WO2023240374A1 - Multicellular algae-based bio-photoanode and bioreactor - Google Patents

Multicellular algae-based bio-photoanode and bioreactor Download PDF

Info

Publication number
WO2023240374A1
WO2023240374A1 PCT/CL2023/050051 CL2023050051W WO2023240374A1 WO 2023240374 A1 WO2023240374 A1 WO 2023240374A1 CL 2023050051 W CL2023050051 W CL 2023050051W WO 2023240374 A1 WO2023240374 A1 WO 2023240374A1
Authority
WO
WIPO (PCT)
Prior art keywords
macroalgae
bioreactor
mediators
photocurrent
unza
Prior art date
Application number
PCT/CL2023/050051
Other languages
Spanish (es)
French (fr)
Inventor
Federico TASCA
Sergio Andrés CHOQUE MUÑOZ
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2023240374A1 publication Critical patent/WO2023240374A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts

Definitions

  • the invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air.
  • BPVE biological photovoltaic energy
  • photosynthetic membranes or whole organisms can use water as a source of electrons in the presence of light while atmospheric CO2 is reduced to form carbohydrates.
  • the ability to produce energy from photosynthesis has been studied in subcellular groups such as isolated photosystems I and II, thylakoid membranes, chloroplasts and photosynthetic microorganisms such as cyanobacteria and microalgae.
  • subcellular groups such as isolated photosystems I and II, thylakoid membranes, chloroplasts and photosynthetic microorganisms such as cyanobacteria and microalgae.
  • electrons can be transferred to external components such as electrodes more easily and efficiently than from complete cellular structures. But their extraction and purification processes make them more expensive and fragile, and they suffer long-term instability due to the harsh environment.
  • photosynthetic organisms such as cyanobacteria and microalgae are economical to cultivate, self-sustaining with the capacity for self-repair under suitable environmental conditions. All studies reported so far were performed using living unicellular organisms, while exogenous electrochemical communication (EEC) of multicellular organisms such as macroalgae has not yet been demonstrated.
  • EEC electrochemical communication
  • the invention patent application CL 2065-2020 describes a photobioreactor that comprises a base mechanical structure to cultivate cyanobacteria and microalgae, and support a control unit, and sensors and actuators for automatic management of the culture; and for harvesting, cleaning and restoring the culture medium.
  • patent application CN 107058114 describes marine microalgae that have electricity-generating activity and their application in electrochemistry.
  • the purpose of this invention is to provide a microalgae Nanochloropsis sp. generator of electricity from the ocean given the current situation of research into electricity-generating microalgae and their application in microbial fuel cells.
  • US Patent 10,665,866 describes a method for preparing an electrode for use in a biophotovoltaic device, which includes the steps of: coating a self-assembled film on a substrate using the technique of Langmuir-Blodgett; and immersing the coated substrate in a culture of microalgae, followed by incubation thereof so that microalgae grow on it, thus obtaining a biofilm, characterized in that the self-assembled film is derived from graphene.
  • Microbial Fuel Cell is a device that uses the metabolism of different microorganisms to obtain electrical energy. In general, it has two chambers interconnected by electrodes and a salt bridge. In one of the chambers, anaerobic bacteria are placed that, from the degradation of organic matter , produce energy (electrons) that they release into the medium. These electrons are captured by the electrode called the anode, and for a physical reason they flow to the electrode located in the second chamber, which is called the cathode.
  • the present invention patent application describes the use of macroalgae for the production of photocorrhet and molecular oxygen, with the objective of generating electricity, and purifying and ionizing the air.
  • macroalgae lies in its photosynthesis machinery, located within the thylakoid membranes, within the chloroplast.
  • the seaweed They are easy to grow and resistant to different environments, microalgae are commonly used in bioenergy production and pharmacology, while macroalgae are more frequently used in food production.
  • Macroalgae are formed by a sheet, which adds a useful arrangement for capturing solar energy, since it allows avoiding cellular saturation of microorganisms on the electrode as when microalgae or cyanobacteria are used. This is an advantage that provides greater efficiency in capturing sunlight through the cells, avoiding saturation on the electrode surfaces.
  • the invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air.
  • the present invention refers to the use of macroalgae for the production of photocurrent and molecular oxygen, with the aim of generating electricity, and purifying and ionizing the air.
  • the choice for macroalgae would be due to the fact that they present some advantages over microalgae in this area, such as their growth control is much easier, as well as their handling and waste treatment.
  • Figure 1 shows a macroscopic view of the green macroalgae
  • A Ulva compressa
  • B U. lactuca and
  • C U. unza.
  • Images D – F were taken of algal autofluorescence by confocal microscopy with a 40x zoom.
  • Figure 2 shows chronoamperometry measurements of graphite electrodes modified with disks of (A) U. compressa, (B) U. lactuca and (C) U. unza. Light cycles of 50 s. 1st cycle after 100 s. Insert: CV of the same electrode in the absence (black curve) and in the presence of light (red line) and at a scan speed of 50 mVs 1 .
  • Electrolyte solution 10 mM phosphate buffer at pH 7.5 including 10 mM NaCl and 5 mM MgCh.
  • Figure 3 shows amperometric measurements at 0.25 V versus Ag
  • Electrolyte solution 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCl2 at pH 7.5. Light cycles from 300s on/light off from 300s.
  • Figure 4 shows amperometry measurements at 0.25 V vs. Ag
  • Electrolyte solution A 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCl2 at pH 7.5. Light cycles from 300 s on/off to 400 s.
  • Figure 5 shows amperometry measurements at 0.25 V versus Ag
  • U Unza modified KCI graphite electrodes in the presence of 0.2 mM (green line) and 0.1 mM (black line) NQ. The inset shows the photocurrent achieved at different concentrations of NQ.
  • the invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air. Furthermore, the present invention relates to the use of macroalgae, such as green, red and brown photosynthetic algae, for the production of photocortent and molecular oxygen, with the aim of generating electricity, and purifying and ionizing the air.
  • macroalgae such as green, red and brown photosynthetic algae
  • the macroalgae are selected from green, red and brown photosynthetic macroalgae, which are selected from the classes Chlorarachniophyta, Chlorophyta, Chromeridae, Cryptophyta, Cyanophyta, Dinophyta, Euglenophyta, Glaucophyta Haptophyta, Heterokontae, Rhodophyta, Ulvophyceae, More specifically, macroalgae of the genera Ulva and Chaetomorpha are described, more specifically the species Ulva Lactuca, Ulva Compressa and Chaetomorpha Antennina.
  • the mediated transfer achieves an increase with respect to the direct transfer and is achieved thanks to exogenous mediators that penetrate the algae to oxidize in the photosynthesis process and subsequently go out to reduce in contact with the electrode corresponding to the anode that manages to conduct this photocurrent.
  • the mediators must be structurally small molecules, to be able to cross the different active transport channels or interact with transmembrane proteins, as well as to be able to more efficiently form conjugated polymers that improve their characteristics as bioelectrochemical mediators.
  • mediators that obtain electrons through redox reactions with transmembrane proteins in the external wall of the chloroplasts or endogenous mediators that have already emerged from the energy complexes, such as Fercyanide (FeCN), and If it is more similar, as in the case of Benzoquinone (BQ), it manages to enter the chloroplasts (and subsequent organelles where photosynthesis reactions occur), obtaining photocurrent directly from photosynthesis and not from more advanced endogenous redox intermediates in the transport chain.
  • Fercyanide Fercyanide
  • BQ Benzoquinone
  • Macroalgae have several advantages over single-celled organisms, such as: easier monitoring and handling at an industrial level, greater resistance to process stress, therefore, they generate greater current and for longer, easier waste disposal, and do not require sugar sources. external as various bacteria.
  • the increase in current that can be extracted from this system makes it possible to use it in low-consumption devices, such as industrial sensors, together with the natural action of decontaminating the air in photosynthesis at a higher rate and with more advantages. than higher plants, since it takes up fewer resources than these.
  • macroalgae can be used with all their advantages in systems that, due to their characteristics, require the ability to increase oxygen levels in their environment accompanied by the production of photocurrent that can be used from sensors of different ranges to secondary lighting.
  • the electrochemical cell was assembled with a traditional three-electrode configuration, i.e., an Ag
  • AgCI Kcisat reference electrode (Ohgalys, Rillieux-la-Pape, France), a platinum wire as a counter electrode, and a flat pyrolytic graphite electrode of modified edge with an algae disk (area, A 0.28 cm 2 ) as working electrode.
  • the algal disk was secured with a dialysis membrane (SnakeSkin Dialysis Tubing 10,000 MW, Thermo Fisher Scientific, LOCATION, COUNTRY) previously soaked in electrolyte buffer solution and sealed with a rubber gasket.
  • Cyclic voltammetry (CV) and amperometry were performed at a constant applied potential (Amp) in a dark room or in the presence of a fiber optic illuminator at a light intensity of 200 mMol/cm 2 .
  • a scan rate of 50 mVs 1 was used on all CVs presented.
  • All Amp measurements were performed by biasing the electrode at 0.25 V versus Ag
  • Results without mediators, i.e. direct electron transfer (DET), from the macroalgae U. lactuca, U. unza and U. compressa to bare graphite electrodes are shown in Figure 1. Also shown are macroalgae in the presence of redox mediators for mediated electron transfer (MET). Redox mediators have been widely studied for their ability to penetrate the phospholipid structures of various microorganisms and the possibility of transporting electrons from photosystem II (and to photosystem I), where the reaction of oxygen evolution to the external environment and to electrodes begins. .
  • DET direct electron transfer
  • MET mediated electron transfer
  • Macroalgae have tissues corresponding to the thallus, rhizoid, cauloid and phylloid.
  • the thallus of Ulvophyceae algae can be tubular like U. compressa (Fig. 1 A) or lamellar like U. lactuca and U. unza (Fig. 1 B and 1 C) and a cross section of these corresponding algae is seen in the Figure 1, D-F.
  • Photosynthetic organisms can be used in BPVE to catalyze water hydrolysis and simultaneously to obtain an electron flow, intercepting electrons from PS II and I. Defined photosynthetic strains are required for specific environmental conditions due to adaptation. Correct selection of strains is necessary to optimize photocurrent output in DET systems or to improve MET.
  • the CVs of the same electrodes in the presence and absence of light at a scan rate of 50 mVs 1 are shown in Figs. 2A-C. All CVs show the typical shape of electrodes modified with apparently non-redox active species. The shapes of these CVs reveal a high resistance to charge transfer. With the three macroalgae, a small increase in the oxidative and reducing extremes of CVs in the presence of light could be noted. The CVs of the bare graphite electrodes show no changes between the presence or absence of light. The increase in the oxidative region could be associated with the photosynthetic reactions carried out by macroalgae exposed to light. The oxidative process starts at a potential of approximately 0.05 V for U. compressa and U.
  • the concentration of the mediator and its availability to the redox center, where redox processes occur, are primary factors to take into account when developing MET processes.
  • concentration of FeCN was optimized by performing chronoamperometric experiments with various concentrations of FeCN. Amperometric experiments with U. Unza in the presence of various concentrations of FeCN showed an optimized current at 0.5 mM (inset of Fig. 3).
  • the system required at least 300 s to reach the baseline after illumination for 300 s and maintaining a rest time of 200 s. With this system, typical photocoherences were on the order of 5.2 pA/cm 2 , which represents an approximately 135-fold increase compared to DET measurements performed with the same macroalgae (Fig.
  • the photocurrent obtained for Ulva Unza, Ulva compressa and Ulva lactuca was carried out under direct electron transfer (DET) and mediated electron transfer (MET) conditions in the presence of 0.5 mM FeCN, 1 mM BQ or 0.2 NQ mm. Electrode polarized at 0.25 V vs. Ag
  • PCC 6803 were obtained, respectively, in MET systems with BQ as mediator. In our case, all MET systems showed a notable increase in photocorrhence. produced, similar to what was previously reported. Outstanding results were obtained for MET experiments with U. Unza modified electrodes with 1 mM BQ as a mediator, reaching a 1897-fold increase compared to the current obtained under DET conditions. The results obtained during the optimization of the BQ concentration are consistent with the results of Lee's group 55 with the cyanobacterium Anabaena variabilis, for which the best BQ concentration for photocurrent extraction was 1 mM. In general, the DET photocurrent of live cells in BPVE systems is on the order of 10 nA/cm2. With the macroalga U. compressa as shown in this study we were able to obtain almost 100 nA/ cm2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a multicellular algae-based bio-photoanode and bioreactor for producing power and oxygen, with the aim of generating electricity and purifying and ionising air.

