WO2023241724A1 - 无人船载水深探测激光雷达杂散光抑制装置 - Google Patents

无人船载水深探测激光雷达杂散光抑制装置 Download PDF

Info

Publication number
WO2023241724A1
WO2023241724A1 PCT/CN2023/101726 CN2023101726W WO2023241724A1 WO 2023241724 A1 WO2023241724 A1 WO 2023241724A1 CN 2023101726 W CN2023101726 W CN 2023101726W WO 2023241724 A1 WO2023241724 A1 WO 2023241724A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
tube
lens barrel
stray light
eyepiece
Prior art date
Application number
PCT/CN2023/101726
Other languages
English (en)
French (fr)
Inventor
周国清
刘哲贤
Original Assignee
桂林理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林理工大学 filed Critical 桂林理工大学
Publication of WO2023241724A1 publication Critical patent/WO2023241724A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to the technical field of lidar water depth detection, and in particular to a stray light suppression device that allows water surface reflection and water scattering to enter the window of an unmanned shipborne water depth detection lidar during the process of laser entering the water.
  • water depth detection lidar In shallow seas and inland waters, water depth detection lidar is an efficient bathymetry technology to obtain water depth information for studying riverbed topography, marine life habitat research near the coast, coastal management, flood research, water depth detection lidar stray light It is mainly caused by abnormal paths such as the reflection of sunlight on the water surface and the scattering of laser incident on the water body, and is transmitted to the system detector to form noise. Stray light causes the water depth detection lidar to obtain signal saturation or even complete annihilation of the signal, with a large amount of noise, resulting in the failure of the optical system and the inability to accurately obtain water depth information. In order to ensure the normal operation of the water depth detection lidar optical system, stray light needs to be suppressed.
  • the present invention discloses an unmanned shipborne water depth detection lidar stray light suppression device, which can effectively suppress the working field of view. Full path stray light outside the corner.
  • the technical solution of the stray light suppression device of unmanned shipborne water depth detection lidar of the present invention is as follows.
  • the stray light suppression device of the unmanned shipborne water depth detection lidar of the present invention includes an optical system component and an optical system component support structure.
  • the optical system component support structure includes a first objective lens barrel, a second objective lens barrel, a spectroscopic lens barrel, First eyepiece tube a, first eyepiece tube b, second eyepiece tube a, second eyepiece tube b, PMT detector a, PMT detector b, Spectroscope support structure;
  • the inner walls of the first objective lens barrel and the second objective lens barrel are provided with 90° baffle blades, the edges of the blades are inclined at 45°, and the inclined surface faces the outside of the lens barrel;
  • An objective lens is provided in the first objective lens tube, and the second objective lens tube connects the first objective lens tube and the spectroscopic lens tube;
  • the spectroscopic tube is provided with a central opening plane reflector, and the spectroscopic tube is connected to the first eyepiece tube a and the first eyepiece tube b;
  • the entrance of the spectroscope barrel is provided with a grooved baffle blade, and both exits are provided with matting threads;
  • a first eyepiece is provided in the first eyepiece tube a and the first eyepiece tube b and is connected to the spectroscope tube;
  • the second eyepiece tube a and the second eyepiece tube b are provided with a second eyepiece, and are connected to the first eyepiece tube a and the first eyepiece tube b and the PMT detector a and the PMT detector a.
  • the first objective lens tube, the second objective lens tube, the first eyepiece tube a, the first eyepiece tube b, the second eyepiece tube a, and the second eyepiece tube b are all cylindrical structures.
