WO2023241309A1 - 自适应调制编码方法、装置、基站及存储介质 - Google Patents

自适应调制编码方法、装置、基站及存储介质 Download PDF

Info

Publication number
WO2023241309A1
WO2023241309A1 PCT/CN2023/095310 CN2023095310W WO2023241309A1 WO 2023241309 A1 WO2023241309 A1 WO 2023241309A1 CN 2023095310 W CN2023095310 W CN 2023095310W WO 2023241309 A1 WO2023241309 A1 WO 2023241309A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer loop
mcs
error rate
loop value
block error
Prior art date
Application number
PCT/CN2023/095310
Other languages
English (en)
French (fr)
Inventor
宫腾
姚春峰
付瑞颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023241309A1 publication Critical patent/WO2023241309A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • Embodiments of the present application relate to but are not limited to the field of communication technology, and in particular to adaptive modulation and coding methods, devices, base stations and storage media.
  • the fixed target block error rate When affected by channel interference, channel fluctuations, etc., the fixed target block error rate is difficult to control the MCS within the operating range.
  • the target block error rate with a fixed value When the channel interference or fluctuation is strong, the target block error rate with a fixed value is relatively low. The target block error rate will maintain the MCS at a low level, affecting the spectrum efficiency of the system. When the channel interference and fluctuation are strong, the target block error rate will be relatively low.
  • weak the target BLER with a fixed value is relatively high, and the target block error rate will maintain the MCS at a high level, which will increase the delay and will not improve the spectrum efficiency.
  • embodiments of the present application also provide an adaptive modulation and coding device, including: a scheduling module configured to schedule a first MCS scheduling policy and at least one second MCS scheduling policy in different proportions, generated during the scheduling process Multiple outer ring values, wherein both the first MCS scheduling policy and the second MCS scheduling policy include at least one MCS, and the MCS level of the second MCS scheduling policy is greater than the MCS level of the first MCS scheduling policy ;
  • the optimal outer loop value determination module is configured to determine the optimal outer loop value from a plurality of the outer loop values;
  • the update module is configured to update the target block error rate and the target outer loop value according to the optimal outer loop value.
  • the target MCS level determination module is configured to determine the target MCS level according to the target block error rate and the target outer ring value.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the adaptive modulation and coding method as described above.
  • the present application provides an adaptive modulation and coding method, device, base station and storage medium, which include: scheduling the first MCS scheduling strategy and at least one second MCS scheduling strategy in different proportions to construct a third MCS scheduling strategy, and generating multiple MCS scheduling strategies during the scheduling process.
  • the outer ring value corresponds to the MCS level of the third MCS scheduling policy.
  • the MCS level of the second MCS scheduling policy is greater than the MCS level of the first MCS scheduling policy; determine the optimal outer ring value from multiple outer ring values. ; Update the target block error rate and target outer loop value based on the optimal outer loop value; determine the target MCS level based on the target block error rate and target outer loop value. This can adaptively adjust the target block error rate and outer loop value, making the MCS level more consistent with the current channel conditions and improving spectrum efficiency.
  • the traditional AMC scheme does not distinguish between channel quality and near and far scenarios and adopts a fixed target block error rate, which makes it difficult to control the MCS at a level that maximizes the data transmission rate; it can be adjusted adaptively
  • the target block error rate and outer loop value make the MCS level more consistent with the current channel conditions and improve spectrum efficiency.
  • a higher MCS level is tested for scheduling at a certain proportion, and a third MCS scheduling strategy with different MCS levels is used for scheduling.
  • a third MCS scheduling strategy with different MCS levels is used for scheduling.
  • multiple outer loop values will be generated, and the outer loop values correspond to the MCS levels of the third MCS scheduling strategy.
  • the proportion of the number of calls of the second MCS scheduling policy to the total number of scheduling can also be set, because the proportion of the number of calls of the second MCS scheduling policy to the total number of scheduling is different from that of the first MCS scheduling policy.
  • the sum of the proportions of the number of calls to the total number of scheduling is 1, and the proportion of the number of calls of the first MCS scheduling policy to the total number of scheduling can be obtained, thereby obtaining the above ratio.
  • the first MCS scheduling policy is track 0, and the second MCS scheduling policy is track 1.
  • the first MCS scheduling policy is to schedule MCS20 200 times
  • the MCS scheduled by the second MCS scheduling policy is MCS21.
  • the number of scheduling times of track 1 accounts for 20% of PortionTrack1
  • the number of times of scheduling of track 0 accounts for (1-PortionTrack1), that is, 80%
  • the ratio is the number of times of scheduling of track 1 and the number of calls of track 0
  • the ratio of times is 20%:80%.
  • the third MCS scheduling strategy is to schedule MCS20 160 times and MCS21 40 times.
  • the first MCS scheduling policy schedules MCS20 80 times and MCS21 120 times
  • the MCSs scheduled by the second MCS scheduling policy are MCS21 and MCS22.
  • the proportion of the scheduling times of track 1 PortionTrack1 is 20%
  • the proportion of track 0's scheduling times is (1-PortionTrack1), that is, 80%.
  • the strategy is to schedule MCS20 64 times, schedule MCS21 112 times, and schedule MCS22 24 times.
  • Step S210 for each outer loop value, calculate the block error rate of the inner and outer loop values of the cycle
  • Step S220 for each outer loop value, calculate the objective function value corresponding to the inner and outer loop value of the cycle according to the MCS level and block error rate of the third MCS scheduling policy corresponding to the outer loop value;
  • one device sends data to another device in blocks.
  • the sender uses the data in the block to calculate a Cyclic Redundancy Check (CRC) and sends it to the receiver along with the block.
  • CRC Cyclic Redundancy Check
  • the receiving end calculates a CRC based on the received data and compares it with the received CRC. If the two are equal, the receiving end considers that the correct data has been successfully received and replies with a positive confirmation to the sending end, indicating that according to the current With the channel coding and debugging method, the data can be received correctly; if the two are not equal, the receiving end considers that it has received wrong data and replies with a negative acknowledgment to the sending end to require the sending end to retransmit the block. If the sender does not receive a reply from the receiver within a specific period, the sender assumes that the previously sent block has not reached the receiver, and the sender automatically resends the block.
  • CRC Cyclic Redundancy Check
  • FIG. 3 is a flow chart for calculating the block error rate of each outer loop value within a cycle.