Description

BIOFOTOÁNODO Y BIORREACTOR A BASE DE ALGAS PLURICELULARES BIOPHOTOMANODE AND BIOREACTOR BASED ON MULTI-CELLULAR ALGAE
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
CAMPO DE APLICACIÓN DE LA INVENCIÓN FIELD OF APPLICATION OF THE INVENTION
La invención se refiere a un biofotoánodo y biorreactor a base de algas pluricelulares para la producción de corriente y oxígeno, con el objetivo de generar electricidad, y purificar e ionizar el aire. The invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air.
DESCRIPCIÓN DEL ARTE PREVIO DESCRIPTION OF PREVIOUS ART
La combustión de combustibles fósiles para generar energía mecánica es la mayor fuente de gases de efecto invernadero, que se acumulan en la atmósfera y provocan el calentamiento global y el cambio climático. Esta acumulación desequilibrada de CO2 impulsa la búsqueda de fuentes de energía neutras en carbono. En este contexto, la energía fotovoltaica biológica (BPVE) representa un gran desafío, dado el bajo costo y alta sustentabilidad de los elementos constitutivos, así como por el aprovechamiento de la energía solar, que es considerada un reservoho infinito de energía. The combustion of fossil fuels to generate mechanical energy is the largest source of greenhouse gases, which accumulate in the atmosphere and cause global warming and climate change. This unbalanced accumulation of CO2 drives the search for carbon-neutral energy sources. In this context, biological photovoltaic energy (BPVE) represents a great challenge, given the low cost and high sustainability of the constituent elements, as well as the use of solar energy, which is considered an infinite reservoir of energy.
En BPVE, las membranas fotosintéticas o los organismos completos pueden usar agua como fuente de electrones en presencia de luz mientras que el CO2 atmosférico se reduce para formar carbohidratos. La capacidad de producir energía a partir de la fotosíntesis se ha estudiado en grupos subcelulares como los fotosistemas aislados I y II, las membranas tilacoides, los cloroplastos y vahos microorganismos fotosintéticos como las cianobactehas y las microalgas. Dado que las estructuras subcelulares mencionadas presentan pocas barreras, los electrones pueden transferirse a componentes externos como electrodos más fácil y eficientemente que desde estructuras celulares completas. Pero sus procesos de extracción y purificación los hacen más caros y frágiles y sufren inestabilidad a largo plazo debido al entorno adverso. Por otro lado, los organismos fotosintéticos como las cianobactehas y las microalgas son económicos de cultivar, autosostenibles con capacidad de autorreparación en condiciones ambientales adecuadas. Todos los estudios informados hasta ahora se realizaron utilizando organismos vivos unicelulares, mientras que la comunicación electroquímica exógena (EEC) de organismos multicelulares tal como las macroalgas, aún no se ha demostrado. In BPVE, photosynthetic membranes or whole organisms can use water as a source of electrons in the presence of light while atmospheric CO2 is reduced to form carbohydrates. The ability to produce energy from photosynthesis has been studied in subcellular groups such as isolated photosystems I and II, thylakoid membranes, chloroplasts and photosynthetic microorganisms such as cyanobacteria and microalgae. Given the The aforementioned subcellular structures present few barriers, electrons can be transferred to external components such as electrodes more easily and efficiently than from complete cellular structures. But their extraction and purification processes make them more expensive and fragile, and they suffer long-term instability due to the harsh environment. On the other hand, photosynthetic organisms such as cyanobacteria and microalgae are economical to cultivate, self-sustaining with the capacity for self-repair under suitable environmental conditions. All studies reported so far were performed using living unicellular organisms, while exogenous electrochemical communication (EEC) of multicellular organisms such as macroalgae has not yet been demonstrated.
Por ejemplo, la solicitud de patente de invención CL 2065-2020, describe un fotobiorreactor que comprende una estructura mecánica base para cultivar cianobactehas y microalgas, y dar soporte a una unidad de control, y sensores y actuadores para la gestión automática del cultivo; y para la cosecha, limpieza y restitución de medio de cultivo. For example, the invention patent application CL 2065-2020 describes a photobioreactor that comprises a base mechanical structure to cultivate cyanobacteria and microalgae, and support a control unit, and sensors and actuators for automatic management of the culture; and for harvesting, cleaning and restoring the culture medium.
Por otra parte, la solicitud de patente CN 107058114 describe microalgas marinas que tienen actividad generadora de electricidad y una aplicación de las mismas en electroquímica. El propósito de esta invención es proporcionar una microalga Nanochloropsis sp. generadora de electricidad desde el océano ante la situación actual de la investigación de microalgas generadoras de electricidad y su aplicación en celdas de combustible microbianas. On the other hand, patent application CN 107058114 describes marine microalgae that have electricity-generating activity and their application in electrochemistry. The purpose of this invention is to provide a microalgae Nanochloropsis sp. generator of electricity from the ocean given the current situation of research into electricity-generating microalgae and their application in microbial fuel cells.
En este mismo sentido, la Patente US 10,665,866 describe método para preparar un electrodo para usar en un dispositivo biofotovoltaico, que comprende las etapas de: recubrir una película autoensamblada sobre un sustrato usando la técnica de Langmuir-Blodgett; y sumergir el sustrato revestido en un cultivo de microalgas, seguido de la incubación del mismo para que crezcan microalgas sobre el mismo obteniendo así una biopelícula, caracterizada porque la película autoensamblada se deriva del grafeno. In this same sense, US Patent 10,665,866 describes a method for preparing an electrode for use in a biophotovoltaic device, which includes the steps of: coating a self-assembled film on a substrate using the technique of Langmuir-Blodgett; and immersing the coated substrate in a culture of microalgae, followed by incubation thereof so that microalgae grow on it, thus obtaining a biofilm, characterized in that the self-assembled film is derived from graphene.
Además, el documento no patente titulado “Exoelectrogenic bacteria that power microbial fuel cells” (Bruce E. Logan), describe microorganismos que pueden generar corriente eléctrica en celdas de combustible microbianas. Las biopelículas anódicas enriquecidas han generado densidades de potencia de hasta 6,9 W por m2 (área proyectada del ánodo) y, por lo tanto, se están acercando a los límites teóricos. Así, este artículo explora las razones subyacentes de la transferencia de electrones exocelulares, incluida la respiración celular y la posible comunicación célula-célula. Additionally, the non-patent document titled “Exoelectrogenic bacteria that power microbial fuel cells” (Bruce E. Logan), describes microorganisms that can generate electrical current in microbial fuel cells. Enriched anode biofilms have generated power densities of up to 6.9 W per m2 (anode projected area) and are therefore approaching theoretical limits. Thus, this article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.
En este mismo sentido, el documento no patente titulado “Potenciales tecnológicos de biofilm fotosintéticos en la remediación ambiental y generación de energía" (Alfonso, A.; Areco, M.; Curutchet, G), divulga que la Celda de Combustible Microbianas (CCM) es un dispositivo que utiliza el metabolismo de distintos microorganismos para obtener energía eléctrica. En forma general cuenta con dos cámaras interconectadas por electrodos y un puente salino. En una de las cámaras se colocan bacterias anaerobias que, a partir de la degradación de materia orgánica, producen energía (electrones) que liberan al medio. Estos electrones son captados por el electrodo que se denomina ánodo, y que por una cuestión física fluyen hacia el electrodo ubicado en la segunda cámara, que se denomina cátodo. Para que este fenómeno ocurra es necesario que en el cátodo haya un aceptor de electrones, como el oxígeno el cual se obtiene, por aireación o agitación. Aquí es donde resulta una ventaja utilizar las microalgas en las CCM. Si estos organismos se cultivan en el cátodo, se elimina la necesidad de agregar oxígeno, ya que este resulta del proceso de fotosíntesis. In this same sense, the non-patent document titled "Technological potentials of photosynthetic biofilm in environmental remediation and energy generation" (Alfonso, A.; Areco, M.; Curutchet, G), discloses that the Microbial Fuel Cell (MCC) ) is a device that uses the metabolism of different microorganisms to obtain electrical energy. In general, it has two chambers interconnected by electrodes and a salt bridge. In one of the chambers, anaerobic bacteria are placed that, from the degradation of organic matter , produce energy (electrons) that they release into the medium. These electrons are captured by the electrode called the anode, and for a physical reason they flow to the electrode located in the second chamber, which is called the cathode. For this phenomenon to occur it is It is necessary that there be an electron acceptor at the cathode, such as oxygen, which is obtained by aeration or agitation. This is where it is An advantage is to use microalgae in CCMs. If these organisms are grown on the cathode, the need to add oxygen is eliminated, as this results from the photosynthesis process.
