WO2023241153A1 - 一种电池管理方法、系统、电池系统及电子设备 - Google Patents

一种电池管理方法、系统、电池系统及电子设备 Download PDF

Info

Publication number
WO2023241153A1
WO2023241153A1 PCT/CN2023/082892 CN2023082892W WO2023241153A1 WO 2023241153 A1 WO2023241153 A1 WO 2023241153A1 CN 2023082892 W CN2023082892 W CN 2023082892W WO 2023241153 A1 WO2023241153 A1 WO 2023241153A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
converter
battery cluster
cluster
soc
Prior art date
Application number
PCT/CN2023/082892
Other languages
English (en)
French (fr)
Inventor
吴凯
陈新伟
李向涛
但志敏
颜昱
刘忠
姚远
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023241153A1 publication Critical patent/WO2023241153A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the field of batteries, and specifically relates to a battery management method, system, battery system and electronic equipment.
  • the purpose of this application is to provide a battery management method, system, battery system and electronic equipment to improve the capacity loss and battery degradation caused by over-discharging or overcharging of some of the existing parallel-connected battery clusters.
  • embodiments of the present application provide a battery management method, including: determining a target battery cluster among N battery clusters connected in parallel in a battery system, wherein the battery system further includes a battery management method with the N battery clusters.
  • the target battery cluster among N battery clusters is determined, and the output voltage of the converter corresponding to each target battery cluster is controlled, thereby adjusting the current of different battery clusters, exerting the maximum capacity of the entire battery system, and ultimately making each
  • the battery capacity of the battery clusters should be kept consistent to ensure that the system can discharge all the power as much as possible to avoid over-discharge or overcharge of some battery clusters in multiple parallel-connected battery clusters due to unbalanced battery capacity, resulting in large capacity loss and battery degradation. question.
  • adjusting the converter corresponding to the target battery cluster when the target battery cluster is in a charging state, includes: if the second current value of the target battery cluster before adjustment is The difference between SOC and the set SOC is greater than zero, and the output voltage of the converter corresponding to the target battery cluster is increased to reduce the current of the target battery cluster; if the second current of the target battery cluster before adjustment is The difference between the SOC and the set SOC is less than zero, and the output voltage of the converter corresponding to the target battery cluster is lowered to increase the current of the target battery cluster.
  • adjusting the converter corresponding to the target battery cluster when the target battery cluster is in a discharge state, includes: if the second current value of the target battery cluster before adjustment is The difference between the SOC and the set SOC is greater than zero, and the output voltage of the converter corresponding to the target battery cluster is increased to increase the current of the target battery cluster; if the second current of the target battery cluster before adjustment The difference between the SOC and the set SOC is less than zero, and the output voltage of the converter corresponding to the target battery cluster is lowered to reduce the current of the target battery cluster.
  • the battery cluster with a high capacity is allowed to discharge faster or the battery cluster with a low capacity is discharged slowly, so that the adjusted first current SOC of the target battery cluster can be quickly compared with Set the difference between SOCs within a preset range to achieve battery capacity balancing.
  • each of the converters includes a gear for adjusting its own output voltage, and the output voltage corresponding to each gear is different; adjusting the conversion corresponding to the target battery cluster
  • the converter includes: adjusting the gear of the converter corresponding to the target battery cluster to adjust the output voltage of the converter corresponding to the target battery cluster.
  • the gear of the converter corresponding to the target battery cluster is adjusted to adjust the output voltage of the converter corresponding to the target battery cluster, so that the output voltage of the converter corresponding to the target battery cluster can be adjusted. Avoid over-conditioning.
  • determining the target battery cluster among the N battery clusters includes: obtaining the second current SOC of each battery cluster among the N battery clusters; based on the N The second current SOC of each of the N battery clusters and the set SOC determine the target battery cluster, and the target battery cluster is between the second current SOC and the set SOC of the N battery clusters. The difference exceeds the preset range of battery clusters.
  • the target battery cluster by determining the difference between the second current SOC of each battery cluster and the set SOC, and then detecting whether there is a target battery cluster whose difference exceeds a preset range, the target battery cluster can be quickly determined.
  • the set SOC is an average SOC of each battery cluster, a minimum SOC in each battery cluster, or a maximum SOC in each battery cluster.
  • the set SOC is appropriately set, such as setting the set SOC to the average SOC of each battery cluster, the minimum SOC in each battery cluster, or the maximum SOC in each battery cluster, so that it can be applied to different scenarios. .
  • the battery system further includes: N bypass switches corresponding to the N converters one-to-one, and the method further includes: for each of the conversion When the battery cluster corresponding to the converter is not adjusted, the corresponding bypass switch is controlled to be short-circuited with the converter.
  • a bypass switch is provided so that when a certain converter is not being adjusted, the corresponding bypass switch is controlled to be short-circuited with the converter, so that the system loss can be reduced.
  • each of the converters includes a gear for adjusting its own output voltage, and each gear corresponds to a different output voltage.
  • the method further includes: The gear position of each converter is adjusted as a reference gear position to minimize the total output power of each converter in the battery system, wherein the output voltage corresponding to the designated gear position is zero.
  • the gears of each converter are adjusted respectively with the designated gear as the reference gear, so that the converters in the system can be adjusted with the minimum voltage as much as possible within the adjustable range, so that each converter in the battery system The total output power of the converter is minimal.
  • the designated gear is the average gear of each of the converters.
  • the specified gear is the smallest gear in each of the converters.
  • the specified gear by reasonably setting the specified gear, it can be applied to different scenarios, so that the total output power of each converter in the battery system can be minimized in different scenarios.
  • the method further includes: obtaining the average current of the battery system; adjusting the converter corresponding to each battery cluster according to the average current, so that the The output current of the battery cluster is consistent with the average current.
  • the average current of the battery system is obtained, and the converter corresponding to each battery cluster is adjusted according to the average current, so that the output current of the battery cluster is consistent with the average current.
  • current sharing it can also be achieved at a certain level. To a certain extent, it alleviates the problems of large capacity loss and battery degradation caused by over-discharging or overcharging of some battery clusters in multiple battery clusters.
  • embodiments of the present application also provide a battery system, including: N battery clusters, N converters and monitoring modules connected in parallel, where N is an integer greater than or equal to 2; N converters and the N The battery clusters correspond one to one, and the first end of each converter is connected in series with the corresponding battery cluster; the monitoring module is connected to each converter and each battery cluster respectively, and the monitoring module is used to determine The target battery cluster among the N battery clusters; adjust the converter corresponding to the target battery cluster so that the difference between the adjusted first current SOC of the target battery cluster and the set SOC is within the preset range Inside.
  • the battery system further includes: N bypass switches corresponding to the N converters, each of the bypass switches is used for short-circuiting the corresponding converter.
  • the monitoring module is a battery management system, which is connected to each converter and each battery cluster respectively, and the battery management system is used to determine the The target battery cluster among the N battery clusters; adjust the converter corresponding to the target battery cluster so that the difference between the adjusted first current SOC of the target battery cluster and the set SOC is within the predetermined value. within the setting range.
  • the monitoring module includes: a battery management system and a controller; the battery management system is respectively connected to each of the battery clusters and is used to obtain each of the battery clusters.
  • the first current SOC of the battery cluster, and the obtained first previous SOC of each battery cluster is sent to the controller; the controller communicates with each The converters are connected, and the controller is used to determine a target battery cluster among the N battery clusters; adjust the converter corresponding to the target battery cluster so that the adjusted first current SOC of the target battery cluster The difference from the set SOC is within the preset range.
  • the monitoring module when adjusting the converter corresponding to the target battery cluster, is specifically used to: if the target battery cluster The difference between the second current SOC before battery cluster adjustment and the set SOC is greater than zero, increase the output voltage of the converter corresponding to the target battery cluster to reduce the current of the target battery cluster; if the target If the difference between the second current SOC of the battery cluster before adjustment and the set SOC is less than zero, the output voltage of the converter corresponding to the target battery cluster is lowered to increase the current of the target battery cluster.
  • the monitoring module when adjusting the converter corresponding to the target battery cluster, is specifically used to: if the target battery cluster The difference between the second current SOC before battery cluster adjustment and the set SOC is greater than zero, increase the output voltage of the converter corresponding to the target battery cluster to increase the current of the target battery cluster; if the target If the difference between the second current SOC before the battery cluster is adjusted and the set SOC is less than zero, the output voltage of the converter corresponding to the target battery cluster is lowered to reduce the current of the target battery cluster.
  • each of the converters includes a gear for adjusting its own output voltage, and the output voltage corresponding to each gear is different, and the monitoring module adjusts the target
  • the converter corresponding to the battery cluster is specifically used to: adjust the gear of the converter corresponding to the target battery cluster to adjust the output voltage of the converter corresponding to the target battery cluster.
  • the monitoring module when determining the target battery cluster among the N battery clusters, is specifically configured to obtain the second target battery cluster of each of the N battery clusters.
  • the current SOC determines the target battery cluster based on the second current SOC of each battery cluster among the N battery clusters and the set SOC.
  • the target battery cluster is the second current SOC among the N battery clusters and the set SOC. The difference between the set SOCs exceeds the preset range of battery clusters.
  • the monitoring module is further configured to monitor each of the conversions.
  • the corresponding bypass switch is controlled to be short-circuited with the converter.
  • each of the converters includes a gear for adjusting its own output voltage, and each gear corresponds to a different output voltage.
  • the monitoring module is also used to adjust the output voltage of the converter.
  • the specified gear is a reference gear and the gears of each converter are respectively adjusted to minimize the total output power of each converter in the battery system, where the output voltage corresponding to the specified gear is zero.
  • the monitoring module is further configured to obtain the average current of the battery system; adjust the converter corresponding to each battery cluster according to the average current, so that The output current of the battery cluster is consistent with the average current.
  • embodiments of the present application further provide a battery management system, which is configured to perform the above-described first aspect embodiment and/or be provided in combination with any possible implementation manner of the first aspect embodiment. Battery management methods.
  • embodiments of the present application also provide an electronic device, including: N battery clusters, N converters and a battery management system connected in parallel, where N is an integer greater than or equal to 2; N converters and the N There is a one-to-one correspondence between the battery clusters, and the first end of each converter is connected in series with the corresponding battery cluster; the battery management system is connected to each converter and each battery cluster respectively, and the battery management system It is used to perform the battery management method provided by the above-mentioned first aspect embodiment and/or any possible implementation manner in combination with the first aspect embodiment.
  • embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored.
  • the computer program executes the above-mentioned embodiments of the first aspect and/or combines the first aspect with Any possible implementation of the embodiment provides a battery management method.