  • calculating the block error rate of each outer loop value within the cycle includes but is not limited to the following steps:
  • Step S211 receive positive confirmation and negative confirmation fed back by the user equipment
  • Step S212 count the number of first feedbacks corresponding to positive confirmations and the number of second feedbacks corresponding to negative confirmations
  • Step S213 Obtain the block error rate of the outer loop value based on the first feedback number and the second feedback number.
  • the block error rate is usually the ratio of the number of transmitted blocks received in error to the total number of blocks transmitted. This measurement is one of the simplest metrics for measuring the physical layer performance of a device and is performed by evaluating the CRC on each received transport block after channel deinterleaving and decoding.
  • the block error rate closely reflects RF channel conditions and interference levels. For a given MCS level, the cleaner the radio channel or the higher the signal-to-noise ratio (SIGNAL-NOISE RATIO, SNR), the less likely it is that a transport block will be received in error, which indicates a lower block error rate. Vice versa, for a given signal-to-noise ratio, the higher the MCS level, the greater the likelihood of errors due to interference, thus amplifying the block error rate.
  • SIGNAL-NOISE RATIO SIGNAL-NOISE RATIO
  • the block error rate is the ratio of the number of negative acknowledgments to the total number of negative acknowledgments and positive acknowledgments.
  • the number of NACKs represents the number of second feedbacks of negative acknowledgments corresponding to the outer loop value
  • the number of ACKs of MCSOL i represents the number of first feedbacks of positive acknowledgments corresponding to the outer loop value.
  • the parameters that determine a cycle are at least one of the following: the total number of scheduling times of all MCSs, the total scheduling time of all MCSs, the total number of feedback times of positive confirmation and negative confirmation, or the total number of outer loop values that meet preset statistical requirements. quantity.
  • the parameters that determine a cycle are at least one of the following: the total number of scheduling times of all MCSs, the total scheduling time of all MCSs, the total number of feedback times of positive confirmation and negative confirmation, or the total number of outer loop values that meet preset statistical requirements. quantity.
  • other ways of characterizing the completion of the statistical period may also be adopted.
  • the MCS level of the third MCS scheduling policy depends on the outer ring value corresponding to the third MCS scheduling policy.
  • it includes outer loop control and inner loop control; the outer loop value corresponds to the outer loop control, the inner loop value corresponds to the inner loop control, and the MCS level of the third MCS scheduling policy is determined by the outer loop control.
  • the ring value and the inner ring value are determined together.
  • MCS levels of different third MCS scheduling policies can also be distinguished. For each MCS level of the third MCS scheduling policy, the step of calculating the block error rate in a specific period needs to be performed.
  • Spectral efficiency is defined as the net bit rate or maximum throughput divided by the bandwidth of the communication channel or data link.
  • the net bit rate is the useful information rate transmitted by the system without error correction codes.
  • Spectral efficiency describes the capacity that a channel can provide. MCS of different MCS levels have different spectral efficiencies.
  • the optimal outer loop value is determined from multiple outer loop values according to the objective function value. For example, the outer loop value with the highest equivalent SE is used as the optimal outer loop value, or the outer loop value with a larger increase in equivalent spectrum efficiency and a smaller increase in block error rate is used as the optimal outer loop value. In specific applications, the method of determining the optimal outer loop value can be selected according to actual needs.
  • updating the target block error rate and the target outer loop value according to the optimal outer loop value includes: updating the target block error rate according to the optimal outer loop value; and updating the target outer loop value according to the optimal outer loop value.
  • the target block error rate is updated according to the optimal outer loop value, and adaptive optimization of the target block error rate is realized based on the comparison of the objective function values of each outer loop value.
  • a variable step size is used as the update step size of the target block error rate to update the target block error rate.
  • the update step of the target block error rate that is, the first update step, is determined based on the difference between the block error rate corresponding to the optimal outer loop value and the current target block error rate and the step update coefficient.
  • the value range of the step update coefficient ⁇ is (0,1].
  • the target block error rate is updated to the sum of the current target block error rate and the second update step, or the target block error rate is The block error rate is updated as the difference between the current target block error rate and the second update step, or the target block error rate is maintained as the current target block error rate.
  • methods include but are not limited to the following:
  • the target outer loop value is updated according to the optimal outer loop value, and the adaptive optimization of the target outer loop value is realized based on the comparison of the objective function values of each outer loop value.
  • the target outer loop value is updated to the optimal outer loop value. For example, the equivalent spectrum efficiency of outer loop value 0 is the highest, and outer loop value 0 is the optimal outer loop value, then the target outer loop value is updated to outer loop value 0.
  • the update direction of the target outer loop value is determined based on a comparison between the optimal outer loop value and the current target outer loop value, and the target outer loop value is updated with a third update step.
  • the update direction of the target outer ring value determines the target outer ring value plus or minus the third update step, or maintaining the original value.
  • the third update step size may be a preset fixed step size, and the value of the fixed step size corresponding to the third update step size may be obtained based on historical experience.
  • the third update step is a variable step, and the variable step corresponding to the third update step is obtained based on the optimal outer loop value and the current target outer loop value.
  • the third update step is optimal.
  • the difference between the outer loop value and the current target outer loop value, or the third update step is the difference between the optimal outer loop value and the current target outer loop value multiplied by the weight coefficient.
  • the target outer loop value is updated to the current The sum of the target outer loop value and the third update step; when the difference between the optimal outer loop value and the current target outer loop value is less than or equal to the low threshold, indicating that the current target outer loop value is too large, the target outer loop value will be The value is updated to the difference between the current target outer loop value and the third update step; when the difference between the optimal outer loop value and the current target outer loop value is less than the high threshold and greater than the low threshold, the target outer loop value is maintained at the current The target outer ring value remains unchanged.
  • the high threshold and low threshold are preset values that can be obtained based on historical experience; the high threshold and low threshold can also be adaptively adjusted based on actual conditions.
  • the high threshold deltaMCSOL_HThr is set to 1 and the low threshold deltaMCSOL_LThr is set to -1.
  • the current outer loop value MCSOLCurrent is -2.
  • the equivalent spectrum efficiency of outer loop value 0 is the highest, and outer loop value 0 is the optimal outer loop value.
  • the difference between the optimal outer loop value and the current outer loop value is greater than the high threshold.
  • the update direction of the target outer loop value is determined to update the target outer loop value to the sum of the current target outer loop value and the third update step. .
  • the third update step is the preset fixed step Step_MCSOL, and the value of the fixed step Step_MCSOL is 1.
  • FIG. 5 is a structural diagram of an adaptive modulation and coding device.