Finalmente, el documento no patente titulado “Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices" (Cheng-Han Thong, Siew-Moi Phang, Fong-Lee Ng, Vengadesh Periasamy, Tau-Chuan Ling, Kamran Yunus, Adrian C. Fisher), desarrollaron plataformas biofotovoltaicas de algas (BPV) para recolectar electrones y generar bioelectricidad a través de la fotosíntesis de algas. Se menciona que la energía de la luz divide las moléculas de agua en oxígeno, protones y electrones, por lo que dichas plataformas biofotovoltaicas de algas (BPV) se utilizaron para recolectar estos electrones y generar bioelectricidad a través de la fotosíntesis de algas. En este estudio, se determinó el rango efectivo de niveles de irradiancia para la generación de energía a partir de dispositivos BPV de algas que comprenden cultivos de Chlorella en suspensión e inmovilizados con alginato en ánodos ITO. Finally, the non-patent document titled “Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices" (Cheng-Han Thong, Siew-Moi Phang, Fong-Lee Ng, Vengadesh Periasamy, Tau-Chuan Ling, Kamran Yunus , Adrian C. Fisher), developed algal biophotovoltaic (BPV) platforms to harvest electrons and generate bioelectricity through algal photosynthesis. It is mentioned that light energy splits water molecules into oxygen, protons and electrons, by what such algal biophotovoltaic (BPV) platforms were used to harvest these electrons and generate bioelectricity through algal photosynthesis. In this study, the effective range of irradiance levels for power generation from BPV devices was determined of algae comprising cultures of Chlorella in suspension and immobilized with alginate on ITO anodes.
De esta forma, queda en evidencia que los estudios informados hasta ahora se realizaron utilizando organismos vivos unicelulares, como las cianobactehas y las microalgas, mientras que la comunicación electroquímica exógena (EEC) de organismos multicelulares tal como las macroalgas, aún no se ha demostrado. In this way, it is evident that the studies reported so far were carried out using living unicellular organisms, such as cyanobacteria and microalgae, while exogenous electrochemical communication (EEC) of multicellular organisms, such as macroalgae, has not yet been demonstrated.
Por lo anterior, la presente solicitud de patente de invención describe el uso de macroalgas para la producción de fotocorhente y oxígeno molecular, con el objetivo de generar electricidad, y purificar e ionizar el aire. Therefore, the present invention patent application describes the use of macroalgae for the production of photocorrhet and molecular oxygen, with the objective of generating electricity, and purifying and ionizing the air.
La ventaja de utilizar macroalgas radica en su maquinaria de fotosíntesis, ubicada dentro de las membranas de los tilacoides, dentro del cloroplasto. Las algas son fáciles de cultivar y resistentes a diferentes ambientes, las microalgas se usan comúnmente en la producción de bioenergía y la farmacología, mientras que las macroalgas se usan con mayor frecuencia en la producción de alimentos. Las macroalgas están formadas por una lámina, lo que agrega un útil arreglo para la captación de energía solar, ya que permite evitar la saturación celular de microorganismos sobre el electrodo como cuando se emplean microalgas o cianobacterias. Esta es una ventaja que proporciona una mayor eficiencia en la captación de luz solar a través de las celdas, evitando la saturación sobre las superficies de los electrodos. The advantage of using macroalgae lies in its photosynthesis machinery, located within the thylakoid membranes, within the chloroplast. The seaweed They are easy to grow and resistant to different environments, microalgae are commonly used in bioenergy production and pharmacology, while macroalgae are more frequently used in food production. Macroalgae are formed by a sheet, which adds a useful arrangement for capturing solar energy, since it allows avoiding cellular saturation of microorganisms on the electrode as when microalgae or cyanobacteria are used. This is an advantage that provides greater efficiency in capturing sunlight through the cells, avoiding saturation on the electrode surfaces.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La invención se refiere a un biofotoánodo y biorreactor a base de algas pluricelulares para la producción de corriente y oxígeno, con el objetivo de generar electricidad, y purificar e ionizar el aire. Además, la presente invención se refiere al uso de macroalgas para la producción de fotocorriente y oxígeno molecular, con el objetivo de generar electricidad, y purificar e ionizar el aire. La elección por macroalgas se debería a que presentan algunas ventajas frente a las microalgas en esta temática, como que su control de crecimiento es mucho más fácil, así mismo como su manipulación y tratado de desechos. The invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air. Furthermore, the present invention refers to the use of macroalgae for the production of photocurrent and molecular oxygen, with the aim of generating electricity, and purifying and ionizing the air. The choice for macroalgae would be due to the fact that they present some advantages over microalgae in this area, such as their growth control is much easier, as well as their handling and waste treatment.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Figura 1 muestra una vista macroscópica de las macroalgas verdes (A) Ulva compressa, (B) U. lactuca y (C) U. Unza. Sección del talo monostromático de (D) U. compressa y una vista de superficie de la región media del talo de (E) U. lactuca y (F) U. Unza. Las imágenes D - F fueron tomadas con la autofluorescencia de las algas por microscopía confocal con un zoom de 40x. Figure 1 shows a macroscopic view of the green macroalgae (A) Ulva compressa, (B) U. lactuca and (C) U. unza. Section of the monostromatic thallus of (D) U. compressa and a surface view of the middle region of the thallus of (E) U. lactuca and (F) U. Unza. Images D – F were taken of algal autofluorescence by confocal microscopy with a 40x zoom.
La Figura 2 enseña medidas de cronoamperometría de electrodos de grafito modificados con discos de (A) U. compressa, (B) U. lactuca y (C) U. Unza . Ciclos de luz de 50 s. 1 er ciclo después de 100 s. Insertar: CV del mismo electrodo en ausencia (curva negra) y en presencia de luz (línea roja) y a una velocidad de barrido de 50 mVs 1 . Solución de electrolito: tampón de fosfato 10 mM a pH 7,5 que incluye NaCI 10 mM y MgCh 5 mM. Figure 2 shows chronoamperometry measurements of graphite electrodes modified with disks of (A) U. compressa, (B) U. lactuca and (C) U. unza. Light cycles of 50 s. 1st cycle after 100 s. Insert: CV of the same electrode in the absence (black curve) and in the presence of light (red line) and at a scan speed of 50 mVs 1 . Electrolyte solution: 10 mM phosphate buffer at pH 7.5 including 10 mM NaCl and 5 mM MgCh.
La Figura 3 muestra medidas amperométñcas a 0,25 V frente a Ag|AgCI sat. KCI de electrodos de grafito modificados con discos de U. Unza en presencia de FeCN 0,5 mM . El recuadro muestra la fotocorriente lograda a diferentes concentraciones de FeCN . Solución de electrolito: tampón de fosfato 10 mM que incluye NaCI 10 mM y MgCI2 5 mM a pH 7,5. Ciclos de luz de 300 s encendido/apagado de luz a partir de 300 s. Figure 3 shows amperometric measurements at 0.25 V versus Ag|AgCI sat. KCI of graphite electrodes modified with U. Unza disks in the presence of 0.5 mM FeCN. The inset shows the photocurrent achieved at different concentrations of FeCN. Electrolyte solution: 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCl2 at pH 7.5. Light cycles from 300s on/light off from 300s.
La Figura 4 muestra medidas de amperometría a 0,25 V frente a Ag|AgCI sat. KCI de electrodos de grafito modificados con discos de U. Unza inmovilizados sobre la superficie del electrodo en presencia de benzoquinona (BQ) 1 mM (línea verde) y 0,5 mM (línea negra). El recuadro muestra la fotocorriente lograda a diferentes concentraciones de BQ. Solución de electrolito: un tampón de fosfato 10 mM que incluye NaCI 10 mM y MgCI2 5 mM a pH 7,5. Ciclos de luz de 300 s de encendido/apagado de luz a partir de 400 s. Figure 4 shows amperometry measurements at 0.25 V vs. Ag|AgCI sat. KCI of graphite electrodes modified with U. Unza disks immobilized on the electrode surface in the presence of 1 mM (green line) and 0.5 mM (black line) benzoquinone (BQ). The inset shows the photocurrent achieved at different BQ concentrations. Electrolyte solution: A 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCl2 at pH 7.5. Light cycles from 300 s on/off to 400 s.
