at the initial position is 90 degrees, but it can be made smaller than 90 degrees as long as the raw material does not bounce. For example, the angle A can be set from 85 degrees to 90 degrees. It is also possible to set it within a range.
- the urging force of the urging section 4 it is possible to determine the timing at which the guide section 2 in the initial position starts to swing downward. That is, in a state where less than a predetermined amount of raw material has accumulated on the guide part 2 (as shown in FIG. 3), the urging force by the urging part 4 keeps the guide part 2 at the initial position, while As shown in the figure, the setting is such that when more than a predetermined amount of raw material accumulates on the guide part 2, the guide part 2 is swung downward to form a gap S1 between it and the downstream surface 102a through which the raw material can pass. has been done. While the raw material continues to flow, a gap S1 through which the raw material can pass is maintained. Also, when the flow rate of the raw material increases as shown in FIG. 4, as shown in FIG. 5, the guide part 2 swings downward more than in the case shown in FIG. While this continues, this large gap S1 is maintained.
- the upper surface of the bottom plate portion 2a of the guide portion 2 may be provided with a high-friction material or a high-friction structure that generates a higher frictional force than a smooth metal plate surface. Thereby, the raw material supplied to the bottom plate part 2a of the guide part 2 stops flowing immediately, so that the raw material can be temporarily stored on the guide part 2. Further, an uneven shape may be provided on the upper surface of the bottom plate portion 2a of the guide portion 2. Thereby, the raw material supplied to the bottom plate part 2a of the guide part 2 becomes caught in the recesses and convex parts, and the raw material can be temporarily stored on the guide part 2.
- the moment M of force at a position a [mm] away from the center of swing of the guide section 2 can be calculated using the following equation (2).
- the spring constant of the biasing section 4 that can realize the gap S1 can be determined.
- a is 100 mm
- ⁇ is 60 deg
- w is 50 g
- the spring constant will be approximately 0.52 N ⁇ mm/deg.
- a value suitable for the type of raw material may be determined in advance through experiments or the like.
- An appropriate size of the gap S1 is a size that allows the raw material to accumulate on the guide portion 2 and to maintain a state in which it does not overflow.
- the guide part 2 supported so as to be swingable in the vertical direction is urged upward by the urging part 4.
- the biasing force of the biasing unit 4 causes the guide unit 2 to swing downward when a predetermined amount or more of raw material accumulates on the guide unit 2, and the raw material passes between the guide unit 2 and the downstream surface 102a of the inclined chute 102. Since the setting is made to form a possible gap S1, as shown in FIG. Temporarily accumulates on top of 2.
- the gap S1 between the downstream end of the guide section 2 and the downstream surface 102a of the inclined chute 102 increases as the amount of raw material accumulated on the guide section 2 increases.
- the smaller the amount of raw material accumulated on the guide section 2 the smaller the guide section 2 becomes. Since the gap S1 changes immediately when the amount of raw material accumulated on the guide portion 2 changes, the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap S1 is controlled using the biasing force of the biasing section 4, the manufacturing cost is lower than when a conventional electric drive means is provided.
- the posture of the raw material is less likely to be disturbed when it is delivered from the supply section 101 to the inclined chute 102, and the raw material is also prevented from bouncing when it reaches the inclined chute 102. suppressed. Therefore, the delivery from the supply section to the inclined chute 102 is improved.
- FIG. 7 shows a first modification of the first embodiment.
- the bottom plate part 2a of the guide part 2 is curved upward, and the side plate part 2b is also curved accordingly.
- FIG. 8 shows a second modification of the first embodiment.
- the bottom plate part 2a of the guide part 2 is curved downward, and the side plate part 2b is also curved accordingly.
- the raw material on the guide portion 2 can be reliably guided to the downstream end of the guide portion 2.
- FIG. 9 shows a third modification of the first embodiment.
- This third modification is an example in which the present invention is applied to a case of post-feeding in which the vibrating feeder 101b of the supply section 101 and the inclined chute 102 are not faced to each other. That is, the inclined chute 102 is inclined in the opposite direction to that in the case of front loading shown in FIG. 2 and the like.
- the guide portion 2 is also inclined in the opposite direction to that in the case of front loading.
- the spring fixing member 5 is provided with a support portion 3 that swingably supports the guide portion 2.
- the biasing force 4 fixed to the spring fixing member 5 applies the biasing force as described above to the guide section 2 . Therefore, the guide part 2 can be swung in the same way as in the case of pre-loading.
- the raw material remains accumulated on the guide portion 2 after the operation is stopped, but the accumulated raw material may be discharged.
- the guide section 2 may be vibrated, the guide section 2 may be greatly swung downward, an air blower may be installed to blow the raw material on the guide section 2, or a wiper may be used to scrape the material on the guide section 2. etc. may be provided.
- FIG. 10 shows a raw material delivery device 1 according to Embodiment 2 of the present invention.
- Embodiment 2 differs from Embodiment 1 in that the guide portion 20 bends and deforms.
- the same parts as in Embodiment 1 will be given the same reference numerals as in Embodiment 1, and description thereof will be omitted.
- the guide portion 20 has desired flexibility. Specifically, when more than a predetermined amount of raw material accumulates on the guide part 20, the guide part 20 bends downward, and the raw material is disposed between the downstream end of the guide part 20 and the downstream surface 120a of the inclined chute 102. It has flexibility to form a gap S1 through which it can pass (see FIGS. 12 and 13).
- the shape of the guide section 20 when there is no raw material on the guide section 20 is referred to as the initial shape (no-load shape).
- the same gap S1 as in the first embodiment is formed between the downstream end of the guide portion 20 in the initial shape and the downstream surface 102a.
- the angle A between the virtual extension surface L2 and the downstream surface 102a above the virtual extension surface L2 is set similarly to the first embodiment.
- the guide section 20 maintains its initial shape when less than a predetermined amount of raw material has accumulated on the guide section 20 (as shown in FIG. 11), but as shown in FIG. When more than a certain amount of raw material accumulates, it bends downward to form a gap S1 between it and the downstream surface 102a through which the raw material can pass. Since the guide portion 20 remains bent while the raw material continues to flow, the gap S1 through which the raw material can pass is maintained. Also, when the flow rate of the raw material increases as shown in FIG. 12, as shown in FIG. 13, the guide part 20 bends downward more than in the case shown in FIG. 12, and the gap S1 becomes wider, and the raw material continues to flow. During this time, this gap S1 is maintained.
- the starting point 20a of the deflection deformation in the guide section 20 is adjacent to the downstream end of the vibrating feeder 101b of the supply section 101. This reduces the level difference between the guide section 20 and the downstream end of the vibratory feeder 101b, so that the raw material supplied from the vibratory feeder 101b can be smoothly delivered to the guide section 20.
- the flexible guide section 20 is provided, and when a predetermined amount or more of raw material accumulates on the guide section 20, the guide section 20 is not bent downward. A gap S1 through which the raw material can pass is formed between the tip and the downstream surface 102a of the inclined chute 102. Therefore, as shown in FIG. 11, when the raw material supplied from the supply section 101 is guided toward the inclined chute 102 by the guide section 20, the raw material temporarily accumulates on the guide section 20.
- FIG. 14 shows a modification of the second embodiment.
- the raw material delivery device 1 includes a support member 21 that supports the lower surface of the guide section 20.
- the support member 21 is fixed to a frame member, a casing, etc. that constitutes a part of the raw material delivery device 1, and does not move in the vertical direction. It is movable in the left and right directions.
- the support member 21 is disposed at the position shown by the solid line, it is possible to support a portion of the guide portion 20 near the upstream end from below.
- the support member 21 when the support member 21 is arranged at the position shown by the imaginary line, the middle part of the guide part 20 in the guiding direction can be supported from below, and the guide part 20 is less likely to bend downward compared to the position shown by the solid line. . That is, by moving the support member 21 in the guiding direction of the guide section 20, the ease of bending of the guide section 20, that is, the elastic force can be adjusted, so that the elastic force matched to the type of raw material can be easily obtained.
- the support member 21 may be positionally adjustable in the guiding direction of the guide portion 20, or may be positionally adjustable in multiple stages.
- the hulling machine 200 includes a hulling section 204 in which a pair of rubber hulling rolls 202 and 203 are rotatably arranged in a machine frame 201, a hulling section 204, and a rice hopper 205 provided above the hulling section 204.
- a paddy supply section 207 that is equipped with a vibration feeder 206 for flow rate adjustment and that stores paddy as a raw material and feeds it out appropriately, and an inclined chute that guides the paddy supplied from the paddy supply section 207 to the husking section 204.
- (Transportation section) 209 constitutes the main section.
- the inclined chute 209 has a raw material flow surface 209a.
- the vibration mechanism 206a of the vibration feeder 206 causes the vibration trough 206b to vibrate.
- the paddy supply unit 207 supplies the paddy put into the paddy hopper 205 to the downstream side by a vibrating vibrating trough 206b.
- the paddy flowing down from the downstream end of the vibrating trough 206b is supplied onto the guide section 2 of the delivery device 1.
- the guide section 2 swings downward, and the downstream end of the guide section 2 and the downstream surface 209a. In between, a gap is formed through which the raw material can pass.
- the delivery device 1 of the second embodiment when more than a predetermined amount of raw material accumulates on the guide section 20, the guide section 20 is bent downward, and the downstream end of the guide section 20 and the downstream surface 209a are bent. In between, a gap is formed through which the raw material can pass.
- FIG. 16 is a graph showing the raw material scattering rate of Embodiment 1 and the conventional example.
- the inclined chute 102 was provided with a heater (with heater) and the inclined chute 102 was not provided with a heater (without heater).
- Comparative Examples 1 and 2 are examples in which the guide part is fixed and the raw material can always pass through the gap between it and the inclined chute 102.
- the raw material flow rate is 37.5 kg/ This is an example in which the guide part is adjusted so that the angle and position are suitable when the flow rate of raw material is 5.2 kg/h/ch. This is an example in which the guide section is adjusted as follows.
- Comparative Examples 1 and 2 both have a heater.
- the raw material is short grain white rice. As shown in the graph of FIG. 16, it can be seen that in Embodiment 1, the scattering rate of the raw material is reduced compared to Comparative Examples 1 and 2 in both "with heater” and "without heater”.
- FIG. 17 is a graph showing the raw material scattering rate of Embodiment 2 and the conventional example.
- the inclined chute 102 was provided with a heater (with heater) and the inclined chute 102 was not provided with a heater (without heater).
- Comparative Examples 1 to 4 the guide part is fixed, and the raw material can always pass through the gap between it and the inclined chute 102, and Comparative Examples 1 and 2 are the same as Comparative Examples 1 and 2 above.
- Comparative Example 3 is an example in which the guide portion is adjusted to have an angle and position appropriate when the flow rate of the raw material is 37.5 kg/h/ch, and is “without heater”.
- FIG. 18 is a graph showing the scattering rate when the raw material is soybean.
- Embodiment 1 is "without heater” in which the inclined chute 102 is not provided with a heater.
- the guide part is fixed and the raw material can always pass through the gap between it and the inclined chute 102, and the angle and position are suitable when the flow rate of the raw material is 5.2 kg/h/ch.
- This is an example in which the guide section is adjusted so that As shown in the graph of FIG. 18, it can be seen that in Embodiment 1, the soybean scattering rate is significantly reduced compared to Comparative Example 5.
- FIG. 19 is a graph showing the relationship between the scattering rate of raw materials and the sorting rate.
- the sorting rate is the sorting rate by the color sorting machine 100, and the higher the numerical value, the more correctly sorted.
- Embodiment 1 is "without heater" in which the inclined chute 102 is not provided with a heater.
- Comparative Examples 1 and 2 are the same as Comparative Examples 1 and 2 above. As shown in this graph, it can be seen that if the scattering rate of raw materials can be reduced, the sorting rate by the color sorter 100 tends to improve.
- the raw material delivery device can be used when various raw materials supplied from the supply section are temporarily stored and then delivered to the transport section.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Feeding Of Articles To Conveyors (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Sorting Of Articles (AREA)
- Chutes (AREA)
Abstract
This raw material transfer device comprises a guidance part 2 that guides a raw material supplied from a supply unit to a downflow surface 102a, a support part 3 that supports the guidance part 2 so as to enable the guidance part 2 to swing vertically, and a biasing part 4 that biases the guidance part 2 upward. The biasing force of the biasing part 4 is set such that at least a prescribed amount of the raw material on the guidance part 2 accumulates to thereby cause the guidance part 2 to swing downward, and such that a space S1 through which the raw material can pass is formed between the biasing part 4 and the downflow surface 102a.
Description
本発明は、供給部から供給された原料を搬送部に受け渡すための原料の受け渡し装置に関し、特に供給部から供給された原料を一旦溜めた状態にしてから流下させる構造の技術分野に属する。
The present invention relates to a raw material delivery device for delivering raw materials supplied from a supply section to a conveying section, and in particular belongs to the technical field of a structure in which the raw materials supplied from the supply section are temporarily stored and then allowed to flow down.
従来より、例えば穀物等の原料を供給部から搬送部に供給する際に、供給部と搬送部との間に原料の受け渡し装置を介在させたものが知られている(例えば特許文献1、2参照)。
Conventionally, it has been known that a raw material delivery device is interposed between the supply section and the conveyance section when raw materials such as grains are supplied from the supply section to the conveyance section (for example, Patent Documents 1 and 2). reference).
