WO2023240926A1 - 用于处理金属粉末增材制造过程中的飞溅粉末的设备 - Google Patents

用于处理金属粉末增材制造过程中的飞溅粉末的设备 Download PDF

Info

Publication number
WO2023240926A1
WO2023240926A1 PCT/CN2022/133159 CN2022133159W WO2023240926A1 WO 2023240926 A1 WO2023240926 A1 WO 2023240926A1 CN 2022133159 W CN2022133159 W CN 2022133159W WO 2023240926 A1 WO2023240926 A1 WO 2023240926A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
rod
air outlet
scraper
splashed
Prior art date
Application number
PCT/CN2022/133159
Other languages
English (en)
French (fr)
Inventor
黄洁
徐迪
易俊兰
李明亮
任治倪
Original Assignee
上海飞机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞机制造有限公司 filed Critical 上海飞机制造有限公司
Publication of WO2023240926A1 publication Critical patent/WO2023240926A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of additive manufacturing, for example to an equipment for handling powder splash during additive manufacturing of metal powders.
  • SLM Selective Laser Melting
  • metal powder will form a molten pool under laser irradiation.
  • the unstable molten pool will inevitably splash splashes, especially splashed powder.
  • the elemental composition and sphericity of the splashed powder have changed. After falling back to the powder surface of the substrate, it will have an impact on subsequent printing, resulting in poor uniformity of each layer of powder, and ultimately reducing the quality of the formed parts. Density and strength properties.
  • laser selective melting and forming technology mostly uses argon gas to deal with spattered powder during printing to blow away the powder spattered during the printing process.
  • this treatment method is difficult to ensure complete removal, and low wind force cannot effectively remove the spattered powder. High wind force will affect the formability of the part, resulting in poor performance of the final part. It can be seen that the problem of ineffective removal of spattered powder is an important factor affecting the quality of laser selective melting formed parts, and needs to be solved through technological progress.
  • the present application provides an equipment for processing the splashed powder during the additive manufacturing process of metal powder to overcome the inability of the existing equipment to effectively collect the splashed powder and cause unforeseen problems.
  • the collected spattered powder falls back to the powder coating surface of the substrate, causing problems such as reduced density and strength of the final formed part.
  • the present application provides an equipment for processing splashed powder in a metal powder additive manufacturing process.
  • the equipment includes: a scraper powder spreading device, the scraper powder spreading device includes a scraper and is configured to be able to spread the powder through the scraper.
  • Metal powder placed flat on the surface of the forming substrate; an air outlet device, which is installed on the side or opposite side of the scraper and is configured to blow the splashed powder during the additive manufacturing process; spattered powder control Device, the splash powder control device is installed on the side or opposite side of the scraper and is configured to intercept and collect the splash powder to prevent the splash powder from falling on the forming substrate surface; and a powder collection device , the powder collecting device is configured to remove the splashed powder collected by the splashed powder control device and store the cleared splashed powder, wherein the air outlet device and the splashed powder control device can be driven by a motor to move and rotation, so that it can change with the change of the scanning path above the forming substrate surface.
  • the scraper powder spreading device further includes a scraper plate that can be detachably installed.
  • the scraper is embedded in a groove on the lower surface of the scraper plate and is configured to be able to be adjusted by adjusting the scraper plate.
  • the left and right sides of the scraper plate are balanced so that the scraper remains parallel to the forming substrate during operation.
  • the scraper powder spreading device further includes an adjustment rod.
  • the lower end of the adjustment rod is connected to the scraper plate and can slide on the transmission track to drive the scraper plate to be horizontal together. Movement to spread the powder placed on the surface of the forming substrate.
  • the air outlet device includes an air outlet rod, the air outlet rod is provided with an air outlet and is configured to be controlled and driven by the motor to move and rotate horizontally, so that The air outlet on the air outlet rod can blow the splashed powder generated during the additive manufacturing process along the scanning path.
  • the horizontal rotation center of the air outlet rod is located at the middle position of the air outlet rod.
  • the air outlet device further includes an air supply duct and an air source assembly, and the air supply duct is connected to the air source assembly and the air outlet rod to connect all The blowing gas provided by the air source component is delivered to the air outlet of the air outlet rod.
  • the splashed powder control device includes a powder collecting rod, which is configured to be moved and rotated under the control and drive of a motor, so that the powder collecting rod controls the splashed powder along the scanning path. Intercept and collect.
  • the upper side of the powder collection rod is provided with a powder barrier or aperture for intercepting the movement of the splashed powder.
  • a powder collecting part for collecting the intercepted splashed powder is provided at a lower part of the powder collecting rod, and the powder collecting part is configured to have a wide opening.
  • the moving direction of the air outlet rod and the powder collection rod is parallel to the laser scanning direction, and are configured to be capable of clockwise and counterclockwise horizontal rotation controlled by the motor,
  • the rotation range is from 0° to 90°, and both can move and rotate horizontally simultaneously.
  • the powder collecting rod is configured to be controlled by the motor and return to the initial position after the laser prints a layer of metal powder, so as not to affect the scraper's new smoothing of the metal. powder.
  • the air outlet rod and the powder collection rod are configured to be parallel to each other at a predetermined distance above the surface of the forming substrate. movement, and the predetermined distance can be adjusted.
  • the predetermined distance ranges from 20mm to 60mm.
  • the laser spot is always kept within a predetermined distance between the air outlet rod and the powder collecting rod, and is further away from the outlet rod.
  • the distance between the air rod and any side of the powder collecting rod is within the allowable range.
  • the allowable range is 10mm-30mm.
  • the powder collecting device includes a powder collecting tank part, and the powder collecting rod is configured to be movable above the position of the powder collecting tank part to clear the powder collecting rod. Collect the splashed powder and transfer it to the powder collecting tank part.
  • the powder collecting rod is configured to be able to tilt up and down controlled by the motor to remove the splashed powder collected by the powder collecting rod and dump it into the powder collecting rod.
  • Tank Department the powder collecting rod is configured to be able to tilt up and down controlled by the motor to remove the splashed powder collected by the powder collecting rod and dump it into the powder collecting rod.
  • the powder collecting device further includes an air outlet portion, and the air outlet portion is opposite to the powder blocking grid or aperture of the powder collecting rod to allow passage of the powder blocking grid or the powder collecting rod.
  • the hole blowing removes the splashed powder collected by the powder collecting rod and blows it into the powder collecting tank part.
  • the device is further configured such that the process of cleaning the splashed powder collected by the powder collecting rod can be performed simultaneously with the process of smoothing the metal powder by the scraper.
  • FIG. 1 is a schematic diagram of an equipment for handling splashed powder in a metal powder additive manufacturing process according to an optional embodiment of the present application.
  • FIG. 2 is a schematic diagram of the equipment used to handle splash powder during the additive manufacturing process of metal powder in FIG. 1 from different angles.
  • positional terms such as “side”, “opposite”, “above”, “upper side”, “upper side”, “lower part”, “lower surface”, “middle position”, “bottom” etc., refer to the locations described in the attached drawings. Components of embodiments of the present application may be placed in a variety of different locations, and positional terms are used for purposes of illustration and are not limiting.
  • additive Manufacturing commonly known as 3D printing, integrates computer-aided design, material processing and molding technology, and is based on digital model files. It uses software and CNC systems to combine special metal materials, non-metal materials and medical biological materials. , a manufacturing technology that creates physical objects by stacking them layer by layer through extrusion, sintering, melting, light curing, and spraying. Compared with the traditional processing mode of removing, cutting and assembling raw materials, the additive manufacturing method is a "bottom-up" manufacturing method through material accumulation, starting from scratch. This makes it possible to manufacture complex structural parts that were previously unachievable due to traditional manufacturing methods.
  • Additive manufacturing technology does not require traditional tools, fixtures, and multiple processing procedures. Parts of any complex shape can be quickly and accurately manufactured on one piece of equipment, thereby achieving "free manufacturing" of parts and solving the problem of forming many complex structural parts. , and greatly reduce the processing procedures and shorten the processing cycle. And the more complex the product structure is, such as a large overall metal structure, the more significant the advantages of additive manufacturing technology will be.
  • Civil aircraft are increasingly adopting large-scale integral metal structures, but traditional manufacturing and forming methods are very difficult to manufacture large-scale integral metal structures.
