WO2023242949A1 - Compressor rotor blade and compressor - Google Patents

Compressor rotor blade and compressor Download PDF

Info

Publication number
WO2023242949A1
WO2023242949A1 PCT/JP2022/023793 JP2022023793W WO2023242949A1 WO 2023242949 A1 WO2023242949 A1 WO 2023242949A1 JP 2022023793 W JP2022023793 W JP 2022023793W WO 2023242949 A1 WO2023242949 A1 WO 2023242949A1
Authority
WO
WIPO (PCT)
Prior art keywords
side region
tip end
tip
compressor
pressure surface
Prior art date
Application number
PCT/JP2022/023793
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 関
英貴 奥井
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2022/023793 priority Critical patent/WO2023242949A1/en
Publication of WO2023242949A1 publication Critical patent/WO2023242949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • At least one embodiment of the present disclosure aims to suppress loss due to leakage flow from a tip clearance in a compressor.
  • a rotor blade of a compressor according to at least one embodiment of the present disclosure, If the distance along the chord direction from the leading edge at the tip end of the airfoil portion is within the range of 0.03 times or more and 0.5 times or less of the chord length Lt at the tip end, any part of the tip end At the position, the blade thickness Wt of the tip end at the position is less than 0.3 times the maximum blade thickness Wmax of the airfoil at the position when the airfoil is viewed from the span direction of the airfoil. and When viewed from the span direction, a camber line at the tip end is located between a camber line at the proximal end of the airfoil and the pressure surface.
  • loss due to leakage flow from the tip clearance in the compressor can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a gas turbine including a compressor according to some embodiments.
  • FIG. 2 is a schematic diagram of rotor blades according to some embodiments of a compressor viewed from a circumferential direction centered on the axis of a rotor.
  • FIG. 2 is a schematic diagram of a tip end of an airfoil portion of a rotor blade according to some embodiments of a compressor, viewed from the outside in a radial direction about the axis of a rotor.
  • 4 is an example of a sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 4 is another example of a sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 1 is a schematic configuration diagram showing a gas turbine including a compressor according to some embodiments.
  • FIG. 2 is a schematic diagram of rotor blades according to some embodiments of a compressor viewed from a circumferential direction centered on the axis of a
  • expressions such as “same,””equal,” and “homogeneous” that indicate that things are in an equal state do not only mean that things are exactly equal, but also that there is a tolerance or a difference in the degree to which the same function can be obtained. It also represents the existing state.
  • expressions that express shapes such as squares and cylinders do not only refer to shapes such as squares and cylinders in a strictly geometric sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. Shapes including parts, etc. shall also be expressed.
  • the expressions “comprising,””comprising,”"equipping,”"containing,” or “having" one component are not exclusive expressions that exclude the presence of other components.
  • FIG. 1 is a schematic configuration diagram showing a gas turbine including a compressor according to some embodiments.
  • a gas turbine 1 according to some embodiments includes a compressor 2 for generating compressed air as an oxidizing agent, and a gas turbine 2 for generating combustion gas using compressed air and fuel. It includes a turbine combustor 4 and a turbine 6 configured to be rotationally driven by combustion gas.
  • a generator (not shown) is connected to the turbine 6, and the rotational energy of the turbine 6 is used to generate power.
  • the compressor 2 includes a compressor casing 10, an air intake port 12 provided on the inlet side of the compressor casing 10 for taking in air, the compressor casing 10, and a turbine casing described below.
  • the rotor 8 is provided so as to pass through the compressor casing 22, and various blades are arranged within the compressor casing 10.
  • the various blades include an inlet guide blade 14 provided on the air intake port 12 side, a plurality of stator blades 16 fixed on the compressor casing 10 side, and a rotor arranged alternately with respect to the stator blades 16. 8.
  • the compressor 2 may include other components such as a bleed chamber (not shown).
  • air taken in from the air intake port 12 passes through the plurality of stationary blades 16 and the plurality of rotor blades 18 and is compressed, thereby becoming high-temperature and high-pressure compressed air.
  • the high-temperature, high-pressure compressed air is then sent from the compressor 2 to the gas turbine combustor 4 in the subsequent stage.
  • the gas turbine combustor 4 is arranged within the casing 20. As shown in FIG. 1, a plurality of gas turbine combustors 4 may be arranged in a ring shape around the rotor 8 in the casing 20. Fuel and compressed air generated by the compressor 2 are supplied to the gas turbine combustor 4, and combustion gas, which is the working fluid of the turbine 6, is generated by burning the fuel. The combustion gas is then sent from the gas turbine combustor 4 to the subsequent turbine 6.
  • the turbine 6 includes a turbine casing 22 and various blades arranged within the turbine casing 22.
  • the various blades include a plurality of stator blades 24 fixed to the turbine casing 22 side, and a plurality of moving blades 26 installed on the rotor 8 so as to be arranged alternately with respect to the stator blades 24.
  • the turbine 6 may include other components such as outlet guide vanes.
  • the rotor 8 is rotationally driven by the combustion gas passing through the plurality of stator blades 24 and the plurality of moving blades 26. As a result, a generator connected to the rotor 8 is driven.
  • An exhaust chamber 30 is connected to the downstream side of the turbine casing 22 via an exhaust casing 28 . After driving the turbine 6, the combustion gas is exhausted to the outside via the exhaust casing 28 and the exhaust chamber 30.
  • FIG. 2 is a schematic diagram of the rotor blades 18 according to some embodiments of the compressor 2 viewed from the circumferential direction centered on the axis AX of the rotor 8.
  • FIG. 3 is a schematic diagram of the tip end 181 of the airfoil portion 83 of the rotor blade 18 according to some embodiments of the compressor 2, viewed from the outside in the radial direction about the axis AX of the rotor 8.
  • FIG. 4A is an example of a cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
  • FIG. 1 is a schematic diagram of the rotor blades 18 according to some embodiments of the compressor 2 viewed from the circumferential direction centered on the axis AX of the rotor 8.
  • FIG. 3 is a schematic diagram of the tip end 181 of the airfoil portion 83 of
  • FIG. 4B is another example of a cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
  • FIG. 4C is still another example of the cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 viewed along the camber line LB.
  • FIG. 4D is still another example of the cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
  • the rotor blade 18 includes an airfoil portion 83 that extends in the radial direction (blade height direction) and has a pressure surface 83P and a suction surface 83S, and is provided on the radially inner side of the airfoil portion 83. It has a platform 84 and a blade root 85 provided on the radially inner side of the platform 84. The blade root 85 is embedded in the rotor 8.
  • the compressor 2 includes a stationary member 11 that faces a radially outer end (tip end) 181 of the rotor blade 18 in the radial direction.
  • the stationary member 11 is, for example, a blade ring 13.
  • a clearance exists between the tip end 181 of the rotor blade 18 and the inner peripheral surface 13i of the blade ring 13. This clearance is generally called tip clearance TC.
  • leakage flow occurs from this tip clearance TC. From the viewpoint of improving the efficiency of the compressor 2, it is required to suppress this leakage flow and to suppress pressure loss due to the leakage flow.
  • the rotor blades 18 are configured as follows. As shown in FIG. 3, the distance along the chord direction, which is the extending direction of the chord line LA, from the leading edge 183 at the tip end 181 of the airfoil 83 is 0.03 times the chord length Lt at the tip end 181.
  • the range R is 0.5 times or less.
  • the blade thickness Wt of the tip end 181 at the position P is such that the airfoil portion 83 is It is less than 0.3 times the maximum blade thickness Wmax of the airfoil portion 83 at the position P when viewed from the span direction of the airfoil portion 83.
  • the camber line LB1 at the tip end 181 is located between the camber line LB2 at the base end (hub end 182) of the airfoil 83 and the pressure surface 83P.
  • the cross-sectional shape of the airfoil portion 83 at this starting point position is aerodynamically important. Therefore, by making the thickness Wt of the tip end 181 at this starting point sufficiently thin with the rotor blades 18 according to some embodiments having the above configuration, loss due to leakage flow from the tip clearance TC can be reduced. Can be effectively suppressed. Further, according to the rotor blade 18 according to some embodiments, since the end of the tip end 181 on the suction surface 83S side approaches the pressure surface 83P, the tip end 181 moves from the pressure surface 83P to the suction surface 83S. The convex warpage is reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
  • the compressor 2 since the compressor 2 according to some embodiments includes the rotor blades 18 described above, the efficiency ⁇ of the compressor 2 can be improved.
  • the pressure surface 83P is , it is preferable to extend linearly from the tip end 181 toward the hub end 182 side of the airfoil portion 83 along the span direction.
  • the pressure surface 83P is directed from the tip end 181 toward the hub end 182 side of the airfoil section 83 toward the outside of the airfoil section 83.
  • the end of the tip end 181 on the suction surface 83S side comes closer to the pressure surface 83P, compared to the case where it extends convexly in the direction from the suction surface 83S toward the pressure surface 83P. Therefore, the convex warpage from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181 is further reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
  • the pressure surface 83P preferably extends linearly from the tip end 181 toward the hub end 182 side of the airfoil portion 83 along the span direction. It is not essential that the airfoil 83 extend linearly from the tip end 181 toward the hub end 182 of the airfoil 83 along the span direction. That is, in the rotor blade 18 according to some embodiments, when viewed along the camber line LB in at least a part of the region, the pressure surface 83P extends from the tip end 181 to the airfoil portion 83 along the span direction. It may extend in a curved manner toward the hub end 182 side.
  • the suction surface 83S preferably includes a hub-side region 103 and a chip-side region 101 that is a region closer to the chip end 181 than the hub-side region 103.
  • the negative pressure surface 83S is a tangent to the hub side region 103 at the boundary position Pb between the hub side region 103 and the tip side region 101 in the chip side region 101. It is preferably located between T1 and the pressure surface 83P. This further reduces the convex warpage from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181, and suppresses pressure loss due to leakage flow from the tip clearance TC.
  • the suction surface 831S in the tip side region 101 of the suction surface 83S is different from the suction surface 831S. It is formed so that a gentle curve connects the intersection position Px with the chip end 181 and the boundary position Pb.
  • the suction surface 831S in the tip side region 101 is a straight line between the intersection position Px and the boundary position Pb. It is formed to connect with.
  • the suction surface 831S in the tip side region 101 is located in an area relatively close to the intersection position Px and at the boundary position.
  • the two regions are formed linearly so that the angular difference with the radial direction is relatively small in the region relatively close to Pb.
  • the area between the two areas has a larger angular difference with respect to the radial direction than the two areas. It is formed in a straight line to increase its size. For example, in the rotor blade 18 shown in FIG.
  • the suction surface 831S in the tip side region 101 is closer to the boundary than the region relatively near the intersection point Px.
  • Each region is formed linearly so that the angular difference with the radial direction is smaller than that of a region relatively close to position Pb.
  • the suction surfaces 831S in the tip side region 101 are adjacent to each other along the radial direction. Adjacent regions along the radial direction may be gently connected to each other so that the inclination angle gradually changes in the vicinity of the connection position between the regions.
  • the boundary position Pb is from the hub end 182 to the tip end when the hub end 182 of the airfoil portion 83 is set as 0% and the tip end 181 as 100%. It is preferable that the position is 70% or more of the distance to 181.
  • FIG. 5 is a graph showing the relationship between the radial position of the boundary position Pb and the efficiency ⁇ of the compressor 2.
  • E0 is the efficiency ⁇ of the compressor 2 when a conventional rotor blade without the tip side region 101 is used. Note that the position of the negative pressure surface 83X at the tip end 181 of a conventional rotor blade without the tip side region 101 is indicated by a two-dot chain line in FIG.
  • E1 is the efficiency ⁇ of the compressor 2 when the boundary position Pb is set at 90% of the distance from the hub end 182 to the tip end 181
  • E2 is the efficiency ⁇ of the compressor 2 when the boundary position Pb is set at 90% of the distance from the hub end 182 to the tip end 181.
  • E3 is the efficiency ⁇ of the compressor 2 when the boundary position Pb is set at 80% of the distance from the hub end 182 to the tip end 181. This is the efficiency ⁇ of the compressor 2 when In FIG. 5, E0 is the efficiency ⁇ of the compressor 2 when a conventional rotor blade without the tip side region 101 is used.
  • the efficiency of the compressor 2 is improved by moving the boundary position Pb between the hub side region 103 and the tip side region 101 toward the hub end 182 side and expanding the tip side region 101.
  • this boundary position Pb is moved to a position where it becomes smaller than 70% of the distance from the hub end 182 to the tip end 181, it becomes difficult to further improve the efficiency of the compressor 2.
  • the tip side region 101 that is, the region to be thinned, becomes larger, which affects the strength of the airfoil portion 83.
  • the efficiency ⁇ of the compressor 2 can be improved while ensuring the strength of the airfoil portion 83.
  • the suction surface 831S in the tip side region 101 extends in the span direction x
  • the slope of the suction surface 831S approaches the radial direction, and the suction surface 831S becomes a steep slope, thereby increasing the effect of improving efficiency ⁇ . can.
  • the suction surface 831S can be smoothly connected from this area to the hub side area 103, making it difficult to disturb the air flow and suppressing pressure loss. Stress concentration due to a sharp change in shape in the shaped portion 83 can be suppressed.
  • the tip side region 101 and the hub An angle ⁇ 1 between the suction surface 831S in the chip side region 101 and the suction surface 833S in the hub side region 103 of the suction surfaces 83S at the boundary position Pb with the side region 103 is greater than 160 degrees and less than 180 degrees. good. If the angle ⁇ 1 between the negative pressure surface 831S in the chip side region 101 and the negative pressure surface 831S in the hub side region 103 is relatively small, the boundary position Pb between the chip side region 101 and the hub side region 103 will have a protruding shape.
  • the suction surface 831S in the tip side region 101 is located at the tip end 181. It may extend linearly from to the boundary position Pb between the chip side region 101 and the hub side region 103. This makes it difficult to disturb the flow of air near the negative pressure surface 831S in the chip side region 101, so pressure loss can be suppressed.
  • the suction surface 831S and the tip end at least within the above range R, when viewed along the camber line LB, the suction surface 831S and the tip end.
  • the angle ⁇ 2 between the negative pressure surface 831S and the chip end surface 181a forming the chip end 181 at the intersection position Px with the chip end 181 is preferably greater than 90 degrees and less than 110 degrees.
  • the blade thickness Wt of the tip end 181 is divided by the clearance TC between the inner peripheral surface 13i of the blade ring 13 and the tip end 181 (tip clearance TC).
  • the value (Wt/TC) is preferably 1.5 or less.
  • the blade thickness Wt of the tip end 181 at the position P is equal to the maximum blade thickness Wmax of the airfoil 83 at the position P when the airfoil 83 is viewed from the span direction of the airfoil 83. less than 0.3 times.
  • the camber line LB1 at the tip end 181 is located between the camber line LB2 at the base end (hub end 182) of the airfoil 83 and the pressure surface 83P.
  • the pressure surface 83P extends from the tip end 181 along the span direction. It is preferable that the airfoil portion 83 extends linearly toward the hub end 182 side.
  • the efficiency ⁇ of the compressor 2 can be improved while ensuring the strength of the airfoil portion 83.
  • the inclination of the suction surface 831S approaches the radial direction and the suction surface 831S becomes a steep slope, thereby increasing the efficiency ⁇ .
  • the improvement effect can be increased.
  • the suction surface 831S can be smoothly connected from this area to the hub side area 103, making it difficult to disturb the air flow and suppressing pressure loss. Stress concentration due to a sharp change in shape in the shaped portion 83 can be suppressed.
  • any of the configurations (3) to (5) above at least within the range R, when viewed along the camber line LB, the tip side region 101 and the hub side
  • the angle ⁇ 1 between the suction surface 831S in the chip side region 101 and the suction surface 833S in the hub side region 103 at the boundary position Pb with the region 103 is preferably greater than 160 degrees and less than 180 degrees.
  • the negative pressure surface in the chip side region 101 is 831S may extend linearly from the chip end 181 to the boundary position Pb between the chip side region 101 and the hub side region 103.
  • the air flow near the negative pressure surface 831S in the chip side region 101 is less likely to be disturbed, so pressure loss can be suppressed.
  • any of the configurations (1) to (7) above at least within the range R, when viewed along the camber line LB, the negative pressure surface 831S and the tip end 181
  • the angle ⁇ 2 between the negative pressure surface 831S and the chip end surface 181a forming the chip end 181 at the intersection position Px is preferably greater than 90 degrees and less than 110 degrees.
  • the efficiency ⁇ of the compressor 2 can be rationally improved.
  • the compressor 2 includes the rotor blade 18 having the configuration of any one of (1) to (8) above.
  • the efficiency ⁇ of the compressor 2 can be improved.
  • the configuration of (9) above may include a stationary member (blade ring 13) facing the tip end 181 in the radial direction. At least within the above range R, the value obtained by dividing the blade thickness Wt of the tip end 181 by the clearance TC between the stationary member (blade ring 13) and the tip end 181 ((tip clearance TC)) is preferably 1.5 or less. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In a compressor rotor blade according to one embodiment, when the distance along the chord direction from a leading edge at a tip end of an airfoil part is within a range of 0.03-0.5 times of a chord length Lt at the tip end, the blade thickness Wt of the tip end at any position of the tip end is less than 0.3 times of the maximum blade thickness Wmax of the airfoil part at said position when the airfoil part is viewed from a span direction of the airfoil part. When viewed from the span direction, a camber line at the tip end is located between the camber line at a base end portion of the airfoil part and a pressure surface.

