WO2023238919A1 - Hybrid type compound or salt thereof - Google Patents

Hybrid type compound or salt thereof Download PDF

Info

Publication number
WO2023238919A1
WO2023238919A1 PCT/JP2023/021442 JP2023021442W WO2023238919A1 WO 2023238919 A1 WO2023238919 A1 WO 2023238919A1 JP 2023021442 W JP2023021442 W JP 2023021442W WO 2023238919 A1 WO2023238919 A1 WO 2023238919A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
mmol
formula
integer
trametinib
Prior art date
Application number
PCT/JP2023/021442
Other languages
French (fr)
Japanese (ja)
Inventor
良広 渡部
崇隆 國嶋
光 藤田
聖二 矢野
祥子 新井
郁巳 玉井
大 荒川
泰英 猪熊
Original Assignee
良広 渡部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 良広 渡部 filed Critical 良広 渡部
Publication of WO2023238919A1 publication Critical patent/WO2023238919A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a hybrid compound formed by linking two types of drugs via a linker, or a salt thereof, and more specifically to a hybrid compound formed by linking trametinib and an Akt inhibitor, or a salt thereof.
  • the present invention also relates to therapeutic agents and pharmaceutical compositions containing the above hybrid compound as an active ingredient.
  • Ras protein (hereinafter referred to as "Ras") is a protein present on the cell surface and is known to be involved in controlling cell proliferation. In cancer cells with Ras mutations, signals downstream of Ras are abnormally activated, leading to abnormal cell proliferation. Cancers caused by Ras mutations are highly common, accounting for approximately 30% of all cancers; for example, the Ras mutation rate in pancreatic cancer is approximately 90%, in thyroid cancer approximately 60%, and in colon cancer. It is known that about 50% of cancers and about 30% of non-small cell lung cancers have Ras mutations (Non-patent Documents 1 and 2).
  • Ras mutations and their activation are powerful cancer drivers, and therefore attempts have been made to develop anticancer drugs that target Ras molecules.
  • the Ras protein does not have a small molecule pocket to target itself, and although covalent inhibitors have been developed for G12C mutant Ras, they are targeted at some Ras mutant cancers, and drug resistance. It has also become clear that Ras-mutant cancers can occur. It is still considered difficult to widely target Ras (Non-patent Documents 3, 4 and 5).
  • trametinib an inhibitor of the MEK protein (hereinafter referred to as "MEK") located downstream of Ras, binds to MEK in a so-called “induced fit” type, resulting in a stable complex. It has been reported that the cells form a body (Non-patent Documents 7 and 8).
  • Non-Patent Document 3 G12C covalent inhibitors
  • immune checkpoint inhibitors are also being considered.
  • G12C covalent inhibitors that broadly target activation by mutant Ras.
  • trametinib which forms a stable complex with MEK, and by linking it with a drug that has an effect different from MEK inhibition, in addition to MEK inhibition, PI3K/Akt
  • PI3K/Akt we investigated the acquisition of hybrid compounds or their salts that also have the inhibitory effect on the /mTOR pathway.
  • the present inventors discovered a novel hybrid compound or a salt thereof in which trametinib is linked to an Akt inhibitor using an appropriate linker structure, and completed the present invention.
  • the present invention provides, for example, the following.
  • Akt inhibitors include aflesertib, MK2206, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine or 2-(5-chloro-7H-pyrrolo[2,3 -d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane, the hybrid compound or salt thereof according to [1].
  • a trametinib moiety represented by the following formula (I), an Akt inhibitor moiety selected from the following formulas (II-1) to (II-4), and a trametinib moiety represented by the following formulas (III-1) to (III- 4) A hybrid compound having a linker moiety selected from 4) or a salt thereof.
  • m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time.
  • m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time.
  • a novel hybrid compound can be provided.
  • FIG. 2 shows the blood concentration changes of trametinib in MK2206 and trametinib mixture 1, MK2206 and trametinib mixture 2, aflesertib and trametinib mixture 1, and aflesertib and trametinib mixture 2 in Example 26.
  • FIG. 3 shows changes in aflesertib blood concentration of aflesertib and trametinib mixture 1 and aflesertib and trametinib mixture 2 in Example 26.
  • 2 shows the change in tumor diameter in Example 27.
  • Hybrid compound or its salt The present invention provides a hybrid compound formed by linking trametinib and an Akt inhibitor via a linker, or a salt thereof.
  • the salt of the hybrid compound include, but are not limited to, hydrochloride, trifluoroacetate, sulfate, hydrobromide, methanesulfonate, paratoluenesulfonate, and the like.
  • Trametinib is an anticancer drug known to exert antitumor effects by inhibiting the MAPK/ERK signaling pathway that contributes to cell proliferation through its MEK inhibitory effect, and its molecular weight is approximately 615. be.
  • the hybrid compound of the present invention is not particularly limited, it can be synthesized by linking with a linker molecule, for example, by modifying the acetylamino group of trametinib. Modification of the acetylamino group may include, but is not limited to, deacetylation.
  • Akt inhibitor> The Akt protein (hereinafter also referred to as "Akt" hereinafter) that constitutes the Ras downstream signal is a serine/threonine kinase and is sometimes referred to as protein kinase B. Activation of Akt suppresses apoptosis induction, and thus Akt inhibitors can induce apoptosis.
  • Akt inhibitors include Afuresertib, MK2206, Miransertib, Capivasertib, Ipatasertib, GSK690693, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl) Piperidin-4-amine (1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine) or 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidine) 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane etc.
  • Akt inhibitors include aflesertib, MK2206, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine or 2-(5-chloro-7H-pyrrolo[2,3- d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane is one of the preferred embodiments.
  • Afuresertib (CAS: 1047644-62-1) is an anticancer drug with a molecular weight of approximately 427.
  • the hybrid compound of the present invention which is formed by linking aflesertib and trametinib via a linker, can be linked to a linker molecule by, for example, modifying the amino group in aflesertib, although this is not particularly limited. Modification of the amino group may be, for example, but not limited to, acylation or alkylation. Alternatively, aflesertib can be linked to a linker without modification of the amino group.
  • MK2206 (CAS: 1032350-13-2) is known as an allosteric Akt inhibitor and is usually supplied as the dihydrochloride salt.
  • the molecular weight of MK2206 is approximately 407.
  • the hybrid compound of the present invention which is formed by linking MK2206 and trametinib via a linker, can be linked to a linker molecule by, for example, modifying the amino group in MK2206, although this is not particularly limited.
  • MK2206 can be connected to a linker without modification of the amino group.
  • 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine is an Akt inhibitor having a molecular weight of about 217, and is represented by the following formula (X).
  • the hybrid compound of the present invention which is formed by linking 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine and trametinib via a linker, is not particularly limited. can be linked to a linker molecule, for example by modifying the amino group in 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine. Alternatively, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine can be coupled to a linker without modification of the amino group.
  • 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane is an Akt inhibitor with a molecular weight of approximately 292 and has the following formula ( Y).
  • Hybrid type of the present invention formed by linking 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane and trametinib via a linker
  • Examples of compounds include, but are not limited to, 2,8 in 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane.
  • the NH moiety contained in the diazaspiro[4.5]decane ring can be connected to a linker.
  • Linker that can be used in the hybrid compound or salt thereof of the present invention, any of the linkers used in the art can be used, such as a linker having hydrophilicity, a linker having hydrophobicity, and a linker having a hydrophilic part and a hydrophobic part. Any linker having a sex part can be suitably used.
  • the linker has at least one structure selected from an aliphatic chain, an oxyethylene group, a furan ring, and a triazine ring.
  • a plurality of the above structures may be included in the linker.
  • the linker contains a plurality of consecutive oxyethylene groups (-OCH 2 CH 2 -), it can be said that the linker contains PEG (polyethylene glycol).
  • the linker length between the trametinib and the Akt inhibitor is preferably 2 to 25 atoms.
  • the linker length means the number of atoms present between the trametinib and the Akt inhibitor.
  • the linker length means the minimum number of atoms existing between the trametinib and the Akt inhibitor.
  • the number of atoms can be 9 or 10 depending on how they are counted, but the linker length is 9, which is the minimum number of atoms.
  • the hybrid compound of the present invention or a salt thereof includes a trametinib moiety represented by the following formula (I), an Akt inhibitor moiety selected from the following formulas (II-1) to (II-4), and a trametinib moiety represented by the following formula (II-1) to (II-4);
  • One of the preferred embodiments is a hybrid compound having a linker moiety selected from (III-1) to (III-4) or a salt thereof.
  • the structure of the hybrid compound is expressed by connecting the above formula numbers ((I), (II-1) to (II-4), (III-1) to (III-4)) with a hyphen. It can be expressed.
  • n when n is 0, m is an integer of 1 to 15, and when n is an integer of 1 to 3, m is preferably an integer of 1 to 10, more preferably is an integer from 1 to 5. Further, in one preferred embodiment, n is an integer of 0 to 2.
  • q is 0 or 1
  • r is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1.
  • the hybrid compound or salt thereof of the present invention is preferably a hybrid compound or salt thereof having a structure selected from the following formulas (1) to (14).
  • the preferred range is m, n in the above formula (III-1), formula (III-2) q in formula (III-3) is the same as r in formula (III-3).
  • n is an integer from 0 to 3
  • m and n are never 0 at the same time.
  • n is an integer from 0 to 3
  • m and n are never 0 at the same time.
  • n is an integer from 0 to 3
  • m and n are never 0 at the same time.
  • n is an integer from 0 to 3
  • m and n are never 0 at the same time.
  • r is an integer from 1 to 4.
  • r is an integer from 1 to 4.
  • the hybrid compound of the present invention or a salt thereof has the activity of inhibiting the proliferation of Ras mutant cancer cells, has a sustained binding property between trametinib and MEK, and is stable as an Akt inhibitor in cells. It is thought that this effect can be exerted.
  • a hybrid compound or a salt thereof there will be no discrepancy in pharmacokinetics that is observed when multiple drugs are used together, and it is expected that both MEK inhibitory action and Akt inhibitory action will be enhanced.
  • the present invention also provides a therapeutic agent for Ras mutant cancer, which contains the hybrid compound of the present invention or a salt thereof as an active ingredient.
  • Targets of treatment with the therapeutic agent of the present invention include, but are not limited to, Ras mutant cancers such as pancreatic cancer, thyroid cancer, colon cancer, and lung cancer.
  • the therapeutic agent of the present invention described above can also be in the form of a pharmaceutical composition, either alone or in combination with other active ingredients. That is, one aspect of the present invention includes a pharmaceutical composition containing the above-mentioned therapeutic agent of the present invention. Furthermore, one of the preferred embodiments is that the pharmaceutical composition of the present invention contains an additional drug (another active ingredient) for the treatment of Ras mutant cancer.
  • the pharmaceutical composition may contain carriers, excipients, buffers, stabilizers, etc. commonly used in the art, depending on the dosage form. can.
  • the therapeutic agent or pharmaceutical composition of the present invention can be administered locally or systemically, for example by injection or infusion into or near the affected area, although the therapeutic agent or pharmaceutical composition of the present invention is not limited thereto.
  • the dosage of the therapeutic agent of the present invention varies depending on the patient's weight, age, severity of disease, etc., and is not particularly limited, but for example, 1 mg/kg body weight in the range of 0.0001 to 1 mg/kg body weight. It can be administered once to several times a day, every 2 days, every 3 days, every 1 week, or every 2 weeks.
  • the therapeutic agent or pharmaceutical composition of the present invention can be used alone, but can also be used in combination with anticancer agents and anticancer treatments with different mechanisms.
  • anticancer drugs with different mechanisms include, but are not limited to, molecular target drugs, antimetabolites, immune checkpoint inhibitors, hormone therapy, radiotherapy, and the like.
  • the hybrid compound of the present invention or a salt thereof can be produced according to a procedure commonly used in the art or a method described in the Examples below, and the production method is not particularly limited.
  • the salt of the hybrid compound may be made into a salt after producing the hybrid compound, or the salt of the hybrid compound may be produced directly by using salt for at least a part of the raw materials.
  • a hybrid compound is synthesized by combining trametinib and an Akt inhibitor with a linker, it is preferable that the following conditions are satisfied.
  • Both compound molecules (trametinib, Akt inhibitor) contain functional groups that serve as a foothold for derivatization. When such a functional group is not included, it is necessary to perform functional group conversion in advance to facilitate organic synthesis modification.
  • the drug activity should not be significantly impaired by the linker connection.
  • H-(I) is a deacetylated version of trametinib
  • GSK1120212 JTP-74057 DMSO Solvate
  • the present inventors investigated the synthesis of H-(I) by N-deacetylation of trametinib using easily available reagents.
  • MK2206 also shares the same point with aflesertib in that it is an Akt inhibitor that has one amino group at the end of the molecule, so we believe that acylation of the amino group may attenuate the activity. Similarly, we decided to use alkylation of amino groups.
  • an example of the method for producing the hybrid compound of the present invention is as follows: (i) deacetylating trametinib to form a trametinib derivative; (ii) linking the trametinib derivative and a linker to form a trametinib-linker conjugate; (iii) linking the trametinib-linker conjugate and an Akt inhibitor via alkylation of the Akt inhibitor.
  • tert-Butyl 2,8-diazaspiro[4.5]decane-8-carboxylate 150.0 mg, 0.6241 mmol
  • 4,5-dichloro-7H-pyrrolo[2,3-d]pyrimidine 129.1 mg, 0.6865 mmol
  • Et 3 N 260 ⁇ L, 1.87 mmol
  • the reaction mixture was stirred at room temperature for 30 minutes, then heated at 60° C. for 2.5 hours, then cooled to room temperature and concentrated under reduced pressure.
  • H-(I) synthesized in Synthesis Example 1 334.0 mg, 0.583 mmol
  • N,N-dimethylformamide 5.8 mL
  • i Pr 2 EtN 203 ⁇ L, 1.17 mmol
  • 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxidehexafluorophosphate HATU
  • Boc-NH-CH 2 -(CH 2 CH 2 O) 3 -(CH 2 ) 3 -NH-CO-CH 2 -O-CH 2 -CO-(I) having the following structure was synthesized.
  • Br-(III-2(q 0))-(I)> NH2- CH2- ( CH2CH2O ) 3- ( CH2 ) 3 -NH-CO-CH2 - O - CH2 -CO-(I) TFA obtained in the same manner as Example 12
  • a solution of the salt (59.5 mg, 0.0592 mmol) in CH 2 Cl 2 (5 mL) was washed sequentially with saturated aqueous NaHCO 3 (5 mL) and saturated brine (5 mL).
  • Br-(III-3(r 1))-Br> 3,3'-(furan-2,5-diyl)bis(3-methylbutan-2-one) according to the general synthesis method for silyl enol ethers (Cazeau, P. et al., Tetrahedron, 1987, 43, 2075-2088). (synthesized by the method described in Uesaka, M.
  • reaction mixture was heated at 80° C. for 1 hour, then at 100° C. for 20 hours, then cooled to room temperature.
  • Example 21 Synthesis of (II-4)-(III-4)-(I)] Cl-(III-4)-(I) (23.2 mg, 0.0299 mmol) obtained in the same manner as in Example 20, (II-4)-H (17.4) obtained in the same manner as in Example 8.
  • Example 23 Cell proliferation inhibitory activity evaluation (IC50)
  • MTT assay which is widely used to measure cell viability
  • MTT 3-(4,5-dimethylthiazol-2-yl)-2 ,5-diphenyltetrazolium bromide
  • the amount of formazan dye produced from MTT by the action of reductase is proportional to the number of viable cells, so cell viability can be determined by measuring absorbance.
  • the growth inhibitory activity (IC50) was calculated by counting the number of living cells using a commercially available cell proliferation measurement kit (Cell Count Reaget SF; Nacalai #755344) according to the manufacturer's protocol.
  • H358 cells (5 ⁇ 10 3 cells/well) were cultured in a medium (RPMI-1640, supplemented with 10% fetal bovine serum) (100 ⁇ L/well) for 24 hours using a 96-well plate.
  • a medium solution 100 ⁇ L, containing 0.2% or less dimethyl sulfoxide
  • MTT solution 50 ⁇ L, 2 mg/mL was added to each well. was added. After 2 hours, the supernatant of each well was removed and dimethyl sulfoxide (50 ⁇ L) was added to the residue.
  • Table 1 suggested that all hybrid compounds had cell proliferation inhibitory activity. In addition, some hybrid compounds were found to have cell proliferation inhibitory activity equivalent to or higher than that of trametinib.
  • Table 2 shows the concentration ( ⁇ M) of each hybrid type compound and drug, which is the IC50, assuming that the Akt activity of the negative control (no compound added) is 100%. The lower the IC50 concentration, the stronger the inhibition of Akt activity by the hybrid compound or drug.
  • each hybrid A medium solution 100 ⁇ L, containing 0.2% or less dimethyl sulfoxide
  • each hybrid A medium solution 100 ⁇ L, containing 0.2% or less dimethyl sulfoxide
  • the number of viable cells was calculated by absorbance at 450 nm according to the manufacturer's protocol.
  • the drug concentration at 10% of the absorbance of the number of living cells without addition of the compound was calculated as the IC90 concentration, and is shown in Table 3 below.
  • the IC50 concentration drug concentration at 50% absorbance
  • An in vivo administration solution (2% DMSO, 1% Tween-20, PBS) containing the hybrid compound or the above compound in an amount of 20 ⁇ g/100 ⁇ L was prepared.
  • the above in vivo administration solution was administered at a dose of 1.0 mg/kg (ca. 20 ⁇ g/20g/100 ⁇ L) to two groups of Balb/c (nu/nu) mice (female, 8 weeks old; CLEA Japan). It was administered subcutaneously to the back of mice.
  • the average half-life of trametinib calculated from the results in Table 4 above was 744 minutes, and the average half-life of aflesertib was 191 minutes.
  • trametinib is used in combination with Akt inhibitors such as aflesertib or MK2206, there may be a problem such as the half-lives of the two being different, but this problem can be resolved by creating a hybrid compound. it is conceivable that. Furthermore, the half-life of the hybrid compound is longer than that of aflesertib, and it is considered to be more useful. Note that the following measurement conditions for LC-MS/MS were adopted.
  • the cultured H358 cells were each subcutaneously transplanted into the left and right ventral sides of Balb/c (nu/nu) mice (female, 7 weeks old; Nippon Clea) in the presence of Matrigel.
  • the tumor diameter at each implantation site was measured and tumor growth was observed by dividing the mice into four groups.
  • the drug solution was administered subcutaneously to the upper back of each mouse.
  • the tumor growth suppressive effect of the hybrid compound was compared with that of trametinib and vehicle, with the administration interval being 3 times/week (administered once every 2 to 3 days).
  • the drug solution used was a hybrid compound or trametinib dissolved in PBS containing 2% DMSO and 1% Tween-20 at the following doses and volumes.
  • PBS containing 2% DMSO and 1% Tween-20 without using the hybrid compound or trametinib was administered was described as a vehicle.
  • the drug solution was administered in a volume of 5 mL/kg so that the drug dose was 1 ⁇ mol/kg.
  • the same amount of liquid PBS containing 2% DMSO and 1% Tween-20
  • the tumor diameter was measured every week, and the results of administration for 5 weeks are shown in FIG.
  • Example 27 the test was conducted with the n number of each group being 8, and the tests that showed the maximum and minimum values were excluded, and the results were obtained with the n number being 6.
  • a preferable range can be defined by arbitrarily combining the upper and lower limits of a numerical range
  • a preferable range can be defined by arbitrarily combining the upper limits of a numerical range
  • the lower limit of a numerical range Preferred ranges can be defined by arbitrarily combining values.
  • a numerical range expressed using the symbol " ⁇ " includes each of the numerical values written before and after the symbol " ⁇ " as a lower limit value and an upper limit value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Provided is an anticancer agent capable of efficaciously acting on a Ras mutated cancer. The present invention provides a hybrid type compound, in which trametinib is linked to an Akt inhibitor via a linker, or a salt thereof.

Description

ハイブリッド型化合物又はその塩Hybrid compound or its salt
 本発明は、2種の薬剤をリンカーを介して連結してなるハイブリッド型化合物又はその塩に関し、より具体的には、トラメチニブとAkt阻害薬とを連結してなるハイブリッド型化合物又はその塩に関する。本発明はまた、上記ハイブリッド型化合物を有効成分とする治療剤及び医薬組成物に関する。 The present invention relates to a hybrid compound formed by linking two types of drugs via a linker, or a salt thereof, and more specifically to a hybrid compound formed by linking trametinib and an Akt inhibitor, or a salt thereof. The present invention also relates to therapeutic agents and pharmaceutical compositions containing the above hybrid compound as an active ingredient.
 Rasタンパク質(本明細書において以下「Ras」と記載する)は、細胞表面に存在するタンパク質であって、細胞増殖の制御に関与することが知られている。Rasが変異したがん細胞では、Ras下流のシグナルが異常に活性化して、細胞の異常な増殖がもたらされる。このようなRas変異に起因するがんは、がん全体の約3割を占める頻度の高いがんであり、例えば膵臓がんでのRas変異率は約9割、甲状腺がんでは約6割、大腸がんでは約5割、非小細胞肺がんでは約3割がRas変異を有することが知られている(非特許文献1および2)。 Ras protein (hereinafter referred to as "Ras") is a protein present on the cell surface and is known to be involved in controlling cell proliferation. In cancer cells with Ras mutations, signals downstream of Ras are abnormally activated, leading to abnormal cell proliferation. Cancers caused by Ras mutations are highly common, accounting for approximately 30% of all cancers; for example, the Ras mutation rate in pancreatic cancer is approximately 90%, in thyroid cancer approximately 60%, and in colon cancer. It is known that about 50% of cancers and about 30% of non-small cell lung cancers have Ras mutations (Non-patent Documents 1 and 2).
 Ras変異及びその活性化は強力ながん化ドライバーであり、そのため、Ras分子を標的とする抗がん剤の開発が試みられてきた。しかしながら、Rasタンパク質にはこれ自身を標的とするための低分子ポケットがなく、G12C変異Rasへの共有結合型阻害薬が開発されたが、一部Ras変異がんが対象であり、また薬剤耐性Ras変異がんが生出することも明らかになった。相変わらず広くRasを標的とすることは困難であると考えられている(非特許文献3,4および5)。 Ras mutations and their activation are powerful cancer drivers, and therefore attempts have been made to develop anticancer drugs that target Ras molecules. However, the Ras protein does not have a small molecule pocket to target itself, and although covalent inhibitors have been developed for G12C mutant Ras, they are targeted at some Ras mutant cancers, and drug resistance. It has also become clear that Ras-mutant cancers can occur. It is still considered difficult to widely target Ras (Non-patent Documents 3, 4 and 5).
 そこで、Ras阻害のために、Rasの下流シグナル、すなわち細胞増殖促進及びアポトーシス抑制のいずれか又は双方を阻害することが有効と考えられ、種々検討されている。その中で、2種の薬剤をリンカーを介して連結した化合物の合成についても報告されている(例えば特許文献1~5及び非特許文献6)。 Therefore, in order to inhibit Ras, it is thought to be effective to inhibit either or both of the downstream signals of Ras, that is, cell proliferation promotion and apoptosis inhibition, and various studies have been conducted. Among them, the synthesis of compounds in which two types of drugs are linked via a linker has also been reported (eg, Patent Documents 1 to 5 and Non-Patent Document 6).
 一方、Rasの下流にあるMEKタンパク質(本明細書において以下「MEK」と記載する)の阻害剤であるトラメチニブは、MEKといわゆる「誘導適合(Induced fit)」型の結合をし、安定な複合体を形成することが報告されている(非特許文献7及び8)。 On the other hand, trametinib, an inhibitor of the MEK protein (hereinafter referred to as "MEK") located downstream of Ras, binds to MEK in a so-called "induced fit" type, resulting in a stable complex. It has been reported that the cells form a body (Non-patent Documents 7 and 8).
特表2016-516702号Special table number 2016-516702 特表2019-519593号Special table number 2019-519593 特表2017-513862号Special table number 2017-513862 国際公開第2019/041733号International Publication No. 2019/041733 特表2017-531624号Special table number 2017-531624
 Ras変異がんに対する化学療法としては、現在主として代謝拮抗薬の使用が選択されており、近年ではG12C共有結合型阻害薬(非特許文献3)や免疫チェックポイント阻害剤の併用も検討されつつあるが、上記の通り、広く変異Rasによる活性化を標的とする有効な治療薬は存在していない。
 また、Ras下流シグナル分子を標的とする薬剤の併用は、個々の薬剤の薬物動態が異なること等から、意図する併用効果をもたらすことは困難であった。
Currently, the use of antimetabolites is mainly selected as chemotherapy for Ras mutant cancer, and in recent years, the combination of G12C covalent inhibitors (Non-Patent Document 3) and immune checkpoint inhibitors are also being considered. However, as mentioned above, there are no effective therapeutic agents that broadly target activation by mutant Ras.
Furthermore, it has been difficult to achieve the intended combination effect when using drugs that target Ras downstream signal molecules, because the pharmacokinetics of the individual drugs differ.
 本発明者等は上記の課題に鑑み、MEKと安定な複合体を形成するトラメチニブに着目して、MEK阻害とは異なる作用を有する薬剤と連結することで、MEK阻害作用に加えてPI3K/Akt/mTOR経路の阻害作用も併せ持つハイブリッド型化合物又はその塩の取得を検討した。 In view of the above issues, the present inventors focused on trametinib, which forms a stable complex with MEK, and by linking it with a drug that has an effect different from MEK inhibition, in addition to MEK inhibition, PI3K/Akt We investigated the acquisition of hybrid compounds or their salts that also have the inhibitory effect on the /mTOR pathway.
 その結果、本発明者等は、トラメチニブをAkt阻害薬と適切なリンカー構造を用いて連結した新規のハイブリッド型化合物又はその塩を見出し、本発明を完成するに至った。 As a result, the present inventors discovered a novel hybrid compound or a salt thereof in which trametinib is linked to an Akt inhibitor using an appropriate linker structure, and completed the present invention.
 すなわち、本発明は例えば以下を提供するものである。
[1] トラメチニブと、Akt阻害薬とをリンカーを介して連結してなるハイブリッド型化合物又はその塩。
[2] Akt阻害薬がアフレセルチブ、MK2206、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン又は2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカンである、[1]記載のハイブリッド型化合物又はその塩。
[3] リンカーが脂肪族鎖、オキシエチレン基、フラン環、及びトリアジン環から選択される少なくとも1種の構造を有するリンカーである、[1]又は[2]記載のハイブリッド型化合物又はその塩。
[4] 前記トラメチニブと、Akt阻害薬との間のリンカー長が、原子数で2~25個である、[1]~[3]のいずれか記載のハイブリッド型化合物又はその塩。
[5] 下記式(I)で表されるトラメチニブ部と、下記式(II-1)~(II-4)から選択されるAkt阻害薬部と、下記式(III-1)~(III-4)から選択されるリンカー部とを有するハイブリッド型化合物又はその塩。
Figure JPOXMLDOC01-appb-C000018
(式(I)において、*はリンカー部との結合部位である。)
Figure JPOXMLDOC01-appb-C000019
(式(II-1)~(II-4)において、**はリンカー部との結合部位である。)
Figure JPOXMLDOC01-appb-C000020
(式(III-1)~(III-4)において、*はトラメチニブ部との結合部位であり、**はAkt阻害薬部との結合部位であり、
式(III-1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはなく、
式(III-2)において、qは0又は1であり、
式(III-3)において、rは1~4の整数である。)
That is, the present invention provides, for example, the following.
[1] A hybrid compound formed by linking trametinib and an Akt inhibitor via a linker, or a salt thereof.
[2] Akt inhibitors include aflesertib, MK2206, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine or 2-(5-chloro-7H-pyrrolo[2,3 -d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane, the hybrid compound or salt thereof according to [1].
[3] The hybrid compound or salt thereof according to [1] or [2], wherein the linker has at least one structure selected from an aliphatic chain, an oxyethylene group, a furan ring, and a triazine ring.
[4] The hybrid compound or a salt thereof according to any one of [1] to [3], wherein the linker length between the trametinib and the Akt inhibitor is 2 to 25 atoms.
[5] A trametinib moiety represented by the following formula (I), an Akt inhibitor moiety selected from the following formulas (II-1) to (II-4), and a trametinib moiety represented by the following formulas (III-1) to (III- 4) A hybrid compound having a linker moiety selected from 4) or a salt thereof.
Figure JPOXMLDOC01-appb-C000018
(In formula (I), * is the binding site with the linker part.)
Figure JPOXMLDOC01-appb-C000019
(In formulas (II-1) to (II-4), ** is the binding site with the linker part.)