  • Figure 1 shows a schematic principle diagram of a battery system provided by an embodiment of the present application.
  • FIG. 2 shows a schematic principle diagram of yet another battery system provided by an embodiment of the present application.
  • FIG. 3 shows a schematic principle diagram of yet another battery system provided by an embodiment of the present application.
  • FIG. 4 shows a schematic principle diagram of yet another battery system provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a battery management method provided by an embodiment of the present application.
  • a and/or B in this application is only an association relationship describing related objects, indicating that there can be three relationships.
  • a and/or B can mean: A alone exists, and A and A exist simultaneously. B, there are three situations of B alone.
  • the term "plurality" refers to two or more (including two).
  • Batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • this problem can be alleviated through current balancing technology between battery clusters, but this method can only partially alleviate overcharge and overdischarge of battery clusters, and its effect is limited. It still cannot avoid overcharge and overdischarge of some battery clusters, for example , for battery clusters with low capacity, in order to ensure that their current is consistent with that of battery clusters with high capacity, they will inevitably be in a charging state for a long time, eventually causing the battery cluster to lose the ability to store electrical energy.
  • the battery parameter information of the battery cluster including but not limited to SOC (State of Charge, state of charge), voltage, and current, and controlling the output voltage of the converter corresponding to each battery cluster based on the battery parameter information, thereby regulating different batteries
  • SOC State of Charge, state of charge
  • the current of the cluster will ultimately make the battery capacity of each battery cluster as consistent as possible to avoid the situation that when a certain battery cluster is cut off, other battery clusters will still have unused battery capacity, and ultimately solve the problem of unbalanced battery capacity that causes multiple batteries connected in parallel.
  • Some battery clusters in the battery cluster are over-discharged or over-charged, resulting in large capacity loss and battery degradation.
  • the battery capacity of each battery cluster is finally made consistent to ensure that the system discharges all the power as much as possible and avoids unbalanced battery capacity. If some of the multiple battery clusters connected in parallel are over-discharged or over-charged, problems such as large capacity loss and battery degradation may occur.
  • the purpose of the invention is achieved without the need for a separate Setting a power source to power the converter is different from setting a separate power source to power the converter. Compared with this, it not only simplifies the circuit design, but also saves the design cost.
  • the battery systems provided by the embodiments of the present application include, but are not limited to: energy storage power systems such as hydraulic, thermal, wind and solar power stations; energy storage systems for electric vehicles such as electric bicycles, electric motorcycles and electric vehicles; and military equipment and aviation Energy storage systems in aerospace and other fields.
  • FIG. 1 is a schematic diagram of the principle of a battery system according to an embodiment of the present application.
  • the battery cluster includes: N battery clusters, N converters and monitoring modules connected in parallel, where N is an integer greater than or equal to 2. Among them, N battery clusters are connected in parallel between the bus bars.
  • Each battery cluster includes a battery string formed by a plurality of batteries connected in series. There is a one-to-one correspondence between N converters and N battery clusters. The first end (low voltage end) of each converter is connected in series with the corresponding battery cluster, and the second end (high voltage end) of each converter is connected in parallel with the corresponding battery cluster. .
  • the monitoring module is connected to each converter and each battery cluster respectively. The first end of the converter can be connected in series to the positive terminal or the negative terminal of the entire battery cluster, and of course it can also be connected in series between multiple batteries in the battery cluster.
  • the second terminal of the converter When the battery cluster is in a charging state and the voltage at the low-voltage terminal of the converter is a positive voltage, or when the battery cluster is in a discharging state and the voltage at the low-voltage terminal of the converter is a negative voltage, the second terminal of the converter is the input terminal, and the first terminal is the output terminal.
  • the second terminal of the converter When the battery cluster is in a discharging state and the voltage at the low-voltage terminal of the converter is a positive voltage, or when the battery cluster is in a charging state and the voltage at the low-voltage terminal of the converter is a negative voltage, the second terminal of the converter is the output terminal.
  • the first end is the input end.
  • a separate power source can also be set to power the converter, that is, each converter
  • the second end of the device can also be powered by an external power source.
  • the power source can be batteries from other battery clusters, additional independent batteries, supercapacitors, DC bus, etc., and its schematic diagram as shown in picture 2.
  • the converter in this application can be an isolated converter or a non-isolated converter.
  • the converter in this application can be a DC-DC (Direct Current-Direct Current, DC-DC) converter, or an AC-DC (Alternating Current-Direct Current, AC-DC) converter.
  • DC-DC Direct Current-Direct Current
  • AC-DC Alternating Current-Direct Current
  • the monitoring module is used to determine the target battery cluster in the battery cluster, and adjust the converter corresponding to the target battery cluster so that the difference between the first current SOC of the adjusted target battery cluster and the set SOC is within a preset range.
  • the output voltage of the converter corresponding to each target battery cluster is controlled, thereby adjusting the current of different battery clusters, exerting the maximum capacity of the entire battery system, and ultimately making
  • the battery capacity of each battery cluster should be consistent to ensure that the system can discharge all the power as much as possible to avoid over-discharge or overcharge of some battery clusters in multiple parallel-connected battery clusters due to unbalanced battery capacity, resulting in large capacity loss and battery degradation. The problem.
  • the monitoring module may be a BMS (Battery Management System).
  • the battery management system is connected to each converter and each battery cluster, and the battery management system is used to determine the number of N batteries. For the target battery cluster in the cluster, adjust the converter corresponding to the target battery cluster so that the first current SOC of the adjusted target battery cluster is the same as the setting The difference between SOCs is within the preset range.
  • the target battery cluster in the target battery cluster adjusts the converter corresponding to the target battery cluster so that the difference between the first current SOC of the adjusted target battery cluster and the set SOC is within a preset range.
  • the monitoring module may include: a battery management system and a controller.
  • the battery management system is connected to each battery cluster, and is used to obtain the first current SOC of each battery cluster, and send the obtained first current SOC of each battery cluster to the controller.
  • the controller is connected to each converter respectively.
  • the controller is used to determine the target battery cluster among the N battery clusters, and adjust the converter corresponding to the target battery cluster so that the first current SOC of the adjusted target battery cluster is consistent with the setting The difference between SOCs is within the preset range.
  • the battery management system determines the target battery cluster among the N battery clusters, adjusts the converter corresponding to the target battery cluster, and makes the adjusted target The difference between the first current SOC of the battery cluster and the set SOC is within a preset range.
  • the monitoring module may obtain the second current SOC of each of the N battery clusters, based on the second current SOC of each of the N battery clusters.
  • the current SOC and the set SOC determine the target battery cluster, where the target battery cluster is a battery cluster in which the difference between the second current SOC and the set SOC among the N battery clusters exceeds the preset range. For example, based on the second current SOC of each battery cluster, first determine the difference between the second current SOC of each battery cluster in the N battery clusters and the set SOC, and then detect whether there is a difference that exceeds the preset range. Target battery cluster.
  • the above process can be expressed as:
  • the preset range can be set flexibly, for example, it can be set to the minimum SOC accuracy of the battery, such as a maximum of 8% SOC.
  • the set SOC may be the average SOC of each battery cluster, the minimum SOC in each battery cluster, or the maximum SOC in each battery cluster.
  • the target when determining the target battery cluster among the N battery clusters, in addition to determining the target battery cluster based on the second current SOC of each battery cluster among the N battery clusters, the target can also be determined based on other battery parameter information.
  • battery cluster For example, the target battery cluster is determined based on the first current current of each battery cluster among the N battery clusters. At this time, the target battery cluster is the first current current and the set current among the N battery clusters (which can be the average current of the battery system). The difference between the battery clusters exceeds the preset range, or the target battery cluster is determined based on the first current voltage of each of the N battery clusters. At this time, the target battery cluster is the first current voltage of the N battery clusters. The difference between the set voltage and the set voltage (which can be the average voltage of the battery system) exceeds the preset range.
  • the first current SOC is the SOC of the target battery cluster after adjusting the converter corresponding to the target battery cluster
  • the second current SOC is the SOC of the target battery cluster before adjusting the converter corresponding to the target battery cluster.
  • U0 is the bus voltage
  • U1 is the output voltage of the converter
  • U2 is the battery cluster voltage
  • R is the resistance of the branch where the battery cluster is located.
  • U0 is the bus voltage
  • U1 is the output voltage of the converter
  • U2 is the battery cluster voltage
  • R is the resistance of the branch where the battery cluster is
  • the gears can be set according to the output voltage capability of the converter.
  • each converter can output positive and negative voltages, for example, the converter can output ⁇ 20V.
  • 41 gears can be set, -20 gear to 20 gear.
  • 0 gear corresponds to 0V
  • -1 gear corresponds to -1V
  • -2 gear corresponds to -2V
  • -20 gear corresponds to -20V
  • 1 gear corresponds to 1V
  • 2 gear corresponds to 2V
  • 20 gears correspond to 20V, with a total of 41 gears. If you set the gears according to the way that each gear adjusts the 2V voltage, you can set 21 gears, -10 gear to 10 gear. Different adjustment precisions correspond to different number of gears. The smaller the adjustment precision, the more gears there are.
  • each converter When each converter can only output positive or negative voltage, the corresponding converter only has positive or negative gears.
  • the converter can output 0V ⁇ 20V. If the voltage of 1V is adjusted according to each gear, To set the gears, you can set 21 gears, ranging from gear 0 to gear 20. Gear 0 corresponds to 0V, gear 1 corresponds to 1V, gear 2 corresponds to 2V, and so on, gear 20 corresponds to 20V, in total 21 gears.
  • the converter can output -20V ⁇ 0V. If the gears are set in such a way that each gear corresponds to adjusting the voltage of 1V, 21 gears can be set, ranging from -20 gear to 0 gear, and 0 gear corresponds to 0V.
  • -1 gear corresponds to -1V
  • -2 gear corresponds to -2V
  • -20 gear corresponds to -20V
  • Different adjustment precisions correspond to different gear numbers. The smaller the degree, the more corresponding gears.
  • each converter includes a gear for adjusting its own output voltage and the output voltage corresponding to each gear is different, accordingly, the process of adjusting the converter corresponding to the target battery cluster is to adjust the converter corresponding to the target battery cluster.
  • the target battery cluster when the target battery cluster is in a charging state, if the difference between the second current SOC and the set SOC is greater than zero, it is necessary to increase the gear of the converter corresponding to the target battery cluster, thereby increasing the gear of the converter corresponding to the target battery cluster.
  • the output voltage of the converter to reduce the current of the target battery cluster if the difference between the second current SOC and the set SOC is less than zero, it is necessary to reduce the gear of the converter corresponding to the target battery cluster, thereby lowering the target battery cluster.
  • the output voltage of the corresponding converter is used to increase the current of the target battery cluster.
  • the target battery cluster when the target battery cluster is in a discharge state, if the difference between the second current SOC and the set SOC is greater than zero, it is necessary to increase the gear of the converter corresponding to the target battery cluster and increase the gear of the converter corresponding to the target battery cluster.