Description

圧縮機の動翼及び圧縮機Compressor blades and compressor
 本開示は、圧縮機の動翼及び圧縮機に関する。 The present disclosure relates to a rotor blade of a compressor and a compressor.
 例えばガスタービン等が備える圧縮機は、ロータの軸線方向に交互に配置されている複数段の動翼列と静翼列とを備え、空気取入口から取り込まれた空気を複数段の動翼列と静翼列とを通過させて圧縮することで高圧の圧縮空気を生成するように構成されている(例えば特許文献1参照)。 For example, a compressor included in a gas turbine or the like has multiple stages of rows of rotor blades and rows of stator blades arranged alternately in the axial direction of the rotor. The compressed air is configured to generate high-pressure compressed air by passing through and compressing the stator blade row (for example, see Patent Document 1).
特開2018-168848号公報JP2018-168848A
 例えば特許文献1に記載の圧縮機のような軸流圧縮機では、動翼の径方向外側端(チップ端)と、このチップ端と径方向で対向する翼環等の静止部材の内周面との間には、クリアランスが存在する。このクリアランスは、一般的にチップクリアランスと呼ばれる。
 圧縮機の運転中にはこのチップクリアランスから漏れ流れが発生する。圧縮機の効率向上の観点からこの漏れ流れを抑制することや、漏れ流れによる圧力損失を抑制することが求められている。
For example, in an axial flow compressor such as the compressor described in Patent Document 1, the radially outer end (tip end) of a rotor blade and the inner circumferential surface of a stationary member such as a blade ring that faces the tip end in the radial direction. There is a clearance between them. This clearance is generally called tip clearance.
During operation of the compressor, leakage flow occurs from this tip clearance. From the viewpoint of improving compressor efficiency, it is required to suppress this leakage flow and to suppress pressure loss due to the leakage flow.
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、圧縮機におけるチップクリアランスからの漏れ流れによる損失を抑制することを目的とする。 In view of the above-mentioned circumstances, at least one embodiment of the present disclosure aims to suppress loss due to leakage flow from a tip clearance in a compressor.
(1)本開示の少なくとも一実施形態に係る圧縮機の動翼は、
 前記翼形部のチップ端における前縁からのコード方向に沿った距離が前記チップ端におけるコード長Ltの0.03倍以上0.5倍以下の範囲内であれば、前記チップ端の任意の位置において、前記位置における前記チップ端の翼厚Wtは、前記翼形部を前記翼形部のスパン方向から見たときの前記位置における前記翼形部の最大翼厚Wmaxの0.3倍未満であり、
 前記スパン方向から見た時に、前記チップ端におけるキャンバーラインは、前記翼形部の基端部におけるキャンバーラインと前記圧力面との間に位置する。
(1) A rotor blade of a compressor according to at least one embodiment of the present disclosure,
If the distance along the chord direction from the leading edge at the tip end of the airfoil portion is within the range of 0.03 times or more and 0.5 times or less of the chord length Lt at the tip end, any part of the tip end At the position, the blade thickness Wt of the tip end at the position is less than 0.3 times the maximum blade thickness Wmax of the airfoil at the position when the airfoil is viewed from the span direction of the airfoil. and
When viewed from the span direction, a camber line at the tip end is located between a camber line at the proximal end of the airfoil and the pressure surface.
(2)本開示の少なくとも一実施形態に係る圧縮機は、
 上記(1)の構成の動翼、
を備える。
(2) A compressor according to at least one embodiment of the present disclosure,
A rotor blade having the configuration of (1) above,
Equipped with
 本開示の少なくとも一実施形態によれば、圧縮機におけるチップクリアランスからの漏れ流れによる損失を抑制できる。 According to at least one embodiment of the present disclosure, loss due to leakage flow from the tip clearance in the compressor can be suppressed.
幾つかの実施形態に係る圧縮機を備えたガスタービンを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a gas turbine including a compressor according to some embodiments. 圧縮機の幾つかの実施形態に係る動翼をロータの軸線を中心とする周方向から見た模式図である。FIG. 2 is a schematic diagram of rotor blades according to some embodiments of a compressor viewed from a circumferential direction centered on the axis of a rotor. 圧縮機の幾つかの実施形態に係る動翼の翼形部のチップ端をロータの軸線を中心とする径方向外側から見た模式図である。FIG. 2 is a schematic diagram of a tip end of an airfoil portion of a rotor blade according to some embodiments of a compressor, viewed from the outside in a radial direction about the axis of a rotor. 図3のIV-IV矢視断面図の一例である。4 is an example of a sectional view taken along the line IV-IV in FIG. 3. FIG. 図3のIV-IV矢視断面図の他の一例である。4 is another example of a sectional view taken along the line IV-IV in FIG. 3. FIG. 図3のIV-IV矢視断面図のさらに他の一例である。4 is yet another example of a cross-sectional view taken along the line IV-IV in FIG. 3. FIG. 図3のIV-IV矢視断面図のさらに他の一例である。4 is yet another example of a cross-sectional view taken along the line IV-IV in FIG. 3. FIG. 境界位置の径方向位置と圧縮機の効率との関係を示すグラフである。It is a graph which shows the relationship between the radial position of a boundary position and the efficiency of a compressor. チップ端の翼厚をチップクリアランスで除した値と効率ゲインとの関係を示すグラフである。It is a graph showing the relationship between the value obtained by dividing the blade thickness at the tip end by the tip clearance and the efficiency gain.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure, and are merely illustrative examples. do not have.
For example, expressions expressing relative or absolute positioning such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""centered,""concentric," or "coaxial" are strictly In addition to representing such an arrangement, it also represents a state in which they are relatively displaced by a tolerance or an angle or distance that allows the same function to be obtained.
For example, expressions such as "same,""equal," and "homogeneous" that indicate that things are in an equal state do not only mean that things are exactly equal, but also that there is a tolerance or a difference in the degree to which the same function can be obtained. It also represents the existing state.
For example, expressions that express shapes such as squares and cylinders do not only refer to shapes such as squares and cylinders in a strictly geometric sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. Shapes including parts, etc. shall also be expressed.
On the other hand, the expressions "comprising,""comprising,""equipping,""containing," or "having" one component are not exclusive expressions that exclude the presence of other components.
(ガスタービン1について)
 図1は、幾つかの実施形態に係る圧縮機を備えたガスタービンを示す概略構成図である。
 図1に示すように、幾つかの実施形態に係るガスタービン1は、酸化剤としての圧縮空気を生成するための圧縮機2と、圧縮空気及び燃料を用いて燃焼ガスを発生させるためのガスタービン燃焼器4と、燃焼ガスによって回転駆動されるように構成されたタービン6と、を備える。発電用のガスタービン1の場合、タービン6には不図示の発電機が連結され、タービン6の回転エネルギーによって発電が行われるようになっている。
(About gas turbine 1)
FIG. 1 is a schematic configuration diagram showing a gas turbine including a compressor according to some embodiments.
As shown in FIG. 1, a gas turbine 1 according to some embodiments includes a compressor 2 for generating compressed air as an oxidizing agent, and a gas turbine 2 for generating combustion gas using compressed air and fuel. It includes a turbine combustor 4 and a turbine 6 configured to be rotationally driven by combustion gas. In the case of the gas turbine 1 for power generation, a generator (not shown) is connected to the turbine 6, and the rotational energy of the turbine 6 is used to generate power.
 幾つかの実施形態に係るガスタービン1における各部位の具体的な構成例について説明する。
 幾つかの実施形態に係る圧縮機2は、圧縮機車室10と、圧縮機車室10の入口側に設けられ、空気を取り込むための空気取入口12と、圧縮機車室10及び後述するタービン車室22を共に貫通するように設けられたロータ8と、圧縮機車室10内に配置された各種の翼と、を備える。各種の翼は、空気取入口12側に設けられた入口案内翼14と、圧縮機車室10側に固定された複数の静翼16と、静翼16に対して交互に配列されるようにロータ8に植設された複数の動翼18と、を含む。なお、圧縮機2は、不図示の抽気室等の他の構成要素を備えていてもよい。このような圧縮機2において、空気取入口12から取り込まれた空気は、複数の静翼16及び複数の動翼18を通過して圧縮されることで高温高圧の圧縮空気となる。そして、高温高圧の圧縮空気は圧縮機2から後段のガスタービン燃焼器4に送られる。
A specific example of the configuration of each part in the gas turbine 1 according to some embodiments will be described.
The compressor 2 according to some embodiments includes a compressor casing 10, an air intake port 12 provided on the inlet side of the compressor casing 10 for taking in air, the compressor casing 10, and a turbine casing described below. The rotor 8 is provided so as to pass through the compressor casing 22, and various blades are arranged within the compressor casing 10. The various blades include an inlet guide blade 14 provided on the air intake port 12 side, a plurality of stator blades 16 fixed on the compressor casing 10 side, and a rotor arranged alternately with respect to the stator blades 16. 8. Note that the compressor 2 may include other components such as a bleed chamber (not shown). In such a compressor 2, air taken in from the air intake port 12 passes through the plurality of stationary blades 16 and the plurality of rotor blades 18 and is compressed, thereby becoming high-temperature and high-pressure compressed air. The high-temperature, high-pressure compressed air is then sent from the compressor 2 to the gas turbine combustor 4 in the subsequent stage.
 幾つかの実施形態に係るガスタービン1では、ガスタービン燃焼器4は、ケーシング20内に配置される。図1に示すように、ガスタービン燃焼器4は、ケーシング20内にロータ8を中心として環状に複数配置されていてもよい。ガスタービン燃焼器4には燃料と圧縮機2で生成された圧縮空気とが供給され、燃料を燃焼させることによって、タービン6の作動流体である燃焼ガスを発生させる。そして、燃焼ガスはガスタービン燃焼器4から後段のタービン6に送られる。 In the gas turbine 1 according to some embodiments, the gas turbine combustor 4 is arranged within the casing 20. As shown in FIG. 1, a plurality of gas turbine combustors 4 may be arranged in a ring shape around the rotor 8 in the casing 20. Fuel and compressed air generated by the compressor 2 are supplied to the gas turbine combustor 4, and combustion gas, which is the working fluid of the turbine 6, is generated by burning the fuel. The combustion gas is then sent from the gas turbine combustor 4 to the subsequent turbine 6.