  • the adaptive modulation and coding device includes a scheduling module 410, an optimal outer loop value determination module 420, an update module 430 and a target MCS level determination module 440.
  • the scheduling module 410 is configured to schedule the first MCS scheduling policy and at least one second MCS scheduling policy in different proportions, and generate multiple outer loop values during the scheduling process.
  • the first MCS scheduling policy and the second MCS scheduling policy both include At least one MCS, the MCS level of the second MCS scheduling policy is greater than the MCS level of the first MCS scheduling policy;
  • the optimal outer loop value determination module 420 is configured to determine the optimal outer loop value from a plurality of the outer loop values;
  • the update module 430 is configured to update the target block error rate and the target outer loop value according to the optimal outer loop value;
  • the target MCS level determination module 440 is configured to determine the target according to the target block error rate and the target outer loop value. MCS level.
  • the content in the embodiment of the adaptive modulation and coding method is applicable to the embodiment of the adaptive modulation and coding device; the various modules of the embodiment of the adaptive modulation and coding device and the various steps of the embodiment of the adaptive modulation and coding method
  • the functions specifically implemented by the embodiment of the adaptive modulation and coding device are the same as those of the embodiment of the adaptive modulation and coding method, and the beneficial effects achieved are also the same as those achieved by the embodiment of the adaptive modulation and coding method.
  • FIG. 6 is a structural diagram of a base station.
  • the base station includes: one or more processors 510 and memory 520.
  • one processor 510 and memory 520 are taken as an example.
  • the processor 510 and the memory 520 may be connected through a bus or other means. In FIG. 5 , the connection through a bus is taken as an example.
  • the memory 520 can be used to store non-transitory software programs and non-transitory computer executable programs, such as the adaptive modulation and coding method in the above embodiments of the present application.
  • the processor 510 implements the above-mentioned adaptive modulation and coding method in the embodiment of the present application by running non-transient software programs and programs stored in the memory 520 .
  • the memory 520 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required for at least one function; the storage data area may store data needed to execute the adaptive modulation coding method in the embodiment of the present application. Required data, etc.
  • memory 520 may include high-speed random access memory 520 and may also include non-transitory memory 520, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 520 may include memory 520 located remotely relative to the processor 510, and these remote memories 520 may be connected to the terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the non-transient software programs and programs required to implement the adaptive modulation and coding method in the above embodiments of the present application are stored in the memory 520.
  • the automatic modulation and coding methods in the above embodiments of the present application are executed.
  • Adapt to tune The encoding method for example, performs the above-described steps S100 to S400 in FIG. 1, steps S210 to S230 in FIG. 2, steps S211 to S213 in FIG. 3, and steps S221 to S222 in FIG. 4.
  • the base station schedules the first MCS scheduling policy and at least one second MCS scheduling policy in different proportions, and generates multiple outer loop values during the scheduling process.