特許文献1には、供給部に対してスライド自在とされた中間樋によって構成された受け渡し装置が開示されている。特許文献1のものでは、原料の大きさや重量等に合わせて搬送部の勾配を変更する際に、勾配を急にすると供給部と搬送部との距離が短くなることで中間樋が供給部の下方をスライドして供給部との重なり部分が大きくなる一方、勾配を緩やかにすると供給部と搬送部との距離が長くなることで中間樋が供給部の下方をスライドして供給部との重なり部分が小さくなるように構成されている。
Patent Document 1 discloses a delivery device that includes an intermediate gutter that is slidable relative to a supply section. In Patent Document 1, when changing the slope of the conveyance section according to the size and weight of the raw material, if the slope is made steeper, the distance between the supply section and the conveyance section is shortened, and the intermediate gutter becomes closer to the feed section. If the slope is made gentler, the distance between the supply part and the conveyance part becomes longer, so the intermediate gutter slides below the supply part and overlaps with the supply part. It is designed so that the portions are small.
また、特許文献2には、供給部と搬送部の上部との間に中継樋を設置している。特許文献2のものでは、中継樋を搬送部に対して接離させる駆動手段を設けており、原料の流量に応じて駆動手段が中継樋の位置を自動的に調整するようにしている。
Furthermore, in Patent Document 2, a relay gutter is installed between the supply section and the upper part of the conveyance section. In Patent Document 2, a driving means for moving the relay gutter toward and away from the conveying section is provided, and the driving means automatically adjusts the position of the relay gutter according to the flow rate of the raw material.
また、特許文献3には、搬送部内にゴムなどの弾性材からなる流動規制板を設けることが開示されている。特許文献3のものでは、搬送部内を流れる原料の流動が流動規制板によって規制されて原料の流れを安定させている。
Additionally, Patent Document 3 discloses providing a flow regulating plate made of an elastic material such as rubber within the conveyance section. In Patent Document 3, the flow of the raw material flowing inside the conveyance section is regulated by a flow regulating plate to stabilize the flow of the raw material.
また、特許文献4には、供給部内に規制板を設けて原料の散粒を抑制することが開示されている。
Further, Patent Document 4 discloses that a regulating plate is provided in the supply section to suppress powder dispersion of the raw material.
ところで、例えば原料を光学的に選別する光学式選別機では、搬送部を流れる原料に含まれる異物などを光学機器により選別してエジェクタ装置によって排除するように構成されている。光学機器による選別精度を高めてエジェクタ装置による異物排除の誤りの頻度を低くするためには、原料を供給部から搬送部へ受け渡す際に良好な受け渡し、即ち、搬送部を流れる全ての原料が跳ねることなく、かつ、姿勢の乱れがない状態での受け渡しが好ましい。
By the way, for example, an optical sorting machine that optically sorts raw materials is configured to use an optical device to sort out foreign substances contained in raw materials flowing through a conveying section, and to remove them using an ejector device. In order to improve the accuracy of sorting by optical equipment and reduce the frequency of errors in foreign matter removal by the ejector device, it is necessary to ensure that all raw materials flowing through the conveyance section are properly transferred from the supply section to the conveyance section. It is preferable to hand over the item without bouncing and without disturbing the posture.
光学式選別機の現場への導入時には、例えば特許文献1の場合、良好な受け渡し状態となるように搬送部の勾配を調整し、その勾配に合わせて中間樋をスライドさせて運用を開始する。ところが、運用開始後、調整時とは異なる原料が供給されたり、原料は同じであってもロットが異なることで大きさや形状の異なる原料が供給されることがある。そのような場合、特許文献1では運用を停止した状態で、作業者が搬送部の勾配調整と中間樋のスライド操作を行わなければならず、作業者に負担がかかる。
When introducing an optical sorting machine to a site, for example, in the case of Patent Document 1, the slope of the conveying section is adjusted so that a good delivery condition is achieved, and the intermediate gutter is slid according to the slope to start operation. However, after the start of operation, raw materials different from those used at the time of adjustment may be supplied, or even if the raw materials are the same, raw materials with different sizes and shapes may be supplied due to different lots. In such a case, in Patent Document 1, the operator must adjust the slope of the conveying section and slide the intermediate gutter while the operation is stopped, which places a burden on the operator.
この点、特許文献2では、駆動手段が中継樋の位置を自動的に調整して原料を搬送部の同一箇所に一定速度で流下させることができるので、作業者による調整作業は不要である。しかしながら、原料の流量を検出する処理、閾値との判定処理、駆動量演算、駆動手段への動作指令処理、駆動手段の動作処理といった複数の直列的な処理が必要であるため、例えば供給部からの原料の流量が急に変化した場合にリアルタイムでの応答性が良好とはいえず、流量が変化してから中継樋の位置調整が終わるまで、良好な受け渡し状態を維持できないことが考えられる。また、センサ、制御装置、アクチュエータといった機器が必要になる分、製造コストが増大するという問題もある。
In this regard, in Patent Document 2, the driving means can automatically adjust the position of the relay gutter and cause the raw material to flow down at a constant speed to the same location in the conveyance section, so there is no need for adjustment work by the operator. However, since multiple serial processes are required, such as the process of detecting the flow rate of the raw material, the process of determining the flow rate with a threshold value, the drive amount calculation, the process of issuing an operation command to the drive means, and the process of operating the drive means, for example, If the flow rate of the raw material suddenly changes, the real-time response may not be good, and it is conceivable that good delivery conditions cannot be maintained from the time the flow rate changes until the position adjustment of the relay gutter is completed. Another problem is that manufacturing costs increase due to the need for equipment such as sensors, control devices, and actuators.
一方、特許文献3には、搬送部内に流動規制板を設けているが、流動規制板は搬送部内の上下方向中間部に位置しているので、供給部から搬送部へ原料を受け渡す部材として作用せず、良好な受け渡しを実現できるものではない。
On the other hand, in Patent Document 3, a flow regulating plate is provided in the conveying section, but since the flow regulating plate is located in the vertical middle part of the conveying section, it is used as a member for transferring the raw material from the supply section to the conveying section. It does not work and it is not possible to achieve good delivery.
また、特許文献4の規制板は、供給部内で原料の流動を規制するための部材であり、搬送部へ原料を受け渡す部材ではないので、良好な受け渡しへの寄与度は低い。
Further, the regulation plate of Patent Document 4 is a member for regulating the flow of raw materials within the supply section, and is not a member for delivering raw materials to the conveyance section, so its contribution to good delivery is low.
尚、光学式選別機以外の籾摺機においても、籾摺処理を確実に行うためには、原料を供給部から搬送部へ受け渡す際に良好な受け渡しを行う必要がある。
In addition, even in rice hulling machines other than optical sorters, in order to reliably perform the hulling process, it is necessary to perform good transfer of raw materials from the supply section to the conveyance section.
本発明は、かかる点に鑑みたものであり、その目的とするところは、原料を供給部から搬送部へ受け渡す際に、簡易かつ低コストでありながら、良好な受け渡しを実現して原料の流下状態を安定させることにある。
The present invention has been made in view of these points, and its purpose is to achieve a simple and low-cost transfer of raw materials when transferring the raw materials from the supply section to the conveyance section. The purpose is to stabilize the flowing state.
上記目的を達成するために、第1の態様では、供給部から供給された原料を、原料の流下面を形成する搬送部に受け渡す原料の受け渡し装置を前提とする。前記受け渡し装置は、前記供給部から供給された原料を前記流下面へ案内する案内部を備えている。前記案内部は、当該案内部の上に所定量以上の原料が溜まることで下方に撓んで当該案内部の下流端と前記流下面との間に原料の通過可能な隙間を形成する可撓性を有している。
In order to achieve the above object, the first aspect is based on a raw material delivery device that delivers raw materials supplied from a supply section to a conveyance section that forms a downstream surface for the raw materials. The delivery device includes a guide section that guides the raw material supplied from the supply section to the downstream surface. The guide part is flexible and bends downward when a predetermined amount or more of the raw material accumulates on the guide part to form a gap between the downstream end of the guide part and the downstream surface through which the raw material can pass. have.
すなわち、供給部から供給された原料が案内部によって搬送部へ向けて案内されると、原料が案内部の上に一時的に溜まる。案内部の上に溜まった原料が所定量以上になると、原料の重量によって案内部が下方に撓み変形し、案内部の下流端と搬送部の流下面との間に原料の通過が可能な隙間が形成されるので、案内部の上に溜まっている原料が当該隙間を通過し、搬送部の流下面を流下する。
That is, when the raw material supplied from the supply section is guided toward the conveyance section by the guide section, the raw material temporarily accumulates on the guide section. When the amount of raw material accumulated on the guide part exceeds a predetermined amount, the guide part bends downward due to the weight of the raw material, creating a gap between the downstream end of the guide part and the downstream surface of the conveying part through which the raw material can pass. is formed, so the raw material accumulated on the guide part passes through the gap and flows down the flow down surface of the conveying part.
ここで、案内部の下方への撓み変形を利用していることから、案内部の下流端と搬送部の流下面との隙間は、案内部の上に溜まっている原料の量が多くなればなるほど拡大する一方、少なくなればなるほど縮小する。この隙間の変化は、案内部の上に溜まっている原料の量が変化するとすぐに変化するので、従来の電気的な駆動手段を設ける場合に比べて応答速度が速い。また、案内部の可撓性を利用した隙間のコントロールであることから、従来の電気的な駆動手段を設ける場合に比べて製造コストが低くなる。
Here, since the downward bending deformation of the guide part is used, the gap between the downstream end of the guide part and the downstream surface of the conveying part increases as the amount of raw material accumulated on the guide part increases. I see, it expands, but the more it decreases, the more it shrinks. This gap changes immediately when the amount of raw material accumulated on the guide part changes, so the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap is controlled by utilizing the flexibility of the guide portion, the manufacturing cost is lower than when a conventional electric drive means is provided.
そして、一旦溜めた原料が徐々に隙間を流れていくので、供給部から搬送部への受け渡し時における原料の姿勢が乱れにくくなるとともに、搬送部へ達したときの原料の跳ねも抑制される。よって、供給部から搬送部への受け渡しが良好になる。
Since the raw material once stored gradually flows through the gap, the posture of the raw material is less likely to be disturbed when it is transferred from the supply section to the conveyance section, and the bouncing of the raw material when it reaches the conveyance section is also suppressed. Therefore, the delivery from the supply section to the conveyance section is improved.
第2の態様に係る受け渡し装置は、前記案内部が上下方向に揺動自在となるように当該案内部を支持する支持部と、前記案内部に対して上方への付勢力を付与する付勢部とを備えている。前記付勢部による付勢力は、前記案内部の上に所定量以上の原料が溜まることで前記案内部を下方へ揺動させて前記流下面との間に原料の通過可能な隙間を形成するように設定されている。
The delivery device according to a second aspect includes a support part that supports the guide part so that the guide part can swing freely in the vertical direction, and a biasing member that applies an upward biasing force to the guide part. It has a section. The biasing force of the biasing section causes the guide section to swing downward when a predetermined amount or more of the raw material accumulates on the guide section, thereby forming a gap between the guide section and the downstream surface through which the raw material can pass. It is set as follows.
この構成によれば、案内部の上に溜まった原料が所定量以上になると、案内部が付勢部の付勢力に抗して下方に揺動し、案内部と搬送部の流下面との間に原料の通過可能な隙間が形成される。この隙間は、付勢部による付勢力と、一時的に溜まった原料の重量との差によって変化するものなので、従来の電気的な駆動手段を設ける場合に比べて応答速度が速い。また、付勢部による付勢力を利用した隙間のコントロールであることから、従来の電気的な駆動手段を設ける場合に比べて製造コストが低くなる。
According to this configuration, when the raw material accumulated on the guide part exceeds a predetermined amount, the guide part swings downward against the biasing force of the biasing part, and the guide part and the downstream surface of the conveying part A gap is formed between them through which the raw material can pass. Since this gap changes depending on the difference between the urging force of the urging section and the weight of the temporarily accumulated raw material, the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap is controlled using the biasing force of the biasing section, the manufacturing cost is lower than when a conventional electric drive means is provided.
前記案内部の上に原料が無い状態で、前記案内部の下流端と、前記流下面との間には、原料の外径よりも小さい隙間を形成することができる。すなわち、案内部の下流端と流下面とが予め離れていることで、両者の間に摩擦抵抗が無くなり、案内部が狙い通りに撓み変形し、また揺動する。さらに、案内部の上に溜まった原料が所定量未満の場合には、原料が隙間から流れないようにして、案内部の上に少なくとも所定量の原料を溜めることができる。一旦溜めた原料を隙間から流すことで、上述したように供給部から搬送部への受け渡しが良好になるという作用効果がより一層顕著なものになる。
In a state where there is no raw material on the guide part, a gap smaller than the outer diameter of the raw material can be formed between the downstream end of the guide part and the downstream surface. That is, since the downstream end of the guide part and the downstream surface are separated from each other in advance, there is no frictional resistance between them, and the guide part bends and deforms as intended and swings. Furthermore, when the raw material accumulated on the guide part is less than a predetermined amount, the raw material can be prevented from flowing through the gap, and at least a predetermined amount of the raw material can be accumulated on the guide part. By flowing the once stored raw material through the gap, the effect of improving the delivery from the supply section to the conveyance section as described above becomes even more remarkable.
前記案内部の上に原料が無い状態で、前記案内部に沿って前記流下面に交差するまで延長した仮想延長面と、当該仮想延長面よりも上の前記流下面とのなす角度が90度以下に設定されていることで、案内部の上に所定量以上の原料が溜った時点で案内部を確実に下方へ撓ませることや揺動させることができる。
When there is no raw material on the guide part, an angle formed by an imaginary extended surface extending along the guide part until it intersects with the downstream surface and the downstream surface above the imaginary extended surface is 90 degrees. With the following settings, the guide part can be reliably bent or swung downwards when a predetermined amount or more of raw material has accumulated on the guide part.