 幾つかの実施形態に係るガスタービン1では、タービン6は、タービン車室22と、タービン車室22内に配置された各種の翼と、を備える。各種の翼は、タービン車室22側に固定された複数の静翼24と、静翼24に対して交互に配列されるようにロータ8に植設された複数の動翼26と、を含む。なお、タービン6は、出口案内翼等の他の構成要素を備えていてもよい。タービン6においては、燃焼ガスが複数の静翼24及ぶ複数の動翼26を通過することでロータ8が回転駆動する。これにより、ロータ8に連結された発電機が駆動されるようになっている。
 タービン車室22の下流側には、排気車室28を介して排気室30が連結されている。タービン6を駆動した後の燃焼ガスは、排気車室28及び排気室30を介して外部へ排出される。
In the gas turbine 1 according to some embodiments, the turbine 6 includes a turbine casing 22 and various blades arranged within the turbine casing 22. The various blades include a plurality of stator blades 24 fixed to the turbine casing 22 side, and a plurality of moving blades 26 installed on the rotor 8 so as to be arranged alternately with respect to the stator blades 24. . Note that the turbine 6 may include other components such as outlet guide vanes. In the turbine 6, the rotor 8 is rotationally driven by the combustion gas passing through the plurality of stator blades 24 and the plurality of moving blades 26. As a result, a generator connected to the rotor 8 is driven.
An exhaust chamber 30 is connected to the downstream side of the turbine casing 22 via an exhaust casing 28 . After driving the turbine 6, the combustion gas is exhausted to the outside via the exhaust casing 28 and the exhaust chamber 30.
 図2は、圧縮機2の幾つかの実施形態に係る動翼18をロータ8の軸線AXを中心とする周方向から見た模式図である。
 図3は、圧縮機2の幾つかの実施形態に係る動翼18の翼形部83のチップ端181をロータ8の軸線AXを中心とする径方向外側から見た模式図である。
 図4Aは、図3のIV-IV矢視断面図の一例であり、翼形部83のチップ端181近傍をキャンバーラインLBに沿って見た模式的な断面を示している。
 図4Bは、図3のIV-IV矢視断面図の他の一例であり、翼形部83のチップ端181近傍をキャンバーラインLBに沿って見た模式的な断面を示している。
 図4Cは、図3のIV-IV矢視断面図のさらに他の一例であり、翼形部83のチップ端181近傍をキャンバーラインLBに沿って見た模式的な断面を示している。
 図4Dは、図3のIV-IV矢視断面図のさらに他の一例であり、翼形部83のチップ端181近傍をキャンバーラインLBに沿って見た模式的な断面を示している。
FIG. 2 is a schematic diagram of the rotor blades 18 according to some embodiments of the compressor 2 viewed from the circumferential direction centered on the axis AX of the rotor 8.
FIG. 3 is a schematic diagram of the tip end 181 of the airfoil portion 83 of the rotor blade 18 according to some embodiments of the compressor 2, viewed from the outside in the radial direction about the axis AX of the rotor 8.
FIG. 4A is an example of a cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
FIG. 4B is another example of a cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
FIG. 4C is still another example of the cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 viewed along the camber line LB.
FIG. 4D is still another example of the cross-sectional view taken along the line IV-IV in FIG. 3, and shows a schematic cross-section of the vicinity of the tip end 181 of the airfoil portion 83 as viewed along the camber line LB.
 幾つかの実施形態に係る動翼18は、径方向(翼高さ方向)に延在し、圧力面83Pと負圧面83Sとを有する翼形部83、翼形部83の径方向内側に設けられているプラットフォーム84、及び、プラットフォーム84の径方向内側に設けられている翼根85、を有する。翼根85はロータ8に埋め込まれている。 The rotor blade 18 according to some embodiments includes an airfoil portion 83 that extends in the radial direction (blade height direction) and has a pressure surface 83P and a suction surface 83S, and is provided on the radially inner side of the airfoil portion 83. It has a platform 84 and a blade root 85 provided on the radially inner side of the platform 84. The blade root 85 is embedded in the rotor 8.
 幾つかの実施形態に係る圧縮機2は、動翼18の径方向外側端(チップ端)181と径方向で対向する静止部材11を備える。幾つかの実施形態に係る圧縮機2では、静止部材11は、例えば翼環13である。
 幾つかの実施形態に係る圧縮機2では、動翼18のチップ端181と、翼環13の内周面13iとの間には、クリアランスが存在する。このクリアランスは、一般的にチップクリアランスTCと呼ばれる。
 圧縮機2の運転中にはこのチップクリアランスTCから漏れ流れが発生する。圧縮機2の効率向上の観点からこの漏れ流れを抑制することや、漏れ流れによる圧力損失を抑制することが求められている。
The compressor 2 according to some embodiments includes a stationary member 11 that faces a radially outer end (tip end) 181 of the rotor blade 18 in the radial direction. In the compressor 2 according to some embodiments, the stationary member 11 is, for example, a blade ring 13.
In the compressor 2 according to some embodiments, a clearance exists between the tip end 181 of the rotor blade 18 and the inner peripheral surface 13i of the blade ring 13. This clearance is generally called tip clearance TC.
During operation of the compressor 2, leakage flow occurs from this tip clearance TC. From the viewpoint of improving the efficiency of the compressor 2, it is required to suppress this leakage flow and to suppress pressure loss due to the leakage flow.
 そこで、幾つかの実施形態に係る圧縮機2では、動翼18を次のように構成した。
 図3に示すように、翼形部83のチップ端181における前縁183からの翼弦線LAの延在方向であるコード方向に沿った距離がチップ端181におけるコード長Ltの0.03倍以上0.5倍以下の範囲を範囲Rとする。
 幾つかの実施形態に係る動翼18では、上記の範囲R内であれば、チップ端181の任意の位置Pにおいて、上記位置Pにおけるチップ端181の翼厚Wtは、翼形部83を翼形部83のスパン方向から見たときの上記位置Pにおける翼形部83の最大翼厚Wmaxの0.3倍未満である。スパン方向から見た時に、チップ端181におけるキャンバーラインLB1は、翼形部83の基端部(ハブ端182)におけるキャンバーラインLB2と圧力面83Pとの間に位置する。
 なお、チップ端181におけるコード長Ltと、ハブ端182におけるコード長とが異なる場合等には、スパン方向と径方向とは厳密には一致しないが、図2は、スパン方向から見た図と略同じである。
 図2では、スパン方向に沿った線分Sの1つを一点鎖線で例示している。
Therefore, in the compressor 2 according to some embodiments, the rotor blades 18 are configured as follows.
As shown in FIG. 3, the distance along the chord direction, which is the extending direction of the chord line LA, from the leading edge 183 at the tip end 181 of the airfoil 83 is 0.03 times the chord length Lt at the tip end 181. The range R is 0.5 times or less.
In the rotor blade 18 according to some embodiments, at any position P of the tip end 181 within the above range R, the blade thickness Wt of the tip end 181 at the position P is such that the airfoil portion 83 is It is less than 0.3 times the maximum blade thickness Wmax of the airfoil portion 83 at the position P when viewed from the span direction of the airfoil portion 83. When viewed from the span direction, the camber line LB1 at the tip end 181 is located between the camber line LB2 at the base end (hub end 182) of the airfoil 83 and the pressure surface 83P.
Note that in cases where the cord length Lt at the tip end 181 and the cord length at the hub end 182 are different, the span direction and the radial direction do not strictly match, but FIG. Almost the same.
In FIG. 2, one of the line segments S along the span direction is illustrated by a chain line.
 発明者らが鋭意検討した結果、チップ端181の翼厚Wtが小さくなるほど、負圧面83S側でのチップ端181からの空気の剥離や流速低下領域の低減による圧力損失の抑制効果が高まることが判明した。また、コード方向に沿って前縁183から後縁184にかけてチップクリアランスTCからの漏れ流れ起点となる位置は、前縁183からのコード方向に沿った距離がチップ端181におけるコード長Ltの0.03倍以上0.5倍以下の範囲内に存在することが分かっている。チップクリアランスTCからの漏れ流れによる損失の低減のためには、この起点となる位置における翼形部83の断面形状が空力的に重要である。そのため、上記の構成を有する幾つかの実施形態に係る動翼18によって、この起点となる位置におけるチップ端181の厚さWtを十分に薄くすることで、チップクリアランスTCからの漏れ流れによる損失を効果的に抑制できる。
 また、幾つかの実施形態に係る動翼18によれば、チップ端181における負圧面83S側の端部が圧力面83Pに接近するため、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。
As a result of intensive studies by the inventors, it has been found that the smaller the blade thickness Wt of the tip end 181, the more effective is the suppression of pressure loss due to the separation of air from the tip end 181 on the suction surface 83S side and the reduction of the flow velocity reduction region. found. Moreover, the position where the leakage flow from the tip clearance TC starts from the leading edge 183 to the trailing edge 184 along the cord direction is such that the distance from the leading edge 183 along the cord direction is 0.0000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000 water from the trailing edge 183 from the trailing edge 184 from the tip clearance TC in the tip direction. It is known that it exists within a range of 0.3 times or more and 0.5 times or less. In order to reduce loss due to leakage flow from the tip clearance TC, the cross-sectional shape of the airfoil portion 83 at this starting point position is aerodynamically important. Therefore, by making the thickness Wt of the tip end 181 at this starting point sufficiently thin with the rotor blades 18 according to some embodiments having the above configuration, loss due to leakage flow from the tip clearance TC can be reduced. Can be effectively suppressed.
Further, according to the rotor blade 18 according to some embodiments, since the end of the tip end 181 on the suction surface 83S side approaches the pressure surface 83P, the tip end 181 moves from the pressure surface 83P to the suction surface 83S. The convex warpage is reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
 また、幾つかの実施形態に係る圧縮機2では、上述した動翼18を備えるので、圧縮機2の効率ηを向上できる。 Further, since the compressor 2 according to some embodiments includes the rotor blades 18 described above, the efficiency η of the compressor 2 can be improved.
 図4A、図4B、図4C、及び図4Dに示すように、幾つかの実施形態に係る動翼18では、少なくとも範囲R内において、キャンバーラインLBに沿って見たときに、圧力面83Pは、スパン方向に沿ってチップ端181から翼形部83のハブ端182側に向かって直線的に延在するとよい。
 これにより、キャンバーラインLBに沿って見たときに、チップ端181の近傍において、圧力面83Pがチップ端181から翼形部83のハブ端182側に向かって翼形部83の外部に向かって、すなわち負圧面83Sから圧力面83Pに向かう方向へ凸となるように延在する場合と比べて、チップ端181における負圧面83S側の端部が一層圧力面83Pに接近するようになる。そのため、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが一層小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。
As shown in FIGS. 4A, 4B, 4C, and 4D, in the rotor blade 18 according to some embodiments, at least within the range R, when viewed along the camber line LB, the pressure surface 83P is , it is preferable to extend linearly from the tip end 181 toward the hub end 182 side of the airfoil portion 83 along the span direction.
