WO2023239048A1 - Method for preparing pancreatic cancer organoids mimicking cancer microenvironment and use thereof - Google Patents

Method for preparing pancreatic cancer organoids mimicking cancer microenvironment and use thereof Download PDF

Info

Publication number
WO2023239048A1
WO2023239048A1 PCT/KR2023/005508 KR2023005508W WO2023239048A1 WO 2023239048 A1 WO2023239048 A1 WO 2023239048A1 KR 2023005508 W KR2023005508 W KR 2023005508W WO 2023239048 A1 WO2023239048 A1 WO 2023239048A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
pancreatic cancer
cipco
organoids
organoid
Prior art date
Application number
PCT/KR2023/005508
Other languages
French (fr)
Korean (ko)
Inventor
유종만
최우희
고윤하
이경진
김지효
Original Assignee
차의과학대학교 산학협력단
오가노이드사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단, 오가노이드사이언스 주식회사 filed Critical 차의과학대학교 산학협력단
Publication of WO2023239048A1 publication Critical patent/WO2023239048A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for producing pancreatic cancer organoids simulating a cancer microenvironment.
  • the present invention relates to pancreatic cancer organoids prepared by the above production method and methods for evaluating and screening the efficacy of anticancer drugs using the pancreatic cancer organoids.
  • pancreatic cancer cell lines such as HPAC, PANC-1, Capan-2, and CFPAC-1 are used.
  • HPAC pancreatic cancer cell lines
  • PANC-1 pancreatic cancer cell lines
  • Capan-2 pancreatic cancer cell lines
  • CFPAC-1 pancreatic cancer cell lines
  • HPAC pancreatic cancer cell lines
  • PANC-1 pancreatic cancer cell lines
  • Capan-2 pancreatic cancer cell lines
  • CFPAC-1 CFPAC-1
  • PDO patient-derived cancer organoid models
  • PDO is a model created to closely resemble actual cancer tissue by cultivating organoids derived from the patient's cancer tissue in three dimensions, and has the advantage of maintaining the patient's unique genotype and phenotype.
  • PDO consists only of cancer cells, it has the disadvantage of not reflecting the cancer microenvironment, the interaction between the tumor microenvironment and cancer cells cannot be observed, and it has limitations in not being able to completely reproduce cancer tissue in vivo.
  • TEE tumor microenvironment
  • fibroblasts fibroblasts
  • immune cells fibroblasts
  • extracellular matrix extracellular matrix
  • pancreatic cancer organoids that mimic the cancer microenvironment.
  • CAF cancer-associated fibroblasts
  • One aspect of the invention provides a method for producing a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) comprising the following steps: (a) in pancreatic ductal adenocarcinoma (PDAC) tissue; Isolating pancreatic cancer cells; (b) culturing the separated cells into pancreatic cancer organoids (PCO) and cancer-associated fibroblasts (CAF), respectively; and (c) mixing and culturing the pancreatic cancer organoids and cancer-related fibroblasts.
  • CIPCO cancer microenvironment-mimicking pancreatic cancer organoid
  • PDAC pancreatic ductal adenocarcinoma
  • Isolating pancreatic cancer cells Isolating pancreatic cancer cells
  • PCO pancreatic cancer organoids
  • CAF cancer-associated fibroblasts
  • organoid refers to a cell mass with a 3D three-dimensional structure, and is manufactured through an artificial culture process rather than collected, acquired, or harvested from animals, etc., and is a reduced and simplified version. It is defined as an organ of Organoids have the advantage of being capable of long-term culture and cryopreservation and are easy to manipulate and observe. At the same time, it is an experimental model that maintains the original characteristics of cells as it does not require immortalization, and can study physiological phenomena at a level higher than that of cells by reproducing the hierarchical and histological structure of cells that can only be seen in vivo.
  • organoids can evaluate drugs with higher accuracy than immortalized cell lines with changed intrinsic cell characteristics or animal models with structures different from the human body.
  • organoids can be used in human clinical trials. It has the advantage of being able to check not only the safety but also the efficacy of the drug in advance.
  • pancreatic cancer organoid refers to an organoid derived from pancreatic cancer cells.
  • the PCO of the present invention can express the characteristics of pancreatic cancer cells as is, and a marker known to indicate the characteristics of pancreatic cancer cells (e.g., CK19, etc.) through analysis methods such as tissue staining, cytokine analysis, and immunofluorescence analysis. It can be confirmed that it appears.
  • a marker known to indicate the characteristics of pancreatic cancer cells e.g., CK19, etc.
  • analysis methods such as tissue staining, cytokine analysis, and immunofluorescence analysis. It can be confirmed that it appears.
  • the term “pancreatic cancer organoid” may be used interchangeably with “PCO”.
  • cancer-associated fibroblast refers to fibroblasts present inside and/or around a cancer lesion, and refers to fibroblasts whose characteristics have changed to allow cancer cells to grow. do.
  • CAFs secrete various growth factors such as FGF2, HGF, TGF-beta, SDF-1, VEGF, and IL-6 out of the cells to form a favorable microenvironment for cancer cells. They promote the growth and invasion of cancer cells, It directly causes metastasis and acts as a major cause of anticancer drug resistance.
  • carcinomas in which CAFs are intensively distributed do not respond to anticancer drugs, and even if the cancer cell killing effect that reduces the size of the tumor appears in response to anticancer drugs, if the cancer microenvironment centered on CAFs is healthy, cancer cells can easily grow. The likelihood of recurrence increases. Because of these characteristics, CAFs are recognized as an essential component among the various elements that make up the cancer microenvironment (Erik Sahai et al. Nat Rev Cancer. 2020 Mar;20(3):174-186.; Leilei Tao et al. Oncol Lett. 2017 Sep; 14(3): 2611-2620.) In this specification, “cancer-related fibroblasts” may be used interchangeably with “CAFs.”
  • cancer microenvironment-mimicking pancreatic cancer organoid refers to an organoid model prepared by mixing pancreatic cancer organoids (PCO) and cancer-related fibroblasts (CAF).
  • PCO pancreatic cancer organoids
  • CAF cancer-related fibroblasts
  • the in vivo cancer microenvironment is a cellular environment in which blood vessels, immune cells, fibroblasts (CAFs), lymphocytes, signaling molecules, and extracellular matrix (ECM) surround cancer cells. Cancer cells change their microenvironment by interacting with surrounding cells, and the microenvironment can affect the growth or metastasis of cancer cells.
  • CIPCO containing PCO and CAF can express the characteristics of pancreatic cancer that exist in the in vivo cancer microenvironment.
  • the term “cancer microenvironment-mimicking pancreatic cancer organoid” may be used interchangeably with “CIPCO”.
  • the step (a) is a step of obtaining pancreatic cancer cells from pancreatic ductal adenocarcinoma (PDAC) tissue isolated from an individual.
  • PDAC pancreatic ductal adenocarcinoma
  • the term “individual” includes all individuals who have never developed pancreatic cancer, are likely to develop it, have developed it, or have completely recovered from the disease, and include humans or any non-human animals. It can be included without limitation.
  • the non-human animal may be a vertebrate, such as a primate, dog, cow, horse, pig, rodent, such as mouse, rat, hamster, guinea pig, etc.
  • “individual” may be used interchangeably with “subject” or “patient.”
  • Pancreatic cancer cells obtained from the pancreatic cancer tissue may include stem cells.
  • the pancreatic cancer cells can be obtained through a process of cutting pancreatic cancer tissue and an enzyme decomposition process.
  • the cutting includes both physical cutting and mechanical cutting, and can be performed using general tissue cutting methods known in the art.
  • the enzymatic digestion can be performed under general enzymatic digestion conditions known in the art, for example, using collagenase II enzyme, and more specific examples are collagenase II, HEPES. and GlutaMAX.
  • Step (b) is a step of culturing the pancreatic cancer cells isolated in step (a) in Matrigel.
  • pancreatic cancer organoids PCO
  • the culture may be performed by mixing pancreatic cancer cells and Matrigel at a ratio of 0.5 to 1.5:0.5 to 1.5, and specifically, may be performed by mixing them at a ratio of 1:1.
  • the term “matrigel” refers to a protein complex (product name of BD Bioscience) extracted from sarcoma cells of EHS (Engelbreth-Holm-Swarm) mice.
  • the Matrigel contains extracellular matrix (ECM) such as laminin, collagen, and heparan sulfate proteoglycan, and fibroblast growth factor (FGF), epithelial cells.
  • ECM extracellular matrix
  • FGF fibroblast growth factor
  • Growth factors EGF
  • epiderma growth factor insulin growth factor
  • IGF insulin growth factor
  • TGF- ⁇ transforming growth factor-beta
  • PDGF platelet-derived growth factor
  • the culture of the PCO contains Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, N-Acetylcysteine, It may be performed with a culture medium containing one or more selected from the group consisting of EGF, Gastrin 1, and Plasmocin.
  • step (b) is a step of cutting the tissue from step (a) into small pieces, dispensing it on a culture plate, and culturing it while pressing it using a slide glass.
  • step (b) is the step of forming. Cultivation of the CAF may be performed with a culture medium containing one or more selected from the group consisting of FBS and GlutaMAX.
  • Step (c) is a step of mixing and culturing the pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF) cultured in step (b), which simulates the cancer microenvironment of pancreatic cancer. This is the stage of manufacturing organoids.
  • PCO pancreatic cancer organoid
  • CAF cancer-associated fibroblast
  • the mixing may be performed by mixing PCO and CAF at a ratio of 1:1 to 10, and more specifically, may be performed by mixing PCO and CAF at a ratio of 1:3 to 5, preferably 1:3 to 5. It can be performed by mixing at a ratio of 4. Additionally, the mixing may be performed by mixing PCO and CAF with cell numbers of 3.3 ⁇ 10 4 and 1 ⁇ 10 5 .
  • the culture of the PCO and CAF mixture is Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, N-acetylcysteine (N- It can be performed with a culture medium containing Acetylcysteine, EGF, Gastrin 1, and Plasmocin.
  • the cancer microenvironment-simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) prepared through the above-described steps (a) to (c) may express CK19 and Vimentin.
  • CK19 cytokeratin-19
  • PDAC gastroenteropancreatic and hepatobiliary epithelial or pancreatic cancer
  • CK19 can be used as a marker for PDAC or PCO.
  • VIM refers to a protein expressed by the VIM gene and plays a role in maintaining cell shape and stabilization of the cytoskeleton.
  • CK19 can be used as a marker for CAF.
  • CIPCO according to the present invention which expresses CK19 and Vimentin, can exhibit both the characteristics of PCO and CAF characteristics, and can perfectly mimic the cancer microenvironment existing in vivo.
  • the cancer microenvironment-simulating pancreatic cancer organoid prepared through the above-described steps (a) to (c) has epithelial to mesenchymal transition (EMT), proliferation ability, and cancer organoid compared to pancreatic cancer organoid. This may increase the metastatic ability and anticancer drug resistance.
  • EMT epithelial to mesenchymal transition
  • epithelial to mesenchymal transition refers to the transition from epithelial cell properties to mesenchymal cell properties, and is an important process in the movement and metastasis of cancer cells.
  • EMT epithelial to mesenchymal transition
  • CIPCO according to the present invention has increased EMT compared to general PCO that does not contain CAF, and accordingly, mobility and metastatic ability can be increased compared to PCO.
  • the term “proliferative ability of cancer organoids” refers to the cell division ability of cancer organoids, and means that cancer organoids divide themselves to increase their absolute number and quantity.
  • the term “metastatic ability of cancer organoids” is also called “migratory ability of cancer organoids,” where cancer organoids infiltrate the extracellular matrix surrounding them and migrate to other parts or other organs. It means transitioning to .
  • the proliferative or metastatic ability of cancer organoids is controlled by the cancer microenvironment surrounding the cancer organoid, and in particular, the proliferative or metastatic ability is increased by CAF. Therefore, CIPCO according to the present invention can increase the metastatic and migration ability of cancer organoids compared to general PCO that does not contain CAF.
  • anticancer drug resistance used in this specification is also called “anticancer drug resistance” or “anticancer drug refractoriness”, and when treating cancer patients with anticancer drugs, there is no effect from the beginning of treatment, or it is effective initially but continued treatment. This means that the effect is reduced or lost over the course of the treatment, or that the response to the treatment does not last for a long period of time.
  • Anticancer drug resistance of cancer cells is controlled by the cancer microenvironment surrounding the cancer cells, and in particular, CAF increases anticancer drug resistance. Therefore, CIPCO according to the present invention can increase the anticancer drug resistance of cancer organoids compared to general PCO that does not contain CAF.
  • Another aspect of the present invention provides a cancer microenvironment simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) prepared by the above manufacturing method.
  • CIPCO pancreatic cancer organoid
  • each term has the same meaning as described in the manufacturing method of CIPCO above, unless otherwise specified.
  • CIPCO is an organoid model containing pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF), and is a tissue/tissue very similar to the microenvironment of pancreatic cancer existing in vivo. It has cytological characteristics and functions. In addition, the CIPCO exhibits the characteristics of increased EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance compared to PCO that does not contain CAF.
  • PCO pancreatic cancer organoid
  • CAF cancer-associated fibroblast
  • the CIPCO has the advantage of being able to embody the in vivo cancer microenvironment very similarly in vitro , and can be used as a treatment for malignant tumors or a treatment that can overcome anticancer drug resistance. It can be useful for screening, efficacy evaluation, etc.
  • the CIPCO when the CIPCO is manufactured using cells or tissues derived from a patient, it can be used to confirm patient-specific anticancer drug resistance in advance.
  • Another aspect of the present invention provides a method for evaluating the efficacy of an anticancer agent, comprising the following steps: (a) injecting an anticancer agent candidate into the cancer microenvironment simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid); processing steps; (b) Measurement of one or more levels selected from the group consisting of epithelial to mesenchymal transition (EMT), proliferative ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance in CIPCO treated with the anticancer drug candidate. steps; and (c) determining the anticancer drug candidate as an anticancer drug when the level measured by CIPCO according to step (b) is lower than the level measured by the control group.
  • EMT epithelial to mesenchymal transition
  • the method for evaluating the efficacy of the anticancer agent may be a screening method for the anticancer agent.
  • each term has the same meaning as described in the CIPCO manufacturing method unless otherwise specified.
  • the step (a) is a step of treating the anticancer drug candidate to the CIPCO manufactured according to the above manufacturing method.
  • cancer refers to a substance expected to be able to treat cancer. Specifically, any substance that is expected to inhibit or improve the growth, movement, and metastasis of cancer cells, or increase the death of cancer cells can be used without limitation, and all substances expected to be treatable, such as compounds, genes, or proteins, can be used. Includes.
  • Treatment of the anticancer drug candidate may be performed using methods known in the art.
  • the CIPCO can be treated with an anti-cancer drug candidate and cultured together, or the anti-cancer drug candidate can be treated by administering the anti-cancer drug candidate into a living body containing the CIPCO, but the method is not limited thereto, and a method suitable for the purpose of the present invention is not limited thereto. can be used.
  • step (b) is a step of measuring one or more levels selected from the group consisting of EMT of CIPCO treated with the candidate material, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance.
  • the level of EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, or anticancer drug resistance can be measured using methods known to those skilled in the art.
  • the EMT can be analyzed by measuring the expression levels of Vimentin, Fibronectin, and/or ZEB-1.
  • the proliferation ability, metastatic ability, and/or anticancer drug resistance of the cancer organoid can be analyzed by measuring the increase or decrease in death of the cancer organoid, increase or decrease in volume, increase or decrease in body weight of the transplanted individual, and/or increase or decrease in survival rate of the transplanted individual, etc. .
  • Western blot Co-Immunoprecipitation assay, ELISA (Enzyme Linked Immunosorbent Assay), PCR (Polymerase chain reaction), reverse transcription PCR (RT-PCR; Reverse transcription PCR), quantitative reverse transcription PCR (RT-qPCR; Quantitative reverse transcription PCR), tissue staining such as H&E, Masson's trichrome, tissue immunostaining, Tissue immunocytochemistry, flow cytometry analysis, fluorescence-based assays, electron microscopic analysis, etc.
  • tissue staining such as H&E, Masson's trichrome, tissue immunostaining, Tissue immunocytochemistry, flow cytometry analysis, fluorescence-based assays, electron microscopic analysis, etc.
  • step (c) is when the level of EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and/or anticancer drug resistance measured by CIPCO according to step (b) above decreases compared to the level measured in the control group. , This is the step of determining the anticancer drug candidate as an anticancer drug.
  • control group refers to CIPCO that has not been treated with the anticancer drug candidate or CIPCO that has been treated with the anticancer drug. It is used to compare the level of metastatic potential or anticancer drug resistance.
  • the expression of Vimentin, Fibronectin, and/or ZEB-1 measured by CIPCO decreases compared to the level measured in the control group. This may be the case.
  • the proliferative capacity of cancer organoids measured by CIPCO decreases from the level measured in the control group
  • 1) the volume of cancer organoids measured in the CIPCO-implanted subject decreases compared to the level measured in the control group
  • 2) the body weight of the individual implanted with CIPCO increases compared to the level measured in the control group
  • 3) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group.
  • the metastatic ability of cancer organoids measured by CIPCO decreases from the level measured in the control group
  • 1) the volume of the cancer organoid measured in the CIPCO-implanted subject decreases compared to the level measured in the control group
  • 2) the body weight of the individual implanted with CIPCO increases compared to the level measured in the control group
  • 3) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group.
  • the anticancer drug resistance of the cancer organoid measured by CIPCO decreases compared to the level measured in the control group, when the subject is treated with an anticancer drug or anticancer drug candidate, 1) the cancer organoid measured in the subject transplanted with CIPCO It may be the case that the death of increases compared to the level measured in the control group, and/or 2) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group.
  • the level of the above-described EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, or anticancer drug resistance can be measured using methods known to those skilled in the art.
  • the EMT can be analyzed by measuring the expression levels of Vimentin, Fibronectin, and/or ZEB-1.
  • the proliferation ability, metastatic ability, and/or anticancer drug resistance of the cancer organoid can be analyzed by measuring the increase or decrease in death of the cancer organoid, increase or decrease in volume, increase or decrease in body weight of the transplanted individual, and/or increase or decrease in survival rate of the transplanted individual, etc. there is.
  • the production method according to the present invention can produce pancreatic cancer organoids that mimic the cancer microenvironment. Therefore, pancreatic cancer organoids prepared by the above method can be directly observed for their effects on cancer cell proliferation/metastasis and anticancer drug resistance, and can be used in the development of a drug screening platform to confirm patient-specific anticancer drug resistance in advance. In addition, it can contribute to research on molecular mechanisms for cancer treatment by observing the regulation of gene expression according to drug treatment.
  • FIG. 1 relates to the preparation of a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid).
  • CIPCO cancer microenvironment-mimicking pancreatic cancer organoid
  • A is a schematic diagram of the CIPCO manufacturing method
  • B is an image showing the degree of CIPCO formation according to the mixing ratio of pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF)
  • C is an image showing the degree of CIPCO formation.
  • This image shows the degree of fusion of CAF in PCO, CAF, and CIPCO.
  • BF (bright field) shows pictures taken with an optical microscope.
  • Figure 2 relates to the production of CIPCO and is an image showing the degree of formation of CIPCO according to the mixing ratio of PCO and CAF. This is the result of mixing and culturing PCO and CAF at a cell number ratio of 1:1, 1:2, 1:3, 1:4, or 1:5, respectively.
  • Figure 3 relates to the growth of CIPCO according to the culture period.
  • A is an image showing the culture period of PCO, CAF, and CIPCO
  • B is an image showing CK19 and Vimentin expressed in PCO and CIPCO.
  • Figure 4 relates to the organizational similarity of CIPCO.
  • A is an image showing the results of H&E staining and expressed vimentin for PCO, CIPCO, and human pancreatic cancer tissue
  • B is an image showing the results of Masson's trichrome staining for PCO, CIPCO, and human pancreatic cancer tissue.
  • C is an image showing the results of immunohistochemical staining for Nuclei, Vimentin, and Collagen I for PCO and CIPCO
  • D is an image showing collagen I expressed in PCO and CIPCO. This is a graph analyzing the amount of.
  • Figure 5 relates to CIPCO's CAF subtype.
  • A is an image showing the expression level of vimentin, IL-6, CK19, ⁇ -SMA, and MHC II expressed in human pancreatic cancer tissue (Tissue), CAF, PCO, and CIPCO
  • B is an image showing the expression level of human pancreatic cancer tissue (hPCT), CIPCO. This is a graph showing the ratio of CAF subtypes present in .
  • Figure 6 relates to CIPCO's epithelial to mesenchymal transition (EMT).
  • A is an image showing the results of H&E staining and the expression level of CK19, vimentin, and CK19 for PCO, CIPCO, and human pancreatic cancer tissue
  • B is CIPCO without ATRA (Control) or CIPCO with ATRA.
  • This is a graph showing the expression levels of ZEB-1, Fibronectin, and Vimentin in (ATRA).
  • Figure 7 relates to the EMT and metastatic ability of CIPCO using the Xenograft mouse model.
  • A is a graph showing the body weight of mice implanted with PCO or CIPCO
  • B is the results of H&E and Masson's trichrome staining for PCO or CIPCO implanted in mice, as well as ⁇ -SMA, vimentin, nucleus, CK19, and Twist-1. This image shows the results of immunohistochemical staining.
  • Figure 8 relates to anticancer drug resistance of CIPCO.
  • A is an image showing the results of immunohistochemical staining with PI (Propidium iodide) on PCO or CIPCO treated with anticancer drug (gemcitabine) at different concentrations
  • B is a graph showing the proportion of PI area in the image of A.
  • Vehicle refers to the control group that was not treated with anything
  • collagenase refers to the experimental group treated with collagenase.
  • Example 1 Method for manufacturing a cancer microenvironment-simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid)
  • CIPCO pancreatic cancer organoid
  • cancer tissue from a pancreatic cancer patient was cut into small pieces and cultured using separation buffer at 37°C for a total of 1 hour. Afterwards, the clump-shaped pancreatic cancer cells isolated from the pancreatic cancer tissue were mixed with Matrigel at a ratio of 1:1, and cultured using PCO culture medium to prepare a pancreatic cancer organoid (PCO). did. Additionally, cancer-associated fibroblasts (CAF) were prepared by placing the pancreatic cancer tissue in a 12-well plate, pressing the tissue with a glass slide, and culturing it using CAF culture medium. The composition of the buffer and medium used at this time is shown below.
  • PDAC pancreatic ductal adenocarcinoma
  • DMEM/F12 medium containing 5 mg/ml collagenase II, 10 mM HEPES, 1X GlutaMAX and 1X P/S (penicillin-streptomycin)
  • - PCO culture medium composition 50% conditioned-Wnt medium, 10% conditioned-R-spondin medium, 1X B-27, 10 mM nicotinamide, 10 mM HEPES, 1 Advanced DMEM/F12 medium containing 25 ⁇ g/ml Plasmocin
  • - CAF culture medium composition high glucose DMEM medium containing 10% FBS, 1X GlutaMAX and 1X P/S
  • PCO and CAF prepared by the above method were mixed and cultured at various ratios of 1:1 to 5, where PCO Culture medium was used.
  • the optimal ratio of PCO and CAF was identified by analyzing the degree of CIPCO formation and the degree of fusion of PCO and CAF according to the mixing ratio. A schematic diagram of this manufacturing method is shown in Figure 1A.
  • the cystic organoid is surrounded by the surrounding CAF-derived matrix and changes into a small-sized organoid with a dense lumen, which is a type of actual solid cancer. Reflects CAF and stromal characteristics of pancreatic cancer.
  • CIPCO prepared by mixing pancreatic cancer organoids (PCO) with CAF at a cell number ratio of 1:3 to 5, can simulate the microenvironment of pancreatic cancer, so it is useful as a drug screening and efficacy evaluation system. You can see that it can be done.
  • CIPCO prepared in Example 1 was analyzed for similarity to actual human pancreatic cancer tissue.
  • tissue similarity was analyzed by staining with H&E, Masson's Trichrome, etc.
  • CAFs can be divided into three subgroups: MyoCAFs (Myofibroblasts) expressing ⁇ -SMA, iCAFs (Inflammatory fibroblasts) expressing IL-6, and apCAFs (Antigen pregenting fibroblasts) expressing MHC II, respectively. am.
  • CAF, PCO, and CIPCO were each cultured, and on the 10th day of culture, they were fixed with 4% PFA, then paraffin blocks were created and sectioned. Afterwards, analysis was conducted on the markers of CAF subtype: ⁇ -SMA, IL-6, and MHC II.
  • CIPCO was confirmed to express markers of the CAF subtype in a pattern very similar to human pancreatic cancer tissue (Figure 5A).
  • CIPCO confirmed that CAF subtypes were expressed at a similar rate to human pancreatic cancer tissue (Figure 5B).
  • myoCAF is a CAF that is directly attached to or located adjacent to cancer cells
  • iCAF is a CAF that is located away from cancer cells.
  • several CAF subtypes of myoCAF, iCAF, and ap-CAF move around cancer cells in various ways. It is structured in the form.
  • pancreatic cancer cells isolated from pancreatic cancer tissue are formed into organoids (PCO), the organoids are then disassociated to create single cell pancreatic cancer cells, and then fused with CAF, the cancer cells and It was confirmed that only adjacent CAFs exist. Therefore, it was confirmed that using pancreatic cancer organoids in the production of CIPCO can more effectively simulate the cancer microenvironment than using single-cell pancreatic cancer cells.
  • organoids PCO
  • CIPCO prepared in Example 1 can simulate the cancer microenvironment, such as reflecting the CAF characteristics of pancreatic cancer tissue, and thus can be usefully used as a drug screening and efficacy evaluation system. .
  • EMT refers to the transition from epithelial cell properties to mesenchymal cell properties, and is an important process in the migration and metastasis of tumor cells.
  • mesenchymal cell marker genes Vimentin, Fibronectin, and ZEB-1 increases. Accordingly, the expression level of the gene was analyzed.
  • CIPCO increased the expression of vimentin compared to PCO.
  • EMT-related genes in CIPCO showed a pattern very similar to that in human pancreatic cancer tissue.
  • ATRA all-trans-retinoic acid
  • ATRA-treated CAFs were treated with ATRA.
  • CIPCO was produced by co-culturing with PCO. Afterwards, single cells were isolated from CIPCO using FACS, and the expression levels of EMT-related genes were analyzed through qRT-PCR.
  • CIPCO confirmed that the expression of all EMT-related genes (ZEB-1, fibronectin, vimentin) was reduced by ATRA treatment, and the EMT of cancer cells increased in co-culture. It was confirmed that the difference in marker expression was due to CAF.
  • CIPCO prepared in Example 1 can induce EMT involved in cancer movement and metastasis, and can perfectly mimic the microenvironment of pancreatic cancer, making it useful as a drug screening and efficacy evaluation system. You can see that it can be used.
  • CIPCO-derived cancer cells were confirmed to have increased expression of the ⁇ -SMA gene compared to PCO-derived cancer cells.
  • the expression of ⁇ -SMA/vimentin represents fibroblasts like CAF, and the expression level was higher in CIPCO-derived cancer cells than in PCO-derived cancer cells, confirming that CAFs form tissues together in CIPCO-derived cancer cells. It was confirmed that the formation of my ECM was further increased.
  • CIPCO-derived cancer cells were confirmed to have a higher amount of Twist-1 expressed when the tumor metastasizes compared to PCO-derived cancer cells, and through this, it was confirmed that EMT increases in CIPCO.
  • CIPCO prepared in Example 1 can aggressively induce cancer growth, migration, and metastasis in vivo, and can perfectly mimic the microenvironment of pancreatic cancer, making it suitable for drug screening and efficacy evaluation. It can be seen that it can be usefully utilized as a system.
  • Anticancer drug resistance of CIPCO prepared in Example 1 was analyzed.
  • Gemcitabine is mainly used as a treatment for pancreatic cancer, but when applied to actual pancreatic cancer patients, the anticancer effect may be reduced due to resistance to the drug.
  • the mechanism for anticancer drug resistance has been suggested to be 1) inefficient drug delivery due to physical obstacles caused by the tumor microenvironment or 2) molecular defense caused by EMT of tumor cells.
  • anticancer drug resistance was analyzed by confirming the degree of survival of CIPCO by anticancer drug treatment.
  • Immunohistochemical analysis was performed by staining the nuclei of cells with PI (propidium iodide), and the ratio of PI area was analyzed.
  • CIPCO manufactured in Example 1 can simulate the microenvironment of pancreatic cancer that exhibits anticancer drug resistance, making it useful for customized treatment that can determine in advance the drug resistance or drug effect that exists in the patient. It can be used as an effective in vitro model in the development of combination agents for anticancer drug evaluation and sensitivity control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