  • the MCS level of the second MCS scheduling policy is greater than the MCS level of the first MCS scheduling policy; from the multiple Determine the optimal outer loop value among the outer loop values; update the target block error rate and target outer loop value based on the optimal outer loop value; determine the target MCS level based on the target block error rate and target outer loop value; be able to adjust the target adaptively
  • the block error rate and outer loop value make the MCS level more consistent with the current channel conditions and improve spectrum efficiency.
  • node embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by a Processor execution may cause the above-mentioned processor to execute the adaptive modulation and coding method in the above-mentioned embodiment, for example, execute the above-described steps S100 to step S400 in FIG. 1, step S210 to step S230 in FIG. 2, and the above-described steps in FIG. Steps S211 to S213, and Steps S221 to S222 in Figure 4 . Then, the first MCS scheduling policy and at least one second MCS scheduling policy are scheduled in different proportions, and multiple outer loop values are generated during the scheduling process.
  • the MCS level of the second MCS scheduling policy is greater than the MCS level of the first MCS scheduling policy; from Determine the optimal outer loop value among multiple outer loop values; update the target block error rate and target outer loop value based on the optimal outer loop value; determine the target MCS level based on the target block error rate and target outer loop value; be able to adjust adaptively The target block error rate and outer loop value make the MCS level more consistent with the current channel conditions and improve spectrum efficiency.
  • Embodiments of the present application include: scheduling a first MCS scheduling strategy and at least one second MCS scheduling strategy in different proportions, generating multiple outer loop values during the scheduling process, and the MCS level of the second MCS scheduling strategy is greater than that of the first MCS scheduling strategy.
  • MCS level determine the optimal outer loop value from multiple outer loop values; update the target block error rate and target outer loop value based on the optimal outer loop value; determine the target MCS level based on the target block error rate and target outer loop value; able Adaptively adjust the target block error rate and outer loop value to make the MCS level more consistent with the current channel conditions and improve spectrum efficiency.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了自适应调制编码方法、装置、基站及存储介质,其中方法包括:以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略构建第三MCS调度策略,在调度过程中生成多个外环值,外环值与第三MCS调度策略的MCS等级对应,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级(S100);从多个外环值中确定最优外环值(S200);根据最优外环值更新目标误块率和目标外环值(S300);根据目标误块率和目标外环值确定目标MCS等级(S400)。

Description

自适应调制编码方法、装置、基站及存储介质
相关申请的交叉引用
本申请基于申请号为202210681429.6、申请日为2022年06月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及自适应调制编码方法、装置、基站及存储介质。
背景技术
在长期演进(Long Term Evolution,LTE)系统或新空口(New Radio,NR)无线系统中,无线信道中的干扰和衰落都是时变的,为了保证链路的传输质量并最大化地利用无线信道的传输能力,应用了自适应调制编码(Adaptive Modulation and Coding,AMC)技术。自适应调制编码是无线信道上采用的一种自适应的编码调制技术,通过调整无线链路传输的调制方式(如QPSK、16QAM、64QAM)与编码速率,从而使得数据传输能及时地跟上信道的变化状况。
根据终端反馈的无线信道的质量情况自适应调整调制编码方式(Modulation and Coding Scheme,MCS)等级,以提高通信系统的传输效率和传输质量;当信道质量较差时,选择较小的MCS等级;当信道质量较好时,选择较大的MCS等级。另外引入了AMC外环策略,通过肯定确认(Acknowledgement,ACK)、否定确认(Negative Acknowledgement,否定确认)的反馈和目标误块率(Block Error Rate,BLER)动态调整调度的MCS等级。目前的自适应调制编码技术中,目标误块率的取值固定,不区分信道质量和远近场景;当受到信道干扰、信道波动等影响,取值固定的目标误块率难以将MCS控制在使数据传输速率最大的等级。当信道干扰或波动较强时,则固定取值的目标误块率相对较低,目标误块率会将MCS维持在较低水平的等级,影响系统的频谱效率;而当信道干扰和波动较弱时,则固定取值的目标BLER相对较高,目标误块率会将MCS维持在较高水平的等级,会导致时延增大并不会提高频谱效率。
发明内容
以下是对本文详细描述的主题的概述。
本申请实施例提供了自适应调制编码方法、装置、基站及存储介质。
第一方面,本申请实施例提供了一种自适应调制编码方法,所述方法包括:以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略构建第三MCS调度策略,在调度过程中生成多个外环值,其中,所述外环值与所述第三MCS调度策略的MCS等级对应,所述第一MCS调度策略和所述第二MCS调度策略均包括至少一种MCS,所述第二MCS调度策略的MCS等级大于所述第一MCS调度策略的MCS等级;从多个所述外环值中确定最优外环值;根据所述最优外环值更新目标误块率和目标外环值;根据所述目标误块率和所述目标外环值确定目标MCS等级。