また、第1の態様において、前記案内部における撓み変形の開始起点部を前記供給部の下流端に隣接させることにより、供給部と案内部との間の段差が小さくなる。また、第2の態様において、前記案内部の揺動中心を前記供給部の下流端に隣接させることにより、供給部と案内部との間の段差が小さくなる。したがって、供給部から供給された原料を案内部にスムーズに受け渡すことができる。
Furthermore, in the first aspect, by arranging the starting point of bending deformation in the guide section adjacent to the downstream end of the supply section, the difference in level between the supply section and the guide section is reduced. Furthermore, in the second aspect, by arranging the swing center of the guide section adjacent to the downstream end of the supply section, the difference in level between the supply section and the guide section is reduced. Therefore, the raw material supplied from the supply section can be smoothly delivered to the guide section.
以上説明したように、第1の態様では、案内部の上に所定量以上の原料が溜まることで当該案内部が下方に撓み変形し、原料の通過可能な隙間を形成することができる。また、第2の態様では、案内部の上に所定量以上の原料が溜まることで当該案内部を下方へ揺動させ、原料の通過可能な隙間を形成することができる。したがって、原料を供給部から搬送部へ受け渡す際に、電気的な駆動手段を不要にして簡易かつ低コストでありながら、良好な受け渡しを実現できるとともに、原料の流下状態を安定させることができる。
As explained above, in the first aspect, when a predetermined amount or more of the raw material accumulates on the guide part, the guide part is bent and deformed downward, forming a gap through which the raw material can pass. Further, in the second aspect, when a predetermined amount or more of the raw material accumulates on the guide part, the guide part can be swung downward to form a gap through which the raw material can pass. Therefore, when transferring the raw material from the supply section to the conveying section, it is possible to achieve a simple and low-cost transfer without the need for an electric drive means, and it is possible to achieve a good transfer and to stabilize the flow of the raw material. .
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。例えば、部材の形状、部材の配置、大きさ等は本発明から逸脱しない範囲で変更することができる。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Note that the following description of the embodiments is essentially just an example, and is not intended to limit the present invention, its applications, or its uses. For example, the shape of the members, the arrangement of the members, the size, etc. can be changed without departing from the present invention.
(実施形態1)
図1は、本発明の実施形態1に係る原料の受け渡し装置1を備えた色彩選別機100の概略断面図である。色彩選別機100は、原料に含まれる異物等の不良品を選別して排除する装置である。色彩選別機100で選別対象となり得る原料は、例えば玄米、精米、大豆、小豆等の穀物であってもよいし、樹脂ペレット等の粒状物であってもよい。例えば、玄米や精米が原料である場合、害虫等による着色粒、ヤケ米等による被害粒、青未熟粒、籾米、乳白粒などの着色粒、及び小石などの異物をまとめて不良品として良品とは区別する。樹脂ペレットが原料である場合、混入した異物等を不良品として良品とは区別する。不良品は、色彩選別機100によって良品から排除することができる。 (Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a color sorter 100 equipped with a raw material delivery device 1 according to Embodiment 1 of the present invention. The color sorter 100 is a device that sorts out and eliminates defective products such as foreign substances contained in raw materials. The raw materials that can be sorted by the color sorter 100 may be, for example, grains such as brown rice, polished rice, soybeans, and red beans, or granular materials such as resin pellets. For example, when brown rice or milled rice is the raw material, colored grains caused by pests, damaged grains caused by burnt rice, colored grains such as blue immature grains, unhulled rice, milky white grains, and foreign substances such as pebbles are classified as defective and good. are distinguished. When resin pellets are the raw material, foreign substances mixed in are treated as defective products and are distinguished from good products. Defective products can be excluded from non-defective products by the color sorter 100.
図1は、本発明の実施形態1に係る原料の受け渡し装置1を備えた色彩選別機100の概略断面図である。色彩選別機100は、原料に含まれる異物等の不良品を選別して排除する装置である。色彩選別機100で選別対象となり得る原料は、例えば玄米、精米、大豆、小豆等の穀物であってもよいし、樹脂ペレット等の粒状物であってもよい。例えば、玄米や精米が原料である場合、害虫等による着色粒、ヤケ米等による被害粒、青未熟粒、籾米、乳白粒などの着色粒、及び小石などの異物をまとめて不良品として良品とは区別する。樹脂ペレットが原料である場合、混入した異物等を不良品として良品とは区別する。不良品は、色彩選別機100によって良品から排除することができる。 (Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a color sorter 100 equipped with a raw material delivery device 1 according to Embodiment 1 of the present invention. The color sorter 100 is a device that sorts out and eliminates defective products such as foreign substances contained in raw materials. The raw materials that can be sorted by the color sorter 100 may be, for example, grains such as brown rice, polished rice, soybeans, and red beans, or granular materials such as resin pellets. For example, when brown rice or milled rice is the raw material, colored grains caused by pests, damaged grains caused by burnt rice, colored grains such as blue immature grains, unhulled rice, milky white grains, and foreign substances such as pebbles are classified as defective and good. are distinguished. When resin pellets are the raw material, foreign substances mixed in are treated as defective products and are distinguished from good products. Defective products can be excluded from non-defective products by the color sorter 100.
以下、色彩選別機100の概略構造について説明する。色彩選別機100は、被選別物である原料を供給する供給部101、搬送部としての傾斜シュート102、光学選別部103及び排出ホッパ105を備えている。供給部101は、原料が貯留されるタンク101aと、原料を傾斜シュート102に供給する振動フィーダ101bとを備える。振動フィーダ101bを振動させることにより、タンク101a内の原料が当該振動フィーダ101bの下流側へ送られる。尚、供給部101は、フィーダに限られるものではなく、例えばカスケード・カットゲートタイプでもよい。
Hereinafter, the schematic structure of the color sorter 100 will be explained. The color sorter 100 includes a supply section 101 that supplies raw materials as objects to be sorted, an inclined chute 102 as a conveyance section, an optical sorting section 103, and a discharge hopper 105. The supply unit 101 includes a tank 101a in which raw materials are stored, and a vibrating feeder 101b that supplies the raw materials to the inclined chute 102. By vibrating the vibrating feeder 101b, the raw material in the tank 101a is sent to the downstream side of the vibrating feeder 101b. Note that the supply section 101 is not limited to a feeder, and may be of a cascade cut gate type, for example.
傾斜シュート102は、振動フィーダ101bの幅よりも広い所定幅を有しており、振動フィーダ101bの下流側の下方位置に傾斜した状態で配置され、振動フィーダ101bから供給される原料を自然流下させる。傾斜シュート102は、原料の流下面102aを形成する平板状の傾斜板部102bと、傾斜板部102bの幅方向両側からそれぞれ立ち上がる側板部102cとを備えている。傾斜シュート102の勾配は調整可能である。尚、傾斜シュート102の代わりに、ベルト式の搬送部であってもよい。
The inclined chute 102 has a predetermined width that is wider than the width of the vibrating feeder 101b, is arranged in an inclined position below the downstream side of the vibrating feeder 101b, and allows the raw material supplied from the vibrating feeder 101b to naturally flow down. . The inclined chute 102 includes a flat inclined plate part 102b forming a downstream surface 102a of the raw material, and side plate parts 102c rising from both sides of the inclined plate part 102b in the width direction. The slope of the inclined chute 102 is adjustable. Note that instead of the inclined chute 102, a belt-type conveyance section may be used.
傾斜シュート102の流下面102aには上下方向に延びる複数の溝(図示せず)が幅方向に互いに間隔をあけて設けられていてもよい。また、傾斜板部102bの裏面(流下面102aと反対側の面)には、流下面102aに異物が付着するのを抑制するためのヒータ(図示せず)が設けられていてもよい。
A plurality of grooves (not shown) extending in the vertical direction may be provided in the downstream surface 102a of the inclined chute 102 at intervals from each other in the width direction. Further, a heater (not shown) may be provided on the back surface of the inclined plate portion 102b (the surface opposite to the downstream surface 102a) for suppressing foreign matter from adhering to the downstream surface 102a.
光学選別部103は、傾斜シュート102の下流端から落下する原料の落下軌跡(仮想線L1で示す)の前後に配設される光学検出装置103a、103b、103c、背景部材103d、103e、103f、照明装置(図示せず)などから構成される。光学検出装置103a、103b、103cは、例えばCCDラインセンサにより構成されていて、R(赤)、G(緑)、B(青)の各色に感度を有するR素子、G素子、B素子を備えている。光学検出装置103a、103b、103cの受光信号は、R信号、G信号、B信号に光電変換されて出力される。
The optical sorting unit 103 includes optical detection devices 103a, 103b, 103c, background members 103d, 103e, 103f, which are disposed before and after the falling trajectory (indicated by a virtual line L1) of the raw material falling from the downstream end of the inclined chute 102. It consists of a lighting device (not shown), etc. The optical detection devices 103a, 103b, and 103c are configured by, for example, a CCD line sensor, and include an R element, a G element, and a B element that are sensitive to each color of R (red), G (green), and B (blue). ing. The light reception signals of the optical detection devices 103a, 103b, and 103c are photoelectrically converted into R, G, and B signals and output.
光学検出装置103a、103b、103cと演算装置110とは電気的に接続されており、光学検出装置103a、103b、103cから出力された各信号は演算装置110に入力される。演算装置110では、光学検出装置103a、103b、103cから入力された各信号に基づいて原料が不良品であるか良品であるかを判別するとともに、不良品と判別した場合にその不良品が害虫等による着色粒、ヤケ米等による被害粒、青未熟粒、籾米と、乳白粒などの着色粒及び異物のどれに該当するかも判別することができる。判別ロジックは従来から周知であるため、詳細な説明は省略するが、撮像画像に対して二値化処理を行って得られたR、G、Bの各値から、分光比R/Gと、分光比R/Bとを演算し、得られた値を比較回路(図示せず)に格納された判別式と比較し、例えば6種類の判別を行う。
The optical detection devices 103a, 103b, 103c and the calculation device 110 are electrically connected, and each signal output from the optical detection devices 103a, 103b, 103c is input to the calculation device 110. The arithmetic unit 110 determines whether the raw material is a defective product or a non-defective product based on each signal input from the optical detection devices 103a, 103b, and 103c, and if it is determined to be a defective product, the defective product is a pest. It is also possible to distinguish between colored grains caused by grains such as grains, damaged grains caused by burnt rice, green immature grains, unhulled rice, colored grains such as milky white grains, and foreign substances. Since the discrimination logic is well known, a detailed explanation will be omitted, but from the R, G, and B values obtained by performing binarization processing on the captured image, the spectral ratio R/G, The spectral ratio R/B is calculated, and the obtained value is compared with a discriminant stored in a comparison circuit (not shown) to perform, for example, six types of discrimination.
演算装置110はエジェクタ駆動装置111に電気的に接続されており、演算装置110からの出力信号がエジェクタ駆動装置111に入力される。すなわち、演算装置110による判別結果の信号が、不良品を排除するエジェクタ駆動装置111に出力される。さらに、エジェクタ駆動装置111はエジェクタ装置112に電気的に接続されており、エジェクタ装置112に排除信号を出力するよう構成されている。エジェクタ装置112は、排除信号を受信すると、不良品がちょうど正面を通過するタイミングで圧縮空気を原料の落下軌跡L1へ向けて噴射し、不良品を吹き飛ばす。この手法も従来から周知である。
The arithmetic device 110 is electrically connected to the ejector drive device 111, and an output signal from the arithmetic device 110 is input to the ejector drive device 111. That is, the signal of the determination result by the arithmetic unit 110 is output to the ejector drive device 111 that eliminates defective products. Further, the ejector drive device 111 is electrically connected to the ejector device 112 and is configured to output a rejection signal to the ejector device 112. When the ejector device 112 receives the rejection signal, it injects compressed air toward the fall trajectory L1 of the raw material just as the defective product passes in front of it, thereby blowing away the defective product. This method is also well known.
排出ホッパ105は、良品回収ホッパ105a及び不良品回収ホッパ105bを有している。エジェクタ装置112により吹き飛ばされた不良品は不良品回収ホッパ105bで回収されて機外に排出される。エジェクタ装置112により吹き飛ばされなかった良品は良品回収ホッパ105aで回収されて機外に排出される。
The discharge hopper 105 has a good product collection hopper 105a and a defective product collection hopper 105b. The defective products blown away by the ejector device 112 are collected by the defective product collection hopper 105b and discharged outside the machine. Non-defective products that are not blown away by the ejector device 112 are collected by a non-defective product recovery hopper 105a and discharged outside the machine.
上記のように構成された色彩選別機100では、光学選別部103による選別精度を高めてエジェクタ装置112による異物排除の誤りの頻度をできるだけ低くしたい。そのため、原料を供給部101の振動フィーダ101bから傾斜シュート102へ受け渡す際に良好な受け渡しを実現する必要がある。原料の良好な受け渡しとは、傾斜シュート102の流下面102aを流下する全ての原料が跳ねることなく、かつ、流下面102aを流下する全ての原料の姿勢に乱れがない状態となるような受け渡しである。
In the color sorter 100 configured as described above, it is desired to improve the sorting accuracy by the optical sorter 103 and to reduce the frequency of errors in foreign matter removal by the ejector device 112 as much as possible. Therefore, when the raw material is transferred from the vibrating feeder 101b of the supply section 101 to the inclined chute 102, it is necessary to realize a good transfer. Good delivery of raw materials means delivery such that all the raw materials flowing down the downstream surface 102a of the inclined chute 102 do not splash and the postures of all the raw materials flowing down the downstream surface 102a are not disturbed. be.