The present invention relates to a method for preparing pancreatic cancer organoids mimicking a cancer microenvironment. In addition, the present invention relates to a method for evaluating the efficacy of pancreatic cancer organoids prepared by the above preparation method and an anticancer agent using the pancreatic cancer organoids, and a screening method. The preparation method according to the present invention can prepare pancreatic cancer organoids that perfectly mimic a cancer microenvironment. Accordingly, the pancreatic cancer organoids prepared by the above method can directly observe the effects on cancer cell proliferation/metastasis and anticancer agent resistance, and can be used to develop a drug screening platform to confirm patient-specific anticancer agent resistance in advance. In addition, observation of gene expression regulation according to drug treatment can contribute to the study of molecular mechanisms for the purpose of cancer treatment.

Description

암 미세환경 모사 췌장암 오가노이드의 제조방법 및 이의 용도Method for manufacturing pancreatic cancer organoids simulating cancer microenvironment and use thereof
본 발명은 암 미세환경 모사 췌장암 오가노이드의 제조방법에 관한 것이다. 또한, 본 발명은 상기 제조방법으로 제조된 췌장암 오가노이드 및 상기 췌장암 오가노이드를 이용한 항암제의 효능 평가 방법 및 스크리닝 방법에 관한 것이다.The present invention relates to a method for producing pancreatic cancer organoids simulating a cancer microenvironment. In addition, the present invention relates to pancreatic cancer organoids prepared by the above production method and methods for evaluating and screening the efficacy of anticancer drugs using the pancreatic cancer organoids.
현재 신약개발을 위한 약물평가는 세포주(Cell-line) 또는 동물 모델을 통해 이루어지고 있다. 세포주 이용 방법은 기 확립된 세포주를 활용하므로 가장 손쉽게 사용할 수 있는 방법이며, 예를 들어 췌장암 세포주로는 HPAC, PANC-1, Capan-2, CFPAC-1 등이 이용되고 있다. 다만, 환자 개개인 별로 다른 유전적 특성을 갖고 있기 때문에 특이 병인기전 및 약물반응 등을 관찰할 수 없다는 단점이 있다. 동물 모델로는 종양 조직을 마우스에 이식하여 만드는 모델인 환자유래 암 조직 이식 모델(PDX; Patient-derived mouse xenograft)이 사용되고 있다. 이는 환자의 특성을 가장 잘 반영하지만 모델 제작까지 많은 시간이 소요되고, 실패율이 높고, 노동집약적이라는 실용적인 측면에서 단점이 있다.Currently, drug evaluation for new drug development is conducted through cell lines or animal models. The method of using cell lines is the easiest to use because it utilizes already established cell lines. For example, pancreatic cancer cell lines such as HPAC, PANC-1, Capan-2, and CFPAC-1 are used. However, because each patient has different genetic characteristics, there is a disadvantage that specific pathogenic mechanisms and drug reactions cannot be observed. As an animal model, a patient-derived cancer tissue transplant model (PDX; Patient-derived mouse xenograft), which is a model made by transplanting tumor tissue into a mouse, is used. This best reflects the patient's characteristics, but has practical disadvantages in that it takes a lot of time to create the model, has a high failure rate, and is labor-intensive.
이에 따라, 환자 유래 암 오가노이드 모델(PDO; Patient-derived organoid)이 새로운 대안으로 제시되고 있다. PDO는 환자의 암 조직에서 유래한 오가노이드를 3차원으로 배양함으로써 실제 암 조직과 매우 유사하게 제작한 모델이며, 환자 고유의 유전형 및 표현형이 잘 유지되는 장점이 있다. 다만, PDO는 암세포만으로 구성되기 때문에 암 미세환경을 반영하지 못한다는 단점이 있고, 종양 미세환경과 암세포간의 상호작용을 관찰할 수 없으며, 생체 내 암 조직을 완전히 재현하지 못하는 한계가 있었다.Accordingly, patient-derived cancer organoid models (PDO) are being proposed as a new alternative. PDO is a model created to closely resemble actual cancer tissue by cultivating organoids derived from the patient's cancer tissue in three dimensions, and has the advantage of maintaining the patient's unique genotype and phenotype. However, because PDO consists only of cancer cells, it has the disadvantage of not reflecting the cancer microenvironment, the interaction between the tumor microenvironment and cancer cells cannot be observed, and it has limitations in not being able to completely reproduce cancer tissue in vivo.
전술한 암 미세환경은 종양 미세환경(TME; tumor microenvironment)으로도 불리는데, 암세포가 증식하고 진화하는 환경적 총체로서, 암세포 외에도 암 조직 내에 존재하는 섬유아세포(fibroblast), 면역세포, 세포외기질(extracellular matrix) 등을 모두 포함하는 개념이다. 기존의 암 치료제 개발 연구는 암세포 자체를 사멸시키는 원리로 진행되고 있었다. 그러나, 암세포의 발생, 성장 및 침윤뿐만 아니라 항암제 내성도 암 미세환경과의 상호작용으로 일어난다는 연구 결과가 지속적으로 발표되고 있음에 따라, 기존 항암제의 한계를 극복하기 위하여 암 미세환경을 타겟하는 시도가 이루어지고 있다.The above-described cancer microenvironment is also called the tumor microenvironment (TME), which is the total environmental environment in which cancer cells proliferate and evolve. In addition to cancer cells, fibroblasts, immune cells, and extracellular matrix ( It is a concept that includes all extracellular matrix. Existing cancer treatment development research was conducted on the principle of killing the cancer cells themselves. However, as research results continue to be published showing that not only the development, growth, and invasion of cancer cells, but also anticancer drug resistance occur through interaction with the cancer microenvironment, attempts are being made to target the cancer microenvironment to overcome the limitations of existing anticancer drugs. is being done.
본 발명자들은 암 미세환경을 모사하는 췌장암 오가노이드를 개발하기 위한 다양한 연구를 진행하였다. 그 결과, 췌장암 오가노이드 및 암관련 섬유아세포(CAF; cancer-associated fibroblast)를 특정 비율 또는 특정 세포수로 혼합하여 배양하는 경우, 실제 인간의 췌장암 미세환경과 매우 유사한 조직 및 세포학적 특성을 나타낼 수 있는 암 미세환경 모사 췌장암 오가노이드를 제조할 수 있음을 실험적으로 입증하여, 본 발명을 완성하기에 이르렀다.The present inventors conducted various studies to develop pancreatic cancer organoids that mimic the cancer microenvironment. As a result, when pancreatic cancer organoids and cancer-associated fibroblasts (CAF) are mixed and cultured at a specific ratio or specific cell number, tissue and cytological characteristics very similar to the actual human pancreatic cancer microenvironment can be displayed. By experimentally demonstrating that pancreatic cancer organoids simulating the cancer microenvironment present can be produced, the present invention was completed.
본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.Each description and embodiment disclosed in the present invention can also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in the present invention fall within the scope of the present invention. Additionally, the scope of the present invention cannot be considered limited by the specific description described below.
또한, 본 명세서에서 특별히 정의되지 않은 용어들에 대해서는 본 발명이 속하는 기술 분야에서 통상적으로 사용되는 의미를 갖는 것으로 이해되어야 할 것이다. 또한, 문맥상 특별히 정의하지 않은 경우라면, 단수는 복수를 포함하며, 복수는 단수를 포함한다.Additionally, terms that are not specifically defined in this specification should be understood to have meanings commonly used in the technical field to which the present invention pertains. Additionally, unless specifically defined by context, the singular includes the plural, and the plural includes the singular.
본 발명의 하나의 양태는 하기 단계를 포함하는, 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)의 제조방법을 제공한다: (a) 췌장암(PDAC; pancreatic ductal adenocarcinoma) 조직에서 췌장암 세포를 분리하는 단계; (b) 상기 분리된 세포를 췌장암 오가노이드(PCO; pancreatic cancer organoid) 및 암관련 섬유아세포(CAF; cancer-associated fibroblast)로 각각 배양하는 단계; 및 (c) 상기 췌장암 오가노이드 및 암관련 섬유아세포를 혼합하여 배양하는 단계.One aspect of the invention provides a method for producing a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) comprising the following steps: (a) in pancreatic ductal adenocarcinoma (PDAC) tissue; Isolating pancreatic cancer cells; (b) culturing the separated cells into pancreatic cancer organoids (PCO) and cancer-associated fibroblasts (CAF), respectively; and (c) mixing and culturing the pancreatic cancer organoids and cancer-related fibroblasts.
본 명세서에서 사용되는 용어, "오가노이드(organoid)"는 3D 입체구조를 가지는 세포덩어리를 의미하며, 동물 등에서 수집, 취득, 채취하지 않고 인공적인 배양 과정을 통하여 제조한 것으로서, 축소되고 단순화된 버전의 기관으로 정의된다. 오가노이드는 장기배양, 동결보존이 가능하고 조작과 관찰이 용이하다는 장점을 가진다. 동시에 불멸화가 필요 없어 그에 따른 세포의 본래 특성이 유지됨은 물론 생체 내에서만 볼 수 있었던 세포의 계층적, 조직학적 구조를 재현함으로써 세포보다 한 단계 높은 차원의 생리현상을 연구할 수 있는 실험 모델이다. 이러한 특성으로 인해 오가노이드는 세포의 내재적 특성이 변화된 불멸화된 세포주, 또는 인체와 구조가 다른 동물 모델에 비해 높은 정확도로 약물 평가를 할 수 있고, 특히 환자 유래 조직을 이용하므로 인간을 대상으로 한 임상에 앞서 약물의 안전성은 물론 효능까지 미리 확인할 수 있는 장점이 있다. As used herein, the term "organoid" refers to a cell mass with a 3D three-dimensional structure, and is manufactured through an artificial culture process rather than collected, acquired, or harvested from animals, etc., and is a reduced and simplified version. It is defined as an organ of Organoids have the advantage of being capable of long-term culture and cryopreservation and are easy to manipulate and observe. At the same time, it is an experimental model that maintains the original characteristics of cells as it does not require immortalization, and can study physiological phenomena at a level higher than that of cells by reproducing the hierarchical and histological structure of cells that can only be seen in vivo. Due to these characteristics, organoids can evaluate drugs with higher accuracy than immortalized cell lines with changed intrinsic cell characteristics or animal models with structures different from the human body. In particular, since they use patient-derived tissues, organoids can be used in human clinical trials. It has the advantage of being able to check not only the safety but also the efficacy of the drug in advance.
본 명세서에서 사용되는 용어, "췌장암 오가노이드(PCO; pancreatic cancer organoid)"는 췌장암 세포에서 유래된 오가노이드를 의미한다. 본 발명의 PCO는 췌장암 세포의 특성을 그대로 나타낼 수 있으며, 조직 염색, 사이토카인 분석, 면역형광분석 등의 분석 방법을 통하여 췌장암 세포의 특성을 나타내는 것으로 공지된 마커(예를 들어, CK19 등)가 발현됨을 확인할 수 있다. 본 명세서에서, 상기 "췌장암 오가노이드"는 "PCO"와 상호교환적으로 사용될 수 있다.As used herein, the term “pancreatic cancer organoid (PCO)” refers to an organoid derived from pancreatic cancer cells. The PCO of the present invention can express the characteristics of pancreatic cancer cells as is, and a marker known to indicate the characteristics of pancreatic cancer cells (e.g., CK19, etc.) through analysis methods such as tissue staining, cytokine analysis, and immunofluorescence analysis. It can be confirmed that it appears. In this specification, the term “pancreatic cancer organoid” may be used interchangeably with “PCO”.
본 명세서에서 사용되는 용어, "암관련 섬유아세포(CAF; cancer-associated fibroblast)"는 암 병변의 내부 및/또는 주변에 존재하는 섬유아세포로서, 암세포가 성장할 수 있도록 특성이 변화한 섬유아세포를 의미한다. 이러한 CAF는 FGF2, HGF, TGF-beta, SDF-1, VEGF, IL-6 등의 여러가지 성장인자를 세포 밖으로 분비하여 암세포에 호의적인 미세 환경을 형성하는데, 암세포의 성장과 침윤을 촉진하기 때문에 암세포의 전이를 직접 유발하며, 항암제 내성의 주요 원인으로 작용한다. 또한, CAF가 집중적으로 분포하는 암종의 경우 항암제에 반응하지 않으며, 항암제에 반응하여 종양의 크기가 감소하는 암세포 사멸 효과가 나타나더라도 CAF를 중심으로 한 암 미세환경이 건재한 경우 암세포의 성장이 쉽게 이루어져 재발 가능성이 높아진다. 이러한 특성때문에 암 미세환경을 구성하는 다양한 요소 중에서도 CAF는 필수 구성 요소로서 인정되고 있다(Erik Sahai et al. Nat Rev Cancer. 2020 Mar;20(3):174-186.; Leilei Tao et al. Oncol Lett. 2017 Sep; 14(3): 2611-2620.). 본 명세서에서, 상기 "암관련 섬유아세포"는 "CAF"와 상호교환적으로 사용될 수 있다.As used herein, the term "cancer-associated fibroblast (CAF)" refers to fibroblasts present inside and/or around a cancer lesion, and refers to fibroblasts whose characteristics have changed to allow cancer cells to grow. do. These CAFs secrete various growth factors such as FGF2, HGF, TGF-beta, SDF-1, VEGF, and IL-6 out of the cells to form a favorable microenvironment for cancer cells. They promote the growth and invasion of cancer cells, It directly causes metastasis and acts as a major cause of anticancer drug resistance. In addition, carcinomas in which CAFs are intensively distributed do not respond to anticancer drugs, and even if the cancer cell killing effect that reduces the size of the tumor appears in response to anticancer drugs, if the cancer microenvironment centered on CAFs is healthy, cancer cells can easily grow. The likelihood of recurrence increases. Because of these characteristics, CAFs are recognized as an essential component among the various elements that make up the cancer microenvironment (Erik Sahai et al. Nat Rev Cancer. 2020 Mar;20(3):174-186.; Leilei Tao et al. Oncol Lett. 2017 Sep; 14(3): 2611-2620.) In this specification, “cancer-related fibroblasts” may be used interchangeably with “CAFs.”
본 명세서에서 사용되는 용어, "암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)"는 췌장암 오가노이드(PCO)와 암관련 섬유아세포(CAF)가 혼합되어 제조된 오가노이드 모델을 의미하며, 생체 내 암 미세환경을 인비트로(in vitro)에서 재현한 것이다. 생체 내 암 미세환경은 암세포 주위에 혈관, 면역세포, 섬유아세포(CAF), 림프구, 신호전달분자, 세포외 기질(ECM) 등이 둘러 싸여 있는 세포환경이다. 암세포는 이러한 주변 세포와 상호작용함으로써 미세환경을 변화시키기도 하고, 미세환경이 암세포의 성장 또는 전이에 영향을 미치기도 하는데, 그 중에서도 특히 CAF와의 상호 작용에 의한 영항이 크다. 따라서, PCO와 CAF를 포함하는 CIPCO는 생체 내 암 미세환경에서 존재하는 췌장암의 특성을 그대로 나타낼 수 있다. 본 명세서에서, 상기 "암 미세환경 모사 췌장암 오가노이드"는 "CIPCO"와 상호교환적으로 사용될 수 있다.As used herein, the term "cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid)" refers to an organoid model prepared by mixing pancreatic cancer organoids (PCO) and cancer-related fibroblasts (CAF). This means that the in vivo cancer microenvironment is reproduced in vitro . The in vivo cancer microenvironment is a cellular environment in which blood vessels, immune cells, fibroblasts (CAFs), lymphocytes, signaling molecules, and extracellular matrix (ECM) surround cancer cells. Cancer cells change their microenvironment by interacting with surrounding cells, and the microenvironment can affect the growth or metastasis of cancer cells. Among these, the interaction with CAFs has a particularly large impact. Therefore, CIPCO containing PCO and CAF can express the characteristics of pancreatic cancer that exist in the in vivo cancer microenvironment. In this specification, the term “cancer microenvironment-mimicking pancreatic cancer organoid” may be used interchangeably with “CIPCO”.