As a result, when viewed along the camber line LB, in the vicinity of the tip end 181, the pressure surface 83P is directed from the tip end 181 toward the hub end 182 side of the airfoil section 83 toward the outside of the airfoil section 83. In other words, the end of the tip end 181 on the suction surface 83S side comes closer to the pressure surface 83P, compared to the case where it extends convexly in the direction from the suction surface 83S toward the pressure surface 83P. Therefore, the convex warpage from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181 is further reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
 なお、上述の説明では、圧力面83Pがスパン方向に沿ってチップ端181から翼形部83のハブ端182側に向かって直線的に延在するとよい旨の説明を行ったが、圧力面83Pがスパン方向に沿ってチップ端181から翼形部83のハブ端182側に向かって直線的に延在することは必須ではない。すなわち、幾つかの実施形態に係る動翼18では、少なくとも一部の領域において、キャンバーラインLBに沿って見たときに、圧力面83Pは、スパン方向に沿ってチップ端181から翼形部83のハブ端182側に向かって曲線的に延在していてもよい。 In the above description, it was explained that the pressure surface 83P preferably extends linearly from the tip end 181 toward the hub end 182 side of the airfoil portion 83 along the span direction. It is not essential that the airfoil 83 extend linearly from the tip end 181 toward the hub end 182 of the airfoil 83 along the span direction. That is, in the rotor blade 18 according to some embodiments, when viewed along the camber line LB in at least a part of the region, the pressure surface 83P extends from the tip end 181 to the airfoil portion 83 along the span direction. It may extend in a curved manner toward the hub end 182 side.
 図4A、図4B、図4C、及び図4Dに示すように、幾つかの実施形態に係る動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面83Sは、ハブ側領域103と、ハブ側領域103よりもチップ端181側の領域であるチップ側領域101とを含むとよい。少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面83Sは、チップ側領域101において、ハブ側領域103とチップ側領域101との境界位置Pbにおけるハブ側領域103の接線T1と圧力面83Pとの間に位置するとよい。
 これにより、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが一層小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。
As shown in FIGS. 4A, 4B, 4C, and 4D, in the rotor blade 18 according to some embodiments, at least within the range R, when viewed along the camber line LB, the suction surface 83S preferably includes a hub-side region 103 and a chip-side region 101 that is a region closer to the chip end 181 than the hub-side region 103. At least within the above range R, when viewed along the camber line LB, the negative pressure surface 83S is a tangent to the hub side region 103 at the boundary position Pb between the hub side region 103 and the tip side region 101 in the chip side region 101. It is preferably located between T1 and the pressure surface 83P.
This further reduces the convex warpage from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181, and suppresses pressure loss due to leakage flow from the tip clearance TC.
 なお、例えば図4Aに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面83Sの内のチップ側領域101における負圧面831Sは、負圧面831Sとチップ端181との交差位置Pxと、境界位置Pbとの間をなだらかな曲線で接続するように形成されている。
 例えば図4Bに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、交差位置Pxと境界位置Pbとの間を直線で接続するように形成されている。
 例えば図4Cに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、交差位置Pxに比較的近い領域、及び境界位置Pbに比較的近い領域において径方向との角度差が比較的少なくなるように2つの上記領域が直線的に形成されている。図4Cに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、2つの上記領域の間の領域は、2つの上記領域よりも径方向との角度差が大きくなるように直線的に形成されている。
 例えば図4Dに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、交差位置Pxに比較的近い領域の方が境界位置Pbに比較的近い領域よりも径方向との角度差が小さくなるように、それぞれの領域が直線的に形成されている。
 なお、例えば図4C及び図Dに示す動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、径方向に沿って隣り合う領域同士の接続位置の近傍において傾斜角度が徐々に変化するように、径方向に沿って隣り合う領域同士がなだらかに接続されていてもよい。
For example, in the rotor blade 18 shown in FIG. 4A, at least within the above range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 of the suction surface 83S is different from the suction surface 831S. It is formed so that a gentle curve connects the intersection position Px with the chip end 181 and the boundary position Pb.
For example, in the rotor blade 18 shown in FIG. 4B, at least within the above range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 is a straight line between the intersection position Px and the boundary position Pb. It is formed to connect with.
For example, in the rotor blade 18 shown in FIG. 4C, at least within the above range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 is located in an area relatively close to the intersection position Px and at the boundary position. The two regions are formed linearly so that the angular difference with the radial direction is relatively small in the region relatively close to Pb. In the rotor blade 18 shown in FIG. 4C, at least within the range R, when viewed along the camber line LB, the area between the two areas has a larger angular difference with respect to the radial direction than the two areas. It is formed in a straight line to increase its size.
For example, in the rotor blade 18 shown in FIG. 4D, at least within the range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 is closer to the boundary than the region relatively near the intersection point Px. Each region is formed linearly so that the angular difference with the radial direction is smaller than that of a region relatively close to position Pb.
For example, in the rotor blade 18 shown in FIGS. 4C and 4D, at least within the above range R, when viewed along the camber line LB, the suction surfaces 831S in the tip side region 101 are adjacent to each other along the radial direction. Adjacent regions along the radial direction may be gently connected to each other so that the inclination angle gradually changes in the vicinity of the connection position between the regions.
 幾つかの実施形態に係る動翼18では、境界位置Pbは、径方向位置として、翼形部83のハブ端182を0%、チップ端181を100%としたときのハブ端182からチップ端181までの距離の70%以上の位置であるとよい。 In the rotor blade 18 according to some embodiments, the boundary position Pb is from the hub end 182 to the tip end when the hub end 182 of the airfoil portion 83 is set as 0% and the tip end 181 as 100%. It is preferable that the position is 70% or more of the distance to 181.
 図5は、境界位置Pbの径方向位置と圧縮機2の効率ηとの関係を示すグラフである。
 図5において、E0は、チップ側領域101を設けていない従来の動翼を用いた場合の圧縮機2の効率ηである。
 なお、チップ側領域101を設けていない従来の動翼のチップ端181における負圧面83Xの位置は、図3において2点鎖線で示している。
 図5において、E1は、ハブ端182からチップ端181までの距離の90%の位置に境界位置Pbを設定した場合の圧縮機2の効率ηであり、E2は、ハブ端182からチップ端181までの距離の80%の位置に境界位置Pbを設定した場合の圧縮機2の効率ηであり、E3は、ハブ端182からチップ端181までの距離の70%の位置に境界位置Pbを設定した場合の圧縮機2の効率ηである。
 図5において、E0は、チップ側領域101を設けていない従来の動翼を用いた場合の圧縮機2の効率ηである。
FIG. 5 is a graph showing the relationship between the radial position of the boundary position Pb and the efficiency η of the compressor 2.
In FIG. 5, E0 is the efficiency η of the compressor 2 when a conventional rotor blade without the tip side region 101 is used.
Note that the position of the negative pressure surface 83X at the tip end 181 of a conventional rotor blade without the tip side region 101 is indicated by a two-dot chain line in FIG.
In FIG. 5, E1 is the efficiency η of the compressor 2 when the boundary position Pb is set at 90% of the distance from the hub end 182 to the tip end 181, and E2 is the efficiency η of the compressor 2 when the boundary position Pb is set at 90% of the distance from the hub end 182 to the tip end 181. E3 is the efficiency η of the compressor 2 when the boundary position Pb is set at 80% of the distance from the hub end 182 to the tip end 181. This is the efficiency η of the compressor 2 when
In FIG. 5, E0 is the efficiency η of the compressor 2 when a conventional rotor blade without the tip side region 101 is used.
 発明者らが鋭意検討した結果、ハブ側領域103とチップ側領域101との境界位置Pbをハブ端182側に寄せてチップ側領域101を拡張していくと圧縮機2の効率が向上していくが、この境界位置Pbをハブ端182からチップ端181までの距離の70%よりも小さくなる位置まで移動させても圧縮機2の効率がそれ以上向上し難くなることが判明した。また、この境界位置Pbをハブ端182側に寄せるほど、チップ側領域101、すなわち薄肉化される領域が拡大することとなり、翼形部83の強度に影響を及ぼすこととなる。
 幾つかの実施形態に係る動翼18によれば、翼形部83の強度を確保しつつ、圧縮機2の効率ηを向上できる。
As a result of intensive study by the inventors, the efficiency of the compressor 2 is improved by moving the boundary position Pb between the hub side region 103 and the tip side region 101 toward the hub end 182 side and expanding the tip side region 101. However, it has been found that even if this boundary position Pb is moved to a position where it becomes smaller than 70% of the distance from the hub end 182 to the tip end 181, it becomes difficult to further improve the efficiency of the compressor 2. Further, as the boundary position Pb is moved closer to the hub end 182 side, the tip side region 101, that is, the region to be thinned, becomes larger, which affects the strength of the airfoil portion 83.
According to the rotor blades 18 according to some embodiments, the efficiency η of the compressor 2 can be improved while ensuring the strength of the airfoil portion 83.
 図4Aに示すように、幾つかの実施形態に係る動翼18では、少なくとも範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、スパン方向をx軸とし、翼厚方向をy軸としたときに、次式(A)で表される曲線Cに沿って延在していてもよい。
  y=atan(x)・・・(A)
As shown in FIG. 4A, in the rotor blade 18 according to some embodiments, at least within the range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 extends in the span direction x When the blade thickness direction is the y-axis, the blade may extend along a curve C expressed by the following formula (A).
y=atan(x)...(A)