本実施形態に係る原料の受け渡し装置1は、供給部101から供給された原料を傾斜シュート102に受け渡す際に、上述した良好な受け渡し、またはそれに極めて近い受け渡しを実現可能な装置である。具体的には、図2に示すように、原料の受け渡し装置1は、振動フィーダ101bから供給された原料を傾斜シュート102の流下面102aへ案内する案内部2と、案内部2が上下方向に揺動自在となるように当該案内部2の上流側部分を支持する支持部3と、案内部2に対して上方への付勢力を付与する付勢部4とを備えている。
The raw material delivery device 1 according to the present embodiment is a device that can achieve the above-mentioned good delivery, or a delivery very close to it, when delivering the raw material supplied from the supply unit 101 to the inclined chute 102. Specifically, as shown in FIG. 2, the raw material delivery device 1 includes a guide part 2 that guides the raw material supplied from the vibrating feeder 101b to the downstream surface 102a of the inclined chute 102, and a guide part 2 that guides the raw material supplied from the vibrating feeder 101b to the downstream surface 102a of the inclined chute 102. It includes a support part 3 that supports the upstream side portion of the guide part 2 so as to be swingable, and an urging part 4 that applies an upward biasing force to the guide part 2.
案内部2は、振動フィーダ101bの下流端から傾斜シュート102の流下面102aへ向けて下降傾斜しながら延びる樋状の部材で構成されており、底板部2aと、底板部2aの幅方向両側からそれぞれ立ち上がる側板部2bとを備えている。側板部2bは、原料が側方へ漏れるのを防止するためのものであり、必要に応じて設ければよく、一方のみ設けてもよい。側板部2bが無い場合には、案内部2は単純な板状になる。
The guide section 2 is composed of a gutter-like member that extends from the downstream end of the vibrating feeder 101b toward the downstream surface 102a of the inclined chute 102 while tilting downward. Each side plate portion 2b is provided with a rising side plate portion 2b. The side plate portion 2b is for preventing the raw material from leaking to the side, and may be provided as necessary, or only one side may be provided. If there is no side plate portion 2b, the guide portion 2 has a simple plate shape.
底板部2aは、例えばアクリル製の平板等で構成されている。案内部2を構成する材料としては、静電気の発生しない材料が好ましく、例えば金属等であってもよい。また、案内部2には、汚れ対策としてヒータ(図示せず)を設けてもよいし、汚れ防止のための表面処理を施してもよい。さらに、案内部2の底板部2aの上面には、原料の案内方向に延びる溝(図示せず)が設けられていてもよい。
The bottom plate portion 2a is made of, for example, an acrylic flat plate. The material constituting the guide portion 2 is preferably a material that does not generate static electricity, and may be, for example, metal. Further, the guide portion 2 may be provided with a heater (not shown) to prevent dirt, or may be subjected to surface treatment to prevent dirt. Furthermore, the upper surface of the bottom plate portion 2a of the guide portion 2 may be provided with a groove (not shown) extending in the direction in which the raw material is guided.
案内部2の幅は振動フィーダ101bの幅よりも僅かに狭く設定されており、案内部2の下流側部分が振動フィーダ101bの幅方向両側の側板部102cの間に配置可能になっている。
The width of the guide part 2 is set to be slightly narrower than the width of the vibrating feeder 101b, so that the downstream part of the guide part 2 can be placed between the side plate parts 102c on both sides of the vibrating feeder 101b in the width direction.
支持部3は、案内部2の幅方向に沿って水平に延びる支軸で構成されている。支持部3は、案内部2の揺動中心を形成する部材であり、供給部101の振動フィーダ101bの下流端の下に取り付けられている。案内部2の上流端は、支持部3に対して回動可能に連結されており、これにより、案内部2は、上流端部を揺動中心として下流端が上下方向に移動するように揺動可能になる。案内部2の下流端の移動軌跡は、支持部3を中心とした円弧状となる。尚、案内部2の上流端を支持部3に固定し、支持部3を振動フィーダ101bの下流端に対して回動可能に連結してもよく、この場合も案内部2を上下方向に揺動させることができる。
The support part 3 is composed of a support shaft that extends horizontally along the width direction of the guide part 2. The support section 3 is a member that forms the swing center of the guide section 2, and is attached below the downstream end of the vibrating feeder 101b of the supply section 101. The upstream end of the guide section 2 is rotatably connected to the support section 3, so that the guide section 2 can be swung such that the downstream end moves in the vertical direction with the upstream end section as the center of oscillation. be able to move. The movement locus of the downstream end of the guide section 2 has an arc shape with the support section 3 as the center. Note that the upstream end of the guide section 2 may be fixed to the support section 3, and the support section 3 may be rotatably connected to the downstream end of the vibrating feeder 101b. can be moved.
案内部2の揺動中心は供給部101の振動フィーダ101bの下流端の下に隣接している。これにより、案内部2の底板部2aと、振動フィーダ101bの下流端との間の段差が小さくなる。したがって、振動フィーダ101bから供給された原料を案内部2にスムーズに受け渡すことができる。
The center of swing of the guide section 2 is adjacent to and below the downstream end of the vibratory feeder 101b of the supply section 101. This reduces the level difference between the bottom plate portion 2a of the guide portion 2 and the downstream end of the vibratory feeder 101b. Therefore, the raw material supplied from the vibrating feeder 101b can be smoothly delivered to the guide section 2.
付勢部4は、バネやゴム等の弾性部材で構成されており、バネ単体、ゴム単体、またはバネとゴムの組み合わせで付勢部4を構成することができる。本実施形態では、ねじりバネにより付勢部4が構成されている例について説明するが、付勢部4はねじりバネ以外のバネやゴム等で構成されていてもよい。付勢部4がねじりバネで構成されているので、付勢部4は、第1アーム4aと、第2アーム4bと、これらアーム4a、4b間で弾性力を発生する弾性力発生部4cとを有している。
The biasing part 4 is made of an elastic member such as a spring or rubber, and can be composed of a single spring, a single rubber, or a combination of a spring and rubber. In the present embodiment, an example will be described in which the biasing section 4 is made of a torsion spring, but the biasing section 4 may be composed of a spring other than a torsion spring, rubber, or the like. Since the biasing section 4 is composed of a torsion spring, the biasing section 4 includes a first arm 4a, a second arm 4b, and an elastic force generating section 4c that generates an elastic force between these arms 4a and 4b. have.
振動フィーダ101bの下流端の下方には、付勢部4の第1アーム4aが固定されるバネ固定部材5が設けられている。バネ固定部材5は、例えば原料の受け渡し装置1の一部を構成しているフレーム部材や筐体等に固定されている。付勢部4の第2アーム4bは、案内部2の底板部2aの下面に固定されている。これにより、付勢部4は、案内部2を上方へ向けて常時付勢する。
A spring fixing member 5 to which the first arm 4a of the urging section 4 is fixed is provided below the downstream end of the vibratory feeder 101b. The spring fixing member 5 is fixed, for example, to a frame member, a casing, or the like that constitutes a part of the raw material delivery device 1. The second arm 4b of the biasing section 4 is fixed to the lower surface of the bottom plate section 2a of the guide section 2. Thereby, the biasing section 4 always biases the guide section 2 upward.
尚、例えばコイルバネで付勢部4を構成する場合には、コイルバネの一端部をバネ固定部材5に固定しておき、コイルバネの他端部を案内部2の底板部2aの下面に固定すればよい。また、板バネで付勢部4を構成する場合には、板バネの一端部をバネ固定部材5に固定しておき、板バネの他端部を案内部2の底板部2aの下面に固定すればよい。また、引張バネやゴム等によって案内部2を上方へ引っ張ることにより、付勢力を作用させてもよい。
For example, when the biasing part 4 is configured with a coil spring, one end of the coil spring is fixed to the spring fixing member 5, and the other end of the coil spring is fixed to the lower surface of the bottom plate part 2a of the guide part 2. good. In addition, when the urging part 4 is configured with a leaf spring, one end of the leaf spring is fixed to the spring fixing member 5, and the other end of the leaf spring is fixed to the lower surface of the bottom plate part 2a of the guide part 2. do it. Alternatively, the biasing force may be applied by pulling the guide portion 2 upward using a tension spring, rubber, or the like.
付勢部4による付勢力を調整可能にしてもよい。例えば比重の高い原料の場合には付勢部4による付勢力を大きくする一方、比重の低い原料の場合には付勢部4による付勢力を小さくする。例えばバネをばね定数の異なるものに変更することにより、付勢部4による付勢力の調整が可能になる。
The urging force by the urging section 4 may be made adjustable. For example, in the case of raw materials with high specific gravity, the biasing force by the biasing unit 4 is increased, while in the case of raw materials with low specific gravity, the biasing force by the biasing unit 4 is decreased. For example, by changing the spring to one with a different spring constant, the biasing force of the biasing section 4 can be adjusted.
原料が供給されていない状態、即ち、案内部2の上に原料が無い状態では、案内部2の下流端と、流下面102aとの間には隙間S1が形成されている。案内部2の上に原料が無い時の案内部2の位置を初期位置(無負荷位置)という。つまり、初期位置にある案内部2の下流端は、流下面102aから離れているので、案内部2が下へ揺動しようとした際に流下面102aとの間に摩擦力(摩擦抵抗)は発生しない。よって、案内部2の下方への揺動が狙い通りにスムーズに行われる。また、案内部2の下流端には、流下面102aとの干渉を確実に防止するために、例えば面取り加工等を施してもよい。
When the raw material is not supplied, that is, when there is no raw material on the guide section 2, a gap S1 is formed between the downstream end of the guide section 2 and the downstream surface 102a. The position of the guide part 2 when there is no raw material on the guide part 2 is called the initial position (no-load position). In other words, since the downstream end of the guide section 2 in the initial position is away from the downstream surface 102a, when the guide section 2 tries to swing downward, there is no frictional force (frictional resistance) between it and the downstream surface 102a. Does not occur. Therefore, the downward swinging of the guide portion 2 is smoothly performed as intended. Further, the downstream end of the guide portion 2 may be chamfered, for example, in order to reliably prevent interference with the downstream surface 102a.
案内部2が初期位置にあるときの隙間S1は、原料の外径よりも小さい隙間であり、この状態で数粒程度だけ原料が供給されたとしても、原料は隙間S1から下流側へは流れず、案内部2の上に留まることになる。案内部2が初期位置にあるときの隙間S1の大きさは、例えば案内部2の長さを変えることや、案内部2と傾斜シュート102との相対距離を変えることで変更可能である。
The gap S1 when the guide part 2 is in the initial position is a gap smaller than the outer diameter of the raw material, and even if only a few grains of raw material are supplied in this state, the raw material will not flow downstream from the gap S1. Instead, it stays on the guide part 2. The size of the gap S1 when the guide section 2 is at the initial position can be changed, for example, by changing the length of the guide section 2 or by changing the relative distance between the guide section 2 and the inclined chute 102.
原料が球に近い形状であれば、どの部分の外径も殆ど同じであるので、隙間S1を設定する際に測定する原料の外径はどの部分であってもよい。一方、原料が長円形や楕円形に近い断面を有する場合には、短径方向の寸法と長径方向の寸法とが異なることになるが、この場合、隙間S1を設定する際に測定する原料の外径は短径方向の外径とする。これにより、原料がどのような方向に向いていても、隙間S1を通過しなくなる。また、隙間S1を設定する際には、原料の平均径を算出し、その平均径未満となるように、隙間S1を設定してもよい。また、大きさの異なる原料が混在している場合には、小さい方の原料の外径未満となるように、隙間S1を設定してもよい。
If the raw material has a shape close to a sphere, the outer diameter of any part is almost the same, so the outer diameter of the raw material to be measured when setting the gap S1 may be any part. On the other hand, if the raw material has a cross section close to an oval or ellipse, the dimension in the minor axis direction and the dimension in the major axis direction will be different, but in this case, the dimension of the raw material to be measured when setting the gap S1. The outer diameter is the outer diameter in the short diameter direction. Thereby, no matter what direction the raw material is oriented, it will not pass through the gap S1. Furthermore, when setting the gap S1, the average diameter of the raw materials may be calculated, and the gap S1 may be set to be less than the average diameter. Furthermore, when raw materials of different sizes are mixed, the gap S1 may be set to be less than the outer diameter of the smaller raw material.
また、図2に示す仮想線L2は、案内部2の下流側部分に沿って傾斜シュート102の流下面102aに交差するまで延長した仮想延長面(平面)を示している。案内部2の上に原料が無い状態では、仮想延長面L2と、仮想延長面L2よりも上の流下面102aとのなす角度Aが90度以下に設定されており、本例では、角度Aが90度である。
Further, the imaginary line L2 shown in FIG. 2 indicates an imaginary extension surface (plane) extending along the downstream portion of the guide portion 2 until it intersects with the downstream surface 102a of the inclined chute 102. When there is no raw material on the guide part 2, the angle A between the virtual extension surface L2 and the downstream surface 102a above the virtual extension surface L2 is set to 90 degrees or less, and in this example, the angle A is 90 degrees.
角度Aが90度のときが、隙間S1が最も狭くなる。すなわち、案内部2の上に原料が無い状態では、隙間S1が最も狭くなるように案内部2の傾斜角度が設定されている。案内部2の上に原料が溜まっていき、原料の重量によって案内部2が下へ押されると、案内部2は傾斜シュート102の流下面102aと干渉することなく、下へ揺動する。案内部2が下へ揺動していくと、角度Aが90度よりも小さくなるとともに、案内部2の下流側の縁部が流下面102aから離れていき、隙間S1は広くなる(図4、図5に示す)。
When the angle A is 90 degrees, the gap S1 is the narrowest. That is, the inclination angle of the guide part 2 is set so that the gap S1 becomes the narrowest when there is no raw material on the guide part 2. When the raw material accumulates on the guide part 2 and the guide part 2 is pushed downward by the weight of the raw material, the guide part 2 swings downward without interfering with the downstream surface 102a of the inclined chute 102. As the guide section 2 swings downward, the angle A becomes smaller than 90 degrees, the downstream edge of the guide section 2 moves away from the downstream surface 102a, and the gap S1 widens (Fig. 4 , shown in Figure 5).