Figure JPOXMLDOC01-appb-C000020
(In formulas (III-1) to (III-4), * is the binding site with the trametinib moiety, ** is the binding site with the Akt inhibitor moiety,
In formula (III-1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time,
In formula (III-2), q is 0 or 1,
In formula (III-3), r is an integer from 1 to 4. )
[6] 下記式(1)~(14)から選択される構造を有する、ハイブリッド型化合物又はその塩。
Figure JPOXMLDOC01-appb-C000021
[式(1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000022
[式(2)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000023
[式(3)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000024
[式(4)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000025
[式(5)において、qは0又は1である。]
Figure JPOXMLDOC01-appb-C000026
[式(6)において、qは0又は1である。]
Figure JPOXMLDOC01-appb-C000027
[式(7)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000028
[式(8)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000029
[式(9)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000030
[式(10)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[7] [1]~[6]のいずれか記載のハイブリッド型化合物又はその塩を有効成分とする、Ras変異癌の治療剤。
[8] [7]記載の治療剤を含有する医薬組成物。
[9] Ras変異癌の治療のための更なる薬剤を含有する、[8]記載の医薬組成物。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-093574号の開示内容を包含する。
[6] A hybrid compound or a salt thereof having a structure selected from the following formulas (1) to (14).
Figure JPOXMLDOC01-appb-C000021
[In formula (1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000022
[In formula (2), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000023
[In formula (3), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000024
[In formula (4), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000025
[In formula (5), q is 0 or 1. ]
Figure JPOXMLDOC01-appb-C000026
[In formula (6), q is 0 or 1. ]
Figure JPOXMLDOC01-appb-C000027
[In formula (7), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000028
[In formula (8), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000029
[In formula (9), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000030
[In formula (10), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[7] A therapeutic agent for Ras mutant cancer, comprising the hybrid compound or a salt thereof according to any one of [1] to [6] as an active ingredient.
[8] A pharmaceutical composition containing the therapeutic agent according to [7].
[9] The pharmaceutical composition according to [8], which contains an additional drug for the treatment of Ras mutant cancer.
This specification includes the disclosure content of Japanese Patent Application No. 2022-093574, which is the basis of the priority of this application.
 本発明により、新規なハイブリッド型化合物を提供することができる。 According to the present invention, a novel hybrid compound can be provided.
実施例26におけるMK2206及びトラメチニブ混合物1、MK2206及びトラメチニブ混合物2、アフレセルチブ及びトラメチニブ混合物1、アフレセルチブ及びトラメチニブ混合物2のトラメチニブの血中濃度推移を示す。Figure 2 shows the blood concentration changes of trametinib in MK2206 and trametinib mixture 1, MK2206 and trametinib mixture 2, aflesertib and trametinib mixture 1, and aflesertib and trametinib mixture 2 in Example 26. 実施例26におけるアフレセルチブ及びトラメチニブ混合物1、アフレセルチブ及びトラメチニブ混合物2のアフレセルチブの血中濃度推移を示す。FIG. 3 shows changes in aflesertib blood concentration of aflesertib and trametinib mixture 1 and aflesertib and trametinib mixture 2 in Example 26. FIG. 実施例26における(II-1)-(III-1(m=5, n=0))-(I)の血中濃度推移を示す。Figure 2 shows the blood concentration change of (II-1)-(III-1(m=5, n=0))-(I) in Example 26. 実施例26における(II-3)-(III-1(m=5, n=0))-(I)の血中濃度推移を示す。FIG. 3 shows the change in blood concentration of (II-3)-(III-1(m=5, n=0))-(I) in Example 26. 実施例26における(II-1)-(III-3(r=1))-(I)の血中濃度推移を示す。12 shows the blood concentration changes of (II-1)-(III-3(r=1))-(I) in Example 26. 実施例27における腫瘍径の推移を示す。2 shows the change in tumor diameter in Example 27.
[1.ハイブリッド型化合物又はその塩]
 本発明は、トラメチニブと、Akt阻害薬とをリンカーを介して連結してなるハイブリッド型化合物又はその塩を提供する。ハイブリッド型化合物の塩としては、限定するものではないが、例えば塩酸塩、トリフルオロ酢酸塩、硫酸塩、臭化水素酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等が挙げられる。
[1. Hybrid compound or its salt]
The present invention provides a hybrid compound formed by linking trametinib and an Akt inhibitor via a linker, or a salt thereof. Examples of the salt of the hybrid compound include, but are not limited to, hydrochloride, trifluoroacetate, sulfate, hydrobromide, methanesulfonate, paratoluenesulfonate, and the like.
<トラメチニブ>
 トラメチニブ(tramethnib)は、MEK阻害効果により、細胞の増殖に寄与するMAPK/ERKシグナル伝達経路を阻害して抗腫瘍効果を発揮することが知られる抗がん剤であり、その分子量は約615である。
<Trametinib>
Trametinib is an anticancer drug known to exert antitumor effects by inhibiting the MAPK/ERK signaling pathway that contributes to cell proliferation through its MEK inhibitory effect, and its molecular weight is approximately 615. be.
 本発明のハイブリッド型化合物は、特に限定するものではないが、例えばトラメチニブのアセチルアミノ基を改変することによって、リンカー分子と連結して合成することができる。アセチルアミノ基の改変は、限定するものではないが、例えば脱アセチル化であってよい。 Although the hybrid compound of the present invention is not particularly limited, it can be synthesized by linking with a linker molecule, for example, by modifying the acetylamino group of trametinib. Modification of the acetylamino group may include, but is not limited to, deacetylation.
<Akt阻害薬>
 Ras下流シグナルを構成するAktタンパク質(本明細書において以下「Akt」とも記載する)は、セリン/スレオニンキナーゼであり、プロテインキナーゼBと称されることもある。Aktの活性化はアポトーシス誘導を抑制し、従ってAkt阻害薬は、アポトーシスを誘導し得る。
 Akt阻害薬としては、例えばアフレセルチブ(Afuresertib)、MK2206、ミランセルチブ(Miransertib)、カピバセルチブ(Capivasertib)、イパタセルチブ(Ipatasertib)、GSK690693、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン(1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine)又は2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカン(2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane)等が挙げられる。Akt阻害薬としては、アフレセルチブ、MK2206、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン又は2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカンであることが好ましい態様の一つである。
<Akt inhibitor>
The Akt protein (hereinafter also referred to as "Akt" hereinafter) that constitutes the Ras downstream signal is a serine/threonine kinase and is sometimes referred to as protein kinase B. Activation of Akt suppresses apoptosis induction, and thus Akt inhibitors can induce apoptosis.
Examples of Akt inhibitors include Afuresertib, MK2206, Miransertib, Capivasertib, Ipatasertib, GSK690693, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl) Piperidin-4-amine (1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine) or 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidine) 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane etc. Akt inhibitors include aflesertib, MK2206, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine or 2-(5-chloro-7H-pyrrolo[2,3- d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane is one of the preferred embodiments.
<アフレセルチブ>
 アフレセルチブ(Afuresertib、CAS: 1047644-62-1)は、約427の分子量を有する抗がん剤である。
<Afresertib>
Afuresertib (CAS: 1047644-62-1) is an anticancer drug with a molecular weight of approximately 427.
 アフレセルチブとトラメチニブとをリンカーを介して連結してなる本発明のハイブリッド型化合物では、特に限定するものではないが、例えばアフレセルチブ中のアミノ基を改変することによって、リンカー分子と連結することができる。アミノ基の改変は、限定するものではないが、例えばアシル化又はアルキル化であってよい。あるいは、アフレセルチブは、アミノ基の改変なしでリンカーと連結することができる。 The hybrid compound of the present invention, which is formed by linking aflesertib and trametinib via a linker, can be linked to a linker molecule by, for example, modifying the amino group in aflesertib, although this is not particularly limited. Modification of the amino group may be, for example, but not limited to, acylation or alkylation. Alternatively, aflesertib can be linked to a linker without modification of the amino group.
<MK2206>
 MK2206(CAS: 1032350-13-2)は、アロステリックAkt阻害薬として知られ、通常二塩酸塩として供給されている。MK2206の分子量は約407である。
<MK2206>
MK2206 (CAS: 1032350-13-2) is known as an allosteric Akt inhibitor and is usually supplied as the dihydrochloride salt. The molecular weight of MK2206 is approximately 407.
 MK2206とトラメチニブとをリンカーを介して連結してなる本発明のハイブリッド型化合物では、特に限定するものではないが、例えばMK2206中のアミノ基を改変することによって、リンカー分子と連結することができる。あるいは、MK2206は、アミノ基の改変なしでリンカーと連結することができる。 The hybrid compound of the present invention, which is formed by linking MK2206 and trametinib via a linker, can be linked to a linker molecule by, for example, modifying the amino group in MK2206, although this is not particularly limited. Alternatively, MK2206 can be connected to a linker without modification of the amino group.
<1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン>
 1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミンは、約217の分子量を有するAkt阻害薬であり、下記式(X)で表される。
<1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine>
1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine is an Akt inhibitor having a molecular weight of about 217, and is represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミンとトラメチニブとをリンカーを介して連結してなる本発明のハイブリッド型化合物では、特に限定するものではないが、例えば1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン中のアミノ基を改変することによって、リンカー分子と連結することができる。あるいは、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミンは、アミノ基の改変なしでリンカーと連結することができる。 The hybrid compound of the present invention, which is formed by linking 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine and trametinib via a linker, is not particularly limited. can be linked to a linker molecule, for example by modifying the amino group in 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine. Alternatively, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine can be coupled to a linker without modification of the amino group.
<2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカン>
 2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカンは、約292の分子量を有するAkt阻害薬であり、下記式(Y)で表される。
<2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane>
2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane is an Akt inhibitor with a molecular weight of approximately 292 and has the following formula ( Y).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカンとトラメチニブとをリンカーを介して連結してなる本発明のハイブリッド型化合物では、特に限定するものではないが、例えば2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカン中の2,8-ジアザスピロ[4.5]デカン環に含まれるNH部分をリンカーと連結することができる。 Hybrid type of the present invention formed by linking 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane and trametinib via a linker Examples of compounds include, but are not limited to, 2,8 in 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane. -The NH moiety contained in the diazaspiro[4.5]decane ring can be connected to a linker.
<リンカー>
 本発明のハイブリッド型化合物又はその塩において使用できるリンカーとしては、当分野で使用されるリンカーのいずれも使用することができ、例えば親水性を有するリンカー、疎水性を有するリンカー、親水性部と疎水性部とを有するリンカーのいずれでも好適に使用することができる。
<Linker>
As the linker that can be used in the hybrid compound or salt thereof of the present invention, any of the linkers used in the art can be used, such as a linker having hydrophilicity, a linker having hydrophobicity, and a linker having a hydrophilic part and a hydrophobic part. Any linker having a sex part can be suitably used.
 リンカーが脂肪族鎖、オキシエチレン基、フラン環、及びトリアジン環から選択される少なくとも1種の構造を有するリンカーであることが好ましい。前記構造は、リンカー中に複数含まれていてもよい。リンカー中に、オキシエチレン基(-OCHCH-)が複数連続して含まれている場合、リンカー中にPEG(ポリエチレングリコール)を有すると言える。 It is preferable that the linker has at least one structure selected from an aliphatic chain, an oxyethylene group, a furan ring, and a triazine ring. A plurality of the above structures may be included in the linker. When the linker contains a plurality of consecutive oxyethylene groups (-OCH 2 CH 2 -), it can be said that the linker contains PEG (polyethylene glycol).
 前記トラメチニブと、Akt阻害薬との間のリンカー長が、原子数で2~25個であることが好ましい。リンカー長は、前記トラメチニブと、Akt阻害薬との間に存在する原子数を意味する。なお、リンカーが環構造を有する場合には、リンカー長は、前記トラメチニブと、Akt阻害薬との間に存在する最小の原子数を意味する。例えば後述の実施例で得た(II-1)-(III-1(m=1, n=0))-(I)のリンカー長は原子数が2であり、(II-1)-(III-1(m=5, n=0))-(I)のリンカー長は原子数が6であり、(II-1)-(III-2(q=1))-(I)のリンカー長は原子数が25であり、(II-1)-(III-3(r=1))-(I)のリンカー長は原子数が9であり、(II-1)-(III-3(r=3))-(I)のリンカー長は原子数が17であり、(II-3)-(III-4)-(I)のリンカー長は原子数が7である。なお、(II-1)-(III-3(r=1))-(I)においては、Akt阻害薬部である(II-1)とトラメチニブ部である(I)との間に存在する原子数はその数え方により、9の場合と、10が考えられるが、リンカー長は最小の原子数である9である。また、(II-3)-(III-4)-(I)においては、Akt阻害薬部である(II-3)とトラメチニブ部である(I)との間に存在する原子数はその数え方により、7の場合と、9が考えられるが、リンカー長は最小の原子数である7である。 The linker length between the trametinib and the Akt inhibitor is preferably 2 to 25 atoms. The linker length means the number of atoms present between the trametinib and the Akt inhibitor. In addition, when the linker has a ring structure, the linker length means the minimum number of atoms existing between the trametinib and the Akt inhibitor. For example, the linker length of (II-1)-(III-1(m=1, n=0))-(I) obtained in the example described below has two atoms, and (II-1)-( The linker length of III-1(m=5, n=0))-(I) has 6 atoms, and the linker length of (II-1)-(III-2(q=1))-(I) The linker length of (II-1)-(III-3(r=1))-(I) has 9 atoms, and the linker length of (II-1)-(III-3(r=1))-(I) has 9 atoms. The linker length of (r=3))-(I) has 17 atoms, and the linker length of (II-3)-(III-4)-(I) has 7 atoms. In addition, in (II-1)-(III-3(r=1))-(I), it exists between (II-1), which is the Akt inhibitor part, and (I), which is the trametinib part. The number of atoms can be 9 or 10 depending on how they are counted, but the linker length is 9, which is the minimum number of atoms. In addition, in (II-3)-(III-4)-(I), the number of atoms existing between (II-3), which is the Akt inhibitor part, and (I), which is the trametinib part, is the count. Depending on the case, 7 or 9 may be considered, but the linker length is 7, which is the minimum number of atoms.
 本発明のハイブリッド型化合物又はその塩としては、下記式(I)で表されるトラメチニブ部と、下記式(II-1)~(II-4)から選択されるAkt阻害薬部と、下記式(III-1)~(III-4)から選択されるリンカー部とを有するハイブリッド型化合物又はその塩であることが好ましい態様の一つである。なお、本発明において、ハイブリッド型化合物の構造を、上記式番号((I)、(II-1)~(II-4)、(III-1)~(III-4))をハイフンで繋いで表すことがある。例えば、式(I)で表されるトラメチニブ部と、式(II-1)で表されるAkt阻害薬部と、式(III-1)(但しm=1,n=0)で表されるリンカー部とを有するハイブリッド型化合物は、(II-1)-(III-1(m=1, n=0))-(I)と表すことがある。 The hybrid compound of the present invention or a salt thereof includes a trametinib moiety represented by the following formula (I), an Akt inhibitor moiety selected from the following formulas (II-1) to (II-4), and a trametinib moiety represented by the following formula (II-1) to (II-4); One of the preferred embodiments is a hybrid compound having a linker moiety selected from (III-1) to (III-4) or a salt thereof. In addition, in the present invention, the structure of the hybrid compound is expressed by connecting the above formula numbers ((I), (II-1) to (II-4), (III-1) to (III-4)) with a hyphen. It can be expressed. For example, a trametinib part represented by formula (I), an Akt inhibitor part represented by formula (II-1), and a trametinib part represented by formula (III-1) (where m=1, n=0) A hybrid compound having a linker portion may be expressed as (II-1)-(III-1(m=1, n=0))-(I).
Figure JPOXMLDOC01-appb-C000037
(式(I)において、*はリンカー部との結合部位である。)
Figure JPOXMLDOC01-appb-C000037
(In formula (I), * is the binding site with the linker part.)
Figure JPOXMLDOC01-appb-C000038
(式(II-1)~(II-4)において、**はリンカー部との結合部位である。)
Figure JPOXMLDOC01-appb-C000038
(In formulas (II-1) to (II-4), ** is the binding site with the linker part.)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式(III-1)~(III-4)において、*はトラメチニブ部との結合部位であり、**はAkt阻害薬部との結合部位であり、
式(III-1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはなく、
式(III-2)において、qは0又は1であり、
式(III-3)において、rは1~4の整数である。)
(In formulas (III-1) to (III-4), * is the binding site with the trametinib moiety, ** is the binding site with the Akt inhibitor moiety,
In formula (III-1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time,
In formula (III-2), q is 0 or 1,
In formula (III-3), r is an integer from 1 to 4. )
 式(III-1)において、nが0である時、mは1~15の整数であり、nが1~3の整数である時、mは好ましくは1~10の整数であり、より好ましくは1~5の整数である。また、nは0~2の整数であることが好ましい態様の一つである。 In formula (III-1), when n is 0, m is an integer of 1 to 15, and when n is an integer of 1 to 3, m is preferably an integer of 1 to 10, more preferably is an integer from 1 to 5. Further, in one preferred embodiment, n is an integer of 0 to 2.
 式(III-2)において、qは0又は1であり、qは0であることが好ましい態様の一つである。また、式(III-3)において、rは1~4の整数であり、1~3の整数であることが好ましく、1であることがより好ましい。 In formula (III-2), q is 0 or 1, and one preferred embodiment is that q is 0. Furthermore, in formula (III-3), r is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1.
 本発明のハイブリッド型化合物又はその塩としては、より具体的には下記式(1)~(14)から選択される構造を有する、ハイブリッド型化合物又はその塩が好ましい。なお、下記式(1)~(14)において、m、n、q又はrが存在する場合には、その好適範囲は上述の式(III-1)におけるm、n、式(III-2)におけるq、式(III-3)におけるrと同様である。 More specifically, the hybrid compound or salt thereof of the present invention is preferably a hybrid compound or salt thereof having a structure selected from the following formulas (1) to (14). In addition, in the following formulas (1) to (14), when m, n, q or r exists, the preferred range is m, n in the above formula (III-1), formula (III-2) q in formula (III-3) is the same as r in formula (III-3).
Figure JPOXMLDOC01-appb-C000040
[式(1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000040
[In formula (1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000041
[式(2)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000041
[In formula (2), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000042
[式(3)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000042
[In formula (3), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000043
[式(4)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
Figure JPOXMLDOC01-appb-C000043
[In formula (4), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
Figure JPOXMLDOC01-appb-C000044
[式(5)において、qは0又は1である。]
Figure JPOXMLDOC01-appb-C000044
[In formula (5), q is 0 or 1. ]
Figure JPOXMLDOC01-appb-C000045
[式(6)において、qは0又は1である。]
Figure JPOXMLDOC01-appb-C000045
[In formula (6), q is 0 or 1. ]
Figure JPOXMLDOC01-appb-C000046
[式(7)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000046
[In formula (7), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000047
[式(8)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000047
[In formula (8), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000048
[式(9)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000048
[In formula (9), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000049
[式(10)において、rは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000049
[In formula (10), r is an integer from 1 to 4. ]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 本発明のハイブリッド型化合物又はその塩は、Ras変異がん細胞の増殖を阻害する活性を有し、かつトラメチニブとMEKとの持続的な結合性を有し、細胞内において安定してAkt阻害薬の作用を発揮させることができると考えられる。ハイブリッド型化合物又はその塩とすることで、複数の薬剤を併用する場合に観察される薬物動態のズレがなくなり、MEK阻害作用とAkt阻害作用の双方の増強が期待される。 The hybrid compound of the present invention or a salt thereof has the activity of inhibiting the proliferation of Ras mutant cancer cells, has a sustained binding property between trametinib and MEK, and is stable as an Akt inhibitor in cells. It is thought that this effect can be exerted. By using a hybrid compound or a salt thereof, there will be no discrepancy in pharmacokinetics that is observed when multiple drugs are used together, and it is expected that both MEK inhibitory action and Akt inhibitory action will be enhanced.
[2.治療剤及び医薬組成物]
 本発明はまた、本発明のハイブリッド型化合物又はその塩を有効成分とする、Ras変異がんの治療剤を提供する。
 本発明の治療剤による治療の対象としては、限定するものではないが、例えば膵臓がん、甲状腺がん、大腸がん、肺がん等のRas変異がんが挙げられる。
[2. Therapeutic agents and pharmaceutical compositions]
The present invention also provides a therapeutic agent for Ras mutant cancer, which contains the hybrid compound of the present invention or a salt thereof as an active ingredient.
Targets of treatment with the therapeutic agent of the present invention include, but are not limited to, Ras mutant cancers such as pancreatic cancer, thyroid cancer, colon cancer, and lung cancer.
 上記の本発明の治療剤はまた、単独又は他の有効成分と組み合わせて、医薬組成物の形態とすることができる。すなわち、本発明の一態様として、上記の本発明の治療剤を含有する医薬組成物が挙げられる。また、本発明の医薬組成物は、Ras変異癌の治療のための更なる薬剤(他の有効成分)を含有することが好ましい態様の一つである。医薬組成物には、本発明の治療剤及び他の有効成分の他に、投与形態に応じて、当分野で通常使用される担体、賦形剤、緩衝剤、安定化剤等を含めることができる。 The therapeutic agent of the present invention described above can also be in the form of a pharmaceutical composition, either alone or in combination with other active ingredients. That is, one aspect of the present invention includes a pharmaceutical composition containing the above-mentioned therapeutic agent of the present invention. Furthermore, one of the preferred embodiments is that the pharmaceutical composition of the present invention contains an additional drug (another active ingredient) for the treatment of Ras mutant cancer. In addition to the therapeutic agent of the present invention and other active ingredients, the pharmaceutical composition may contain carriers, excipients, buffers, stabilizers, etc. commonly used in the art, depending on the dosage form. can.
 本発明の治療剤又は医薬組成物は、限定するものではないが、例えば患部若しくは患部の近辺に注射又は注入により投与する局所投与又は全身投与とすることができる。本発明の治療剤の投与量は、患者の体重、年齢、疾患の重篤度等に応じて変動するものであり、特に限定するものではないが、例えば0.0001~1mg/kg体重の範囲で1日1回~数回、2日毎、3日毎、1週間毎、2週間毎に投与することが可能である。 The therapeutic agent or pharmaceutical composition of the present invention can be administered locally or systemically, for example by injection or infusion into or near the affected area, although the therapeutic agent or pharmaceutical composition of the present invention is not limited thereto. The dosage of the therapeutic agent of the present invention varies depending on the patient's weight, age, severity of disease, etc., and is not particularly limited, but for example, 1 mg/kg body weight in the range of 0.0001 to 1 mg/kg body weight. It can be administered once to several times a day, every 2 days, every 3 days, every 1 week, or every 2 weeks.
 本発明の治療剤又は医薬組成物は、単独で使用することもできるが、異なるメカニズムの抗がん剤及び抗がん治療と組み合わせて使用することもできる。異なるメカニズムの抗がん剤としては、限定するものではないが、例えば分子標的薬、代謝拮抗薬、免疫チェックポイント阻害剤、ホルモン治療、放射線治療等が挙げられる。 The therapeutic agent or pharmaceutical composition of the present invention can be used alone, but can also be used in combination with anticancer agents and anticancer treatments with different mechanisms. Examples of anticancer drugs with different mechanisms include, but are not limited to, molecular target drugs, antimetabolites, immune checkpoint inhibitors, hormone therapy, radiotherapy, and the like.
[3.ハイブリッド型化合物又はその塩の製造方法]
 本発明のハイブリッド型化合物又はその塩は、当分野において通常用いられる手順や、後述の実施例に記載の方法に従って製造することが可能であり、その製造方法は特に限定されるものではない。ハイブリッド型化合物の塩としては、ハイブリッド型化合物を製造した後に塩にしてもよく、原料の少なくとも一部に塩を使用し、直接ハイブリッド型化合物の塩を製造してもよい。トラメチニブとAkt阻害薬をリンカーで結合させてハイブリッド型化合物を合成する場合、次の条件を満たすことが好ましい。
[3. Method for producing hybrid compound or its salt]
The hybrid compound of the present invention or a salt thereof can be produced according to a procedure commonly used in the art or a method described in the Examples below, and the production method is not particularly limited. The salt of the hybrid compound may be made into a salt after producing the hybrid compound, or the salt of the hybrid compound may be produced directly by using salt for at least a part of the raw materials. When a hybrid compound is synthesized by combining trametinib and an Akt inhibitor with a linker, it is preferable that the following conditions are satisfied.
 (1)双方の化合物分子(トラメチニブ、Akt阻害薬)が誘導体化の足がかりとなる官能基を含むこと。このような官能基を含まない場合には、有機合成的な修飾を施しやすいように予め官能基変換を行う必要がある。
 (2)リンカーの連結により、薬物活性が大きく損なわれないこと。
 トラメチニブにリンカーを連結する際は上記(1)について、アフレセルチブの場合は上記(2)について、それぞれ解決すべき課題があった。以下に詳細を説明する。
(1) Both compound molecules (trametinib, Akt inhibitor) contain functional groups that serve as a foothold for derivatization. When such a functional group is not included, it is necessary to perform functional group conversion in advance to facilitate organic synthesis modification.
(2) The drug activity should not be significantly impaired by the linker connection.
There were issues to be solved regarding (1) above when linking a linker to trametinib, and (2) above in the case of aflesertib. Details will be explained below.
(トラメチニブへのリンカー連結について)
 トラメチニブのN-アセチル基部位からリンカーを伸張した化合物JTP-74100はMEK阻害活性を保持することが報告されている(Yoshida, T.等, Identification and Characterization of a Novel Chemotype MEK Inhibitor Able to Alter the Phosphorylation State of MEK1/2. Oncotarget 2012, 3, 1533-1545)。従って、トラメチニブのN-脱アセチル化体である下記の化合物(本明細書においてH-(I)と表記する)を合成原料とし、そのアミノ基をアシル化またはアルキル化反応により修飾すれば、MEK阻害活性を損なうことなく幅広い種類のリンカーを効率的に付与できると考えられる。
(About linker connection to trametinib)
It has been reported that the compound JTP-74100, which has a linker extended from the N-acetyl group of trametinib, retains MEK inhibitory activity (Yoshida, T. et al., Identification and Characterization of a Novel Chemotype MEK Inhibitor Able to Alter the Phosphorylation State of MEK1/2. Oncotarget 2012, 3, 1533-1545). Therefore, if the following compound (denoted as H-(I) in this specification), which is an N-deacetylated form of trametinib, is used as a synthetic raw material and its amino group is modified by acylation or alkylation reaction, MEK It is believed that a wide variety of linkers can be efficiently added without compromising inhibitory activity.
 しかしながら、トラメチニブを脱アセチル化した下記の化合物(本明細書においてH-(I)と表記する)の既知の合成法は、いずれも低分子ビルディングブロックを合成原料としており、長い工程数を要する(Abe, H.等, Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). ACS Med. Chem. Lett. 2011, 2, 320-324; WO 2005121142; CN 109320513; IN 2014CH05116; CN 103819471)。そこで、本発明者等は、容易に入手可能な試薬を用いたトラメチニブのN-脱アセチル化によるH-(I)の合成について検討を行った。 However, all of the known synthesis methods for the following compound (herein referred to as H-(I)), which is a deacetylated version of trametinib, use low-molecular building blocks as raw materials for synthesis and require a long number of steps ( Abe, H. et al., Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). ACS Med. Chem. Lett. 2011, 2, 320-324; WO 2005121142; CN 1093205 13; IN 2014CH05116; CN 103819471). Therefore, the present inventors investigated the synthesis of H-(I) by N-deacetylation of trametinib using easily available reagents.
 アミド結合は化学的安定性が高く、その切断は一般的に過酷な反応条件を必要とするため、多数の官能基を含む分子中のN-アセチル基の選択的な除去は容易ではない(Wuts, P. G. M. Greene’s Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons, 2014, 993)。そこで塩基、還元剤、酸など様々な反応条件を検討した結果、HClを用いた酸性条件下にてトラメチニブのN-脱アセチル化が首尾よく進行し、収率86%でH-(I)が得られることが見出された。このH-(I)の新規合成法は、本発明のハイブリッド型化合物を効率的に合成するために特に有用なステップとなり得る。 The selective removal of N-acetyl groups in molecules containing a large number of functional groups is not easy because amide bonds have high chemical stability and their cleavage generally requires harsh reaction conditions (Wuts , P. G. M. Greene's Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons, 2014, 993). Therefore, we investigated various reaction conditions such as bases, reducing agents, and acids. As a result, N-deacetylation of trametinib proceeded successfully under acidic conditions using HCl, and H-(I) was produced with a yield of 86%. It was found that it was possible to obtain This novel method for synthesizing H-(I) can be a particularly useful step for efficiently synthesizing the hybrid compound of the present invention.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(アフレセルチブへのリンカー連結について)
 アフレセルチブは、分子構造中のアミノ基を起点とする誘導体化が有機合成的には容易である一方、このアミノ基の修飾がAkt阻害活性に与える影響に関する知見は知られていなかった。そこで本発明者等は、アフレセルチブへのリンカー結合法を検討すべく、アミノ基のアセチル化誘導体(本明細書において(II-1)-CO-CH3と表記する)とメチル化誘導体(本明細書において(II-1)-CH3と表記する)をそれぞれ合成し、Akt阻害活性の評価を行った。その結果、アフレセルチブと比較して、(II-1)-CO-CH3ではAkt活性が大きく減弱する一方、(II-1)-CH3では活性が保持されることが分かった。この結果を受け、アフレセルチブとリンカーを結合させる際は、アミノ基のアシル化ではなくアルキル化を利用することとした。
(About linker connection to Aflesertib)
While derivatization of aflesertib starting from the amino group in its molecular structure is easy in terms of organic synthesis, there is no known knowledge regarding the effect of modification of this amino group on Akt inhibitory activity. Therefore, the present inventors investigated a linker binding method to aflesertib, using an acetylated derivative of an amino group (herein referred to as (II-1)-CO-CH 3 ) and a methylated derivative (herein referred to as (II-1)-CO-CH 3 ). (referred to as (II-1)-CH 3 in this paper) were synthesized and their Akt inhibitory activity was evaluated. The results showed that, compared to aflesertib, (II-1)-CO-CH 3 significantly attenuated Akt activity, while (II-1)-CH 3 maintained its activity. Based on this result, we decided to use alkylation rather than acylation of the amino group when linking aflesertib to the linker.