  • the output voltage of the converter to increase the current of the target battery cluster if the difference between the second current SOC and the set SOC is less than zero, it is necessary to reduce the gear of the converter corresponding to the target battery cluster and lower the corresponding The output voltage of the converter to reduce the current of the target battery cluster.
  • the above-mentioned reduction of the output voltage of the converter corresponding to the target battery cluster includes increasing the output negative voltage of the conversion, for example, adjusting the output voltage of the converter from 1V to -1V, or from -1V to -5V is also regarded as lowering the output voltage of the converter corresponding to the target battery cluster.
  • the bus voltage battery cluster voltage + converter voltage.
  • the monitoring module is also used to adjust the gears of each converter using the specified gear as the reference gear, That is, each converter subtracts the reference gear from the current gear to minimize the total output power of each converter in the battery system, in which the output voltage corresponding to the specified gear is zero.
  • each converter can output positive and negative voltages
  • the converter has positive and negative gears
  • the specified gear is the average gear of each of the converters.
  • the X gear can be lowered at the same time.
  • the battery system contains five battery clusters connected in parallel.
  • the corresponding converter When the current gears are respectively 20th, 15th, 15th, 15th, and 15th, the average gear is 16th, and 16th gear can be lowered to 4th, -1, -1, -1, and -1 gear, at this time, the output power of all converters is the lowest, and the corresponding loss is also the lowest.
  • each converter When each converter only outputs positive or negative voltage, at this time, the converter does not have positive and negative gears, and the specified gear is the smallest gear among each converter.
  • the minimum gear of the converter corresponding to each battery cluster is the X gear
  • the X gear can be lowered at the same time.
  • the minimum gear is 12, which can be adjusted simultaneously. From the lowest 12th gear to 8th gear, 6th gear, 4th gear, -4th gear, and 0th gear, the output power of all converters is the lowest at this time, and the corresponding loss is also the lowest.
  • the branches of each battery cluster are independent of each other.
  • the converter gears corresponding to the remaining battery clusters are determined according to the branch where they are located.
  • the voltage difference between the voltage and the reference branch is used to set the converter gear accordingly. Assume that the voltage of reference branch A is 1300V, the voltage of branch B is 1310V, and the voltage of branch C is 1290V.
  • the converter of branch A can operate in 0 gear, and the converter of branch B can operate in -10 gear (output -10V)
  • the converter of branch C is set according to the 10th gear (output 10V).
  • the monitoring module can optionally also adjust the converters corresponding to each battery cluster to achieve current balancing and voltage balancing of each battery cluster. wait.
  • the monitoring module is also used to obtain the average current of the battery system, and adjust the converter corresponding to each battery cluster according to the average current, so that the output current of the battery cluster is consistent with the average current.
  • the monitoring module is also used to obtain the average voltage of the battery system, and adjust the converter corresponding to each battery cluster according to the average voltage, so that the output voltage of the branch where the battery cluster is located is consistent with the average voltage.
  • the battery system further includes N bypass switches corresponding to N converters, as shown in Figure 3 .
  • Each bypass switch is connected in parallel with the corresponding converter.
  • the monitoring module also controls the corresponding bypass switch to be short-circuited with the converter when the converter is not being adjusted, so that the battery system operates according to the conventional Charge and discharge mode, the converter does not output power to reduce system losses.
  • the bypass switch may be in the form of a relay, an analog switch, etc., and is not limited in the embodiments of this application.
  • the bypass switch can be external (as shown in Figure 3) or built into the converter, as shown in Figure 4.
  • embodiments of the present application also provide a battery management method, the principle of which will be described below with reference to FIG. 5 .
  • S1 Determine the target battery cluster among the N battery clusters connected in parallel in the battery system.
  • the battery system also includes N converters corresponding to N battery clusters.
  • the first end of each converter is connected in series with the corresponding battery cluster, and the second end of each converter is connected in parallel with the corresponding battery cluster.
  • the second end of each converter can also be connected to a power source or other battery cluster, and N is an integer greater than or equal to 2.
  • the process of determining the target battery cluster among the N battery clusters may be to obtain the second current SOC of each of the N battery clusters, based on the second current SOC of each of the N battery clusters and the settings.
  • the SOC determines the target battery cluster, and the target battery cluster is a battery cluster in which the difference between the second current SOC and the set SOC among the N battery clusters exceeds a preset range. For example, after obtaining the second current SOC of each battery cluster, determine the difference between the second current SOC and the set SOC of each of the N battery clusters; detect whether there is a difference that exceeds the preset range.
  • A is the preset threshold, and the corresponding preset range is [-A, A].
  • the battery management system may collect the second current SOC of each of the N battery clusters connected in parallel in the battery system. In one embodiment, the battery management system may also determine the target battery cluster among the N battery clusters connected in parallel in the battery system. In one implementation, the controller may determine the target battery cluster among the N battery clusters connected in parallel in the battery system.
  • the SOC is set to be the average SOC of each battery cluster, the minimum SOC in each battery cluster, or the maximum SOC in each battery cluster.
  • the battery management system may also adjust the converter corresponding to the target battery cluster so that the difference between the adjusted first current SOC of the target battery cluster and the set SOC is within a preset range.
  • the controller may adjust the converter corresponding to the target battery cluster so that the difference between the adjusted first current SOC of the target battery cluster and the set SOC is within a preset range.
  • the process of adjusting the converter corresponding to the target battery cluster includes: if the difference between the second current SOC before the target battery cluster is adjusted and the set SOC is greater than zero, increase the converter corresponding to the target battery cluster. to reduce the current of the target battery cluster; if the difference between the second current SOC before the target battery cluster is adjusted and the set SOC is less than zero, reduce the output voltage of the converter corresponding to the target battery cluster to increase the target battery cluster current.
  • the process of adjusting the converter corresponding to the target battery cluster includes: if the difference between the second current SOC before the target battery cluster is adjusted and the set SOC is greater than zero, increase the converter corresponding to the target battery cluster. to increase the current of the target battery cluster; if the difference between the second current SOC before adjustment of the target battery cluster and the set SOC is less than zero, lower the output voltage of the converter corresponding to the target battery cluster to reduce the target battery cluster current.
  • each converter includes a gear for adjusting its own output voltage
  • the output voltage corresponding to each gear is The output voltage is different.
  • the process of adjusting the converter corresponding to the target battery cluster includes: adjusting the gear of the converter corresponding to the target battery cluster to adjust the output voltage of the converter corresponding to the target battery cluster.
  • the battery management method further includes: adjusting the gears of each of the converters using the specified gear as the reference gear, that is, each The converter subtracts the reference gear from the current gear to minimize the total output power of each converter in the battery system, where the output voltage corresponding to the specified gear is zero.
  • the specified gear is the average gear of each converter.
  • the specified gear is the smallest gear among each converter.
  • the battery management method also includes: for each converter, controlling the corresponding bypass switch to short-circuit the converter when the converter is not being adjusted.
  • the bypass switch When the bypass switch is open, the bypass switch does not work.
  • the bypass switch When the bypass switch is closed, the corresponding converter is short-circuited. At this time, the converter does not work, that is, the converter does not participate in regulation.
  • this battery management method can also realize current balancing, voltage balancing, etc. of each battery cluster by adjusting the converters corresponding to each battery cluster.
  • the battery management method further includes: obtaining the average current of the battery system, and adjusting the converter corresponding to each battery cluster according to the average current, so that the output current of the battery cluster is consistent with the average current.
  • the battery management method further includes: obtaining the average voltage of the battery system, and adjusting the converter corresponding to each battery cluster according to the average voltage, so that the output voltage of the branch where the battery cluster is located is consistent with the average voltage.
  • the execution subject of the above battery management method may be a battery management system or a controller.
  • embodiments of the present application also provide a battery management system, which is connected to each converter and each battery cluster respectively.
  • the battery management system is used to receive information from the battery and various external interfaces, analyze and process the information, and issue execution instructions to complete the battery's charging, discharging, protection, balancing, fault detection and fault warning functions to ensure the normal and efficient performance of the battery. , reasonable and safe operation.
  • the battery management system is used to perform the above-mentioned battery management method.
  • the battery management system is used to obtain the first current SOC of each battery cluster, determine the target battery cluster among the N battery clusters, and adjust the target battery cluster corresponding to the battery cluster.
  • the converter ensures that the difference between the adjusted first current SOC of the target battery cluster and the set SOC is within a preset range.
  • BMS can be mainly divided into three parts of closed-loop feedback: information collection, information analysis and processing, and output of decision execution instructions.
  • information collection BMS needs to monitor the status of the battery in real time, which requires various sensors to collect the battery voltage. Physical parameters such as current and temperature.
  • Information analysis and processing means that after BMS collects relevant information, it needs to analyze and process the information to determine the actions that need to be taken.
  • Outputting decision execution instructions means that the BMS outputs decision execution instructions to the interactive objects it interacts with (such as charging equipment) through the external interaction interface.
  • embodiments of the present application also provide an electronic device, which includes N battery clusters, N converters and a battery management system connected in parallel.
  • N is an integer greater than or equal to 2.
  • the battery management system is connected to each converter and each battery cluster respectively. The battery management system is used to determine the target battery cluster among the N battery clusters and adjust the converter corresponding to the target battery cluster so that the adjusted target battery cluster The difference between the first current SOC and the set SOC is within a preset range.
  • the electronic device includes but is not limited to an electric device with a battery system.
  • it may be an electric vehicle, such as an electric bicycle, an electric motorcycle, an electric car, and so on.
  • Embodiments of the present application also provide a non-volatile computer-readable storage medium (hereinafter referred to as the storage medium).
  • a computer program is stored on the storage medium.
  • the computer program is executed by a computer such as the above-mentioned electronic device.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s). Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.
  • the functions described are implemented in the form of software function modules and sold or used as independent products, they can be stored in a in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a computer-readable storage medium , including several instructions to cause a computer device (which can be a personal computer, a laptop, a server, or an electronic device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • a computer device which can be a personal computer, a laptop, a server, or an electronic device, etc.
  • the aforementioned computer-readable storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., which can store programs.
  • the medium of the code includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., which can store programs.
  • the medium of the code include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种电池管理方法、系统、电池系统及电子设备,属于电池领域。该方法包括:确定电池系统中并联的N个电池簇中的目标电池簇,其中,电池系统还包括与N个电池簇一一对应的N个转换器,每个转换器的第一端与对应的电池簇串联;调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。该方法可以解决因电池容量不平衡,导致并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。