La Figura 5 muestra mediciones de amperometría a 0,25 V frente a Ag|AgCI Sat. Electrodos de grafito KCI modificados con U. Unza en presencia de NQ 0,2 mM (línea verde) y 0,1 mM (línea negra). El recuadro muestra la fotocorriente lograda a diferentes concentraciones de NQ. Solución de electrolito, un tampón de fosfato 10 mM que incluye NaCI 10 mM y MgCI2 5 mM a pH 7,5. Ciclos de luz de 200 s encendido/apagado de luz a partir de 100 s. Figure 5 shows amperometry measurements at 0.25 V versus Ag|AgCI Sat. U. Unza modified KCI graphite electrodes in the presence of 0.2 mM (green line) and 0.1 mM (black line) NQ. The inset shows the photocurrent achieved at different concentrations of NQ. Electrolyte solution, a 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCl2 at pH 7.5. Light cycles from 200 s on/light off from 100 s.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La invención se refiere a un biofotoánodo y biorreactor a base de algas pluricelulares para la producción de corriente y oxígeno, con el objetivo de generar electricidad, y purificar e ionizar el aire. Además, la presente invención se refiere al uso de macroalgas, tal como algas fotosintéticas verdes, rojas y marrones, para la producción de fotocorhente y oxígeno molecular, con el objetivo de generar electricidad, y purificar e ionizar el aire. The invention refers to a biophotoanode and bioreactor based on multicellular algae for the production of current and oxygen, with the aim of generating electricity, and purifying and ionizing the air. Furthermore, the present invention relates to the use of macroalgae, such as green, red and brown photosynthetic algae, for the production of photocortent and molecular oxygen, with the aim of generating electricity, and purifying and ionizing the air.
Dentro de una de las modalidades de la presente invención y sin limitar el alcance, las macroalgas se seleccionan de macroalgas fotosintéticas verdes, rojas y marrones, las que se seleccionan de las clases Chlorarachniophyta, Chlorophyta, Chromeridae, Cryptophyta, Cyanophyta, Dinophyta, Euglenophyta, Glaucophyta Haptophyta, Heterokontae, Rhodophyta, Ulvophyceae, Más específicamente, .se describen macroalgas de los géneros Ulva y Chaetomorpha, más específicamente las especies Ulva Lactuca, Ulva Compressa y Chaetomorpha Antennina. Within one of the embodiments of the present invention and without limiting the scope, the macroalgae are selected from green, red and brown photosynthetic macroalgae, which are selected from the classes Chlorarachniophyta, Chlorophyta, Chromeridae, Cryptophyta, Cyanophyta, Dinophyta, Euglenophyta, Glaucophyta Haptophyta, Heterokontae, Rhodophyta, Ulvophyceae, More specifically, macroalgae of the genera Ulva and Chaetomorpha are described, more specifically the species Ulva Lactuca, Ulva Compressa and Chaetomorpha Antennina.
Se han cultivados estas macroalgas y se ha medido la producción de fotocorhente directa (sin empleo de mediadores exógenos al sistema) y mediada (con la adición de mediadores exógenos al sistema), la cual tiene por razón ver cuánto se puede potenciar la producción directa. Este tipo de sistemas puede ser empleado en celdas de combustión microbiana (MFC), donde la producción de fotocorriente anódica viene acompañada además de la producción de O2, en la misma celda. These macroalgae have been cultivated and the direct (without the use of exogenous mediators to the system) and mediated photocortent production (with the addition of exogenous mediators to the system) have been measured, which is intended to see how much direct production can be enhanced. This type of system can be used in microbial combustion cells (MFC), where the production of Anodic photocurrent is also accompanied by the production of O2, in the same cell.
Esta tecnología muestra cómo los mismos factores que potencian la recolección y producción de fotocorriente logran hacerlo con la producción de oxígeno. La transferencia mediada logra un aumento con respecto a la transferencia directa y se logra gracias a mediadores exógenos que penetran en las algas para oxidarse en el proceso de fotosíntesis y posteriormente salir a reducir en contacto con el electrodo correspondiente al ánodo que logra conducir esta fotocorriente. Los mediadores deben ser moléculas pequeñas estructuralmente, para lograr atravesar los distintos canales de transporte activo o interactuar con proteínas transmembrana, así como para poder formar más eficientemente polímeros conjugados que mejoran sus características de mediadores bioelectroquímicos. Un mediador efectivo pero con poca afinidad lograra entrar a la célula vegetal, pero solo hasta espacio citosólico, en cambio un mediador con gran afinidad lograra entrar más adentro llegando al interior de los centros energéticos como los cloroplastos e inclusive tilacoides. Un ejemplo de esta primera instancia son mediadores que obtiene los electrones a través de reacciones redox con proteínas transmembranas en la pared externa de los cloroplastos o mediadores endógenos que han salido ya de los complejos energéticos, como es el caso del Ferñcianuro (FeCN), y si es más afín como el caso de la Benzoquinona (BQ) logra entrar a los cloroplastos (y subsiguientes organelos donde se producen las reacciones de fotosíntesis) obteniéndose fotocorriente directamente de la fotosíntesis y no de intermediarios redox endógenos más avanzados en la cadena de transporte. Estos mediadores facilitan un problema muy grande en la transferencia directa, la distancia máxima en que puede saltar el electrón y que obliga que el donor y aceptor de electrones de este mecanismo estén en contacto directo, esto es una complicación molecular, dado que no logra haber un contacto entre el electrodo y el interior de la célula vegetal, por lo que solo se logra la realización de este mecanismo cuando hay contacto entre el electrodo y estructuras especializadas (como proteínas transmembrana) de carácter redox en las paredes externas de la célula vegetal, lo que logra obtener una corriente mínima dado la pérdida intrínseca a la cadena de reacciones previas y utilización de la energía por parte de la célula vegetal. This technology shows how the same factors that enhance the collection and production of photocurrent manage to do so with the production of oxygen. The mediated transfer achieves an increase with respect to the direct transfer and is achieved thanks to exogenous mediators that penetrate the algae to oxidize in the photosynthesis process and subsequently go out to reduce in contact with the electrode corresponding to the anode that manages to conduct this photocurrent. The mediators must be structurally small molecules, to be able to cross the different active transport channels or interact with transmembrane proteins, as well as to be able to more efficiently form conjugated polymers that improve their characteristics as bioelectrochemical mediators. An effective mediator but with low affinity will be able to enter the plant cell, but only up to the cytosolic space, on the other hand, a mediator with high affinity will be able to enter deeper, reaching the interior of the energy centers such as chloroplasts and even thylakoids. An example of this first instance are mediators that obtain electrons through redox reactions with transmembrane proteins in the external wall of the chloroplasts or endogenous mediators that have already emerged from the energy complexes, such as Fercyanide (FeCN), and If it is more similar, as in the case of Benzoquinone (BQ), it manages to enter the chloroplasts (and subsequent organelles where photosynthesis reactions occur), obtaining photocurrent directly from photosynthesis and not from more advanced endogenous redox intermediates in the transport chain. These mediators facilitate a very big problem in direct transfer, the maximum distance in that the electron can jump and that requires that the electron donor and acceptor of this mechanism be in direct contact, this is a molecular complication, since there is no contact between the electrode and the interior of the plant cell, so This mechanism is only achieved when there is contact between the electrode and specialized structures (such as transmembrane proteins) of a redox nature in the external walls of the plant cell, which achieves a minimum current given the loss intrinsic to the chain of reactions. priors and use of energy by the plant cell.
Las macroalgas presentan varias ventajas sobre los organismos unicelulares como: monitoreo y manejo más fácil a nivel industrial, mayor resistencia al estrés del proceso, por ende, genera mayor corriente y por más tiempo, más fácil la eliminación de desechos, no necesita fuentes de azúcares externas como variadas bacterias. El aumento de corriente que se le puede extraer a este sistema, hace que sea posible ya su uso en artefactos de bajo consumo, como sensores industriales, junto a la acción natural de descontaminar el aire en la fotosíntesis a una tasa mayor y con más ventajas que las plantas superiores, ya que ocupa menos recursos que estas. Macroalgae have several advantages over single-celled organisms, such as: easier monitoring and handling at an industrial level, greater resistance to process stress, therefore, they generate greater current and for longer, easier waste disposal, and do not require sugar sources. external as various bacteria. The increase in current that can be extracted from this system makes it possible to use it in low-consumption devices, such as industrial sensors, together with the natural action of decontaminating the air in photosynthesis at a higher rate and with more advantages. than higher plants, since it takes up fewer resources than these.
Así, las macroalgas pueden ser empleadas con todas sus ventajas en sistemas que por sus características requieren poder aumentar los niveles de oxígeno en su ambiente acompañado de la producción de fotocorriente que puede ser utilizada desde sensores de distinta gama hasta iluminación secundaria. Thus, macroalgae can be used with all their advantages in systems that, due to their characteristics, require the ability to increase oxygen levels in their environment accompanied by the production of photocurrent that can be used from sensors of different ranges to secondary lighting.