角度Aが90度よりも小さくなると、案内部2の勾配が急になり過ぎて、振動フィーダ101bから供給された原料が案内部2上で加速し、跳ねやすくなるおそれがあるので、角度Aは90度以下とするのが好ましい。反対に、角度Aが90度よりも大きくなると、案内部2が下へ揺動しようとした際に案内部2の下流端が傾斜シュート102の流下面102aに接して干渉してしまい、案内部2が下へ揺動しなくなる。よって、本例では、案内部2が初期位置にあるときの角度Aを90度としているが、原料が跳ねない範囲で90度より小さくすることもでき、例えば角度Aを85度から90度の範囲で設定することも可能である。
If the angle A becomes smaller than 90 degrees, the slope of the guide section 2 will become too steep, and the raw material supplied from the vibrating feeder 101b may accelerate on the guide section 2 and become likely to bounce. It is preferable that the angle is 90 degrees or less. On the other hand, if the angle A is larger than 90 degrees, when the guide section 2 attempts to swing downward, the downstream end of the guide section 2 will contact and interfere with the downstream surface 102a of the inclined chute 102, causing the guide section 2 will no longer swing downwards. Therefore, in this example, the angle A when the guide part 2 is at the initial position is 90 degrees, but it can be made smaller than 90 degrees as long as the raw material does not bounce. For example, the angle A can be set from 85 degrees to 90 degrees. It is also possible to set it within a range.
付勢部4による付勢力により、初期位置にある案内部2が下へ揺動し始めるタイミングを決定することができる。すなわち、付勢部4による付勢力は、案内部2の上に所定量未満の原料が溜まった状態(図3に示す)では、案内部2を初期位置で保持したままにする一方、図4に示すように、案内部2の上に所定量以上の原料が溜まることで案内部2を下方へ揺動させて流下面102aとの間に原料の通過可能な隙間S1を形成するように設定されている。原料が流れ続けている間は、原料の通過可能な隙間S1が維持される。また、原料の流量が図4に示す場合もより多くなると、図5に示すように、案内部2が図4に示す場合よりも下へ大きく揺動して隙間S1が広くなり、原料が流れ続けている間は、この大きな隙間S1が維持される。
By the urging force of the urging section 4, it is possible to determine the timing at which the guide section 2 in the initial position starts to swing downward. That is, in a state where less than a predetermined amount of raw material has accumulated on the guide part 2 (as shown in FIG. 3), the urging force by the urging part 4 keeps the guide part 2 at the initial position, while As shown in the figure, the setting is such that when more than a predetermined amount of raw material accumulates on the guide part 2, the guide part 2 is swung downward to form a gap S1 between it and the downstream surface 102a through which the raw material can pass. has been done. While the raw material continues to flow, a gap S1 through which the raw material can pass is maintained. Also, when the flow rate of the raw material increases as shown in FIG. 4, as shown in FIG. 5, the guide part 2 swings downward more than in the case shown in FIG. While this continues, this large gap S1 is maintained.
案内部2の底板部2aの上面には、平滑な金属板表面よりも高い摩擦力を発生させる高摩擦材や高摩擦構造が設けられていてもよい。これにより、案内部2の底板部2aに供給された原料がすぐに流れなくなるので、原料を案内部2の上に一時的に溜めることができる。また、案内部2の底板部2aの上面に凹凸形状を設けてもよい。これにより、案内部2の底板部2aに供給された原料が凹部や凸部に引っ掛かるようになり、原料を案内部2の上に一時的に溜めることができる。
The upper surface of the bottom plate portion 2a of the guide portion 2 may be provided with a high-friction material or a high-friction structure that generates a higher frictional force than a smooth metal plate surface. Thereby, the raw material supplied to the bottom plate part 2a of the guide part 2 stops flowing immediately, so that the raw material can be temporarily stored on the guide part 2. Further, an uneven shape may be provided on the upper surface of the bottom plate portion 2a of the guide portion 2. Thereby, the raw material supplied to the bottom plate part 2a of the guide part 2 becomes caught in the recesses and convex parts, and the raw material can be temporarily stored on the guide part 2.
上述した付勢部4による付勢力は、図6に示す模式図によって算出可能である。この図6では、供給部101の振動フィーダ101bと、傾斜シュート102とが向かい合わせになっている前投入を示している。図6中、a[mm]は案内部2の長さ(上流端から下流端までの長さ)であり、α[deg]は傾斜シュート102の傾斜角度であり、θ[deg]は案内部2の揺動角度変位(0≦θ≦α)であり、w[g]は案内部2の上に溜まった原料の重量であり、φ[deg]は傾斜シュート102と案内部2とのなす角度であり、kt[N・mm/deg]は付勢部4のばね定数であり、gは重力加速度である。φ[deg]は、案内部2が初期位置にあるときには90[deg]である。
The biasing force by the biasing unit 4 described above can be calculated using the schematic diagram shown in FIG. 6. FIG. 6 shows a pre-feeding state in which the vibrating feeder 101b of the supply section 101 and the inclined chute 102 face each other. In FIG. 6, a [mm] is the length of the guide section 2 (length from the upstream end to the downstream end), α [deg] is the inclination angle of the inclined chute 102, and θ [deg] is the guide section 2. 2 (0≦θ≦α), w [g] is the weight of the raw material accumulated on the guide part 2, and φ [deg] is the displacement between the inclined chute 102 and the guide part 2. kt [N·mm/deg] is the spring constant of the biasing section 4, and g is the gravitational acceleration. φ[deg] is 90[deg] when the guide section 2 is at the initial position.
原料の流量がある流量の時、案内部2上には原料w[g]が溜まりながら流れており、案内部2の揺動角度変位がθ[deg]で定常状態となる場合のばね定数kt[N・mm/deg]を求める。
When the flow rate of the raw material is a certain flow rate, the raw material w [g] is flowing while accumulating on the guide part 2, and the spring constant kt when the swing angle displacement of the guide part 2 is in a steady state at θ [deg] Find [N·mm/deg].
w[g]の原料が案内部2に与える力N1は、次式(1)で示すように、案内部2の垂直方向の成分を計算することで求まる。
N1=w・g・cos(π/2+θ-α) (1) The force N1 exerted by the raw material w[g] on the guide section 2 is determined by calculating the component in the vertical direction of the guide section 2, as shown in the following equation (1).
N1=w・g・cos(π/2+θ−α) (1)
N1=w・g・cos(π/2+θ-α) (1) The force N1 exerted by the raw material w[g] on the guide section 2 is determined by calculating the component in the vertical direction of the guide section 2, as shown in the following equation (1).
N1=w・g・cos(π/2+θ−α) (1)
案内部2の揺動中心からa[mm]離れた位置での力のモーメントMは次式(2)で計算できる。
M=N1・a=a・w・g・cos(π/2+θ-α) (2) The moment M of force at a position a [mm] away from the center of swing of the guide section 2 can be calculated using the following equation (2).
M=N1・a=a・w・g・cos(π/2+θ−α) (2)
M=N1・a=a・w・g・cos(π/2+θ-α) (2) The moment M of force at a position a [mm] away from the center of swing of the guide section 2 can be calculated using the following equation (2).
M=N1・a=a・w・g・cos(π/2+θ−α) (2)
この力のモーメントを加えた時に、案内部2の角度変位がθ[deg]で維持されたとすると、その付勢部4のばね定数は次式(3)で表すことができる。
kt=M/θ=a・w・g・cos(π/2+θ-α)/θ (3) If the angular displacement of the guide portion 2 is maintained at θ [deg] when this moment of force is applied, the spring constant of the biasing portion 4 can be expressed by the following equation (3).
kt=M/θ=a・w・g・cos(π/2+θ−α)/θ (3)
kt=M/θ=a・w・g・cos(π/2+θ-α)/θ (3) If the angular displacement of the guide portion 2 is maintained at θ [deg] when this moment of force is applied, the spring constant of the biasing portion 4 can be expressed by the following equation (3).
kt=M/θ=a・w・g・cos(π/2+θ−α)/θ (3)
また、案内部2の角度変位θ[deg]と、隙間S1(x[mm])の関係は次式(4)で表すことができる。
x=a・sin(θ)・tan(θ/2) (4) Further, the relationship between the angular displacement θ [deg] of the guide portion 2 and the gap S1 (x [mm]) can be expressed by the following equation (4).
x=a・sin(θ)・tan(θ/2) (4)
x=a・sin(θ)・tan(θ/2) (4) Further, the relationship between the angular displacement θ [deg] of the guide portion 2 and the gap S1 (x [mm]) can be expressed by the following equation (4).
x=a・sin(θ)・tan(θ/2) (4)
上記式(3)、(4)より次式が得られる。
kt=x・w・g・cos(π/2+θ-α)/θ・sin(θ)・tan(θ/2) The following equation is obtained from the above equations (3) and (4).
kt=x・w・g・cos(π/2+θ−α)/θ・sin(θ)・tan(θ/2)
kt=x・w・g・cos(π/2+θ-α)/θ・sin(θ)・tan(θ/2) The following equation is obtained from the above equations (3) and (4).
kt=x・w・g・cos(π/2+θ−α)/θ・sin(θ)・tan(θ/2)
つまり、案内部2上にある原料の重量がw[g]の時、どの程度の隙間S1が必要かを決めることで、隙間S1を実現可能な付勢部4のばね定数を求めることができる。例えばaが100mm、αが60deg、wが50gであるとすると、例えば、隙間S1を20mm確保しようとすると、ばね定数は約0.52N・mm/degとなる。wは、実験等により、原料の種類に適した値を事前に求めておけばよい。隙間S1の適切な大きさとしては、原料が案内部2の上に溜まり、かつ溢れない状態を維持できる大きさである。
In other words, when the weight of the raw material on the guide section 2 is w [g], by determining how much gap S1 is required, the spring constant of the biasing section 4 that can realize the gap S1 can be determined. . For example, if a is 100 mm, α is 60 deg, and w is 50 g, then if the gap S1 is to be maintained at 20 mm, the spring constant will be approximately 0.52 N·mm/deg. For w, a value suitable for the type of raw material may be determined in advance through experiments or the like. An appropriate size of the gap S1 is a size that allows the raw material to accumulate on the guide portion 2 and to maintain a state in which it does not overflow.
(実施形態1の作用効果)
以上説明したように、実施形態1によれば、上下方向に揺動自在に支持された案内部2を付勢部4によって上方へ付勢している。そして、付勢部4による付勢力は、案内部2の上に所定量以上の原料が溜まることで案内部2を下方へ揺動させて傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1を形成するように設定しているので、図3に示すように、供給部101から供給された原料が案内部2によって傾斜シュート102へ向けて案内されると、原料が案内部2の上に一時的に溜まる。 (Operations and effects of Embodiment 1)
As explained above, according to the first embodiment, the guide part 2 supported so as to be swingable in the vertical direction is urged upward by the urging part 4. The biasing force of the biasing unit 4 causes the guide unit 2 to swing downward when a predetermined amount or more of raw material accumulates on the guide unit 2, and the raw material passes between the guide unit 2 and the downstream surface 102a of the inclined chute 102. Since the setting is made to form a possible gap S1, as shown in FIG. Temporarily accumulates on top of 2.
以上説明したように、実施形態1によれば、上下方向に揺動自在に支持された案内部2を付勢部4によって上方へ付勢している。そして、付勢部4による付勢力は、案内部2の上に所定量以上の原料が溜まることで案内部2を下方へ揺動させて傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1を形成するように設定しているので、図3に示すように、供給部101から供給された原料が案内部2によって傾斜シュート102へ向けて案内されると、原料が案内部2の上に一時的に溜まる。 (Operations and effects of Embodiment 1)
As explained above, according to the first embodiment, the guide part 2 supported so as to be swingable in the vertical direction is urged upward by the urging part 4. The biasing force of the biasing unit 4 causes the guide unit 2 to swing downward when a predetermined amount or more of raw material accumulates on the guide unit 2, and the raw material passes between the guide unit 2 and the downstream surface 102a of the inclined chute 102. Since the setting is made to form a possible gap S1, as shown in FIG. Temporarily accumulates on top of 2.
供給部101からは原料が継続して供給されているので、図4に示すように、案内部2の上に溜まった原料が所定量以上になると、原料の重量によって案内部2が下方に揺動する。案内部2の下方への揺動により、案内部2の下流端と傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1が形成されるので、案内部2の上に溜まっている原料が当該隙間S1を通過し、流下面102aを流下する。
Since the raw material is continuously supplied from the supply part 101, as shown in FIG. move. By swinging the guide section 2 downward, a gap S1 through which the raw material can pass is formed between the downstream end of the guide section 2 and the downstream surface 102a of the inclined chute 102. The raw material passing through the gap S1 flows down the flow down surface 102a.