Description

一种电池管理方法、系统、电池系统及电子设备
相关申请的交叉引用
本申请要求享有于2022年6月17日提交的名称为“一种电池管理方法、系统、电池系统及电子设备”的中国专利申请202210689624.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于电池领域,具体涉及一种电池管理方法、系统、电池系统及电子设备。
背景技术
现有电池簇并联方案中,在电池簇并联接入母线时,由于电池簇生产制造的不一致性和使用环境的原因,其容量、内阻、电压及自放电率均会存在一定的差异,在电池簇充放电过程中,会导致部分电池簇出现过充或过放现象。随着电池簇充放电循环次数的增加以及存储时间和温度等因素的影响,使得部分电池簇长时间处于过充或过放状态,一方面会加剧电池簇的不一致性,另一方面会逐步出现电池劣化问题,最终导致电池簇均失去存储电能的能力。
发明内容
鉴于此,本申请的目的在于提供一种电池管理方法、系统、电池系统及电子设备,以改善现有并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。
本申请的实施例是这样实现的:
第一方面,本申请实施例提供了一种电池管理方法,包括:确定电池系统中并联的N个电池簇中的目标电池簇,其中,所述电池系统还包括与所述N个电池簇一一对应的N个转换器,每个所述转换器的第一端与对应的电池簇串联,N为大于等于2的整数;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
本申请实施例中,确定N个电池簇中的目标电池簇,控制每个目标电池簇对应的转换器的输出电压,从而调节不同电池簇的电流,发挥整个电池系统的最大能力,最终使得各个电池簇的电池容量保持一致,以保证系统尽可能的放出所有电量,避免因电池容量不平衡,导致并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。
结合第一方面实施例的一种可能的实施方式,当所述目标电池簇处于充电状态时,调节所述目标电池簇对应的转换器,包括:若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流;若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流。
本申请实施例中,当目标电池簇处于充电状态时,让容量高的电池簇充电变慢或让容量低的电池簇充电变快,可以快速使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内,从而实现电池容量均衡。
结合第一方面实施例的一种可能的实施方式,当所述目标电池簇处于放电状态时,调节所述目标电池簇对应的转换器,包括:若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流;若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流。
本申请实施例中,当目标电池簇处于放电状态时,让容量高的电池簇放电变快或让容量低的电池簇放电变慢,可以快速使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内,从而实现电池容量均衡。
结合第一方面实施例的一种可能的实施方式,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同;调节所述目标电池簇对应的转换器,包括:调节所述目标电池簇对应的转换器的档位,以调节所述目标电池簇对应的转换器的输出电压。
本申请实施例中,通过为转换器设置用于调节自身输出电压的档位,从而通过调节目标电池簇对应的转换器的档位,以调节目标电池簇对应的转换器的输出电压,从而可以避免调节过度。
结合第一方面实施例的一种可能的实施方式,确定所述N个电池簇中的目标电池簇,包括:获取所述N个电池簇中各个电池簇的第二当前SOC;基于所述N个电池簇中各个电池簇的第二当前SOC和所述设定SOC确定所述目标电池簇,所述目标电池簇为所述N个电池簇中第二当前SOC与所述设定SOC之间的差值超过预设范围的电池簇。
本申请实施例中,通过确定各个电池簇的第二当前SOC与设定SOC之间的差值,之后检测是否存在差值超过预设范围的目标电池簇,这样可以快速确定出目标电池簇。
结合第一方面实施例的一种可能的实施方式,所述设定SOC为各个所述电池簇的平均SOC、各个所述电池簇中的最小SOC或各个所述电池簇中的最大SOC。
本申请实施例中,通过合理设置设定SOC,如将设定SOC设置为各个电池簇的平均SOC、各个电池簇中的最小SOC或各个电池簇中的最大SOC,从而可以适用于不同的场景。
结合第一方面实施例的一种可能的实施方式,所述电池系统还包括:与所述N个转换器一一对应的N个旁路开关,所述方法还包括:针对每个所述转换器,在不调节所述转换器对应的电池簇时,控制对应的旁路开关与所述转换器短接。
本申请实施例中,通过设置旁路开关,以便在不调节某一转换器时控制对应的旁路开关与该转换器短接,这样可以降低系统损耗。
结合第一方面实施例的一种可能的实施方式,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同,所述方法还包括:以指定档位为基准档位分别调节各个所述转换器的档位,以使所述电池系统中的各个转换器的总输出功率最小,其中,所述指定档位对应的输出电压为零。
本申请实施例中,以指定档位为基准档位分别调节各个转换器的档位,使系统内的转换器在可调范围内尽可能的用最小电压进行调节,以使电池系统中的各个转换器的总输出功率最小。
结合第一方面实施例的一种可能的实施方式,当每个所述转换器可输出正负电压时,所述指定档位为各个所述转换器的平均档位,当每个所述转换器仅输出正电压或负电压时,所述指定档位为各个所述转换器中的最小档位。
本申请实施例中,通过合理设置指定档位,可以适用于不同的场景,从而实现在不同的场景下,均可以使电池系统中的各个转换器的总输出功率最小。
结合第一方面实施例的一种可能的实施方式,所述方法还包括:获取所述电池系统的平均电流;根据所述平均电流调节每个所述电池簇对应的转换器,以使所述电池簇的输出电流与所述平均电流一致。
本申请实施例中,通过获取电池系统的平均电流,根据平均电流调节每个电池簇对应的转换器,以使该电池簇的输出电流与平均电流一致,通过均流的方式,也可以在一定程度上缓解多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。
第二方面,本申请实施例还提供了一种电池系统,包括:并联的N个电池簇、N个转换器和监控模块,N为大于等于2的整数;N个转换器与所述N个电池簇一一对应,每个所述转换器的第一端与对应的电池簇串联;监控模块分别与每个所述转换器、每个所述电池簇相连,所述监控模块,用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
结合第二方面实施例的一种可能的实施方式,所述电池系统还包括:与所述N个转换器一一对应的N个旁路开关,每个所述旁路开关,用于短接对应的转换器。
结合第二方面实施例的一种可能的实施方式,所述监控模块为电池管理系统,分别与每个所述转换器、每个所述电池簇相连,所述电池管理系统用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与所述设定SOC之间的差值在所述预设范围内。
结合第二方面实施例的一种可能的实施方式,所述监控模块包括:电池管理系统和控制器;所述电池管理系统,分别与每个所述电池簇相连,用于获取每个所述电池簇的第一当前SOC,并将获取到的每个所述电池簇的第一前SOC发送给所述控制器;所述控制器分别与每个所 述转换器相连,所述控制器,用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与所述设定SOC之间的差值在所述预设范围内。
结合第二方面实施例的一种可能的实施方式,当所述目标电池簇处于充电状态时,所述监控模块在调节所述目标电池簇对应的转换器时,具体用于:若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流;若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流。
结合第二方面实施例的一种可能的实施方式,当所述目标电池簇处于放电状态时,所述监控模块在调节所述目标电池簇对应的转换器时,具体用于:若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流;若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流。
结合第二方面实施例的一种可能的实施方式,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同,所述监控模块在调节所述目标电池簇对应的转换器时,具体用于:调节所述目标电池簇对应的转换器的档位,以调节所述目标电池簇对应的转换器的输出电压。
结合第二方面实施例的一种可能的实施方式,所述监控模块在确定所述N个电池簇中额目标电池簇时,具体用于获取所述N个电池簇中各个电池簇的第二当前SOC,基于所述N个电池簇中各个电池簇的第二当前SOC和所述设定SOC确定所述目标电池簇,所述目标电池簇为所述N个电池簇中第二当前SOC与所述设定SOC之间的差值超过预设范围的电池簇。
结合第二方面实施例的一种可能的实施方式,若电池系统还包括:与所述N个转换器一一对应的N个旁路开关,所述监控模块还用于针对每个所述转换器,在不调节所述转换器对应的电池簇时,控制对应的旁路开关与所述转换器短接。
结合第二方面实施例的一种可能的实施方式,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同,所述监控模块,还用于以指定档位为基准档位分别调节各个所述转换器的档位,以使所述电池系统中的各个转换器的总输出功率最小,其中,所述指定档位对应的输出电压为零。
结合第二方面实施例的一种可能的实施方式,所述监控模块,还用于获取所述电池系统的平均电流;根据所述平均电流调节每个所述电池簇对应的转换器,以使所述电池簇的输出电流与所述平均电流一致。
第三方面,本申请实施例还提供了一种电池管理系统,所述电池管理系统用于执行上述第一方面实施例和/或结合第一方面实施例的任一种可能的实施方式提供的电池管理方法。