  • the beneficial effect of the present invention is to realize the suppression of stray light outside the field of view of the unmanned shipborne water depth detection laser radar optical system, and has the following advantages: 1 Abandon the shortcomings of conventional external light shields and realize the suppression of stray light in the optical system with extremely small field of view; 2 It can effectively suppress stray light propagating in first-, second- and third-order scattered light paths; 3 Improves the near-surface water depth detection capability of unmanned shipborne water depth detection lidar and expands its dynamic detection range.
  • Figure 1 is a top view of the stray light suppression device of the unmanned shipborne water depth detection laser radar of the present invention, where 1 is the first objective lens tube, 2 is the second objective lens tube, 3 is the spectroscopic lens tube, 4 is the first eyepiece tube a, 5 is the first eyepiece tube b, 6 is the second eyepiece tube a, 7 is the second eyepiece tube b, 8 is the PMT detector a, 9 is the PMT detector b, and 10 is the beam splitter support structure.
  • Figure 2 is a full path diagram within the working field of view of the unmanned shipborne water depth detection laser radar stray light suppression device of the present invention.
  • Figure 3 is a schematic structural diagram of the first objective lens tube of the unmanned shipborne water depth detection lidar stray light suppression device of the present invention, in which 101 is the first baffle blade group with an edge that is inclined outward at 45° and has an increasing size.
  • Figure 4 is a schematic structural diagram of the second objective lens barrel of the unmanned shipborne water depth detection laser radar stray light suppression device of the present invention, in which 201 is a second baffle blade group with an edge that is tilted outward at 45° and in increasing sizes.
  • Figure 5 is a schematic structural diagram of the spectroscope barrel of the unmanned shipborne water depth detection laser radar stray light suppression device of the present invention, in which 301 is a groove-type baffle blade, 302 is a first extinction thread, and 303 is a second extinction thread.
  • Figure 6 is a schematic three-dimensional structural diagram of the stray light suppression device for unmanned shipborne water depth detection lidar of the present invention.
  • the stray light suppression device for unmanned shipborne water depth detection lidar of the present invention which includes a first objective lens barrel 1.
  • One end of the first objective lens barrel 1 is connected to a second objective lens barrel 2, and the front end of the second objective lens barrel 2 is Wraps the first objective lens barrel 1, the rear end is connected to the spectroscopic lens barrel 3, the front end of the spectroscopic lens barrel 3 is connected to the second objective lens barrel 2, the rear end and the side end are respectively connected to the first eyepiece tube a4 and the first eyepiece Tube b5, and the upper end is connected to the spectroscope support structure 10.
  • the front end of the first eyepiece tube a4 is connected to the spectroscope tube 3, and the rear end is connected to the second eyepiece tube a6.
  • the front section of the second eyepiece tube a6 wraps the first eyepiece tube.
  • the back end is connected to the PMT detector a8, the front section of the second eyepiece tube b7 wraps the first eyepiece tube b5, and the back end is connected to the PMT detector b9.
  • the laser enters the water body, enters the optical system after being reflected by the water surface and the bottom of the water, and enters the first object.
  • the lens barrel 1 passes through the objective lens, and then passes through the second objective lens barrel 2 and enters the spectroscope tube 3. Then the light irradiates the spectroscope, and is separated by the spectroscope.
  • One beam enters the rear end of the spectroscope tube 3 and enters the first eyepiece tube a4.
  • the first eyepiece and filter enter the second eyepiece tube a6 and pass through the second eyepiece to reach the detection surface of the PMT detector a8.
  • the first objective lens barrel 1, the second objective lens barrel 2 and the spectroscopic lens barrel 3 are designed according to the actual angle ray tracing to achieve the ultimate goal. Stray light suppression in transmissive optical systems under small field of view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种无人船载水深探测激光雷达杂散光抑制装置,属于激光雷达水深探测技术领域。该装置包括第一物镜筒(1)、第二物镜筒(2)、分光镜筒(3)、第一目镜筒a(4)、第一目镜筒b(5)、第二目镜筒a(6)、第二目镜筒b(7)、PMT探测器a(8)、PMT探测器b(9)、分光镜支撑结构(10)。该装置实现了极小视场角光学系统杂散光抑制,有效抑制一阶、二阶与三阶散射光路传播的杂散光,提高了无人船载水深探测激光雷达的水深探测能力,扩大了动态探测范围。