EJEMPLOS EXAMPLES
Muestreo de algas: U. compresa , U. lactuca y U. Unza fueron recolectadas en Cachagua , Chile (32° 35'S 71 ° 27'W), un sitio libre de contaminación por metales que ha sido seleccionado como sitio de muestreo desde 2003 por el Grupo de Biotecnología Marina, en la Universidad de Santiago de Chile. Estas macroalgas fueron cultivadas en agua de mar reconstituida suplementada con medio Provasoli usando un fotoperíodo de 16/8 h en condiciones de luz/oscuridad a 14°C y con burbujeo de aire usando una bomba peristáltica. Algae sampling: U. compresa, U. lactuca and U. unza were collected in Cachagua, Chile (32°35'S 71°27'W), a site free of metal contamination that has been selected as a sampling site since 2003 by the Biotechnology Group Marina, at the University of Santiago de Chile. These macroalgae were cultured in reconstituted seawater supplemented with Provasoli medium using a 16/8 h photoperiod under light/dark conditions at 14°C and with air bubbling using a peristaltic pump.
Preparación e instrumentación de electrodos: Electrode preparation and instrumentation:
La celda electroquímica se ensambló con una configuración tradicional de tres electrodos, es decir, un electrodo de referencia Ag|AgCI Kcisat (Ohgalys, Rillieux-la- Pape, Francia), un alambre de platino como contraelectrodo y un electrodo de grafito pirolítico plano de borde modificado con un disco de alga (área, A = 0,28 cm2) como electrodo de trabajo. El disco de algas se aseguró con una membrana de diálisis (SnakeSkin Dialysis Tubing 10.000 MW, Thermo Fisher Scientific, UBICACIÓN, PAÍS) previamente empapada en solución electrolítica tampón y sellada con una junta tonca de goma. Todos los productos químicos para el medio de cultivo de provasoli y los mediadores utilizados en los sistemas MET, [es decir, ferricianuro (FeCN), p -benzoquinona (BQ) o 1 ,4-naftoquinona (NQ)] se compraron en forma de polvo a Sigma Aldrich (Saint Louis , MI, Estados Unidos) y utilizado tal como se recibió. Las mediciones se realizaron utilizando un potenciostato Autolab (Autolab 304 micro, Utrecht, Países Bajos) equipado con el software NOVA 1.1. Se usó como solución electrolítica un tampón de fosfato 10 mM que incluía NaCI 10 mM y MgCh 5 mM a pH 7,5 . Durante los experimentos de MET se añadieron los mediadores mencionados en varias concentraciones. Se realizaron voltametría cíclica (CV) y amperometría a un potencial aplicado constante (Amp) en una habitación oscura o en presencia de un iluminador de fibra óptica a una intensidad de luz de 200 mMol / cm2. Se utilizó una velocidad de exploración de 50 mVs 1 en todos los CV presentados. Todas las mediciones de Amp se realizaron polarizando el electrodo a 0,25 V frente a Ag|AgCI. A este potencial, que es más positivo que el del valor E°', los mediadores, lo que a su vez significa que todas las moléculas mediadoras deberían estar en su forma oxidada. Todas las medidas representan el análisis de cinco experimentos independientes. Las barras de error son el resultado de las diferencias significativas a través de un análisis de vahanza (ANOVA) con el software Origin 8, considerando un valor de p <0,05. The electrochemical cell was assembled with a traditional three-electrode configuration, i.e., an Ag|AgCI Kcisat reference electrode (Ohgalys, Rillieux-la-Pape, France), a platinum wire as a counter electrode, and a flat pyrolytic graphite electrode of modified edge with an algae disk (area, A = 0.28 cm 2 ) as working electrode. The algal disk was secured with a dialysis membrane (SnakeSkin Dialysis Tubing 10,000 MW, Thermo Fisher Scientific, LOCATION, COUNTRY) previously soaked in electrolyte buffer solution and sealed with a rubber gasket. All chemicals for provasoli culture medium and mediators used in MET systems, [i.e., ferricyanide (FeCN), p -benzoquinone (BQ), or 1,4-naphthoquinone (NQ)] were purchased in the form of powder to Sigma Aldrich (Saint Louis, MI, United States) and used as received. Measurements were performed using an Autolab potentiostat (Autolab 304 micro, Utrecht, The Netherlands) equipped with NOVA 1.1 software. A 10 mM phosphate buffer including 10 mM NaCl and 5 mM MgCh at pH 7.5 was used as the electrolyte solution. Mediators were added during the MET experiments. mentioned in various concentrations. Cyclic voltammetry (CV) and amperometry were performed at a constant applied potential (Amp) in a dark room or in the presence of a fiber optic illuminator at a light intensity of 200 mMol/cm 2 . A scan rate of 50 mVs 1 was used on all CVs presented. All Amp measurements were performed by biasing the electrode at 0.25 V versus Ag|AgCI. At this potential, which is more positive than the E°' value, the mediators, which in turn means that all mediator molecules should be in their oxidized form. All measurements represent the analysis of five independent experiments. The error bars are the result of significant differences through an analysis of variance (ANOVA) with the Origin 8 software, considering a value of p <0.05.
En la Figura 1 se muestran resultados sin mediadores, es decir, transferencia directa de electrones (DET), desde las macroalgas U. lactuca, U. Unza y U. compressa hasta electrodos de grafito desnudo. También se muestran las macroalgas en presencia de mediadores redox para la transferencia de electrones mediada (MET). Los mediadores redox se han estudiado ampliamente por su capacidad para penetrar las estructuras fosfolipídicas de varios microorganismos y la posibilidad de transportar electrones desde el fotosistema II (y al fotosistema I), donde comienza la reacción de evolución del oxígeno hacia el medio ambiente externo y a electrodos. Para tales investigaciones MET se utilizaron dos quinonas diferentes, "benzoquinona" (BQ) y "naftoquinona" (NQ) que tienen una alta afinidad por los centros fotosintéticos, dada la similitud con las quinonas endógenas de la fotosíntesis y también "ferricianuro" (FeCN) , un mediador no específico pero impermeable que puede interactuar con las proteínas transmembrana en la membrana citoplasmática de las algas. Estos resultados permiten concluir que posiblemente todas las algas fotosintéticas tal como verdes, rojas, marrones, podrían funcionar en la transferencia directa de electrones. Results without mediators, i.e. direct electron transfer (DET), from the macroalgae U. lactuca, U. unza and U. compressa to bare graphite electrodes are shown in Figure 1. Also shown are macroalgae in the presence of redox mediators for mediated electron transfer (MET). Redox mediators have been widely studied for their ability to penetrate the phospholipid structures of various microorganisms and the possibility of transporting electrons from photosystem II (and to photosystem I), where the reaction of oxygen evolution to the external environment and to electrodes begins. . For such MET investigations two different quinones were used, "benzoquinone" (BQ) and "naphthoquinone" (NQ) that have a high affinity for the photosynthetic centers, given the similarity with the endogenous quinones of photosynthesis and also "ferricyanide" (FeCN ), a non-specific mediator but impermeable that can interact with transmembrane proteins in the cytoplasmic membrane of algae. These results allow us to conclude that possibly all photosynthetic algae, such as green, red, and brown, could function in the direct transfer of electrons.
Las macroalgas tienen tejidos correspondientes al talo, rizoide, cauloide y filoide. El talo de algas de Ulvophyceae puede ser tubular como U. compressa (Fig. 1 A) o laminar como U. lactuca y U. Unza (Fig. 1 B y 1 C) y una sección transversal de estas algas correspondientes se observa en la Figura 1 , D-F. Los organismos fotosintético pueden ser utilizados en BPVE para catalizar la hidrólisis del agua y simultáneamente para obtener un flujo de electrones, interceptando electrones de PS II y I. Se requieren cepas fotosintéticas definidas para condiciones ambientales específicas debido a la adaptación. Es necesaria una selección correcta de las cepas para optimizar la salida de fotocorriente en los sistemas DET o para mejorar el MET. DET es más deseable por su simplicidad y la posibilidad de evitar costos adicionales debido a la necesidad de agregar mediadores a la solución. Aparte del factor económico, en muchos casos los mediadores también implican un coste energético, ya que es necesario un sobrepotencial extra para oxidar los mediadores en la superficie del electrodo. Macroalgae have tissues corresponding to the thallus, rhizoid, cauloid and phylloid. The thallus of Ulvophyceae algae can be tubular like U. compressa (Fig. 1 A) or lamellar like U. lactuca and U. unza (Fig. 1 B and 1 C) and a cross section of these corresponding algae is seen in the Figure 1, D-F. Photosynthetic organisms can be used in BPVE to catalyze water hydrolysis and simultaneously to obtain an electron flow, intercepting electrons from PS II and I. Defined photosynthetic strains are required for specific environmental conditions due to adaptation. Correct selection of strains is necessary to optimize photocurrent output in DET systems or to improve MET. DET is most desirable for its simplicity and the ability to avoid additional costs due to the need to add mediators to the solution. Apart from the economic factor, in many cases the mediators also imply an energy cost, since an extra overpotential is necessary to oxidize the mediators on the electrode surface.