  • additive manufacturing technology has broad development prospects in the application of precision casting technology for complex parts and the direct manufacturing of metal parts to manufacture large-size aerospace parts. It is a reliable method for manufacturing large-scale overall metal structures of civil aircraft.
  • the metal powder additive manufacturing method can break through the difficult-to-process large overall key components and manufacture large-sized, complex-structured metals and ultra-high-strength steel metal parts.
  • the comprehensive mechanical properties of the manufactured aircraft components can reach or exceed die forgings.
  • SLM Selective Laser Melting
  • the control technology of material units that is, how to control the physical and chemical changes of material units during the accumulation process, is a difficult point.
  • metal powder will form a molten pool under laser irradiation.
  • the size of the tiny molten pool and external atmosphere control of laser melting directly affect the manufacturing accuracy and part performance.
  • laser selective melting and forming technology mostly uses argon gas to deal with spattered powder during printing to blow away the powder spattered during the printing process.
  • this treatment method is difficult to ensure complete removal, and low wind force cannot effectively remove the spattered powder. High wind force will affect the formability of the part, resulting in poor performance of the final part. It can be seen that the problem of ineffective removal of spattered powder is an important factor affecting the quality of laser selective melting formed parts, and needs to be solved through technological progress.
  • the invention patent discloses a device and a control method for blowing away flying metal powder particles and smoke.
  • the device prevents metal particles from falling into the laser scanning area by installing a cross-flow fan on the scraper.
  • the invention patent (CN111515393A) discloses a 3D printing equipment with an intelligent smoke and dust collection device.
  • the printing equipment solves the problem of smoke and splashing powder pollution that occurs during the printing process by setting up a movable powder collection unit.
  • the above-disclosed methods of removing spattered powder particles or smoke are not suitable for all laser scanning strategies. Even when the direction of the laser scanning path is parallel to the direction of the circulating wind, the powder cannot be effectively collected to achieve the improvement effect.
  • This application aims at the shortcomings of related technologies and provides an improved equipment for handling splashing powder in the metal powder additive manufacturing process.
  • the equipment is controlled by an air outlet device and splashing powder that can move and rotate with changes in the laser scanning path.
  • the device can use the blowing air with a smaller wind force to complete the blowing of the splashed powder, thereby avoiding the impact of the wind on the molten pool, and at the same time, it can effectively remove the splashed powder.
  • This equipment can accurately control the spattered powder generated during the laser selective melting process, thereby effectively preventing the spattered powder from falling back, thereby improving the uniformity of the tiled powder in each pass, thereby improving the forming stability of the aluminum alloy powder and the performance of the formed parts. , improve the efficiency of printing powder recycling and processing.
  • the structure and working mode of the device will be described below with reference to the accompanying drawings.
  • Figure 1 illustrates an apparatus for handling splash powder in a metal powder additive manufacturing process according to an alternative embodiment of the present application.
  • the equipment includes a scraper powder spreading device, an air outlet device, a splash powder control device and a powder collecting device 5.
  • the scraper powder spreading device includes a scraper, and the air outlet device is installed on the side or opposite of the scraper.
  • the splash powder control device The device is installed on the side or opposite side of the scraper.
  • the air outlet device is arranged opposite to the powder splashing device.
  • This equipment can spread the metal powder placed on the forming substrate surface through a scraper, then control the air outlet device to blow the splashed powder during the additive manufacturing process, and control the splashed powder control device to intercept and collect the splashed powder, and then based on the powder collection
  • the device 5 removes the collected splash powder and stores it.
  • the air outlet device and the splash powder control device can move and rotate, so that they can change with the scanning path above the forming substrate surface, thereby preventing the splash powder from falling on the forming substrate surface. on the top and bottom of the device.
  • the equipment disclosed in this application for handling splashed powder during the additive manufacturing process of metal powder adopts an air outlet device capable of moving and rotating and the splashed powder control device, so that the two can respond as the scanning path changes. Movement and rotation, thus forming a stable wind field that can move as the scanning path changes, so that the effective collection of splashed powder can be completed without the need for large blowing wind force, thereby avoiding the impact of blowing on the quality of the formed parts. And through the corresponding movement and rotation of the splash powder control device as the scanning path changes, a large amount of splash powder can be collected, thereby accurately controlling the movement of the splash powder, and effectively preventing the splash powder from falling back to the molding substrate and the bottom of the equipment.
  • the spattered powder by effectively collecting the spattered powder, it can prevent the spattered powder from falling onto the flattened metal powder, thereby improving the uniformity of the flattened metal powder in each pass, thus improving the forming stability of the metal powder and the performance of the formed parts. , which can also improve the efficiency of printing powder recycling.
  • the air outlet device and the splash powder control device on the side or opposite side of the scraper powder spreading device, the interference of the air outlet device and the splash powder control device on the scraper spreading process of the metal powder can be avoided, thereby ensuring that the metal powder is spread flat. The smooth progress and the smooth uniformity of the metal powder after paving.
  • the scraper powder spreading device also includes a scraper plate 1.
  • the scraper plate 1 is parallel to the forming substrate, is set horizontally, and is detachably installed on the scraper powder spreading device.
  • the scraper 13 can be a scraper bar, which is embedded in the groove on the lower surface of the scraper plate 1 and thereby installed in the scraper powder spreading device.
  • the scraper powder spreading device may also include an adjusting rod 2. The lower part of the adjusting rod 2 is connected to the scraper plate 1, and the upper side of the adjusting rod 2 is connected to the transmission track 12 through a connecting rod.
  • the adjusting rod 2 can slide along the transmission track 12, thereby driving the movement of the scraper plate 1 and the scraper 13, thereby realizing the movement of the scraper 13 to spread the metal powder on the surface of the forming substrate.
  • the left and right balance of the scraper plate 1 can also be adjusted through the adjusting rod 2, so that the scraper bar is parallel to the substrate 11 and remains parallel, thereby ensuring the flatness of the flattened metal powder.
  • the scraper By disassembling and replacing the scraper plate, the scraper can be replaced to change the scraper powder spreading device.
  • An adjustment device can also be provided to connect with the scraper plate. The adjustment device drives the movement of the scraper plate, thereby driving the movement of the scraper to achieve metal powder spreading on the forming substrate surface. flat.
  • the scraper plate By adjusting the scraper plate to ensure that the scraper remains parallel to the forming substrate, the flatness of the flat metal powder on the surface of the forming substrate can be ensured, thereby ensuring the forming quality of the final formed part.
  • the air outlet device can blow the splashed powder during the additive manufacturing process.
  • the air outlet device is installed on one side of the base plate 11, and its initial position is perpendicular to the scraper plate 1.
  • the air outlet device includes an air outlet rod 3, an air supply pipe 4, an air source assembly 15 and a motor 9.
  • the air outlet rod 3 has an air outlet 31, and the air supply pipe 4, the air source assembly 15 and the air outlet The rod 3 is connected to deliver the blowing air provided by the air source assembly 15 to the air outlet 31 of the air outlet rod 3 .
  • the gas source component 15 is a protective gas bottle, and the blowing gas provided is argon gas.
  • the air supply pipeline 4 is connected to a protective gas bottle, and delivers protective argon gas into the air outlet rod 3 to blow the splashed powder generated during the additive manufacturing process of metal powder.
  • the air outlet rod 3 can be driven by the motor 9 or a servo mechanism connected to the motor 9, and can move and rotate horizontally under the control and drive of the motor 9, so that it can be directed along the scanning path through the air outlet 31 on it. Splash powder generated during the additive manufacturing process is blown.
  • the rotation center of the air outlet rod 3 is located at the middle position of the air outlet rod 3 .
  • the splash powder control device is arranged on the opposite side of the air outlet device and can intercept and collect the splash powder blown through the air outlet device and/or the splash powder generated during the additive manufacturing process.
  • the splash powder control device includes a powder collecting rod 8 and a motor 9.
  • the initial position of the powder collecting rod 8 is perpendicular to the scraper plate 1, and can be driven by the motor 9 or a servo mechanism connected to the motor 9, and is controlled and driven by the motor 9. Move and rotate to intercept and collect flying powder along the scanning path.