第二方面,本申请实施例还提供了一种自适应调制编码装置,包括:调度模块,被设置为以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,其中所述第一MCS调度策略和所述第二MCS调度策略均包括至少一种MCS,所述第二MCS调度策略的MCS等级大于所述第一MCS调度策略的MCS等级;最优外环值确定模块,被设置为从多个所述外环值中确定最优外环值;更新模块,被设置为根据所述最优外环值更新目标误块率和目标外环值;目标MCS等级确定模块,被设置为根据所述目标误块率和所述目标外环值确定目标MCS等级。
第三方面,本申请实施例还提供了一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上所述的自适应调制编码方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的自适应调制编码方法。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是自适应调制编码方法的流程图;
图2是从多个外环值中确定最优外环值的流程图;
图3是计算周期内外环值的误块率的流程图;
图4是计算周期内外环值对应的等效频谱效率的流程图;
图5是自适应调制编码装置的结构图;
图6是应用自适应调制编码方法的基站的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了自适应调制编码方法、装置、基站及存储介质,其中包括:以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略构建第三MCS调度策略,在调度过程中生成多个外环值,外环值与第三MCS调度策略的MCS等级对应,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;从多个外环值中确定最优外环值;根据最优外环值更新目标误块率和目标外环值;根据目标误块率和目标外环值确定目标MCS等级。这能够自适应地调整目标误块率和外环值,使得MCS等级更匹配当前的信道情况,提高频谱效率。
下面结合附图,对本申请实施例作进一步阐述。
本申请实施例提供了一种自适应调制编码方法,应用于长期演进系统或新空口无线系统。
参照图1,图1是自适应调制编码方法的流程图。本申请的自适应调制编码方法,包括但不限于以下步骤:
步骤S100,以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略构建第三MCS调度策略,在调度过程中生成多个外环值,其中,外环值与第三MCS调度策略的MCS等级对应,第一MCS调度策略和第二MCS调度策略均包括至少一种MCS,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;
步骤S200,从多个外环值中确定最优外环值;
步骤S300,根据最优外环值更新目标误块率和目标外环值;
步骤S400,根据目标误块率和目标外环值确定目标MCS等级。
在该实施例中,能够克服传统AMC方案不区分信道质量和远近场景采用取值固定的目标误块率而导致的难以将MCS控制在使数据传输速率最大的等级的问题;能够自适应地调整目标误块率和外环值,使得MCS等级更匹配当前的信道情况,提高频谱效率。
对于步骤S100,长期演进系统或新空口无线系统中,基站接收用户设备上报的信道质量指示(Channel Quality Indicator,CQI),根据信道质量指示由标准表中获取对应的调制编码方式索引值(MCS-index),由调制编码方式索引值确定要调度的调制编码方式。以不同比例调度第一MCS调度策略和第二MCS调度策略构建第三MCS调度策略,其中第一MCS调度策略为根据传统的AMC方案确定的MCS等级对MCS进行调度的MCS调度策略,第二调度策略为MCS等级比第一调度策略的MCS等级高的MCS调度策略。即在传统的AMC方案的基础上,以一定的占比试探更高的MCS等级进行调度,实现采用不同MCS等级的第三MCS调度策略进行调度的情况。并且在按照每种比例调度第一MCS调度策略和第二MCS调度策略构建一个第三MCS调度策略的过程中都会生成多个外环值,外环值与第三MCS调度策略的MCS等级对应。
另外,一般地,第二MCS调度策略所调度的MCS数量和第一MCS调度策略所调度的MCS数量相同。
在某些实施例中,比例为第二MCS调度策略的调用次数与第一MCS调度策略的调度次数之比。对于每种比例,按照比例调度第一MCS调度策略和第二MCS调度策略构建一个第三MCS调度策略。
当然在其他实施例中,也可以设定第二MCS调度策略的调用次数占总调度次数的占比,由于第二MCS调度策略的调用次数占总调度次数的占比与第一MCS调度策略的调用次数占总调度次数的占比之和为1,可以得到第一MCS调度策略的调用次数占总调度次数的占比,从而得到上述的比例。
例如,在一个实施例中,以第一MCS调度策略为轨0,以第二MCS调度策略为轨1。以200次调度为一个周期。第一MCS调度策略为调度200次MCS20,第二MCS调度策略所调度的MCS为MCS21。按照预设的比例,轨1的调度次数占比PortionTrack1为20%,则轨0的调度次数占比为(1-PortionTrack1),即80%;则比例为轨1的调度次数与轨0的调用次数之比,即20%:80%。则第三MCS调度策略为调度160次MCS20,调度40次MCS21。
在另一个实施例中,第一MCS调度策略为调度80次MCS20和调度120次MCS21,第二MCS调度策略所调度的MCS为MCS21和MCS22。按照预设的比例,轨1的调度次数占比 PortionTrack1为20%,则轨0的调度次数占比为(1-PortionTrack1),即80%。则MCS20的调度次数为80*80%=64次,MCS21的调度次数为80*20%+120*80%=112次,MCS22的调度次数为120*20%=24次;即第三MCS调度策略为调度64次MCS20、调度112次MCS21和调度24次MCS22。
当然,在其他实施例中,第二MCS调度策略的MCS等级可以比第一MCS调度策略的MCS等级高一个等级,或者第二MCS调度策略的MCS等级可以比第一MCS调度策略的MCS等级高两个等级或以上,或者根据实际信道情况进行自适应调整。
当然,在其他实施例中,调度的MCS的数量除了两种之外,还可以是其他数量,包括三种、四种等,或者调度的MCS的数量随实际信道情况的变化自适应调整。另外,同样地,三种或以上数量的MCS每种具有不同的MCS等级,且MCS等级差异可以根据实际信道情况进行自适应调整。
当然,在其他实施例中,多轨的构造方式可以采用其他方式,比如改变外环值生成或者采用其他方式使得调度的MCS更改。
参照图2,图2是从多个外环值中确定最优外环值的流程图。对于步骤S200,从多个外环值中确定最优外环值,包括但不限于以下步骤:
步骤S210,对于每个外环值,计算周期内外环值的误块率;
步骤S220,对于每个外环值,根据外环值对应的第三MCS调度策略的MCS等级和误块率,计算周期内外环值对应的目标函数值;
步骤S230,根据目标函数值从多个外环值中确定最优外环值。
对于步骤S210,在无线网络系统中,一个设备是按块向另一个设备发送数据的。发送端使用块中的数据计算出一个循环冗余校验(Cyclic Redundancy Check,CRC),并随着该块一起发送到接收端。接收端根据收到的数据计算出一个CRC,并与接收到的CRC进行比较,如果二者相等,接收端就认为成功地收到了正确的数据,并向发送端回复一个肯定确认,表明按照当前的信道编码和调试方式,数据能够被正确的接收;如果二者不相等,接收端就认为收到了错误的数据,并向发送端回复一个否定确认,以要求发送端重传该块。如果在特定的周期内,发送端没有收到接收端的回复,则发送端假定之前发送的块没有到达接收端,发送端自动重发该块。
需要区分不同的外环值,对每个外环值,均需要执行计算在特定的周期内的误块率的步骤。参照图3,图3是计算周期内各个外环值的误块率的流程图。在一个实施例中,计算周期内各个外环值的误块率,包括但不限于以下步骤:
步骤S211,接收用户设备反馈的肯定确认和否定确认;
步骤S212,统计肯定确认对应的第一反馈数和否定确认对应的第二反馈数;
步骤S213,根据第一反馈数和第二反馈数,得到外环值的误块率。
误块率通常为错误接收到的传输块数与在传输的块总数之比。该测量是用于测量设备物理层性能的最简单的指标之一,在信道解交织和解码之后通过评估接收到的每个传输块上的CRC来执行。误块率密切反映射频信道条件和干扰水平。对于给定的MCS等级,无线电信道越干净或信噪比(SIGNAL-NOISE RATIO,SNR)越高,传输块被错误接收的可能性就越小,这表明误块率较低。反之亦然,对于给定的信噪比,MCS等级越高,由于干扰导致错误的可能性就越大,从而放大了误块率。