U. Unza , U. lactuca y U. compressa se moldearon para producir discos de 0,28 cm2 , un área similar a la de los electrodos, y luego se utiliza para modificar la superficie de los electrodos de grafito desnudo. Para investigar la tasa de DET, se realizaron mediciones de Amp con ciclos de luz de 50 s. Los ciclos de luz comenzaron después de 100 s para estabilizar el sistema y alcanzar una línea de base (Fig. 2). Las mediciones representativas de los electrodos de macroalgas modificados se muestran en la Fig. 2 con U. Unza (Fig. 2A), U. lactuca (Fig. 2B) y U. compressa (Fig. 2C). U. unza, U. lactuca and U. compressa were molded to produce 0.28 cm 2 disks, an area similar to that of the electrodes, and then used to modify the surface of the bare graphite electrodes. To investigate the DET rate, Amp measurements were performed with 50 s light cycles. Light cycles began after 100 s to stabilize the system and reach a baseline (Fig. 2). Representative measurements of macroalgae electrodes modified are shown in Fig. 2 with U. unza (Fig. 2A), U. lactuca (Fig. 2B) and U. compressa (Fig. 2C).
Los CV de los mismos electrodos en presencia y ausencia de luz a una velocidad de exploración de 50 mVs 1 se muestran en las Figs. 2A-C. Todos los CV muestran la forma típica de electrodos modificados con especies que aparentemente no son redox activas. Las formas de estos CV revelan una alta resistencia a la transferencia de carga. Con las tres macroalgas se pudo notar un pequeño aumento en los extremos oxidativo y reductor de los CV en presencia de luz. Los CV de los electrodos de grafito desnudo no muestran cambios entre la presencia o ausencia de luz. El incremento en la región oxidativa podría estar asociado a las reacciones fotosintéticas realizadas por las macroalgas expuestas a la luz. El proceso oxidativo se inicia a un potencial aproximado de 0,05 V para U. compressa y U. lactuca , mientras que se inicia aproximadamente a 0 V para U. Unza ( Figs. 1A-C ). Las mediciones de amperaje con las tres macroalgas al polarizar el electrodo de trabajo a varios potenciales mostraron los mejores resultados en términos de corriente de oxidación del agua fotocatalítica con una polarización del electrodo de trabajo de 0,25 V para las tres algas (Fig. 2). The CVs of the same electrodes in the presence and absence of light at a scan rate of 50 mVs 1 are shown in Figs. 2A-C. All CVs show the typical shape of electrodes modified with apparently non-redox active species. The shapes of these CVs reveal a high resistance to charge transfer. With the three macroalgae, a small increase in the oxidative and reducing extremes of CVs in the presence of light could be noted. The CVs of the bare graphite electrodes show no changes between the presence or absence of light. The increase in the oxidative region could be associated with the photosynthetic reactions carried out by macroalgae exposed to light. The oxidative process starts at a potential of approximately 0.05 V for U. compressa and U. lactuca, while it starts at approximately 0 V for U. unza (Figs. 1A-C). Amperage measurements with the three macroalgae by polarizing the working electrode at various potentials showed the best results in terms of photocatalytic water oxidation current with a working electrode polarization of 0.25 V for the three algae (Fig. 2 ).
Las medidas de Amp se realizaron en tampón fosfato a pH 7,5, manteniendo el electrodo polarizado a un potencial de 0,25 V y empleando ciclos de 50 s de luz y 50 s de oscuridad. La corriente medida en condiciones de oscuridad se utiliza como referencia para calcular la densidad de corriente generada durante las condiciones de luz. Por lo tanto, durante la DET se midieron las siguientes densidades de corriente para cada una de las algas: 0,086 pAcm 2 para U. compressa , 0,046 pAcm 2 para U. lactuca y 0,038 pAcm 2 para U.linza . Los resultados con las barras de error correspondientes al promedio de 5 mediciones para 5 electrodos diferentes se reportan en la Tabla 1. U. compressa es la macroalga que proporciona la fotocorhente más alta entre las especies estudiadas en el sistema DET. Se ha informado que esta macroalga es capaz de acumular metales pesados, y ser capaz de soportar diferentes contaminantes ambientales. Amp measurements were performed in phosphate buffer at pH 7.5, keeping the electrode polarized at a potential of 0.25 V and using cycles of 50 s light and 50 s dark. The current measured under dark conditions is used as a reference to calculate the current density generated during light conditions. Therefore, during DET the following current densities were measured for each of the algae: 0.086 pAcm 2 for U. compressa, 0.046 pAcm 2 for U. lactuca and 0.038 pAcm 2 for U.linza. The results with the error bars corresponding to the average of 5 measurements for 5 different electrodes are reported in Table 1. U. compressa is the macroalga that provides the highest photocorrhence among the species studied in the DET system. It has been reported that this macroalgae is capable of accumulating heavy metals, and being able to withstand different environmental pollutants.
La concentración del mediador y su disponibilidad para el centro redox, donde ocurren los procesos redox, son factores primordiales a tener en cuenta al desarrollar procesos MET. En experimentos MET con macroalgas se optimizó la concentración de FeCN realizando experimentos cronoamperométricos con vahas concentraciones de FeCN. Experimentos amperométricos con U. Unza en presencia de vahas concentraciones de FeCN, mostraron una corriente optimizada a 0,5 mM (recuadro de la Fig. 3). El sistema requirió al menos 300 s para alcanzar la línea de base después de la iluminación durante 300 s y manteniendo un tiempo de reposo de 200 s. Con este sistema, las fotocorhentes típicas fueron del orden de 5,2 pA/cm 2 , lo que representa un aumento de aproximadamente 135 veces en comparación con las mediciones DET realizadas con las mismas macroalgas (Fig. 2 (C)). Cuando en presencia de concentraciones más bajas de FeCN, se pudieron obtener corrientes fotocatalíticas mucho más bajas de casi la mitad de la corriente fotocatalítica para 0,2 mM de FeCN, mientras que la concentración se incrementó a 1 mM también se obtuvieron corrientes más bajas (recuadro de la Fig. 3), probablemente debido a un efecto de saturación por parte del mediador, donde la carga se intercambiaría a otros centros redox de Fe en lugar de alcanzar la superficie del electrodo. Los resultados obtenidos con las tres macroalgas en presencia de FeCN se resumen en la Tabla 1 . The concentration of the mediator and its availability to the redox center, where redox processes occur, are primary factors to take into account when developing MET processes. In MET experiments with macroalgae, the concentration of FeCN was optimized by performing chronoamperometric experiments with various concentrations of FeCN. Amperometric experiments with U. Unza in the presence of various concentrations of FeCN showed an optimized current at 0.5 mM (inset of Fig. 3). The system required at least 300 s to reach the baseline after illumination for 300 s and maintaining a rest time of 200 s. With this system, typical photocoherences were on the order of 5.2 pA/cm 2 , which represents an approximately 135-fold increase compared to DET measurements performed with the same macroalgae (Fig. 2 (C)). When in the presence of lower concentrations of FeCN, much lower photocatalytic currents of almost half of the photocatalytic current for 0.2 mM FeCN could be obtained, while the concentration was increased to 1 mM lower currents were also obtained ( inset of Fig. 3), probably due to a saturation effect on the part of the mediator, where the charge would be exchanged to other Fe redox centers instead of reaching the electrode surface. The results obtained with the three macroalgae in the presence of FeCN are summarized in Table 1.
Tabla 1 . Fotocorriente obtenida para Ulva Unza , Ulva compressa y Ulva Lactuca:
Figure imgf000016_0001
Table 1 . Photocurrent obtained for Ulva Unza, Ulva compressa and Ulva Lactuca:
Figure imgf000016_0001
La fotocorriente obtenida para Ulva Unza , Ulva compressa y Ulva lactuca se realizó en condiciones de transferencia de electrones directa (DET) y transferencia de electrones mediada (MET) en presencia de FeCN 0,5 mM, BQ 1 mM o NQ 0,2 mM. Electrodo polarizado a 0,25 V vs. Ag|AgCI sat. KCI . Como solución de electrolito se utilizó tampón de fosfato 10 mM que incluye NaC1 10 mM y MgCI2 5 mM a pH 7,5. The photocurrent obtained for Ulva Unza, Ulva compressa and Ulva lactuca was carried out under direct electron transfer (DET) and mediated electron transfer (MET) conditions in the presence of 0.5 mM FeCN, 1 mM BQ or 0.2 NQ mm. Electrode polarized at 0.25 V vs. Ag|AgCI sat. KCI. 10 mM phosphate buffer including 10 mM NaC1 and 5 mM MgCl2 at pH 7.5 was used as the electrolyte solution.
Mientras que el FeCN inorgánico y cargado puede transportar electrones de las proteínas transmembrana a los electrodos, los mediadores orgánicos y neutros, similares a las quinonas, pueden penetrar la membrana citoplasmática e intercambiar electrones directamente con el fotosistema II. Se ha demostrado que BQ puede intercambiar electrones directamente con el pool de plastoquinona (PQ) en la cadena de transferencia de electrones fotosintéticos entre el fotosistema II y el complejo citocromo b o f. Por lo tanto, este mediador también se usó con U. compressa, U. lactuca y U. Unza para estudiar la eficiencia de sus reacciones MET. While inorganic and charged FeCN can transport electrons from transmembrane proteins to the electrodes, organic and neutral mediators, similar to quinones, can penetrate the cytoplasmic membrane and exchange electrons directly with photosystem II. It has been shown that BQ can exchange electrons directly with the plastoquinone (PQ) pool in the photosynthetic electron transfer chain between photosystem II and the cytochrome b or f complex. Therefore, this mediator was also used with U. compressa, U. lactuca and U. unza to study the efficiency of their MET reactions.