  • the powder collecting rod 8 is connected to the motor 9 through a connecting rod.
  • the initial position of the powder collecting rod 8 of the splash powder control device is outside the side of the scraper plate 1.
  • the servo mechanism is located below the transmission track 12 in the scraper powder spreading device.
  • the powder collecting rod 8 is positioned after the laser prints a layer of metal powder. and then returns to the initial position, without affecting the scraper 13 for spreading the metal powder for a new time.
  • the powder collection rod can collect the intercepted splashing powder, prevent the splashed powder from falling on the forming substrate surface and the bottom of the equipment, and prevent the intercepted powder from falling into other areas of the equipment to cause contamination, which is inconvenient for cleaning and long-term use of the equipment.
  • the moving direction of the air outlet rod 3 and the powder collecting rod 8 is parallel to the laser scanning direction, and both can be horizontally rotated clockwise and counterclockwise under the control of the motor, with a rotation range of 0°. to 90°, and can move and rotate horizontally simultaneously.
  • the air outlet rod 3 and the powder collecting rod 8 move parallel to each other at a predetermined distance above the forming substrate surface, and the predetermined distance can be adjusted.
  • the predetermined distance ranges from 20mm to 60mm.
  • the laser spot is always kept within a predetermined distance between the air outlet rod 3 and the powder collecting rod 8, and the distance from either side is within the allowable range.
  • the allowed range is 10mm-30mm.
  • the upper side of the powder collecting rod 8 can also be provided with a powder blocking grid 10 or a hole.
  • the powder blocking grid 10 on the powder collecting rod 8 can intercept the splashing powder, so that it falls on the lower part of the powder collecting rod 8 or the bottom of the device.
  • the lower part of the powder collecting rod 8 is also provided with a powder collecting part 14 for collecting intercepted splashed powder, and the powder collecting part 14 is configured to have a wide opening. The wide opening of the powder collecting part 14 can increase the contact area between the powder collecting part 14 and the intercepted splashed powder, thereby ensuring that the intercepted splashed powder can be collected in time and fall into the powder collecting part 14 .
  • the powder collecting device 5 can remove the spattered powder collected by the spattered powder control device and store the cleared spattered powder, so that the spattered powder control device can collect a new splattered powder.
  • the powder collecting device 5 includes a powder collecting tank part 6 , and the powder collecting rod 8 can move above the position of the powder collecting tank part 6 to remove the splashed powder collected by the powder collecting rod 8 and transfer it to the powder collecting tank part 6 .
  • the powder collecting rod 8 can be controlled by the motor 9 to tilt up and down to remove the splashed powder collected by it, and pour the collected splashed powder into the powder collecting tank part 6 .
  • the powder collecting rod 8 returns to the initial position and tilts to remove the scattered powder collected by it.
  • the initial position of the powder collecting rod 8 is located above the position of the powder collecting tank portion 6 .
  • the upper part of the powder collecting device 5 is provided with an air outlet 7.
  • the powder collecting rod 8 moves above the position of the powder collecting tank 6, the powder blocking grid 10 or aperture between the air outlet 7 and the powder collecting rod 8
  • the splashed powder collected by the powder collecting rod 8 is blown through the powder barrier 10 or the aperture, and blown into the powder collecting tank part 6 for cleaning the splashed powder collected in the movable splashing powder control device.
  • the powder collection device 5 further includes a powder collection tank portion connected below the powder collection tank portion 6 for collecting the splashed powder generated during the laser selective melting and forming process.
  • the process of clearing the splashed powder collected by the powder collecting rod 8 can be carried out simultaneously with the process of spreading the metal powder with a scraper to improve the efficiency of additive manufacturing, that is, 3D printing.
  • the initial position of the scraper plate 1 is located on the side of the substrate 11. After each pass of powdering, push forward and spread the powder, complete the powder spreading operation, and return to the initial position; the laser spot begins to print on the tiled powder according to the set scanning path. , the scanning path direction and the scraper plate 1 are at a certain angle to each other. When the scanning path direction and the scraper plate 1 are at an angle of 45° to each other, the air source component is opened and the circulation fan is turned on. The motor 9 is synchronously driven to drive the air outlet rod 3 and the scraper plate 1 at an angle of 45° to each other. The air source component is opened and the circulation fan is turned on. When turned on, the motor 9 drives the air outlet rod 3 and the powder collecting rod 8 to rotate 45° horizontally.
  • the air source assembly When the angle between the scanning path direction and the scraper plate 1 is 90°, the air source assembly is opened, the circulation fan is turned on, and the motor 9 is driven synchronously to drive the air outlet rod 3 and the powder collection rod 8 to move horizontally.
  • the air source component When the scanning path direction is parallel to the scraper plate 1, the air source component is opened, the circulation fan is turned on, and the motor 9 is synchronously driven to drive the air outlet rod 3 and the powder collecting rod 8 to rotate 90° horizontally.
  • the air outlet rod 3 and the powder collecting rod 8 move to the laser spot position and move parallel to the laser scanning path.
  • the splashed powder is blocked by the powder barrier 10 and falls into the powder collecting part 14 of the powder collecting rod 8.
  • the powder scanning is completed on one layer. Then return to the side of the substrate 11, tilt it to be parallel to the air outlet part 7, and blow air.
  • the gas passes through the powder barrier 10 and blows the collected splash powder into the powder collection tank part 6, and then tilts it back to its original position.
  • This application uses a mobile air outlet device and a splash powder control device that can change with the laser scanning path to realize the linkage cooperation of multiple devices, and use a motor to control the movement of the air outlet rod and the powder collecting rod so that they can scan with the laser spot. Path moves.
  • This method requires less wind force than the traditional laser selective melting forming system, and can ensure that most of the splashed powder is collected by the powder collecting rod to avoid falling into other areas of the metal powder layer on the forming substrate surface, and the smaller wind force can make The molten pool of laser melted powder is more stable, which improves the formability of selective laser melting and the quality stability of the formed parts, and increases the life of the powder for multiple cycles.
  • the air outlet rod can move horizontally and rotate clockwise and counterclockwise 90° horizontally, and the movement and rotation of the air outlet rod can be performed simultaneously, thereby realizing that the surface of the forming substrate changes with the change of the laser scanning path. changes, so that the blowing of splashed powder can be completed without large wind force.
  • the powder collecting rod can move and rotate horizontally clockwise and counterclockwise 90°. The movement and rotation of the powder collecting rod can be synchronized to realize changes in the forming substrate surface as the laser scanning path changes, thereby ensuring that a large amount of splashed powder can be collected.
  • the air outlet rod and the powder collecting rod can move parallel to each other above the forming substrate surface, and the parallel distance is adjustable, so that the blown powder can be intercepted and collected in a timely and effective manner to prevent the splashed powder from falling back to the forming on the base surface and on the bottom of the device.
  • the air outlet rod, powder collection rod and laser scanning direction are parallel.
  • the laser spot is always kept within the parallel distance between the air outlet rod and the powder collection rod, so that it can blow the splash powder and control the movement of the splash powder to collect the splash without interfering with the forming process of the additive manufacturing process. powder.
  • the equipment for handling splashed powder in the metal powder additive manufacturing process can use a moving and rotating air outlet device and a splashing powder control device that can change with the laser scanning path. Based on multiple The control and coordination of the device allows the air outlet device that can blow circulating air and the splash powder device that can intercept and collect splash powder to move along the laser spot scanning path, so that smaller wind force than that required in the traditional additive manufacturing process can be used. Ensure that most of the splashed powder is blown to the desired area, thereby preventing the splashed powder from falling into other areas on the forming substrate surface. At the same time, using smaller wind force can make the molten pool of laser melted metal powder more stable, thereby improving the formability of selective laser melting and the quality stability of the formed parts.
  • the laser spot is set between the air outlet rod and the powder collecting rod, which can ensure that the splashed powder is collected by the powder collecting rod, thereby avoiding The flat metal powder layer falls onto the surface of the forming substrate, thereby ensuring the uniformity and stability of each layer of metal powder, thereby ensuring the density and strength of the final formed part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请公开了一种用于处理金属粉末增材制造过程中的飞溅粉末的设备,该设备包括刮刀铺粉装置、出风装置、飞溅粉末控制装置和集粉装置。所述刮刀铺粉装置包括刮刀,并且能够通过所述刮刀铺平放置在成形基板面上的金属粉末;所述出风装置和所述飞溅粉末控制装置安装在刮刀的侧面或者对面,并且分别能够对增材制造过程中的飞溅粉末进行吹送和拦截与收集所述飞溅粉末,以防止所述飞溅粉末落在成形基板面上;以及所述集粉装置被配置为能够清除由所述飞溅粉末控制装置收集的飞溅粉末并存储所清除的飞溅粉末,其中,所述出风装置和所述飞溅粉末控制装置由电机驱动进行移动和旋转,从而能够在所述成形基板面上方随扫描路径变化而变化。