 MK2206においても、1つのアミノ基を分子の末端に有するAkt阻害薬である点がアフレセルチブと共通していることから、アミノ基のアシル化は活性を減弱させる可能性があると考え、リンカーの結合には同様にアミノ基のアルキル化を利用することとした。 MK2206 also shares the same point with aflesertib in that it is an Akt inhibitor that has one amino group at the end of the molecule, so we believe that acylation of the amino group may attenuate the activity. Similarly, we decided to use alkylation of amino groups.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(ハイブリッド型化合物の合成法)
 従って、本発明のハイブリッド型化合物の合成は、以下のスキームに従って行うことが好適であり得る。すなわちH-(I)、アミノ基を有するAkt阻害薬、両末端に脱離基LG1, LG2を有するリンカー化合物を合成原料に用いて、H-(I)とAkt阻害薬のアミノ基を、リンカー化合物の2つの脱離基とそれぞれ反応させることができる。この際の反応として、アミノ基のアシル化またはアルキル化反応を利用することができる。ただし、Akt阻害薬とリンカーの結合には、上記した通り、Akt阻害活性維持の点からアルキル化反応を用いることが望ましい。またリンカーに両化合物を結合させる順序は前後可能だが、Akt阻害薬に多様性を与える目的では、H-(I)にリンカーを先に結合させることが望ましい。
(Synthesis method of hybrid compound)
Therefore, it may be suitable to synthesize the hybrid compound of the present invention according to the following scheme. That is, H-(I), an Akt inhibitor with an amino group, and a linker compound with leaving groups LG 1 and LG 2 at both ends are used as synthetic raw materials, and H-(I) and the amino group of the Akt inhibitor are combined. , can be reacted with the two leaving groups of the linker compound, respectively. As the reaction at this time, an acylation or alkylation reaction of an amino group can be used. However, as described above, it is desirable to use an alkylation reaction to bond the Akt inhibitor and the linker from the viewpoint of maintaining Akt inhibitory activity. Although the order in which both compounds are bound to the linker can be changed, it is preferable to bind the linker to H-(I) first for the purpose of providing diversity to Akt inhibitors.
 従って、本発明のハイブリッド型化合物の製造方法の一例としては、以下:
  (i)トラメチニブを脱アセチル化してトラメチニブ誘導体を形成するステップ、
  (ii)上記トラメチニブ誘導体とリンカーを連結してトラメチニブ-リンカー連結体を形成するステップ、
  (iii)上記トラメチニブ-リンカー連結体とAkt阻害薬をAkt阻害薬のアルキル化を介して連結するステップ
を含む。
Therefore, an example of the method for producing the hybrid compound of the present invention is as follows:
(i) deacetylating trametinib to form a trametinib derivative;
(ii) linking the trametinib derivative and a linker to form a trametinib-linker conjugate;
(iii) linking the trametinib-linker conjugate and an Akt inhibitor via alkylation of the Akt inhibitor.
 以下に本発明を実施例によって更に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples.
[合成例1:トラメチニブ誘導体の合成]
 以下のようにして下記構造を有するトラメチニブのN-脱アセチル化誘導体(H-(I))を合成した。
[Synthesis Example 1: Synthesis of trametinib derivative]
An N-deacetylated derivative of trametinib (H-(I)) having the following structure was synthesized as follows.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 トラメチニブ(196.4 mg, 0.300 mmol)、HCl水溶液(1.6 M, 1.2 mL)、及び EtOH (4.8 mL)の混合物を80 ℃で46時間加熱し、その後0 ℃に冷却した。NH3水溶液(28 wt%) を添加して反応混合物を中和後、CH2Cl2(40 mL)を用いて抽出した。有機層をH2O (40 mL) と飽和食塩水(40 mL) で順次洗浄し、Na2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、CHCl3/EtOAc = 1:1)で精製し、白色固体(147.1 mg,86%)を得て、トラメチニブのN-脱アセチル化誘導体(H-(I))であることを確認した。前記操作を複数回行い、下記実施例1~実施例22を実施する際に必要な量のH-(I)を合成した。1H NMR [400 MHz, (CD3)2SO]: δ 11.07 (s, 1H), 7.78 (d, J = 10.5 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.88 (t, J = 8.7 Hz, 1H), 6.70-6.50 (m, 2H), 6.46 (d, J = 7.8 Hz, 1H), 5.27 (br s, 2H), 3.07 (s, 3H), 2.74-2.52 (m, 1H), 1.41 (s, 3H), 1.13-0.85 (m, 2H), 0.75-0.55 (m, 2H); LRMS (ESI): m/z 574 ([M + H]+)。 A mixture of trametinib (196.4 mg, 0.300 mmol), aqueous HCl (1.6 M, 1.2 mL), and EtOH (4.8 mL) was heated at 80 °C for 46 h, then cooled to 0 °C. The reaction mixture was neutralized by adding an aqueous NH 3 solution (28 wt%) and then extracted using CH 2 Cl 2 (40 mL). The organic layer was washed successively with H 2 O (40 mL) and saturated brine (40 mL), dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, CHCl 3 /EtOAc = 1:1) to give a white solid (147.1 mg, 86%), which was purified with N-deacetylated derivative of trametinib (H-(I)). I confirmed that there is. The above operation was performed multiple times to synthesize the amount of H-(I) required for carrying out Examples 1 to 22 below. 1 H NMR [400 MHz, (CD 3 ) 2 SO]: δ 11.07 (s, 1H), 7.78 (d, J = 10.5 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.06 (t , J = 7.8 Hz, 1H), 6.88 (t, J = 8.7 Hz, 1H), 6.70-6.50 (m, 2H), 6.46 (d, J = 7.8 Hz, 1H), 5.27 (br s, 2H), 3.07 (s, 3H), 2.74-2.52 (m, 1H), 1.41 (s, 3H), 1.13-0.85 (m, 2H), 0.75-0.55 (m, 2H); LRMS (ESI): m/z 574 ([M + H] + ).
[実施例1:(II-1)-(III-1(m=1, n=0))-(I)の合成]
<1.Br-(III-1(m=1, n=0))-(I)>
 下記構造を有するBr-(III-1(m=1, n=0))-(I)を合成した。
[Example 1: Synthesis of (II-1)-(III-1(m=1, n=0))-(I)]
<1. Br-(III-1(m=1, n=0))-(I)>
Br-(III-1(m=1, n=0))-(I) having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 合成例1で合成したH-(I) (34.3 mg, 0.0600 mmol)とEt3N (12.5 μL, 0.0900 mmol)のCH2Cl2(1.20 mL) 懸濁液に対し、2-ブロモアセチルブロミド(11.0 μL, 0.130 mmol)を0 ℃ で添加した。反応混合物を室温に昇温し2時間撹拌した後、シリカのパッドに通過させた(EtOAc)。溶離液を減圧下で濃縮後、残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc= 1:1)により精製し、Br-(III-1(m=1, n=0))-(I)を白色固体として得た(37.4 mg, 90%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 8.36 (s, 1H), 7.69 (s, 1H), 7.54-7.35 (m, 4H), 7.07 (d, J = 7.6 Hz, 1H), 6.71 (t, J = 8.0 Hz, 1H), 3.99 (s, 2H), 3.20 (s, 3H), 2.74 (tt, J = 6.8, 4.0 Hz, 1H), 1.41 (s, 3H), 1.23-1.03 (m, 2H), 0.90-0.70 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 164.8, 164.1, 164.0, 156.4, 153.9, 152.1, 151.9, 144.9, 140.4, 138.1, 134.12, 134.08, 129.4, 128.2, 128.1, 126.0, 125.8, 125.24, 125.19, 120.7, 119.5, 103.7, 89.9, 88.39, 88.33, 34.8, 29.4, 25.4, 13.6, 8.5; LRMS (ESI): m/z 716 ([M + Na]+)。 2 - Bromoacetyl bromide ( 11.0 μL, 0.130 mmol) was added at 0°C. The reaction mixture was warmed to room temperature and stirred for 2 hours before being passed through a pad of silica (EtOAc). After concentrating the eluent under reduced pressure, the residue was purified by column chromatography (silica, hexane/EtOAc= 1:1) to obtain Br-(III-1(m=1, n=0))-(I). Obtained as a white solid (37.4 mg, 90%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 8.36 (s, 1H), 7.69 (s, 1H), 7.54-7.35 (m, 4H), 7.07 (d, J = 7.6 Hz , 1H), 6.71 (t, J = 8.0 Hz, 1H), 3.99 (s, 2H), 3.20 (s, 3H), 2.74 (tt, J = 6.8, 4.0 Hz, 1H), 1.41 (s, 3H) , 1.23-1.03 (m, 2H), 0.90-0.70 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 164.8, 164.1, 164.0, 156.4, 153.9, 152.1, 151.9, 144.9, 140.4, 138.1 , 134.12, 134.08, 129.4, 128.2, 128.1, 126.0, 125.8, 125.24, 125.19, 120.7, 119.5, 103.7, 89.9, 88.39, 88.33, 34.8, 29.4, 25.4, 13.6, 8.5; LRMS (ESI): m/z 716 ([M + Na] + ).
<2.(II-1)-(III-1(m=1, n=0))-(I)>
 上記で得られたBr-(III-1(m=1, n=0))-(I) (13.9 mg, 0.0200 mmol)及びアフレセルチブ (12.8 mg, 0.0300 mmol)のDMSO (100 μL)溶液に対し、室温でiPr2EtN (5.2 μL, 0.030 mmol)及びNaI (1.5 mg, 0.010 mmol)を添加した。20分後、反応混合物をCH2Cl2で希釈し濾過した。濾液を減圧下で濃縮後、残渣を分取薄層クロマトグラフィー(シリカ、EtOAc/MeOH = 19:1)、続いてカラムクロマトグラフィー(アミン修飾シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-1)-(III-1(m=1, n=0))-(I)を白色固体として得た(12.8 mg, 62%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 9.21-9.00 (m, 1H), 7.84-7.62 (m, 1H), 7.55-7.16 (m, 7H), 7.07-6.85 (m, 4H), 6.82-6.50 (m, 2H), 4.51-4.35 (m, 1H), 3.73 (s, 3H), 3.33 (d, J= 8.8 Hz, 2H), 3.16 (s, 3H), 3.01-2.60 (m, 5H), 1.95-1.56 (m, 1H), 1.37 (s, 3H), 1.16-0.95 (m, 2H), 0.90-0.64 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.11, 170.06, 164.9, 164.2, 164.0, 161.8, 160.8, 156.5, 153.9, 152.1, 151.8, 145.0, 139.7, 138.4, 137.3, 136.0, 134.2, 134.1, 132.2, 130.5, 130.4, 129.4, 128.4, 128.2, 128.1, 126.5, 126.0, 125.8, 125.3, 124.91, 124.88, 120.1, 119.0, 116.3, 116.1, 114.2, 114.0, 110.6, 103.6, 90.0, 88.4, 88.3, 53.5, 53.2, 51.6, 38.7, 38.5, 34.8, 29.8, 25.4, 13.6, 8.5; LRMS (ESI): m/z 1062 ([M + Na]+)。
<2. (II-1)-(III-1(m=1, n=0))-(I)>
Br-(III-1(m=1, n=0))-(I) (13.9 mg, 0.0200 mmol) obtained above and aflesertib (12.8 mg, 0.0300 mmol) in DMSO (100 μL) , at room temperature, i Pr 2 EtN (5.2 μL, 0.030 mmol) and NaI (1.5 mg, 0.010 mmol) were added. After 20 minutes, the reaction mixture was diluted with CH 2 Cl 2 and filtered. After concentrating the filtrate under reduced pressure, the residue was purified by preparative thin layer chromatography (silica, EtOAc/MeOH = 19:1), followed by column chromatography (amine-modified silica, CHCl /MeOH = 9:1). , (II-1)-(III-1(m=1, n=0))-(I) having the following structure was obtained as a white solid (12.8 mg, 62%). 1H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 9.21-9.00 (m, 1H), 7.84-7.62 (m, 1H), 7.55-7.16 (m, 7H), 7.07-6.85 ( m, 4H), 6.82-6.50 (m, 2H), 4.51-4.35 (m, 1H), 3.73 (s, 3H), 3.33 (d, J= 8.8 Hz, 2H), 3.16 (s, 3H), 3.01 -2.60 (m, 5H), 1.95-1.56 (m, 1H), 1.37 (s , 3H), 1.16-0.95 (m, 2H), 0.90-0.64 (m, 2H); 3 ): δ 170.11, 170.06, 164.9, 164.2, 164.0, 161.8, 160.8, 156.5, 153.9, 152.1, 151.8, 145.0, 139.7, 138.4, 137.3, 136.0, 1 34.2, 134.1, 132.2, 130.5, 130.4, 129.4, 128.4, 128.2, 128.1, 126.5, 126.0, 125.8, 125.3, 124.91, 124.88, 120.1, 119.0, 116.3, 116.1, 114.2, 114.0, 110.6, 103.6, 90.0, 8 8.4, 88.3, 53.5, 53.2, 51.6, 38.7, 38.5, 34.8, 29.8, 25.4, 13.6, 8.5; LRMS (ESI): m/z 1062 ([M + Na] + ).
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[実施例2:(II-1)-(III-1(m=5, n=0))-(I)の合成]
<1.Br-(III-1(m=5, n=0))-(I)>
 下記構造を有するBr-(III-1(m=5, n=0))-(I)を合成した。
[Example 2: Synthesis of (II-1)-(III-1(m=5, n=0))-(I)]
<1. Br-(III-1(m=5, n=0))-(I)>
Br-(III-1(m=5, n=0))-(I) having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 合成例1で合成したH-(I) (57.3 mg, 0.100 mmol)、6-ブロモヘキサン酸(29.3 mg, 0.150 mmol)、及びN-メチルモルホリン(22.0 μL, 0.200 mmol)のTHF (1.00 mL)懸濁液に対し、室温でDMT-MM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride)(41.5 mg, 0.150 mmol)を添加した。反応混合物を50 ℃で22時間加熱した後、室温に冷却した。EtOAc (5 mL)で希釈した後、クエン酸水溶液(10 wt%, 5 mL)、飽和NaHCO3水溶液(5 mL)、及び飽和食塩水(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー[シリカ、ヘキサン/EtOAc = 1:1 (AcOHを1%含有)]、続いて分取薄層クロマトグラフィー(シリカ、CHCl3/EtOAc = 4:1)で精製し、Br-(III-1(m=5, n=0))-(I)を白色固体として得た(60.4 mg, 81%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 7.69 (s, 1H), 7.52 (d, J = 9.6 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.42-7.22 (m, 3H), 7.00 (s, 1H), 6.70 (t, J = 8.2 Hz, 1H), 3.43 (t, J = 6.9 Hz , 2H), 3.19 (s, 3H), 2.73 (tt, J= 6.9, 4.1 Hz, 1H), 2.35 (t, J= 7.3 Hz, 2H), 1.97-1.83 (m, 2H), 1.80-1.67 (m, 2H), 1.65-1.46 (m, 2H), 1.42 (s, 3H), 1.20-1.03 (m, 2H), 0.87-0.70 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 171.3, 171.2, 164.9, 164.0, 156.4, 153.9, 152.1, 152.0, 144.9, 140.3, 139.1, 134.1, 129.2, 129.0, 128.3, 128.1, 126.01, 125.98, 125.80, 125.76, 125.7, 125.2, 124.3, 124.2, 120.5, 119.1, 103.8, 90.0, 88.4, 88.3, 37.3, 34.8, 33.8, 32.6, 27.9, 26.6, 25.4, 24.5, 13.5, 8.5; LRMS (ESI): m/z 772 ([M + Na]+)。 THF (1.00 mL) of H-(I) (57.3 mg, 0.100 mmol), 6-bromohexanoic acid (29.3 mg, 0.150 mmol), and N-methylmorpholine (22.0 μL, 0.200 mmol) synthesized in Synthesis Example 1 DMT-MM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride) (41.5 mg, 0.150 mmol) was added to the suspension at room temperature. The reaction mixture was heated at 50° C. for 22 hours and then cooled to room temperature. After diluting with EtOAc (5 mL), the mixture was washed successively with a citric acid aqueous solution (10 wt%, 5 mL), a saturated aqueous NaHCO 3 solution (5 mL), and a saturated saline solution (5 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography [silica, hexane/EtOAc = 1:1 (containing 1% AcOH)], followed by preparative thin layer chromatography (silica, CHCl 3 /EtOAc = 4:1), and purified with Br- (III-1(m=5, n=0))-(I) was obtained as a white solid (60.4 mg, 81%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 7.69 (s, 1H), 7.52 (d, J = 9.6 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.42-7.22 (m, 3H), 7.00 (s, 1H), 6.70 (t, J = 8.2 Hz, 1H), 3.43 (t, J = 6.9 Hz, 2H), 3.19 (s, 3H), 2.73 (tt , J= 6.9, 4.1 Hz, 1H), 2.35 (t, J= 7.3 Hz, 2H), 1.97-1.83 (m, 2H), 1.80-1.67 (m, 2H), 1.65-1.46 (m, 2H), 1.42 (s, 3H), 1.20-1.03 (m, 2H), 0.87-0.70 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 171.3, 171.2, 164.9, 164.0, 156.4, 153.9, 152.1 , 152.0, 144.9, 140.3, 139.1, 134.1, 129.2, 129.0, 128.3, 128.1, 126.01, 125.98, 125.80, 125.76, 125.7, 125.2, 124.3, 124 .2, 120.5, 119.1, 103.8, 90.0, 88.4, 88.3, 37.3, 34.8 , 33.8, 32.6, 27.9, 26.6, 25.4, 24.5, 13.5, 8.5; LRMS (ESI): m/z 772 ([M + Na] + ).
<2.(II-1)-(III-1(m=5, n=0))-(I)>
 上記で得られたBr-(III-1(m=5, n=0))-(I) (16.7 mg, 0.0223 mmol)のDMSO (80 μL)溶液に対し、室温でアフレセルチブ (28.5 mg, 0.0668 mmol)及びNaI (10.0 mg, 0.0668 mmol)を添加した。67時間後、反応混合物をCH2Cl2で希釈し濾過した。濾液を減圧下で濃縮後、残渣を分取薄層クロマトグラフィー[シリカ、EtOAc/MeOH = 9:1 (Et3Nを1%含有)]、続いてカラムクロマトグラフィー(アミン修飾シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-1)-(III-1(m=5, n=0))-(I)を白色固体として得た(10.1 mg, 41%)。1H NMR (400 MHz, CDCl3): δ11.29 (s, 1H), 7.75-7.59 (m, 1H), 7.55-7.18 (m, 8H), 7.05-6.82 (m, 5H), 6.70 (t, J = 8.3, 1H), 4.40-4.25 (m, 1H), 3.76 (s, 3H), 3.18 (s, 3H), 3.10-2.99 (m, 1H), 2.88-2.55 (m, 6H), 2.29 (t, J = 7.3 Hz, 2H), 1.80-1.34 (m, 9H), 1.16-1.05 (m, 2H), 0.82-0.73 (m, 2H) ; 13C NMR (100 MHz, CDCl3): δ 171.5, 164.9, 164.2, 164.0, 161.8, 160.5, 156.5, 154.0, 152.1, 145.0, 140.4, 140.3, 139.1, 137.7, 137.3, 135.6, 134.2, 134.1, 132.4, 130.23, 130.15, 129.3, 128.3, 128.2, 126.4, 126.0, 125.8, 125.3, 125.1, 125.0, 120.3, 119.0, 116.4, 116.2, 113.8, 113.6, 110.7, 103.8, 90.0, 88.4, 88.3, 50.7, 49.5, 38.5, 37.3, 34.8, 29.5, 26.6, 25.4, 25.0, 13.5, 8.5; HRMS (ESI-TOF): C48H47Cl2F2IN9O5S [M + H]+ 計算値: 1096.1811; 実測値: 1096.1827。
<2. (II-1)-(III-1(m=5, n=0))-(I)>
Aflesertib (28.5 mg, 0.0668 mmol) and NaI (10.0 mg, 0.0668 mmol) were added. After 67 hours, the reaction mixture was diluted with CH 2 Cl 2 and filtered. After concentrating the filtrate under reduced pressure, the residue was subjected to preparative thin layer chromatography [silica, EtOAc/MeOH = 9:1 (containing 1% Et 3 N)], followed by column chromatography (amine-modified silica, CHCl 3 / MeOH = 9:1) to obtain (II-1)-(III-1(m=5, n=0))-(I) with the following structure as a white solid (10.1 mg, 41% ). 1 H NMR (400 MHz, CDCl 3 ): δ11.29 (s, 1H), 7.75-7.59 (m, 1H), 7.55-7.18 (m, 8H), 7.05-6.82 (m, 5H), 6.70 (t , J = 8.3, 1H), 4.40-4.25 (m, 1H), 3.76 (s, 3H), 3.18 (s, 3H), 3.10-2.99 (m, 1H), 2.88-2.55 (m, 6H), 2.29 13 C NMR (100 MHz, CDCl 3 ): δ 171.5, 164.9, 164.2, 164.0, 161.8, 160.5, 156.5, 154.0, 152.1, 145.0, 140.4, 140.3, 139.1, 137.7, 137.3, 135.6, 134.2, 13 4.1, 132.4, 130.23, 130.15, 129.3, 128.3, 128.2, 126.4, 126.0, 125.8, 125.3, 125.1, 125.0, 120.3, 119.0, 116.4, 116.2, 113.8, 113.6, 110.7, 103.8, 90.0, 88.4, 88.3, 50.7, 49.5, 38.5, 37.3, 34.8, 29.5, 26.6, 25.4, 25.0, 13.5, 8.5; HRMS (ESI-TOF): C 48 H 47 Cl 2 F 2 IN 9 O 5 S [M + H] + calculated: 1096.1811; found: 1096.1827.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
[実施例3:(II-1)-(III-1(m=9, n=0))-(I)の合成]
<1.Br-(III-1(m=9, n=0))-(I)>
 下記構造を有するBr-(III-1(m=9, n=0))-(I)を合成した。
[Example 3: Synthesis of (II-1)-(III-1(m=9, n=0))-(I)]
<1. Br-(III-1(m=9, n=0))-(I)>
Br-(III-1(m=9, n=0))-(I) having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 合成例1で合成したH-(I) (57.3 mg, 0.100 mmol)、10-ブロモデカン酸(37.7 mg, 0.150 mmol)、及びN-メチルモルホリン(16.5 μL, 0.150 mmol)のTHF (2.0 mL)懸濁液に対し、室温でDMT-MM (41.5 mg, 0.150 mmol)を添加した。反応混合物を50 ℃で15時間加熱した後、室温に冷却した。EtOAc (7 mL)で希釈し、続いてクエン酸水溶液(10 wt%, 7 mL)、飽和NaHCO3水溶液(7 mL)、及び飽和食塩水(7 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー[3回、1回目はアミン修飾シリカ(EtOAc)、2回目はシリカ(ヘキサン/EtOAc = 2:3)、3回目はシリカ(ヘキサン/アセトン= 4:1)]で精製し、Br-(III-1(m=9, n=0))-(I)を黄色固体として得た(66.2 mg, 82%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 7.69 (s, 1H), 7.54-7.49 (m, 1H), 7.48-7.43 (m, 1H), 7.40-7.28 (m, 3H), 7.03-6.99 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 3.41 (t, J = 6.9 Hz, 2H), 3.20 (s, 3H), 2.73 (tt, J = 7.3, 3.7 Hz, 1H), 2.33 (t, J = 7.3 Hz, 2H), 1.85 (tt, J = 7.3, 6.9 Hz, 2H), 1.75-1.64 (m, 2H), 1.47-1.25 (m, 13H), 1.15-1.09 (m, 2H), 0.83-0.76 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 164.8, 163.9, 156.4, 153.8, 152.0, 151.9, 144.9, 140.2, 139.2, 134.1, 134.0, 129.1, 128.2, 128.1, 125.9, 125.7, 125.2, 124.0, 120.4, 119.0, 103.7, 89.9, 88.3, 88.2, 37.5, 34.8, 34.2, 32.8, 29.34, 29.30, 28.9, 28.8, 28.2, 25.33, 25.30, 13.4, 8.5; LRMS (ESI): m/z 828 ([M + Na]+)。 H-(I) (57.3 mg, 0.100 mmol) synthesized in Synthesis Example 1, 10-bromodecanoic acid (37.7 mg, 0.150 mmol), and N-methylmorpholine (16.5 μL, 0.150 mmol) suspended in THF (2.0 mL). DMT-MM (41.5 mg, 0.150 mmol) was added to the suspension at room temperature. The reaction mixture was heated at 50° C. for 15 hours and then cooled to room temperature. It was diluted with EtOAc (7 mL) and then washed sequentially with aqueous citric acid (10 wt%, 7 mL), saturated aqueous NaHCO3 (7 mL), and saturated brine (7 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography [three times, first on amine-modified silica (EtOAc), second on silica (hexane/EtOAc = 2:3), and third on silica (hexane/acetone = 4:1)]. , Br-(III-1(m=9, n=0))-(I) was obtained as a yellow solid (66.2 mg, 82%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 7.69 (s, 1H), 7.54-7.49 (m, 1H), 7.48-7.43 (m, 1H), 7.40-7.28 (m, 3H), 7.03-6.99 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 3.41 (t, J = 6.9 Hz, 2H), 3.20 (s, 3H), 2.73 (tt, J = 7.3 , 3.7 Hz, 1H), 2.33 (t, J = 7.3 Hz, 2H), 1.85 (tt, J = 7.3, 6.9 Hz, 2H), 1.75-1.64 (m, 2H), 1.47-1.25 (m, 13H) , 1.15-1.09 (m, 2H), 0.83-0.76 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 164.8, 163.9, 156.4, 153.8, 152.0, 151.9, 144.9, 140.2, 139.2, 134.1 , 134.0, 129.1, 128.2, 128.1, 125.9, 125.7, 125.2, 124.0, 120.4, 119.0, 103.7, 89.9, 88.3, 88.2, 37.5, 34.8, 34.2, 32.8, 29.34, 29.30, 28.9, 28.8, 28.2, 25.33, 25.30 , 13.4, 8.5; LRMS (ESI): m/z 828 ([M + Na] + ).