第四方面,本申请实施例还提供了一种电子设备,包括:并联的N个电池簇、N个转换器和电池管理系统,N为大于等于2的整数;N个转换器与所述N个电池簇一一对应,每个所述转换器的第一端与对应的电池簇串联;电池管理系统,分别与每个所述转换器、每个所述电池簇相连,所述电池管理系统用于执行上述第一方面实施例和/或结合第一方面实施例的任一种可能的实施方式提供的电池管理方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,执行上述第一方面实施例和/或结合第一方面实施例的任一种可能的实施方式提供的电池管理方法。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请的目的和其他优点可通过在所写的说明书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。通过附图所示,本申请的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本申请的主旨。
图1示出了本申请实施例提供的一种电池系统的原理示意图。
图2示出了本申请实施例提供的又一种电池系统的原理示意图。
图3示出了本申请实施例提供的又一种电池系统的原理示意图。
图4示出了本申请实施例提供的又一种电池系统的原理示意图。
图5示出了本申请实施例提供的一种电池管理方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中诸如“第一”、“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、 “包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
再者,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。术语“多个”指的是两个以上(包括两个)。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
传统电池簇并联方案中,由于电池簇生产制造的不一致性和使用环境的原因,其容量、内阻、电压及自放电率均会存在一定的差异,使得在电池簇充放电过程中,会导致部分电池簇出现过充或过放现象。若部分电池簇长时间处于过充或过放状态,会加剧电池簇的不一致性,会逐步出现电池劣化问题,最终导致电池簇均失去存储电能的能力。
现有技术中,可以通过电池簇间的电流均衡技术缓解该问题,但这种方式只能部分地缓解电池簇过充过放,其效果有限,仍然无法避免部分电池簇过充过放,例如,对于容量低的电池簇,为了保证其电流与容量高的电池簇一致,势必会长时间处于充电状态,最终导致该电池簇均失去存储电能的能力。
申请人经过研究发现,通过在现有电池簇并联架构中,进一步增设与并联的N个电池簇一一对应的N个变换器,将每个变换器的第一端与对应的电池簇串联,将每个转换器的第二端与对应的电池簇并联,需要说明的是,每个转换器的第二端也可以连接功率源或其他电池簇。通过采集电池簇的电池参数信息,包括但不限于SOC(State Of Charge,荷电状态)、电压、电流,并基于电池参数信息来控制各个电池簇对应的转换器的输出电压,从而调节不同电池簇的电流,最终使得各个电池簇的电池容量尽量保持一致,避免存在某一电池簇截止时,其它电池簇还存在电池容量未使用的情况,最终解决因电池容量不平衡,导致并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。
本申请实施例中,一方面,通过控制各个电池簇对应的转换器的输出电压,最终使得各个电池簇的电池容量一致,以保证系统尽可能的放出所有电量,避免因电池容量不平衡,导致并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。另一方面,通过将每个变换器的第一端与对应的电池簇串联,将每个转换器的第二端与对应的电池簇并联,使得在实现其发明目的的同时,不需要在单独设置功率源为变换器供电,与单独设置功率源为变换器供电相 比,不仅简化了电路设计,还节约了设计成本。
本申请实施例提供的电池系统包括但不限于:水力、火力、风力和太阳能电站等储能电源系统;电动自行车、电动摩托车、电动汽车等电动交通工具的储能系统;以及军事装备和航空航天等多个领域的储能系统。
请参阅图1,为本申请实施例提供的电池系统的原理示意图。该电池簇包括:并联的N个电池簇、N个转换器以及监控模块,N为大于等于2的整数。其中,N个电池簇并联在母线之间。
每个电池簇包括由多个电池串联形成的电池串。N个转换器与N个电池簇一一对应,每个转换器的第一端(低压端)与对应的电池簇串联,每个转换器的第二端(高压端)与对应的电池簇并联。监控模块分别与每个转换器、每个电池簇相连。转换器的第一端可以是串接在整个电池簇的正极端或负极端,当然也可以串接在该电池簇中的多个电池之间。
当电池簇处于充电状态,转换器的低压端的电压为正电压时,或者,电池簇处于放电状态,转换器的低压端的电压为负电压时,转换器的第二端为输入端,第一端为输出端。当电池簇处于放电状态,转换器的低压端的电压为正电压时,或者,电池簇处于充电状态,转换器的低压端的电压为负电压时,转换器的第二端为输出端,转换器的第一端为输入端。
需要说明的是,除了利用转换器对应的电池簇为其供电(每个转换器的第二端与对应的电池簇并联)外,还可以单独设置功率源为变换器供电,也即每个转换器的第二端除了与对应的电池簇并联外,还可以是外接一个功率源为其供电,该功率源可以是其它电池簇的电池、额外的独立电池、超级电容、直流母线等,其示意图如图2所示。
本申请中的转换器可以是隔离型转换器,也可以是非隔离型转换器。本申请的转换器可以是DC-DC(Direct Current-Direct Current,直流-直流)转换器、AC-DC(Alternating Current-Direct Current,交流-直流)转换器。当为AC-DC转换器时,AC-DC转换器的第二端不再与对应的电池簇并联,而是单独外接一功率源为其供电。
监控模块,用于确定电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
本申请实施例中,通过确定N个电池簇中的目标电池簇,控制每个目标电池簇对应的转换器的输出电压,从而调节不同电池簇的电流,发挥整个电池系统的最大能力,最终使得各个电池簇的电池容量保持一致,以保证系统尽可能的放出所有电量,避免因电池容量不平衡,导致并联的多个电池簇中部分电池簇过放或过充,出现的容量损失大和电池劣化的问题。
一种实施方式下,监控模块可以是BMS(Battery Management System,电池管理系统),此时,电池管理系统分别与每个转换器、每个电池簇相连,电池管理系统,用于确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定 SOC之间的差值在预设范围内。
在该种实施方式下,通过对电池管理系统的逻辑进行改进,使其在获取电池簇的SOC、电压、电流等电池参数信息的基础上,赋予其更多功能,使得能确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
一种实施方式下,监控模块可以包括:电池管理系统和控制器。电池管理系统,分别与每个电池簇相连,用于获取每个电池簇的第一当前SOC,并将获取到的每个电池簇的第一当前SOC发送给控制器。控制器分别与每个转换器相连,控制器,用于确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
该种实施方式下,不需要对电池管理系统的逻辑进行改进,通过额外引入控制器,使其确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
监控模块在确定N个电池簇中的目标电池簇时,一种实施方式下,可以是获取N个电池簇中各个电池簇的第二当前SOC,基于N个电池簇中各个电池簇的第二当前SOC和设定SOC确定目标电池簇,其中,目标电池簇为N个电池簇中第二当前SOC与设定SOC之间的差值超过预设范围的电池簇。例如,先基于每个电池簇的第二当前SOC,确定N个电池簇中各个电池簇的第二当前SOC与设定SOC之间的差值,之后,检测是否存在差值超过预设范围的目标电池簇。上述过程用公式可表示为:|第二当前SOC-设定SOC|>A,A为预设阈值,即预设范围为[-A,A]。其中,预设范围可以灵活设置,比如可以设置为电池的最小SOC精度,如最大为8%SOC。
其中,设定SOC可以为各个电池簇的平均SOC、各个电池簇中的最小SOC或各个电池簇中的最大SOC。
需要说明的是,在确定N个电池簇中的目标电池簇时,除了可以基于N个电池簇中各个电池簇的第二当前SOC确定目标电池簇外,还可以基于其他电池参数信息来确定目标电池簇。例如,基于N个电池簇中各个电池簇的第一当前电流确定目标电池簇,此时,目标电池簇为N个电池簇中第一当前电流与设定电流(可以是电池系统的平均电流)之间的差值超过预设范围的电池簇,或者,基于N个电池簇中各个电池簇的第一当前电压确定目标电池簇,此时,目标电池簇为N个电池簇中第一当前电压与设定电压(可以是电池系统的平均电压)之间的差值超过预设范围的电池簇。
本申请中,第一当前SOC为调节目标电池簇对应的转换器之后目标电池簇的SOC,第二当前SOC为调节目标电池簇对应的转换器之前目标电池簇的SOC。
监控模块在调节目标电池簇对应的转换器时,具体用于:当目标电池簇处于充电状态时,若第二当前SOC与设定SOC之间的差值大于零,即第二当前SOC大于设定SOC,调高目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流;若第二当前SOC与设定SOC之间的差值小于零,即第二当前SOC小于设定SOC,调低目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流。即充电时,让容量高的电池簇充电变慢或让容量低的电池簇充电变快。其中,充电时,电流I=(U0-U1-U2)/R。U0为母线电压,U1为转换器的输出电压,U2为电池簇电压,R为电池簇所在支路的电阻。
监控模块在调节目标电池簇对应的转换器时,具体用于:当目标电池簇处于放电状态时,若第二当前SOC与设定SOC之间的差值大于零,即第二当前SOC大于设定SOC,调高目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流;若第二当前SOC与设定SOC之间的差值小于零,即第二当前SOC小于设定SOC,调低目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流。即放电时,让容量高的电池簇放电变快或让容量低的电池簇放电变慢。其中,放电时,电流I=(U1+U2-U0)/R。U0为母线电压,U1为转换器的输出电压,U2为电池簇电压,R为电池簇所在支路的电阻。