Description

用于处理金属粉末增材制造过程中的飞溅粉末的设备
本申请要求在2022年06月16日提交中国专利局、申请号为202210685936.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及增材制造领域,例如涉及一种用于处理金属粉末增材制造过程中的飞溅粉末的设备。
背景技术
增材制造技术中的激光选区熔化(Selective Laser Melting,SLM)成形技术在工业领域得到广泛的应用,其通过以大功率激光作用在金属粉末上,使粉末熔化粘结的成形手段来逐层熔化粘结平铺的金属粉末,每一层对应实物三维图一截面的打印,层层累积,最终完成目标实体的成形。
在打印成形过程中,金属粉末在激光照射下会形成熔池。但是,在温场和气场的作用下,不稳定的熔池会不可避免的溅起飞溅物,特别是飞溅的粉末。飞溅的粉末相对于正常的打印粉末,其元素成分和球形度发生变化,回落到基板铺粉面后,将对后续打印产生影响,导致每层粉末的均匀性变差,最终降低成形件的致密度和强度性能。
相关技术中多采用在成形基板两侧设置固定的出风口和集粉口来处理打印过程中的飞溅粉末,从而形成固定位置的循环风对产生的飞溅粉末进行不间断吹送,以将飞溅粉末送离成形基板面。但是,在实际的金属粉末打印时,产生的飞溅粉末在固定位置的循环风作用下容易四处飘散,从而使得粉末在吹送后回落的速率不同,不能准确定点进入集粉口以被定点收集,导致飞溅粉末无法有效去除与收集。
而且,激光选区熔化成形技术对于飞溅粉末的处理较多采用的是通过循环送氩气,吹走打印过程中飞溅的粉末。但是,这种处理方式很难保证将其完全去除,较低的风力又不能有效地去除飞溅粉末,较高的风力将影响零件成形性,导致最终零件性能变差。由此可知,飞溅粉末无法有效去除的问题是影响激光选区熔化成形件质量的重要因素,需要通过技术进步加以解决。
发明内容
本申请提供了一种用于处理金属粉末增材制造过程中的飞溅粉末的设备, 以克服现有的处理金属粉末增材制造过程中的飞溅粉末的设备不能有效地进行飞溅粉末收集、造成未被收集的飞溅粉末回落到基板铺粉面、从而引起最终成形件的致密度和强度性能降低等问题。
本申请提供了一种用于处理金属粉末增材制造过程中的飞溅粉末的设备,该设备包括:刮刀铺粉装置,所述刮刀铺粉装置包括刮刀,并且被配置为能够通过所述刮刀铺平放置在成形基板面上的金属粉末;出风装置,所述出风装置安装在所述刮刀的侧面或者对面,并且被配置为能够对增材制造过程中的飞溅粉末进行吹送;飞溅粉末控制装置,所述飞溅粉末控制装置安装在所述刮刀的侧面或者对面,并被配置为能够拦截与收集所述飞溅粉末,以防止所述飞溅粉末落在所述成形基板面上;以及集粉装置,所述集粉装置被配置为能够清除由所述飞溅粉末控制装置收集的飞溅粉末并存储所清除的飞溅粉末,其中,所述出风装置和所述飞溅粉末控制装置能够由电机驱动进行移动和旋转,从而能够在所述成形基板面上方随扫描路径变化而变化。
根据本申请的一种实施方式,所述刮刀铺粉装置还包括能够拆卸安装的刮刀板,所述刮刀被嵌入位于所述刮刀板的下表面的凹槽中,并被配置为能够通过调节所述刮刀板的左右平衡,使得所述刮刀在操作中与所述成形基板保持平行。
根据本申请的另一种实施方式,所述刮刀铺粉装置还包括调节杆,所述调节杆的下端与所述刮刀板连接,并能够在传动轨道上滑动,从而带动所述刮刀板一起水平运动,以铺平放置在所述成形基板面上的粉末。
根据本申请的另一种实施方式,所述出风装置包括出风杆,所述出风杆上开设有出风口并且被配置为能够由所述电机控制和驱动进行移动和水平旋转,从而使得所述出风杆上的出风口能够沿所述扫描路径对所述增材制造过程中产生的所述飞溅粉末进行吹送。
根据本申请的另一种实施方式,所述出风杆的水平旋转中心位于所述出风杆的中间位置。
根据本申请的另一种实施方式,所述出风装置还包括送风管路和气源组件,所述送风管路与所述气源组件和所述出风杆连接,用以将所述气源组件提供的吹风气体输送至所述出风杆的出风口。
根据本申请的另一种实施方式,所述飞溅粉末控制装置包括集粉杆,该集粉杆被配置为能够由电机控制和驱动进行移动和旋转,从而使得集粉杆沿扫描路径对飞溅粉末进行拦截与收集。
根据本申请的另一种实施方式,所述集粉杆的上侧面设置有用于拦截所述 飞溅粉末运动的阻粉栅或者孔隙。
根据本申请的另一种实施方式,所述集粉杆的下部设置有用于收集被拦截的所述飞溅粉末的集粉部,而且所述集粉部被构造为具有宽开口式开口。
根据本申请的另一种实施方式,所述出风杆和所述集粉杆的移动方向和激光扫描方向平行,并且被配置为都能够由所述电机控制进行顺时针和逆时针水平旋转,旋转范围为0°至90°,并且均能够同步进行移动与水平旋转。
根据本申请的另一种实施方式,所述集粉杆被配置为能够由所述电机控制在随激光打印完一层的金属粉末后返回初始位置,从而不影响刮刀进行新一次的铺平金属粉末。
根据本申请的另一种实施方式,在所述金属粉末增材制造过程中,所述出风杆与所述集粉杆被配置为能够在所述成形基板面的上方彼此相距预定距离的平行移动,而且所述预定距离能够调节。
根据本申请的另一种实施方式,所述预定距离的范围为20mm-60mm。
根据本申请的另一种实施方式,在所述金属粉末增材制造过程中,激光光斑始终保持处在所述出风杆与所述集粉杆之间的预定距离内,并且离所述出风杆与所述集粉杆中的任一边侧的距离在允许范围内。根据本申请的另一种实施方式,所述允许范围为10mm-30mm。
根据本申请的另一种实施方式,所述集粉装置包括集粉罐部,所述集粉杆被配置为能够移动到所述集粉罐部所在位置的上方,以清除所述集粉杆收集的飞溅粉末,并将其转移至所述集粉罐部。
根据本申请的另一种实施方式,所述集粉杆被配置为能够由所述电机控制进行上下倾转,以清除所述集粉杆收集的飞溅粉末,并将其倾倒入所述集粉罐部。
根据本申请的另一种实施方式,所述集粉装置还包括出风口部,所述出风口部与所述集粉杆的阻粉栅或者孔隙相对,以通过所述阻粉栅或者所述孔隙吹送清除所述集粉杆收集的飞溅粉末,并将其吹入所述集粉罐部。
根据本申请的另一种实施方式,所述设备还被配置为清除所述集粉杆收集的飞溅粉末的过程能够与所述刮刀铺平金属粉末的过程同时进行。
附图说明
图1为根据本申请可选实施方式的用于处理金属粉末增材制造过程中的飞溅粉末的设备的示意图。
图2为图1中的用于处理金属粉末增材制造过程中的飞溅粉末的设备在不同角度下的示意图。
具体实施方式
下面结合说明书附图,对本申请的可选实施方式进行描述,以下的描述为示例性的,并非对本申请的限制,任何的其他类似情形也都落入本申请的保护范围之中。
在以下的描述中,位置性的术语,例如“侧面”、“对面”、“上方”、“上侧”、“上侧面”、“下部”“下表面”、“中间位置”、“底部”等,参考附图中描述的位置使用。本申请的实施方式的部件可被置于多种不同的位置,位置性的术语是用于示例的目的而非限制性的。
增材制造(Additive Manufacturing,AM)俗称3D打印,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除、切削、组装的加工模式不同,增材制造方法是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。