Description

无人船载水深探测激光雷达杂散光抑制装置 技术领域
本发明涉及激光雷达水深探测技术领域,特别涉及激光入水过程中水面反射和水体散射进入无人船载水深探测激光雷达窗口的杂散光抑制装置。
背景技术
在浅海和内陆水域,水深探测激光雷达是一种高效的测深技术获取水深信息用于研究河床地形地貌、海岸附近的海洋生物栖息地研究、海岸管理、洪水研究,水深探测激光雷达杂散光是主要来源于太阳光在水表反射以及激光入射水体散射等非正常路径传递至系统探测器处形成噪声。杂散光导致水深探测激光雷达获取信号饱和甚至完全湮没信号、存在大量噪点,导致光学系统失效,无法准确获取水深信息。为保证水深探测激光雷达光学系统工作正常,需要对杂散光进行抑制。
目前常用的消除杂散光方法有以下几种:1.采用遮光罩和挡光环位于光学系统外部。2.采用视场光阑和孔径光阑进行杂散光抑制。3.喷涂高吸收率涂层。此类消除杂散光方法无法适用于测水激光雷达,极小视场角要求,并且只适用于消除一次杂散光对于后续高阶杂散光传播无法进行有效抑制。
发明内容
针对需要实现极小视场角透射式光学系统杂散光抑制困难,无法使用外遮光罩进行抑制等问题,本发明公开了无人船载水深探测激光雷达杂散光抑制装置,能够有效抑制工作视场角外全路径杂散光。
为实现上述目的,本发明的无人船载水深探测激光雷达杂散光抑制装置技术方案如下。
本发明所述的无人船载水深探测激光雷达杂散光抑制装置包括光学系统组件和光学系统组件支撑结构,所述光学系统组件支撑结构包括第一物镜筒、第二物镜筒、分光镜筒、第一目镜筒a、第一目镜筒b、第二目镜筒a、第二目镜筒b、PMT探测器a、PMT探测器b、 分光镜支撑结构;
所述第一物镜筒、第二物镜筒内壁设置有90°挡板叶片,叶片边缘呈45°倾斜,倾斜面朝向镜筒外部;
所述第一物镜筒中设置有物镜,第二物镜筒链接第一物镜筒与分光镜筒;
所述分光镜筒中设置有中心开孔平面反射镜,分光镜筒与第一目镜筒a和第一目镜筒b相连接;
所述分光镜筒入口处设置有沟槽型挡板叶片,两个出口处均设置有消光螺纹;
所述第一目镜筒a、第一目镜筒b中设置有第一目镜,且与分光镜筒相连接;
所述第二目镜筒a、第二目镜筒b中设置有第二目镜,且链接第一目镜筒a、第一目镜筒b与PMT探测器a和PMT探测器a。
所述第一物镜筒、第二物镜筒、第一目镜筒a、第一目镜筒b、第二目镜筒a、第二目镜筒b均为圆柱状结构。
本发明有益效果是实现无人船载水深探测激光雷达光学系统视场外杂散光抑制,具有以下优点:①摒弃常规外置遮光罩的不足,实现极小视场角光学系统杂散光抑制;②能够有效抑制一阶、二阶与三阶散射光路传播的杂散光;③提高了无人船载水深探测激光雷达近水面水深探测能力,扩大了其动态探测范围。
附图说明
图1是本发明无人船载水深探测激光雷达杂散光抑制装置的俯视图,其中1是第一物镜筒,2是第二物镜筒,3是分光镜筒,4是第一目镜筒a,5是第一目镜筒b,6是第二目镜筒a,7是第二目镜筒b,8是PMT探测器a,9是PMT探测器b,10是分光镜支撑结构。
图2是本发明无人船载水深探测激光雷达杂散光抑制装置工作视场内的全路径图。