상기 (a) 단계는 개체에서 분리된 췌장암(PDAC; pancreatic ductal adenocarcinoma) 조직에서 췌장암 세포를 수득하는 단계이다.The step (a) is a step of obtaining pancreatic cancer cells from pancreatic ductal adenocarcinoma (PDAC) tissue isolated from an individual.
본 명세서에서 사용되는 용어, "개체"는 췌장암이 발병된 적이 없는 개체, 발병될 가능성이 있는 개체, 발병된 개체, 또는 발병된 후 완치된 개체를 모두 포함하며, 인간 또는 임의의 비인간 동물 등을 제한 없이 포함할 수 있다. 상기 비인간 동물은 척추동물, 예컨대 영장류, 개, 소, 말, 돼지, 설치류, 예컨대 마우스, 래트, 햄스터, 기니피그 등일 수 있다. 본 명세서에서, 상기 "개체"는 "대상체" 또는 "환자"와 상호교환적으로 사용될 수 있다.As used herein, the term “individual” includes all individuals who have never developed pancreatic cancer, are likely to develop it, have developed it, or have completely recovered from the disease, and include humans or any non-human animals. It can be included without limitation. The non-human animal may be a vertebrate, such as a primate, dog, cow, horse, pig, rodent, such as mouse, rat, hamster, guinea pig, etc. In this specification, “individual” may be used interchangeably with “subject” or “patient.”
상기 췌장암 조직에서 수득되는 췌장암 세포는 줄기세포를 포함할 수 있다. Pancreatic cancer cells obtained from the pancreatic cancer tissue may include stem cells.
또한, 상기 췌장암 세포는 췌장암 조직을 절단하는 과정 및 효소 분해 과정을 통해 수득될 수 있다. 구체적으로, 상기 절단은 물리적인 절단 또는 기계적인 절단을 모두 포함하며, 당업계에 알려진 일반적인 조직 절단 방법으로 수행될 수 있다. 상기 효소 분해는 당업계에 알려진 일반적인 효소 분해 조건으로 수행될 수 있으며, 예로서 콜라게나제 Ⅱ(collagenase Ⅱ) 효소를 사용하여 수행될 수 있고, 더욱 구체적인 예로 콜라게나제 Ⅱ(collagenase Ⅱ), HEPES 및 글루타맥스(GlutaMAX)로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 분리 버퍼로 수행될 수 있다.Additionally, the pancreatic cancer cells can be obtained through a process of cutting pancreatic cancer tissue and an enzyme decomposition process. Specifically, the cutting includes both physical cutting and mechanical cutting, and can be performed using general tissue cutting methods known in the art. The enzymatic digestion can be performed under general enzymatic digestion conditions known in the art, for example, using collagenase II enzyme, and more specific examples are collagenase II, HEPES. and GlutaMAX.
상기 (b) 단계는 상기 단계 (a)에서 분리한 췌장암 세포를 마트리겔 내에서 배양하는 단계로서, 마트리겔을 이용하여 상기 췌장암 세포를 3차원으로 배양함으로써 조직과 유사한 형태의 췌장암 오가노이드(PCO; pancreatic cancer organoid)를 형성시키는 단계이다. 이때, 상기 배양은 췌장암 세포와 마트리겔이 0.5 내지 1.5 : 0.5 내지 1.5로 혼합되어 수행될 수 있으며, 구체적으로 1 : 1로 혼합되어 수행될 수 있다. Step (b) is a step of culturing the pancreatic cancer cells isolated in step (a) in Matrigel. By culturing the pancreatic cancer cells in three dimensions using Matrigel, pancreatic cancer organoids (PCO) of a tissue-like form are formed. This is the stage of forming a pancreatic cancer organoid. At this time, the culture may be performed by mixing pancreatic cancer cells and Matrigel at a ratio of 0.5 to 1.5:0.5 to 1.5, and specifically, may be performed by mixing them at a ratio of 1:1.
본 명세서에서 사용되는 용어, "마트리겔(matrigel)"은 EHS(Engelbreth-Holm-Swarm) 마우스의 육종세포에서 추출된 단백질 복합체(BD Bioscience사의 제품명)를 의미한다. 상기 마트리겔은 라미닌(lamonin), 콜라겐(collagen), 헤파란 설페이트 프로테오글리칸(heparin sulfate proteoglycan)과 같은 세포외 매트릭스(ECM; extracellular matrix), 및 섬유아세포 성장인자(FGF; fibroblast growth factor), 상피세포 성장인자(EFG; epiderma growth factor), 인슐린 성장인자(IGF; insulin-like growth factor), 형질전환 성장인자-베타(TGF-β; transforming growth factor-beta), 혈소판 유래 성장인자(PDGF; platelet-derived growth factor)와 같은 성장인자를 포함하고 있다.As used herein, the term “matrigel” refers to a protein complex (product name of BD Bioscience) extracted from sarcoma cells of EHS (Engelbreth-Holm-Swarm) mice. The Matrigel contains extracellular matrix (ECM) such as laminin, collagen, and heparan sulfate proteoglycan, and fibroblast growth factor (FGF), epithelial cells. Growth factors (EFG; epiderma growth factor), insulin growth factor (IGF; insulin-like growth factor), transforming growth factor-beta (TGF-β; transforming growth factor-beta), platelet-derived growth factor (PDGF; platelet- It contains growth factors such as derived growth factors.
또한, 상기 PCO의 배양은 Wnt, R-스폰딘(R-spondin), B-27, 니코틴아마이드(Nicotinamide), HEPES, 글루타맥스(GlutaMAX), FGF10, N-아세틸시스테인(N-Acetylcysteine), EGF, 가스트린 1(Gastrin 1) 및 플라모신(Plasmocin)으로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 배양 배지로 수행될 수 있다.In addition, the culture of the PCO contains Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, N-Acetylcysteine, It may be performed with a culture medium containing one or more selected from the group consisting of EGF, Gastrin 1, and Plasmocin.
동시에, 상기 (b) 단계는 상기 단계 (a)에서의 조직을 잘게 조각내어 배양 플레이트에 분주한 후 슬라이드 글라스를 이용하여 누른 상태에서 배양하는 단계로서, 암관련 섬유아세포(CAF; cancer-associated fibroblast)를 형성시키는 단계이다. 상기 CAF의 배양은 FBS 및 GlutaMAX로 이루어진 그룹에서 선택되는 하나 이상을 포함하는 배양 배지로 수행될 수 있다.At the same time, step (b) is a step of cutting the tissue from step (a) into small pieces, dispensing it on a culture plate, and culturing it while pressing it using a slide glass. ) is the step of forming. Cultivation of the CAF may be performed with a culture medium containing one or more selected from the group consisting of FBS and GlutaMAX.
상기 (c) 단계는 상기 단계 (b)에서 배양한 췌장암 오가노이드(PCO; pancreatic cancer organoid) 및 암관련 섬유아세포(CAF; cancer-associated fibroblast)를 혼합하여 배양하는 단계로서, 암 미세환경 모사 췌장암 오가노이드를 제조하는 단계이다. Step (c) is a step of mixing and culturing the pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF) cultured in step (b), which simulates the cancer microenvironment of pancreatic cancer. This is the stage of manufacturing organoids.
구체적으로, 상기 혼합은 PCO 및 CAF를 1 : 1 내지 10의 비율로 혼합하여 수행될 수 있고, 더욱 구체적으로 1 : 3 내지 5의 비율로 혼합하여 수행될 수 있고, 바람직하게는 1 : 3 내지 4의 비율로 혼합하여 수행될 수 있다. 또한, 상기 혼합은 PCO 및 CAF를 3.3×104 및 1×105의 세포수로 혼합하여 수행될 수 있다.Specifically, the mixing may be performed by mixing PCO and CAF at a ratio of 1:1 to 10, and more specifically, may be performed by mixing PCO and CAF at a ratio of 1:3 to 5, preferably 1:3 to 5. It can be performed by mixing at a ratio of 4. Additionally, the mixing may be performed by mixing PCO and CAF with cell numbers of 3.3×10 4 and 1×10 5 .
이때, 상기 PCO 및 CAF 혼합물의 배양은 Wnt, R-스폰딘(R-spondin), B-27, 니코틴아마이드(Nicotinamide), HEPES, 글루타맥스(GlutaMAX), FGF10, N-아세틸시스테인(N-Acetylcysteine), EGF, 가스트린 1(Gastrin 1) 및 플라모신(Plasmocin) 포함하는 배양 배지로 수행될 수 있다. At this time, the culture of the PCO and CAF mixture is Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, N-acetylcysteine (N- It can be performed with a culture medium containing Acetylcysteine, EGF, Gastrin 1, and Plasmocin.
전술한 (a) 내지 (c) 단계를 통해 제조된 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)는 CK19 및 비멘틴(Vimentin)을 발현하는 것일 수 있다.The cancer microenvironment-simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) prepared through the above-described steps (a) to (c) may express CK19 and Vimentin.
본 명세서에서 사용되는 용어, "CK19(cytokeratin-19)"는 KRT19 유전자에 의해 발현되는 케라틴 또는 케라틴-19 단백질을 의미하며, 주로 위장 및 간담도 상피(gastroenteropancreatic and hepatobiliary epithelial)의 마커 또는 췌장암(PDAC; pancreatic ductal adenocarcinoma)의 마커로 사용된다. 본 발명에서, 상기 CK19는 PDAC 또는 PCO의 마커로 사용될 수 있다.As used herein, the term "CK19 (cytokeratin-19)" refers to keratin or keratin-19 protein expressed by the KRT19 gene, and is mainly a marker of gastroenteropancreatic and hepatobiliary epithelial or pancreatic cancer (PDAC). ; pancreatic ductal adenocarcinoma). In the present invention, CK19 can be used as a marker for PDAC or PCO.
본 명세서에서 사용되는 용어, "비멘틴(Vimentin)"은 VIM 유전자에 의해 발현되는 단백질을 의미하며, 세포 모양, 세포 골격의 안정화를 유지하는 역할을 수행한다. 본 발명에서, 상기 CK19는 CAF의 마커로 사용될 수 있다.As used herein, the term “Vimentin” refers to a protein expressed by the VIM gene and plays a role in maintaining cell shape and stabilization of the cytoskeleton. In the present invention, CK19 can be used as a marker for CAF.
따라서, CK19 및 비멘틴(Vimentin)을 발현하는, 본 발명에 따른 CIPCO는 PCO의 특성 및 CAF 특성을 모두 나타낼 수 있고, 생체 내 존재하는 암 미세환경을 완벽히 모사할 수 있다. Therefore, CIPCO according to the present invention, which expresses CK19 and Vimentin, can exhibit both the characteristics of PCO and CAF characteristics, and can perfectly mimic the cancer microenvironment existing in vivo.
또한, 전술한 (a) 내지 (c) 단계를 통해 제조된 암 미세환경 모사 췌장암 오가노이드는 췌장암 오가노이드에 비하여 상피간엽이행(EMT; epithelial to mesenchymal transition), 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성이 증가하는 것일 수 있다.In addition, the cancer microenvironment-simulating pancreatic cancer organoid prepared through the above-described steps (a) to (c) has epithelial to mesenchymal transition (EMT), proliferation ability, and cancer organoid compared to pancreatic cancer organoid. This may increase the metastatic ability and anticancer drug resistance.
본 명세서에서 사용되는 용어, "상피간엽이행(EMT; epithelial to mesenchymal transition)"은 상피세포 성질로부터 간엽세포 성질로의 전환을 뜻하며, 암세포의 이동, 전이에 있어 중요한 과정이다. EMT가 증가되는 경우, 간엽세포 마커 유전자인 비멘틴(Vimentin), 피브로넥틴(Fibronectin) 및 ZEB-1의 발현은 증가하게 된다. 본 발명에 따른 CIPCO는 CAF를 포함하지 않는 일반적인 PCO에 비하여 EMT가 증가하는데, 이에 따라 PCO에 비하여 이동능 및 전이능이 증가할 수 있다. 또한, CIPCO가 이식된 개체에서는, PCO가 이식된 개체에 비하여 암 오가노이드의 사멸 감소, 암 오가노이드의 부피 증가, 이식된 개체의 몸무게 감소 및/또는 이식된 개체의 생존율 감소 등의 특징을 나타낼 수 있다. The term “epithelial to mesenchymal transition (EMT)” used in this specification refers to the transition from epithelial cell properties to mesenchymal cell properties, and is an important process in the movement and metastasis of cancer cells. When EMT increases, the expression of mesenchymal cell marker genes Vimentin, Fibronectin, and ZEB-1 increases. CIPCO according to the present invention has increased EMT compared to general PCO that does not contain CAF, and accordingly, mobility and metastatic ability can be increased compared to PCO. In addition, in subjects transplanted with CIPCO, compared to subjects transplanted with PCO, characteristics such as reduced death of cancer organoids, increased volume of cancer organoids, decreased body weight of transplanted subjects, and/or decreased survival rate of transplanted subjects were observed. You can.
본 명세서에서 사용되는 용어, "암 오가노이드의 증식능"은 암 오가노이드의 세포 분열 능력을 의미하며, 암 오가노이드가 스스로 분열하여 절대적인 수 및 양을 늘리는 것을 의미한다. 본 명세서에서 사용되는 용어, "암 오가노이드의 전이능"은 "암 오가노이드의 이동능"으로도 불리며, 암 오가노이드가 이를 둘러싸고 있는 세포외기질을 침윤하여 다른 부분으로 이동하거나, 또는 다른 장기로 전이하는 것을 의미한다. 암 오가노이드의 증식능 또는 전이능은 암 오가노이드를 둘러 싸고 있는 암 미세환경에 의해 조절되는데, 특히 CAF에 의해 증식능 또는 전이능이 증가한다. 따라서, 본 발명에 따른 CIPCO는 CAF를 포함하지 않는 일반적인 PCO에 비하여 암 오가노이드의 전이능 및 이동능이 증가할 수 있다. 이 경우, CIPCO가 이식된 개체에서는, PCO가 이식된 개체에 비하여 암 오가노이드의 사멸 감소, 암 오가노이드의 부피 증가, 이식된 개체의 몸무게 감소, 및/또는 이식된 개체의 생존율 감소 등의 특징을 나타낼 수 있다. As used herein, the term “proliferative ability of cancer organoids” refers to the cell division ability of cancer organoids, and means that cancer organoids divide themselves to increase their absolute number and quantity. As used herein, the term “metastatic ability of cancer organoids” is also called “migratory ability of cancer organoids,” where cancer organoids infiltrate the extracellular matrix surrounding them and migrate to other parts or other organs. It means transitioning to . The proliferative or metastatic ability of cancer organoids is controlled by the cancer microenvironment surrounding the cancer organoid, and in particular, the proliferative or metastatic ability is increased by CAF. Therefore, CIPCO according to the present invention can increase the metastatic and migration ability of cancer organoids compared to general PCO that does not contain CAF. In this case, in individuals transplanted with CIPCO, compared to individuals transplanted with PCO, features such as reduced death of cancer organoids, increased volume of cancer organoids, decreased body weight of transplanted individuals, and/or decreased survival rate of transplanted individuals. can indicate.
본 명세서에서 사용되는 용어, "항암제 저항성"은 "항암제 내성" 또는 "항암제 불응성"으로도 불리며, 항암제를 이용하여 암 환자를 치료할 때 치료 초기부터 효과가 없거나, 초기에는 효과가 있으나 계속적인 치료 과정에서 효과가 감소 또는 상실되거나, 또는 치료에 대한 반응이 장기간 동안 지속되지 않는 것을 의미한다. 암세포의 항암제 저항성은 암세포를 둘러 싸고 있는 암 미세환경에 의해 조절되는데, 특히 CAF에 의해 항암제 저항성이 증가한다. 따라서, 본 발명에 따른 CIPCO는 CAF를 포함하지 않는 일반적인 PCO에 비하여 암 오가노이드의 항암제 저항성이 증가할 수 있다. 이 경우, CIPCO가 이식된 개체에서는, 항암제 처리 시, PCO가 이식된 개체에 비하여 암 오가노이드의 사멸 감소, 암 오가노이드의 부피 증가, 이식된 개체의 몸무게 감소 및/또는 이식된 개체의 생존율 감소 등의 특징을 나타낼 수 있다. The term "anticancer drug resistance" used in this specification is also called "anticancer drug resistance" or "anticancer drug refractoriness", and when treating cancer patients with anticancer drugs, there is no effect from the beginning of treatment, or it is effective initially but continued treatment. This means that the effect is reduced or lost over the course of the treatment, or that the response to the treatment does not last for a long period of time. Anticancer drug resistance of cancer cells is controlled by the cancer microenvironment surrounding the cancer cells, and in particular, CAF increases anticancer drug resistance. Therefore, CIPCO according to the present invention can increase the anticancer drug resistance of cancer organoids compared to general PCO that does not contain CAF. In this case, in subjects transplanted with CIPCO, when treated with anticancer drugs, the death of cancer organoids is reduced, the volume of cancer organoids increases, the body weight of the transplanted subjects decreases, and/or the survival rate of the transplanted subjects decreases compared to subjects implanted with PCO. It can show characteristics such as:
본 발명의 다른 하나의 양태는 상기 제조방법으로 제조된 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)를 제공한다.Another aspect of the present invention provides a cancer microenvironment simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) prepared by the above manufacturing method.
본 발명에 따른 CIPCO에서, 각 용어는 특별히 언급하지 않는 한 상기 CIPCO의 제조방법에서 설명한 바와 동일한 의미를 갖는다.In CIPCO according to the present invention, each term has the same meaning as described in the manufacturing method of CIPCO above, unless otherwise specified.
본 발명에 따른 CIPCO는 췌장암 오가노이드(PCO; pancreatic cancer organoid) 및 암관련 섬유아세포(CAF; cancer-associated fibroblast)를 포함하는 오가노이드 모델로서, 생체 내 존재하는 췌장암의 미세환경과 매우 유사한 조직/세포학적 특성 및 기능을 가지고 있다. 또한, 상기 CIPCO는 CAF를 포함하지 않는 PCO에 비하여, EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성이 증가하는 특징을 나타낸다.CIPCO according to the present invention is an organoid model containing pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF), and is a tissue/tissue very similar to the microenvironment of pancreatic cancer existing in vivo. It has cytological characteristics and functions. In addition, the CIPCO exhibits the characteristics of increased EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance compared to PCO that does not contain CAF.
따라서, 상기 CIPCO는 인비보(in vivo)의 암 미세환경을 인비트로(in vitro)에서 매우 유사하게 구현해낼 수 있는 장점이 있는바, 악성 종양에 대한 치료제 또는 항암제 저항성을 극복할 수 있는 치료제의 스크리닝, 효능 평가 등에 유용하게 활용될 수 있다. 특히, 상기 CIPCO가 환자 유래의 세포 또는 조직을 사용하여 제조되는 경우, 환자 특이적인 항암제 저항성을 미리 확인하는데 이용될 수 있다.Therefore, the CIPCO has the advantage of being able to embody the in vivo cancer microenvironment very similarly in vitro , and can be used as a treatment for malignant tumors or a treatment that can overcome anticancer drug resistance. It can be useful for screening, efficacy evaluation, etc. In particular, when the CIPCO is manufactured using cells or tissues derived from a patient, it can be used to confirm patient-specific anticancer drug resistance in advance.
본 발명의 또 다른 하나의 양태는 하기 단계를 포함하는, 항암제의 효능 평가 방법을 제공한다: (a) 상기 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)에 항암제 후보물질을 처리하는 단계; (b) 상기 항암제 후보물질이 처리된 CIPCO에서 상피간엽이행(EMT; epithelial to mesenchymal transition), 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성으로 이루어진 그룹에서 선택되는 하나 이상의 수준을 측정하는 단계; 및 (c) 상기 단계 (b)에 따라 CIPCO에서 측정한 수준이 대조군에서 측정한 수준보다 감소하는 경우, 상기 항암제 후보물질을 항암제로 판단하는 단계.Another aspect of the present invention provides a method for evaluating the efficacy of an anticancer agent, comprising the following steps: (a) injecting an anticancer agent candidate into the cancer microenvironment simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid); processing steps; (b) Measurement of one or more levels selected from the group consisting of epithelial to mesenchymal transition (EMT), proliferative ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance in CIPCO treated with the anticancer drug candidate. steps; and (c) determining the anticancer drug candidate as an anticancer drug when the level measured by CIPCO according to step (b) is lower than the level measured by the control group.
상기 항암제의 효능 평가 방법은 항암제의 스크리닝 방법일 수 있다.The method for evaluating the efficacy of the anticancer agent may be a screening method for the anticancer agent.
본 발명에 따른 항암제의 효능 평가 방법 또는 항암제의 스크리닝 방법에서, 각 용어는 특별히 언급하지 않는 한 상기 CIPCO의 제조방법에서 설명한 바와 동일한 의미를 갖는다.In the method for evaluating the efficacy of an anticancer agent or the screening method for an anticancer agent according to the present invention, each term has the same meaning as described in the CIPCO manufacturing method unless otherwise specified.
상기 (a) 단계는 상기 제조방법에 따라 제조된 CIPCO에 항암제 후보물질을 처리하는 단계이다.The step (a) is a step of treating the anticancer drug candidate to the CIPCO manufactured according to the above manufacturing method.
본 명세서에서 사용되는 용어, "후보물질"은 암을 치료할 수 있을 것으로 예상되는 물질을 의미한다. 구체적으로, 암세포의 성장, 이동, 전이를 억제 또는 호전시키거나, 또는 암세포의 사멸을 증가시킬 수 있을 것으로 예상되는 물질이면 제한 없이 사용 가능하며, 화합물, 유전자 또는 단백질 등의 치료가능 예상물질을 모두 포함한다.As used herein, the term "candidate" refers to a substance expected to be able to treat cancer. Specifically, any substance that is expected to inhibit or improve the growth, movement, and metastasis of cancer cells, or increase the death of cancer cells can be used without limitation, and all substances expected to be treatable, such as compounds, genes, or proteins, can be used. Includes.
상기 항암제 후보물질의 처리는 당업계에 공지된 방법을 사용하여 수행될 수 있다. 구체적인 예로, 상기 CIPCO에 항암제 후보물질을 처리하여 함께 배양하거나, 또는 상기 CIPCO를 포함하는 생체 내에 항암제 후보물질을 투여함으로써 처리할 수 있으나, 이에 제한되는 것은 아니며, 당업자라면 본 발명의 목적에 맞는 방법을 사용할 수 있다. Treatment of the anticancer drug candidate may be performed using methods known in the art. As a specific example, the CIPCO can be treated with an anti-cancer drug candidate and cultured together, or the anti-cancer drug candidate can be treated by administering the anti-cancer drug candidate into a living body containing the CIPCO, but the method is not limited thereto, and a method suitable for the purpose of the present invention is not limited thereto. can be used.
또한, 상기 (b) 단계는 상기 후보물질이 처리된 CIPCO의 EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성으로 이루어진 그룹에서 선택되는 하나 이상의 수준을 측정하는 단계이다.In addition, step (b) is a step of measuring one or more levels selected from the group consisting of EMT of CIPCO treated with the candidate material, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance.
구체적으로, 상기 EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 또는 항암제 저항성의 수준은 당업자에게 공지된 방법을 사용하여 측정될 수 있다. 예를 들어, 상기 EMT는 비멘틴(Vimentin), 피브로넥틴(Fibronectin) 및/또는 ZEB-1의 발현 수준을 측정함으로써 분석될 수 있다. 또한, 상기 암 오가노이드의 증식능, 전이능 및/또는 항암제 저항성은 암 오가노이드의 사멸 증감, 부피 증감, 이식된 개체의 몸무게 증감 및/또는 이식된 개체의 생존율 증감 등을 측정함으로써 분석될 수 있다.Specifically, the level of EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, or anticancer drug resistance can be measured using methods known to those skilled in the art. For example, the EMT can be analyzed by measuring the expression levels of Vimentin, Fibronectin, and/or ZEB-1. In addition, the proliferation ability, metastatic ability, and/or anticancer drug resistance of the cancer organoid can be analyzed by measuring the increase or decrease in death of the cancer organoid, increase or decrease in volume, increase or decrease in body weight of the transplanted individual, and/or increase or decrease in survival rate of the transplanted individual, etc. .
또한, 측정을 위한 수단으로서, 웨스턴블롯(Western blot), 공동-면역침전 어세이(Co-Immunoprecipitation assay), ELISA(Enzyme Linked Immunosorbent Assay), PCR(Polymerase chain reaction), 역전사 PCR(RT-PCR; Reverse transcription PCR), 정량적 역전사 PCR(RT-qPCR; Quantitative Reverse transcription PCR), H&E, Masson's trichrome 등의 조직 염색, 조직 면역염색(Immunostaining), 조직 면역화학염색(immunocytochemistry), 유세포분석법(Flowcytometry analysis), 형광 기반 어세이(Fluorescence-based assays), 전자 현미경 분석법(electron microscopic analysis) 등이 사용될 수 있으나, 이에 제한되는 것은 아니며, 당업자라면 본 발명의 목적에 맞는 방법을 사용할 수 있다. Additionally, as means for measurement, Western blot, Co-Immunoprecipitation assay, ELISA (Enzyme Linked Immunosorbent Assay), PCR (Polymerase chain reaction), reverse transcription PCR (RT-PCR; Reverse transcription PCR), quantitative reverse transcription PCR (RT-qPCR; Quantitative reverse transcription PCR), tissue staining such as H&E, Masson's trichrome, tissue immunostaining, Tissue immunocytochemistry, flow cytometry analysis, fluorescence-based assays, electron microscopic analysis, etc. may be used, but are not limited thereto, and those skilled in the art will be able to use the present invention. You can use any method that suits your purpose.
또한, 상기 (c) 단계는 상기 (b) 단계에 따라 CIPCO에서 측정한 EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 및/또는 항암제 저항성의 수준이 대조군에서 측정한 수준보다 감소하는 경우, 상기 항암제 후보물질을 항암제로 판단하는 단계이다.In addition, step (c) is when the level of EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, and/or anticancer drug resistance measured by CIPCO according to step (b) above decreases compared to the level measured in the control group. , This is the step of determining the anticancer drug candidate as an anticancer drug.
본 명세서에서 사용되는 용어, "대조군"은 항암제 후보물질이 처리되지 않은 CIPCO 또는 항암제가 처리된 CIPCO를 의미하며, 상기 항암제 후보물질이 처리된 CIPCO와 EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 또는 항암제 저항성의 수준을 비교하기 위해 사용된다. As used herein, the term "control group" refers to CIPCO that has not been treated with the anticancer drug candidate or CIPCO that has been treated with the anticancer drug. It is used to compare the level of metastatic potential or anticancer drug resistance.
구체적인 예로, CIPCO에서 측정한 EMT가 대조군에서 측정한 수준보다 감소하는 경우는 CIPCO에서 측정한 비멘틴(Vimentin), 피브로넥틴(Fibronectin) 및/또는 ZEB-1의 발현이 대조군에서 측정한 수준보다 감소하는 경우일 수 있다.As a specific example, if the EMT measured by CIPCO decreases from the level measured in the control group, the expression of Vimentin, Fibronectin, and/or ZEB-1 measured by CIPCO decreases compared to the level measured in the control group. This may be the case.
또 다른 구체적인 예로, CIPCO에서 측정한 암 오가노이드의 증식능이 대조군에서 측정한 수준보다 감소하는 경우는 1) CIPCO가 이식된 개체에서 측정한 암 오가노이드의 부피가 대조군에서 측정한 수준보다 감소하거나, 2) CIPCO가 이식된 개체에서 측정한 개체의 몸무게가 대조군에서 측정한 수준보다 증가하거나, 및/또는 3) CIPCO가 이식된 개체에서 측정한 개체의 생존율이 대조군에서 측정한 수준보다 증가하는 경우일 수 있다.As another specific example, if the proliferative capacity of cancer organoids measured by CIPCO decreases from the level measured in the control group, 1) the volume of cancer organoids measured in the CIPCO-implanted subject decreases compared to the level measured in the control group, or 2) the body weight of the individual implanted with CIPCO increases compared to the level measured in the control group, and/or 3) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group. You can.
또 다른 구체적인 예로, CIPCO에서 측정한 암 오가노이드의 전이능이 대조군에서 측정한 수준보다 감소하는 경우는 1) CIPCO가 이식된 개체에서 측정한 암 오가노이드의 부피가 대조군에서 측정한 수준보다 감소하거나, 2) CIPCO가 이식된 개체에서 측정한 개체의 몸무게가 대조군에서 측정한 수준보다 증가하거나, 및/또는 3) CIPCO가 이식된 개체에서 측정한 개체의 생존율이 대조군에서 측정한 수준보다 증가하는 경우일 수 있다.As another specific example, if the metastatic ability of cancer organoids measured by CIPCO decreases from the level measured in the control group, 1) the volume of the cancer organoid measured in the CIPCO-implanted subject decreases compared to the level measured in the control group, or 2) the body weight of the individual implanted with CIPCO increases compared to the level measured in the control group, and/or 3) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group. You can.
또 다른 구체적인 예로, CIPCO에서 측정한 암 오가노이드의 항암제 저항성이 대조군에서 측정한 수준보다 감소하는 경우는, 개체에 항암제 또는 항암제 후보물질 처리 시, 1) CIPCO가 이식된 개체에서 측정한 암 오가노이드의 사멸이 대조군에서 측정한 수준보다 증가하거나, 및/또는 2) CIPCO가 이식된 개체에서 측정한 개체의 생존율이 대조군에서 측정한 수준보다 증가하는 경우일 수 있다.As another specific example, if the anticancer drug resistance of the cancer organoid measured by CIPCO decreases compared to the level measured in the control group, when the subject is treated with an anticancer drug or anticancer drug candidate, 1) the cancer organoid measured in the subject transplanted with CIPCO It may be the case that the death of increases compared to the level measured in the control group, and/or 2) the survival rate of the individual measured in the CIPCO-implanted individual increases compared to the level measured in the control group.
전술한 EMT, 암 오가노이드의 증식능, 암 오가노이드의 전이능 또는 항암제 저항성의 수준은 당업자에게 공지된 방법을 사용하여 측정될 수 있다. 예를 들어, 상기 EMT는 비멘틴(Vimentin), 피브로넥틴(Fibronectin) 및/또는 ZEB-1의 발현 수준을 측정함으로써 분석될 수 있다. 또한, 상기 암 오가노이드의 증식능, 전이능 및/또는 항암제 저항성은 암 오가노이드의 사멸 증감, 부피 증감, 이식된 개체의 몸무게 증감 및/또는 이식된 개체의 생존율이 증감 등을 측정함으로써 분석될 수 있다.The level of the above-described EMT, proliferation ability of cancer organoids, metastatic ability of cancer organoids, or anticancer drug resistance can be measured using methods known to those skilled in the art. For example, the EMT can be analyzed by measuring the expression levels of Vimentin, Fibronectin, and/or ZEB-1. In addition, the proliferation ability, metastatic ability, and/or anticancer drug resistance of the cancer organoid can be analyzed by measuring the increase or decrease in death of the cancer organoid, increase or decrease in volume, increase or decrease in body weight of the transplanted individual, and/or increase or decrease in survival rate of the transplanted individual, etc. there is.