在一个实施例中,对于步骤S213,误块率即为否定确认的数量与否定确认和肯定确认的总数量之比。误块率可以通过以下式子表示:BLER_MCSOLi=MCSOLi的NACK数/(MCSOLi的NACK数+MCSOLi的ACK数),式中,BLER_MCSOLi表示外环值的误块率,MCSOLi的NACK数表示外环值对应的否定确认的第二反馈数,MCSOLi的ACK数表示外环值对应的肯定确认的第一反馈数。
其中,决定一个周期的参数为以下的至少一种:所有MCS的总调度次数、所有MCS的总调度时间、肯定确认和否定确认的总反馈次数、或满足预设统计要求的外环值的总数量。当然,在其他实施例中,也可以采用其他表征完成统计周期的方式。
即例如,当所有MCS的总调度次数达到第一预设门限值,认为是一个周期;或者当所有MCS的总调度时间达到第二预设门限值,认为是一个周期;或者当肯定确认和否定确认的总反馈次数达到第三预设门限值,认为是一个周期;或者当满足预设统计要求的外环值的总数量达到第四预设门限值,认为是一个周期。周期的决定参数可以根据实际情况设置。第一预设门限值、第二预设门限值、第三预设门限值和第四预设门限值均为人为预设的值,可以根据历史经验得到。
例如,在一个实施例中,采用了一种新传的第三MCS调度策略,一个用户设备收到的ACK数和NACK数之和达到第三预设门限值ThresholdMultiTrack,第三预设门限值ThresholdMultiTrack取值为150,完成了一个周期。统计本周期内各个外环值的误块率。外环值-2对应的误块率为4%,外环值-1对应的误块率为11%,外环值0对应的误块率为19%。
第三MCS调度策略的MCS等级取决于第三MCS调度策略对应的外环值。一般地,在长期演进系统或新空口无线系统,包括外环控制和内环控制;外环值对应于外环控制,内环值对应于内环控制,第三MCS调度策略的MCS等级由外环值和内环值共同决定。当然,在其他实施例中,也可以区分不同的第三MCS调度策略的MCS等级,对每个第三MCS调度策略的MCS等级,需要执行计算在特定的周期内的误块率的步骤。
对于步骤S220,根据外环值对应的第三MCS调度策略的MCS等级和外环值的误块率,计算周期内外环值对应的目标函数值。
目标函数值可以为等效频谱效率(Spectral Efficiency,SE),或者为传输时延,或者为综合考虑等效SE和误块率的其他指标。可以根据实际运行环境,决定所采用的目标函数值的类型。
在一个实施例中,采用等效频谱效率作为目标函数值,等效频谱效率表示单位带宽的传输速率,以传输成功的传输块尺寸(Transport Block Size,TBS)与所用资源单元(Resource Element,RE)数量的比值表示。
参照图4,图4是计算周期内外环值对应的等效频谱效率的流程图。则步骤S220,包括但不限于以下步骤:
步骤S221,根据第三MCS调度策略的MCS等级,得到第三MCS调度策略的频谱效率;
步骤S222,根据频谱效率和误块率,得到等效频谱效率。
对于频谱效率,频谱效率定义为净比特率或最大吞吐量除以通信信道或数据链路的带宽。净比特率即为不包括纠错码的系统传输的有用信息速率。频谱效率描述了信道能够提供的容量大小。不同MCS等级的MCS具有不同的频谱效率。
根据频谱效率和误块率计算等效频谱效率;在某个实施例中,可以通过以下的式子对各外环值的等效频谱效率进行估算:EqualSE_MCSOLi=SE_MCSOLi/(1+BLER_MCSOLi);式中, SE_MCSOLi表示当前所采用的第三MCS调度策略的MCS等级的频谱效率,EqualSE_MCSOLi表示外环值的等效频谱效率。
实际上,在不同的运行环境中可以存在不同的等效频谱效率估算公式,即等效频谱效率的计算方式取决于实际的运行环境。例如,当重传资源块(Resource Block,RB)数与新传资源块数不同的时候,可以采用以下公式计算等效频谱效率:EqualSE_MCSOLi=SE_MCSOLi/(1+CompressRatio*BLER_MCSOLi),式中,CompressRatio表示重传资源块数与新传资源块数的比值。
对于步骤S230,根据目标函数值从多个外环值中确定最优外环值。例如,采用等效SE最高的外环值作为最优外环值,或者以等效频谱效率提升较大且误块率提升较小的外环值作为最优外环值。在具体应用中,可以根据实际需求选择确定最优外环值的方式。
例如,在一个实施例中,外环值-2的等效频谱效率为2.101,外环值-1的等效SE为2.182,外环值0的等效频谱效率为2.233。当采用等效频谱效率最高的外环值作为最优外环值时,则外环值0为最优外环值。
对于步骤S300,根据最优外环值更新目标误块率和目标外环值,即包括:根据最优外环值更新目标误块率;以及根据最优外环值更新目标外环值。
对于根据最优外环值更新目标误块率,包括但不限于以下的方式:
根据最优外环值对应的误块率、当前的目标误块率和预设的步长更新系数,得到目标误块率的第一更新步长,将目标误块率更新为当前的目标误块率与第一更新步长之和;或者,当最优外环值的误块率大于当前的目标误块率,将目标误块率更新为当前的目标误块率与第二更新步长之和,当最优外环值的误块率小于当前的目标误块率,将目标误块率更新为当前的目标误块率与第二更新步长之差,其中第二更新步长为与目标误块率对应的预设的固定步长。
根据最优外环值更新目标误块率,实现了根据各个外环值的目标函数值的对比情况进行目标误块率的自适应优化。
在某些实施例中,采用变步长作为目标误块率的更新步长以对目标误块率进行更新。根据最优外环值对应的误块率与当前的目标误块率的差值以及步长更新系数确定目标误块率的更新步长,即第一更新步长。第一更新步长可以通过以下的式子表示:△TargetBLER=α*(BLEROpt-TargetBLER);式中,△TargetBLER表示第一更新步长,BLEROpt表示最优外环值对应的误块率,TargetBLER表示当前的目标误块率,α表示步长更新系数。另外,步长更新系数α的取值范围为(0,1]。然后将目标误块率更新为当前的目标误块率与第一更新步长之和;即目标误块率可以通过以下式子表示:TargetBLER’=TargetBLER+△TargetBLER,式中,TargetBLER’表示更新后的目标误块率。另外,步长更新系数α的取值越大,则调整效率越高,但稳定性会越差;步长更新系数α的取值越小,则调整效率越低,但稳定性会越好。步长更新系数α可以是为固定值,也可以是根据实际情况自适应调整的变值。
在一个实施例中,外环值-2的等效频谱效率为2.101,外环值-1的等效SE为2.182,外环值0的等效频谱效率为2.233。外环值0的等效频谱效率最高,外环值0为最优外环值,外环值0的误块率为19%,即BLEROpt取值为19%。当前的目标误块率为10%,即TargetBLER取值为10%。预设的步长更新系数α取值为1/3。则通过以下式子:△TargetBLER=α*(BLEROpt-TargetBLER)=1/3*(19%-10%)=3%,可以计算得到第一更新步长为3%。则通 过以下式子:TargetBLER’=TargetBLER+△TargetBLER=10%+3%=13%,可以计算得到更新后的目标误块率为13%。
在某些实施例中,根据最优外环值的误块率和当前的目标误块率的对比情况确定目标误块率的更新方向,以为固定步长的第二更新步长对目标误块率进行更新。目标误块率的更新方向决定了目标误块率加上或者减去第二更新步长,或者维持原值。
即,根据所述最优外环值的误块率与当前的目标误块率的对比关系,将目标误块率更新为当前的目标误块率与第二更新步长之和,或者将目标误块率更新为当前的目标误块率与第二更新步长之差,或者将目标误块率保持为当前的目标误块率。
在一个实施例中,例如,当最优外环值的误块率大于当前的目标误块率,将目标误块率更新为当前的目标误块率与第二更新步长之和;当最优外环值的误块率小于当前的目标误块率,将目标误块率更新为当前的目标误块率与第二更新步长之差;当最优外环值的误块率等于当前的目标误块率,将目标误块率维持当前的目标误块率不变。
其中,采用以变步长的第一更新步长更新目标误块率的更新方式,还是采用以固定步长的第二更新步长更新目标误块率的更新方式,是根据实际运行环境决定的。
对于根据最优外环值更新目标外环值,包括但不限于以下的方式:
将目标外环值更新为最优外环值;或者,根据最优外环值与当前的目标外环值的对比关系,将目标外环值更新为当前的目标外环值与第三更新步长之和,或者将目标外环值更新为当前的目标外环值与第三更新步长之差,或者将目标外环值保持为当前的目标外环值,其中第三更新步长为与目标外环值对应的预设的固定步长,或者由最优外环值和当前的目标外环值共同决定的变步长。
根据最优外环值更新目标外环值,实现了根据各个外环值的目标函数值的对比情况进行目标外环值的自适应优化。
在某些实施例中,将目标外环值更新为最优外环值。例如,外环值0的等效频谱效率最高,外环值0为最优外环值,则将目标外环值更新为外环值0。
在某些实施例中,根据最优外环值和当前的目标外环值的对比情况确定目标外环值的更新方向,以第三更新步长对目标外环值进行更新。目标外环值的更新方向决定了目标外环值加上或者减去第三更新步长,或者维持原值。
其中,在某些实施例中,第三更新步长可以是预设的固定步长,对应第三更新步长的固定步长的取值可以根据历史经验得到。在其他实施例中,第三更新步长为变步长,对应第三更新步长的变步长根据最优外环值和当前的目标外环值得到,例如第三更新步长为最优外环值和当前的目标外环值之差,或者第三更新步长为最优外环值和当前的目标外环值之差乘以权重系数。