 これにより、チップ側領域101の内のチップ端181に近い領域では、負圧面831Sの傾きがより径方向に近づいて負圧面831Sが急斜面となることで、効率ηの向上効果を大きくすることができる。チップ側領域101の内の境界位置Pbに近い領域では、負圧面831Sを該領域からハブ側領域103に滑らかに接続できるので、空気の流れを乱し難くなって圧力損失を抑制できるとともに、翼形部83における形状の急峻な変化による応力集中を抑制できる。 As a result, in the region near the chip end 181 in the chip side region 101, the slope of the suction surface 831S approaches the radial direction, and the suction surface 831S becomes a steep slope, thereby increasing the effect of improving efficiency η. can. In the area close to the boundary position Pb in the tip side area 101, the suction surface 831S can be smoothly connected from this area to the hub side area 103, making it difficult to disturb the air flow and suppressing pressure loss. Stress concentration due to a sharp change in shape in the shaped portion 83 can be suppressed.
 図4B、図4C、及び図4Dに示すように、幾つかの実施形態に係る動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101とハブ側領域103との境界位置Pbにおける、チップ側領域101における負圧面831Sと負圧面83Sの内のハブ側領域103における負圧面833Sとのなす角度θ1は、160度を超え180度未満であるとよい。
 チップ側領域101における負圧面831Sとハブ側領域103における負圧面831Sとのなす角度θ1が比較的小さいとチップ側領域101とハブ側領域103との境界位置Pbが突出するような形状となるため、圧力損失が大きくなり易い。また、チップ側領域101においてチップ端181からハブ端182側に向かって翼厚Wを大きくしているため、該角度θ1は180度未満とすることが合理的である。
 図4B、図4C、及び図4Dに示す動翼18によれば、該角度θ1を160度を超え180度未満とすることで、圧力損失を抑制しつつ、境界位置Pb近傍の負圧面83Sの形状を合理的な形状とすることができる。
As shown in FIGS. 4B, 4C, and 4D, in the rotor blade 18 according to some embodiments, at least within the range R, when viewed along the camber line LB, the tip side region 101 and the hub An angle θ1 between the suction surface 831S in the chip side region 101 and the suction surface 833S in the hub side region 103 of the suction surfaces 83S at the boundary position Pb with the side region 103 is greater than 160 degrees and less than 180 degrees. good.
If the angle θ1 between the negative pressure surface 831S in the chip side region 101 and the negative pressure surface 831S in the hub side region 103 is relatively small, the boundary position Pb between the chip side region 101 and the hub side region 103 will have a protruding shape. , pressure loss tends to increase. Further, since the blade thickness W increases from the tip end 181 toward the hub end 182 side in the tip side region 101, it is reasonable to set the angle θ1 to less than 180 degrees.
According to the rotor blades 18 shown in FIGS. 4B, 4C, and 4D, by setting the angle θ1 to more than 160 degrees and less than 180 degrees, pressure loss can be suppressed and the suction surface 83S near the boundary position Pb can be reduced. The shape can be made into a rational shape.
 幾つかの実施形態に係る動翼18では、図4Bに示すように、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101において負圧面831Sは、チップ端181からチップ側領域101とハブ側領域103との境界位置Pbまで直線的に延在していてもよい。
 これにより、チップ側領域101において負圧面831Sの近傍の空気の流れが乱され難くなるので、圧力損失を抑制できる。
In the rotor blade 18 according to some embodiments, as shown in FIG. 4B, at least within the range R, when viewed along the camber line LB, the suction surface 831S in the tip side region 101 is located at the tip end 181. It may extend linearly from to the boundary position Pb between the chip side region 101 and the hub side region 103.
This makes it difficult to disturb the flow of air near the negative pressure surface 831S in the chip side region 101, so pressure loss can be suppressed.
 図4B、図4C、及び図4Dに示すように、幾つかの実施形態に係る動翼18では、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面831Sとチップ端181との交差位置Pxにおける、負圧面831Sとチップ端181を形成するチップ端面181aとのなす角度θ2は、90度を超え110度未満であるとよい。 As shown in FIGS. 4B, 4C, and 4D, in the rotor blade 18 according to some embodiments, at least within the above range R, when viewed along the camber line LB, the suction surface 831S and the tip end The angle θ2 between the negative pressure surface 831S and the chip end surface 181a forming the chip end 181 at the intersection position Px with the chip end 181 is preferably greater than 90 degrees and less than 110 degrees.
 発明者らが鋭意検討した結果、上記角度θ2が110度以上となると、上記角度θ2が大きくなるほど効率の向上効果が顕著に低下することが判明した。また、チップ端181からハブ端182側に向かって翼厚Wを大きくするためには、上記角度θは90度を超えているほうが良い。
 幾つかの実施形態に係る動翼18によれば、合理的に圧縮機2の効率ηを向上できる。
As a result of intensive studies by the inventors, it has been found that when the angle θ2 becomes 110 degrees or more, the efficiency improvement effect decreases significantly as the angle θ2 increases. Further, in order to increase the blade thickness W from the tip end 181 toward the hub end 182 side, the angle θ is preferably greater than 90 degrees.
According to the rotor blades 18 according to some embodiments, the efficiency η of the compressor 2 can be rationally improved.
 幾つかの実施形態に係る動翼18では、少なくとも上記範囲R内において、チップ端181の翼厚Wtを翼環13の内周面13iとチップ端181とのクリアランスTC(チップクリアランスTC)で除した値(Wt/TC)は、1.5以下であるとよい。 In the moving blade 18 according to some embodiments, at least within the above range R, the blade thickness Wt of the tip end 181 is divided by the clearance TC between the inner peripheral surface 13i of the blade ring 13 and the tip end 181 (tip clearance TC). The value (Wt/TC) is preferably 1.5 or less.
 図6は、上述した値(Wt/TC)と、圧縮機2の効率ηの向上率を表す効率ゲインとの関係を示すグラフである。なお、効率ゲインは、圧縮機2の理論効率を100%としたときに、従来の圧縮機から効率ηがどの位改善したかを表すものである。
 発明者らが鋭意検討した結果、上述したように、チップ端181の翼厚Wtが小さくなるほど、負圧面83S(831S)側でのチップ端181からの空気の剥離や流速低下領域の低減による圧力損失の抑制効果が高まることが判明した。また、チップクリアランスTCとの関係では、図6に示すように、チップ端181の翼厚WtをチップクリアランスTCで除した値が1.5以下であると効率ゲインが比較的大きくなることが判明した。
 幾つかの実施形態に係る動翼18によれば、圧縮機2の効率ηを一層向上できる。
FIG. 6 is a graph showing the relationship between the above-mentioned value (Wt/TC) and the efficiency gain representing the improvement rate of the efficiency η of the compressor 2. Note that the efficiency gain represents how much the efficiency η has improved compared to the conventional compressor, assuming that the theoretical efficiency of the compressor 2 is 100%.
As a result of intensive studies by the inventors, as mentioned above, the smaller the blade thickness Wt of the tip end 181, the more the pressure decreases due to the separation of air from the tip end 181 on the suction surface 83S (831S) side and the reduction in the flow velocity reduction area. It was found that the loss control effect was enhanced. Furthermore, in relation to the tip clearance TC, as shown in FIG. 6, it has been found that the efficiency gain is relatively large when the value obtained by dividing the blade thickness Wt at the tip end 181 by the tip clearance TC is 1.5 or less. did.
According to the rotor blades 18 according to some embodiments, the efficiency η of the compressor 2 can be further improved.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the embodiments described above, and also includes forms in which modifications are made to the embodiments described above, and forms in which these forms are appropriately combined.
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る圧縮機2の動翼18は、圧力面83Pと負圧面83Sとを有する翼形部83を備える。翼形部83のチップ端181における前縁183からのコード方向に沿った距離がチップ端181におけるコード長Ltの0.03倍以上0.5倍以下の範囲R内であれば、チップ端181の任意の位置Pにおいて、上記位置Pにおけるチップ端181の翼厚Wtは、翼形部83を翼形部83のスパン方向から見たときの上記位置Pにおける翼形部83の最大翼厚Wmaxの0.3倍未満である。スパン方向から見た時に、チップ端181におけるキャンバーラインLB1は、翼形部83の基端部(ハブ端182)におけるキャンバーラインLB2と圧力面83Pとの間に位置する。
The contents described in each of the above embodiments can be understood as follows, for example.
(1) The rotor blade 18 of the compressor 2 according to at least one embodiment of the present disclosure includes an airfoil portion 83 having a pressure surface 83P and a suction surface 83S. If the distance along the chord direction from the leading edge 183 at the tip end 181 of the airfoil portion 83 is within the range R of 0.03 times or more and 0.5 times or less of the chord length Lt at the tip end 181, the tip end 181 At any position P, the blade thickness Wt of the tip end 181 at the position P is equal to the maximum blade thickness Wmax of the airfoil 83 at the position P when the airfoil 83 is viewed from the span direction of the airfoil 83. less than 0.3 times. When viewed from the span direction, the camber line LB1 at the tip end 181 is located between the camber line LB2 at the base end (hub end 182) of the airfoil 83 and the pressure surface 83P.
 上記(1)の構成によれば、この起点となる位置におけるチップ端181の厚さWtを十分に薄くすることで、チップクリアランスTCからの漏れ流れによる損失を効果的に抑制できる。
 また、上記(1)の構成によれば、チップ端181における負圧面83S側の端部が圧力面83Pに接近するため、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。
According to the configuration (1) above, by making the thickness Wt of the tip end 181 at the starting point sufficiently thin, it is possible to effectively suppress loss due to leakage flow from the tip clearance TC.
Further, according to the configuration (1) above, since the end of the tip end 181 on the suction surface 83S side approaches the pressure surface 83P, the tip end 181 is convex from the pressure surface 83P toward the suction surface 83S. The warpage is reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
(2)幾つかの実施形態では、上記(1)の構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、圧力面83Pは、スパン方向に沿ってチップ端181から翼形部83のハブ端182側に向かって直線的に延在するとよい。 (2) In some embodiments, in the configuration of (1) above, at least within the range R, when viewed along the camber line LB, the pressure surface 83P extends from the tip end 181 along the span direction. It is preferable that the airfoil portion 83 extends linearly toward the hub end 182 side.