图3是本发明无人船载水深探测激光雷达杂散光抑制装置的第一物镜筒结构示意图,其中101是边缘呈45°外倾斜尺寸递增的第一挡板叶片组。
图4是本发明无人船载水深探测激光雷达杂散光抑制装置的第二物镜筒结构示意图,其中201是边缘呈45°外倾斜尺寸递增的的第二挡板叶片组。
图5是本发明无人船载水深探测激光雷达杂散光抑制装置的分光镜筒结构示意图,其中301为沟槽型挡板叶片,302为第一消光螺纹,303为第二消光螺纹。
图6是本发明无人船载水深探测激光雷达杂散光抑制装置的立体结构示意图图。
具体实施方式
为使能更加清楚明白本发明的目的、结果及功能,结合附图,对本发明无人船载水深探测激光雷达杂散光抑制装置具体实施作进一步详细描述。
结合图1,说明本发明无人船载水深探测激光雷达杂散光抑制装置,包括第一物镜筒1,所述第一物镜筒1一端连接第二物镜筒2,所述第二物镜筒2前端包裹住第一物镜筒1,后端与分光镜筒3相连接,所述分光镜筒3前端与第二物镜筒2相连接,后端与侧端分别连接第一目镜筒a4与第一目镜筒b5,且上端链接分光镜支撑结构10,所述第一目镜筒a4前端与分光镜筒3相连接,后端连接第二目镜筒a6,所述第二目镜筒a6前段包裹第一目镜筒a4,后端连接PMT探测器a8,所述第二目镜筒b7前段包裹第一目镜筒b5,后端连接PMT探测器b9。
结合图3,说明所述第一物镜筒1内壁存在第一挡板叶片组101,所述第一挡板叶片组101边缘呈45°外倾斜尺寸递增。
结合图4,说明所述第二物镜筒2内壁存在第二挡板叶片组201,所述第二挡板叶片组201边缘呈45°外倾斜尺寸递增。
结合图5,说明所述分光镜筒3前端存在沟槽型叶片301,后端存在第一消光螺纹302,侧面存在第二消光螺纹303,所述第二挡板叶片组201边缘呈45°外倾斜尺寸递增。
工作原理:
激光进入水体,经水面、水底反射后进入光学系统,进入第一物 镜筒1穿过物镜,然后又穿过第二物镜筒2进入分光镜筒3,然后光线照射至分光镜,由分光镜分开一路光束进入分光镜筒3后端进入第一目镜筒a4穿过第一目镜与滤光片,进入第二目镜筒a6穿过第二目镜后抵达PMT探测器a8探测面,另一束进入分光镜筒3侧面进入第一目镜筒b5穿过第一目镜与滤光片,进入第二目镜筒b7穿过第二目镜后抵达PMT探测器b9探测面,完成水深探测。
为了抑制经过水表面折射的太阳光以及水体散射、漫反射的激光所产生的杂散光,按照实际个角度光线追迹,设计第一物镜筒1、第二物镜筒2和分光镜筒3实现极小视场下透射式光学系统的杂散光抑制。
其中在第一挡板叶片组101、第二挡板叶片组201和沟槽型叶片301组合作用下抑制了一阶、二阶与三阶散射光路传播的杂散光,第一消光螺纹302和第二消光螺纹303进一步抑制了逃逸至后续光路的杂散光,有效抑制了进入PMT探测面的杂散光,减小对水体探测干扰。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变形。因此,所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
本发明未详尽描述的技术内容均为公知技术。