본 발명에 따른 제조방법은 암 미세환경을 모사하는 췌장암 오가노이드를 제조할 수 있다. 따라서, 상기 방법으로 제조된 췌장암 오가노이드는 암세포 증식/전이 및 항암제 내성 등에 미치는 영향을 직접 관찰할 수 있으며, 약물 스크리닝 플랫폼의 개발에 활용되어 환자 특이적인 항암제 저항성을 미리 확인하는데 이용될 수 있다. 또한, 약물 처리에 따른 유전자 발현 조절 등을 관찰함으로써 암치료 목적의 분자기전 연구에 기여할 수 있다.The production method according to the present invention can produce pancreatic cancer organoids that mimic the cancer microenvironment. Therefore, pancreatic cancer organoids prepared by the above method can be directly observed for their effects on cancer cell proliferation/metastasis and anticancer drug resistance, and can be used in the development of a drug screening platform to confirm patient-specific anticancer drug resistance in advance. In addition, it can contribute to research on molecular mechanisms for cancer treatment by observing the regulation of gene expression according to drug treatment.
도 1은 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)의 제조에 관한 것이다. A는 CIPCO 제조방법의 개략도이고, B는 췌장암 오가노이드(PCO; pancreatic cancer organoid)와 암관련 섬유아세포(CAF; cancer-associated fibroblast)의 혼합 비율에 따른 CIPCO의 형성 정도를 보여주는 이미지이고, C는 PCO, CAF, CIPCO에서 CAF의 융합 정도를 보여주는 이미지이다. BF(bright field)는 광학 현미경으로 찍은 사진을 보여준다.Figure 1 relates to the preparation of a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid). A is a schematic diagram of the CIPCO manufacturing method, B is an image showing the degree of CIPCO formation according to the mixing ratio of pancreatic cancer organoid (PCO) and cancer-associated fibroblast (CAF), and C is an image showing the degree of CIPCO formation. This image shows the degree of fusion of CAF in PCO, CAF, and CIPCO. BF (bright field) shows pictures taken with an optical microscope.
도 2는 CIPCO의 제조에 관한 것으로서, PCO와 CAF의 혼합 비율에 따른 CIPCO의 형성 정도를 보여주는 이미지이다. PCO 및 CAF를 각각 1 : 1, 1 : 2, 1 : 3, 1 : 4 또는 1 : 5의 세포수 비율로 혼합하여 배양한 결과이다.Figure 2 relates to the production of CIPCO and is an image showing the degree of formation of CIPCO according to the mixing ratio of PCO and CAF. This is the result of mixing and culturing PCO and CAF at a cell number ratio of 1:1, 1:2, 1:3, 1:4, or 1:5, respectively.
도 3은 배양 기간에 따른 CIPCO의 성장에 관한 것이다. A는 PCO, CAF, CIPCO의 배양 기간에 따른 모습을 보여주는 이미지이고, B는 PCO, CIPCO에서 발현되는 CK19, 비멘틴(Vimentin)을 보여주는 이미지이다.Figure 3 relates to the growth of CIPCO according to the culture period. A is an image showing the culture period of PCO, CAF, and CIPCO, and B is an image showing CK19 and Vimentin expressed in PCO and CIPCO.
도 4는 CIPCO의 조직 유사성에 관한 것이다. A는 PCO, CIPCO, 인간 췌장암 조직(Human cancer)에 대하여 H&E 염색한 결과와 발현된 비멘틴을 보여주는 이미지이고, B는 PCO, CIPCO, 인간 췌장암 조직(Human cancer)에 대하여 Masson's trichrome 염색한 결과를 보여주는 이미지이고, C는 PCO, CIPCO에 대하여 핵(Nuclei), 비멘틴(Vimentin), 콜라겐 Ⅰ(Collagen Ⅰ)을 면역조직화학염색한 결과를 보여주는 이미지이고, D는 PCO 및 CIPCO에서 발현된 콜라겐 Ⅰ의 양을 분석한 그래프이다.Figure 4 relates to the organizational similarity of CIPCO. A is an image showing the results of H&E staining and expressed vimentin for PCO, CIPCO, and human pancreatic cancer tissue, and B is an image showing the results of Masson's trichrome staining for PCO, CIPCO, and human pancreatic cancer tissue. C is an image showing the results of immunohistochemical staining for Nuclei, Vimentin, and Collagen I for PCO and CIPCO, and D is an image showing collagen I expressed in PCO and CIPCO. This is a graph analyzing the amount of.
도 5는 CIPCO의 CAF subtype에 관한 것이다. A는 인간 췌장암 조직(Tissue), CAF, PCO, CIPCO에서 발현되는 비멘틴, IL-6, CK19, α-SMA, MHC Ⅱ의 발현 정도를 보여주는 이미지이고, B는 인간 췌장암 조직(hPCT), CIPCO에 존재하는 CAF subtype의 비율을 보여주는 그래프이다.Figure 5 relates to CIPCO's CAF subtype. A is an image showing the expression level of vimentin, IL-6, CK19, α-SMA, and MHC II expressed in human pancreatic cancer tissue (Tissue), CAF, PCO, and CIPCO, and B is an image showing the expression level of human pancreatic cancer tissue (hPCT), CIPCO. This is a graph showing the ratio of CAF subtypes present in .
도 6은 CIPCO의 상피간엽이행(EMT; epithelial to mesenchymal transition)에 관한 것이다. A는 PCO, CIPCO, 인간 췌장암 조직(Human cancer)에 대하여 H&E 염색한 결과와 CK19, 비멘틴, 의 발현 정도를 보여주는 이미지이고, B는 ATRA가 처리되지 않은 CIPCO(Control) 또는 ATRA가 처리된 CIPCO(ATRA)에서의 ZEB-1, 피브로넥틴(Fibronectin) 및 비멘틴의 발현 정도를 보여주는 그래프이다.Figure 6 relates to CIPCO's epithelial to mesenchymal transition (EMT). A is an image showing the results of H&E staining and the expression level of CK19, vimentin, and CK19 for PCO, CIPCO, and human pancreatic cancer tissue, and B is CIPCO without ATRA (Control) or CIPCO with ATRA. This is a graph showing the expression levels of ZEB-1, Fibronectin, and Vimentin in (ATRA).
도 7은 제노그래프트(Xenograft) 마우스 모델을 이용한 CIPCO의 EMT 및 전이능에 관한 것이다. A는 PCO 또는 CIPCO가 이식된 마우스의 몸무게를 보여주는 그래프이고, B는 마우스에 이식된 PCO 또는 CIPCO에 대하여 H&E, Masson's trichrome 염색한 결과와 α-SMA, 비멘틴, 핵, CK19, Twist-1을 면역조직화학염색한 결과를 보여주는 이미지이다.Figure 7 relates to the EMT and metastatic ability of CIPCO using the Xenograft mouse model. A is a graph showing the body weight of mice implanted with PCO or CIPCO, and B is the results of H&E and Masson's trichrome staining for PCO or CIPCO implanted in mice, as well as α-SMA, vimentin, nucleus, CK19, and Twist-1. This image shows the results of immunohistochemical staining.
도 8은 CIPCO의 항암제 저항성에 관한 것이다. A는 항암제(젬시타빈)를 농도별로 처리한 PCO 또는 CIPCO에 대하여 PI(Propidium iodide)로 면역조직화학염색한 결과를 보여주는 이미지이고, B는 상기 A의 이미지에서 PI 영역이 차지하는 비율을 나타낸 그래프이다. Vehicle은 아무것도 처리하지 않은 대조군, collagenase는 콜라게나제(collagenase)를 함께 처리한 실험군을 의미한다.Figure 8 relates to anticancer drug resistance of CIPCO. A is an image showing the results of immunohistochemical staining with PI (Propidium iodide) on PCO or CIPCO treated with anticancer drug (gemcitabine) at different concentrations, and B is a graph showing the proportion of PI area in the image of A. . Vehicle refers to the control group that was not treated with anything, and collagenase refers to the experimental group treated with collagenase.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다.Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples.
실시예 1. 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)의 제조방법Example 1. Method for manufacturing a cancer microenvironment-simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid)
암이 생체 내 존재하고 있는 환경을 유사하게 재현함으로써, 약물이 생체 내 투여되었을 때의 효능을 정확하게 예측할 수 있는 인비트로(in vitro) 약물 스크리닝 및 효능 평가 시스템을 확립하고자 하였다. 이를 위하여, 췌장암 조직으로부터 유래한 암 오가노이드 및 암관련 섬유아세포를 사용하여 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)를 제조하였다.By similarly reproducing the environment in which cancer exists in vivo, we sought to establish an in vitro drug screening and efficacy evaluation system that can accurately predict the efficacy of drugs when administered in vivo. For this purpose, a cancer microenvironment simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) was prepared using cancer organoids and cancer-related fibroblasts derived from pancreatic cancer tissue.
구체적으로, 췌장암 환자의 암조직(PDAC; pancreatic ductal adenocarcinoma)을 잘게 자른 후 37℃에서 총 1시간 동안 분리 버퍼를 이용하여 배양하였다. 이후, 상기 췌장암 조직으로부터 분리한 클럼프 형태의 췌장암 세포를 마트리겔(Matrigel)과 1:1의 비율로 혼합하였고, 이를 PCO 배양 배지를 이용하여 배양함으로써 췌장암 오가노이드(PCO; pancreatic cancer organoid)를 제조하였다. 또한, 상기 췌장암 조직을 12웰 플레이트에 넣고 슬라이드 글라스로 조직을 누른 상태에서, CAF 배양 배지를 이용하여 배양함으로써 암관련 섬유아세포(CAF; cancer-associated fibroblast)를 제조하였다. 이때 사용한 버퍼 및 배지의 조성은 하기에 나타내었다.Specifically, cancer tissue (PDAC; pancreatic ductal adenocarcinoma) from a pancreatic cancer patient was cut into small pieces and cultured using separation buffer at 37°C for a total of 1 hour. Afterwards, the clump-shaped pancreatic cancer cells isolated from the pancreatic cancer tissue were mixed with Matrigel at a ratio of 1:1, and cultured using PCO culture medium to prepare a pancreatic cancer organoid (PCO). did. Additionally, cancer-associated fibroblasts (CAF) were prepared by placing the pancreatic cancer tissue in a 12-well plate, pressing the tissue with a glass slide, and culturing it using CAF culture medium. The composition of the buffer and medium used at this time is shown below.
- 분리 버퍼 조성: 5 ㎎/㎖의 콜라게나제 Ⅱ(collagenase Ⅱ), 10 mM HEPES, 1X 글루타맥스(GlutaMAX) 및 1X P/S(penicillin-streptomycin)를 포함하는, DMEM/F12 배지- Separation buffer composition: DMEM/F12 medium containing 5 mg/ml collagenase II, 10 mM HEPES, 1X GlutaMAX and 1X P/S (penicillin-streptomycin)
- PCO 배양 배지 조성: 50% 조건화-Wnt 배지(conditioned-Wnt medium), 10% 조건화-R-스폰딘 배지(conditioned-R-spondin medium), 1X B-27, 10 mM 니코틴아마이드(Nicotinamide), 10 mM HEPES, 1X 글루타맥스(GlutaMAX), 1X P/S, 100 ng/㎖ FGF10, 1 mM N-아세틸시스테인(N-Acetylcysteine), 50 ng/㎖ EGF, 10 nM 가스트린 1(Gastrin 1) 및 25 ㎍/㎖ 플라모신(Plasmocin)을 포함하는, 어드밴스드 DMEM/F12(advanced DMEM/F12) 배지- PCO culture medium composition: 50% conditioned-Wnt medium, 10% conditioned-R-spondin medium, 1X B-27, 10 mM nicotinamide, 10 mM HEPES, 1 Advanced DMEM/F12 medium containing 25 μg/ml Plasmocin
- CAF 배양 배지 조성: 10% FBS, 1X 글루타맥스(GlutaMAX) 및 1X P/S를 포함하는, 고포도당(high glucose) DMEM 배지- CAF culture medium composition: high glucose DMEM medium containing 10% FBS, 1X GlutaMAX and 1X P/S
이후, 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)를 제조하기 위하여, 위의 방법으로 제조한 PCO 및 CAF를 1 : 1 내지 5의 다양한 비율로 혼합하여 배양하였고, 이때 PCO 배양 배지를 사용하였다. 또한, 혼합비율에 따른 CIPCO의 형성 정도, PCO와 CAF의 융합 정도 등을 분석함으로써 PCO와 CAF의 최적 비율을 규명하였다. 이러한 제조방법에 대한 개략도는 도 1의 A에 나타내었다.Then, in order to prepare a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid), PCO and CAF prepared by the above method were mixed and cultured at various ratios of 1:1 to 5, where PCO Culture medium was used. In addition, the optimal ratio of PCO and CAF was identified by analyzing the degree of CIPCO formation and the degree of fusion of PCO and CAF according to the mixing ratio. A schematic diagram of this manufacturing method is shown in Figure 1A.
그 결과, 도 1의 B에 나타낸 바와 같이, 공배양 시 CAF의 비율이 PCO에 비해 낮거나 유사하면 CAF에 의해 유도되는 기질(CAF-induced stroma)의 형성이 이루어지지 않음을 확인하였다. 구체적으로, 3.3×104 세포수의 PCO에 대하여 1×104 세포수의 CAF를 혼합하는 경우(즉, PCO 및 CAF의 혼합비가 3.3 : 1인 경우) 또는 3.3×104 세포수의 PCO에 대하여 5×104 세포수의 CAF를 혼합하는 경우(즉, PCO 및 CAF의 혼합비가 1 : 1.5인 경우)에는 CAF에 의해 유도되는 기질이 형성되지 않아 CIPCO가 적절한 형태를 유지하지 못함을 확인하였다(도 1의 B).As a result, as shown in Figure 1B, it was confirmed that when the ratio of CAF during co-culture was lower or similar to that of PCO, the formation of CAF-induced stroma did not occur. Specifically, when mixing CAF with 1 × 10 4 cells for PCO with 3.3 × 10 4 cells (i.e., when the mixing ratio of PCO and CAF is 3.3: 1) or with PCO with 3.3 × 10 4 cells. For example, when mixing 5 × 10 4 cells of CAF (i.e., when the mixing ratio of PCO and CAF is 1:1.5), it was confirmed that CIPCO did not maintain its proper shape because the matrix induced by CAF was not formed. (B in Figure 1).
반면, CAF의 비율이 PCO에 대하여 높은 경우에는 CAF에 의해 유도되는 기질에 의해 CIPCO의 형태가 잘 유지됨을 확인하였다(도 1의 B). 구체적으로, 3.3×104 세포수의 PCO 및 1×105 세포수의 CAF를 혼합하는 경우(즉, PCO 및 CAF의 혼합비가 1 : 3인 경우)에 CAF 기질에 의한 조직형성이 잘 유지되고, 배양이 계속되더라도 그 형태가 일정하게 유지되며(도 1의 B), 배양 기간이 길어질수록 PCO와 CAF의 융합이 점차 증가하는 것을 확인하였다(도 1의 C). On the other hand, when the ratio of CAF to PCO was high, it was confirmed that the shape of CIPCO was well maintained by the substrate induced by CAF (Figure 1B). Specifically, when mixing PCO with 3.3 × 10 4 cells and CAF with 1 × 10 5 cells (i.e., when the mixing ratio of PCO and CAF is 1: 3), tissue formation by the CAF matrix is well maintained. , even if the culture continues, its shape remains constant (Figure 1B), and it was confirmed that the fusion of PCO and CAF gradually increases as the culture period increases (Figure 1C).
특히, 도 2에 나타난 바와 같이, PCO의 혼합비가 1:1 또는 1:2인 경우 CAF에 의한 기질이 잘 형성되지 않아 돔(dome)의 형태를 유지하지 못하거나 돔 내에서 오가노이드가 한쪽으로 치우치는 등 PCO와 CAF가 잘 융합되지 않음을 확인하였다. 반면, PCO 및 CAF의 혼합비가 1:3 내지 1:5의 비율인 경우 CIPCO의 형태가 잘 유지되었고, 돔 내에서 오가노이드와 CAF의 밀도가 한쪽으로 치우치지 않고 일정하게 분포되어 있음을 확인하였다. 특히, CAF와의 혼합비율이 높아짐에 따라 낭포성 (Cystic) 오가노이드는 주변 CAF 유도 기질에 의해 둘러싸여 작은 크기로 내강(Lumen)이 밀집한 형태의 오가노이드로 변함을 확인하였고, 이는 실제 고형암의 종류인 췌장암의 CAF 및 기질 특성을 반영한다.In particular, as shown in Figure 2, when the mixing ratio of PCO is 1:1 or 1:2, the matrix by CAF is not formed well and the shape of the dome is not maintained or the organoids are shifted to one side within the dome. It was confirmed that PCO and CAF do not fuse well, including bias. On the other hand, when the mixing ratio of PCO and CAF was 1:3 to 1:5, the shape of CIPCO was well maintained, and it was confirmed that the density of organoids and CAF within the dome was uniformly distributed without being biased to one side. . In particular, it was confirmed that as the mixing ratio with CAF increases, the cystic organoid is surrounded by the surrounding CAF-derived matrix and changes into a small-sized organoid with a dense lumen, which is a type of actual solid cancer. Reflects CAF and stromal characteristics of pancreatic cancer.
나아가, 도 3에 나타낸 바와 같이, PCO 및 CAF의 혼합비가 1 : 3인 경우, CIPCO는 배양기간이 증가함에 따라 계속해서 성장하며, 배양 기간이 10일 이상의 장기로 진행되는 경우에도 성장이 이루어짐을 확인하였다(도 3의 A). 또한, CIPCO는 PCO 마커인 CK19, CAF 마커인 비멘틴(Vimentin)을 발현하며, 특히 비멘틴의 경우에는 PCO 주변에 골고루 발현됨을 확인함으로써, CAF는 CIPCO 주변에 전체적으로 분포되어 있음을 확인하였다(도 3의 B).Furthermore, as shown in Figure 3, when the mixing ratio of PCO and CAF is 1:3, CIPCO continues to grow as the culture period increases, and growth occurs even when the culture period is longer than 10 days. Confirmed (A in Figure 3). In addition, CIPCO expresses CK19, a PCO marker, and Vimentin, a CAF marker. In particular, vimentin was confirmed to be expressed evenly around PCO, confirming that CAF is distributed throughout CIPCO (Figure B of 3).