增材制造技术不需要传统的刀具、夹具以及多道加工工序,在一台设备上即可快速精密地制造出任意复杂形状的零件,从而实现零件“自由制造”,解决许多复杂结构零件的成形,并大大减少加工工序,缩短加工周期。而且产品结构越复杂,如大型整体金属结构,增材制造技术优势就越显著。
民用飞机越来越多地采用大型整体金属结构,但是传统制造和成形方法对于制造大型整体金属结构非常困难。研究发现,增材制造技术在复杂零件的精密铸造技术应用和金属零件直接制造以制造大尺寸航空零部件的方向有广阔的发展前景,是制造民用飞机的大型整体金属结构的可靠方法。通过金属粉末增材制造方法能够突破难加工大型整体关键构件,制造大尺寸、复杂结构的金属以及具有超高强度钢金属零件,并且制造的飞机构件综合力学性能能够达到或超过模锻件。
在金属粉末增材制造中,最常用的是激光选区熔化成形技术。激光选区熔化(SLM)成形技术是通过以大功率激光作用在金属粉末上,使金属粉末熔化粘结的一种成形手段,金属粉末逐层平铺,每一层对应实物三维图一截面的打印,层层累积,最终完成目标实体的成形。
在成形过程中,材料单元的控制技术,即如何控制材料单元在堆积过程中的物理与化学变化是一个难点,例如金属直接成形过程中,金属粉末在激光照射下会形成熔池。但是,激光熔化的微小熔池的尺寸和外界气氛控制直接影响制造精度和制件性能。
在温场和气场的作用下,不稳定的熔池会不可避免的溅起飞溅物,特别是飞溅的粉末。飞溅的粉末相对于正常的打印粉末,其元素成分和球形度发生变化,回落到成形基板面上的铺平后的金属粉末上,将对后续打印产生影响,导致每层粉末的均匀性变差,最终降低成形件的致密度和强度性能。
相关技术中多采用在成形基板两侧设置固定的出风口和集粉口来处理打印过程中的飞溅粉末,从而形成循环风对产生的飞溅粉末进行不间断吹送,以将飞溅粉末送离成形基板面。但是,在实际的金属粉末打印时,由于成形基板面较大,形成的循环风在不同位置风力不同,从而造成产生的飞溅粉末在循环风作用下被吹送后回落的速率不同,进而容易飘散,飞向四处,不能准确定点进入集粉口以被定点收集,最终导致飞溅粉末无法有效去除与收集。
而且,激光选区熔化成形技术对于飞溅粉末的处理较多采用的是通过循环送氩气,吹走打印过程中飞溅的粉末。但是,这种处理方式很难保证将其完全去除,较低的风力又不能有效地去除飞溅粉末,较高的风力将影响零件成形性,导致最终零件性能变差。由此可知,飞溅粉末无法有效去除的问题是影响激光选区熔化成形件质量的重要因素,需要通过技术进步加以解决。
为解决上述问题,发明专利(CN112643057A)公开了一种吹除飞溅金属粉末颗粒和烟尘的装置及其控制方法,该装置通过将贯流风机安装在刮刀上,来防止金属颗粒落在激光扫描区域;发明专利(CN111515393A)公开了一种具有智能烟尘收集装置的3D打印设备,该打印设备通过设置一种可移动的集粉单元来解决打印过程中出现的烟尘、飞溅粉末污染问题。但是由于激光熔化熔池的不稳定性以及激光的高温辐射,以上公开的去除飞溅粉末颗粒或者烟雾的方式都不适合所有激光扫描策略。即使激光扫描路径方向平行于循环风方向时,也不能有效地进行粉末收集,达到改善效果。
本申请针对相关技术的不足,提供一种改进的用于处理金属粉末增材制造过程中的飞溅粉末的设备,该设备通过可随激光扫描路径变化而移动和旋转的出风装置和飞溅粉末控制装置,能够使用较小风力的吹送风完成飞溅粉末的吹送,从而避免风力对熔池造成影响,同时又能够实现飞溅粉末的有效清除。该设备能够准确控制激光选区熔化过程中产生的飞溅粉末,从而有效避免飞溅粉末回落,由此改善每道次平铺粉末的均匀性,进而提高铝合金粉末的成形稳定性及其成形零件的性能,提升打印粉末回收处理的效率。下面将结合附图描述 该设备的结构以及工作方式。
图1示出了根据本申请可选实施方式的用于处理金属粉末增材制造过程中的飞溅粉末的设备。如图1所示,该设备包括刮刀铺粉装置、出风装置、飞溅粉末控制装置和集粉装置5,其中刮刀铺粉装置包括刮刀,出风装置安装在刮刀的侧面或者对面,飞溅粉末控制装置安装在刮刀的侧面或者对面,可选地,出风装置与飞溅粉末装置相对设置。该设备能够通过刮刀铺平放置在成形基板面上的金属粉末,然后控制出风装置对增材制造过程中的飞溅粉末进行吹送,并且控制飞溅粉末控制装置拦截与收集飞溅粉末,随后基于集粉装置5清除所收集的飞溅粉末并将其储存,其中出风装置和飞溅粉末控制装置能够移动和旋转,从而能够在成形基板面上方随扫描路径变化而变化,进而防止飞溅粉末落在成形基板面上和设备底部。
本申请所公开的用于处理金属粉末增材制造过程中的飞溅粉末的设备,通过采用能够进行移动和旋转的出风装置和所述飞溅粉末控制装置,使得二者能够随扫描路径变化而对应移动和旋转,由此形成能够随扫描路径变化而运动的稳定风场,从而无需大的吹风风力即可完成飞溅粉末的有效收集,由此避免吹风对成形件质量的影响。并且通过飞溅粉末控制装置随扫描路径变化的对应移动和旋转,能够实现大量的飞溅粉末的收集,从而准确控制飞溅粉末的运动,进而有效避免飞溅粉末回落至成型基板和设备底部。而且,通过有效收集飞溅粉末,能够避免飞溅粉末落入铺平后的金属粉末上,由此改善每道次平铺金属粉末的均匀性,从而提高金属粉末的成形稳定性及其成形零件的性能,还能够由此提升打印粉末回收处理的效率。此外,通过将出风装置与飞溅粉末控制装置布置在刮刀铺粉装置的侧面或者对面,能够避免出风装置以及飞溅粉末控制装置对于刮刀铺平金属粉末过程的干涉,由此保证平铺金属粉末的顺利进行以及铺平后金属粉末的平整均匀性。
刮刀铺粉装置还包括刮刀板1,刮刀板1与成形基板平行,其水平设置,能够进行拆卸地安装于刮刀铺粉装置。刮刀13可以为刮刀条,其嵌入式安装于刮刀板1下表面凹槽中,由此安装于刮刀铺粉装置。刮刀铺粉装置还可以包括调节杆2,调节杆2的下部与刮刀板1连接,调节杆2上侧通过连接杆与传动轨道12连接。调节杆2能够沿传动轨道12滑动,由此带动刮刀板1与刮刀13的运动,从而实现刮刀13运动铺平成形基板面上的金属粉末。此外,还能够通过调节杆2调节刮刀板1的左右平衡,使刮刀条与基板11平行并且保持平行,从而保证铺平后的金属粉末的平整度。
通过拆卸更换刮刀板,能够更换改变刮刀铺粉装置的刮刀,还能够通过设置调节装置与刮刀板连接,由调节装置带动刮刀板的运动,从而驱动刮刀的运 动实现成形基板面上的金属粉末铺平。此外,通过调节刮刀板来保证刮刀与成形基板保持平行,能够保证成形基板面上的铺平后的金属粉末的平整度,从而保证最终成形件的成形质量。
在增材制造过程中,出风装置能够对增材制造过程中的飞溅粉末进行吹送。出风装置安装于基板11一侧,其初始位置与刮刀板1垂直。示例性地,出风装置包括出风杆3、送风管路4、气源组件15和电机9,其中出风杆3具有出风口31,送风管路4与气源组件15和出风杆3连接,用以将气源组件15提供的吹风气体输送至出风杆3的出风口31。
示例性地,气源组件15为保护气瓶,提供的吹风气体为氩气。送风管路4连接保护气瓶,并输送保护氩气进入出风杆3,以对金属粉末增材制造过程中产生的飞溅粉末进行吹送。示例性地,出风杆3可由电机9或者由与电机9连接的伺服机构带动,在电机9的控制和驱动下进行水平移动及水平旋转,从而能够通过其上的出风口31沿扫描路径对增材制造过程中产生的飞溅粉末进行吹送。可选地,出风杆3的旋转中心位于出风杆3的中间位置。