Claims (3)

  1. 无人船载水深探测激光雷达杂散光抑制装置,其特征在于包括光学系统组件和光学系统组件支撑结构,所述光学系统组件支撑结构包括第一物镜筒、第二物镜筒、分光镜筒、第一目镜筒a、第一目镜筒b、第二目镜筒a、第二目镜筒b、PMT探测器a、PMT探测器b、分光镜支撑结构;其特征还在于极小视场角光学系统杂散光抑制;其特征还在于包括无人船载水深探测激光雷达杂散光抑制装置组成和工作流程。
  2. 根据权力要求1所述的无人船载水深探测激光雷达杂散光抑制装置,其特征在于,所述的无人船载水深探测激光雷达杂散光抑制装置组成和工作流程如下:
    所述本发明无人船载水深探测激光雷达杂散光抑制装置,包括第一物镜筒1,所述第一物镜筒1一端连接第二物镜筒2,所述第二物镜筒2前端包裹住第一物镜筒1,后端与分光镜筒3相连接,所述分光镜筒3前端与第二物镜筒2相连接,后端与侧端分别连接第一目镜筒a4与第一目镜筒b5,且上端链接分光镜支撑结构10,所述第一目镜筒a4前端与分光镜筒3相连接,后端连接第二目镜筒a6,所述第二目镜筒a6前段包裹第一目镜筒a4,后端连接PMT探测器a8,所述第二目镜筒b7前段包裹第一目镜筒b5,后端连接PMT探测器b9;
    所述第一物镜筒1内壁存在第一挡板叶片组101,所述第一挡板叶片组101边缘呈45°外倾斜尺寸递增;
    所述第二物镜筒2内壁存在第二挡板叶片组201,所述第二挡板叶片组201边缘呈45°外倾斜尺寸递增;
    所述分光镜筒3前端存在沟槽型叶片301,后端存在第一消光螺纹302,侧面存在第二消光螺纹303,所述第二挡板叶片组201边缘呈45°外倾斜尺寸递增。
  3. 根据权利要求1所述的无人船载水深探测激光雷达杂散光抑制装置,其特征在于,该装置工作原理为:
    激光进入水体,经水面、水底反射后进入光学系统,进入第一物镜筒1穿过物镜,然后又穿过第二物镜筒2进入分光镜筒3,然后光线照射至分光镜,由分光镜分开一路光束进入分光镜筒3后端进入第一目镜筒a4穿过第一目镜与滤光片,进入第二目镜筒a6穿过第二目镜后抵达PMT探测器a8探测面,另一束进入分光镜筒3侧面进入第一目镜筒b5穿过第一目镜与滤光片,进入第二目镜筒b7穿过第二目镜后抵达PMT探测器b9探测面,完成水深探测;
    为了抑制经过水表面折射的太阳光以及水体散射、漫反射的激光所产生的杂散光,按照实际个角度光线追迹,设计第一物镜筒1、第二物镜筒2和分光镜筒3实现极小视场下透射式光学系统的杂散光抑制;
    其中在第一挡板叶片组101、第二挡板叶片组201和沟槽型叶片301组合作用下抑制了一阶、二阶与三阶散射光路传播的杂散光,第一消光螺纹302和第二消光螺纹303进一步抑制了逃逸至后续光路的杂散光,有效抑制了进入PMT探测面的杂散光,减小对水体探测干扰。
PCT/CN2023/101726 2022-06-18 2023-06-21 无人船载水深探测激光雷达杂散光抑制装置 WO2023241724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210693579.9A CN115079135B (zh) 2022-06-18 2022-06-18 无人船载水深探测激光雷达杂散光抑制装置
CN202210693579.9 2022-06-18

Publications (1)

Publication Number Publication Date
WO2023241724A1 true WO2023241724A1 (zh) 2023-12-21

Family

ID=83254207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101726 WO2023241724A1 (zh) 2022-06-18 2023-06-21 无人船载水深探测激光雷达杂散光抑制装置

Country Status (2)