<2.(II-1)-(III-1(m=9, n=0))-(I)>
 上記で得られたBr-(III-1(m=9, n=0))-(I) (32.3 mg, 0.0400 mmol)とアフレセルチブ (51.3 mg, 0.120 mmol)のDMSO (200 μL)懸濁液に対し、室温でiPr2EtN (13.9 μL, 0.080 mmol)とNaI (3.0 mg, 0.020 mmol)を添加した。72時間後、反応混合物をCH2Cl2で希釈し、シリカのパッドに通過させた(EtOAc/MeOH = 9:1)。濾液を減圧下で濃縮後、残渣をカラムクロマトグラフィー[2回、1回目はシリカ(EtOAc/MeOH = 9:1)、2回目はアミン修飾シリカ(CHCl3/MeOH = 9:1)]で精製し、下記構造を有する(II-1)-(III-1(m=9, n=0))-(I)を黄色固体として得た(24.6 mg, 53%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 7.69 (br s, 1H), 7.55-7.48 (m, 2H), 7.48-7.36 (m, 2H), 7.36-7.20 (m, 4H), 7.05-6.78 (m, 5H), 6.69 (t, J = 8.2 Hz, 1H), 4.35-4.22 (m, 1H), 3.76 (s, 3H), 3.18 (s, 3H), 3.11-3.01 (m, 1H), 2.87-2.77 (m, 1H), 2.78-2.63 (m, 3H), 2.57 (t, J = 6.9 Hz, 2H), 2.32 (t, J = 7.3 Hz, 2H), 1.68 (tt, J = 7.2, 7.1 Hz, 2H), 1.47-1.37 (m, 5H), 1.37-1.18 (m, 10H), 1.16-1.05 (m, 2H), 0.82-0.72 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 171.7, 164.9, 164.2, 164.0, 161.8, 160.3, 156.5, 153.9, 152.1, 151.8, 145.0, 140.4, 140.3, 139.1, 137.8, 137.3, 135.5, 134.13, 134.10, 132.4, 130.2, 130.1, 129.3, 128.3, 128.2, 128.1, 126.4, 126.0, 125.8, 125.2, 125.1, 125.0, 124.5, 120.3, 119.0, 116.4, 116.2, 113.8, 113.6, 110.8, 103.8, 90.0, 88.3, 88.2, 50.9, 50.8, 50.0, 38.5, 37.7, 34.8, 30.0, 29.4, 29.3, 29.2, 27.2, 25.42, 25.36, 13.5, 8.5; LRMS (ESI): m/z 1152 ([M + H]+)。
<2. (II-1)-(III-1(m=9, n=0))-(I)>
A suspension of Br-(III-1(m=9, n=0))-(I) (32.3 mg, 0.0400 mmol) obtained above and aflesertib (51.3 mg, 0.120 mmol) in DMSO (200 μL) To this, i Pr 2 EtN (13.9 μL, 0.080 mmol) and NaI (3.0 mg, 0.020 mmol) were added at room temperature. After 72 hours, the reaction mixture was diluted with CH 2 Cl 2 and passed through a pad of silica (EtOAc/MeOH = 9:1). After concentrating the filtrate under reduced pressure, the residue was purified by column chromatography [twice, the first time on silica (EtOAc/MeOH = 9:1) and the second time on amine-modified silica (CHCl 3 /MeOH = 9:1)]. Then, (II-1)-(III-1(m=9, n=0))-(I) having the following structure was obtained as a yellow solid (24.6 mg, 53%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 7.69 (br s, 1H), 7.55-7.48 (m, 2H), 7.48-7.36 (m, 2H), 7.36-7.20 (m , 4H), 7.05-6.78 (m, 5H), 6.69 (t, J = 8.2 Hz, 1H), 4.35-4.22 (m, 1H), 3.76 (s, 3H), 3.18 (s, 3H), 3.11- 3.01 (m, 1H), 2.87-2.77 (m, 1H), 2.78-2.63 (m, 3H), 2.57 (t, J = 6.9 Hz, 2H), 2.32 (t, J = 7.3 Hz, 2H), 1.68 13 C NMR (100 MHz, CDCl 3 ): δ 171.7, 164.9, 164.2, 164.0, 161.8, 160.3, 156.5, 153.9, 152.1, 151.8, 145.0, 140.4, 140.3, 139.1, 137.8 , 137.3, 135.5, 134.13, 134.10, 132.4 , 130.2, 130.1, 129.3, 128.3, 128.2, 128.1, 126.4, 126.0, 125.8, 125.2, 125.1, 125.0, 124.5, 120.3, 119.0, 116.4, 116.2, 113.8, 113.6, 110.8, 103.8, 90.0, 88.3, 88.2, 50.9 , 50.8, 50.0, 38.5, 37.7, 34.8, 30.0, 29.4, 29.3, 29.2, 27.2, 25.42, 25.36, 13.5, 8.5; LRMS (ESI): m/z 1152 ([M + H] + ).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
[実施例4:(II-1)-(III-1(m=15, n=0))-(I)の合成]
<1.Br-(III-1(m=15, n=0))-(I)>
 下記構造を有するBr-(III-1(m=15, n=0))-(I)を合成した。
[Example 4: Synthesis of (II-1)-(III-1(m=15, n=0))-(I)]
<1. Br-(III-1(m=15, n=0))-(I)>
Br-(III-1(m=15, n=0))-(I) having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 合成例1で合成したH-(I) (28.7 mg, 0.0500 mmol)、16-ブロモヘキサデカン酸(25.2 mg, 0.0750 mmol)、及びN-メチルモルホリン(11.0 μL, 0.100 mmol)のTHF (500 μL)懸濁液に対し、室温でDMT-MM (20.8 mg, 0.0750 mmol)を添加した。18時間後、反応混合物を50 ℃に加熱した。1.5時間後、16-ブロモヘキサデカン酸(8.4 mg, 0.025 mmol)とDMT-MM (7.0 mg, 0.025 mmol)を室温で添加した。反応混合物を50 ℃で9.5時間加熱した後、室温に冷却した。EtOAc(2 mL)で希釈し、クエン酸(10 wt%, 2 mL)、飽和NaHCO3水溶液(2 mL)、及び飽和食塩水(2 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 21:29)、続いて分取薄層クロマトグラフィー(シリカ、CHCl3/MeOH = 97:3)で精製し、Br-(III-1(m=15, n=0))-(I)を白色固体として得た(32.2 mg, 72%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 7.68(s, 1H), 7.57-7.42 (m, 2H), 7.41-7.25 (m, 3H), 7.02 (d, J = 7.3 Hz, 1H), 6.70 (t, J = 8.3 Hz, 1H), 3.41 (t, J = 6.5 Hz, 2H), 3.20 (s, 3H), 2.73 (tt, J = 6.9, 4.1 Hz, 1H), 2.33 (t, J = 7.3 Hz, 2H), 1.85 (tt, J = 7.8, 6.8 Hz, 2H), 1.78-1.66 (m, 2H), 1.50-1.19 (m, 25H), 1.19-1.05 (m, 2H), 0.84-0.74 (m, 2H); 13C NMR (100MHz, CDCl3): δ 171.7, 164.9, 164.0, 156.4, 153.9, 152.1, 151.9, 144.9, 140.3, 139.1, 134.11, 134.07, 129.2, 128.3, 128.2, 126.0, 125.8, 125.2, 124.3, 120.4, 119.0, 103.8, 90.0, 88.3, 88.2, 37.7, 34.8, 34.2, 32.9, 29.74, 29.72, 29.63, 29.59, 29.5, 29.4, 28.9, 28.3, 25.5, 25.3, 13.5, 8.5; LRMS (ESI): m/z 912 ([M + Na]+)。 THF (500 μL) of H-(I) (28.7 mg, 0.0500 mmol), 16-bromohexadecanoic acid (25.2 mg, 0.0750 mmol), and N-methylmorpholine (11.0 μL, 0.100 mmol) synthesized in Synthesis Example 1 DMT-MM (20.8 mg, 0.0750 mmol) was added to the suspension at room temperature. After 18 hours, the reaction mixture was heated to 50°C. After 1.5 hours, 16-bromohexadecanoic acid (8.4 mg, 0.025 mmol) and DMT-MM (7.0 mg, 0.025 mmol) were added at room temperature. The reaction mixture was heated at 50° C. for 9.5 hours and then cooled to room temperature. It was diluted with EtOAc (2 mL) and washed sequentially with citric acid (10 wt%, 2 mL), saturated aqueous NaHCO 3 (2 mL), and saturated brine (2 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/EtOAc = 21:29) followed by preparative thin layer chromatography (silica, CHCl 3 /MeOH = 97:3) to give Br-(III-1(m= 15, n=0))-(I) was obtained as a white solid (32.2 mg, 72%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 7.68(s, 1H), 7.57-7.42 (m, 2H), 7.41-7.25 (m, 3H), 7.02 (d, J = 7.3 Hz, 1H), 6.70 (t, J = 8.3 Hz, 1H), 3.41 (t, J = 6.5 Hz, 2H), 3.20 (s, 3H), 2.73 (tt, J = 6.9, 4.1 Hz, 1H) , 2.33 (t, J = 7.3 Hz, 2H), 1.85 (tt, J = 7.8, 6.8 Hz, 2H), 1.78-1.66 (m, 2H), 1.50-1.19 (m, 25H), 1.19-1.05 (m , 2H), 0.84-0.74 (m, 2H); 13 C NMR (100MHz, CDCl 3 ): δ 171.7, 164.9, 164.0, 156.4, 153.9, 152.1, 151.9, 144.9, 140.3, 139.1, 134.11 , 134.07, 129.2, 128.3, 128.2, 126.0, 125.8, 125.2, 124.3, 120.4, 119.0, 103.8, 90.0, 88.3, 88.2, 37.7, 34.8, 34.2, 32.9, 29.74, 29.72, 29 .63, 29.59, 29.5, 29.4, 28.9, 28.3, 25.5, 25.3, 13.5, 8.5; LRMS (ESI): m/z 912 ([M + Na] + ).
<2.(II-1)-(III-1(m=15, n=0))-(I)>
 上記で得られたBr-(III-1(m=15, n=0))-(I) (19.2 mg, 0.0216 mmol)とアフレセルチブ (27.6 mg, 0.0647 mmol)のDMSO/CHCl3(1:2, 135 μL)溶液に対し、室温でEt3N (9.0 μL, 0.065 mmol)とNaI (9.7 mg, 0.065 mmol)を添加した。6日後、NaI (6.5 mg, 0.043 mmol)を添加した。4日後、反応混合物をCH2Cl2で希釈し、濾過した。濾液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、EtOAc)、続いてカラムクロマトグラフィー(アミン修飾シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-1)-(III-1(m=15, n=0))-(I)を黄色固体として得た(4.2 mg, 16%)。1H NMR (400 MHz, CDCl3): δ 11.28 (s, 1H), 7.66 (s, 1H), 7.55-7.20 (m, 7H), 7.07-6.87 (m, 5H), 6.80 (d, J = 6.8 Hz, 1H), 6.69 (t, J = 8.2 Hz, 1H), 4.36-4.24 (m, 1H), 3.77 (s, 3H), 3.19 (s, 3H), 3.12-3.03 (m, 1H), 2.87-2.63 (m, 4H), 2.57 (t, J = 6.9 Hz, 2H), 2.33 (t, J = 7.3 Hz, 2H), 1.85-1.17 (m, 29H), 1.15-1.07 (m, 2H), 0.82-0.75 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 171.6, 165.0, 164.2, 164.0, 161.8, 160.3, 156.5, 154.0, 152.1, 151.8, 145.0, 140.5, 140.4, 140.3, 139.0, 137.7, 137.3, 135.5, 134.13, 134.10, 132.3, 130.2, 130.1, 129.4, 128.4, 128.2, 128.1, 126.5, 126.0, 125.8, 125.2, 125.10, 125.07, 124.6, 120.2, 119.0, 116.5, 116.2, 113.9, 113.6, 110.8, 103.9, 90.1, 88.3, 88.2, 50.9, 50.8, 50.1, 38.5, 37.9, 34.8, 30.2, 29.7, 29.6, 29.54, 29.48, 29.4, 27.3, 25.5, 25.4, 13.5, 8.5; HRMS (ESI-TOF): C58H67Cl2F2IN9O5S [M + H]+ 計算値: 1236.3376; 実測値: 1236.3426。
<2. (II-1)-(III-1(m=15, n=0))-(I)>
Br-(III-1(m=15, n=0))-(I) (19.2 mg, 0.0216 mmol) obtained above and aflesertib (27.6 mg, 0.0647 mmol) in DMSO/CHCl 3 (1:2 , 135 μL) solution, Et 3 N (9.0 μL, 0.065 mmol) and NaI (9.7 mg, 0.065 mmol) were added at room temperature. After 6 days, NaI (6.5 mg, 0.043 mmol) was added. After 4 days, the reaction mixture was diluted with CH 2 Cl 2 and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, EtOAc) followed by column chromatography (amine-modified silica, CHCl 3 /MeOH = 9:1) to give (II-1)-(III- 1(m=15, n=0))-(I) was obtained as a yellow solid (4.2 mg, 16%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.28 (s, 1H), 7.66 (s, 1H), 7.55-7.20 (m, 7H), 7.07-6.87 (m, 5H), 6.80 (d, J = 6.8 Hz, 1H), 6.69 (t, J = 8.2 Hz, 1H), 4.36-4.24 (m, 1H), 3.77 (s, 3H), 3.19 (s, 3H), 3.12-3.03 (m, 1H), 2.87-2.63 (m, 4H), 2.57 (t, J = 6.9 Hz, 2H), 2.33 (t, J = 7.3 Hz, 2H), 1.85-1.17 (m, 29H), 1.15-1.07 (m, 2H) , 0.82-0.75 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 171.6, 165.0, 164.2, 164.0, 161.8, 160.3, 156.5, 154.0, 152.1, 151.8, 145.0, 140 .5, 140.4, 140.3, 139.0, 137.7, 137.3, 135.5, 134.13, 134.10, 132.3, 130.2, 130.1, 129.4, 128.4, 128.2, 128.1, 126.5, 126.0, 125.8, 125.2, 125.10, 125.07, 124.6, 120.2, 119.0, 116.5, 116.2, 113.9, 113.6, 110.8, 103.9, 90.1, 88.3, 88.2, 50.9, 50.8, 50.1, 38.5, 37.9, 34.8, 30.2, 29.7, 29.6, 29.54, 29.48, 29.4, 27.3, 25 .5, 25.4, 13.5, 8.5; HRMS (ESI- TOF): C 58 H 67 Cl 2 F 2 IN 9 O 5 S [M + H] + calculated: 1236.3376; found: 1236.3426.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
[実施例5:(II-2)-(III-1(m=1, n=0))-(I)の合成]
 実施例1と同様の方法で得られたBr-(III-1(m=1, n=0))-(I) (17.2 mg, 0.0248 mmol)、MK2206二塩酸塩(13.1 mg, 0.0273 mmol)、モレキュラーシーブ4A(4.1 mg)、及びDMSO (82 μL)の混合物に対し、室温でiPr2EtN (17.3 μL, 0.0991 mmol)及びNaI (1.9 mg, 0.012 mmol)を添加した。反応混合物を80 ℃で8時間加熱した後、室温に冷却し、シリカのパッドに通過させた(EtOAc/MeOH = 19:1)。溶離液を減圧下で濃縮後、残渣を分取薄層クロマトグラフィー[2回、1回目はシリカ(EtOAc/MeOH = 19:1)、2回目はアミン修飾シリカ(CHCl3/MeOH = 9:1)]で精製し、下記構造を有する(II-2)-(III-1(m=1, n=0))-(I)を黄色固体として得た(13.1 mg, 52%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 9.38 (s, 1H), 8.51 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.70-7.63 (m, 1H), 7.57-7.33 (m, 6H), 7.33-7.14 (m, 8H), 7.12-7.00 (m, 2H), 6.69 (t, J = 8.7 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 2H), 2.71 (tt, J= 6.9, 4.1 Hz, 1H), 2.53-2.40 (m, 2H), 2.27-2.05 (m, 3H), 1.91-1.77 (m, 1H), 1.40 (s, 3H), 1.18-1.05 (m, 2H), 0.84-0.73 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.3, 165.0, 164.0, 160.1, 156.4, 153.9, 152.0, 151.7, 151.0, 148.0, 146.0, 145.0, 141.4, 140.5, 138.6, 138.5, 138.2, 136.3, 134.10, 134.06, 132.8, 130.3, 129.6, 129.4, 128.7, 128.3, 128.2, 128.1, 126.0, 125.8, 125.7, 125.2, 124.8, 123.3, 119.8, 118.9, 116.6, 113.9, 103.8, 90.1, 88.23, 88.17, 63.2, 47.5, 34.8, 33.1, 25.3, 15.2, 13.5, 8.5; LRMS (ESI): m/z 1021 ([M + H]+)。
[Example 5: Synthesis of (II-2)-(III-1(m=1, n=0))-(I)]
Br-(III-1(m=1, n=0))-(I) (17.2 mg, 0.0248 mmol) obtained in the same manner as in Example 1, MK2206 dihydrochloride (13.1 mg, 0.0273 mmol) , Molecular Sieve 4A (4.1 mg), and DMSO (82 μL) at room temperature were added i Pr 2 EtN (17.3 μL, 0.0991 mmol) and NaI (1.9 mg, 0.012 mmol). The reaction mixture was heated at 80 °C for 8 h, then cooled to room temperature and passed through a pad of silica (EtOAc/MeOH = 19:1). After concentrating the eluent under reduced pressure, the residue was subjected to preparative thin layer chromatography [twice, the first time on silica (EtOAc/MeOH = 19:1) and the second time on amine-modified silica (CHCl 3 /MeOH = 9:1). )] to obtain (II-2)-(III-1(m=1, n=0))-(I) having the following structure as a yellow solid (13.1 mg, 52%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 9.38 (s, 1H), 8.51 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.70-7.63 (m , 1H), 7.57-7.33 (m, 6H), 7.33-7.14 (m, 8H), 7.12-7.00 (m, 2H), 6.69 (t, J = 8.7 Hz, 1H), 3.19 (s, 3H), 3.08 (s, 2H), 2.71 (tt, J= 6.9, 4.1 Hz, 1H), 2.53-2.40 (m, 2H), 2.27-2.05 (m, 3H), 1.91-1.77 (m, 1H), 1.40 ( 13C NMR (100 MHz, CDCl 3 ): δ 170.3, 165.0, 164.0, 160.1, 156.4 , 153.9, 152.0, 151.7 , 151.0, 148.0, 146.0, 145.0, 141.4, 140.5, 138.6, 138.5, 138.2, 136.3, 134.10, 134.06, 132.8, 130.3, 129.6, 129.4, 128.7 , 128.3, 128.2, 128.1, 126.0, 125.8, 125.7, 125.2, 124.8 , 123.3, 119.8, 118.9, 116.6, 113.9, 103.8, 90.1, 88.23, 88.17, 63.2, 47.5, 34.8, 33.1, 25.3, 15.2, 13.5, 8.5; LRMS (ESI): m/z 1021 ([M+H] + ).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[実施例6:(II-2)-(III-1(m=5, n=0))-(I)の合成]
 実施例2と同様の方法で得られたBr-(III-1(m=5, n=0))-(I) (15.0 mg, 0.0200 mmol)、MK2206二塩酸塩 (14.4 mg, 0.0300 mmol)、モレキュラーシーブ4A (5.0 mg)、及びDMSO (100 μL)の混合物に対し、室温でiPr2EtN (13.9 μL, 0.0800 mmol)とNaI (6.0 mg, 0.040 mmol)を添加した。反応混合物を80 ℃で4日間加熱した後、室温に冷却した。EtOAc (5 mL)で希釈し、水(5 mL)と飽和食塩水(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、CHCl3/MeOH = 9:1)、続いてカラムクロマトグラフィー(アミン修飾シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-2)-(III-1(m=5, n=0))-(I)を黄色固体として得た(2.8 mg, 13%)。1H NMR (600 MHz, CDCl3): δ 11.27 (s, 1H), 8.52 (s, 1H), 7.79 (d, J= 7.6 Hz, 1H), 7.67 (s, 1H), 7.60-7.49 (m, 2H), 7.46-7.37 (m, 4H), 7.36-7.22 (m, 9H), 7.10-7.05 (m, 1H), 7.04-6.98 (m, 1H), 6,69 (t, J = 8.2 Hz, 1H), 3.18 (s, 3H), 2.72 (tt, J = 7.2, 3.4 Hz, 1H), 2.45-2.37 (m, 2H), 2.30 (t, J = 7.2 Hz, 2H), 2.25-2.14 (m, 4H), 2.05-1.94 (m, 1H), 1.79-1.70 (m, 1H), 1.70-1.62 (m, 2H), 1.43-1.37 (m, 5H), 1.35-1.27 (m, J = 7.2 Hz, 2H), 1.13-1.07 (m, 2H), 0.80-0.75 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 171.4, 165.0, 164.0, 160.7, 156.1, 154.4, 152.1, 151.8, 150.7, 148.1, 145.0, 141.6, 140.5, 139.0, 138.9, 137.5, 136.4, 134.1, 132.8, 129.9, 129.7, 129.4, 128.6, 128.4, 128.3, 128.0, 126.2, 126.0, 125.8, 125.2, 124.6, 123.4, 120.3, 119.0, 116.5, 113.9, 103.9, 90.1, 88.3, 88.2, 63.9, 63.0, 42.9, 37.5, 34.8, 33.9, 30.2, 29.9, 27.0, 25.4, 25.2, 14.8, 13.6, 8.5; HRMS (ESI-TOF): C55H51FIN10O5[M + H]+計算値: 1077.3073; 実測値: 1077.3061。
[Example 6: Synthesis of (II-2)-(III-1(m=5, n=0))-(I)]
Br-(III-1(m=5, n=0))-(I) (15.0 mg, 0.0200 mmol) obtained in the same manner as Example 2, MK2206 dihydrochloride (14.4 mg, 0.0300 mmol) , molecular sieve 4A (5.0 mg), and DMSO (100 μL) at room temperature, i Pr 2 EtN (13.9 μL, 0.0800 mmol) and NaI (6.0 mg, 0.040 mmol) were added. The reaction mixture was heated at 80° C. for 4 days and then cooled to room temperature. It was diluted with EtOAc (5 mL) and washed sequentially with water (5 mL) and saturated saline (5 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, CHCl 3 /MeOH = 9:1), followed by column chromatography (amine-modified silica, CHCl 3 /MeOH = 9:1) to give (II -2)-(III-1(m=5, n=0))-(I) was obtained as a yellow solid (2.8 mg, 13%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.27 (s, 1H), 8.52 (s, 1H), 7.79 (d, J= 7.6 Hz, 1H), 7.67 (s, 1H), 7.60-7.49 (m , 2H), 7.46-7.37 (m, 4H), 7.36-7.22 (m, 9H), 7.10-7.05 (m, 1H), 7.04-6.98 (m, 1H), 6,69 (t, J = 8.2 Hz , 1H), 3.18 (s, 3H), 2.72 (tt, J = 7.2, 3.4 Hz, 1H), 2.45-2.37 (m, 2H), 2.30 (t, J = 7.2 Hz, 2H), 2.25-2.14 ( m, 4H), 2.05-1.94 (m, 1H), 1.79-1.70 (m, 1H), 1.70-1.62 (m, 2H), 1.43-1.37 (m, 5H), 1.35-1.27 (m, J = 7.2 13 C NMR (150 MHz, CDCl 3 ): δ 171.4, 165.0, 164.0, 160.7, 156.1, 154.4, 152.1, 151.8 , 150.7, 148.1, 145.0, 141.6, 140.5, 139.0, 138.9, 137.5, 136.4, 134.1, 132.8, 129.9, 129.7, 129.4, 128.6, 128.4, 128.3, 128.0, 126.2, 126.0, 125.8, 125.2, 124.6, 123.4, 120.3 , 119.0, 116.5, 113.9, 103.9, 90.1, 88.3, 88.2, 63.9, 63.0, 42.9, 37.5, 34.8, 33.9, 30.2, 29.9, 27.0, 25.4, 25.2, 14.8, 1 3.6, 8.5; HRMS (ESI-TOF): C 55 H 51 FIN 10 O 5 [M + H] + Calculated: 1077.3073; Actual: 1077.3061.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[実施例7:(II-3)-(III-1(m=5, n=0))-(I)の合成]
<1.(II-3)-H・2TFA>
 下記構造を有する(II-3)-H・2TFAを合成した。
[Example 7: Synthesis of (II-3)-(III-1(m=5, n=0))-(I)]
<1. (II-3)-H・2TFA>
(II-3)-H・2TFA having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 tert-ブチル(1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-イル)カルバマート(50.0 mg, 0.157 mmol, Caldwell, J. J.等, JMedChem 2008, 51, 2147-2157に記載の方法により合成)をCH2Cl2(1.58 mL)に溶解させ、トリフルオロ酢酸(1.21 mL)を室温で添加した。反応混合物を室温で1時間撹拌した後、減圧下で濃縮し、(II-3)-H・2TFAを白色固体として得た(64.7 mg, 99%)。1H NMR (400 MHz, CD3OD): δ 8.37 (s, 1H), 7.40 (d, J = 3.7 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H), 4.86 (d, J = 13.8 Hz, 2H), 3.65-3.50 (m, 1H), 3.50-3.40 (m, 2H), 2.31 (dd, J = 6.3, 2.5 Hz, 2H), 1.77 (ddd, J = 24.5, 12.6, 4.4 Hz, 2H); 13C NMR (150 MHz, CD3OD): δ163.4, 163.1, 162.9162.7, 154.9, 145.42, 145.40, 144.1, 125.0, 119.1, 117.1, 104.7, 103.5, 46.4, 30.7; HRMS (DART-TOF): C11H16N5[M + H]+ 計算値: 218.1401; 実測値: 218.1400。 tert-Butyl (1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-yl)carbamate (50.0 mg, 0.157 mmol, Caldwell, J. J. et al., JMedChem 2008, 51, 2147-2157 (synthesized by the method described in ) was dissolved in CH 2 Cl 2 (1.58 mL), and trifluoroacetic acid (1.21 mL) was added at room temperature. The reaction mixture was stirred at room temperature for 1 hour and then concentrated under reduced pressure to obtain (II-3)-H.2TFA as a white solid (64.7 mg, 99%). 1 H NMR (400 MHz, CD 3 OD): δ 8.37 (s, 1H), 7.40 (d, J = 3.7 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H), 4.86 (d, J = 13.8 Hz, 2H), 3.65-3.50 (m, 1H), 3.50-3.40 (m, 2H), 2.31 (dd, J = 6.3, 2.5 Hz, 2H), 1.77 (ddd, J = 24.5, 12.6, 4.4 Hz , 2H); 13 C NMR (150 MHz, CD 3 OD): δ163.4, 163.1, 162.9162.7, 154.9, 145.42, 145.40, 144.1, 125.0, 119.1, 117.1, 104.7, 103.5, 46 .4, 30.7; HRMS ( DART-TOF): C 11 H 16 N 5 [M + H] + Calculated: 218.1401; Actual: 218.1400.
<2.(II-3)-(III-1(m=5, n=0))-(I)>
 実施例2と同様の方法で得られたBr-(III-1(m=5, n=0))-(I) (10.7 mg, 0.0143 mmol)、(II-3)-H・2TFA (6.2 mg, 0.029 mmol)、iPr2EtN (2.5 μL, 0.014 mmol)、及びモレキュラーシーブ4A (7.0 mg) をN,N-ジメチルホルムアミド(70 μL)中に懸濁させた。反応混合物を70 ℃で9時間加熱した後、室温に冷却した。次に、反応混合物をアミン修飾シリカのパッド(CHCl3/MeOH = 12:1)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー[シリカ、CHCl3/MeOH = 12:1 (Et3Nを0.5%含有)]で精製し、下記構造を有する(II-3)-(III-1(m=5, n=0))-(I)を白色アモルファスとして得た(6.2 mg, 48%)。1H NMR (600 MHz, CDCl3): δ 11.28 (s, 1H), 10.50 (br s, 1H), 8.30 (s, 1H), 7.75 (s, 1H), 7.71 (s, 1H), 7.51 (dd, J = 9.6, 1.7 Hz, 1H), 7.45 (d, J = 9.3 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 8.1 Hz, 1H), 7.05 (d, J = 3.8 Hz, 1H), 7.00 (d, J = 7.2 Hz,1H), 6.69 (t, J = 8.3 Hz, 1H), 6.50 (d, J = 3.8 Hz, 1H), 4.70 (br d, J = 13.0 Hz, 2H), 3.30-3.10 (m, 5H), 2.95-2.75 (m, 1H), 2.75-2.65 (m, 3H), 1.73 (quin, J = 7.5 Hz, 2H), 1.55 (quin, J = 7.4 Hz, 2H), 1.50-1.35 (m, 6H), 1.20-1.08 (m, 2H), 0.85-0.75 (m, 2H) ; 13C NMR (150 MHz, CD3OD): δ 171.5, 165.0, 164.0, 157.2, 156.0, 154.4, 152.2, 152.1, 151.8, 151.3, 145.0, 140.4, 139.1, 134.12, 134.1, 129.3, 128.3, 128.2, 126.0, 125.8, 125.2, 124.5, 120.4, 120.3, 119.0, 103.8, 103.0,101.8, 90.0, 88.3, 88.2, 55.3, 46.6, 46.3, 44.9, 37.5, 34.8, 32.7, 31.7, 30.0, 27.0, 25.4, 25.2, 22.8, 14.3, 13.5, 11.4, 8.5; HRMS (ESI-TOF): C41H45FIN10O4[M + H]+ 計算値: 887.2654; 実測値: 887.2659。
<2. (II-3)-(III-1(m=5, n=0))-(I)>
Br-(III-1(m=5, n=0))-(I) (10.7 mg, 0.0143 mmol), (II-3)-H・2TFA (6.2 mg, 0.029 mmol), i Pr 2 EtN (2.5 μL, 0.014 mmol), and molecular sieve 4A (7.0 mg) were suspended in N,N-dimethylformamide (70 μL). The reaction mixture was heated at 70° C. for 9 hours and then cooled to room temperature. The reaction mixture was then passed through a pad of amine-modified silica (CHCl 3 /MeOH = 12:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography [silica, CHCl 3 /MeOH = 12:1 (containing 0.5% Et 3 N)] to give (II-3)-(III-1(m= 5, n=0))-(I) was obtained as a white amorphous (6.2 mg, 48%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.28 (s, 1H), 10.50 (br s, 1H), 8.30 (s, 1H), 7.75 (s, 1H), 7.71 (s, 1H), 7.51 ( dd, J = 9.6, 1.7 Hz, 1H), 7.45 (d, J = 9.3 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 8.1 Hz, 1H), 7.05 ( d, J = 3.8 Hz, 1H), 7.00 (d, J = 7.2 Hz,1H), 6.69 (t, J = 8.3 Hz, 1H), 6.50 (d, J = 3.8 Hz, 1H), 4.70 (br d , J = 13.0 Hz, 2H), 3.30-3.10 (m, 5H), 2.95-2.75 (m, 1H), 2.75-2.65 (m, 3H), 1.73 (quin, J = 7.5 Hz, 2H), 1.55 ( 13 C NMR (150 MHz, CD 3 OD): δ 171.5, 165.0, 164.0, 157.2, 156.0, 154.4, 152.2, 152.1, 151.8, 151.3, 145.0, 140.4, 139.1, 134.12, 134.1, 129.3, 128.3, 1 28.2, 126.0, 125.8, 125.2, 124.5, 120.4, 120.3, 119.0, 103.8, 103.0,101.8, 90.0, 88.3, 88.2, 55.3, 46.6, 46.3, 44.9, 37.5, 34.8, 32.7, 31.7, 30.0, 27.0, 25.4, 25.2, 22.8, 14.3, 13.5, 11.4, 8.5; HRMS (ESI- TOF): C 41 H 45 FIN 10 O 4 [M + H] + Calculated: 887.2654; Actual: 887.2659.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
[実施例8:(II-4)-(III-1(m=5, n=0))-(I)の合成]
<1.(II-4)-Boc>
 下記構造を有する(II-4)-Bocを合成した。
[Example 8: Synthesis of (II-4)-(III-1(m=5, n=0))-(I)]
<1. (II-4)-Boc>
(II-4)-Boc having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 tert-ブチル2,8-ジアザスピロ[4.5]デカン-8-カルボキシラート(150.0 mg, 0.6241 mmol)と4,5-ジクロロ-7H-ピロロ[2,3-d]ピリミジン(129.1 mg, 0.6865 mmol)のEtOH (1.25 mL)懸濁液に対し、Et3N (260 μL, 1.87 mmol)を室温で添加した。反応混合物を室温で30分間撹拌し、続いて60 ℃で2.5時間加熱した後、室温へ冷却し、減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、CHCl3/MeOH = 9:1)で精製し、(II-4)-Bocを黄色固体として得た(238.4 mg, 97%)。1H NMR (400 MHz, CDCl3): δ 11.26 (s, 1H), 8.29 (s, 1H), 7.12 (s, 1H), 3.97 (t, J = 7.1 Hz, 2H), 3.76 (s, 2H), 3.65-3.45 (m, 2H), 3.45-3.30 (m, 2H), 1.91 (t, J = 7.11.75-1.55 (m, 2H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 155.5, 154.9, 150.8, 150.3, 119.8, 102.6, 100.9, 79.7, 59.9, 48.8, 41.3, 40.2, 35.8, 34.5, 28.6; HRMS (DART-TOF): C19H27Cl2N5O2[M + H]+ 計算値: 392.1853; 実測値: 392.1842。 tert-Butyl 2,8-diazaspiro[4.5]decane-8-carboxylate (150.0 mg, 0.6241 mmol) and 4,5-dichloro-7H-pyrrolo[2,3-d]pyrimidine (129.1 mg, 0.6865 mmol) Et 3 N (260 μL, 1.87 mmol) was added to an EtOH (1.25 mL) suspension at room temperature. The reaction mixture was stirred at room temperature for 30 minutes, then heated at 60° C. for 2.5 hours, then cooled to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography (silica, CHCl 3 /MeOH = 9:1) to obtain (II-4)-Boc as a yellow solid (238.4 mg, 97%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.26 (s, 1H), 8.29 (s, 1H), 7.12 (s, 1H), 3.97 (t, J = 7.1 Hz, 2H), 3.76 (s, 2H) ), 3.65-3.45 (m, 2H), 3.45-3.30 (m, 2H), 1.91 (t, J = 7.11.75-1.55 (m, 2H ) , 1.47 (s, 9H); , CDCl 3 ): δ 155.5, 154.9, 150.8, 150.3, 119.8, 102.6, 100.9, 79.7, 59.9, 48.8, 41.3, 40.2, 35.8, 34.5, 28.6 ; HRMS (DART-TOF): C 19 H 27Cl2N 5 O 2 [M + H] + calculated: 392.1853; found: 392.1842.