상기 결과를 통해, 췌장암 오가노이드(PCO)를 CAF와 1 : 3 내지 5의 세포수 비율로 혼합하여 제조한 CIPCO는 췌장암의 미세환경을 모사할 수 있으므로, 약물 스크리닝 및 효능 평가 시스템으로써 유용하게 활용될 수 있음을 알 수 있다.Based on the above results, CIPCO, prepared by mixing pancreatic cancer organoids (PCO) with CAF at a cell number ratio of 1:3 to 5, can simulate the microenvironment of pancreatic cancer, so it is useful as a drug screening and efficacy evaluation system. You can see that it can be done.
실시예 2. CIPCO의 조직 유사성Example 2. Organizational similarity of CIPCO
상기 실시예 1을 통해 제조한 CIPCO에 대하여, 실제 인간의 췌장암 조직과의 유사성을 분석하였다.CIPCO prepared in Example 1 was analyzed for similarity to actual human pancreatic cancer tissue.
구체적으로, H&E, Masson's Trichrome 등의 염색을 시행하여 조직 유사성을 분석하였다.Specifically, tissue similarity was analyzed by staining with H&E, Masson's Trichrome, etc.
그 결과, 도 4에서 볼 수 있듯이, CIPCO는 인간 췌장암 조직과 매우 유사한 조직학적 특징을 나타냄을 확인하였다. 또한, CIPCO와 인간 췌장암 조직 모두에서, 암의 기질 부분에는 섬유아세포의 마커인 비멘틴이 발현되는 것을 확인하였으며, 이를 통해 상기 기질은 CAF 유래의 기질임을 확인하였다(도 4의 A). 또한, 췌장암과 같은 고형암에서 나타나는 대표적인 기질은 CAF에서 분비되는 콜라겐으로 알려져 있는데, 상기 실시예 1에서 확립된 CIPCO 또한 CAF에 의해 형성된 대부분의 기질은 콜라겐임을 확인하였다(도 4의 B 내지 D).As a result, as can be seen in Figure 4, it was confirmed that CIPCO exhibited histological characteristics very similar to human pancreatic cancer tissue. In addition, in both CIPCO and human pancreatic cancer tissues, it was confirmed that vimentin, a marker of fibroblasts, was expressed in the stromal portion of the cancer, through which it was confirmed that the stromal matrix was derived from CAF (Figure 4A). In addition, the representative matrix that appears in solid tumors such as pancreatic cancer is known to be collagen secreted by CAF, and CIPCO established in Example 1 also confirmed that most of the matrix formed by CAF is collagen (FIG. 4B to D).
나아가, 인간 췌장암 조직에서 유래한 CAF, PCO 및 CIPCO에서 관찰되는 CAF의 subtype을 면역조직화학적 분석을 통해 분석하였다. 일반적으로, CAF는 3개의 하위 그룹으로 나뉠 수 있는데, 이는 각각 α-SMA를 발현하는 MyoCAFs (Myofibroblast), IL-6를 발현하는 iCAFs (Inflammatory fibroblast), MHC Ⅱ를 발현하는 apCAFs (Antigen pregenting fibroblast)이다. Furthermore, the subtypes of CAF observed in CAF, PCO, and CIPCO derived from human pancreatic cancer tissue were analyzed through immunohistochemical analysis. Generally, CAFs can be divided into three subgroups: MyoCAFs (Myofibroblasts) expressing α-SMA, iCAFs (Inflammatory fibroblasts) expressing IL-6, and apCAFs (Antigen pregenting fibroblasts) expressing MHC II, respectively. am.
구체적으로, CAF, PCO 및 CIPCO를 각각 배양하였고, 배양 10일째에 4% PFA를 처리하여 고정시킨 후, 파라핀 블록을 생성하고, 절편으로 만들었다. 이후, CAF subtype의 마커인 α-SMA, IL-6, MHC Ⅱ에 대한 분석을 진행하였다.Specifically, CAF, PCO, and CIPCO were each cultured, and on the 10th day of culture, they were fixed with 4% PFA, then paraffin blocks were created and sectioned. Afterwards, analysis was conducted on the markers of CAF subtype: α-SMA, IL-6, and MHC II.
그 결과, 도 5에서 볼 수 있듯이, CIPCO는 인간 췌장암 조직과 매우 유사한 패턴으로 CAF subtype의 마커를 발현하는 것을 확인하였다(도 5의 A). 또한, CIPCO에서는 CAF subtype을 인간 췌장암 조직과 유사한 비율로 나타내고 있는 것을 확인하였다(도 5의 B). 상기 CAF subtype 중에서 myoCAF는 암세포에 직접 붙어있거나 인접하여 위치하는 CAF이고, iCAF는 암세포에서 떨어져 위치하는 CAF로서, 생체 내 췌장암 미세환경에서는 myoCAF, iCAF 및 ap-CAF의 여러 CAF subtype이 암세포 주변을 다양한 형태로 구성하고 있다.As a result, as can be seen in Figure 5, CIPCO was confirmed to express markers of the CAF subtype in a pattern very similar to human pancreatic cancer tissue (Figure 5A). In addition, CIPCO confirmed that CAF subtypes were expressed at a similar rate to human pancreatic cancer tissue (Figure 5B). Among the above CAF subtypes, myoCAF is a CAF that is directly attached to or located adjacent to cancer cells, and iCAF is a CAF that is located away from cancer cells. In the in vivo pancreatic cancer microenvironment, several CAF subtypes of myoCAF, iCAF, and ap-CAF move around cancer cells in various ways. It is structured in the form.
한편, 췌장암 조직에서 분리한 췌장암 세포를 오가노이드(PCO)로 형성시키고, 그 이후 상기 오가노이드를 disassociation하여 다시 단일 세포(single cell)의 췌장암 세포로 만든 후, 이를 CAF와 융합하는 경우에는 암세포와 인접해 있는 CAF만이 존재하는 것을 확인하였다. 따라서, CIPCO의 제조에는 단일세포 형태의 췌장암세포를 사용하는 것보다 췌장암 오가노이드를 사용하는 것이 암 미세환경을 더 효과적으로 모사할 수 있음을 확인하였다.On the other hand, when pancreatic cancer cells isolated from pancreatic cancer tissue are formed into organoids (PCO), the organoids are then disassociated to create single cell pancreatic cancer cells, and then fused with CAF, the cancer cells and It was confirmed that only adjacent CAFs exist. Therefore, it was confirmed that using pancreatic cancer organoids in the production of CIPCO can more effectively simulate the cancer microenvironment than using single-cell pancreatic cancer cells.
상기 결과를 통해, 상기 실시예 1에서 제조한 CIPCO는 췌장암 조직의 CAF 특성을 반영하는 등의 암 미세환경을 모사할 수 있으므로, 약물 스크리닝 및 효능 평가 시스템으로써 유용하게 활용될 수 있음을 알 수 있다.From the above results, it can be seen that CIPCO prepared in Example 1 can simulate the cancer microenvironment, such as reflecting the CAF characteristics of pancreatic cancer tissue, and thus can be usefully used as a drug screening and efficacy evaluation system. .
실시예 3. CIPCO의 상피간엽이행(EMT; epithelial to mesenchymal transition)Example 3. CIPCO's epithelial to mesenchymal transition (EMT)
상기 실시예 1을 통해 제조한 CIPCO에 대하여, 상피간엽이행의 정도를 분석하였다. EMT는 상피세포 성질로부터 간엽세포 성질로의 전환을 뜻하며, 종양 세포의 이동, 전이에 있어 중요한 과정이다.For CIPCO prepared in Example 1, the degree of epithelial-mesenchymal transition was analyzed. EMT refers to the transition from epithelial cell properties to mesenchymal cell properties, and is an important process in the migration and metastasis of tumor cells.
구체적으로, EMT가 진행되는 경우, 간엽세포 마커 유전자인 비멘틴(Vimentin), 피브로넥틴(Fibronectin) 및 ZEB-1의 발현은 증가하게 된다. 이에 따라, 상기 유전자의 발현 수준을 분석하였다.Specifically, when EMT progresses, the expression of mesenchymal cell marker genes Vimentin, Fibronectin, and ZEB-1 increases. Accordingly, the expression level of the gene was analyzed.
그 결과, 도 6의 A에서 볼 수 있듯이, CIPCO는 PCO에 비하여 비멘틴의 발현이 증가하는 것을 확인하였다. 특히, 이러한 CIPCO의 EMT 관련 유전자의 발현 변화는 인간 췌장암 조직과 매우 유사한 패턴을 나타냄을 확인하였다.As a result, as can be seen in A of Figure 6, it was confirmed that CIPCO increased the expression of vimentin compared to PCO. In particular, it was confirmed that the expression changes of EMT-related genes in CIPCO showed a pattern very similar to that in human pancreatic cancer tissue.
상기와 같은 EMT 관련한 인자의 발현 패턴 변화가 CAF의 영향인지 여부를 확인하기 위하여, CAF를 비활성시키는 약물인 ATRA(all-trans-retinoic acid)를 공배양 전의 CAF에 처리하였고, ATRA가 처리된 CAF를 PCO와 공배양하여 CIPCO를 제조하였다. 이후, FACS를 이용하여 CIPCO로부터 단일 세포를 분리하였고, qRT-PCR을 통해 EMT 관련 유전자의 발현 수준을 분석하였다.In order to confirm whether the changes in the expression patterns of EMT-related factors as described above are due to the influence of CAFs, ATRA (all-trans-retinoic acid), a drug that inactivates CAFs, was treated with CAFs before co-culture, and ATRA-treated CAFs were treated with ATRA. CIPCO was produced by co-culturing with PCO. Afterwards, single cells were isolated from CIPCO using FACS, and the expression levels of EMT-related genes were analyzed through qRT-PCR.
그 결과, 도 6의 B에서 볼 수 있듯이, CIPCO는 ATRA 처리에 의하여 모든 EMT 관련 유전자(ZEB-1, 피브로넥틴, 비멘틴)의 발현이 감소하는 것을 확인하였고, 공배양에서의 증가된 암세포의 EMT 마커 발현의 차이는 CAF에 의한 것임을 확인하였다.As a result, as can be seen in Figure 6B, CIPCO confirmed that the expression of all EMT-related genes (ZEB-1, fibronectin, vimentin) was reduced by ATRA treatment, and the EMT of cancer cells increased in co-culture. It was confirmed that the difference in marker expression was due to CAF.
상기 결과를 통해, 상기 실시예 1에서 제조한 CIPCO는 암의 이동, 전이 등에 관여하는 EMT를 유도할 수 있는바, 췌장암의 미세환경을 완벽히 모사할 수 있으므로, 약물 스크리닝 및 효능 평가 시스템으로써 유용하게 활용될 수 있음을 알 수 있다.Based on the above results, CIPCO prepared in Example 1 can induce EMT involved in cancer movement and metastasis, and can perfectly mimic the microenvironment of pancreatic cancer, making it useful as a drug screening and efficacy evaluation system. You can see that it can be used.
실시예 4. 제노그래프트(Xenograft) 마우스 모델을 이용한 CIPCO의 EMT 및 전이능Example 4. EMT and metastatic ability of CIPCO using Xenograft mouse model
상기 실시예 1을 통해 제조한 CIPCO에 대하여, EMT 및 전이능을 제노그래프트(Xenograft) 마우스 모델을 통해 분석하였다.For CIPCO prepared in Example 1, EMT and metastatic ability were analyzed using a Xenograft mouse model.
그 결과, 도 7의 A에서 볼 수 있듯이, CIPCO가 이식된 경우에는 PCO가 이식된 경우에 비하여 마우스의 생존율이 급격히 감소하는 것을 확인하였다.As a result, as can be seen in Figure 7A, it was confirmed that when CIPCO was implanted, the survival rate of mice decreased sharply compared to when PCO was implanted.
또한, 도 7의 B에서 볼 수 있듯이, PCO 및 CIPCO 유래의 암세포에서 인간 핵(nuclei) 및 인간 CK19이 발현됨을 확인하였는데, 이를 통해 상기 암세포는 마우스가 내재하고 있던 것이 아닌, 이식된 PCO 및 CIPCO에서 유래한 것임을 확인할 수 있었다.In addition, as can be seen in Figure 7B, it was confirmed that human nuclei and human CK19 were expressed in PCO- and CIPCO-derived cancer cells, which showed that the cancer cells were not native to the mouse, but were transplanted from the transplanted PCO and CIPCO. It was confirmed that it originated from .
또한, CIPCO 유래 암세포는 PCO 유래 암세포에 비하여 α-SMA 유전자의 발현이 증가함을 확인하였다. α-SMA/비멘틴의 발현은 CAF와 같은 섬유아세포를 대변하는데, PCO 유래 암세포보다 CIPCO 유래 암세포에서 발현량이 더 많은 것으로 보아 CIPCO 유래의 암세포에서는 CAF가 함께 조직을 구성하고 있음을 확인하였고, CIPCO 내 ECM의 형성이 더 증가됨을 확인하였다. In addition, CIPCO-derived cancer cells were confirmed to have increased expression of the α-SMA gene compared to PCO-derived cancer cells. The expression of α-SMA/vimentin represents fibroblasts like CAF, and the expression level was higher in CIPCO-derived cancer cells than in PCO-derived cancer cells, confirming that CAFs form tissues together in CIPCO-derived cancer cells. It was confirmed that the formation of my ECM was further increased.
또한, CIPCO 유래 암세포는 PCO 유래 암세포에 비하여 종양이 전이될 때 발현하는 Twist-1의 양이 더 높은 것을 확인하였고, 이를 통해 CIPCO에서는 EMT가 증가함을 확인하였다.In addition, CIPCO-derived cancer cells were confirmed to have a higher amount of Twist-1 expressed when the tumor metastasizes compared to PCO-derived cancer cells, and through this, it was confirmed that EMT increases in CIPCO.
상기 결과를 통해, 상기 실시예 1에서 제조한 CIPCO는 생체 내에서 암의 증식, 이동 및 전이 등을 공격적으로 유도할 수 있는바, 췌장암의 미세환경을 완벽히 모사할 수 있으므로, 약물 스크리닝 및 효능 평가 시스템으로써 유용하게 활용될 수 있음을 알 수 있다.Based on the above results, CIPCO prepared in Example 1 can aggressively induce cancer growth, migration, and metastasis in vivo, and can perfectly mimic the microenvironment of pancreatic cancer, making it suitable for drug screening and efficacy evaluation. It can be seen that it can be usefully utilized as a system.
실시예 5. CIPCO의 항암제 저항성Example 5. Anticancer drug resistance of CIPCO
상기 실시예 1을 통해 제조한 CIPCO에 대하여, 항암제 저항성을 분석하였다. 췌장암의 치료제로는 주로 젬시타빈(Gemcitabine)이 사용되고 있으나, 실제 췌장암 환자에 적용 시 약물에 대한 저항성 때문에 항암 효과가 떨어지는 경우가 있다. 항암제 저항성에 대한 기전은 종양 미세환경에 의한 1) 물리적 장애에 따른 비효율적인 약물전달 또는 2) 종양세포의 EMT에 의한 분자적 방어 등이 제시되고 있다. Anticancer drug resistance of CIPCO prepared in Example 1 was analyzed. Gemcitabine is mainly used as a treatment for pancreatic cancer, but when applied to actual pancreatic cancer patients, the anticancer effect may be reduced due to resistance to the drug. The mechanism for anticancer drug resistance has been suggested to be 1) inefficient drug delivery due to physical obstacles caused by the tumor microenvironment or 2) molecular defense caused by EMT of tumor cells.
구체적으로, 항암제 저항성은 항암제 처리에 의한 CIPCO의 생존 정도를 확인함으로써 분석하였다. 세포의 핵을 PI(Propidium iodide)로 염색하는 면역조직화학적 분석을 수행하였으며, PI 영역의 비율을 통해 분석하였다.Specifically, anticancer drug resistance was analyzed by confirming the degree of survival of CIPCO by anticancer drug treatment. Immunohistochemical analysis was performed by staining the nuclei of cells with PI (propidium iodide), and the ratio of PI area was analyzed.
그 결과, 도 8의 A 및 B에서 볼 수 있듯이, CIPCO는 PCO에 비하여 항암제를 높은 농도로 처리하더라도 PI 영역이 감소하지 않는 것을 확인하였고, 이를 통해 항암제 저항성이 증가하여 생존하는 CIPCO의 수가 유지됨을 확인하였다. 다만, CIPCO의 주요 세포외기질 중 하나인 교원질을 분해하는 콜라게나제(collagenase)를 항암제와 함께 처리하는 경우에는 PI 영역이 급격하게 감소함을 확인하였고, 이를 통해 항암제 저항성이 감소하여 (즉, 항암제 감수성이 증가하여), CIPCO의 사멸이 현저히 증가함을 확인하였다.As a result, as can be seen in Figures 8A and B, it was confirmed that the PI area of CIPCO did not decrease even when treated with a higher concentration of anticancer drugs than that of PCO. Through this, anticancer drug resistance increased and the number of surviving CIPCOs was maintained. Confirmed. However, it was confirmed that when collagenase, which decomposes collagen, one of the main extracellular matrices of CIPCO, is treated with anticancer drugs, the PI area decreases sharply, and through this, anticancer drug resistance decreases (i.e. It was confirmed that the death of CIPCO significantly increased (due to increased anticancer drug sensitivity).
상기 결과를 통해, 상기 실시예 1에서 제조한 CIPCO는 항암제 저항성을 나타내는 췌장암의 미세환경을 모사할 수 있으므로, 환자에게 존재하는 약물 내성이나 약물의 효과 등을 미리 파악할 수 있는 환자맞춤형 치료에 유용하게 활용될 수 있으며, 항암제 평가 및 감수성 조절을 위한 병용제제 개발에 있어 효과적인 in vitro 모델로 활용될 수 있음을 알 수 있다.Based on the above results, CIPCO manufactured in Example 1 can simulate the microenvironment of pancreatic cancer that exhibits anticancer drug resistance, making it useful for customized treatment that can determine in advance the drug resistance or drug effect that exists in the patient. It can be used as an effective in vitro model in the development of combination agents for anticancer drug evaluation and sensitivity control.