 上記(2)の構成によれば、キャンバーラインLBに沿って見たときに、チップ端181の近傍において、圧力面83Pがチップ端181から翼形部83のハブ端182側に向かって翼形部83の外部に向かって、すなわち負圧面83Sから圧力面83Pに向かう方向へ凸となるように延在する場合と比べて、チップ端181における負圧面83S側の端部が一層圧力面83Pに接近するようになる。そのため、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが一層小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。 According to the configuration (2) above, when viewed along the camber line LB, in the vicinity of the tip end 181, the pressure surface 83P is shaped like an airfoil from the tip end 181 toward the hub end 182 side of the airfoil portion 83. Compared to the case where the tip extends convexly toward the outside of the portion 83, that is, in the direction from the suction surface 83S to the pressure surface 83P, the end of the chip end 181 on the suction surface 83S side is more closely aligned with the pressure surface 83P. Become closer. Therefore, the warpage that is convex from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181 is further reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
(3)幾つかの実施形態では、上記(2)の構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面83Sは、ハブ側領域103と、ハブ側領域103よりもチップ端181側の領域であるチップ側領域101とを含むとよい。少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面83Sは、チップ側領域101において、ハブ側領域103とチップ側領域101との境界位置Pbにおけるハブ側領域103の接線T1と圧力面83Pとの間に位置するとよい。 (3) In some embodiments, in the configuration of (2) above, at least within the range R, when viewed along the camber line LB, the negative pressure surface 83S is located between the hub side region 103 and the hub side region. It is preferable to include a chip side region 101 which is a region closer to the chip end 181 than 103 . At least within the above range R, when viewed along the camber line LB, the negative pressure surface 83S is a tangent to the hub side region 103 at the boundary position Pb between the hub side region 103 and the tip side region 101 in the chip side region 101. It is preferably located between T1 and the pressure surface 83P.
 上記(3)の構成によれば、チップ端181において圧力面83Pから負圧面83Sに向かって凸となるような反りが一層小さくなり、チップクリアランスTCからの漏れ流れによる圧力損失を抑制できる。 According to the configuration (3) above, the warpage that is convex from the pressure surface 83P toward the negative pressure surface 83S at the tip end 181 is further reduced, and pressure loss due to leakage flow from the tip clearance TC can be suppressed.
(4)幾つかの実施形態では、上記(3)の構成において、境界位置Pbは、翼形部83のハブ端182を0%、チップ端181を100%としたときのハブ端182からチップ端181までの距離の70%以上の位置であるとよい。 (4) In some embodiments, in the configuration of (3) above, the boundary position Pb is from the hub end 182 to the tip when the hub end 182 of the airfoil 83 is 0% and the tip end 181 is 100%. The position may be 70% or more of the distance to the end 181.
 上記(4)の構成によれば、翼形部83の強度を確保しつつ、圧縮機2の効率ηを向上できる。 According to the configuration (4) above, the efficiency η of the compressor 2 can be improved while ensuring the strength of the airfoil portion 83.
(5)幾つかの実施形態では、上記(3)又は(4)の構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101における負圧面831Sは、スパン方向をx軸とし、翼厚方向をy軸としたときに、次式(A)で表される曲線Cに沿って延在していてもよい。
  y=atan(x)・・・(A)
(5) In some embodiments, in the configuration of (3) or (4) above, at least within the range R, when viewed along the camber line LB, the negative pressure surface 831S in the chip side region 101 is When the span direction is the x-axis and the blade thickness direction is the y-axis, it may extend along a curve C expressed by the following formula (A).
y=atan(x)...(A)
 上記(5)の構成によれば、チップ側領域101の内のチップ端181に近い領域では、負圧面831Sの傾きがより径方向に近づいて負圧面831Sが急斜面となることで、効率ηの向上効果を大きくすることができる。チップ側領域101の内の境界位置Pbに近い領域では、負圧面831Sを該領域からハブ側領域103に滑らかに接続できるので、空気の流れを乱し難くなって圧力損失を抑制できるとともに、翼形部83における形状の急峻な変化による応力集中を抑制できる。 According to configuration (5) above, in the region near the chip end 181 in the chip side region 101, the inclination of the suction surface 831S approaches the radial direction and the suction surface 831S becomes a steep slope, thereby increasing the efficiency η. The improvement effect can be increased. In the area close to the boundary position Pb in the tip side area 101, the suction surface 831S can be smoothly connected from this area to the hub side area 103, making it difficult to disturb the air flow and suppressing pressure loss. Stress concentration due to a sharp change in shape in the shaped portion 83 can be suppressed.
(6)幾つかの実施形態では、上記(3)乃至(5)の何れかの構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101とハブ側領域103との境界位置Pbにおける、チップ側領域101における負圧面831Sとハブ側領域103における負圧面833Sとのなす角度θ1は、160度を超え180度未満であるとよい。 (6) In some embodiments, in any of the configurations (3) to (5) above, at least within the range R, when viewed along the camber line LB, the tip side region 101 and the hub side The angle θ1 between the suction surface 831S in the chip side region 101 and the suction surface 833S in the hub side region 103 at the boundary position Pb with the region 103 is preferably greater than 160 degrees and less than 180 degrees.
 チップ側領域101における負圧面831Sとハブ側領域103における負圧面833Sとのなす角度θ1が比較的小さいとチップ側領域101とハブ側領域103との境界位置Pbが突出するような形状となるため、圧力損失が大きくなり易い。また、チップ側領域101においてチップ端181からハブ端182側に向かって翼厚Wを大きくしているため、該角度θ1は180度未満とすることが合理的である。
 上記(6)の構成によれば、該角度θ1を160度を超え180度未満とすることで、圧力損失を抑制しつつ、境界位置Pb近傍の負圧面83Sの形状を合理的な形状とすることができる。
If the angle θ1 between the negative pressure surface 831S in the chip side region 101 and the negative pressure surface 833S in the hub side region 103 is relatively small, the boundary position Pb between the chip side region 101 and the hub side region 103 will have a protruding shape. , pressure loss tends to increase. Further, since the blade thickness W increases from the tip end 181 toward the hub end 182 side in the tip side region 101, it is reasonable to set the angle θ1 to less than 180 degrees.
According to the configuration (6) above, by setting the angle θ1 to more than 160 degrees and less than 180 degrees, the shape of the negative pressure surface 83S near the boundary position Pb can be made into a rational shape while suppressing pressure loss. be able to.
(7)幾つかの実施形態では、上記(3)乃至(6)の何れかの構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、チップ側領域101において負圧面831Sは、チップ端181からチップ側領域101とハブ側領域103との境界位置Pbまで直線的に延在していてもよい。 (7) In some embodiments, in any of the configurations (3) to (6) above, at least within the range R, when viewed along the camber line LB, the negative pressure surface in the chip side region 101 is 831S may extend linearly from the chip end 181 to the boundary position Pb between the chip side region 101 and the hub side region 103.
 上記(7)の構成によれば、チップ側領域101において負圧面831Sの近傍の空気の流れが乱され難くなるので、圧力損失を抑制できる。 According to the configuration (7) above, the air flow near the negative pressure surface 831S in the chip side region 101 is less likely to be disturbed, so pressure loss can be suppressed.
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、少なくとも上記範囲R内において、キャンバーラインLBに沿って見たときに、負圧面831Sとチップ端181との交差位置Pxにおける、負圧面831Sとチップ端181を形成するチップ端面181aとのなす角度θ2は、90度を超え110度未満であるとよい。 (8) In some embodiments, in any of the configurations (1) to (7) above, at least within the range R, when viewed along the camber line LB, the negative pressure surface 831S and the tip end 181 The angle θ2 between the negative pressure surface 831S and the chip end surface 181a forming the chip end 181 at the intersection position Px is preferably greater than 90 degrees and less than 110 degrees.
 上記(8)の構成によれば、合理的に圧縮機2の効率ηを向上できる。 According to the configuration (8) above, the efficiency η of the compressor 2 can be rationally improved.
(9)本開示の少なくとも一実施形態に係る圧縮機2は、上記(1)乃至(8)の何れかの構成の動翼18を備える。 (9) The compressor 2 according to at least one embodiment of the present disclosure includes the rotor blade 18 having the configuration of any one of (1) to (8) above.
 上記(9)の構成によれば、圧縮機2の効率ηを向上できる。 According to the configuration (9) above, the efficiency η of the compressor 2 can be improved.
(10)幾つかの実施形態では、上記(9)の構成において、チップ端181と径方向で対向する静止部材(翼環13)を備えるとよい。少なくとも上記範囲R内において、チップ端181の翼厚Wtを静止部材(翼環13)とチップ端181とのクリアランスTC((チップクリアランスTC)で除した値は、1.5以下であるとよい。 (10) In some embodiments, the configuration of (9) above may include a stationary member (blade ring 13) facing the tip end 181 in the radial direction. At least within the above range R, the value obtained by dividing the blade thickness Wt of the tip end 181 by the clearance TC between the stationary member (blade ring 13) and the tip end 181 ((tip clearance TC)) is preferably 1.5 or less. .
 発明者らが鋭意検討した結果、上述したように、チップ端181の翼厚Wtが小さくなるほど、負圧面83S(831S)側でのチップ端181からの空気の剥離や流速低下領域の低減による圧力損失の抑制効果が高まることが判明した。また、チップクリアランスTCとの関係では、チップ端181の翼厚WtをチップクリアランスTCで除した値(Wt/TC)が1.5以下であるとよいことが判明した。
 上記(10)の構成によれば、圧縮機2の効率ηを一層向上できる。
As a result of intensive studies by the inventors, as mentioned above, the smaller the blade thickness Wt of the tip end 181, the more the pressure decreases due to the separation of air from the tip end 181 on the suction surface 83S (831S) side and the reduction in the flow velocity reduction area. It was found that the loss control effect was enhanced. Furthermore, in relation to the tip clearance TC, it has been found that the value obtained by dividing the blade thickness Wt of the tip end 181 by the tip clearance TC (Wt/TC) is preferably 1.5 or less.
According to the configuration (10) above, the efficiency η of the compressor 2 can be further improved.
1 ガスタービン
2 圧縮機
11 静止部材
13 翼環
18 動翼
83 翼形部
83P 圧力面
83S 負圧面
101 チップ側領域
103 ハブ側領域
181 チップ端
182 ハブ端
183 前縁
184 後縁
1 Gas turbine 2 Compressor 11 Stationary member 13 Blade ring 18 Moving blade 83 Airfoil portion 83P Pressure surface 83S Suction surface 101 Tip side region 103 Hub side region 181 Tip end 182 Hub end 183 Leading edge 184 Trailing edge