<2.(II-4)-H (2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカン)>
 下記構造を有する(II-4)-Hを合成した。
<2. (II-4)-H (2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane)>
(II-4)-H having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 (II-4)-Boc (161.8 mg, 0.4136 mmol)をCH2Cl2(4.14 mL)に溶解させ、トリフルオロ酢酸(3.17 mL)を室温で添加した。反応混合物を室温で30分間撹拌した後、減圧下で濃縮した。残渣をCH2Cl2に溶解し、アミン修飾シリカのパッド(CHCl3/MeOH = 17:3)に通過させた。溶離液を減圧下で濃縮し、(II-4)-Hを黄色固体として得た(107.4 mg, 89%)。1H NMR (400 MHz, CDCl3): δ 8.29 (s, 1H), 7.12 (s, 1H), 3.95 (t, J = 7.1 Hz, 2H), 3.76 (s, 2H), 3.00-2.80 (m, 4H), 1.91 (t, J = 7.1 Hz, 2H), 1.70-1.50 (m, 4H); 13C NMR (100 MHz, CD3OD): δ 155.6, 150.9, 150.7, 119.4, 103.0, 100.9, 48.9, 44.1, 40.5, 35.9; HRMS (DART-TOF): C14H19ClN5[M + H]+計算値: 292.1329; 実測値: 292.1333。 (II-4)-Boc (161.8 mg, 0.4136 mmol) was dissolved in CH 2 Cl 2 (4.14 mL) and trifluoroacetic acid (3.17 mL) was added at room temperature. The reaction mixture was stirred at room temperature for 30 minutes and then concentrated under reduced pressure. The residue was dissolved in CH 2 Cl 2 and passed through a pad of amine-modified silica (CHCl 3 /MeOH = 17:3). The eluent was concentrated under reduced pressure to obtain (II-4)-H as a yellow solid (107.4 mg, 89%). 1 H NMR (400 MHz, CDCl 3 ): δ 8.29 (s, 1H), 7.12 (s, 1H), 3.95 (t, J = 7.1 Hz, 2H), 3.76 (s, 2H), 3.00-2.80 (m , 4H), 1.91 (t, J = 7.1 Hz, 2H), 1.70-1.50 (m, 4H); 13 C NMR (100 MHz, CD 3 OD): δ 155.6, 150.9, 150.7, 119.4, 103.0, 100.9, 48.9, 44.1, 40.5, 35.9; HRMS (DART-TOF): C 14 H 19 ClN 5 [M + H] + calculated: 292.1329; found: 292.1333.
<3.(II-4)-(III-1(m=5, n=0))-(I)>
 実施例2と同様の方法で得られたBr-(III-1(m=5, n=0))-(I) (9.9 mg, 0.013 mmol)、(II-4)-H (7.7 mg, 0.026 mmol)、iPr2EtN (4.6 μL, 0.026 mmol)、及びモレキュラーシーブ4A (13.2 mg)をN,N-ジメチルホルムアミド(132 μL)中に懸濁させた。反応混合物を60 ℃で22時間、さらに90 ℃で23時間加熱した後、室温に冷却した。反応混合物にiPr2EtN (4.6 μL, 0.026 mmol)を添加し、90 ℃で24時間加熱した後、室温に冷却した。次に、反応混合物をアミン修飾シリカのパッド(CHCl3/MeOH = 1:1)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー[シリカ、CHCl3/MeOH = 17:3 (Et3Nを0.5%含有)]で精製し、下記構造を有する(II-4)-(III-1(m=5, n=0))-(I)を暗褐色固体として得た(6.4 mg, 50%)。1H NMR (600 MHz, CDCl3): δ 11.28 (s, 1H), 10.64 (br s, 1H), 8.27 (s, 1H), 7.70 (s, 1H), 7.56 (br s, 1H), 7.51 (dd, J = 9.6, 1.7 Hz, 1H), 7.50-7.40 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.69 (t, J = 8.4 Hz, 1H), 3.94 (t, J = 6.9 Hz, 2H), 3.72 (s, 2H), 3.19 (s, 3H), 2.73 (tt, J = 6.9, 3.7 Hz, 1H), 2.62 (br s, 1H), 2.41 (br t, J= 7.4 Hz, 4H), 2.36 (t, J = 7.0 Hz, 2H), 1.80-1.65 (m, 6H), 1.59 (br quin, J = 7.6 Hz, 2H), 1.50-1.35 (m, 5H), 1.20-1.00 (m, 2H), 0.85-0.75 (m, 2H) ; 13C NMR (150 MHz, CDCl3): δ 171.4, 165.0, 164.2, 156.1, 155.6, 154.4, 152.1, 151.8, 151.1, 150.9, 145.0, 140.5, 139.0, 134.1, 129.3, 128.4, 128.3, 125.99, 125.97, 125.85, 125.83, 125.2, 124.7, 120.3, 119.15, 119.13, 119.0, 103.9, 103.3, 100.9, 90.1, 88.2, 58.7, 51.2, 48.9, 39.9, 37.5, 34.8, 34.6, 27.2, 26.6, 25.4, 25.3, 13.5, 8.5 ; HRMS (ESI-TOF): C44H48ClFIN10O4 [M + H]+ 計算値: 961.2577; 実測値: 961.2591。
<3. (II-4)-(III-1(m=5, n=0))-(I)>
Br-(III-1(m=5, n=0))-(I) (9.9 mg, 0.013 mmol), (II-4)-H (7.7 mg, 0.026 mmol), i Pr 2 EtN (4.6 μL, 0.026 mmol), and molecular sieve 4A (13.2 mg) were suspended in N,N-dimethylformamide (132 μL). The reaction mixture was heated at 60°C for 22 hours, then at 90°C for 23 hours, then cooled to room temperature. i Pr 2 EtN (4.6 μL, 0.026 mmol) was added to the reaction mixture, heated at 90° C. for 24 hours, and then cooled to room temperature. The reaction mixture was then passed through a pad of amine-modified silica (CHCl 3 /MeOH = 1:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography [silica, CHCl 3 /MeOH = 17:3 (containing 0.5% Et 3 N)] to give (II-4)-(III-1(m= 5, n=0))-(I) was obtained as a dark brown solid (6.4 mg, 50%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.28 (s, 1H), 10.64 (br s, 1H), 8.27 (s, 1H), 7.70 (s, 1H), 7.56 (br s, 1H), 7.51 (dd, J = 9.6, 1.7 Hz, 1H), 7.50-7.40 (m, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.69 (t, J = 8.4 Hz, 1H), 3.94 (t, J = 6.9 Hz, 2H), 3.72 (s, 2H), 3.19 (s, 3H), 2.73 (tt, J = 6.9, 3.7 Hz, 1H), 2.62 ( br s, 1H), 2.41 (br t, J= 7.4 Hz, 4H), 2.36 (t, J = 7.0 Hz, 2H), 1.80-1.65 (m, 6H), 1.59 (br quin, J = 7.6 Hz, 13C NMR (150 MHz, CDCl 3 ): δ 171.4, 165.0, 164.2, 156.1, 155.6, 154.4, 152.1, 151.8, 151.1, 150.9, 145.0, 140.5, 139.0, 134.1, 129.3, 128.4, 128.3, 125.99, 125.97, 125.85, 125.83 , 125.2, 124.7, 120.3, 119.15, 119.13, 119.0, 103.9, 103.3, 100.9, 90.1, 88.2, 58.7, 51.2, 48.9, 39.9, 37.5 , 34.8, 34.6, 27.2, 26.6, 25.4, 25.3, 13.5 , 8.5 . 4 [M+ H] + Calculated value: 961.2577; Actual value: 961.2591.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[実施例9:(II-4)-(III-1(m=2, n=1))-(I)の合成]
<1.TsO-(III-1(m=2, n=1))-(I)>
 tert-ブチル3-(2-(トシルオキシ)エトキシ)プロパノアート(243.0 mg, 0.706 mmol)のCH2Cl2 (7.0 mL)溶液にトリフルオロ酢酸(540 μL)を室温で添加した。反応混合物を室温で2.5時間撹拌した後、減圧下で濃縮し、3-(2-(トシルオキシ)エトキシ)プロピオン酸の粗生成物を得た。このカルボン酸粗生成物に対し、合成例1で合成したH-(I) (334.0 mg, 0.583 mmol)、N,N-ジメチルホルムアミド(5.8 mL)、iPr2EtN (203 μL, 1.17 mmol)、及び1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート (HATU) (332.2 mg, 0.874 mmol) を添加し、室温で23時間撹拌した。反応混合物をEtOAc (30 mL) で希釈した後、飽和NaHCO3水(30 mL)、クエン酸水溶液(10 wt%, 30 mL)、及び飽和食塩水(30 mL)で順次洗浄し、MgSO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 1:3)で精製し、下記構造を有するTsO-(III-1(m=2, n=1))-(I)を黄色固体として得た(424.8 mg, 86%)。1H NMR (400 MHz, CDCl3): δ 11.23 (s, 1H), 8.36 (s, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.56 (dd, J = 7.6, 1.6 Hz 1H), 7.60 (t, J = 2.1 Hz, 1H), 7.50 (dd, J = 9.6, 1.8 Hz 1H), 7.47-7.35 (m, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.5 Hz, 1H), 6.65 (t, J = 8.2 Hz, 1H),4.25-4.05 (m, 2H), 3.85-3.65 (m, 4H), 3.18 (s, 3H), 2.70 (tt, J = 6.9, 3.6 Hz, 1H), 2.62 (t, J = 5.3 Hz, 2H), 2.43 (s, 3H), 1.45 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H) ; 13C NMR (100 MHz, CDCl3): δ 169.7, 164.9, 164.0, 156.3, 153.7, 151.8, 151.7, 145.2, 145.1, 140.4, 139.0, 134.0, 133.9, 132.6, 130.0, 129.1, 128.4, 128.3, 127.9, 125.8, 125.6, 125.0, 124.9, 120.2, 119.3, 103.6, 90.3, 87.9, 87.8, 69.1, 68.6, 67.0, 37.9, 34.6, 25.2, 21.7, 13.4, 8.4 ; HRMS (ESI-TOF): C36H35FIN5NaO8S [M + Na]+ 計算値: 866.1133; 実測値: 866.1127。
[Example 9: Synthesis of (II-4)-(III-1(m=2, n=1))-(I)]
<1. TsO-(III-1(m=2, n=1))-(I)>
Trifluoroacetic acid (540 μL) was added to a solution of tert-butyl 3-(2-(tosyloxy)ethoxy)propanoate (243.0 mg, 0.706 mmol) in CH 2 Cl 2 (7.0 mL) at room temperature. The reaction mixture was stirred at room temperature for 2.5 hours and then concentrated under reduced pressure to obtain crude 3-(2-(tosyloxy)ethoxy)propionic acid. To this carboxylic acid crude product, H-(I) synthesized in Synthesis Example 1 (334.0 mg, 0.583 mmol), N,N-dimethylformamide (5.8 mL), i Pr 2 EtN (203 μL, 1.17 mmol) , and 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxidehexafluorophosphate (HATU) (332.2 mg, 0.874 mmol) were added. and stirred at room temperature for 23 hours. The reaction mixture was diluted with EtOAc (30 mL), washed sequentially with saturated aqueous NaHCO ( 30 mL), aqueous citric acid (10 wt%, 30 mL), and saturated brine (30 mL), and diluted with MgSO . After drying, it was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/EtOAc = 1:3) to obtain TsO-(III-1(m=2, n=1))-(I) having the following structure as a yellow solid. (424.8 mg, 86%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.23 (s, 1H), 8.36 (s, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.56 (dd, J = 7.6, 1.6 Hz 1H) , 7.60 (t, J = 2.1 Hz, 1H), 7.50 (dd, J = 9.6, 1.8 Hz 1H), 7.47-7.35 (m, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.08 (d , J = 8.5 Hz, 1H), 6.65 (t, J = 8.2 Hz, 1H),4.25-4.05 (m, 2H), 3.85-3.65 (m, 4H), 3.18 (s, 3H), 2.70 (tt, J = 6.9, 3.6 Hz, 1H), 2.62 (t, J = 5.3 Hz, 2H), 2.43 (s, 3H), 1.45 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m , 2H) ; 13 C NMR (100 MHz, CDCl 3 ): δ 169.7, 164.9, 164.0, 156.3, 153.7, 151.8, 151.7, 145.2, 145.1, 140.4, 139.0, 134.0, 133.9, 13 2.6, 130.0, 129.1, 128.4, 128.3, 127.9, 125.8, 125.6, 125.0, 124.9, 120.2, 119.3, 103.6, 90.3, 87.9, 87.8, 69.1, 68.6, 67.0, 37.9, 34.6, 25.2, 21.7 , 13.4, 8.4 ; HRMS (ESI-TOF): C 36 H 35 FIN 5 NaO 8 S [M + Na] + calculated: 866.1133; found: 866.1127.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
<2.(II-4)-(III-1(m=2, n=1))-(I)>
 TsO-(III-1(m=2, n=1))-(I) (40.2 mg, 0.0476 mmol)、実施例8と同様の方法で得られた(II-4)-H (27.7 mg, 0.0948 mmol)、iPr2EtN (16.5 μL, 0.0948 mmol)、及びモレキュラーシーブ4A (47.2 mg)をN,N-ジメチルアセトアミド(474 μL)中に懸濁させた。反応混合物を80 ℃で25時間加熱した後、室温に冷却し、減圧下で濃縮した。残渣をアミン修飾シリカのパッド(CHCl3/MeOH = 9:1)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-4)-(III-1(m=2, n=1))-(I)を黄色固体として得た(18.0 mg, 39%)。1H NMR (600 MHz, CDCl3): δ 11.35 (br s, 1H), 11.29 (s, 1H), 8.92 (br s, 1H), 8.25 (s, 1H), 7.82 (br s, 1H), 7.48 (dd, J = 9.6, 1.4 Hz 1H), 7.41 (d, J = 7.9 Hz, 2H), 7.32 (t, J = 8.1 Hz, 1H), 7.10 (s, 1H), 6.99 (d, J = 7.2 Hz, 1H), 6.65 (t, J = 8.3 Hz, 1H),3.91 (t, J = 7.0 Hz, 2H), 3.80 (t, J = 5.5 Hz, 2H), 3.75-3.55 (m, 4H), 3.18 (s, 3H), 2.75-2.60 (m, 7H), 2.55-2.40 (m, 2H), 1.90-1.75 (m, 2H), 1.70-1.55 (m, 4H), 1.42 (s, 3H), 1.20-0.90 (m, 2H), 0.90-0.60 (m, 2H) ; 13C NMR (150 MHz, CDCl3): δ 170.2, 165.0, 164.0, 156.0, 155.5, 154.3, 152.0, 151.7, 150.81, 150.79, 145.0, 140.5, 139.2, 134.1, 134.0, 129.1, 128.4, 128.3, 125.9, 125.8, 125.1, 124.6, 120.7, 119.4, 103.7, 103.0, 100.9, 90.1, 88.10, 88.07, 67.1, 58.5, 51.7, 48.9, 39.6, 38.1, 34.8, 34.3, 25.4, 13.5, 8.5; HRMS (ESI-TOF): C43H46ClFIN10O5 [M + H]+計算値: 963.2370; 実測値: 963.2375。
<2. (II-4)-(III-1(m=2, n=1))-(I)>
TsO-(III-1(m=2, n=1))-(I) (40.2 mg, 0.0476 mmol), (II-4)-H (27.7 mg, 0.0948 mmol), i Pr 2 EtN (16.5 μL, 0.0948 mmol), and molecular sieve 4A (47.2 mg) were suspended in N,N-dimethylacetamide (474 μL). The reaction mixture was heated at 80° C. for 25 hours, then cooled to room temperature and concentrated under reduced pressure. The residue was passed through a pad of amine-modified silica (CHCl 3 /MeOH = 9:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, CHCl 3 /MeOH = 9:1) to give (II-4)-(III-1(m=2, n=1))-( I) was obtained as a yellow solid (18.0 mg, 39%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.35 (br s, 1H), 11.29 (s, 1H), 8.92 (br s, 1H), 8.25 (s, 1H), 7.82 (br s, 1H), 7.48 (dd, J = 9.6, 1.4 Hz 1H), 7.41 (d, J = 7.9 Hz, 2H), 7.32 (t, J = 8.1 Hz, 1H), 7.10 (s, 1H), 6.99 (d, J = 7.2 Hz, 1H), 6.65 (t, J = 8.3 Hz, 1H),3.91 (t, J = 7.0 Hz, 2H), 3.80 (t, J = 5.5 Hz, 2H), 3.75-3.55 (m, 4H) , 3.18 (s, 3H), 2.75-2.60 (m, 7H), 2.55-2.40 (m, 2H), 1.90-1.75 (m, 2H), 1.70-1.55 (m, 4H), 1.42 (s, 3H) , 1.20-0.90 (m, 2H), 0.90-0.60 (m, 2H); 13 C NMR (150 MHz, CDCl 3 ): δ 170.2, 165.0, 164.0, 156.0, 155.5, 154.3, 152.0, 151.7, 150.81 , 150.79 , 145.0, 140.5, 139.2, 134.1, 134.0, 129.1, 128.4, 128.3, 125.9, 125.8, 125.1, 124.6, 120.7, 119.4, 103.7, 103.0, 100.9, 90.1, 88.10, 88.07, 67.1, 58.5, 51.7, 48.9, 39.6 , 38.1, 34.8, 34.3, 25.4, 13.5, 8.5; HRMS (ESI-TOF): C 43 H 46 ClFIN 10 O 5 [M + H] + calculated: 963.2370; found: 963.2375.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[実施例10:(II-4)-(III-1(m=2, n=2))-(I)の合成]
<1.TsO-(III-1(m=2, n=2))-(I)>
 tert-ブチル3-{2-[2-(トシルオキシ)エトキシ]エトキシ}プロパノアート(221.4 mg, 0.654 mmol)のCH2Cl2(6.5 mL)溶液にトリフルオロ酢酸(500 μL) を室温で添加した。反応混合物を室温で2時間撹拌した後、減圧下で濃縮し、3-{2-[2-(トシルオキシ)エトキシ]エトキシ}プロピオン酸の粗生成物を得た。このカルボン酸粗生成物(54.3 mg, 0.164 mmol)に対し、合成例1で合成したH-(I) (78.0 mg, 0.136 mmol)、N,N-ジメチルホルムアミド(1.36 mL)、iPr2EtN (48.6 μL, 0.272 mmol)、及びHATU (77.6 mg, 0.204 mmol)を添加し、室温で19時間撹拌した。反応混合物をCH2Cl2 (15 mL)で希釈した後、飽和NaHCO3水(15 mL)及び飽和食塩水(15 mL)で順次洗浄し、MgSO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 1:4)で精製し、下記構造を有するTsO-(III-1(m=2, n=2))-(I)を黄色固体として得た(71.3 mg,58%)。1H NMR (400 MHz, CDCl3): δ 11.28 (s, 1H), 8.61 (s, 1H), 7.90-7.70 (m, 3H), 7.51 (d, J = 9.6 Hz, 2H), 7.44(d, J = 8.2 Hz, 1H), 7.40-7.28 (m, 4H), 7.01 (d, J = 7.8 Hz 1H), 6.69 (t, J = 8.5 Hz, 1H), 4.15 (t, J = 4.6 Hz, 1H), 3.75-3.65 (m, 2H), 3.65 (s, 4H), 3.19 (s, 3H), 2.80 (s, 1H), 2.72 (tt, J = 6.6, 3.6 Hz, 1H), 2.63 (t, J = 5.5 Hz, 2H), 2.44 (s, 3H), 1.90-1.60 (m, 2H), 1.41 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H) ; 13C NMR (100 MHz, CDCl3): δ 170.1, 165.0, 164.0, 156.4, 153.9, 152.0, 151.7, 145.1, 145.0, 140.4, 139.2, 134.1, 134.0, 133.0, 130.0, 129.2, 128.4, 128.3, 128.0, 125.9, 125.7, 125.2, 124.6, 120.4, 119.2, 103.7, 90.1, 88.1, 88.0, 70.6, 70.3, 69.3, 68.9, 67.0, 38.0, 34.7, 25.3, 21.8, 13.5, 8.5 ; HRMS (ESI-TOF): C38H40FIN5O9S [M + H]+ 計算値: 888.1575; 実測値: 888.1596。
[Example 10: Synthesis of (II-4)-(III-1(m=2, n=2))-(I)]
<1. TsO-(III-1(m=2, n=2))-(I)>
Trifluoroacetic acid (500 μL) was added to a solution of tert-butyl 3-{2-[2-(tosyloxy)ethoxy]ethoxy}propanoate (221.4 mg, 0.654 mmol) in CH 2 Cl 2 (6.5 mL) at room temperature. The reaction mixture was stirred at room temperature for 2 hours and then concentrated under reduced pressure to obtain a crude product of 3-{2-[2-(tosyloxy)ethoxy]ethoxy}propionic acid. To this carboxylic acid crude product (54.3 mg, 0.164 mmol), H-(I) synthesized in Synthesis Example 1 (78.0 mg, 0.136 mmol), N,N-dimethylformamide (1.36 mL), i Pr 2 EtN (48.6 μL, 0.272 mmol) and HATU (77.6 mg, 0.204 mmol) were added, and the mixture was stirred at room temperature for 19 hours. The reaction mixture was diluted with CH 2 Cl 2 (15 mL), washed successively with saturated aqueous NaHCO 3 (15 mL) and saturated brine (15 mL), dried over MgSO 4 and filtered, and the filtrate was evaporated under reduced pressure. Concentrated. The residue was purified by column chromatography (silica, hexane/EtOAc = 1:4) to obtain TsO-(III-1(m=2, n=2))-(I) having the following structure as a yellow solid. (71.3 mg,58%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.28 (s, 1H), 8.61 (s, 1H), 7.90-7.70 (m, 3H), 7.51 (d, J = 9.6 Hz, 2H), 7.44(d , J = 8.2 Hz, 1H), 7.40-7.28 (m, 4H), 7.01 (d, J = 7.8 Hz 1H), 6.69 (t, J = 8.5 Hz, 1H), 4.15 (t, J = 4.6 Hz, 1H), 3.75-3.65 (m, 2H), 3.65 (s, 4H), 3.19 (s, 3H), 2.80 (s, 1H), 2.72 (tt, J = 6.6, 3.6 Hz, 1H), 2.63 (t , J = 5.5 Hz, 2H), 2.44 (s, 3H), 1.90-1.60 (m, 2H), 1.41 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H); 13C NMR (100 MHz, CDCl 3 ): δ 170.1, 165.0, 164.0, 156.4, 153.9, 152.0, 151.7, 145.1, 145.0, 140.4, 139.2, 134.1, 134.0, 133.0, 13 0.0, 129.2, 128.4, 128.3, 128.0, 125.9, 125.7, 125.2, 124.6, 120.4, 119.2, 103.7, 90.1, 88.1, 88.0, 70.6, 70.3, 69.3, 68.9, 67.0, 38.0, 34.7, 25.3, 21.8, 13.5, 8.5; HRMS (ESI-TOF): C 38 H 40 FIN 5 O 9 S [M + H] + Calculated: 888.1575; Actual: 888.1596.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
<2.(II-4)-(III-1(m=2, n=2))-(I)>
 TsO-(III-1(m=2, n=2))-(I) (25.4 mg, 0.0286 mmol)、実施例8と同様の方法で得られた(II-4)-H (16.7 mg, 0.0572 mmol)、及びiPr2EtN (10.0 μL, 0.0572 mmol)をN,N-ジメチルアセトアミド(286 μL)中に懸濁させた。反応混合物を室温で3時間、60 ℃で28時間加熱、さらに80 ℃で17時間加熱した後、室温に冷却した。次に、反応混合物をシリカのパッド[MeOH (Et3Nを1%含有)]に通過させ、溶離液を減圧下で濃縮した。残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、CHCl3/MeOH = 9:1、2回目:シリカ、CHCl3/MeOH = 19:1)で精製し、下記構造を有する(II-4)-(III-1(m=2, n=2))-(I)を黄色固体として得た(4.9 mg, 17%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 10.30 (br s, 1H), 8.99 (br s, 1H), 8.26 (s, 1H), 7.86 (s, 1H), 7.50 (dd, J = 9.6, 1.8 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.42-7.34 (m, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.07 (s, 1H), 7.01 (d, J = 6.9 Hz, 1H), 6.69 (t, J = 8.5 Hz, 1H), 3.93 (t, J = 7.1 Hz, 2H), 3.82 (t, J = 5.5 Hz, 2H), 3.75-3.60 (m, 8H), 3.19 (s, 3H), 2.72 (tt, J = 7.1, 3.7 Hz, 1H), 2.64 (t, J = 5.0 Hz, 7H), 2.47 (br s, 2H), 1.87 (t, J= 7.1 Hz, 2H), 1.84-1.65 (m, 4H), 1.43 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H); HRMS (ESI-TOF): C45H50ClFIN10O6[M + H]+計算値: 1007.2632; 実測値: 1007.2659。