Claims (12)

  1. 하기 단계를 포함하는, 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)의 제조방법:Method for producing a cancer microenvironment-mimicking pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) comprising the following steps:
    (a) 개체에서 분리된 췌장암(PDAC; pancreatic ductal adenocarcinoma) 조직에서 췌장암 세포를 수득하는 단계;(a) obtaining pancreatic cancer cells from pancreatic ductal adenocarcinoma (PDAC) tissue isolated from an individual;
    (b) 상기 분리된 세포를 췌장암 오가노이드(PCO; pancreatic cancer organoid) 및 암관련 섬유아세포(CAF; cancer-associated fibroblast)로 각각 배양하는 단계; 및(b) culturing the separated cells into pancreatic cancer organoids (PCO) and cancer-associated fibroblasts (CAF), respectively; and
    (c) 상기 췌장암 오가노이드 및 암관련 섬유아세포를 혼합하여 배양하는 단계.(c) Mixing and culturing the pancreatic cancer organoids and cancer-related fibroblasts.
  2. 제1항에 있어서,According to paragraph 1,
    상기 단계 (a)는 콜라게나제 Ⅱ(collagenase Ⅱ), HEPES 및 글루타맥스(GlutaMAX)를 포함하는 분리 버퍼를 이용하여 수행되는 것인, 제조방법.The preparation method wherein step (a) is performed using a separation buffer containing collagenase II, HEPES, and GlutaMAX.
  3. 제1항에 있어서,According to paragraph 1,
    상기 단계 (b)의 췌장암 오가노이드의 배양은 췌장암 세포 및 마트리겔이 0.5 내지 1.5 : 0.5 내지 1.5의 부피비로 혼합되어 수행되는 것인, 제조방법.The culture of the pancreatic cancer organoid in step (b) is performed by mixing pancreatic cancer cells and Matrigel at a volume ratio of 0.5 to 1.5:0.5 to 1.5.
  4. 제1항에 있어서,According to paragraph 1,
    상기 단계 (b)의 췌장암 오가노이드의 배양은 Wnt, R-스폰딘(R-spondin), B-27, 니코틴아마이드(Nicotinamide), HEPES, 글루타맥스(GlutaMAX), FGF10, N-아세틸시스테인(N-Acetylcysteine), EGF, 가스트린 1(Gastrin 1) 및 플라모신(Plasmocin)을 포함하는 배양 배지에서 수행되는 것인, 제조방법.Culture of pancreatic cancer organoids in step (b) includes Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, and N-acetylcysteine ( A manufacturing method performed in a culture medium containing N-Acetylcysteine), EGF, Gastrin 1, and Plasmocin.
  5. 제1항에 있어서,According to paragraph 1,
    상기 단계 (b)의 암관련 섬유아세포의 배양은 FBS 및 GlutaMAX를 포함하는 배양 배지로 수행되는 것인, 제조방법.The preparation method of step (b), wherein the culture of cancer-related fibroblasts is performed with a culture medium containing FBS and GlutaMAX.
  6. 제1항에 있어서,According to paragraph 1,
    상기 단계 (c)의 배양은 Wnt, R-스폰딘(R-spondin), B-27, 니코틴아마이드(Nicotinamide), HEPES, 글루타맥스(GlutaMAX), FGF10, N-아세틸시스테인(N-Acetylcysteine), EGF, 가스트린 1(Gastrin 1) 및 플라모신(Plasmocin) 포함하는 배양 배지에서 수행되는 것인, 제조방법.The culture in step (c) includes Wnt, R-spondin, B-27, Nicotinamide, HEPES, GlutaMAX, FGF10, and N-Acetylcysteine. , a manufacturing method performed in a culture medium containing EGF, Gastrin 1, and Plasmocin.
  7. 제1항에 있어서,According to paragraph 1,
    상기 단계 (c)의 혼합은 췌장암 오가노이드 및 암관련 섬유아세포를 1 : 3 내지 5의 세포수 비율로 혼합하여 수행되는 것인, 제조방법.The mixing in step (c) is performed by mixing pancreatic cancer organoids and cancer-related fibroblasts at a cell number ratio of 1:3 to 5.
  8. 제1항에 있어서,According to paragraph 1,
    상기 암 미세환경 모사 췌장암 오가노이드는 CK19 및 비멘틴(Vimentin)을 발현하는 것인, 제조방법.A manufacturing method wherein the cancer microenvironment-mimicking pancreatic cancer organoid expresses CK19 and Vimentin.
  9. 제1항에 있어서,According to paragraph 1,
    상기 암 미세환경 모사 췌장암 오가노이드는 췌장암 오가노이드에 비하여 상피간엽이행(EMT; epithelial to mesenchymal transition), 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성이 증가하는 것인, 제조방법.The cancer microenvironment-simulating pancreatic cancer organoid has increased epithelial to mesenchymal transition (EMT), proliferation ability of the cancer organoid, metastatic ability of the cancer organoid, and anticancer drug resistance compared to the pancreatic cancer organoid.
  10. 제1항의 제조방법으로 제조된, 암 미세환경 모사 췌장암 오가노이드.A pancreatic cancer organoid simulating a cancer microenvironment manufactured by the manufacturing method of claim 1.
  11. 하기 단계를 포함하는, 항암제의 효능 평가 방법:Method for evaluating the efficacy of an anticancer agent, comprising the following steps:
    (a) 제10항의 암 미세환경 모사 췌장암 오가노이드(CIPCO; CAF-integrated pancreatic cancer organoid)에 항암제 후보물질을 처리하는 단계;(a) treating the cancer microenvironment-simulating pancreatic cancer organoid (CIPCO; CAF-integrated pancreatic cancer organoid) of item 10 with an anticancer drug candidate;
    (b) 상기 항암제 후보물질이 처리된 암 미세환경 모사 췌장암 오가노이드에서 상피간엽이행(EMT; epithelial to mesenchymal transition), 암 오가노이드의 증식능, 암 오가노이드의 전이능 및 항암제 저항성으로 이루어진 그룹에서 선택되는 하나 이상의 수준을 측정하는 단계; 및(b) Select from the group consisting of epithelial to mesenchymal transition (EMT), proliferative ability of cancer organoids, metastatic ability of cancer organoids, and anticancer drug resistance in pancreatic cancer organoids simulating the cancer microenvironment treated with the above anticancer drug candidate. measuring one or more levels of and
    (c) 상기 단계 (b)에 따라 암 미세환경 모사 췌장암 오가노이드에서 측정한 수준이 대조군에서 측정한 수준보다 감소하는 경우, 상기 항암제 후보물질을 항암제로 판단하는 단계.(c) If the level measured in the pancreatic cancer organoid simulating the cancer microenvironment according to step (b) is lower than the level measured in the control group, determining the anticancer drug candidate as an anticancer drug.
  12. 제11항에 있어서, According to clause 11,
    상기 대조군은 항암제 후보물질을 처리하지 않은 암 미세환경 모사 췌장암 오가노이드 또는 항암제 후보물질을 처리한 췌장암 오가노이드인, 방법.The control group is a pancreatic cancer organoid simulating a cancer microenvironment that is not treated with an anticancer drug candidate or a pancreatic cancer organoid treated with an anticancer drug candidate.
PCT/KR2023/005508 2022-06-08 2023-04-21 Method for preparing pancreatic cancer organoids mimicking cancer microenvironment and use thereof WO2023239048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220069809A KR102577816B1 (en) 2022-06-08 2022-06-08 Preparation method of caf-integrated pancreatic cancer organoid and use thereof
KR10-2022-0069809 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023239048A1 true WO2023239048A1 (en) 2023-12-14