为了避免在调节电池簇对应的转换器时调节过度,例如,当外部母线电压突变,且系统未及时发送电流指令给转换器,会导致串联的转换器过调节。此外,当所有路的转换器都处于补偿状态时,若转换器为电流控制模式,则所有路的转换器的控制电流可能会与外部PCS(Power Conversion System,电力转换系统)端的控制功率产生冲突,引发两种控制相互打架,造成控制紊乱。如外部PCS功率发生突变,会导致转换器的控制电流突变,通过合理设置档位,可以避免转换器的控制电流来回波动,从而可以减缓这种控制冲突。
一种实施方式下,可以按照转换器的输出电压能力设置档位,当每个转换器可输出正负电压时,例如,转换器可输出±20V,若按照每个档位对应调节1V电压的方式设置档位,可以设置41个档位,-20档位~20档位。0档位对应0V,-1档位对应-1V,-2档位对应-2V,以此类推,-20档位对应-20V;1档位对应1V,2档位对应2V,以此类推,20档位对应20V,共计41个档位。若按照每个档位对应调节2V电压的方式设置档位,可以设置21个档位,-10档位~10档位。不同的调节精度对应的档位数不同,调节精度越小,对应的档位数越多。
当每个转换器仅能输出正电压或负电压时,对应的转换器仅存在正档位或负档位,例如,转换器可输出0V~20V,若按照每个档位对应调节1V电压的方式设置档位,可以设置21个档位,为0档位~20档位,0档位对应0V,1档位对应1V,2档位对应2V,以此类推,20档位对应20V,共计21个档位。又例如,转换器可输出-20V~0V,若按照每个档位对应调节1V电压的方式设置档位,可以设置21个档位,为-20档位~0档位,0档位对应0V,-1档位对应-1V,-2档位对应-2V,以此类推,-20档位对应-20V,共计21个档位。不同的调节精度对应的档位数不同,调节精 度越小,对应的档位数越多。
通过合理设置转换器的档位,调节精度越小对应的档位数越多,调节效果越好,通过调节转换器的档位,使电池系统的不均衡度趋于均衡,以避免过调节。
当每个转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同时,相应地,调节目标电池簇对应的转换器的过程为调节目标电池簇对应的转换器的档位,以调节目标电池簇对应的转换器的输出电压。
例如,当目标电池簇处于充电状态时,若第二当前SOC与设定SOC之间的差值大于零,需要增大目标电池簇对应的转换器的档位,从而调高目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流;若第二当前SOC与设定SOC之间的差值小于零,需要降低目标电池簇对应的转换器的档位,从而调低目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流。又例如,当目标电池簇处于放电状态时,若第二当前SOC与设定SOC之间的差值大于零,需要增大目标电池簇对应的转换器的档位,调高目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流;若第二当前SOC与设定SOC之间的差值小于零,需要降低目标电池簇对应的转换器的档位,调低目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流。
需要说明的是,上述的调低目标电池簇对应的转换器的输出电压包括增大转换的输出负压,例如,将转换器的输出电压从1V调到-1V,或者,从-1V调到-5V也视为调低目标电池簇对应的转换器的输出电压。
由于转换器进行补偿时,母线电压=电池簇电压+转换器电压,当所有转换器都处于补偿状态时,转换器处于过高的调压范围并不会给电池系统带来好的增益,如所有转换器都处于输出1V的工作状态,此时,母线电压=电池簇电压+1V;而当所有转换器处于输出20V电压的工作状态,此时,母线电压=电池簇电压+20V,此时应尽量地使得所有转换器处于低输出电压状态,以降低系统损耗。
考虑到相同电流下,转换器的输出电压(绝对值)越高,转换器输出的功率就越高,相应的转换器的损耗就越高。为了降低损耗,需要使系统内的转换器在可调范围内尽可能的用最小电压进行调节。因此,当每个转换器包括用于调节自身输出电压的档位时,一种可选实施方式下,监控模块,还用于以指定档位为基准档位分别调节各个转换器的档位,即各个转换器在当前档位的基础上减去基准档位,以使电池系统中的各个转换器的总输出功率最小,其中,指定档位对应的输出电压为零。
为了更好的理解,下面结合例子进行说明,当每个转换器可输出正负电压时,此时,转换器存在正负档位,指定档位为各个所述转换器的平均档位。例如,当各电池簇对应的转换器的平均档位为X档时,可同时调低X档。如电池系统包含并联的5个电池簇为例,假设对应的转换器的 当前档位分别处于20档、15档、15档、15档、15档时,平均档位为16档,可同时调低16档至4档、-1档、-1档、-1档、-1档,此时所有转换器的输出功率为最低,相应的损耗也为最低。
当每个转换器仅输出正电压或负电压时,此时,转换器不存在正负档位,指定档位为各个转换器中的最小档位。例如,当各电池簇对应的转换器的最小档位为X档,可同时调低X档。如电池系统包含并联的5个电池簇为例,假设对应的转换器的当前档位分别处于20档、18档、16档、14档、12档时,最小档位为12档,可同时调低12档至8档、6档、4档、-4档、0档,此时所有转换器的输出功率为最低,相应的损耗也为最低。
在各个电池簇所在支路尚未并联接入母线之前,各个电池簇所在支路相互独立,在将各个电池簇所在支路并联接入母线的过程中,避免环流,在初始上电时,先获取各个电池簇所在支路的电压,选择电压值处于中间值或最小值的电池簇对应的转换器的档位为基准档位,其余各个电池簇对应的转换器的档位,按照自身所在支路的电压与基准支路的电压差值来对应设置转换器的档位。假设基准支路A的电压为1300V,支路B的电压为1310V,支路C的电压为1290V,则支路A的转换器可按0档,支路B的转换器按-10档(输出-10V)支路C的转换器按10档(输出10V)来设置。最后使得各支路总电压(电池簇电压与转换器的输出电压之和)相近后进行上高压并联。
需要说明的是,监控模块除了调节各个电池簇对应的转换器来实现电池容量均衡外,可选地,还可以是通过调节各个电池簇对应的转换器来实现各个电池簇的电流均衡、电压均衡等。例如,监控模块,还用于获取电池系统的平均电流,根据平均电流调节每个电池簇对应的转换器,以使该电池簇的输出电流与平均电流一致。
又例如,监控模块,还用于获取电池系统的平均电压,根据平均电压调节每个电池簇对应的转换器,以使该电池簇所在支路的输出电压与平均电压一致。
一种可选实施方式下,该电池系统,还包括与N个转换器一一对应的N个旁路开关,如图3所示。每个旁路开关与对应的转换器并联,监控模块,还用不针对每个转换器,在不调节该转换器时控制对应的旁路开关与该转换器短接,使得电池系统按照常规的方式充放电,转换器不进行功率输出,以降低系统损耗。
旁路开关,可以是继电器、模拟开关等形式,在本申请实施例中不作限定。此外,旁路开关可以是外置(如图3所示),也可以是内置于转换器内,其示意图如图4所示。当旁路开关断开时,该旁路开关不起作用,当旁路开关闭合时,将对应的转换器短接,此时,转换器不起作用,即转换器不参与调节。
基于同样的发明构思,本申请实施例还提供了一种电池管理方法,下面将结合图5对其原理进行说明。
S1:确定电池系统中并联的N个电池簇中的目标电池簇。
其中,电池系统还包括与N个电池簇一一对应的N个转换器,每个转换器的第一端与对应的电池簇串联,每个转换器的第二端与对应的电池簇并联,需要说明的是,每个转换器的第二端也可以连接功率源或其他电池簇,N为大于等于2的整数。
可选地,确定N个电池簇中的目标电池簇的过程可以是获取N个电池簇中各个电池簇的第二当前SOC,基于N个电池簇中各个电池簇的第二当前SOC和设定SOC确定目标电池簇,目标电池簇为N个电池簇中第二当前SOC与设定SOC之间的差值超过预设范围的电池簇。例如,在获取到每个电池簇的第二当前SOC后,确定N个电池簇中各个电池簇的第二当前SOC与设定SOC之间的差值;检测是否存在差值超过预设范围的目标电池簇。|第二当前SOC-设定SOC|>A的电池簇即为目标电池簇。A为预设阈值,对应的预设范围为[-A,A]。
一种实施方式下,可以是由电池管理系统去采集电池系统中并联的N个电池簇中每个电池簇的第二当前SOC。一种实施方式下,也可以是由电池管理系统确定电池系统中并联的N个电池簇中的目标电池簇。一种实施方式下,可以是由控制器确定电池系统中并联的N个电池簇中的目标电池簇。
其中,设定SOC为各个电池簇的平均SOC、各个电池簇中的最小SOC或各个电池簇中的最大SOC。
S2:调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
一种实施方式下,也可以是由电池管理系统调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。一种实施方式下,可以是由控制器来调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
在调节目标电池簇对应的转换器时,需要考虑目标电池簇是处于充电状态还是处于放电状态。当目标电池簇处于充电状态时,调节目标电池簇对应的转换器的过程包括:若目标电池簇调节前的第二当前SOC与设定SOC的差值大于零,调高目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流;若目标电池簇调节前的第二当前SOC与设定SOC的差值小于零,调低目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流。
当目标电池簇处于放电状态时,调节目标电池簇对应的转换器的过程包括:若目标电池簇调节前的第二当前SOC与设定SOC的差值大于零,调高目标电池簇对应的转换器的输出电压,以提高目标电池簇的电流;若目标电池簇调节前的第二当前SOC与设定SOC的差值小于零,调低目标电池簇对应的转换器的输出电压,以降低目标电池簇的电流。