例如,可以设置高门限和低门限,当最优外环值和当前的目标外环值之差大于或等于高门限,表明当前的目标外环值过小,则将目标外环值更新为当前的目标外环值与第三更新步长之和;当最优外环值和当前的目标外环值之差小于或等于低门限,表明当前的目标外环值过大,则将目标外环值更新为当前的目标外环值与第三更新步长之差;当最优外环值和当前的目标外环值之差小于高门限且大于低门限,则将目标外环值维持当前的目标外环值不变。高门限和低门限为预设值,可以根据历史经验得到;高门限和低门限也可以根据实际情况进行自适应调整。
在一个实施例中,设置高门限deltaMCSOL_HThr取值为1和低门限deltaMCSOL_LThr取值为-1。当前外环值MCSOLCurrent取值为-2。外环值0的等效频谱效率最高,外环值0为最优外环值。最优外环值的数值与当前外环值的数值之差大于高门限,确定目标外环值的更新方向为将目标外环值更新为当前的目标外环值与第三更新步长之和。第三更新步长为预设的固定步长Step_MCSOL,固定步长Step_MCSOL取值为1。通过以下式子:MCSOLCurrent’=MCSOLCurrent+Step_MCSOL=-2+1=-1,其中MCSOLCurrent’表示目标外环值,可以计算得到目标外环值为-1。
对应步骤S400,根据更新后的目标误块率和更新后的目标外环值确定目标MCS等级,使得目标MCS等级更匹配当前的信道情况,从而提高了系统的频谱效率。
本申请的一个实施例还提供了一种自适应调制编码装置。参照图5,图5是自适应调制编码装置的结构图。自适应调制编码装置包括调度模块410、最优外环值确定模块420、更新模块430和目标MCS等级确定模块440。
其中,调度模块410被设置为以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,第一MCS调度策略和第二MCS调度策略均包括至少一种MCS,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;最优外环值确定模块420被设置为从多个所述外环值中确定最优外环值;更新模块430被设置为根据所述最优外环值更新目标误块率和目标外环值;目标MCS等级确定模块440被设置为根据所述目标误块率和所述目标外环值确定目标MCS等级。
可以理解的是,自适应调制编码方法实施例中的内容均适用于本自适应调制编码装置实施例中;本自适应调制编码装置实施例的各个模块与自适应调制编码方法实施例的各个步骤一一对应,本自适应调制编码装置实施例所具体实现的功能与自适应调制编码方法实施例相同,并且达到的有益效果与自适应调制编码方法实施例所达到的有益效果也相同。
本申请的一个实施例还提供了一种基站。参照图6,图6是基站的结构图。在一个实施例中,该基站包括:一个或多个处理器510和存储器520,图5中以一个处理器510及存储器520为例。处理器510和存储器520可以通过总线或者其他方式连接,图5中以通过总线连接为例。
存储器520作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如上述本申请实施例中的自适应调制编码方法。处理器510通过运行存储在存储器520中的非暂态软件程序以及程序,从而实现上述本申请实施例中的自适应调制编码方法。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述本申请实施例中的自适应调制编码方法所需的数据等。此外,存储器520可以包括高速随机存取存储器520,还可以包括非暂态存储器520,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器520可包括相对于处理器510远程设置的存储器520,这些远程存储器520可以通过网络连接至该终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述本申请实施例中的自适应调制编码方法所需的非暂态软件程序以及程序存储在存储器520中,当被一个或者多个处理器510执行时,执行上述本申请实施例中的自适应调 制编码方法,例如,执行以上描述的图1中的步骤S100至步骤S400、图2中的步骤S210至步骤S230、图3中的步骤S211至步骤S213、图4中的步骤S221至步骤S222。基站以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;从多个外环值中确定最优外环值;根据最优外环值更新目标误块率和目标外环值;根据目标误块率和目标外环值确定目标MCS等级;能够自适应地调整目标误块率和外环值,使得MCS等级更匹配当前的信道情况,提高频谱效率。
以上所描述的节点实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被一个处理器执行,可使得上述处理器执行上述实施例中的自适应调制编码方法,例如,执行以上描述的图1中的步骤S100至步骤S400、图2中的步骤S210至步骤S230、图3中的步骤S211至步骤S213、图4中的步骤S221至步骤S222。进而实现以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;从多个外环值中确定最优外环值;根据最优外环值更新目标误块率和目标外环值;根据目标误块率和目标外环值确定目标MCS等级;能够自适应地调整目标误块率和外环值,使得MCS等级更匹配当前的信道情况,提高频谱效率。
本申请实施例包括:以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,第二MCS调度策略的MCS等级大于第一MCS调度策略的MCS等级;从多个外环值中确定最优外环值;根据最优外环值更新目标误块率和目标外环值;根据目标误块率和目标外环值确定目标MCS等级;能够自适应地调整目标误块率和外环值,使得MCS等级更匹配当前的信道情况,提高频谱效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

  1. 一种自适应调制编码方法,包括:
    以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略构建第三MCS调度策略,在调度过程中生成多个外环值,其中,所述外环值与所述第三MCS调度策略的MCS等级对应,所述第一MCS调度策略和所述第二MCS调度策略均包括至少一种MCS,所述第二MCS调度策略的MCS等级大于所述第一MCS调度策略的MCS等级;
    从多个所述外环值中确定最优外环值;
    根据所述最优外环值更新目标误块率和目标外环值;
    根据所述目标误块率和所述目标外环值确定目标MCS等级。
  2. 根据权利要求1所述的自适应调制编码方法,其中,所述从多个所述外环值中确定最优外环值,包括:
    对于每个所述外环值,计算周期内所述外环值的误块率;
    对于每个所述外环值,根据所述外环值对应的所述第三MCS调度策略的MCS等级和所述误块率,计算周期内所述外环值对应的目标函数值;
    根据所述目标函数值从多个所述外环值中确定最优外环值。
  3. 根据权利要求2所述的自适应调制编码方法,其中,所述计算周期内各个所述外环值的误块率,包括:
    接收用户设备反馈的肯定确认和否定确认;
    统计所述肯定确认对应的第一反馈数和所述否定确认对应的第二反馈数;
    根据所述第一反馈数和所述第二反馈数,得到所述外环值的误块率。
  4. 根据权利要求3所述的自适应调制编码方法,其中,决定一个所述周期的参数为以下的至少一种:所有所述MCS的总调度次数、所有所述MCS的总调度时间、所述肯定确认和所述否定确认的总反馈次数、或满足预设统计要求的所述外环值的总数量。
  5. 根据权利要求2所述的自适应调制编码方法,其中,所述目标函数值包括等效频谱效率;所述根据所述外环值对应的所述第三MCS调度策略的MCS等级和所述误块率,计算周期内所述外环值对应的目标函数值,包括:
    根据所述第三MCS调度策略的MCS等级,得到所述第三MCS调度策略的频谱效率;
    根据所述频谱效率和所述误块率,得到所述等效频谱效率。
  6. 根据权利要求1所述的自适应调制编码方法,其中,根据所述最优外环值更新所述目标误块率,包括:
    根据所述最优外环值对应的误块率、当前的目标误块率和预设的步长更新系数,得到所述目标误块率的第一更新步长,将所述目标误块率更新为当前的目标误块率与所述第一更新步长之和;
    或者,根据所述最优外环值的误块率与当前的目标误块率的对比关系,将所述目标误块率更新为当前的目标误块率与第二更新步长之和,或者将所述目标误块率更新为当前的目标误块率与第二更新步长之差,或者将所述目标误块率保持为当前的目标误块率;其中所述第二更新步长为与所述目标误块率对应的预设的固定步长。
  7. 根据权利要求1所述的自适应调制编码方法,其中,根据所述最优外环值更新所述目 标外环值,包括:
    将所述目标外环值更新为所述最优外环值;