Family

ID=88019609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005508 WO2023239048A1 (en) 2022-06-08 2023-04-21 Method for preparing pancreatic cancer organoids mimicking cancer microenvironment and use thereof

Country Status (2)

Country Link
KR (1) KR102577816B1 (en)
WO (1) WO2023239048A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170008723A (en) * 2014-02-11 2017-01-24 안트로제네시스 코포레이션 Micro-organoids, and methods of making and using the same
KR20190003549A (en) * 2016-04-04 2019-01-09 휴멜티스 Diagnostic methods for patient-specific therapeutic judgment in cancer care
KR102120378B1 (en) * 2019-07-04 2020-06-08 연세대학교 산학협력단 Method for preparing cancer organoid and use thereof
KR102213931B1 (en) * 2019-09-16 2021-02-05 포항공과대학교 산학협력단 Methods to develop the reconstituted miniature tissues with multiple cell types from patient-derived stem or tumor cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170008723A (en) * 2014-02-11 2017-01-24 안트로제네시스 코포레이션 Micro-organoids, and methods of making and using the same
KR20190003549A (en) * 2016-04-04 2019-01-09 휴멜티스 Diagnostic methods for patient-specific therapeutic judgment in cancer care
KR102120378B1 (en) * 2019-07-04 2020-06-08 연세대학교 산학협력단 Method for preparing cancer organoid and use thereof
KR102213931B1 (en) * 2019-09-16 2021-02-05 포항공과대학교 산학협력단 Methods to develop the reconstituted miniature tissues with multiple cell types from patient-derived stem or tumor cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GO YOON-HA, CHOI WOO HEE, BAE WON JUNG, JUNG SOOK-IN, CHO CHANG-HOON, LEE SEUNG AH, PARK JOON SEONG, AHN JI MI, KIM SUNG WON, LEE : "Modeling Pancreatic Cancer with Patient-Derived Organoids Integrating Cancer-Associated Fibroblasts", CANCERS, CH, vol. 14, no. 9, 21 April 2022 (2022-04-21), CH , pages 2077, XP093114071, ISSN: 2072-6694, DOI: 10.3390/cancers14092077 *
SUSAN TSAI, MCOLASH LAURA, PALEN KATIE, JOHNSON BRYON, DURIS CHRISTINE, YANG QIUHUI, DWINELL MICHAEL B., HUNT BRYAN, EVANS DOUGLAS: "Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models", BMC CANCER, vol. 18, no. 335, 27 March 2018 (2018-03-27), pages 1 - 13, XP055727623, DOI: 10.1186/s12885-018-4238-4 *

Also Published As

Publication number Publication date
KR102577816B1 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US11180734B2 (en) Single cell-derived organoids
US11193110B2 (en) Methods to generate gastrointestinal epithelial tissue constructs
JP5057629B2 (en) Encapsulation of tissue cells and their use in peptide scaffolds
WO2021187758A1 (en) Cardiac organoid, manufacturing method therefor, and method for evaluating drug toxicity by using same
KR102213931B1 (en) Methods to develop the reconstituted miniature tissues with multiple cell types from patient-derived stem or tumor cells
Isakson et al. Cell–cell communication in heterocellular cultures of alveolar epithelial cells
Tunesi et al. Optimization of a 3D dynamic culturing system for in vitro modeling of frontotemporal neurodegeneration-relevant pathologic features
Motlik et al. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation
JP2022535855A (en) Methods of Making and Using Liver Cells
Wang et al. Human primary epidermal organoids enable modeling of dermatophyte infections
Kashfi et al. Morphological alterations of cultured human colorectal matched tumour and healthy organoids
Nishikawa et al. Migration and differentiation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung’s disease
Manzini et al. The stop signal revised: immature cerebellar granule neurons in the external germinal layer arrest pontine mossy fiber growth
WO2020101461A1 (en) Organoid produced using carrier for cell culture, and method for evaluating drug toxicity using same
US11834680B2 (en) Single kidney cell-derived organoids
Demeter et al. Fate of cloned embryonic neuroectodermal cells implanted into the adult, newborn and embryonic forebrain
KR20190035524A (en) Long-term three dimensional culturing system of primary hepatocyte using nanofiber and culturing method
KR20190127041A (en) liver organoid and method of preparing the same
WO2023239048A1 (en) Method for preparing pancreatic cancer organoids mimicking cancer microenvironment and use thereof
US20150166960A1 (en) Method for producing functional fusion tissue
Vertrees et al. Cellular differentiation in three-dimensional lung cell cultures
WO2019059702A2 (en) Nanofiber-based long-term primary hepatocyte three-dimensional culture system and culturing method
Rauner et al. Advancements in human breast organoid culture: modeling complex tissue structures and developmental insights
Vertrees et al. Development of a three-dimensional model of lung cancer using cultured transformed lung cells
Karna et al. Animal and cell culture models of PPGLs–achievements and limitations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819984

Country of ref document: EP

Kind code of ref document: A1