Las mediciones de amperometría de electrodos de grafito modificados con discos de U. Unza en presencia de BQ de 1 mM (línea verde) o 0,5 mM (línea negra) se muestran en la Fig. 4. Después de 400 s necesarios para obtener la línea base, el sistema fue ciclado con 300 s de luz seguido de 300 s de oscuridad. En estas condiciones, la fotocorhente más alta, 72,1 pA/cm 2 , se obtuvo a una concentración de BQ 1 mM. Cabe señalar que BQ no es soluble en concentraciones más altas. Además, el sistema parece ser ya inestable a una concentración de 1 mM. De hecho, después de un primer ciclo de 300 s de luz, los ciclos posteriores mostraron corrientes más bajas y una disminución de la corriente máxima, muy probablemente debido a problemas de hidrodinámica y permeabilidad del mediador dentro de la membrana citoplasmática de las macroalgas. Posteriormente, se realizaron experimentos MET con naftoquinona (NQ), un tipo diferente de quinona. NQ es menos soluble en soluciones acuosas en comparación con BQ, por lo que las concentraciones estuvieron en el rango entre 0,025 mM y 0,2 mM. Datos amperométhcos para U. Unza con 0,1 y 0,2 mM de NQ, con el electrodo polarizado a un potencial de 0,25 V vs. Ag|AgCI (Fig. 5). Después de inicialmente 100 s de oscuridad para alcanzar una línea de base constante, se aplicaron tres ciclos de luz de 200 s de luz/oscuridad cada uno. En este caso se obtuvo un máximo de 3,4 pA/cm 2 con la mayor concentración de NQ (0,2 mM). El menor aumento de fotocorhente obtenido para el sistema MET con NQ en comparación con el sistema con BQ se atribuye a la menor cantidad de mediador que es posible disolver en la solución y por lo tanto que puede llegar al fotosistema II además con la menor conducción termodinámica, fuerza ya que NQ tiene un E°' más bajo en comparación con BQ. Amperometry measurements of graphite electrodes modified with U. Unza discs in the presence of 1 mM (green line) or 0.5 mM (black line) BQ are shown in Fig. 4. After 400 s required to obtain baseline, the system was cycled with 300 s of light followed by 300 s of darkness. Under these conditions, the highest photocorrhence, 72.1 pA/cm 2 , was obtained at a 1 mM BQ concentration. It should be noted that BQ is not soluble at higher concentrations. Furthermore, the system appears to be already unstable at a concentration of 1 mM. In fact, after a first cycle of 300 s of light, subsequent cycles showed lower currents and a decrease in the maximum current, most likely due to problems of hydrodynamics and permeability of the mediator within the cytoplasmic membrane of the macroalgae. Subsequently, MET experiments were performed with naphthoquinone (NQ), a different type of quinone. NQ is less soluble in aqueous solutions compared to BQ, so concentrations were in the range between 0.025 mM and 0.2 mM. Amperometric data for U. Unza with 0.1 and 0.2 mM NQ, with the electrode polarized at a potential of 0.25 V vs. Ag|AgCl (Fig. 5). After initially 100 s of darkness to reach a constant baseline, three light cycles of 200 s light/dark each were applied. In this case, a maximum of 3.4 pA/cm 2 was obtained with the highest concentration of NQ (0.2 mM). The lower increase in photocortent obtained for the MET system with NQ compared to the system with BQ is attributed to the smaller amount of mediator that can be dissolved in the solution and therefore that can reach photosystem II, also with the lowest thermodynamic conduction. , strength since NQ has a lower E°' compared to BQ.
Se muestran los valores de corriente obtenidos con U. Unza , U. compressa y U. lactuca en condiciones DET y MET con los diferentes mediadores y los obtenidos con Paulschulzia pseudovolvox , Synechocystis sp. PCC 6803 y Anabaena variabilis para comparación (Tabla 1 ). De acuerdo con los grupos de investigación de Gorton's 21 y Clifford's 46 , obtuvimos una mejora sustancial de la corriente fotocatalítica medida en electrodos de grafito cuando se utilizó BQ como mediador en condiciones MET. De hecho, un incremento de alrededor de 40 pliegues con microalgas Paulschulzia pseudovolvox y la cianobacteria Synechocystis sp. PCC 6803 se obtuvieron, respectivamente, en sistemas MET con BQ como mediador. En nuestro caso, todos los sistemas MET mostraron un incremento notable en la fotocorhente producida, similar a lo reportado anteriormente. Se obtuvieron resultados sobresalientes para los experimentos MET con electrodos modificados con U. Unza con BQ 1 mM como mediador, alcanzando un aumento de 1897 veces en comparación con la corriente obtenida en condiciones DET. Los resultados obtenidos durante la optimización de la concentración de BQ son concordantes con los resultados del grupo 55 de Lee con la cianobacteria Anabaena variabilis , para la cual la mejor concentración de BQ para la extracción por fotocorriente fue 1 mM. En general, la fotocorriente DET de células vivas en sistemas BPVE es del orden de 10 nA / cm2 Con la macroalga U. compressa como se muestra en este estudio pudimos obtener casi 100 nA /cm2 . The current values obtained with U. Unza, U. compressa and U. lactuca under DET and MET conditions with the different mediators and those obtained with Paulschulzia pseudovolvox, Synechocystis sp. are shown. PCC 6803 and Anabaena variabilis for comparison (Table 1). According to the research groups of Gorton's 21 and Clifford's 46 , we obtained a substantial improvement of the photocatalytic current measured on graphite electrodes when BQ was used as a mediator under MET conditions. In fact, an increase of around 40 folds with microalgae Paulschulzia pseudovolvox and the cyanobacterium Synechocystis sp. PCC 6803 were obtained, respectively, in MET systems with BQ as mediator. In our case, all MET systems showed a notable increase in photocorrhence. produced, similar to what was previously reported. Outstanding results were obtained for MET experiments with U. Unza modified electrodes with 1 mM BQ as a mediator, reaching a 1897-fold increase compared to the current obtained under DET conditions. The results obtained during the optimization of the BQ concentration are consistent with the results of Lee's group 55 with the cyanobacterium Anabaena variabilis, for which the best BQ concentration for photocurrent extraction was 1 mM. In general, the DET photocurrent of live cells in BPVE systems is on the order of 10 nA/cm2. With the macroalga U. compressa as shown in this study we were able to obtain almost 100 nA/ cm2 .
De esta manera, se puede concluir que tres macroalgas del género Ulvophyceae , es decir, U. compressa , U. lactuca y U. Unza , se inmovilizaron en electrodos de grafito para experimentos biofotovoltaicos durante la biofotoelectrooxidación de agua a oxígeno. Se realizaron experimentos de voltamperometría y amperometría cíclica durante ciclos de condiciones de luz y oscuridad con o sin mediadores redox añadidos. Se obtuvieron resultados sobresalientes cuando se empleó U. compressa en condiciones DET y se observaron densidades de corriente de casi 100 nA /cm2. En condiciones MET los mejores resultados se obtuvieron con U. Unza y 1 mM de BQ y se detectó una densidad de corriente de casi 75 pA/cm2 . La presente invención sería la primera vez que se inmovilizan macroalgas en electrodos para experimentos biofotovoltaicos. Thus, it can be concluded that three macroalgae of the genus Ulvophyceae, i.e., U. compressa, U. lactuca and U. unza, were immobilized on graphite electrodes for biophotovoltaic experiments during the biophotoelectrooxidation of water to oxygen. Cyclic voltammetry and amperometry experiments were performed during cycles of light and dark conditions with or without added redox mediators. Outstanding results were obtained when U. compressa was used under DET conditions and current densities of almost 100 nA/cm 2 were observed. Under MET conditions, the best results were obtained with U. Unza and 1 mM BQ and a current density of almost 75 pA/cm 2 was detected. The present invention would be the first time that macroalgae are immobilized on electrodes for biophotovoltaic experiments.
Mientras esta invención ha sido descrita bajo las modalidades señaladas anteriormente, podría parecer evidente que otras alternativas, modificaciones o variaciones entregarían los mismos resultados. Consecuentemente, las modalidades de la invención pretenden ser ilustrativas, no limitantes. Varios cambios pueden ser realizados sin alejarse del espíritu y alcance de la invención como se define en las siguientes reivindicaciones. Todas las patentes, solicitudes de patentes, artículos científicos y otros documentos públicos que en conocimiento del solicitante constituyen el estado del arte, han sido adecuadamente citados en la presente solicitud. While this invention has been described under the modalities indicated above, it may seem evident that other alternatives, modifications or variations would deliver the same results. Consequently, the embodiments of the invention are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims. All patents, patent applications, scientific articles and other public documents that, to the knowledge of the applicant, constitute the state of the art, have been properly cited in this application.