通过设置能够移动和旋转的出风杆,能够保证形成的循环风在成形基板面上方的不同位置的风力都相同,从而保证飞溅粉末在吹送后回落的速率均相同,进而便于进行集粉。而且,通过设置能够运动的出风杆能够实现无需大的风力即可完成对于飞溅粉末的吹送,从而避免由于吹送风力过大而造成的熔池不稳定,进而影响成形件的质量。同时又能够提供足够的风力以将飞溅粉末完全去除,防止飞溅粉末对金属粉末增材制造过程造成影响,进而保证成形件的质量。通过更换气源组件,能够改变提供的吹风气体,并且能够在气体不足时进行替换补充。
飞溅粉末控制装置设置于出风装置的对侧,能够拦截并收集经由出风装置吹送的飞溅粉末和/或增材制造过程中产生的飞溅粉末。飞溅粉末控制装置包括集粉杆8和电机9,集粉杆8的初始位置垂直于刮刀板1,能够经由电机9或者由与电机9连接的伺服机构带动,在电机9的控制和驱动下进行移动及旋转,从而能够沿扫描路径对飞溅粉末进行拦截和收集。
示例性地,集粉杆8通过连接杆与电机9连接。飞溅粉末控制装置的集粉杆8的初始位置在刮刀板1边侧之外,伺服机构位于刮刀铺粉装置中的传动轨道12的下方,集粉杆8在随激光打印完一层的金属粉末后返回初始位置,不影响刮刀13的进行新一次金属粉末的平铺。
通过设置能够移动和旋转的集粉杆,能够及时拦截增材制造过程中产生的飞溅粉末以及经出风装置吹送的飞溅粉末,从而控制飞溅粉末的运动以避免飞溅粉末四处飘散,进而防止飞溅粉末落于成形基板面上以及设备底部。同时集 粉杆能够收集拦截的飞溅粉末,防止飞溅粉末落于成形基板面上和设备底部,并且防止拦截的粉末落入设备其他区域造成污染,不便于清洁和设备的长期使用。
在打印过程即金属粉末增材制造过程中,出风杆3和集粉杆8的移动方向和激光扫描方向平行,并且都能够由电机控制进行顺时针和逆时针水平旋转,旋转范围为0°至90°,并且均能够同步进行移动与水平旋转。出风杆3与集粉杆8在所述成形基板面上方彼此相距预定距离的平行移动,而且该预定距离能够调节。可选地,预定距离的范围为20mm-60mm。通过调节预定距离,能够保证出风装置吹送的飞溅粉末都能够有效的被集粉装置拦截和收集,从而保证飞溅粉末的有效去除,进而有效保证成形件的质量。而且,在金属粉末增材制造过程中,激光光斑始终保持处在出风杆3与集粉杆8之间的预定距离内,并且离其中任一边侧的距离在允许范围内。可选地,允许范围为10mm-30mm。通过将激光光斑保持在出风杆与集粉杆之间,能够实现出风装置吹送的大量飞溅粉末及时得到拦截并被收集,从而保证飞溅粉末的完全去除。
此外,集粉杆8的上侧面还可以设置有阻粉栅10或者孔隙,集粉杆8上的阻粉栅10能够拦截飞溅粉末,从而使其落于集粉杆8的下部或者装置底部。示例性地,集粉杆8的下部还设置有用于收集被拦截的飞溅粉末的集粉部14,而且集粉部14被构造为具有宽开口式开口。集粉部14的宽开口式开口能够增大集粉部14与被拦截飞溅粉末的接触面积,从而保证被拦截的飞溅粉末都能够得到及时的收集,能够落入集粉部14。
集粉装置5能够清除由飞溅粉末控制装置收集的飞溅粉末并存储所清除的飞溅粉末,便于飞溅粉末控制装置进行新一次的飞溅粉末收集。集粉装置5包括集粉罐部6,集粉杆8能够移动到集粉罐部6所在位置的上方,以清除集粉杆8收集的飞溅粉末,并将其转移至集粉罐部6中。示例性地,集粉杆8能够由电机9控制进行上下倾转,以清除其收集的飞溅粉末,并将其收集的飞溅粉末倾倒入集粉罐部6。每层金属粉末打印完毕时,集粉杆8返回初始位置并进行倾转,以清除其收集的飞溅粉末。示例性地,集粉杆8的初始位置位于集粉罐部6的所在位置的上方。
示例性地,集粉装置5上部设有出风口部7,当集粉杆8运动至集粉罐部6所在位置的上方时,出风口部7与集粉杆8的阻粉栅10或者孔隙相对,以通过阻粉栅10或者孔隙吹送清除集粉杆8收集的飞溅粉末,并将其吹入集粉罐部6,以用于对可移动的飞溅粉末控制装置中收集的飞溅粉末进行清除。又一示例性地,集粉装置5还包括连接集粉罐部,其下接集粉罐部6用于收集在激光选区熔化成形过程中产生的飞溅粉末。可选地,清除集粉杆8收集的飞溅粉末的过 程能够与刮刀铺平金属粉末的过程同时进行,以提高增材制造即3D打印成形的效率。
刮刀板1初始位置位于基板11一侧,每道次下粉后,进行前推铺粉,并完成铺粉操作,返回初始位置;激光光斑开始在平铺粉末上按照设定的扫描路径开始打印,扫描路径方向与刮刀板1互成一定角度。当扫描路径方向与刮刀板1互成45°时,打开气源组件,循环风机开启,电机9同步驱动带动出风杆3和刮刀板1互成角度为45°,打开气源组件,循环风机开启,电机9同步驱动带动出风杆3和集粉杆8水平旋转45°。当扫描路径方向与刮刀板1互成角度为90°时,打开气源组件,循环风机开启,电机9同步驱动带动出风杆3和集粉杆8水平移动。当扫描路径方向与刮刀板1平行时,打开气源组件,循环风机开启,电机9同步驱动带动出风杆3和集粉杆8水平旋转90°。
出风杆3和集粉杆8移动到激光光斑位置,随激光扫描路径平行移动,飞溅的粉末被阻粉栅10拦住,落入集粉杆8的集粉部14,在一层粉末扫描完成后返回基板11一侧,并进行倾转与出风口部7平行,并进行吹气,气体通过阻粉栅10将收集的飞溅粉末吹落到集粉罐部6中,然后倾转归位,完成一层的激光选区熔化成形过程,之后循环往复完成零件的打印加工。
本申请通过一种可随激光扫描路径变化的移动式出风装置和飞溅粉末控制装置,实现多装置的联动配合,以电机控制出风杆与集粉杆的移动,使得二者随激光光斑扫描路径移动。此方式比传统激光选区熔化成形系统所需风力更小,且能保证大部分飞溅粉末都被集粉杆收集,避免落入到成形基板面金属粉末层的其他区域,且较小的风力能使激光熔化粉末的熔池更加稳定,改善激光选区熔化成形性和成形后零件的质量稳定性,并提升粉末多次循环使用的寿命。
根据本申请的上述实施方式,通过出风杆可进行水平移动及水平顺时针和逆时针90°旋转,并且出风杆移动与旋转可同步进行,从而实现在成形基板面随激光扫描路径变化而变化,进而无需较大风力即可完成飞溅粉末的吹送。集粉杆可进行移动及水平顺时针和逆时针90°旋转,集粉杆的移动与旋转可同步进行,实现在成形基板面随激光扫描路径变化而变化,从而确保能够收集大量的飞溅粉末。出风杆与集粉杆在增材制造过程中,能在成形基板面上方相互平行移动,并且平行距离可调,从而能够吹送的飞溅粉末得到及时有效的拦截与收集,避免飞溅粉末回落到成形基板面上和设备底部。并且能够实现出风杆、集粉杆和激光扫描方向平行。此外,增材制造过程中,激光光斑始终保持在出风杆与集粉杆平行距离内,从而能够既不干涉增材制造的成形过程,又能够吹送飞溅粉末并控制飞溅粉末的运动以收集飞溅粉末。
在符合本领域常识的基础上,上述多个选条件,可任意组合,即得本申请 多个可选实例。
根据本申请上述实施方式的用于处理金属粉末增材制造过程中的飞溅粉末的设备,通过一种可随激光扫描路径变化的移动与旋转式出风装置及飞溅粉末控制装置,能够基于多个装置的控制配合,使得能够吹送循环风的出风装置和能够拦截与收集飞溅粉末的飞溅粉末装置随激光光斑扫描路径运动,从而能够使用比传统增材制造过程所需风力更小的风力即可保证大部分飞溅粉末都被吹送至期望区域,进而避免飞溅粉末落入到成形基板面上的其他区域。同时,使用较小的风力能使激光熔化金属粉末的熔池更加稳定,从而能够改善激光选区熔化成形性和成形后零件的质量稳定性。
此外,通过飞溅粉末控制装置的随激光扫描路径变化而移动与旋转的集粉杆,将激光光斑设置在出风杆与集粉杆之间,能够保证飞溅粉末都被集粉杆收集,从而避免落入到成形基板面上的铺平后的金属粉末层,由此保证每层金属粉末的均匀性和稳定性,进而保证最终成形件的致密度和强度性能。