図5に示すように、案内部2の下流端と傾斜シュート102の流下面102aとの隙間S1は、案内部2の上に溜まっている原料の量が多くなればなるほど拡大する。一方、図4に示すように、案内部2の上に溜まっている原料の量が少なくなればなるほど縮小する。この隙間S1の変化は、案内部2の上に溜まっている原料の量が変化するとすぐに変化するので、従来の電気的な駆動手段を設ける場合に比べて応答速度が速い。また、付勢部4の付勢力を利用した隙間S1のコントロールであることから、従来の電気的な駆動手段を設ける場合に比べて製造コストが低くなる。
As shown in FIG. 5, the gap S1 between the downstream end of the guide section 2 and the downstream surface 102a of the inclined chute 102 increases as the amount of raw material accumulated on the guide section 2 increases. On the other hand, as shown in FIG. 4, the smaller the amount of raw material accumulated on the guide section 2, the smaller the guide section 2 becomes. Since the gap S1 changes immediately when the amount of raw material accumulated on the guide portion 2 changes, the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap S1 is controlled using the biasing force of the biasing section 4, the manufacturing cost is lower than when a conventional electric drive means is provided.
そして、一旦溜めた原料が徐々に隙間S1を流れていくので、供給部101から傾斜シュート102への受け渡し時における原料の姿勢が乱れにくくなるとともに、傾斜シュート102へ達したときの原料の跳ねも抑制される。よって、供給部から傾斜シュート102への受け渡しが良好になる。
Since the raw material once stored gradually flows through the gap S1, the posture of the raw material is less likely to be disturbed when it is delivered from the supply section 101 to the inclined chute 102, and the raw material is also prevented from bouncing when it reaches the inclined chute 102. suppressed. Therefore, the delivery from the supply section to the inclined chute 102 is improved.
(実施形態1の変形例)
図7は、実施形態1の変形例1を示している。この変形例1では、案内部2の底板部2aが上へ向けて湾曲しており、これに伴って側板部2bも同様に湾曲している。底板部2aを上へ向けて湾曲させることにより、原料が案内部2の上流側部分の上には溜まり難くなるが、案内部2の下流端近傍には溜まり易くなり、一時的に溜まった原料を傾斜シュート102へ流すことができる。 (Modification of Embodiment 1)
FIG. 7 shows a first modification of the first embodiment. In this modification 1, the bottom plate part 2a of the guide part 2 is curved upward, and the side plate part 2b is also curved accordingly. By curving the bottom plate part 2a upward, it becomes difficult for the raw material to accumulate on the upstream part of the guide part 2, but it becomes easier to accumulate in the vicinity of the downstream end of the guide part 2, and the temporarily accumulated raw material can flow into the inclined chute 102.
図7は、実施形態1の変形例1を示している。この変形例1では、案内部2の底板部2aが上へ向けて湾曲しており、これに伴って側板部2bも同様に湾曲している。底板部2aを上へ向けて湾曲させることにより、原料が案内部2の上流側部分の上には溜まり難くなるが、案内部2の下流端近傍には溜まり易くなり、一時的に溜まった原料を傾斜シュート102へ流すことができる。 (Modification of Embodiment 1)
FIG. 7 shows a first modification of the first embodiment. In this modification 1, the bottom plate part 2a of the guide part 2 is curved upward, and the side plate part 2b is also curved accordingly. By curving the bottom plate part 2a upward, it becomes difficult for the raw material to accumulate on the upstream part of the guide part 2, but it becomes easier to accumulate in the vicinity of the downstream end of the guide part 2, and the temporarily accumulated raw material can flow into the inclined chute 102.
図8は、実施形態1の変形例2を示している。この変形例2では、案内部2の底板部2aが下へ向けて湾曲しており、これに伴って側板部2bも同様に湾曲している。底板部2aを下へ向けて湾曲させることにより、案内部2の上の原料を案内部2の下流端へ確実に導くことができる。
FIG. 8 shows a second modification of the first embodiment. In this modification 2, the bottom plate part 2a of the guide part 2 is curved downward, and the side plate part 2b is also curved accordingly. By curving the bottom plate portion 2a downward, the raw material on the guide portion 2 can be reliably guided to the downstream end of the guide portion 2.
図9は、実施形態1の変形例3を示している。この変形例3は、供給部101の振動フィーダ101bと、傾斜シュート102とが向かい合わせになっていない後投入の場合に本発明を適用した例である。すなわち、傾斜シュート102は図2等に示す前投入の場合とは反対方向に傾斜している。これに対応するように、案内部2も前投入の場合とは反対方向に傾斜している。バネ固定部材5には、案内部2を揺動自在に支持する支持部3が設けられている。バネ固定部材5に固定された付勢部4により、上述したような付勢力が案内部2に付与される。よって、前投入の場合と同様に案内部2を揺動させることができる。
FIG. 9 shows a third modification of the first embodiment. This third modification is an example in which the present invention is applied to a case of post-feeding in which the vibrating feeder 101b of the supply section 101 and the inclined chute 102 are not faced to each other. That is, the inclined chute 102 is inclined in the opposite direction to that in the case of front loading shown in FIG. 2 and the like. Correspondingly, the guide portion 2 is also inclined in the opposite direction to that in the case of front loading. The spring fixing member 5 is provided with a support portion 3 that swingably supports the guide portion 2. The biasing force 4 fixed to the spring fixing member 5 applies the biasing force as described above to the guide section 2 . Therefore, the guide part 2 can be swung in the same way as in the case of pre-loading.
また、本実施形態では、運用停止後、案内部2の上に原料が溜まったままになるが、この溜まった原料を排出するようにしてもよい。例えば運用停止後、案内部2を振動させたり、案内部2を下へ大きく揺動させたり、案内部2の上の原料を吹くエアブロー装置を設けたり、案内部2の上の原料を掻くワイパー等を設けてもよい。
Furthermore, in this embodiment, the raw material remains accumulated on the guide portion 2 after the operation is stopped, but the accumulated raw material may be discharged. For example, after the operation is stopped, the guide section 2 may be vibrated, the guide section 2 may be greatly swung downward, an air blower may be installed to blow the raw material on the guide section 2, or a wiper may be used to scrape the material on the guide section 2. etc. may be provided.
(実施形態2)
図10は、本発明の実施形態2に係る原料の受け渡し装置1を示している。実施形態2では、案内部20が撓み変形する点で実施形態1とは異なっている。以下、実施形態1と同じ部分には、実施形態1と同じ符号を付して説明を省略する。 (Embodiment 2)
FIG. 10 shows a raw material delivery device 1 according to Embodiment 2 of the present invention. Embodiment 2 differs from Embodiment 1 in that the guide portion 20 bends and deforms. Hereinafter, the same parts as in Embodiment 1 will be given the same reference numerals as in Embodiment 1, and description thereof will be omitted.
図10は、本発明の実施形態2に係る原料の受け渡し装置1を示している。実施形態2では、案内部20が撓み変形する点で実施形態1とは異なっている。以下、実施形態1と同じ部分には、実施形態1と同じ符号を付して説明を省略する。 (Embodiment 2)
FIG. 10 shows a raw material delivery device 1 according to Embodiment 2 of the present invention. Embodiment 2 differs from Embodiment 1 in that the guide portion 20 bends and deforms. Hereinafter, the same parts as in Embodiment 1 will be given the same reference numerals as in Embodiment 1, and description thereof will be omitted.
案内部20は所望の可撓性を有している。具体的には、案内部20は、当該案内部20の上に所定量以上の原料が溜まることで下方に撓んで当該案内部20の下流端と傾斜シュート102の流下面120aとの間に原料の通過可能な隙間S1を形成する可撓性を有している(図12、図13参照)。
The guide portion 20 has desired flexibility. Specifically, when more than a predetermined amount of raw material accumulates on the guide part 20, the guide part 20 bends downward, and the raw material is disposed between the downstream end of the guide part 20 and the downstream surface 120a of the inclined chute 102. It has flexibility to form a gap S1 through which it can pass (see FIGS. 12 and 13).
すなわち、実施形態2では、図10に示すように、案内部20の上に原料が無い時の案内部20の形状を初期形状(無負荷形状)という。初期形状の案内部20の下流端と、流下面102aとの間には、実施形態1と同じ隙間S1が形成されている。また、案内部20が初期形状の時、仮想延長面L2と、仮想延長面L2よりも上の流下面102aとのなす角度Aは、実施形態1と同様に設定されている。
That is, in the second embodiment, as shown in FIG. 10, the shape of the guide section 20 when there is no raw material on the guide section 20 is referred to as the initial shape (no-load shape). The same gap S1 as in the first embodiment is formed between the downstream end of the guide portion 20 in the initial shape and the downstream surface 102a. Further, when the guide portion 20 is in the initial shape, the angle A between the virtual extension surface L2 and the downstream surface 102a above the virtual extension surface L2 is set similarly to the first embodiment.
案内部20は、当該案内部20の上に所定量未満の原料が溜まった状態(図11に示す)では、初期形状が維持される一方、図12示すように、案内部20の上に所定量以上の原料が溜まることで下方へ撓んで流下面102aとの間に原料の通過可能な隙間S1を形成するように構成されている。原料が流れ続けている間は、案内部20が撓んだままになるので、原料の通過可能な隙間S1が維持される。また、原料の流量が図12に示す場合もより多くなると、図13に示すように、案内部20が図12に示す場合よりも下へ大きく撓んで隙間S1が広くなり、原料が流れ続けている間は、この隙間S1が維持される。
The guide section 20 maintains its initial shape when less than a predetermined amount of raw material has accumulated on the guide section 20 (as shown in FIG. 11), but as shown in FIG. When more than a certain amount of raw material accumulates, it bends downward to form a gap S1 between it and the downstream surface 102a through which the raw material can pass. Since the guide portion 20 remains bent while the raw material continues to flow, the gap S1 through which the raw material can pass is maintained. Also, when the flow rate of the raw material increases as shown in FIG. 12, as shown in FIG. 13, the guide part 20 bends downward more than in the case shown in FIG. 12, and the gap S1 becomes wider, and the raw material continues to flow. During this time, this gap S1 is maintained.
案内部20における撓み変形の開始起点部20aは、供給部101の振動フィーダ101bの下流端に隣接している。これにより、案内部20と、振動フィーダ101bの下流端との間の段差が小さくなるので、振動フィーダ101bから供給された原料を案内部20にスムーズに受け渡すことができる。
The starting point 20a of the deflection deformation in the guide section 20 is adjacent to the downstream end of the vibrating feeder 101b of the supply section 101. This reduces the level difference between the guide section 20 and the downstream end of the vibratory feeder 101b, so that the raw material supplied from the vibratory feeder 101b can be smoothly delivered to the guide section 20.
上述したような可撓性を有する案内部20は、例えば弾性を有する金属製の板材や樹脂製の板材、またはそれらの組み合わせによって構成することができる。また、上述した可撓性を得るためには、複数種の材料を組み合わせて案内部20を構成してもよいし、案内部20を構成する板材の厚みを調整してもよいし、案内部20の形状を工夫してもよい。また、案内部20の弾性力は、下流側部分が上流側部分に比べて小さくなるようにすることもでき、例えば案内部20の下流端に行くほど柔らかくなるように構成してもよい。また、案内部20の下流側部分の厚みを上流側部分の厚みよりも薄くしてもよいし、案内部20の下流側部分の材料を上流側部分の材料よりも低剛性にしてもよい。また、案内部20は、平板状であってもよいし、上または下に向けて湾曲していてもよい。
The guide section 20 having flexibility as described above can be constructed of, for example, an elastic metal plate, a resin plate, or a combination thereof. In addition, in order to obtain the above-mentioned flexibility, the guide section 20 may be constructed by combining multiple types of materials, the thickness of the plate material constituting the guide section 20 may be adjusted, or the guide section 20 may be constructed by combining a plurality of materials. The shape of 20 may be devised. Further, the elastic force of the guide portion 20 may be configured to be smaller in the downstream portion than in the upstream portion, for example, the elastic force may be configured to become softer toward the downstream end of the guide portion 20. Further, the thickness of the downstream portion of the guide portion 20 may be made thinner than the thickness of the upstream portion, and the material of the downstream portion of the guide portion 20 may be made to have lower rigidity than the material of the upstream portion. Further, the guide portion 20 may be flat or may be curved upward or downward.
(実施形態2の作用効果)
以上説明したように、実施形態2によれば、可撓性を有する案内部20を設けておき、この案内部20の上に所定量以上の原料が溜まることで案内部20を下方へ撓ませて傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1を形成するようにしている。よって、図11に示すように、供給部101から供給された原料が案内部20によって傾斜シュート102へ向けて案内されると、原料が案内部20の上に一時的に溜まる。 (Operations and effects of Embodiment 2)
As described above, according to the second embodiment, the flexible guide section 20 is provided, and when a predetermined amount or more of raw material accumulates on the guide section 20, the guide section 20 is not bent downward. A gap S1 through which the raw material can pass is formed between the tip and the downstream surface 102a of the inclined chute 102. Therefore, as shown in FIG. 11, when the raw material supplied from the supply section 101 is guided toward the inclined chute 102 by the guide section 20, the raw material temporarily accumulates on the guide section 20.
以上説明したように、実施形態2によれば、可撓性を有する案内部20を設けておき、この案内部20の上に所定量以上の原料が溜まることで案内部20を下方へ撓ませて傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1を形成するようにしている。よって、図11に示すように、供給部101から供給された原料が案内部20によって傾斜シュート102へ向けて案内されると、原料が案内部20の上に一時的に溜まる。 (Operations and effects of Embodiment 2)
As described above, according to the second embodiment, the flexible guide section 20 is provided, and when a predetermined amount or more of raw material accumulates on the guide section 20, the guide section 20 is not bent downward. A gap S1 through which the raw material can pass is formed between the tip and the downstream surface 102a of the inclined chute 102. Therefore, as shown in FIG. 11, when the raw material supplied from the supply section 101 is guided toward the inclined chute 102 by the guide section 20, the raw material temporarily accumulates on the guide section 20.