<2. (II-4)-(III-1(m=2, n=2))-(I)>
TsO-(III-1(m=2, n=2))-(I) (25.4 mg, 0.0286 mmol), (II-4)-H (16.7 mg, 0.0572 mmol), and i Pr 2 EtN (10.0 μL, 0.0572 mmol) were suspended in N,N-dimethylacetamide (286 μL). The reaction mixture was heated at room temperature for 3 hours, at 60° C. for 28 hours, and at 80° C. for 17 hours, then cooled to room temperature. The reaction mixture was then passed through a pad of silica [MeOH (containing 1% Et 3 N)] and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography twice (first time: silica, CHCl 3 /MeOH = 9:1, second time: silica, CHCl 3 /MeOH = 19:1) to obtain (II) having the following structure. -4)-(III-1(m=2, n=2))-(I) was obtained as a yellow solid (4.9 mg, 17%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 10.30 (br s, 1H), 8.99 (br s, 1H), 8.26 (s, 1H), 7.86 (s, 1H), 7.50 (dd, J = 9.6, 1.8 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.42-7.34 (m, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.07 (s, 1H), 7.01 (d, J = 6.9 Hz, 1H), 6.69 (t, J = 8.5 Hz, 1H), 3.93 (t, J = 7.1 Hz, 2H), 3.82 (t, J = 5.5 Hz, 2H) , 3.75-3.60 (m, 8H), 3.19 (s, 3H), 2.72 (tt, J = 7.1, 3.7 Hz, 1H), 2.64 (t, J = 5.0 Hz, 7H), 2.47 (br s, 2H) HRMS (ESI -TOF): C 45 H 50 ClFIN 10 O 6 [M + H] + calculated: 1007.2632; found: 1007.2659.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
[実施例11:(II-4)-(III-1(m=1, n=2))-(I)の合成]
<1.TsO-(III-1(m=1, n=2))-(I)>
 tert-ブチル2-{2-[2-(トシルオキシ)エトキシ]エトキシ}アセタート(274.8 mg, 0.734 mmol)のCH2Cl2(7.3 mL)溶液にトリフルオロ酢酸(562 μL)を室温で添加した。反応混合物を室温で1時間撹拌した後、減圧下で濃縮し、2-{2-[2-(トシルオキシ)エトキシ]エトキシ}酢酸の粗生成物を得た。このカルボン酸粗生成物(70.4 mg, 0.221 mmol)に対し、合成例1で合成したH-(I) (105.7 mg, 0.184 mmol)、N,N-ジメチルホルムアミド(1.84 mL)、iPr2EtN (64.2 μL, 0.369 mmol)、及びHATU (105.1 mg, 0.276 mmol) を添加し、室温で5時間撹拌した。反応混合物をEtOAc (20 mL) で希釈した後、飽和NaHCO3水(20 mL)及び飽和食塩水(20 mL)で順次洗浄し、MgSO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 1:2)で精製し、下記構造を有するTsO-(III-1(m=1, n=2))-(I)を黄色固体として得た(159.3 mg,99%)。1H NMR (400 MHz, CDCl3): δ 11.26 (s, 1H), 8.67 (s, 1H), 7.76 (d, J= 8.7 Hz, 2H), 7.66 (t, J = 1.8 Hz, 1H), 7.59 (dd, J = 8.0, 1.1 Hz, 1H), 7.53 (dd, J = 9.6, 1.8 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.06 (dd, J = 7.8, 1.4 Hz, 1H), 6.68 (t, J = 8.3 Hz, 1H), 4.20 (t, J = 4.3 Hz, 2H), 4.07 (s, 2H), 3.80-3.60 (m, 6H), 3.19 (s, 3H), 2.72 (tt, J= 7.1, 3.6 Hz, 1H), 2.43 (s, 3H), 1.42 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H) ; 13C NMR (100 MHz, CDCl3): δ 168.1, 164.9, 164.0, 156.4, 153.8, 151.9, 151.6, 145.1, 145.0, 140.4, 138.1, 134.02, 133.98, 132.9, 130.0, 129.4, 128.4, 128.3, 127.9, 125.9, 125.7, 125.1, 125.0, 120.3, 119.3, 103.7, 90.2, 88.03, 87.95, 71.1, 70.5, 70.4, 69.0, 68.9, 34.7, 25.3, 21.7, 13.5, 8.4 ; HRMS (ESI-TOF): C37H37FIN5NaO9S [M + Na]+計算値: 896.1238; 実測値: 896.1210。
[Example 11: Synthesis of (II-4)-(III-1(m=1, n=2))-(I)]
<1. TsO-(III-1(m=1, n=2))-(I)>
Trifluoroacetic acid (562 μL) was added to a solution of tert-butyl 2-{2-[2-(tosyloxy)ethoxy]ethoxy}acetate (274.8 mg, 0.734 mmol) in CH 2 Cl 2 (7.3 mL) at room temperature. The reaction mixture was stirred at room temperature for 1 hour and then concentrated under reduced pressure to obtain a crude product of 2-{2-[2-(tosyloxy)ethoxy]ethoxy}acetic acid. To this carboxylic acid crude product (70.4 mg, 0.221 mmol), H-(I) synthesized in Synthesis Example 1 (105.7 mg, 0.184 mmol), N,N-dimethylformamide (1.84 mL), i Pr 2 EtN (64.2 μL, 0.369 mmol) and HATU (105.1 mg, 0.276 mmol) were added, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was diluted with EtOAc (20 mL), washed successively with saturated aqueous NaHCO 3 (20 mL) and saturated brine (20 mL), dried over MgSO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/EtOAc = 1:2) to obtain TsO-(III-1(m=1, n=2))-(I) having the following structure as a yellow solid. (159.3 mg,99%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.26 (s, 1H), 8.67 (s, 1H), 7.76 (d, J= 8.7 Hz, 2H), 7.66 (t, J = 1.8 Hz, 1H), 7.59 (dd, J = 8.0, 1.1 Hz, 1H), 7.53 (dd, J = 9.6, 1.8 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H ), 7.32 (d, J = 8.2 Hz, 2H), 7.06 (dd, J = 7.8, 1.4 Hz, 1H), 6.68 (t, J = 8.3 Hz, 1H), 4.20 (t, J = 4.3 Hz, 2H ), 4.07 (s, 2H), 3.80-3.60 (m, 6H), 3.19 (s, 3H), 2.72 (tt, J= 7.1, 3.6 Hz, 1H), 2.43 (s, 3H), 1.42 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 168.1, 164.9, 164.0, 156.4, 153.8, 151.9, 151.6, 145.1, 145 .0 , 140.4, 138.1, 134.02, 133.98, 132.9, 130.0, 129.4, 128.4, 128.3, 127.9, 125.9, 125.7, 125.1, 125.0, 120.3, 119.3, 103.7 , 90.2, 88.03, 87.95, 71.1, 70.5, 70.4, 69.0, 68.9 , 34.7, 25.3, 21.7, 13.5, 8.4; HRMS (ESI-TOF): C 37 H 37 FIN 5 NaO 9 S [M + Na] + calculated: 896.1238; found: 896.1210.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
<2.(II-4)-(III-1(m=1, n=2))-(I)>
 TsO-(III-1(m=1, n=2))-(I) (58.2 mg, 0.0654 mmol)、実施例8と同様の方法で得られた(II-4)-H (38.2 mg, 0.131 mmol)、iPr2EtN (22.8 μL, 0.131 mmol)、及びモレキュラーシーブ4A (65.4 mg)をN,N-ジメチルアセトアミド(654 μL)中に懸濁させた。反応混合物を80 ℃で24時間加熱した後、室温に冷却し、アミン修飾シリカのパッド(CHCl3/MeOH = 3:2)に通過させた。溶離液を減圧下で濃縮後、残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、CHCl3/MeOH = 4:1、2回目:シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-4)-(III-1(m=1, n=2))-(I)を黄色固体として得た(18.8 mg, 28%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 11.03 (br s, 1H), 8.84 (s, 1H), 8.27 (s, 1H), 7.80 (t, J= 1.8 Hz, 1H), 7.60-7.40 (m, 3H), 7.37(t, J = 8.0 Hz, 1H), 7.09 (s, 1H), 7.04 (dd, J = 8.0, 1.1 Hz 1H), 6.68 (t, J = 8.3 Hz, 1H), 4.11 (s, 2H), 3.92 (t, J = 7.1 Hz, 2H), 3.90-3.75 (m, 2H), 3.74-3.55 (m, 6H), 3.19 (s, 3H), 2.72 (tt, J = 7.1, 3.6 Hz, 1H), 2.69-2.50 (m, 2H), 2.43 (br s, 2H), 2.00-1.80 (m, 4H), 1.75-1.55 (m, 4H), 1.42 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H) ; 13C NMR (100 MHz, CDCl3): δ 168.4, 165.0, 164.0, 160.9, 156.5, 155.5, 153.9, 152.1, 151.7, 150.94, 150.85, 145.0, 140.5, 138.3, 134.10, 134.06, 129.3, 128.4, 128.3, 126.0, 125.8, 125.2, 125.1, 120.7, 119.4, 119.2, 103.8, 103.1, 100.9, 90.1, 88.2, 88.1, 71.3, 70.7, 70.1, 69.3, 58.6, 58.0, 53.6, 51.7, 48.9, 43.7, 39.8, 37.5, 36.0, 35.2, 34.8, 34.7, 33.8, 25.4, 18.6, 13.6, 8.5; HRMS (ESI-TOF): C44H48ClFIN10O6[M + H]+ 計算値: 993.2476; 実測値993.2511。
<2. (II-4)-(III-1(m=1, n=2))-(I)>
TsO-(III-1(m=1, n=2))-(I) (58.2 mg, 0.0654 mmol), (II-4)-H (38.2 mg, 0.131 mmol), i Pr 2 EtN (22.8 μL, 0.131 mmol), and molecular sieve 4A (65.4 mg) were suspended in N,N-dimethylacetamide (654 μL). The reaction mixture was heated at 80° C. for 24 hours, then cooled to room temperature and passed through a pad of amine-modified silica (CHCl 3 /MeOH = 3:2). After concentrating the eluent under reduced pressure, the residue was subjected to preparative thin layer chromatography twice (first time: silica, CHCl 3 /MeOH = 4:1, second time: silica, CHCl 3 /MeOH = 9:1). Purification was performed to obtain (II-4)-(III-1(m=1, n=2))-(I) having the following structure as a yellow solid (18.8 mg, 28%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 11.03 (br s, 1H), 8.84 (s, 1H), 8.27 (s, 1H), 7.80 (t, J= 1.8 Hz, 1H), 7.60-7.40 (m, 3H), 7.37(t, J = 8.0 Hz, 1H), 7.09 (s, 1H), 7.04 (dd, J = 8.0, 1.1 Hz 1H), 6.68 (t, J = 8.3 Hz, 1H), 4.11 (s, 2H), 3.92 (t, J = 7.1 Hz, 2H), 3.90-3.75 (m, 2H), 3.74-3.55 (m, 6H), 3.19 (s, 3H), 2.72 (tt, J = 7.1, 3.6 Hz, 1H), 2.69-2.50 (m, 2H), 2.43 (br s, 2H), 2.00-1.80 (m, 4H), 1.75-1.55 (m, 4H), 1.42 (s, 3H), 1.20-0.90 (m, 2H), 0.85-0.60 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 168.4, 165.0, 164.0, 160.9, 156.5, 155.5, 153.9, 152.1, 151.7, 150.94, 150.85, 145.0, 140.5, 138.3, 134.10, 134.06, 129.3, 128.4, 128.3, 126.0, 125.8, 125.2, 125.1, 120.7 , 119.4, 119.2, 103.8, 103.1, 100.9, 90.1, 88.2, 88.1, 71.3, 70.7, 70.1, 69.3, 58.6, 58.0, 53.6, 51.7, 48.9, 43.7, 39.8, 37.5, 36.0, 35.2, 34.8, 34.7, 33.8, 25.4, 18.6, 13.6, 8 .5; HRMS (ESI-TOF): C 44 H 48 ClFIN 10 O 6 [M + H] + calculated: 993.2476; found 993.2511.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
[実施例12:(II-1)-(III-2(q=1))-(I)の合成]
<1.Boc-NH-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I)>
 下記構造を有するBoc-NH-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I)を合成した。
[Example 12: Synthesis of (II-1)-(III-2(q=1))-(I)]
<1. Boc-NH-CH 2 -(CH 2 CH 2 O) 3 -(CH 2 ) 3 -NH-CO-CH 2 -O-CH 2 -CO-(I)>
Boc-NH-CH 2 -(CH 2 CH 2 O) 3 -(CH 2 ) 3 -NH-CO-CH 2 -O-CH 2 -CO-(I) having the following structure was synthesized.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 合成例1で合成したH-(I)(47.1 mg, 0.0821 mmol)、Boc-NH-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-OH (39.4 mg, 0.0903 mmol, Autar, R.等, ChemBioChem 2003, 4, 1317-1325に記載の方法により合成)、及びN-メチルモルホリン(9.0 μL, 0.082 mmol)のTHF (1.64 mL)懸濁液に対し、室温でDMT-MM (30.0 mg, 0.107 mmol)を添加した。2時間後、反応混合物をEtOAc (5 mL)で希釈し、続いてクエン酸水溶液(10 wt%, 5 mL)、飽和NaHCO3水溶液(5 mL)、及び飽和食塩水(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、EtOAc/MeOH = 19:1)で精製し、Boc-NH-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I)を白色固体として得た(79.1 mg, 97%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 9.31 (s, 1H), 7.81 (s, 1H), 7.66-7.57 (m, 1H), 7.56-7.20 (m, 4H), 7.11-7.00 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 5.06-4.90 (m, 1H), 4.17 (s, 2H), 4.13 (s, 2H), 3.72-3.35 (m, 14H), 3.27-3.10 (m, 5H), 2.73 (tt, J = 6.4, 3.4 Hz, 1H), 1.90-1.60 (m, 4H), 1.55-1.33 (m, 12H), 1.20-1.03 (m, 2H), 0.85-0.70 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 168.7, 167.5, 165.0, 163.9, 156.2, 156.0, 154.3, 152.0, 151.6, 145.0, 140.4, 138.4, 134.1, 129.3, 128.33, 128.25, 125.9, 125.8, 125.2, 125.0, 120.7, 119.6, 103.7, 90.0, 88.2, 88.1, 79.1, 71.9, 71.5, 70.5, 70.3, 70.2, 70.0, 69.5, 38.4, 38.2, 34.7, 29.8, 28.8, 28.5, 25.3, 13.5, 8.5; HRMS (ESI-TOF): C43H55FIN7NaO11[M + Na]+ 計算値: 1014.2886; 実測値: 1014.2860。 H-(I) (47.1 mg, 0.0821 mmol) synthesized in Synthesis Example 1, Boc-NH-CH 2 -(CH 2 CH 2 O) 3 -(CH 2 ) 3 -NH-CO-CH 2 -O- CH 2 -CO-OH (39.4 mg, 0.0903 mmol, synthesized by the method described in Autar, R. et al., ChemBioChem 2003, 4, 1317-1325) and N-methylmorpholine (9.0 μL, 0.082 mmol) in THF ( DMT-MM (30.0 mg, 0.107 mmol) was added to the 1.64 mL) suspension at room temperature. After 2 h, the reaction mixture was diluted with EtOAc (5 mL) and then washed sequentially with aqueous citric acid (10 wt%, 5 mL), saturated aqueous NaHCO (5 mL), and saturated brine (5 mL). did. The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, EtOAc/MeOH = 19:1) and Boc-NH- CH2- ( CH2CH2O ) 3- ( CH2 ) 3 -NH-CO-CH2 - O -CH2 -CO-(I) was obtained as a white solid (79.1 mg, 97%). 1H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 9.31 (s, 1H), 7.81 (s, 1H), 7.66-7.57 (m, 1H), 7.56-7.20 (m, 4H) , 7.11-7.00 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 5.06-4.90 (m, 1H), 4.17 (s, 2H), 4.13 (s, 2H), 3.72-3.35 (m , 14H), 3.27-3.10 (m, 5H), 2.73 (tt, J = 6.4, 3.4 Hz, 1H), 1.90-1.60 (m, 4H), 1.55-1.33 (m, 12H), 1.20-1.03 (m , 2H), 0.85-0.70 (m, 2H); 13 C NMR (150 MHz, CDCl 3 ): δ 168.7, 167.5, 165.0, 163.9, 156.2, 156.0, 154.3, 152.0, 151.6, 145.0, 140.4 , 138.4, 134.1 , 129.3, 128.33, 128.25, 125.9, 125.8, 125.2, 125.0, 120.7, 119.6, 103.7, 90.0, 88.2, 88.1, 79.1, 71.9, 71.5, 70.5, 70.3, 70.2, 70.0, 69.5, 38.4, 38.2, 34.7, 29.8 , 28.8, 28.5, 25.3, 13.5, 8.5; HRMS (ESI-TOF): C 43 H 55 FIN 7 NaO 11 [M + Na] + calculated: 1014.2886; found: 1014.2860.
<2.NH2-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I) TFA塩>
 上記で得られたBoc-NH-(CH2)3-O-(CH2CH2O)2-(CH2)3-NH-CO-CH2-O-CH2-CO-(I) (20.3 mg, 0.0200 mmol)のCH2Cl2(400 μL)溶液に対し、0 ℃でトリフルオロ酢酸(30 μL, 0.40 mmol)を添加した。反応混合物を室温で4.5時間撹拌した後、トリフルオロ酢酸(90 μL, 1.2 mmol)を添加した。1時間後、反応混合物を減圧下で濃縮し、下記構造を有するNH2-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I) TFA塩を黄色固体として得た(20.1 mg, 98%)。1H NMR (400 MHz, CDCl3): δ 11.28 (s, 1H), 9.50 (s, 1H), 7.95-7.55 (m, 6H), 7.54-7.48 (m, 1H), 7.48-7.42 (m, 1H), 7.41-7.33 (m, 1H), 7.09-7.02 (m, 1H), 6.71 (t, J = 8.7 Hz, 1H), 4.19 (s, 2H), 4.11 (s, 2H), 3.74-3.30 (m, 14H), 3.21-3.08 (m, 5H), 2.76-2.67 (m, 1H), 1.95-1.85 (m, 2H), 1.81-1.70 (m, 2H), 1.39 (s, 3H), 1.15-1.06 (m, 2H), 0.83-0.75 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.2, 168.1, 164.9, 164.2, 161.2, 160.9, 156.4, 153.9, 152.1, 151.9, 145.2, 140.3, 138.5, 134.2, 134.1, 129.3, 128.3, 128.2, 126.0, 125.8, 125.3, 125.2, 121.0, 120.2, 103.7, 90.3, 88.3, 88.2, 71.5, 71.1, 70.8, 70.3, 69.7, 69.6, 69.5, 68.7, 67.7, 40.5, 36.5, 34.8, 29.83, 29.78, 29.1, 26.2, 25.3, 13.5, 8.5; HRMS (ESI-TOF): C38H48FIN7O9[M + H]+計算値: 892.2542; 実測値: 892.2525。
<2. NH 2 -CH 2 -(CH 2 CH 2 O) 3 -(CH 2 ) 3 -NH-CO-CH 2 -O-CH 2 -CO-(I) TFA salt>
Boc-NH-( CH2 ) 3 -O-( CH2CH2O )2-( CH2 ) 3 - NH -CO-CH2 - O-CH2 - CO-(I ) obtained above ( Trifluoroacetic acid (30 μL, 0.40 mmol) was added to a solution of 20.3 mg, 0.0200 mmol) in CH 2 Cl 2 (400 μL) at 0°C. After stirring the reaction mixture at room temperature for 4.5 hours, trifluoroacetic acid (90 μL, 1.2 mmol) was added. After 1 hour, the reaction mixture was concentrated under reduced pressure to give NH2 - CH2- ( CH2CH2O ) 3- ( CH2 ) 3 -NH-CO- CH2 -O- CH2- with the structure : The CO-(I) TFA salt was obtained as a yellow solid (20.1 mg, 98%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.28 (s, 1H), 9.50 (s, 1H), 7.95-7.55 (m, 6H), 7.54-7.48 (m, 1H), 7.48-7.42 (m, 1H), 7.41-7.33 (m, 1H), 7.09-7.02 (m, 1H), 6.71 (t, J = 8.7 Hz, 1H), 4.19 (s, 2H), 4.11 (s, 2H), 3.74-3.30 (m, 14H), 3.21-3.08 (m, 5H), 2.76-2.67 (m, 1H), 1.95-1.85 (m, 2H), 1.81-1.70 (m, 2H), 1.39 (s, 3H), 1.15 -1.06 (m, 2H), 0.83-0.75 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 170.2, 168.1, 164.9, 164.2, 161.2, 160.9, 156.4, 153.9, 152.1, 151.9, 145.2 , 140.3, 138.5, 134.2, 134.1, 129.3, 128.3, 128.2, 126.0, 125.8, 125.3, 125.2, 121.0, 120.2, 103.7, 90.3, 88.3, 88.2, 71. 5, 71.1, 70.8, 70.3, 69.7, 69.6, 69.5, 68.7 , 67.7, 40.5, 36.5, 34.8, 29.83, 29.78, 29.1, 26.2, 25.3, 13.5, 8.5; HRMS (ESI-TOF): C 38 H 48 FIN 7 O 9 [M + H] + Calculated value: 892.2542; Actual measurement Value: 892.2525.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
<3.(II-1)-CO-CH2-O-CH2-CO2H>
 アフレセルチブ (30 mg, 0.070 mmol)及びEt3N (11.6 μL, 0.0840 mmol)のCH2Cl2(600 μL)溶液に対し、0 ℃でジグリコール酸無水物(8.9 mg, 0.077 mmol)のCH2Cl2 (600 μL)溶液を添加した。2時間後、反応混合物を減圧下で濃縮した。残渣をカラムクロマトグラフィー[シリカ、CHCl3/MeOH = 4:1 (AcOHを1%含有)]で精製し、下記構造を有する(II-1)-CO-CH2-O-CH2-CO2Hを白色固体として得た(33 mg, 96%)。1H NMR (400 MHz, CD3OD): δ 7.59-7.52 (m, 2H), 7.40-6.97 (m, 3H), 6.96-6.84 (m, 1H), 4.50-4.36 (m, 1H), 4.13 (s, 2H), 4.04 (s, 2H), 3.74 (s, 3H), 3.56-3.38 (m, 2H), 3.03-2.80 (m, 2H); 13C NMR (100 MHz, CD3OD): δ 174.0, 172.8, 165.4, 163.0, 162.4, 142.24, 142.16, 139.0, 138.0, 136.7, 133.8, 131.13, 131.05, 130.1, 127.6, 126.2, 126.1, 117.0, 116.8, 114.4, 114.1, 111.8, 71.4, 69.4, 61.5, 53.0, 43.4, 38.7, 38.5; LRMS (ESI): m/z 581 ([M + K]+)。
<3. (II-1)-CO-CH 2 -O-CH 2 -CO 2 H>
Aflesertib (30 mg, 0.070 mmol) and Et 3 N (11.6 μL, 0.0840 mmol) in CH 2 Cl 2 (600 μL) at 0 °C with diglycolic anhydride (8.9 mg, 0.077 mmol) in CH 2 . A Cl 2 (600 μL) solution was added. After 2 hours, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography [silica, CHCl 3 /MeOH = 4:1 (containing 1% AcOH)] to obtain (II-1)-CO-CH 2 -O-CH 2 -CO 2 having the following structure. H was obtained as a white solid (33 mg, 96%). 1H NMR (400 MHz, CD 3 OD): δ 7.59-7.52 (m, 2H), 7.40-6.97 (m, 3H), 6.96-6.84 (m, 1H), 4.50-4.36 (m, 1H), 4.13 (s, 2H), 4.04 (s, 2H), 3.74 (s, 3H), 3.56-3.38 (m, 2H), 3.03-2.80 (m, 2H); 13 C NMR (100 MHz, CD 3 OD): δ 174.0, 172.8, 165.4, 163.0, 162.4, 142.24, 142.16, 139.0, 138.0, 136.7, 133.8, 131.13, 131.05, 130.1, 127.6, 126.2, 126 .1, 117.0, 116.8, 114.4, 114.1, 111.8, 71.4, 69.4, 61.5 , 53.0, 43.4, 38.7, 38.5; LRMS (ESI): m/z 581 ([M + K] + ).