一种可选实施方式下,每个转换器包括用于调节自身输出电压的档位,每个档位对应的输 出电压不同。相应地,调节目标电池簇对应的转换器的过程包括:调节目标电池簇对应的转换器的档位,以调节目标电池簇对应的转换器的输出电压。
考虑到相同电流下,转换器的输出电压(绝对值)越高,转换器输出的功率就越高,相应的转换器的损耗就越高。为了降低损耗,需要使系统内的转换器在可调范围内尽可能的用最小电压进行调节。因此,当每个转换器包括用于调节自身输出电压的档位时,可选地,电池管理方法还包括:以指定档位为基准档位分别调节各个所述转换器的档位,即各个转换器在当前档位的基础上减去基准档位,以使电池系统中的各个转换器的总输出功率最小,其中,指定档位对应的输出电压为零。
当每个转换器可输出正负电压时,指定档位为各个转换器的平均档位。当每个转换器仅输出正电压或负电压时,指定档位为各个转换器中的最小档位。
可选地,当电池系统还包括:与N个转换器一一对应的N个旁路开关时,其中,每个旁路开关与对应的转换器并联。该电池管理方法还包括:针对每个转换器,在不调节该转换器时控制对应的旁路开关与该转换器短接。当旁路开关断开时,该旁路开关不起作用,当旁路开关闭合时,将对应的转换器短接,此时,转换器不起作用,即转换器不参与调节。
该电池管理方法除了可以通过调节各个电池簇对应的转换器来实现电池容量均衡外,还可以通过调节各个电池簇对应的转换器来实现各个电池簇的电流均衡、电压均衡等。例如,该电池管理方法还包括:获取电池系统的平均电流,根据平均电流调节每个电池簇对应的转换器,以使该电池簇的输出电流与平均电流一致。又例如,该电池管理方法还包括:获取电池系统的平均电压,根据平均电压调节每个电池簇对应的转换器,以使该电池簇所在支路的输出电压与平均电压一致。
其中,上述的电池管理方法的执行主体可以是电池管理系统,也可以是控制器。
电池管理方法实施例所提供的电池系统,其实现原理及产生的技术效果和前述电池系统实施例相同,为简要描述,方法实施例部分未提及之处,可参考前述电池系统实施例中相应内容。
基于同样的发明构思,本申请实施例还提供了一种电池管理系统,该电池管理系统分别与每个转换器、每个电池簇相连。电池管理系统用于接收电池和外部各个接口的信息,分析和处理信息后,并发出执行指令,完成电池的充电,放电,保护,均衡,故障检测和故障预警等功能,确保电池的正常、高效、合理和安全的运行。例如,电池管理系统用于执行上述的电池管理方法,例如,电池管理系统,用于获取每个电池簇的第一当前SOC,确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
其中,BMS主要可以分成闭环反馈的三大部分:信息采集、信息分析处理、输出决策执行指令。对于信息采集,BMS需要实时监测电池的状态,就需要各种传感器来采集电池的电压, 电流,温度等物理参数。信息分析处理是指,BMS采集到相关信息后,需要对信息进行分析处理,以决定需要采取的动作。输出决策执行指令是指,BMS通过对外交互接口向与其交互的交互对象(如充电设备)输出决策执行指令。
电池管理系统实施例所提供的电池管理原理及产生的技术效果和前述方法实施例相同,为简要描述,电池管理系统实施例部分未提及之处,可参考前述方法实施例中相应内容。
基于同样的发明构思,本申请实施例还提供了一种电子设备,该电子设备包括并联的N个电池簇、N个转换器和电池管理系统。N个转换器与N个电池簇一一对应,每个转换器的第一端与对应的电池簇串联,每个转换器的第二端与对应的电池簇并联,N为大于等于2的整数。电池管理系统,分别与每个转换器、每个电池簇相连,电池管理系统,用于确定N个电池簇中的目标电池簇,调节目标电池簇对应的转换器,使调节后的目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
该电子设备包括但不限于具备电池系统的电动设备,例如,可以是电动交通工具、如电动自行车、电动摩托车、电动汽车等等。
本申请实施例还提供了一种非易失性的计算机可读取存储介质(以下简称存储介质),该存储介质上存储有计算机程序,该计算机程序被计算机如上述的电子设备运行时,执行上述所示的电池管理方法。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一 个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,笔记本电脑,服务器,或者电子设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种电池管理方法,其特征在于,包括:
    确定电池系统中并联的N个电池簇中的目标电池簇,其中,所述电池系统还包括与所述N个电池簇一一对应的N个转换器,每个所述转换器的第一端与对应的电池簇串联,N为大于等于2的整数;
    调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
  2. 根据权利要求1所述的方法,其特征在于,当所述目标电池簇处于充电状态时,调节所述目标电池簇对应的转换器,包括:
    若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流;
    若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流。
  3. 根据权利要求1所述的方法,其特征在于,当所述目标电池簇处于放电状态时,调节所述目标电池簇对应的转换器,包括:
    若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值大于零,调高所述目标电池簇对应的转换器的输出电压,以提高所述目标电池簇的电流;
    若所述目标电池簇调节前的第二当前SOC与所述设定SOC的差值小于零,调低所述目标电池簇对应的转换器的输出电压,以降低所述目标电池簇的电流。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同;调节所述目标电池簇对应的转换器,包括:
    调节所述目标电池簇对应的转换器的档位,以调节所述目标电池簇对应的转换器的输出电压。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,确定所述N个电池簇中的目标电池簇,包括:
    获取所述N个电池簇中各个电池簇的第二当前SOC;
    基于所述N个电池簇中各个电池簇的第二当前SOC和所述设定SOC;
    确定所述目标电池簇,所述目标电池簇为所述N个电池簇中第二当前SOC与所述设定SOC之间的差值超过预设范围的电池簇。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述设定SOC为各个所述电池簇的平均SOC、各个所述电池簇中的最小SOC或各个所述电池簇中的最大SOC。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述电池系统还包括:与所述N个转换器一一对应的N个旁路开关,所述方法还包括:
    针对每个所述转换器,在不调节所述转换器对应的电池簇时,控制对应的旁路开关与所述转换 器短接。
  8. 根据权利要求1所述的方法,其特征在于,每个所述转换器包括用于调节自身输出电压的档位,每个档位对应的输出电压不同,所述方法还包括:
    以指定档位为基准档位分别调节各个所述转换器的档位,以使所述电池系统中的各个转换器的总输出功率最小,其中,所述指定档位对应的输出电压为零。
  9. 根据权利要求8所述的方法,其特征在于,当每个所述转换器可输出正负电压时,所述指定档位为各个所述转换器的平均档位,当每个所述转换器仅输出正电压或负电压时,所述指定档位为各个所述转换器中的最小档位。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述电池系统的平均电流;
    根据所述平均电流调节每个所述电池簇对应的转换器,以使每个所述电池簇的输出电流与所述平均电流一致。
  11. 一种电池系统,其特征在于,包括:
    并联的N个电池簇,N为大于等于2的整数;
    N个转换器,与所述N个电池簇一一对应,每个所述转换器的第一端与对应的电池簇串联;
    监控模块,分别与每个所述转换器、每个所述电池簇相连,所述监控模块,用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与设定SOC之间的差值在预设范围内。
  12. 根据权利要求11所述的电池系统,其特征在于,所述电池系统还包括:
    与所述N个转换器一一对应的N个旁路开关,每个所述旁路开关,用于短接对应的转换器。
  13. 根据权利要求11所述的电池系统,其特征在于,所述监控模块为电池管理系统,分别与每个所述转换器、每个所述电池簇相连,所述电池管理系统用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与所述设定SOC之间的差值在所述预设范围内。
  14. 根据权利要求11所述的电池系统,其特征在于,所述监控模块包括:电池管理系统和控制器;
    所述电池管理系统,分别与每个所述电池簇相连,用于获取每个所述电池簇的第一当前SOC,并将获取到的每个所述电池簇的第一当前SOC发送给所述控制器;
    所述控制器分别与每个所述转换器相连,所述控制器,用于确定所述N个电池簇中的目标电池簇;调节所述目标电池簇对应的转换器,使调节后的所述目标电池簇的第一当前SOC与所述设定SOC之间的差值在所述预设范围内。
  15. 一种电池管理系统,其特征在于,所述电池管理系统用于执行如权利要求1至10中任一项所述的电池管理方法。
  16. 一种电子设备,其特征在于,包括:
    并联的N个电池簇,N为大于等于2的整数;
    N个转换器,与所述N个电池簇一一对应,每个所述转换器的第一端与对应的电池簇串联;
    电池管理系统,分别与每个所述转换器、每个所述电池簇相连,所述电池管理系统用于执行如权利要求1至10中任一项所述的电池管理方法。
PCT/CN2023/082892 2022-06-17 2023-03-21 一种电池管理方法、系统、电池系统及电子设备 WO2023241153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210689624.3 2022-06-17
CN202210689624.3A CN115800415B (zh) 2022-06-17 2022-06-17 一种电池管理方法、系统、电池系统及电子设备