Claims (10)

  1.  圧力面と負圧面とを有する翼形部を備え、
     前記翼形部のチップ端における前縁からのコード方向に沿った距離が前記チップ端におけるコード長Ltの0.03倍以上0.5倍以下の範囲内であれば、前記チップ端の任意の位置において、前記位置における前記チップ端の翼厚Wtは、前記翼形部を前記翼形部のスパン方向から見たときの前記位置における前記翼形部の最大翼厚Wmaxの0.3倍未満であり、
     前記スパン方向から見た時に、前記チップ端におけるキャンバーラインは、前記翼形部の基端部におけるキャンバーラインと前記圧力面との間に位置する、
    圧縮機の動翼。
    an airfoil having a pressure surface and a suction surface;
    If the distance along the chord direction from the leading edge at the tip end of the airfoil portion is within the range of 0.03 times or more and 0.5 times or less of the chord length Lt at the tip end, any part of the tip end At the position, the blade thickness Wt of the tip end at the position is less than 0.3 times the maximum blade thickness Wmax of the airfoil at the position when the airfoil is viewed from the span direction of the airfoil. and
    When viewed from the span direction, the camber line at the tip end is located between the camber line at the proximal end of the airfoil and the pressure surface.
    Compressor moving blades.
  2.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記圧力面は、前記スパン方向に沿って前記チップ端から前記翼形部のハブ端側に向かって直線的に延在する、
    請求項1に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the pressure surface extends linearly from the tip end toward the hub end side of the airfoil along the span direction.
    A rotor blade for a compressor according to claim 1.
  3.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記負圧面は、
      ハブ側領域と、前記ハブ側領域よりも前記チップ端側の領域であるチップ側領域とを含み、
      前記チップ側領域において、前記ハブ側領域と前記チップ側領域との境界位置における前記ハブ側領域の接線と前記圧力面との間に位置する
    請求項2に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the negative pressure surface is
    including a hub side region and a chip side region that is a region closer to the chip end than the hub side region,
    The compressor rotor blade according to claim 2, wherein the rotor blade of the compressor is located in the tip side region between a tangent to the hub side region at a boundary position between the hub side region and the tip side region and the pressure surface.
  4.  前記境界位置は、前記翼形部のハブ端を0%、前記チップ端を100%としたときの前記ハブ端から前記チップ端までの距離の70%以上の位置である、
    請求項3に記載の圧縮機の動翼。
    The boundary position is a position that is 70% or more of the distance from the hub end to the tip end when the hub end of the airfoil portion is 0% and the tip end is 100%.
    A rotor blade for a compressor according to claim 3.
  5.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記チップ側領域における前記負圧面は、前記スパン方向をx軸とし、翼厚方向をy軸としたときに、次式(A)で表される曲線に沿って延在する、
      y=atan(x)・・・(A)
    請求項3又は4に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the suction surface in the tip side region is expressed by the following formula (A ) extending along the curve represented by
    y=atan(x)...(A)
    A rotor blade for a compressor according to claim 3 or 4.
  6.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記チップ側領域と前記ハブ側領域との境界位置における、前記チップ側領域における前記負圧面と前記ハブ側領域における前記負圧面とのなす角度は、160度を超え180度未満である、
    請求項3又は4に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the negative pressure surface in the tip side region and the negative pressure surface in the hub side region at a boundary position between the tip side region and the hub side region. The angle formed by is more than 160 degrees and less than 180 degrees,
    A rotor blade for a compressor according to claim 3 or 4.
  7.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記チップ側領域において前記負圧面は、前記チップ端から前記チップ側領域と前記ハブ側領域との境界位置まで直線的に延在する、
    請求項3又は4に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the negative pressure surface in the tip side region extends linearly from the tip end to the boundary position between the tip side region and the hub side region. do,
    A rotor blade for a compressor according to claim 3 or 4.
  8.  少なくとも前記範囲内において、前記キャンバーラインに沿って見たときに、前記負圧面と前記チップ端との交差位置における、前記負圧面と前記チップ端を形成するチップ端面とのなす角度は、90度を超え110度未満である、
    請求項1乃至4の何れか一項に記載の圧縮機の動翼。
    At least within the range, when viewed along the camber line, the angle between the negative pressure surface and the chip end surface forming the chip end at the intersection of the negative pressure surface and the chip end is 90 degrees. more than 110 degrees,
    A rotor blade for a compressor according to any one of claims 1 to 4.
  9.  請求項1に記載の動翼、
    を備える圧縮機。
    The rotor blade according to claim 1,
    A compressor equipped with
  10.  前記チップ端と径方向で対向する静止部材、
    を備え、
     少なくとも前記範囲内において、前記チップ端の翼厚Wtを前記静止部材と前記チップ端とのクリアランスTCで除した値は、1.5以下である、
     請求項9に記載の圧縮機。
    a stationary member radially opposed to the tip end;
    Equipped with
    At least within the range, the value obtained by dividing the blade thickness Wt at the tip end by the clearance TC between the stationary member and the tip end is 1.5 or less;
    A compressor according to claim 9.
PCT/JP2022/023793 2022-06-14 2022-06-14 Compressor rotor blade and compressor WO2023242949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023793 WO2023242949A1 (en) 2022-06-14 2022-06-14 Compressor rotor blade and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023793 WO2023242949A1 (en) 2022-06-14 2022-06-14 Compressor rotor blade and compressor