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
<4.(II-1)-(III-2(q=1))-(I)>
 NH2-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I) TFA塩 (12.4 mg, 0.0123 mmol)、(II-1)-CO-CH2-O-CH2-CO2H (6.1 mg, 0.011 mmol)、及びEt3N (1.9 μL, 0.013 mmol)のMeOH (224 μL)溶液に対し、室温でDMT-MM (3.7 mg, 0.013 mmol)を添加した。1時間後、反応混合物をEtOAc (5 mL)で希釈し、続いてクエン酸水溶液(10 wt%, 5 mL)、飽和NaHCO3水溶液(5 mL)、及び飽和食塩水(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、EtOAc/MeOH = 4:1)で精製し、下記構造を有する(II-1)-(III-2(q=1))-(I)を白色固体として得た(6.5 mg, 41%)。1H NMR (400 MHz, CDCl3): δ 11.32 (s, 1H), 9.28 (s, 1H), 8.02-7.92 (m, 1H), 7.89-7.64 (m, 2H), 7.63-7.42 (m, 5H), 7.41-7.30 (m, 3H), 7.30-7.18 (m, 1H), 7.09-6.87 (m, 4H), 6.71 (t, J = 8.2 Hz, 1H), 4.33-3.89 (m, 9H), 3.76 (s, 3H), 3.64-3.44 (m, 13H), 3.43-3.21 (m, 4H), 3.21-3.06 (m, 5H), 2.76-2.64 (m, 2H), 1.93-1.63 (m, 4H), 1.37 (s, 3H), 1.16-1.03 (m, 2H), 0.82-0.72 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 171.3, 168.9, 168.7, 167.5, 164.9, 164.2, 164.0, 161.8, 161.0, 156.5, 154.0, 152.2, 151.8, 145.1, 140.4, 140.3, 140.2, 138.3, 137.6, 137.6, 137.3, 135.9, 134.21, 134.17, 132.3, 130.4, 130.3, 129.3, 128.7, 128.3, 128.1, 126.6, 126.0, 125.8, 125.32, 125.27, 125.15, 125.13, 121.1, 120.0, 116.3, 116.1, 114.0, 113.7, 110.7, 103.5, 90.0, 88.44, 88.37, 71.6, 71.3, 71.1, 70.9, 70.2, 70.1, 70.0, 69.9, 69.8, 69.7, 42.2, 38.5, 38.4, 37.9, 37.5, 34.8, 29.8, 29.2, 29.0, 25.4, 12.5, 8.5; HRMS (ESI-TOF): C60H66Cl2F2IN11NaO13S [M + Na]+ 計算値: 1438.2850; 実測値: 1438.2901。
<4. (II-1)-(III-2(q=1))-(I)>
NH2- CH2- ( CH2CH2O ) 3- ( CH2 )3- NH -CO - CH2 - O-CH2 - CO-(I) TFA salt (12.4 mg, 0.0123 mmol), (II DMT- _ _ _ MM (3.7 mg, 0.013 mmol) was added. After 1 h, the reaction mixture was diluted with EtOAc (5 mL) and then washed sequentially with aqueous citric acid (10 wt%, 5 mL), saturated aqueous NaHCO (5 mL), and saturated brine (5 mL). did. The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, EtOAc/MeOH = 4:1) to obtain (II-1)-(III-2(q=1))-(I) having the following structure as a white solid. (6.5 mg, 41%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.32 (s, 1H), 9.28 (s, 1H), 8.02-7.92 (m, 1H), 7.89-7.64 (m, 2H), 7.63-7.42 (m, 5H), 7.41-7.30 (m, 3H), 7.30-7.18 (m, 1H), 7.09-6.87 (m, 4H), 6.71 (t, J = 8.2 Hz, 1H), 4.33-3.89 (m, 9H) , 3.76 (s, 3H), 3.64-3.44 (m, 13H), 3.43-3.21 (m, 4H), 3.21-3.06 (m, 5H), 2.76-2.64 (m, 2H), 1.93-1.63 (m, 13C NMR (100 MHz , CDCl 3 ): δ 171.3, 168.9, 168.7, 167.5, 164.9, 164.2, 164.0, 161.8, 161.0, 156.5, 154.0, 152.2, 151.8, 145.1, 140.4, 140.3, 140.2, 138.3, 137.6, 137.6, 137.3, 135.9, 13 4.21, 134.17, 132.3, 130.4, 130.3, 129.3, 128.7, 128.3, 128.1, 126.6, 126.0, 125.8, 125.32, 125.27, 125.15, 125.13, 121.1, 120.0, 116.3, 116.1, 114.0, 113.7, 110.7, 103.5, 90.0, 88.44, 88.37, 71.6, 71.3, 71.1, 70.9, 70.2, 70.1, HRMS (ESI-TOF): C 60 H 66 Cl 2 F 2 IN 11 NaO 13 S [M + Na] + Calculated: 1438.2850; Actual: 1438.2901.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
[実施例13:(II-1)-(III-2(q=0))-(I)の合成]
<1.Br-(III-2(q=0))-(I)>
 実施例12と同様の方法で得られたNH2-CH2-(CH2CH2O)3-(CH2)3-NH-CO-CH2-O-CH2-CO-(I) TFA塩(59.5 mg, 0.0592 mmol)のCH2Cl2(5 mL)溶液を、飽和NaHCO3水溶液(5 mL)と飽和食塩水(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥し濾過した後、濾液を減圧下で濃縮し、脱TFA体(白色固体) (52.1 mg)を得た。これをCH2Cl2(1.18 mL)に溶解させ、そこに0 ℃でEt3N (16.4 μL, 0.118 mmol)と2-ブロモアセチルブロミド(5.7 μL, 0.065 mmol)を添加した。反応混合物を室温で40分間撹拌した後、2-ブロモアセチルブロミド(1.5 μL, 0.018 mmol)を添加した。40分後、2-ブロモアセチルブロミド(2.6 μL, 0.030 mmol)を添加した。40分後、反応混合物をCH2Cl(5 mL)で希釈し、続いてクエン酸水溶液(10 wt%, 5 mL)と飽和NaHCO3水溶液(5 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、EtOAc/MeOH = 19:1)で精製し、下記構造を有するBr-(III-2(q=0))-(I)を白色固体として得た(36.1 mg, 60%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 9.30 (s, 1H), 7.79 (s, 1H), 7.64-7.56 (m, 1H), 7.56-7.48 (m, 1H), 7.48-7.42 (m, 1H), 7.42-7.15 (m, 3H), 7.10-7.00 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 4.18 (s, 2H), 4.13 (s, 2H), 3.85 (s, 2H), 3.70-3.50 (m, 12H), 3.48-3.30 (m, 4H), 3.19 (s, 3H), 2.72 (tt, J = 6.9, 3.4 Hz, 1H), 1.88-1.69 (m, 4H), 1.42 (s, 3H), 1.17-1.05 (m, 2H), 0.84-0.73 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 168.8, 167.5, 166.1, 165.0, 164.0, 156.1, 154.4, 152.1, 151.7, 145.0, 140.5, 138.4, 134.1, 129.3, 128.33, 128.27, 126.0, 125.8, 125.2, 125.1, 120.9, 119.8, 119.7, 103.7, 90.1, 88.3, 88.2, 71.8, 71.5, 71.4, 70.5, 70.4, 70.3, 70.2, 70.1, 42.9, 38.9, 38.7, 37.9, 37.7, 34.8, 29.5, 29.1, 28.9, 28.83, 28.76, 28.6, 25.4, 25.2, 13.5, 13.4, 8.5; HRMS (ESI-TOF): C40H49BrFIN7O10[M + H]+ 計算値: 1012.1753; 実測値: 1012.1743。
[Example 13: Synthesis of (II-1)-(III-2(q=0))-(I)]
<1. Br-(III-2(q=0))-(I)>
NH2- CH2- ( CH2CH2O ) 3- ( CH2 ) 3 -NH-CO-CH2 - O - CH2 -CO-(I) TFA obtained in the same manner as Example 12 A solution of the salt (59.5 mg, 0.0592 mmol) in CH 2 Cl 2 (5 mL) was washed sequentially with saturated aqueous NaHCO 3 (5 mL) and saturated brine (5 mL). After drying the organic layer with Na 2 SO 4 and filtering, the filtrate was concentrated under reduced pressure to obtain a TFA-free product (white solid) (52.1 mg). This was dissolved in CH 2 Cl 2 (1.18 mL), and Et 3 N (16.4 μL, 0.118 mmol) and 2-bromoacetyl bromide (5.7 μL, 0.065 mmol) were added thereto at 0°C. After stirring the reaction mixture at room temperature for 40 minutes, 2-bromoacetyl bromide (1.5 μL, 0.018 mmol) was added. After 40 minutes, 2-bromoacetyl bromide (2.6 μL, 0.030 mmol) was added. After 40 minutes, the reaction mixture was diluted with CH 2 Cl 2 (5 mL) and then washed sequentially with aqueous citric acid (10 wt%, 5 mL) and saturated aqueous NaHCO 3 (5 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, EtOAc/MeOH = 19:1) to obtain Br-(III-2(q=0))-(I) having the following structure as a white solid (36.1 mg, 60%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 9.30 (s, 1H), 7.79 (s, 1H), 7.64-7.56 (m, 1H), 7.56-7.48 (m, 1H) , 7.48-7.42 (m, 1H), 7.42-7.15 (m, 3H), 7.10-7.00 (m, 1H), 6.70 (t, J = 8.2 Hz, 1H), 4.18 (s, 2H), 4.13 (s , 2H), 3.85 (s, 2H), 3.70-3.50 (m, 12H), 3.48-3.30 (m, 4H), 3.19 (s, 3H), 2.72 (tt, J = 6.9, 3.4 Hz, 1H), 1.88-1.69 (m, 4H), 1.42 (s, 3H), 1.17-1.05 (m, 2H), 0.84-0.73 (m, 2H); 13 C NMR (150 MHz, CDCl 3 ): δ 168.8, 167.5, 166.1, 165.0, 164.0, 156.1, 154.4, 152.1, 151.7, 145.0, 140.5, 138.4, 134.1, 129.3, 128.33, 128.27, 126.0, 125.8, 125.2, 125.1, 120.9, 119.8, 119.7, 103.7, 90.1, 88.3, 88.2, 71.8, 71.5, 71.4, 70.5, 70.4, 70.3, 70.2, 70.1, 42.9, 38.9, 38.7, 37.9, 37.7, 34.8, 29.5, 29.1, 28.9, 28.83, 28.76, 28.6, 25.4, 25.2, 13.5, 13.4, 8.5; HRMS (ESI-TOF): C 40 H 49 BrFIN 7 O 10 [M + H] + calculated: 1012.1753; found: 1012.1743.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
<2.(II-1)-(III-2(q=0))-(I)>
 アフレセルチブ (7.1 mg, 0.017 mmol)、nBu4NI (5.5 mg, 0.015 mmol)、及びiPr2EtN (5.2 μL, 0.030 mmol)のMeCN (300 μL)溶液に対し、室温で、上記で得られたBr-(III-2(q=0))-(I) (15.2 mg, 0.0150 mmol)を添加した。反応混合物を2時間攪拌した後、反応混合物を60 ℃に加熱し19時間攪拌した。その後、反応混合物をEtOAc (2 mL)で希釈し、続いて飽和NaHCO3水溶液(2 mL)と飽和食塩水(2 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、CHCl3/EtOAc/MeOH = 4:13:3)で精製し、下記構造を有する(II-1)-(III-2(q=0))-(I)を白色固体として得た(14.6 mg, 72%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 9.41 (s, 1H), 7.81-7.74 (m, 1H), 7.68-7.41 (m, 7H), 7.40-7.15 (m, 3H), 7.10-6.84 (m, 4H), 6.70 (t, J = 8.2 Hz, 1H), 4.36-4.22 (m, 1H), 4.14 (s, 2H), 4.10 (s, 2H), 3.76 (s, 3H), 3.65-3.43 (m, 12H), 3.43-3.34 (m, 2H), 3.33-3.22 (m, 2H), 3.22-3.10 (m, 5H), 3.16-2.93 (m, 1H), 2.73 (tt, J = 6.9, 3.7 Hz, 1H), 2.74-2.60 (m, 3H), 1.83-1.60 (m, 4H), 1.38 (s, 3H), 1.15-1.05 (m, 2H), 0.85-0.68 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 172.0, 171.2, 168.9, 167.6, 164.9, 164.2, 164.0, 161.7, 160.8, 156.5, 154.0, 152.1, 151.8, 145.2, 145.1, 145.0, 140.6, 140.5, 140.4, 138.4, 138.1, 137.2, 135.6, 134.20, 134.16, 132.5, 131.1, 130.2, 130.1, 129.3, 128.6, 128.2, 128.1, 126.3, 126.0, 125.8, 125.31, 125.26, 125.00, 124.98, 121.1, 120.0, 116.4, 116.1, 113.8, 113.6, 110.6, 103.6, 103.5, 90.0, 88.43, 88.35, 71.7, 71.4, 70.4, 70.2, 70.03, 69.95, 69.9, 69.8, 69.7, 69.2, 60.5, 52.5, 52.2, 51.8, 38.5, 38.4, 37.9, 37.5, 34.8, 29.3, 29.0, 25.4, 21.2, 12.5, 8.5; HRMS (ESI-TOF): C58H65Cl2F2IN11O11S [M + H]+ 計算値: 1358.2976, 実測値: 1358.3005。
<2. (II-1)-(III-2(q=0))-(I)>
Aflesertib (7.1 mg, 0.017 mmol), n Bu 4 NI (5.5 mg, 0.015 mmol), and i Pr 2 EtN (5.2 μL, 0.030 mmol) in MeCN (300 μL) at room temperature Br-(III-2(q=0))-(I) (15.2 mg, 0.0150 mmol) was added. After stirring the reaction mixture for 2 hours, the reaction mixture was heated to 60° C. and stirred for 19 hours. The reaction mixture was then diluted with EtOAc (2 mL) and subsequently washed with saturated aqueous NaHCO 3 (2 mL) and saturated brine (2 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, CHCl 3 /EtOAc/MeOH = 4:13:3) to give (II-1)-(III-2(q=0))-( I) was obtained as a white solid (14.6 mg, 72%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 9.41 (s, 1H), 7.81-7.74 (m, 1H), 7.68-7.41 (m, 7H), 7.40-7.15 (m, 3H), 7.10-6.84 (m, 4H), 6.70 (t, J = 8.2 Hz, 1H), 4.36-4.22 (m, 1H), 4.14 (s, 2H), 4.10 (s, 2H), 3.76 (s , 3H), 3.65-3.43 (m, 12H), 3.43-3.34 (m, 2H), 3.33-3.22 (m, 2H), 3.22-3.10 (m, 5H), 3.16-2.93 (m, 1H), 2.73 (tt, J = 6.9, 3.7 Hz, 1H), 2.74-2.60 (m, 3H), 1.83-1.60 (m, 4H), 1.38 (s, 3H), 1.15-1.05 (m, 2H), 0.85-0.68 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 172.0, 171.2, 168.9, 167.6, 164.9, 164.2, 164.0, 161.7, 160.8, 156.5, 154.0, 152.1, 151.8, 1 45.2, 145.1, 145.0, 140.6, 140.5, 140.4, 138.4, 138.1, 137.2, 135.6, 134.20, 134.16, 132.5, 131.1, 130.2, 130.1, 129.3, 128.6, 128.2, 128.1, 126.3, 126.0, 125.8, 125.31, 125.26, 125.00, 124.98, 121.1, 120.0, 116.4, 116.1, 113.8, 113.6, 110.6, 103.6, 103.5, 90.0, 88.43, 88.35, 71.7, 71.4, 70.4, 70.2, 70.03, 69.95, 69.9, 6 9.8, 69.7, 69.2, 60.5, 52.5, 52.2, 51.8, 38.5, 38.4, 37.9, 37.5, 34.8, 29.3, 29.0, 25.4, 21.2, 12.5, 8.5; HRMS (ESI-TOF): C 58 H 65 Cl 2 F 2 IN 11 O 11 S [M + H] + Calculated value : 1358.2976, Actual value: 1358.3005.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
[実施例14:(II-2)-(III-2(q=0))-(I)の合成]
 実施例13と同様の方法で得られたBr-(III-2(q=0))-(I) (12.1 mg, 0.0120 mmol)とMK2206二塩酸塩(6.3 mg, 0.013 mmol)のDMSO (60 μL)混合物に対し、室温でiPr2EtN (8.3 μL, 0.048 mmol)とNaI (3.6 mg, 0.024 mmol)を添加した。反応混合物を80 ℃で4時間加熱した後、室温に冷却した。反応混合物をシリカのパッドに通過させ(EtOAc/MeOH = 7:3)、溶離液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(アミン修飾シリカ、EtOAc/MeOH = 9:1)、分取薄層クロマトグラフィー[シリカ、EtOAc/MeOH = 9:1 (Et3Nを1%含有)]、続いてカラムクロマトグラフィー(アミン修飾シリカ、EtOAc/MeOH = 4:1)で精製し、下記構造を有する(II-2)-(III-2(q=0))-(I)を白色固体として得た(9.5 mg, 59%)。1H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 9.46 (s, 1H), 8.50 (s, 1H), 7.83-7.75 (m, 2H), 7.62-7.54 (m, 1H), 7.54-7.13 (m, 14H), 7.10-6.97 (m, 2H), 6.69 (t, J = 8.5 Hz, 1H), 4.15 (s, 2H), 4.11 (s, 2H), 3.68-3.46 (m, 12H), 3.46-3.33 (m, 2H), 3.33-3.23 (m, 2H), 3.19 (s, 3H), 2.91 (s, 2H), 2.72 (tt, J = 6.9, 3.7 Hz, 1H), 2.43-2.30 (m, 2H), 2.18-1.99 (m, 3H), 1.98-1.60 (m, 5H), 1.41 (s, 3H), 1.15-1.05 (m, 2H), 0.82-0.75 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 172.5, 168.9, 167.5, 165.0, 164.0, 160.2, 156.0, 154.4, 152.1, 151.7, 150.8, 148.1, 146.5, 145.0, 141.4, 140.4, 138.8, 138.5, 137.9, 136.2, 134.1, 132.8, 130.2, 129.7, 129.3, 128.7, 128.4, 128.3, 128.1, 126.0, 125.82, 125.78, 125.2, 125.0, 123.4, 121.0, 119.8, 116.5, 113.8, 103.7, 90.1, 88.22, 88.18, 71.8, 71.5, 70.5, 70.3, 70.2, 70.1, 70.0, 69.6, 63.0, 60.5, 47.0, 37.8, 37.1, 34.8, 33.2, 29.8, 29.6, 29.1, 25.4, 21.2, 15.0, 14.3, 13.5, 8.5; HRMS (ESI-TOF): C65H69FIN12O11[M + H]+計算値: 1339.4237, 実測値: 1339.4241。
[Example 14: Synthesis of (II-2)-(III-2(q=0))-(I)]
DMSO (60 i Pr 2 EtN (8.3 μL, 0.048 mmol) and NaI (3.6 mg, 0.024 mmol) were added to the μL) mixture at room temperature. The reaction mixture was heated at 80° C. for 4 hours and then cooled to room temperature. The reaction mixture was passed through a pad of silica (EtOAc/MeOH = 7:3) and the eluent was concentrated under reduced pressure. The residue was subjected to column chromatography (amine-modified silica, EtOAc/MeOH = 9:1), preparative thin layer chromatography [silica, EtOAc/MeOH = 9:1 (containing 1% Et 3 N)], followed by column chromatography. Purification by chromatography (amine-modified silica, EtOAc/MeOH = 4:1) gave (II-2)-(III-2(q=0))-(I) with the following structure as a white solid (9.5 mg, 59%). 1H NMR (400 MHz, CDCl 3 ): δ 11.29 (s, 1H), 9.46 (s, 1H), 8.50 (s, 1H), 7.83-7.75 (m, 2H), 7.62-7.54 (m, 1H) , 7.54-7.13 (m, 14H), 7.10-6.97 (m, 2H), 6.69 (t, J = 8.5 Hz, 1H), 4.15 (s, 2H), 4.11 (s, 2H), 3.68-3.46 (m , 12H), 3.46-3.33 (m, 2H), 3.33-3.23 (m, 2H), 3.19 (s, 3H), 2.91 (s, 2H), 2.72 (tt, J = 6.9, 3.7 Hz, 1H), 2.43-2.30 (m, 2H), 2.18-1.99 (m, 3H), 1.98-1.60 (m, 5H), 1.41 (s, 3H), 1.15-1.05 (m, 2H), 0.82-0.75 (m, 2H) ); 13 C NMR (150 MHz, CDCl 3 ): δ 172.5, 168.9, 167.5, 165.0, 164.0, 160.2, 156.0, 154.4, 152.1, 151.7, 150.8, 148.1, 146.5, 145.0, 141.4, 140.4, 138.8, 138.5, 137.9, 136.2, 134.1, 132.8, 130.2, 129.7, 129.3, 128.7, 128.4, 128.3, 128.1, 126.0, 125.82, 125.78, 125.2, 125.0, 123.4, 121.0, 119.8, 116.5, 113.8, 103.7, 90.1, 88.22, 88.18, 71.8, 71.5, 70.5, 70.3, 70.2, 70.1, 70.0, 69.6, 63.0, 60.5, 47.0, 37.8, 37.1, 34.8, 33.2, 29.8, 29.6, 29.1, 25.4, 21.2, 1 5.0, 14.3, 13.5, 8.5; HRMS ( ESI-TOF): C 65 H 69 FIN 12 O 11 [M + H] + Calculated: 1339.4237, Actual: 1339.4241.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
[実施例15:(II-1)-(III-3(r=1))-(I)の合成]
<1.Br-(III-3(r=1))-Br>
 シリルエノールエーテルの一般的合成法(Cazeau, P.等, Tetrahedron, 1987, 43, 2075-2088)に従い3,3’-(フラン-2,5-ジイル)ビス(3-メチルブタン-2-オン) (Uesaka, M.等, CommunicationsChemistry, 2018, 1, 23に記載の方法により合成)から調製した2,5-ビス{2-メチル-3-[(トリメチルシリル)オキシ]ブタ-3-エン-2-イル}フラン(2.00 g, 5.25 mmol)のCH2Cl2溶液(4.00 mL)に臭素のCH2Cl2溶液(1.90 M, 5.55 mL)を-40 ℃で添加した。20 分後、飽和NaHCO3水(16 mL)を加えて反応を停止し、有機層を分離した。水層をCH2Cl2(2×15 mL)で抽出し、統合した有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/CH2Cl2 = 3:2)で精製し、下記構造を有するBr-(III-3(r=1))-Brを白色固体として得た(1.45 g, 70%)。融点82 ℃; 1H NMR (400 MHz, CDCl3): δ 6.23 (s, 2H), 3.95 (s, 4H), 1.52 (s, 12H); 13C NMR (100 MHz, CDCl3): δ 201.7, 156.7, 107.7, 48.9, 31.7, 23.7; IR (ATR, neat): 3132, 2981, 2937, 1725, 1550, 1463, 1385, 1367, 1263, 1114, 1041, 1030, 804, 694, 652 cm-1; HRMS (ESI-TOF): C14H18Br2O3Na [M + Na]+ 計算値: 414.9515; 実測値: 414.9515; 元素分析(%): C14H18Br2O3 計算値: C, 42.67; H, 4.60; 実測値: C, 42.48; H, 4.53。
[Example 15: Synthesis of (II-1)-(III-3(r=1))-(I)]
<1. Br-(III-3(r=1))-Br>
3,3'-(furan-2,5-diyl)bis(3-methylbutan-2-one) according to the general synthesis method for silyl enol ethers (Cazeau, P. et al., Tetrahedron, 1987, 43, 2075-2088). (synthesized by the method described in Uesaka, M. et al., CommunicationsChemistry, 2018, 1, 23) To a solution of ylfuran (2.00 g, 5.25 mmol) in CH 2 Cl 2 (4.00 mL) was added a solution of bromine in CH 2 Cl 2 (1.90 M, 5.55 mL) at -40°C. After 20 minutes, the reaction was quenched by adding saturated aqueous NaHCO 3 (16 mL) and the organic layer was separated. The aqueous layer was extracted with CH 2 Cl 2 (2×15 mL), the combined organic layers were dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/CH 2 Cl 2 = 3:2) to obtain Br-(III-3(r=1))-Br having the following structure as a white solid (1.45 g , 70%). Melting point 82 °C; 1 H NMR (400 MHz, CDCl 3 ): δ 6.23 (s, 2H), 3.95 (s, 4H), 1.52 (s, 12H); 13 C NMR (100 MHz, CDCl 3 ): δ 201.7 , 156.7, 107.7, 48.9, 31.7, 23.7; IR (ATR, neat): 3132, 2981, 2937, 1725, 1550, 1463, 1385, 1367, 1263, 1114, 1041, 1030, 804, 6 94,652 cm -1 ; HRMS (ESI-TOF): C 14 H 18 Br 2 O 3 Na [M + Na] + Calculated value: 414.9515; Actual value: 414.9515; Elemental analysis (%): C14H18Br2O3 Calculated value: C, 42.67; H, 4.60 ; Actual values: C, 42.48; H, 4.53.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
<2.Br-(III-3(r=1))-(I)>
 合成例1で合成したH-(I) (17.2 mg, 0.0300 mmol)とBr-(III-3(r=1))-Br (35.5 mg, 0.0900 mmol) のN,N-ジメチルアセトアミド(0.60 mL)懸濁液に2,6-ルチジン(5.2 μL, 0.045 mmol)を室温で添加した。反応混合物を80 ℃で43時間加熱した後、室温に冷却した。次に、EtOAc (5 mL)で希釈し、飽和NaHCO3水(2 mL)と飽和食塩水(2 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 1:1)及び分取薄層クロマトグラフィー(シリカ、ヘキサン/EtOAc = 2:3)で精製し、下記構造を有するBr-(III-3(r=1))-(I)を白色固体として得た(15.1 mg, 57%)。1H NMR (400 MHz, CDCl3): δ 11.31(s, 1H), 7.51 (d, J = 9.2 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.68 (t, J = 8.5 Hz, 1H), 6.59 (d, J = 7.4 Hz, 1H), 6.52-6.41 (m, 2H), 6.30-6.16 (m, 2H), 4.66 (br s, 1H), 3.94 (s, 2H), 3.88 (s, 2H), 3.20 (s, 3H), 2.77-2.66 (m, 1H), 1.54 (s, 6H), 1.52 (s, 6H), 1.46 (s, 3H), 1.15-1.05 (m, 2H), 0.82-0.73 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 206.4, 201.8, 165.1, 164.0, 157.1, 156.8, 156.5, 156.4, 153.9, 151.9, 151.7, 147.6, 145.1, 141.0, 134.09, 134.05, 129.8, 128.5, 128.4, 126.0, 125.8, 125.1, 118.4, 113.7, 112.5, 107.8, 107.7, 104.0, 90.1, 88.1, 88.0, 49.4, 48.8, 47.9, 47.7, 34.8, 31.7, 31.4, 25.3, 23.74, 23.68, 23.5, 13.1, 8.5; HRMS (ESI-TOF): C38H38BrFIN5NaO6[M + Na]+ 計算値: 908.0932; 実測値: 908.0943。
<2. Br-(III-3(r=1))-(I)>
N,N-dimethylacetamide (0.60 mL) of H-(I) (17.2 mg, 0.0300 mmol) synthesized in Synthesis Example 1 and Br-(III-3(r=1))-Br (35.5 mg, 0.0900 mmol) ) 2,6-lutidine (5.2 μL, 0.045 mmol) was added to the suspension at room temperature. The reaction mixture was heated at 80° C. for 43 hours and then cooled to room temperature. It was then diluted with EtOAc (5 mL) and washed sequentially with saturated aqueous NaHCO 3 (2 mL) and saturated brine (2 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/EtOAc = 1:1) and preparative thin layer chromatography (silica, hexane/EtOAc = 2:3) to obtain Br-(III-3(r =1))-(I) was obtained as a white solid (15.1 mg, 57%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.31(s, 1H), 7.51 (d, J = 9.2 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.68 (t, J = 8.5 Hz, 1H), 6.59 (d, J = 7.4 Hz, 1H), 6.52-6.41 (m, 2H), 6.30-6.16 (m, 2H), 4.66 (br s, 1H), 3.94 (s, 2H), 3.88 (s, 2H), 3.20 (s, 3H), 2.77-2.66 (m, 1H), 1.54 (s, 6H), 1.52 (s, 6H), 1.46 (s, 3H), 1.15-1.05 (m, 2H), 0.82-0.73 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 206.4, 201.8, 165.1, 164.0, 157.1, 156.8, 156.5, 156.4, 153.9, 151.9, 151.7, 147.6, 145.1, 141.0, 134.09, 134.05, 129.8, 128.5, 128.4, 126.0, 125.8, 125.1, 118.4, 113.7, 112.5, 107.8, 107.7, 104.0, 90.1, 88.1, 88.0, 49.4, 48.8, 47.9, 47.7, 34.8, 31.7, 31.4, 25.3, 23.74, 23.68, 23.5, 13.1, 8.5; HRMS (ESI-TOF): C 38 H 38 BrFIN 5 NaO 6 [M + Na] + Calculated value: 908.0932; Actual value: 908.0943.
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
<3.(II-1)-(III-3(r=1))-(I)>
 Br-(III-3(r=1))-(I) (20.0 mg, 0.0226 mmol)、アフレセルチブ(10.6 mg, 0.0248 mmol)、iPr2EtN (5.9 μL, 0.034 mmol)、及びモレキュラーシーブ4A (22.6 mg)のN,N-ジメチルアセトアミド(226 μL)懸濁液を室温で42時間撹拌した。反応混合物をシリカのパッド(CHCl3/MeOH = 17:3)に通過させ、溶離液を減圧下で濃縮した。残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、CHCl3/MeOH = 19:1、2回目:シリカ、CHCl3/MeOH = 97:3)で精製し、下記構造を有する(II-1)-(III-3(r=1))-(I)を黄色固体として得た(10.4 mg, 37%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 7.60-7.45 (m, 2H), 7.45-7.35 (m, 2H), 7.30-7.25 (m, 1H), 7.25-7.10 (m, 1H), 7.09 (br s, 1H), 7.00-6.80 (m, 3H), 6.68 (t, J = 8.3 Hz, 1H), 6.60-6.35 (m, 3H), 6.22 (d, J = 13.8, 3.2 Hz, 1H), 6.19 (d, J = 3.2 Hz, 1H), 4.64 (br s, 1H), 3.84 (br s, 2H), 3.77 (s, 3H), 3.34 (br s, 2H), 3.19 (s, 3H), 2.90-2.80 (m, 1H), 2.70-2.50 (m, 2H), 2.50-2.20 (m, 2H), 1.60 (s, 6H), 1.50 (s, 3H), 1.43 (s, 6H), 1.20-0.90 (m, 2H), 0.80-0.60 (m, 2H); 13C NMR (100 MHz, CDCl3): δ207.3, 206.3, 165.0, 164.1, 164.0, 161.7, 160.5, 157.2, 156.6, 156.4, 153.9, 152.1, 152.0, 147.7, 145.1, 140.9, 140.8, 137.3, 135.43, 135.40, 134.1, 132.5, 130.05, 129.96, 129.7, 128.4, 128.32, 128.27, 126.3, 126.0, 125.8, 125.15, 125.06, 125.0, 116.4, 116.2, 113.6, 113.5, 113.44, 113.37, 110.6, 107.5, 107.3, 104.0, 90.2, 88.2, 54.6, 51.7, 50.89, 50.86, 50.8, 48.0, 47.9, 38.5, 37.9, 34.8, 25.3, 23.7, 23.4, 23.3, 23.2, 13.1, 8.57, 8.47; HRMS (ESI-TOF): C56H55Cl2F2IN9O7S [M + H]+ 計算値: 1232.2335; 実測値: 1232.2354。
<3. (II-1)-(III-3(r=1))-(I)>
Br-(III-3(r=1))-(I) (20.0 mg, 0.0226 mmol), aflesertib (10.6 mg, 0.0248 mmol), i Pr 2 EtN (5.9 μL, 0.034 mmol), and molecular sieve 4A ( A suspension of 22.6 mg) of N,N-dimethylacetamide (226 μL) was stirred at room temperature for 42 hours. The reaction mixture was passed through a pad of silica (CHCl 3 /MeOH = 17:3) and the eluent was concentrated under reduced pressure. The residue was purified twice by preparative thin layer chromatography (first time: silica, CHCl 3 /MeOH = 19:1, second time: silica, CHCl 3 /MeOH = 97:3) to obtain (II) having the following structure. -1)-(III-3(r=1))-(I) was obtained as a yellow solid (10.4 mg, 37%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 7.60-7.45 (m, 2H), 7.45-7.35 (m, 2H), 7.30-7.25 (m, 1H), 7.25-7.10 ( m, 1H), 7.09 (br s, 1H), 7.00-6.80 (m, 3H), 6.68 (t, J = 8.3 Hz, 1H), 6.60-6.35 (m, 3H), 6.22 (d, J = 13.8 , 3.2 Hz, 1H), 6.19 (d, J = 3.2 Hz, 1H), 4.64 (br s, 1H), 3.84 (br s, 2H), 3.77 (s, 3H), 3.34 (br s, 2H), 3.19 (s, 3H), 2.90-2.80 (m, 1H), 2.70-2.50 (m, 2H), 2.50-2.20 (m, 2H), 1.60 (s, 6H), 1.50 (s, 3H), 1.43 ( 13 C NMR (100 MHz, CDCl 3 ): δ207.3, 206.3, 165.0, 164.1, 164.0, 161.7, 160.5, 157.2, 156.6, 156.4, 153.9, 152.1, 152.0, 147.7, 145.1, 140.9, 140.8, 137.3, 135.43, 135.40, 134.1, 132.5, 130.05, 129.96 , 129.7, 128.4, 128.32, 128.27, 126.3, 126.0, 125.8, 125.15, 125.06, 125.0, 116.4, 116.2, 113.6, 113.5, 113.44, 113.37, 110.6, 107.5, 107.3, 104.0, 90.2, 88.2, 54.6, 51.7, 50.89, 50. 86, 50.8, 48.0, 47.9, 38.5, 37.9, 34.8, 25.3, 23.7, 23.4, 23.3, 23.2, 13.1, 8.57, 8.47; HRMS (ESI-TOF): C 56 H 55 Cl 2 F 2 IN 9 O 7 S [M + H] + calculated: 1232.2335; measured: 1232.2354.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
[実施例16:(II-1)-(III-3(r=3))-(I)の合成]
<1.Br-(III-3(r=3))-Br>
 シリルエノールエーテルの一般的合成法(Cazeau, P.等, Tetrahedron, 1987, 43, 2075-2088)に従い3,3’-{[フラン-2,5-ジイルビス(プロパン-2,2-ジイル)]ビス(フラン-5,2-ジイル)}ビス(3-メチルブタン-2-オン) (Uesaka, M.等, CommunicationsChemistry, 2018, 1, 23に記載の方法により合成)から調製した2,5-ビス(2-{5-[2-メチル-3-(トリメチルシリル)ブタ-3-エン-2-イル]フラン-2-イル}プロパン-2-イル)フラン (1.7 g, 2.9 mmol)のCH2Cl2溶液(2.2 mL)に臭素のCH2Cl2溶液(1.9 M, 3.00 mL)を-40 ℃で添加した。20 分後、飽和NaHCO3水(10 mL)を加えて反応を停止し、有機層を分離した。水層をCH2Cl2(2×10 mL)で抽出し、統合した有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/CH2Cl2/EtOAc = 18:1:1)で精製し、下記構造を有するBr-(III-3(r=3))-Brを白色固体として得た(1.1 g, 62%)。1H NMR (400 MHz, CDCl3): δ 6.10 (d, J = 3.2 Hz, 2H), 5.92 (d, J = 3.2 Hz, 2H), 5.88 (s, 2H), 3.86 (s, 4H), 1.57 (s, 12H), 1.48 (s, 12H); 13C NMR (100 MHz, CDCl3): δ 202.3, 160.5, 158.2, 154.7, 107.0, 105.0, 104.6, 48.7, 37.5, 32.7, 26.2, 23.7; IR (ATR, neat): 2978, 2936, 2871, 1731, 1550, 1462, 1385, 1364, 1259, 1206, 1098, 1038, 1022, 956, 787, 728, 659 cm-1; HRMS (ESI-TOF): C28H34Br2O5Na [M + Na]+ 計算値: 631.0668; 実測値: 631.0667。
[Example 16: Synthesis of (II-1)-(III-3(r=3))-(I)]
<1. Br-(III-3(r=3))-Br>
3,3'-{[Furan-2,5-diylbis(propane-2,2-diyl)] 2,5-bis prepared from bis(furan-5,2-diyl)}bis(3-methylbutan-2-one) (synthesized by the method described in Uesaka, M. et al., CommunicationsChemistry, 2018, 1, 23) (2-{5-[2-Methyl-3-(trimethylsilyl)but-3-en-2-yl]furan-2-yl}propan-2-yl)furan (1.7 g, 2.9 mmol) in CH 2 Cl A solution of bromine in CH 2 Cl 2 (1.9 M, 3.00 mL) was added to the bromine solution (2.2 mL) at -40°C. After 20 minutes, the reaction was quenched by adding saturated aqueous NaHCO 3 (10 mL) and the organic layer was separated. The aqueous layer was extracted with CH 2 Cl 2 (2×10 mL), the combined organic layers were dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/CH 2 Cl 2 /EtOAc = 18:1:1) to obtain Br-(III-3(r=3))-Br having the following structure as a white solid. (1.1 g, 62%). 1 H NMR (400 MHz, CDCl 3 ): δ 6.10 (d, J = 3.2 Hz, 2H), 5.92 (d, J = 3.2 Hz, 2H), 5.88 (s, 2H), 3.86 (s, 4H), 1.57 (s, 12H), 1.48 (s, 12H); 13 C NMR (100 MHz, CDCl 3 ): δ 202.3, 160.5, 158.2, 154.7, 107.0, 105.0, 104.6, 48.7, 37.5, 32.7, 26.2, 23.7; IR (ATR, neat): 2978, 2936, 2871, 1731, 1550, 1462, 1385, 1364, 1259, 1206, 1098, 1038, 1022, 956, 787, 728, 659 cm -1 ; HRMS (ESI-TOF) : C 28 H 34 Br 2 O 5 Na [M + Na] + calculated: 631.0668; found: 631.0667.