供給部101からは原料が継続して供給されているので、図12に示すように、案内部20の上に溜まった原料が所定量以上になると、原料の重量によって案内部20が下方に撓み、案内部20の下流端と傾斜シュート102の流下面102aとの間に原料の通過可能な隙間S1が形成される。これにより、案内部20の上に溜まっている原料が当該隙間S1を通過し、流下面102aを流下する。
Since the raw material is continuously supplied from the supply section 101, as shown in FIG. 12, when the amount of raw material accumulated on the guide section 20 exceeds a predetermined amount, the guide section 20 is bent downward due to the weight of the raw material. A gap S1 is formed between the downstream end of the guide portion 20 and the downstream surface 102a of the inclined chute 102, through which the raw material can pass. As a result, the raw material accumulated on the guide portion 20 passes through the gap S1 and flows down the flow down surface 102a.
図13に示すように、案内部20の上に溜まっている原料の量が多くなればなるほど案内部20が大きく撓むことになるので、隙間S1が拡大していく。一方、図12に示すように、案内部20の上に溜まっている原料の量が少なくなればなるほど案内部20の撓みが小さくなるので、隙間S1が縮小する。この隙間S1の変化は、案内部20の上に溜まっている原料の量が変化するとすぐに変化するので、従来の電気的な駆動手段を設ける場合に比べて応答速度が速い。また、案内部20の可撓性を利用した隙間S1のコントロールであることから、従来の電気的な駆動手段を設ける場合に比べて製造コストが低くなる。
As shown in FIG. 13, the larger the amount of raw material accumulated on the guide part 20, the more the guide part 20 is bent, and thus the gap S1 becomes larger. On the other hand, as shown in FIG. 12, the smaller the amount of raw material accumulated on the guide section 20, the smaller the deflection of the guide section 20, so the gap S1 is reduced. Since the gap S1 changes immediately when the amount of raw material accumulated on the guide portion 20 changes, the response speed is faster than when a conventional electric drive means is provided. Furthermore, since the gap S1 is controlled using the flexibility of the guide section 20, the manufacturing cost is lower than when a conventional electric drive means is provided.
(実施形態2の変形例)
図14は、実施形態2の変形例を示している。この変形例に係る原料の受け渡し装置1は、案内部20の下面を支持する支持部材21を備えている。支持部材21は、原料の受け渡し装置1の一部を構成しているフレーム部材や筐体等に固定されており、上下方向には移動しない一方、案内部20による原料の案内方向(図14の左右方向)には移動可能になっている。支持部材21を実線で示す位置に配置すると、案内部20の上流端に近い部分を下から支持することができる。一方、支持部材21を仮想線で示す位置に配置すると、案内部20における案内方向の中間部を下から支持することができ、実線で示す位置に比べて、案内部20が下方に撓みにくくなる。つまり、支持部材21を案内部20の案内方向に移動させることで、案内部20の撓みやすさ、即ち弾性力を調整できるので、原料の種類に合わせた弾性力を容易に得ることができる。尚、支持部材21は、案内部20の案内方向に無段階に位置調整可能であってもよいし、多段階に位置調整可能であってもよい。 (Modification of Embodiment 2)
FIG. 14 shows a modification of the second embodiment. The raw material delivery device 1 according to this modification includes a support member 21 that supports the lower surface of the guide section 20. The support member 21 is fixed to a frame member, a casing, etc. that constitutes a part of the raw material delivery device 1, and does not move in the vertical direction. It is movable in the left and right directions. When the support member 21 is disposed at the position shown by the solid line, it is possible to support a portion of the guide portion 20 near the upstream end from below. On the other hand, when the support member 21 is arranged at the position shown by the imaginary line, the middle part of the guide part 20 in the guiding direction can be supported from below, and the guide part 20 is less likely to bend downward compared to the position shown by the solid line. . That is, by moving the support member 21 in the guiding direction of the guide section 20, the ease of bending of the guide section 20, that is, the elastic force can be adjusted, so that the elastic force matched to the type of raw material can be easily obtained. Note that the support member 21 may be positionally adjustable in the guiding direction of the guide portion 20, or may be positionally adjustable in multiple stages.
図14は、実施形態2の変形例を示している。この変形例に係る原料の受け渡し装置1は、案内部20の下面を支持する支持部材21を備えている。支持部材21は、原料の受け渡し装置1の一部を構成しているフレーム部材や筐体等に固定されており、上下方向には移動しない一方、案内部20による原料の案内方向(図14の左右方向)には移動可能になっている。支持部材21を実線で示す位置に配置すると、案内部20の上流端に近い部分を下から支持することができる。一方、支持部材21を仮想線で示す位置に配置すると、案内部20における案内方向の中間部を下から支持することができ、実線で示す位置に比べて、案内部20が下方に撓みにくくなる。つまり、支持部材21を案内部20の案内方向に移動させることで、案内部20の撓みやすさ、即ち弾性力を調整できるので、原料の種類に合わせた弾性力を容易に得ることができる。尚、支持部材21は、案内部20の案内方向に無段階に位置調整可能であってもよいし、多段階に位置調整可能であってもよい。 (Modification of Embodiment 2)
FIG. 14 shows a modification of the second embodiment. The raw material delivery device 1 according to this modification includes a support member 21 that supports the lower surface of the guide section 20. The support member 21 is fixed to a frame member, a casing, etc. that constitutes a part of the raw material delivery device 1, and does not move in the vertical direction. It is movable in the left and right directions. When the support member 21 is disposed at the position shown by the solid line, it is possible to support a portion of the guide portion 20 near the upstream end from below. On the other hand, when the support member 21 is arranged at the position shown by the imaginary line, the middle part of the guide part 20 in the guiding direction can be supported from below, and the guide part 20 is less likely to bend downward compared to the position shown by the solid line. . That is, by moving the support member 21 in the guiding direction of the guide section 20, the ease of bending of the guide section 20, that is, the elastic force can be adjusted, so that the elastic force matched to the type of raw material can be easily obtained. Note that the support member 21 may be positionally adjustable in the guiding direction of the guide portion 20, or may be positionally adjustable in multiple stages.
(実施形態3)
図15は、本発明の実施形態3に係る籾摺機200を示すものであり、この籾摺機200は、実施形態1の原料の受け渡し装置1を備えている。尚、籾摺機200は、実施形態2の原料の受け渡し装置1を備えていてもよい。 (Embodiment 3)
FIG. 15 shows a huller 200 according to the third embodiment of the present invention, and this huller 200 is equipped with the raw material delivery device 1 of the first embodiment. Note that the rice huller 200 may include the raw material delivery device 1 of the second embodiment.
図15は、本発明の実施形態3に係る籾摺機200を示すものであり、この籾摺機200は、実施形態1の原料の受け渡し装置1を備えている。尚、籾摺機200は、実施形態2の原料の受け渡し装置1を備えていてもよい。 (Embodiment 3)
FIG. 15 shows a huller 200 according to the third embodiment of the present invention, and this huller 200 is equipped with the raw material delivery device 1 of the first embodiment. Note that the rice huller 200 may include the raw material delivery device 1 of the second embodiment.
籾摺機200は、機枠201内にゴム製の一対の脱ぷロール202、203を回転可能に配設した脱ぷ部204と、該脱ぷ部204の上方に設けられた籾ホッパ205及び流量調整用の振動フィーダ206を備え、原料としての籾を貯留しつつ適宜な繰出しを行う籾供給部207と、該籾供給部207から供給される籾を前記脱ぷ部204に案内する傾斜シュート(搬送部)209とから主要部が構成される。傾斜シュート209は、原料の流下面209aを有している。
The hulling machine 200 includes a hulling section 204 in which a pair of rubber hulling rolls 202 and 203 are rotatably arranged in a machine frame 201, a hulling section 204, and a rice hopper 205 provided above the hulling section 204. A paddy supply section 207 that is equipped with a vibration feeder 206 for flow rate adjustment and that stores paddy as a raw material and feeds it out appropriately, and an inclined chute that guides the paddy supplied from the paddy supply section 207 to the husking section 204. (Transportation section) 209 constitutes the main section. The inclined chute 209 has a raw material flow surface 209a.
前記脱ぷ部204は、一対の脱ぷロール202、203の周速度を互いに異にして反対方向に回転させ、脱ぷロール202、203の間隙に籾を供給して、脱ぷロール202、203間の周速度の差により籾殻をせん断破壊して籾摺りを行う形態(ロール式籾摺機)である。符号210は、脱ぷロール203を回転させるためのモータを示しており、また、符号211は、脱ぷロール202を回転させるためのモータを示している。モータ210、211の回転力は図示しない伝動ベルト等によって脱ぷロール202、203に伝達される。
The husking section 204 rotates the pair of husking rolls 202 and 203 in opposite directions at different circumferential speeds, and supplies the paddy to the gap between the husking rolls 202 and 203. This is a roll-type rice huller that removes the rice husks by shearing and breaking the rice husks using the difference in circumferential speed between them. Reference numeral 210 indicates a motor for rotating the shredding roll 203, and reference numeral 211 indicates a motor for rotating the shredding roll 202. The rotational force of the motors 210 and 211 is transmitted to the shredding rolls 202 and 203 by a transmission belt (not shown) or the like.
振動フィーダ206の振動機構206aにより振動トラフ206bが振動するようになっている。籾供給部207は、籾ホッパ205に投入された籾を、振動する振動トラフ206bによって下流側へ供給する。
The vibration mechanism 206a of the vibration feeder 206 causes the vibration trough 206b to vibrate. The paddy supply unit 207 supplies the paddy put into the paddy hopper 205 to the downstream side by a vibrating vibrating trough 206b.
振動トラフ206bの下流端から流下した籾は、受け渡し装置1の案内部2の上に供給される。実施形態1の受け渡し装置1の場合には、案内部2の上に所定量以上の原料が溜まることで、案内部2が下方へ揺動して案内部2の下流端と、流下面209aとの間に原料の通過可能な隙間を形成する。一方、実施形態2の受け渡し装置1の場合には、案内部20の上に所定量以上の原料が溜まることで、案内部20が下方へ撓んで案内部20の下流端と、流下面209aとの間に原料の通過可能な隙間を形成する。
The paddy flowing down from the downstream end of the vibrating trough 206b is supplied onto the guide section 2 of the delivery device 1. In the case of the delivery device 1 of Embodiment 1, when more than a predetermined amount of raw material accumulates on the guide section 2, the guide section 2 swings downward, and the downstream end of the guide section 2 and the downstream surface 209a. In between, a gap is formed through which the raw material can pass. On the other hand, in the case of the delivery device 1 of the second embodiment, when more than a predetermined amount of raw material accumulates on the guide section 20, the guide section 20 is bent downward, and the downstream end of the guide section 20 and the downstream surface 209a are bent. In between, a gap is formed through which the raw material can pass.
従って、実施形態1、2と同様に、籾を籾供給部207から傾斜シュート209へ受け渡す際に、簡易かつ低コストでありながら、良好な受け渡しを実現して原料の流下状態を安定させることができる。
Therefore, similarly to Embodiments 1 and 2, when transferring paddy from the paddy supply section 207 to the inclined chute 209, it is possible to realize a good transfer and stabilize the flowing state of the raw material while being simple and low cost. Can be done.
上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。例えば、色彩選別機100及び籾摺機200以外の機器にも、本発明を適用することができる。
The above-described embodiments are merely illustrative in all respects and should not be construed in a limiting manner. Furthermore, all modifications and changes that come within the scope of equivalents of the claims are intended to be within the scope of the present invention. For example, the present invention can be applied to devices other than the color sorter 100 and the huller 200.
(試験例)
図16は、実施形態1と従来例の原料飛散率を示すグラフである。実施形態1は、傾斜シュート102にヒータを設けたもの(ヒータあり)と、ヒータを設けていないもの(ヒータなし)を用意した。比較例1、2は、案内部が固定されていて、傾斜シュート102との間の隙間は原料が常時通過可能になっている例であり、比較例1は、原料の流量が37.5kg/h/chの時に適した角度及び位置となるように案内部が調整されている例であり、比較例2は、原料の流量が5.2kg/h/chの時に適した角度及び位置となるように案内部が調整されている例である。比較例1、2は共に「ヒータあり」である。原料は短粒白米である。図16のグラフに示すように、実施形態1では、「ヒータあり」及び「ヒータなし」の両方で、比較例1、2に比べて原料の飛散率が低減していることが分かる。 (Test example)
FIG. 16 is a graph showing the raw material scattering rate of Embodiment 1 and the conventional example. In the first embodiment, the inclined chute 102 was provided with a heater (with heater) and the inclined chute 102 was not provided with a heater (without heater). Comparative Examples 1 and 2 are examples in which the guide part is fixed and the raw material can always pass through the gap between it and the inclined chute 102. In Comparative Example 1, the raw material flow rate is 37.5 kg/ This is an example in which the guide part is adjusted so that the angle and position are suitable when the flow rate of raw material is 5.2 kg/h/ch. This is an example in which the guide section is adjusted as follows. Comparative Examples 1 and 2 both have a heater. The raw material is short grain white rice. As shown in the graph of FIG. 16, it can be seen that in Embodiment 1, the scattering rate of the raw material is reduced compared to Comparative Examples 1 and 2 in both "with heater" and "without heater".