Claims

REIVINDICACIONES
1 . Un biorreactor para la producción de fotocorriente y oxígeno, con el objetivo de producir energía eléctrica y purificar e ionizar el aire, CARACTERIZADO porque comprende: macroalgas fotosintéticas verdes, rojas y marrones; y mediadores bioelectroquímicos; en donde el biorreactor es útil para la producción de fotocorriente y oxígeno molecular. 1 . A bioreactor for the production of photocurrent and oxygen, with the objective of producing electrical energy and purifying and ionizing the air, CHARACTERIZED because it comprises: green, red and brown photosynthetic macroalgae; and bioelectrochemical mediators; where the bioreactor is useful for the production of photocurrent and molecular oxygen.
2. El biorreactor de acuerdo con la reivindicación 1 , CARACTERIZADO porque las macroalgas fotosintéticas verdes, rojas y marrones se seleccionan de las clases Chlorarachniophyta, Chlorophyta, Chromeridae, Cryptophyta, Cyanophyta, Dinophyta, Euglenophyta, Glaucophyta Haptophyta, Heterokontae, Rhodophyta, Ulvophyceae. 2. The bioreactor according to claim 1, CHARACTERIZED because the green, red and brown photosynthetic macroalgae are selected from the classes Chlorarachniophyta, Chlorophyta, Chromeridae, Cryptophyta, Cyanophyta, Dinophyta, Euglenophyta, Glaucophyta Haptophyta, Heterokontae, Rhodophyta, Ulvophyceae.
3. El biorreactor de acuerdo con la reivindicación 1 , CARACTERIZADO porque los mediadores bioelectroquímicos se seleccionan entre Ferricianuro, Benzoquinona. 3. The bioreactor according to claim 1, CHARACTERIZED because the bioelectrochemical mediators are selected from Ferricyanide, Benzoquinone.
4. Uso del biorreactor de acuerdo con las reivindicaciones 1 a 3, CARACTERIZADO porque es útil para la producción de fotocorriente y oxígeno, y que sirve para generar electricidad, y purificar e ionizar el aire. 4. Use of the bioreactor according to claims 1 to 3, CHARACTERIZED because it is useful for the production of photocurrent and oxygen, and that it serves to generate electricity, and purify and ionize the air.
5. Un biofotoanodo, CARACTERIZADO porque comprende el biorreactor de acuerdo con las reivindicaciones 1 a 3. 5. A biophotoanode, CHARACTERIZED because it comprises the bioreactor according to claims 1 to 3.
PCT/CL2023/050051 2022-06-15 2023-06-15 Multicellular algae-based bio-photoanode and bioreactor WO2023240374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2022001603A CL2022001603A1 (en) 2022-06-15 2022-06-15 Biophotoanode and bioreactor based on multicellular algae.
CL1603-2022 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023240374A1 true WO2023240374A1 (en) 2023-12-21

Family

ID=86337434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2023/050051 WO2023240374A1 (en) 2022-06-15 2023-06-15 Multicellular algae-based bio-photoanode and bioreactor

Country Status (2)

Country Link
CL (1) CL2022001603A1 (en)
WO (1) WO2023240374A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101880A (en) * 1983-11-08 1985-06-05 Rikagaku Kenkyusho Aqueous matter battery
JP2006302817A (en) * 2005-04-25 2006-11-02 Cy Tekku:Kk Photosynthetic fuel cell using water as material
WO2009040546A1 (en) * 2007-09-28 2009-04-02 H Plus Energy Limited Hydrogen and electrical current production from a photosynthetically driven semi biological devices (sbds)
WO2010117844A2 (en) * 2009-03-31 2010-10-14 University Of Maryland Biotechnology Institute Generating electrical power by coupling aerobic microbial photosynthesis to an electron-harvesting system
CN102351310A (en) * 2011-07-26 2012-02-15 西安交通大学 Microbial electrochemical CO2 capture system
KR101957023B1 (en) * 2016-06-16 2019-03-12 단국대학교 산학협력단 Photosynthetic cell based on graphene and cabon nanotube and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101880A (en) * 1983-11-08 1985-06-05 Rikagaku Kenkyusho Aqueous matter battery
JP2006302817A (en) * 2005-04-25 2006-11-02 Cy Tekku:Kk Photosynthetic fuel cell using water as material
WO2009040546A1 (en) * 2007-09-28 2009-04-02 H Plus Energy Limited Hydrogen and electrical current production from a photosynthetically driven semi biological devices (sbds)
WO2010117844A2 (en) * 2009-03-31 2010-10-14 University Of Maryland Biotechnology Institute Generating electrical power by coupling aerobic microbial photosynthesis to an electron-harvesting system
CN102351310A (en) * 2011-07-26 2012-02-15 西安交通大学 Microbial electrochemical CO2 capture system
KR101957023B1 (en) * 2016-06-16 2019-03-12 단국대학교 산학협력단 Photosynthetic cell based on graphene and cabon nanotube and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHLOSBERG YANIV; KRUPNIK NIMROD; TÓTH TÜNDE N.; EICHENBAUM BEN; MEIROVICH MATAN M.; MEIRI DAVID; YEHEZKELI OMER; SCHUSTER GADI; IS: "Bioelectricity generation from live marine photosynthetic macroalgae", BIOSENSORS AND BIOELECTRONICS, ELSEVIER SCIENCE LTD, UK, AMSTERDAM , NL, vol. 198, 27 November 2021 (2021-11-27), Amsterdam , NL , XP086909179, ISSN: 0956-5663, DOI: 10.1016/j.bios.2021.113824 *
VELASQUEZ-ORTA, S. ET AL.: "Energy From Algae Using Microbial Fuel Cells", BIOTECHNOLOGY AND BIOENGINEERING, vol. 103, no. 6, 15 August 2009 (2009-08-15), pages 1068 - 1076, XP071100091, DOI: 10.1002/bit.22346 *
ZHAO NANNAN, JIANG YINAN, ALVARADO-MORALES MERLIN, TREU LAURA, ANGELIDAKI IRINI, ZHANG YIFENG: "Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass", BIOELECTROCHEMISTRY, ELESEVIER, AMSTERDAM, NL, vol. 123, 1 October 2018 (2018-10-01), NL , pages 145 - 149, XP093121155, ISSN: 1567-5394, DOI: 10.1016/j.bioelechem.2018.05.002 *

Also Published As

Publication number Publication date
CL2022001603A1 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
McCormick et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems
Wetser et al. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode
Hasan et al. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer
Gajda et al. Photosynthetic cathodes for microbial fuel cells
Lee et al. A micro-sized bio-solar cell for self-sustaining power generation
Hasan et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes
Khan et al. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations
Bhatnagar et al. Mitochondrial biofuel cells: expanding fuel diversity to amino acids
Wei et al. Biopower generation in a microfluidic bio-solar panel
Li et al. Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina
KR20100067662A (en) Hydrogen and electrical currernt production from a photosynthetically driven semi biological devices(sbds)
Strack et al. Power generation from a hybrid biological fuel cell in seawater
Erable et al. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm
KR101957023B1 (en) Photosynthetic cell based on graphene and cabon nanotube and manufacturing method thereof
De Caprariis et al. Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVs)
Liu et al. Photoautotrophic cathodic oxygen reduction catalyzed by a green alga, Chlamydomonas reinhardtii
Ahirwar et al. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach
Zhu et al. Biophotovoltaics: Recent advances and perspectives
CN101838622A (en) Shewanella spp and application thereof in microbial fuel cell
Yildiz et al. Nanotechnology for biological photovoltaics; industrial applications of nanomaterials
Sun et al. Extraction of photosynthetic electron from mixed photosynthetic consortium of bacteria and algae towards sustainable bioelectrical energy harvesting
Lee et al. Enhanced Photocurrent Generation From a Single‐Mediated Photo‐Bioelectrochemical Cell Using Wild‐Type Anabaena Variabilis Dispersed in Solution
Kumar et al. Insights into the role of Bioinspiration, Photosynthetic organisms, and Biomass-derived Electrodes/Membranes in the development of Bioelectrochemical Systems
Khan et al. Photosynthetic microalgal microbial fuel cells and its future upscaling aspects
Kipf et al. An air-breathing enzymatic cathode with extended lifetime by continuous laccase supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822591

Country of ref document: EP

Kind code of ref document: A1