Claims (18)

  1. 一种用于处理金属粉末增材制造过程中的飞溅粉末的设备,包括:
    刮刀铺粉装置,所述刮刀铺粉装置包括刮刀,并且被配置为能够通过所述刮刀铺平放置在成形基板面上的金属粉末;
    出风装置,所述出风装置安装在所述刮刀的侧面或者对面,并且被配置为能够对增材制造过程中的飞溅粉末进行吹送;
    飞溅粉末控制装置,所述飞溅粉末控制装置安装在所述刮刀的侧面或者对面,并被配置为能够拦截与收集所述飞溅粉末,以防止所述飞溅粉末落在所述成形基板面上;以及
    集粉装置,所述集粉装置被配置为能够清除由所述飞溅粉末控制装置收集的飞溅粉末并存储所清除的飞溅粉末,
    其中,所述出风装置和所述飞溅粉末控制装置由电机驱动进行移动和旋转,从而能够在所述成形基板面上方随扫描路径变化而变化。
  2. 如权利要求1所述的设备,其中,所述刮刀铺粉装置还包括能够拆卸安装的刮刀板,所述刮刀被嵌入位于所述刮刀板的下表面的凹槽中,并被配置为能够通过调节所述刮刀板的左右平衡使得所述刮刀在操作中与所述成形基板保持平行。
  3. 如权利要求2所述的设备,其中,所述刮刀铺粉装置还包括调节杆,所述调节杆的下端与所述刮刀板连接,并能够在传动轨道上滑动,从而带动所述刮刀板一起水平运动,以铺平放置在所述成形基板面上的粉末。
  4. 如权利要求1所述的设备,其中,所述出风装置包括出风杆,所述出风杆上开设有出风口并且被配置为能够由所述电机控制和驱动进行移动和水平旋转,从而使得所述出风杆上的出风口能够沿所述扫描路径对所述增材制造过程中产生的所述飞溅粉末进行吹送。
  5. 如权利要求4所述的设备,其中,所述出风杆的水平旋转中心位于所述出风杆的中间位置。
  6. 如权利要求4所述的设备,其中,所述出风装置还包括送风管路和气源组件,所述送风管路与所述气源组件和所述出风杆连接,用以将所述气源组件提供的吹风气体输送至所述出风杆的出风口。
  7. 如权利要求4所述的设备,其中,所述飞溅粉末控制装置包括集粉杆,所述集粉杆被配置为能够由所述电机控制和驱动进行移动和旋转,从而使得所述集粉杆沿所述扫描路径对所述飞溅粉末进行拦截与收集。
  8. 如权利要求7所述的设备,其中,所述集粉杆的上侧面设置有用于拦截 所述飞溅粉末运动的阻粉栅或者孔隙。
  9. 如权利要求8所述的设备,其中,所述集粉杆的下部设置有用于收集被拦截的所述飞溅粉末的集粉部,而且所述集粉部被构造为具有宽开口式开口。
  10. 如权利要求7所述的设备,其中,所述出风杆和所述集粉杆的移动方向和激光扫描方向平行,并且被配置为都能够由所述电机控制进行顺时针和逆时针水平旋转,旋转范围为0°至90°,并且均能够同步进行移动与水平旋转。
  11. 如权利要求7所述的设备,其中,所述集粉杆被配置为能够由所述电机控制在随激光打印完一层的金属粉末后返回初始位置,从而不影响所述刮刀进行新一次的铺平金属粉末。
  12. 如权利要求7所述的设备,其中,在所述金属粉末增材制造过程中,所述出风杆与所述集粉杆被配置为能够在所述成形基板面上方彼此相距预定距离的平行移动,而且所述预定距离在20mm-60mm的范围内能够调节。
  13. 如权利要求12所述的设备,其中,在所述金属粉末增材制造过程中,激光光斑始终保持处在所述出风杆与所述集粉杆之间的预定距离内,并且离所述出风杆与所述集粉杆中的任一边侧的距离在允许范围内。
  14. 如权利要求13所述的所述的设备,其中,所述允许范围为10mm-30mm。
  15. 如权利要求8所述的设备,其中,所述集粉装置包括集粉罐部,所述集粉杆被配置为能够移动到所述集粉罐部所在位置的上方,以清除所述集粉杆收集的飞溅粉末,并将其转移至所述集粉罐部。
  16. 如权利要求15所述的设备,其中,所述集粉杆被配置为能够由所述电机控制进行上下倾转,以清除所述集粉杆收集的飞溅粉末,并将其倾倒入所述集粉罐部。
  17. 如权利要求15所述的设备,其中,所述集粉装置还包括出风口部,所述出风口部与所述集粉杆的阻粉栅或者孔隙相对,以通过所述阻粉栅或者所述孔隙吹送清除所述集粉杆收集的飞溅粉末,并将其吹入所述集粉罐部。
  18. 如权利要求15所述的设备,其中,所述设备被配置为清除所述集粉杆收集的飞溅粉末的过程能够与所述刮刀铺平金属粉末的过程同时进行。
PCT/CN2022/133159 2022-06-16 2022-11-21 用于处理金属粉末增材制造过程中的飞溅粉末的设备 WO2023240926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210685936.7 2022-06-16
CN202210685936.7A CN117282992A (zh) 2022-06-16 2022-06-16 一种用于处理金属粉末增材制造过程中的飞溅粉末的设备