Publications (1)

Publication Number Publication Date
WO2023241153A1 true WO2023241153A1 (zh) 2023-12-21

Family

ID=85431197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082892 WO2023241153A1 (zh) 2022-06-17 2023-03-21 一种电池管理方法、系统、电池系统及电子设备

Country Status (2)

Country Link
CN (1) CN115800415B (zh)
WO (1) WO2023241153A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800415B (zh) * 2022-06-17 2023-11-14 宁德时代新能源科技股份有限公司 一种电池管理方法、系统、电池系统及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545878A (zh) * 2013-09-22 2014-01-29 上海交通大学 一种mmc电池储能系统相间soc均衡方法
CN104883062A (zh) * 2015-06-16 2015-09-02 重庆邮电大学 一种dc/dc变换器控制方法及系统
CN207853764U (zh) * 2018-03-15 2018-09-11 深圳恩培科技有限公司 Dc-dc变换器
CN113541268A (zh) * 2021-07-30 2021-10-22 阳光电源股份有限公司 一种储能系统及其控制方法
US20220021221A1 (en) * 2020-07-14 2022-01-20 Igrenenergi, Inc. System and method for dynamic balancing power in a battery pack
CN115800415A (zh) * 2022-06-17 2023-03-14 宁德时代新能源科技股份有限公司 一种电池管理方法、系统、电池系统及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109808517B (zh) * 2019-01-11 2022-11-08 王宁豪 一种新能源汽车电压可选的通用动力电池
KR102321029B1 (ko) * 2019-09-16 2021-11-03 호남대학교 산학협력단 클러스터링을 이용한 이종의 전력 밸런싱을 수행하기 위한 시스템, 이를 위한 장치 및 이를 위한 방법
CN114079301A (zh) * 2020-08-18 2022-02-22 北京海博思创科技股份有限公司 储能系统及电流调节方法
CN113285129A (zh) * 2021-06-22 2021-08-20 厦门海泰新能技术有限公司 一种电池簇并联系统
CN113659683B (zh) * 2021-08-26 2023-11-21 四川科陆新能电气有限公司 一种用于电池簇间均衡的虚拟内阻控制方法
CN114361620A (zh) * 2022-02-21 2022-04-15 中航锂电(洛阳)有限公司 均衡装置、均衡方法及电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545878A (zh) * 2013-09-22 2014-01-29 上海交通大学 一种mmc电池储能系统相间soc均衡方法
CN104883062A (zh) * 2015-06-16 2015-09-02 重庆邮电大学 一种dc/dc变换器控制方法及系统
CN207853764U (zh) * 2018-03-15 2018-09-11 深圳恩培科技有限公司 Dc-dc变换器
US20220021221A1 (en) * 2020-07-14 2022-01-20 Igrenenergi, Inc. System and method for dynamic balancing power in a battery pack
CN113541268A (zh) * 2021-07-30 2021-10-22 阳光电源股份有限公司 一种储能系统及其控制方法
CN115800415A (zh) * 2022-06-17 2023-03-14 宁德时代新能源科技股份有限公司 一种电池管理方法、系统、电池系统及电子设备

Also Published As

Publication number Publication date
CN115800415A (zh) 2023-03-14
CN115800415B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US8476869B2 (en) Battery voltage equalizer circuit and method for using the same
Zhang et al. Lithium-based energy storage management for DC distributed renewable energy system
CN101826745B (zh) 锂离子动力电池无损充电机
Kim et al. A series-connected self-reconfigurable multicell battery capable of safe and effective charging/discharging and balancing operations
US11159039B2 (en) Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
JP2013078242A (ja) 電源装置
JP2015202024A (ja) モバイルバッテリー
KR102164439B1 (ko) 슈퍼캐패시트 모듈과 배터리가 결합된 융복합전지의 밸런싱 장치
Yildirim et al. Evaluation and comparison of battery cell balancing methods
WO2023241153A1 (zh) 一种电池管理方法、系统、电池系统及电子设备
US20240030724A1 (en) Energy storage system, method for controlling energy storage system, and photovoltaic power generation system
US11689117B2 (en) Power system with an add-on power module
Ekanayake et al. Active and passive based hybrid cell balancing approach to series connected lithium-ion battery pack
Qahouq et al. DC-DC power converter controller for SOC balancing of paralleled battery system
CN112993418B (zh) 储能系统
Chowdhury et al. An integrated control strategy for state of charge balancing with output voltage control of a series connected battery management system
Moo et al. Battery power system with arrayed battery power modules
Hoque et al. Voltage equalization for series connected lithium-ion battery cells
CN212726520U (zh) 一种均衡充电保护装置
KR102151652B1 (ko) 척컨버터 토폴로지를 이용한 리튬이온 전지 셀밸런싱 장치
CN114932838A (zh) 储能系统并联电池簇荷电状态均衡系统、方法及介质
JP6707119B2 (ja) 電池段別充電方法及びシステム
CN113612277A (zh) 一种电池单元及其控制方法
Duan et al. An electric vehicle battery modular balancing system based on solar energy harvesting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822725

Country of ref document: EP

Kind code of ref document: A1