Country Link
CN (1) CN115079135B (zh)
WO (1) WO2023241724A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079135B (zh) * 2022-06-18 2023-11-07 桂林理工大学 无人船载水深探测激光雷达杂散光抑制装置
CN118330896A (zh) * 2024-04-26 2024-07-12 江苏北方湖光光电有限公司 一种有效消除合束镜杂散光的结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457984A (zh) * 2014-12-30 2015-03-25 中国科学院长春光学精密机械与物理研究所 一种低杂散光小型单色仪
CN204855797U (zh) * 2015-08-06 2015-12-09 中国科学院海洋研究所 一种用于水体光学特性测量的视场可调节光学系统
CN107037444A (zh) * 2017-06-07 2017-08-11 深圳大学 光学系统及激光雷达
CN109520929A (zh) * 2018-12-03 2019-03-26 东北石油大学 一种用于油气污染物激光检测的杂散光抑制装置
US20200050081A1 (en) * 2018-08-10 2020-02-13 AAC Technologies Pte. Ltd. Lens module
CN114167436A (zh) * 2021-11-22 2022-03-11 桂林理工大学 单频测水激光雷达
CN216083101U (zh) * 2021-08-31 2022-03-18 中科元光(嘉兴)激光科技有限公司 一种降低光学干扰的激光雷达结构
CN216646800U (zh) * 2021-12-16 2022-05-31 北京图来激光科技有限公司 一种杂散光抑制装置及其激光雷达
CN115079135A (zh) * 2022-06-18 2022-09-20 桂林理工大学 无人船载水深探测激光雷达杂散光抑制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200947136Y (zh) * 2006-09-08 2007-09-12 苏州北斗光电仪器有限公司 激光垂准仪主光路结构
CN105403877B (zh) * 2015-11-12 2017-11-10 中国科学院上海光学精密机械研究所 大动态范围光学分视场探测激光雷达
CN209878985U (zh) * 2019-03-07 2019-12-31 北京是卓科技有限公司 一种激光雷达接收调整装置
CN110542893A (zh) * 2019-09-05 2019-12-06 桂林理工大学 一种机载双频激光雷达三通道光学接收装置
CN212586558U (zh) * 2020-05-27 2021-02-23 中国气象局气象探测中心 微脉冲偏振气溶胶激光雷达
CN113848565A (zh) * 2021-10-14 2021-12-28 合肥中科环境监测技术国家工程实验室有限公司 一种立体环境监测偏振激光雷达系统
CN114166340B (zh) * 2021-12-03 2023-02-14 中国科学院长春光学精密机械与物理研究所 消杂光遮光系统
CN114488077A (zh) * 2021-12-29 2022-05-13 安徽科创中光科技有限公司 透射式消色差双通道激光雷达分光接收装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457984A (zh) * 2014-12-30 2015-03-25 中国科学院长春光学精密机械与物理研究所 一种低杂散光小型单色仪
CN204855797U (zh) * 2015-08-06 2015-12-09 中国科学院海洋研究所 一种用于水体光学特性测量的视场可调节光学系统
CN107037444A (zh) * 2017-06-07 2017-08-11 深圳大学 光学系统及激光雷达
US20200050081A1 (en) * 2018-08-10 2020-02-13 AAC Technologies Pte. Ltd. Lens module
CN109520929A (zh) * 2018-12-03 2019-03-26 东北石油大学 一种用于油气污染物激光检测的杂散光抑制装置
CN216083101U (zh) * 2021-08-31 2022-03-18 中科元光(嘉兴)激光科技有限公司 一种降低光学干扰的激光雷达结构
CN114167436A (zh) * 2021-11-22 2022-03-11 桂林理工大学 单频测水激光雷达
CN216646800U (zh) * 2021-12-16 2022-05-31 北京图来激光科技有限公司 一种杂散光抑制装置及其激光雷达
CN115079135A (zh) * 2022-06-18 2022-09-20 桂林理工大学 无人船载水深探测激光雷达杂散光抑制装置

Also Published As

Publication number Publication date
CN115079135B (zh) 2023-11-07
CN115079135A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023241724A1 (zh) 无人船载水深探测激光雷达杂散光抑制装置
CN110596879B (zh) 一种适用于环形太阳望远镜的热光阑
CN108226100A (zh) 一种用于点源透过率测试的改进型腔体
CN109520929B (zh) 一种用于油气污染物激光检测的杂散光抑制装置
CN106018274A (zh) 一种用于吸收浊度检测过程中透射光的装置
CN110045498A (zh) 光扫描装置和激光雷达
CN108169187B (zh) 一种用于点源透过率测试的测试腔体
CN114166340B (zh) 消杂光遮光系统
CN102221525A (zh) 一种样本检测光学系统、样本分析装置
CN110989060A (zh) 一种用于吸收抑制激光杂散光的光陷阱
CN208351109U (zh) 遮光片及镜头组件
CN211148969U (zh) 一种用于吸收抑制激光杂散光的光陷阱
CN111025614A (zh) 一种高抑制比光陷阱
CN207742114U (zh) 一种用于点源透过率测试的改进型腔体
CN114296100A (zh) 一种共孔径水下光学系统
CN215297142U (zh) 蒸发光散射检测器的检测室
CN211292537U (zh) 在体散射函数测量装置中减少杂散光的出射棱镜结构
CN205539546U (zh) 一种以黑玻璃为玻璃基片的镀有ar减反膜的ir cover窗口片
CN211147991U (zh) 用于点源透过率测试的双球型腔体及点源透过率测试系统
CN113687488B (zh) 近红外宽光谱防猫眼效应光学镜头
CN210038328U (zh) 光扫描装置和激光雷达
CN109270602B (zh) 复合镀膜层、镜筒、镜头和拍摄设备
CN209446841U (zh) 一种保偏单向光功率探测器
CN105467483B (zh) 红外制冷探测器冷光阑的偏振型透射式挡光环及制作方法
CN207636489U (zh) 一种用于点源透过率测试的测试腔体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18557926

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823290

Country of ref document: EP

Kind code of ref document: A1