Publications (1)

Publication Number Publication Date
WO2023240926A1 true WO2023240926A1 (zh) 2023-12-21

Family

ID=89193029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133159 WO2023240926A1 (zh) 2022-06-16 2022-11-21 用于处理金属粉末增材制造过程中的飞溅粉末的设备

Country Status (2)

Country Link
CN (1) CN117282992A (zh)
WO (1) WO2023240926A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206169294U (zh) * 2016-11-10 2017-05-17 湖南华曙高科技有限责任公司 用于制造三维物体的设备及其除烟装置
CN107520445A (zh) * 2017-08-08 2017-12-29 重庆大学 高效大型选择性激光熔化成形装置
DE102017206815A1 (de) * 2017-04-24 2018-10-25 Volkswagen Aktiengesellschaft Verfahren zur Säuberung eines generativ gefertigten Teils
CN109261966A (zh) * 2018-11-29 2019-01-25 汕头大学 一种大尺寸移动吹吸烟选区激光熔化智能装备
CN110194669A (zh) * 2019-05-27 2019-09-03 华中科技大学 一种大型复杂零件的激光选区烧结成形装备、系统及方法
CN113770386A (zh) * 2021-10-20 2021-12-10 长沙新材料产业研究院有限公司 一种激光选区熔化成形装置
CN114289740A (zh) * 2021-12-31 2022-04-08 南京中科煜宸激光技术有限公司 适用于选区激光熔化的大幅面成型的一体式刮刀装置与铺粉式增材制造方法
CN114589317A (zh) * 2022-01-26 2022-06-07 北京科技大学 高效去除飞溅物的增材制造气路系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206169294U (zh) * 2016-11-10 2017-05-17 湖南华曙高科技有限责任公司 用于制造三维物体的设备及其除烟装置
DE102017206815A1 (de) * 2017-04-24 2018-10-25 Volkswagen Aktiengesellschaft Verfahren zur Säuberung eines generativ gefertigten Teils
CN107520445A (zh) * 2017-08-08 2017-12-29 重庆大学 高效大型选择性激光熔化成形装置
CN109261966A (zh) * 2018-11-29 2019-01-25 汕头大学 一种大尺寸移动吹吸烟选区激光熔化智能装备
CN110194669A (zh) * 2019-05-27 2019-09-03 华中科技大学 一种大型复杂零件的激光选区烧结成形装备、系统及方法
CN113770386A (zh) * 2021-10-20 2021-12-10 长沙新材料产业研究院有限公司 一种激光选区熔化成形装置
CN114289740A (zh) * 2021-12-31 2022-04-08 南京中科煜宸激光技术有限公司 适用于选区激光熔化的大幅面成型的一体式刮刀装置与铺粉式增材制造方法
CN114589317A (zh) * 2022-01-26 2022-06-07 北京科技大学 高效去除飞溅物的增材制造气路系统及方法

Also Published As

Publication number Publication date
CN117282992A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
Geng et al. Optimization of wire feed for GTAW based additive manufacturing
US20210107064A1 (en) Large-Scale Efficient Selective Laser Melting Forming Device
CN201300207Y (zh) 一种金属零件选区激光熔化快速成型设备
CN109590470B (zh) 一种多能场增材制造成形系统
CN109434109B (zh) 一种基于动态粉缸的激光选区熔化成形方法
US10773342B2 (en) 3D printing device and operation method thereof
CN103726049A (zh) 一种金属零件的激光增材制造方法和装备
CN109604596B (zh) 一种增材制造动态铺粉系统
CN105499578B (zh) 一种压力铸造极坐标3d打印设备与方法
CN106032063A (zh) 一种喷粉式3d打印喷头及其控制方法
CN107243633A (zh) 激光增减材复合制造装置及方法
CN208644390U (zh) 一种随带激光清洗功能的激光-电弧多用焊接装备
CN209288541U (zh) 一种激光切割废料排渣装置
WO2023240926A1 (zh) 用于处理金属粉末增材制造过程中的飞溅粉末的设备
CN108941558A (zh) 等增减材复合成形设备及其加工方法
CN109648079B (zh) 一种应用于增材制造的气氛保护装置
CN110355366A (zh) 铺粉器机构与可在线检测质量的金属增材制造装置及方法
CN1943960A (zh) 激光-电弧复合焊接协调控制方法
CN110004398A (zh) 一种交替熔丝送粉的电弧增材制造原位合金化装置及方法
CN113020620B (zh) 超大截面的金属3d打印方法及打印设备
CN213860737U (zh) 多激光增材制造成型设备的风路系统
CN105331974B (zh) 一种宽带激光熔覆系统及其送粉喷嘴
EP2377641B1 (en) Method and apparatus for Manufacturing a Component
CN115011960A (zh) 一种同轴宽带激光送粉嘴
CN114589317B (zh) 高效去除飞溅物的增材制造气路系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946592

Country of ref document: EP

Kind code of ref document: A1