    或者,根据所述最优外环值与当前的目标外环值的对比关系,将所述目标外环值更新为当前的目标外环值与第三更新步长之和,或者将所述目标外环值更新为当前的目标外环值与所述第三更新步长之差,或者将所述目标外环值保持为当前的目标外环值;其中所述第三更新步长为与所述目标外环值对应的预设的固定步长,或者由所述最优外环值和当前的目标外环值共同决定的变步长。
  8. 一种自适应调制编码装置,包括:
    调度模块,被设置为以不同比例调度第一MCS调度策略和至少一个第二MCS调度策略,在调度过程中生成多个外环值,其中所述第一MCS调度策略和所述第二MCS调度策略均包括至少一种MCS,所述第二MCS调度策略的MCS等级大于所述第一MCS调度策略的MCS等级;
    最优外环值确定模块,被设置为从多个所述外环值中确定最优外环值;
    更新模块,被设置为根据所述最优外环值更新目标误块率和目标外环值;
    目标MCS等级确定模块,被设置为根据所述目标误块率和所述目标外环值确定目标MCS等级。
  9. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7中任意一项所述的自适应调制编码方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至7中任意一项所述的自适应调制编码方法。
PCT/CN2023/095310 2022-06-16 2023-05-19 自适应调制编码方法、装置、基站及存储介质 WO2023241309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210681429.6 2022-06-16
CN202210681429.6A CN117294385A (zh) 2022-06-16 2022-06-16 自适应调制编码方法、装置、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2023241309A1 true WO2023241309A1 (zh) 2023-12-21

Family

ID=89192181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095310 WO2023241309A1 (zh) 2022-06-16 2023-05-19 自适应调制编码方法、装置、基站及存储介质

Country Status (2)

Country Link
CN (1) CN117294385A (zh)
WO (1) WO2023241309A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117997476B (zh) * 2024-03-29 2024-06-14 极芯通讯技术(安吉)有限公司 基于大步长的快速amc方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835149A (zh) * 2009-09-15 2012-12-19 岩星比德科有限公司 无线网络中的自适应调制和编码方案调整
US20150358982A1 (en) * 2013-01-08 2015-12-10 Samsung Electronics Co., Ltd. Method and apparatus for operating uplink amc in mobile communication system
WO2017088147A1 (zh) * 2015-11-26 2017-06-01 华为技术有限公司 实现自适应调制编码的方法和基站
CN107465482A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 一种调制编码方式mcs的确定方法及装置
CN111447041A (zh) * 2019-01-16 2020-07-24 北京小米松果电子有限公司 调制与编码策略的控制方法、装置、存储介质和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835149A (zh) * 2009-09-15 2012-12-19 岩星比德科有限公司 无线网络中的自适应调制和编码方案调整
US20150358982A1 (en) * 2013-01-08 2015-12-10 Samsung Electronics Co., Ltd. Method and apparatus for operating uplink amc in mobile communication system
WO2017088147A1 (zh) * 2015-11-26 2017-06-01 华为技术有限公司 实现自适应调制编码的方法和基站
CN107465482A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 一种调制编码方式mcs的确定方法及装置
CN111447041A (zh) * 2019-01-16 2020-07-24 北京小米松果电子有限公司 调制与编码策略的控制方法、装置、存储介质和电子设备

Also Published As

Publication number Publication date
CN117294385A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US7697948B2 (en) Resource allocation in communication networks
US7149245B2 (en) Link adaption in enhanced general packet radio service networks
US6915477B2 (en) Delay sensitive adaptive quality control loop for rate adaptation
US9379842B2 (en) Outer-loop adjustment for wireless communication link adaptation
EP3183830B1 (en) Rate adaption algorithm for a wireless connection
US8165047B2 (en) Apparatus and method for forward link outer loop rate control using hybrid automatic repeat request in mobile communication systems
KR100446182B1 (ko) 자동 재송신 요구를 채용한 통신시스템
US7920888B2 (en) Power control and automatic repeat request (ARQ) in a radio communications system
US20170070979A1 (en) Adaptive outer loop for physical downlink channel link adaptation
US8914686B2 (en) Throughput improvement in wireless systems
KR20030036810A (ko) 동적 무선 링크 적응
CN101652930A (zh) 基于链路性能预测的自适应编码调制
WO2023241309A1 (zh) 自适应调制编码方法、装置、基站及存储介质
JP2010539748A (ja) 任意の搬送フォーマット選択アルゴリズムのためのcqi調整
WO2012019403A1 (zh) 自适应调制编码方法及装置
CN113595692B (zh) 一种基于动态阈值门限优化设计的amc-harq方法
US8867374B2 (en) Link adaptation for retransmission schemes
CN110858793B (zh) 一种基站的数据处理方法和装置
CN113922925B (zh) 数据传输调制等级的处理方法、基站和存储介质
WO2024000562A1 (zh) 一种数据传输方法、装置、存储介质及电子设备
US20230089213A1 (en) Radio link adaptation at a transmit and receive point
JP2009290618A (ja) 無線通信装置および無線通信方法
CN116015562A (zh) 一种基于无线信道质量的重传数据控制方法
WO2019182488A2 (en) Scheduling in a cellular communication system
WO2006114215A1 (en) Block size control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822879

Country of ref document: EP

Kind code of ref document: A1