図16は、実施形態1と従来例の原料飛散率を示すグラフである。実施形態1は、傾斜シュート102にヒータを設けたもの(ヒータあり)と、ヒータを設けていないもの(ヒータなし)を用意した。比較例1、2は、案内部が固定されていて、傾斜シュート102との間の隙間は原料が常時通過可能になっている例であり、比較例1は、原料の流量が37.5kg/h/chの時に適した角度及び位置となるように案内部が調整されている例であり、比較例2は、原料の流量が5.2kg/h/chの時に適した角度及び位置となるように案内部が調整されている例である。比較例1、2は共に「ヒータあり」である。原料は短粒白米である。図16のグラフに示すように、実施形態1では、「ヒータあり」及び「ヒータなし」の両方で、比較例1、2に比べて原料の飛散率が低減していることが分かる。 (Test example)
FIG. 16 is a graph showing the raw material scattering rate of Embodiment 1 and the conventional example. In the first embodiment, the inclined chute 102 was provided with a heater (with heater) and the inclined chute 102 was not provided with a heater (without heater). Comparative Examples 1 and 2 are examples in which the guide part is fixed and the raw material can always pass through the gap between it and the inclined chute 102. In Comparative Example 1, the raw material flow rate is 37.5 kg/ This is an example in which the guide part is adjusted so that the angle and position are suitable when the flow rate of raw material is 5.2 kg/h/ch. This is an example in which the guide section is adjusted as follows. Comparative Examples 1 and 2 both have a heater. The raw material is short grain white rice. As shown in the graph of FIG. 16, it can be seen that in Embodiment 1, the scattering rate of the raw material is reduced compared to Comparative Examples 1 and 2 in both "with heater" and "without heater".
図17は、実施形態2と従来例の原料飛散率を示すグラフである。実施形態2は、傾斜シュート102にヒータを設けたもの(ヒータあり)と、ヒータを設けていないもの(ヒータなし)を用意した。比較例1~4は、案内部が固定されていて、傾斜シュート102との間の隙間は原料が常時通過可能になっており、比較例1、2は上記比較例1、2と同じである。比較例3は、原料の流量が37.5kg/h/chの時に適した角度及び位置となるように案内部が調整されている例であり、「ヒータなし」である。比較例4は、原料の流量が5.2kg/h/chの時に適した角度及び位置となるように案内部が調整されている例であり、「ヒータなし」である。原料は短粒白米である。図17のグラフに示すように、実施形態2では、「ヒータあり」及び「ヒータなし」の両方で、比較例2~4に比べて原料の飛散率が低減していることが分かる。
FIG. 17 is a graph showing the raw material scattering rate of Embodiment 2 and the conventional example. In the second embodiment, the inclined chute 102 was provided with a heater (with heater) and the inclined chute 102 was not provided with a heater (without heater). In Comparative Examples 1 to 4, the guide part is fixed, and the raw material can always pass through the gap between it and the inclined chute 102, and Comparative Examples 1 and 2 are the same as Comparative Examples 1 and 2 above. . Comparative Example 3 is an example in which the guide portion is adjusted to have an angle and position appropriate when the flow rate of the raw material is 37.5 kg/h/ch, and is “without heater”. Comparative Example 4 is an example in which the guide portion is adjusted to have an angle and position appropriate when the flow rate of the raw material is 5.2 kg/h/ch, and is “without heater”. The raw material is short grain white rice. As shown in the graph of FIG. 17, it can be seen that in Embodiment 2, the scattering rate of the raw material is reduced in both "with heater" and "without heater" compared to Comparative Examples 2 to 4.
図18は、原料が大豆である場合の飛散率を示すグラフである。実施形態1は、傾斜シュート102にヒータを設けていないもの「ヒータなし」である。比較例5は、案内部が固定されていて、傾斜シュート102との間の隙間は原料が常時通過可能になっており、原料の流量が5.2kg/h/chの時に適した角度及び位置となるように案内部が調整されている例である。図18のグラフに示すように、実施形態1では、比較例5に比べて大豆の飛散率が大幅に低減していることが分かる。
FIG. 18 is a graph showing the scattering rate when the raw material is soybean. Embodiment 1 is "without heater" in which the inclined chute 102 is not provided with a heater. In Comparative Example 5, the guide part is fixed and the raw material can always pass through the gap between it and the inclined chute 102, and the angle and position are suitable when the flow rate of the raw material is 5.2 kg/h/ch. This is an example in which the guide section is adjusted so that As shown in the graph of FIG. 18, it can be seen that in Embodiment 1, the soybean scattering rate is significantly reduced compared to Comparative Example 5.
図19は、原料の飛散率と選別率の関係を示すグラフである。選別率とは、色彩選別機100による選別率のことであり、数値が高いほど正しく選別できていることを示す。実施形態1は、傾斜シュート102にヒータを設けていないもの「ヒータなし」である。比較例1、2は、上記比較例1、2と同じである。このグラフに示すように、原料の飛散率を低減できれば、色彩選別機100による選別率が向上する傾向であることが分かる。
FIG. 19 is a graph showing the relationship between the scattering rate of raw materials and the sorting rate. The sorting rate is the sorting rate by the color sorting machine 100, and the higher the numerical value, the more correctly sorted. Embodiment 1 is "without heater" in which the inclined chute 102 is not provided with a heater. Comparative Examples 1 and 2 are the same as Comparative Examples 1 and 2 above. As shown in this graph, it can be seen that if the scattering rate of raw materials can be reduced, the sorting rate by the color sorter 100 tends to improve.
以上説明したように、本発明に係る原料の受け渡し装置は、供給部から供給された各種原料を一旦溜めた状態にしてから搬送部に受け渡す場合に利用できる。
As explained above, the raw material delivery device according to the present invention can be used when various raw materials supplied from the supply section are temporarily stored and then delivered to the transport section.
1 原料の受け渡し装置
2 案内部
3 支持部
4 付勢部
20 案内部
101 供給部
102 傾斜シュート(搬送部)
102a 流下面
L2 仮想延長面
S1 隙間 1 Raw material delivery device 2 Guide section 3 Support section 4 Urging section 20 Guide section 101 Supply section 102 Inclined chute (transport section)
102a Downstream surface L2 Virtual extension surface S1 Gap
2 案内部
3 支持部
4 付勢部
20 案内部
101 供給部
102 傾斜シュート(搬送部)
102a 流下面
L2 仮想延長面
S1 隙間 1 Raw material delivery device 2 Guide section 3 Support section 4 Urging section 20 Guide section 101 Supply section 102 Inclined chute (transport section)
102a Downstream surface L2 Virtual extension surface S1 Gap
Claims (8)
- 供給部から供給された原料を、原料の流下面を形成する搬送部に受け渡す原料の受け渡し装置であって、
前記供給部から供給された原料を前記流下面へ案内する案内部を備え、
前記案内部は、当該案内部の上に所定量以上の原料が溜まることで下方に撓んで当該案内部の下流端と前記流下面との間に原料の通過可能な隙間を形成する可撓性を有していることを特徴とする原料の受け渡し装置。 A raw material delivery device that delivers raw materials supplied from a supply part to a conveyance part that forms a downstream surface of the raw materials,
comprising a guide part that guides the raw material supplied from the supply part to the downstream surface,
The guide part is flexible and bends downward when a predetermined amount or more of the raw material accumulates on the guide part to form a gap between the downstream end of the guide part and the downstream surface through which the raw material can pass. A raw material delivery device characterized by having: - 供給部から供給された原料を、原料の流下面を形成する搬送部に受け渡す原料の受け渡し装置であって、
前記供給部から供給された原料を前記流下面へ案内する案内部と、
前記案内部が上下方向に揺動自在となるように当該案内部を支持する支持部と、
前記案内部に対して上方への付勢力を付与する付勢部とを備え、
前記付勢部による付勢力は、前記案内部の上に所定量以上の原料が溜まることで前記案内部を下方へ揺動させて前記流下面との間に原料の通過可能な隙間を形成するように設定されていることを特徴とする原料の受け渡し装置。 A raw material delivery device that delivers raw materials supplied from a supply part to a conveyance part that forms a downstream surface of the raw materials,
a guide section that guides the raw material supplied from the supply section to the downstream surface;
a support part that supports the guide part so that the guide part can swing vertically;
a biasing portion that applies an upward biasing force to the guide portion;
The biasing force of the biasing section causes the guide section to swing downward when a predetermined amount or more of the raw material accumulates on the guide section, thereby forming a gap between the guide section and the downstream surface through which the raw material can pass. A raw material delivery device characterized by being set as follows. - 請求項1に記載の原料の受け渡し装置において、
前記案内部の上に原料が無い状態で、前記案内部の下流端と、前記流下面との間には、原料の外径よりも小さい隙間が形成されることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 1,
A raw material transfer device characterized in that, when there is no raw material on the guide part, a gap smaller than the outer diameter of the raw material is formed between the downstream end of the guide part and the downstream surface. . - 請求項2に記載の原料の受け渡し装置において、
前記案内部の上に原料が無い状態で、前記案内部の下流端と、前記流下面との間には、原料の外径よりも小さい隙間が形成されることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 2,
A raw material transfer device characterized in that, when there is no raw material on the guide part, a gap smaller than the outer diameter of the raw material is formed between the downstream end of the guide part and the downstream surface. . - 請求項1に記載の原料の受け渡し装置において、
前記案内部の上に原料が無い状態で、前記案内部に沿って前記流下面に交差するまで延長した仮想延長面と、当該仮想延長面よりも上の前記流下面とのなす角度が90度以下に設定されていることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 1,
When there is no raw material on the guide part, an angle formed by an imaginary extended surface extending along the guide part until it intersects with the downstream surface and the downstream surface above the imaginary extended surface is 90 degrees. A raw material delivery device characterized by the following settings. - 請求項2に記載の原料の受け渡し装置において、
前記案内部の上に原料が無い状態で、前記案内部に沿って前記流下面に交差するまで延長した仮想延長面と、当該仮想延長面よりも上の前記流下面とのなす角度が90度以下に設定されていることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 2,
When there is no raw material on the guide part, an angle formed by an imaginary extended surface extending along the guide part until it intersects with the downstream surface and the downstream surface above the imaginary extended surface is 90 degrees. A raw material delivery device characterized by the following settings. - 請求項1に記載の原料の受け渡し装置において、
前記案内部における撓み変形の開始起点部は、前記供給部の下流端に隣接していることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 1,
A raw material delivery device characterized in that a starting point of deflection deformation in the guide section is adjacent to a downstream end of the supply section. - 請求項2に記載の原料の受け渡し装置において、
前記案内部の揺動中心は、前記供給部の下流端に隣接していることを特徴とする原料の受け渡し装置。 The raw material delivery device according to claim 2,
A raw material delivery device characterized in that a swing center of the guide section is adjacent to a downstream end of the supply section.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022098360A JP2023184292A (en) | 2022-06-17 | 2022-06-17 | Raw material delivery device |
JP2022-098360 | 2022-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023243168A1 true WO2023243168A1 (en) | 2023-12-21 |
Family
ID=89192565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010451 WO2023243168A1 (en) | 2022-06-17 | 2023-03-16 | Raw material transfer device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023184292A (en) |
WO (1) | WO2023243168A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116476A (en) * | 1979-03-02 | 1980-09-08 | Satake Eng Co Ltd | Cereal feeder for color sorter |
JPS5662181U (en) * | 1979-10-17 | 1981-05-26 | ||
JP2006111434A (en) * | 2004-10-18 | 2006-04-27 | Seirei Ind Co Ltd | Feeder and color sorter |
CN107790400A (en) * | 2016-08-31 | 2018-03-13 | 合肥美亚光电技术股份有限公司 | Raw grain seed detector |
-
2022
- 2022-06-17 JP JP2022098360A patent/JP2023184292A/en active Pending
-
2023
- 2023-03-16 WO PCT/JP2023/010451 patent/WO2023243168A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116476A (en) * | 1979-03-02 | 1980-09-08 | Satake Eng Co Ltd | Cereal feeder for color sorter |
JPS5662181U (en) * | 1979-10-17 | 1981-05-26 | ||
JP2006111434A (en) * | 2004-10-18 | 2006-04-27 | Seirei Ind Co Ltd | Feeder and color sorter |
CN107790400A (en) * | 2016-08-31 | 2018-03-13 | 合肥美亚光电技术股份有限公司 | Raw grain seed detector |
Also Published As
Publication number | Publication date |
---|---|
JP2023184292A (en) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5678477A (en) | Husking apparatus | |
JP3275280B2 (en) | Raw material supply device for granular material color sorter | |
TW587963B (en) | Color-based sorting apparatus | |
EP0820814B1 (en) | Roll type husking apparatus with inclined guide chute | |
US8833546B2 (en) | Web product sorting machine | |
US5626219A (en) | Apparatus and method for stabilising material transported on conveyor belts | |
WO2023243168A1 (en) | Raw material transfer device | |
US7669524B2 (en) | Hulled rice distribution device in rice huller | |
CN110392608B (en) | Rice huller hulling roller abnormity determination device and rice huller using same | |
JPH09313959A (en) | Dehulling apparatus | |
JP5185583B2 (en) | Removal device | |
TWI439319B (en) | Strand granulation apparatus | |
US20090090255A1 (en) | Agricultural product peeling apparatus | |
JP2647043B2 (en) | High-speed sorting and feeding device for bulk fruits and vegetables | |
JP7256949B2 (en) | Sorter for granules | |
JP2009072677A (en) | Husking machine | |
JP4845219B2 (en) | Removal device | |
JPH09206695A (en) | Grain classifier | |
JPH1146568A (en) | Rocking selection structure of threshing device | |
JPH04349942A (en) | Hulling machine | |
JP2530043Y2 (en) | Hulling sorting equipment | |
JPH0549341A (en) | Thresher | |
JPH078814A (en) | Roll type rice hulling device | |
JPH078813A (en) | Roll type rice hulling device | |
JPH05220411A (en) | Roll type hulling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23823472 Country of ref document: EP Kind code of ref document: A1 |