Publications (1)

Publication Number Publication Date
WO2023242949A1 true WO2023242949A1 (en) 2023-12-21

Family

ID=89192675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023793 WO2023242949A1 (en) 2022-06-14 2022-06-14 Compressor rotor blade and compressor

Country Status (1)

Country Link
WO (1) WO2023242949A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038971A1 (en) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft Airfoil and corresponding guide vane, blade, gas turbine and turbomaschine
EP2514922A2 (en) * 2011-04-20 2012-10-24 General Electric Company Compressor with blade tip geometry for reducing tip stresses
WO2016080136A1 (en) * 2014-11-20 2016-05-26 三菱重工業株式会社 Turbine rotor blade and gas turbine
US20170218976A1 (en) * 2014-08-18 2017-08-03 Siemens Aktiengesellschaft Compressor aerofoil
EP3477059A1 (en) * 2017-10-26 2019-05-01 Siemens Aktiengesellschaft Compressor aerofoil
US20200141249A1 (en) * 2017-06-26 2020-05-07 Siemens Aktiengesellschaft Compressor aerofoil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038971A1 (en) * 2009-09-30 2011-04-07 Siemens Aktiengesellschaft Airfoil and corresponding guide vane, blade, gas turbine and turbomaschine
EP2514922A2 (en) * 2011-04-20 2012-10-24 General Electric Company Compressor with blade tip geometry for reducing tip stresses
US20170218976A1 (en) * 2014-08-18 2017-08-03 Siemens Aktiengesellschaft Compressor aerofoil
WO2016080136A1 (en) * 2014-11-20 2016-05-26 三菱重工業株式会社 Turbine rotor blade and gas turbine
US20200141249A1 (en) * 2017-06-26 2020-05-07 Siemens Aktiengesellschaft Compressor aerofoil
EP3477059A1 (en) * 2017-10-26 2019-05-01 Siemens Aktiengesellschaft Compressor aerofoil

Similar Documents

Publication Publication Date Title
US9017036B2 (en) High order shaped curve region for an airfoil
US10018050B2 (en) Turbomachine rotor blade
JP5297540B2 (en) Turbine blade and turbomachine
US10294796B2 (en) Blade or vane arrangement for a gas turbine engine
US10253638B2 (en) Turbomachine blade tip shroud
JP2010156335A (en) Method and device concerning contour of improved turbine blade platform
US10697311B2 (en) Turbine blade and gas turbine
US8845280B2 (en) Blades
EP3841281A1 (en) Improved second stage turbine blade
EP3392459A1 (en) Compressor blades
JP2004300934A (en) Fan stationary blade, fan for aircraft engine, and aircraft engine
US8167557B2 (en) Gas turbine engine assemblies with vortex suppression and cooling film replenishment
US11959393B2 (en) Turbine engine with reduced cross flow airfoils
JP6830999B2 (en) Turbine blades and gas turbines
US20210156340A1 (en) Turbomachine nozzle with an airfoil having a circular trailing edge
WO2023242949A1 (en) Compressor rotor blade and compressor
EP3828390A1 (en) Turbomachine nozzle with an airfoil having a curvilinear trailing edge
US20200182065A1 (en) Turbine airfoil profile
US11814984B2 (en) Rotor and compressor
EP4144959A1 (en) Fluid machine for an aircraft engine and aircraft engine
JP7389574B2 (en) aircraft gas turbine
WO2022201932A1 (en) Turbine and gas turbine
JP2023142117A (en) Turbine rotor blade, turbine rotor blade assembly, gas turbine, and method for repairing gas turbine
JP2020159275A (en) Turbine stator blade and turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946769

Country of ref document: EP

Kind code of ref document: A1