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
<2.Br-(III-3(r=3))-(I)>
 合成例1で合成したH-(I) (17.2 mg, 0.0300 mmol)とBr-(III-3(r=3))-Br (51.1 mg, 0.0840 mmol) のN,N-ジメチルアセトアミド(0.60 mL)懸濁液に2,6-ルチジン(5.2 μL, 0.045 mmol)を室温で添加した。反応混合物を80 ℃で20時間加熱した後、室温に冷却した。次に、EtOAc (3 mL)で希釈して濾過し、濾液を水(3 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、CHCl3/EtOAc = 9:1)及び分取薄層クロマトグラフィー(シリカ、CHCl3/EtOAc = 9:1)で精製し、下記構造を有するBr-(III-3(r=3))-(I)を白色固体として得た(19.8 mg, 60%)。1H NMR 11.31 (s, 1H), 7.56-7.40 (m, 2H), 7.15 (t, J = 8.0 Hz, 1H), 6.67 (t, J = 8.5 Hz, 1H), 6.62-6.55 (m, 1H), 6.50-6.43 (m, 1H), 6.43-6.36 (m, 1H), 6.13 (d, J = 3.2 Hz, 1H), 6.09 (d, J = 3.2 Hz, 1H), 5.96-5.89 (m, 2H), 5.89-5.83 (m, 2H), 4.65 (br s, 1H), 3.92-3.72 (m, 4H), 3.20 (s, 3H), 2.78-2.68 (m, 1H), 1.58 (s, 6H), 1.55 (s, 6H), 1.50 (s, 6H), 1.47 (s, 6H), 1.45 (s, 3H), 1.15-1.06 (m, 2H), 0.82-0.74 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 207.4, 202.4, 165.1, 164.0, 160.5, 160.4, 158.3, 158.2, 156.4, 154.8, 154.7, 153.9, 151.9, 151.7, 147.8, 145.1, 140.9, 134.09, 134.05, 129.7, 128.5, 128.4, 126.0, 125.8, 125.1, 118.1, 114.0, 112.1, 107.1, 107.0, 105.0, 104.6, 104.0, 90.1, 88.1, 88.0, 49.4, 48.7, 47.7, 37.64, 37.55, 34.7, 32.8, 26.4, 26.2, 25.3, 23.7, 13.1, 8.5; HRMS (ESI-TOF): C52H54BrFIN5NaO8[M + Na]+ 計算値: 1124.2082; 実測値: 1124.2094。
<2. Br-(III-3(r=3))-(I)>
N,N-dimethylacetamide (0.60 mL) of H-(I) (17.2 mg, 0.0300 mmol) synthesized in Synthesis Example 1 and Br-(III-3(r=3))-Br (51.1 mg, 0.0840 mmol) ) 2,6-lutidine (5.2 μL, 0.045 mmol) was added to the suspension at room temperature. The reaction mixture was heated at 80° C. for 20 hours and then cooled to room temperature. It was then diluted with EtOAc (3 mL) and filtered, and the filtrate was washed successively with water (3 mL). The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, CHCl 3 /EtOAc = 9:1) and preparative thin layer chromatography (silica, CHCl 3 /EtOAc = 9:1) to obtain Br-(III-3) having the following structure. (r=3))-(I) was obtained as a white solid (19.8 mg, 60%). 1 H NMR 11.31 (s, 1H), 7.56-7.40 (m, 2H), 7.15 (t, J = 8.0 Hz, 1H), 6.67 (t, J = 8.5 Hz, 1H), 6.62-6.55 (m, 1H) ), 6.50-6.43 (m, 1H), 6.43-6.36 (m, 1H), 6.13 (d, J = 3.2 Hz, 1H), 6.09 (d, J = 3.2 Hz, 1H), 5.96-5.89 (m, 2H), 5.89-5.83 (m, 2H), 4.65 (br s, 1H), 3.92-3.72 (m, 4H), 3.20 (s, 3H), 2.78-2.68 (m, 1H), 1.58 (s, 6H) ), 1.55 (s, 6H), 1.50 (s, 6H), 1.47 (s, 6H), 1.45 (s, 3H), 1.15-1.06 (m, 2H), 0.82-0.74 (m, 2H); 13 NMR (100 MHz, CDCl 3 ): δ 207.4, 202.4, 165.1, 164.0, 160.5, 160.4, 158.3, 158.2, 156.4, 154.8, 154.7, 153.9, 151.9, 151.7, 147.8, 145.1, 140.9, 134.09, 134.05, 129.7, 128.5, 128.4, 126.0, 125.8, 125.1, 118.1, 114.0, 112.1, 107.1, 107.0, 105.0, 104.6, 104.0, 90.1, 88.1, 88.0, 49.4, 48.7, 47.7, 37.64, 37.55, 34.7, 32.8, 26.4, 26.2, 25.3, 23.7, 13.1, 8.5; HRMS (ESI-TOF): C 52 H 54 BrFIN 5 NaO 8 [M + Na] + calculated: 1124.2082; found: 1124.2094.
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
<3.(II-1)-(III-3(r=3))-(I)>
 アフレセルチブ(6.1 mg, 0.014 mmol)とBr-(III-3(r=3))-(I) (14.3 mg, 0.0130 mmol)のジメチルスルホキシド(26 μL)溶液にiPr2EtN (3.4 μL, 0.019 mmol)とNaI (2.9 mg, 0.019 mmol)を室温で添加し、39時間撹拌した。反応混合物をCH2Cl2で希釈して濾過し、濾液を減圧下で濃縮した。残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、ヘキサン/EtOAc = 1:3、2回目:シリカ、ヘキサン/EtOAc = 3:17)及びカラムクロマトグラフィー(アミン修飾シリカ、EtOAc)で精製し、下記構造を有する(II-1)-(III-3(r=3))-(I)を白色固体として得た(3.7 mg, 28%)。1H NMR (400 MHz, CDCl3): δ 11.31 (s, 1H), 7.55-7.48 (m, 3H), 7.48-7.38 (m, 2H), 7.30-7.19 (m, 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.03-6.96 (m, 1H), 6.95-6.86 (m, 2H), 6.67 (t, J = 8.5 Hz, 1H), 6.60-6.52 (m, 1H), 6.50-6.43 (m, 1H), 6.40-6.33 (m, 1H), 6.11 (d, J = 3.2 Hz, 1H), 6.03 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 3.2 Hz, 1H), 5.86 (d, J = 3.2 Hz, 1H), 5.83 (d, J = 3.2 Hz, 1H), 5.81 (d, J = 2.8 Hz, 1H), 4.64 (br s, 1H), 4.19-4.10 (m, 1H), 3.86-3.70 (m, 5H), 3.34-3.27 (m, 2H), 3.18 (s, 3H), 3.15-3.06 (m, 1H), 2.78-2.67 (m, 2H), 2.55-2.47 (m, 1H), 2.44-2.35 (m, 1H), 1.56 (s, 6H), 1.51 (s, 6H), 1.48 (s, 6H), 1.44 (s, 3H), 1.39 (s, 6H), 1.14-1.06 (m, 2H), 0.81-0.74 (m, 2H); HRMS (ESI-TOF): C70H71Cl2F2IN9O9S [M + H]+ 計算値: 1448.3485; 実測値: 1448.3493。
<3. (II-1)-(III-3(r=3))-(I)>
i Pr 2 EtN (3.4 μL, 0.019 mmol) and NaI (2.9 mg, 0.019 mmol) were added at room temperature and stirred for 39 hours. The reaction mixture was diluted with CH 2 Cl 2 and filtered, and the filtrate was concentrated under reduced pressure. The residue was subjected to preparative thin layer chromatography twice (first time: silica, hexane/EtOAc = 1:3, second time: silica, hexane/EtOAc = 3:17) and column chromatography (amine-modified silica, EtOAc). Purification was performed to obtain (II-1)-(III-3(r=3))-(I) having the following structure as a white solid (3.7 mg, 28%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.31 (s, 1H), 7.55-7.48 (m, 3H), 7.48-7.38 (m, 2H), 7.30-7.19 (m, 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.03-6.96 (m, 1H), 6.95-6.86 (m, 2H), 6.67 (t, J = 8.5 Hz, 1H), 6.60-6.52 (m, 1H), 6.50-6.43 (m, 1H), 6.40-6.33 (m, 1H), 6.11 (d, J = 3.2 Hz, 1H), 6.03 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 3.2 Hz, 1H) , 5.86 (d, J = 3.2 Hz, 1H), 5.83 (d, J = 3.2 Hz, 1H), 5.81 (d, J = 2.8 Hz, 1H), 4.64 (br s, 1H), 4.19-4.10 (m , 1H), 3.86-3.70 (m, 5H), 3.34-3.27 (m, 2H), 3.18 (s, 3H), 3.15-3.06 (m, 1H), 2.78-2.67 (m, 2H), 2.55-2.47 (m, 1H), 2.44-2.35 (m, 1H), 1.56 (s, 6H), 1.51 (s, 6H), 1.48 (s, 6H), 1.44 (s, 3H), 1.39 (s, 6H), 1.14-1.06 (m, 2H), 0.81-0.74 (m, 2H); HRMS (ESI-TOF): C 70 H 71 Cl 2 F 2 IN 9 O 9 S [M + H] + Calculated value: 1448.3485; Actual measurement Value: 1448.3493.
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
[実施例17:(II-2)-(III-3(r=1))-(I)の合成]
 MK2206二塩酸塩をアミン修飾シリカ(CHCl3/MeOH = 3:2)に通過させ、溶離液を減圧下で濃縮してMK2206を調製した。このように得たMK2206 (13.8 mg, 0.0339 mmol)、実施例15と同様の方法で得られたBr-(III-3(r=1))-(I) (16.1 mg, 0.0182 mmol)、NaI (4.2 mg, 0.0226 mmol)、iPr2EtN (14.6 μL, 0.0839 mmol)、及びモレキュラーシーブ4A(22.6 mg)のN,N-ジメチルアセトアミド(226 μL)懸濁液を室温下で1時間、続いて80 ℃で7.5時間加熱した後、室温に冷却した。反応混合物をシリカのパッド(CHCl3/MeOH = 9:1)に通過させた。溶離液を減圧下で濃縮後、残渣を分取薄層クロマトグラフィー[2回、1回目はシリカ(CHCl3/MeOH = 9:1)、2回目はシリカ(CHCl3/MeOH = 19:1)]により精製し、下記構造を有する(II-2)-(III-3(r=1))-(I)を白色固体として得た(2.0 mg, 9%)。1H NMR (600 MHz, CDCl3): δ 11.29 (s, 1H), 8.43 (s, 1H), 7.71 (d, J = 7.2 Hz, 2H), 7.60-7.45 (m, 1H), 7.45-7.25 (m, 10H), 7.10-7.00 (m, 2H), 6.65 (t, J = 8.4 Hz, 1H), 6.50 (d, J = 7.9 Hz, 1H), 6.40-6.20 (m, 4H), 4.70-4.60 (m, 1H), 4.35-4.15 (m, 1H), 3.95 (s, 1H), 3.49 (s, 2H), 3.17 (s, 3H), 2.75-2.60 (m, 1H), 2.60-2.00 (m, 6H), 1.38 (s, 3H), 1.25 (s, 12H), 1.20-1.00 (m, 2H), 0.90-0.70 (m, 2H); HRMS (ESI-TOF): C63H59FIN10O7[M + H]+ 計算値: 1213.3597; 実測値: 1213.3570。
[Example 17: Synthesis of (II-2)-(III-3(r=1))-(I)]
MK2206 was prepared by passing MK2206 dihydrochloride through amine-modified silica (CHCl 3 /MeOH = 3:2) and concentrating the eluent under reduced pressure. MK2206 (13.8 mg, 0.0339 mmol) obtained in this way, Br-(III-3(r=1))-(I) (16.1 mg, 0.0182 mmol) obtained in the same manner as in Example 15, NaI (4.2 mg, 0.0226 mmol), i Pr 2 EtN (14.6 μL, 0.0839 mmol), and a suspension of molecular sieve 4A (22.6 mg) in N,N-dimethylacetamide (226 μL) at room temperature for 1 hour. After heating at 80° C. for 7.5 hours, the mixture was cooled to room temperature. The reaction mixture was passed through a pad of silica (CHCl 3 /MeOH = 9:1). After concentrating the eluent under reduced pressure, the residue was subjected to preparative thin layer chromatography [twice, the first time on silica (CHCl 3 /MeOH = 9:1), the second time on silica (CHCl 3 /MeOH = 19:1) ] to obtain (II-2)-(III-3(r=1))-(I) having the following structure as a white solid (2.0 mg, 9%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.29 (s, 1H), 8.43 (s, 1H), 7.71 (d, J = 7.2 Hz, 2H), 7.60-7.45 (m, 1H), 7.45-7.25 (m, 10H), 7.10-7.00 (m, 2H), 6.65 (t, J = 8.4 Hz, 1H), 6.50 (d, J = 7.9 Hz, 1H), 6.40-6.20 (m, 4H), 4.70- 4.60 (m, 1H), 4.35-4.15 (m, 1H), 3.95 (s, 1H), 3.49 (s, 2H), 3.17 (s, 3H), 2.75-2.60 (m, 1H), 2.60-2.00 ( HRMS (ESI-TOF): C 63 H 59 FIN 10 O 7 [M + H] + Calculated: 1213.3597; Actual: 1213.3570.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
[実施例18:(II-3)-(III-3(r=1))-(I)の合成]
 実施例15と同様の方法で得られたBr-(III-3(r=1))-(I) (12.4 mg, 0.0140 mmol)、実施例7と同様の方法で得られた(II-3)-H・2TFA (17.3 mg, 0.0420 mmol)、iPr2EtN (14.6 μL, 0.0839 mmol)、及びモレキュラーシーブ4A (8.5 mg)のN,N-ジメチルアセトアミド(70 μL)懸濁液を室温で24時間撹拌した。反応混合物をアミン修飾シリカのパッド(CHCl3/MeOH = 9:1)に通過させ、溶離液を減圧下で濃縮した。残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、EtOAc/MeOH = 19:1、2回目:アミン修飾シリカ、CHCl3/MeOH = 9:1)で精製し、下記構造を有する(II-3)-(III-3(r=1))-(I)を黄色固体として得た(13.1 mg, 52%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 8.88 (br s, 1H), 8.28 (s, 1H), 8.51 (dd, J = 9.8, 1.6 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.16 (t, J = 7.8 Hz , 1H), 7.15-6.95 (m, 1H), 6.67 (t, J = 8.2 Hz, 1H), 6.58 (d, J = 7.4 Hz, 1H), 6.50-6.40 (m, 3H), 6.24 (d, J = 3.2 Hz, 1H), 6.21 (d, J = 3.2 Hz, 1H), 4.75-4.63 (m, 1H), 4.62-4.50 (m, 2H), 3.88 (br s, 2H), 3.47 (s, 2H), 3.19 (s, 3H), 3.13 (br s, 1H), 3.16 (s, 1H), 2.70 (br s, 1H), 2.58 (br s, 1H), 1.90-1.75 (m, 2H), 1.53 (s, 6H), 1.48 (s, 6H), 1.45 (s, 3H), 1.20-1.00 (m, 2H), 0.80-0.60 (m, 2H) 3.19 (s, 3H), 3.08 (s, 2H), 2.71 (tt, J = 6.9, 4.1 Hz, 1H), 2.53-2.40 (m, 2H), 2.27-2.05 (m, 3H), 1.91-1.77 (m, 1H), 1.40 (s, 3H), 1.18-1.05 (m, 2H), 0.84-0.73 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 206.6, 165.1, 164.0, 159.1, 157.2, 157.0, 156.5, 156.0, 151.9, 151.8, 147.6, 145.1, 141.0, 134.1, 129.8, 128.44, 128.37, 126.0, 125.8, 125.1, 120.3, 118.4, 113.7, 112.4, 107.6, 107.4, 104.0, 102.8, 102.0, 90.1, 88.13, 88.08, 54.8, 51.9, 49.3, 48.0, 47.9, 44.5, 34.7, 32.2, 32.1, 31.7, 29.84, 29.78, 29.5, 25.3, 24.1, 23.7, 23.5, 22.84, 22.80, 14.3, 13.2, 8.5, 1.2; HRMS (FAB-TOF): C49H53FIN10O6[M + H]+ 計算値: 1023.3173; 実測値: 1023.3197。
[Example 18: Synthesis of (II-3)-(III-3(r=1))-(I)]
Br-(III-3(r=1))-(I) (12.4 mg, 0.0140 mmol) obtained in the same manner as in Example 15, (II-3 obtained in the same manner as in Example 7) )-H・2TFA (17.3 mg, 0.0420 mmol), i Pr 2 EtN (14.6 μL, 0.0839 mmol), and molecular sieve 4A (8.5 mg) in N,N-dimethylacetamide (70 μL) at room temperature. Stirred for 24 hours. The reaction mixture was passed through a pad of amine-modified silica (CHCl 3 /MeOH = 9:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography twice (first time: silica, EtOAc/MeOH = 19:1, second time: amine-modified silica, CHCl 3 /MeOH = 9:1), and it had the following structure ( II-3)-(III-3(r=1))-(I) was obtained as a yellow solid (13.1 mg, 52%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 8.88 (br s, 1H), 8.28 (s, 1H), 8.51 (dd, J = 9.8, 1.6 Hz, 1H), 7.44 ( d, J = 8.7 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.15-6.95 (m, 1H), 6.67 (t, J = 8.2 Hz, 1H), 6.58 (d, J = 7.4 Hz, 1H), 6.50-6.40 (m, 3H), 6.24 (d, J = 3.2 Hz, 1H), 6.21 (d, J = 3.2 Hz, 1H), 4.75-4.63 (m, 1H), 4.62-4.50 (m, 2H), 3.88 (br s, 2H), 3.47 (s, 2H), 3.19 (s, 3H), 3.13 (br s, 1H), 3.16 (s, 1H), 2.70 (br s, 1H) , 2.58 (br s, 1H), 1.90-1.75 (m, 2H), 1.53 (s, 6H), 1.48 (s, 6H), 1.45 (s, 3H), 1.20-1.00 (m, 2H), 0.80- 0.60 (m, 2H) 3.19 (s, 3H), 3.08 (s, 2H), 2.71 (tt, J = 6.9, 4.1 Hz, 1H), 2.53-2.40 (m, 2H), 2.27-2.05 (m, 3H) ), 1.91-1.77 (m, 1H), 1.40 (s, 3H), 1.18-1.05 (m, 2H), 0.84-0.73 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 206.6, 165.1, 164.0, 159.1, 157.2, 157.0, 156.5, 156.0, 151.9, 151.8, 147.6, 145.1, 141.0, 134.1, 129.8, 128.44, 128.37, 126.0, 125.8, 125.1, 120.3, 118.4, 113.7, 112.4, 107.6, 107.4, 104.0, 102.8, 102.0, 90.1, 88.13, 88.08, 54.8, 51.9, 49.3, 48.0, 47.9, 44.5, 34.7, 32.2, 32.1, 31.7, 29.84, 29.78, 29.5, 25.3, 24.1, 23.7, 23.5, 22.84, 22.80, 14.3, 13.2, 8.5, 1.2; HRMS (FAB-TOF): C 49 H 53 FIN 10 O 6 [M + H] + calculated: 1023.3173; found: 1023.3197.
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
[実施例19:(II-4)-(III-3(r=1))-(I)の合成]
 実施例15と同様の方法で得られたBr-(III-3(r=1))-(I) (25.0 mg, 0.0282 mmol)、実施例8と同様の方法で得られた(II-4)-H (9.2 mg, 0.032 mmol)、iPr2EtN (7.4 μL, 0.042 mmol)、及びモレキュラーシーブ4A (28.2 mg)のN,N-ジメチルアセトアミド(282 μL)懸濁液を室温で6時間撹拌し、続いて60 ℃で19時間加熱した後、室温に冷却した。反応混合物をシリカのパッド(CHCl3/MeOH = 4:1)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、CHCl3/MeOH = 19:1)で精製し、下記構造を有する(II-4)-(III-3(r=1))-(I)を黄色固体として得た(21.2 mg, 68%)。1H NMR (600 MHz, CDCl3): δ 11.29 (s, 1H), 10.16 (br s, 1H), 8.24 (s, 1H), 7.51 (dd, J = 9.6, 1.4 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 7.06 (s, 1H), 6.67 (t, J = 8.2 Hz, 1H), 6.56 (d, J = 8.2 Hz, 1H), 6.48 (s, 1H), 6.45 (d, J = 8.3 Hz, 1H), 6.23 (d, J = 3.5 Hz, 1H), 6.20 (d, J = 3.1 Hz, 1H), 4.68 (t, J = 4.3 Hz, 1H), 4.00-3.80 (m, 4H), 3.66 (s, 2H), 3.19 (s, 3H), 3.17 (s, 2H), 2.70 (tt, J =7.1, 3.6 Hz, 1H), 2.49 (br s, 1H), 2.25 (br s, 1H), 1.82 (t, J = 7.0 Hz, 2H), 1.80-1.60 (m, 4H), 1.53 (s, 6H), 1.45 (s, 6H), 1.44 (s, 3H), 1.20-1.00 (m, 2H), 0.90-0.70 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 206.5, 165.1, 164.0, 157.6, 156.4, 156.0, 155.5, 154.4, 152.0, 151.7, 150.8, 147.6, 145.1, 141.0, 134.10, 134.07, 129.8, 128.5, 128.4, 126.0, 125.8, 125.1, 119.2, 118.4, 114.0, 112.2, 107.6, 107.1, 104.0, 103.2, 100.8, 90.1, 88.1, 88.0, 63.3, 60.0, 51.1, 49.3, 49.0, 48.3, 47.9, 39.5, 36.3, 34.7, 34.5, 31.1, 29.8, 25.3, 23.7, 23.6, 13.2, 8.5; HRMS (ESI-TOF): C52H56ClFIN10O6[M + H]+計算値: 1097.3102; 実測値: 1097.3078。
[Example 19: Synthesis of (II-4)-(III-3(r=1))-(I)]
Br-(III-3(r=1))-(I) (25.0 mg, 0.0282 mmol) obtained in the same manner as in Example 15, (II-4) obtained in the same manner as in Example 8 )-H (9.2 mg, 0.032 mmol), i Pr 2 EtN (7.4 μL, 0.042 mmol), and molecular sieve 4A (28.2 mg) in N,N-dimethylacetamide (282 μL) at room temperature for 6 hours. Stirring followed by heating at 60° C. for 19 hours before cooling to room temperature. The reaction mixture was passed through a pad of silica (CHCl 3 /MeOH = 4:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, CHCl 3 /MeOH = 19:1) to obtain (II-4)-(III-3(r=1))-(I) with the following structure in yellow. Obtained as a solid (21.2 mg, 68%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.29 (s, 1H), 10.16 (br s, 1H), 8.24 (s, 1H), 7.51 (dd, J = 9.6, 1.4 Hz, 1H), 7.44 ( d, J = 8.2 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 7.06 (s, 1H), 6.67 (t, J = 8.2 Hz, 1H), 6.56 (d, J = 8.2 Hz, 1H), 6.48 (s, 1H), 6.45 (d, J = 8.3 Hz, 1H), 6.23 (d, J = 3.5 Hz, 1H), 6.20 (d, J = 3.1 Hz, 1H), 4.68 (t, J = 4.3 Hz, 1H), 4.00-3.80 (m, 4H), 3.66 (s, 2H), 3.19 (s, 3H), 3.17 (s, 2H), 2.70 (tt, J =7.1, 3.6 Hz, 1H ), 2.49 (br s, 1H), 2.25 (br s, 1H), 1.82 (t, J = 7.0 Hz, 2H), 1.80-1.60 (m, 4H), 1.53 (s, 6H), 1.45 (s, 13C NMR (150 MHz , CDCl 3 ): δ 206.5, 165.1, 164.0, 157.6, 156.4, 156.0, 155.5, 154.4, 152.0, 151.7, 150.8, 147.6, 145.1, 141.0, 134.10, 134.07, 129.8, 128.5, 128.4, 126.0, 125.8, 125.1, 119.2, 118.4, 114.0, 112.2, 107.6, 107.1, 104.0, 103.2, 100.8, 90.1, 88.1, 88.0, 63.3, 60.0, 51.1, 49.3, 49.0, 48.3, 47.9, 39.5, 36.3, 34.7, 34.5, 31.1, 29.8, 25.3, 23.7, 23.6, 13.2, 8.5; HRMS (ESI-TOF) : C 52 H 56 ClFIN 10 O 6 [M + H] + calculated: 1097.3102; found: 1097.3078.
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
[実施例20:(II-3)-(III-4)-(I)の合成]
<1.Cl-(III-4)-Cl>
 1,10-フェナントロリン無水物[1,10-フェナントロリン一水和物(1585.9 mg, 8.000 mmol)を減圧下で加熱後室温に冷却して調製]、塩化シアヌル(590.1 mg, 3.200 mmol)、及びモレキュラーシーブ3A (321.0 mg)のTHF (10.7 mL)懸濁液に対し、室温で3-クロロ-1-プロパノール(294 μL, 3.52 mmol)を添加した。反応混合物を室温で87時間、続いて40 ℃で27時間攪拌した後、室温に冷却した。次に、MeOH (10.7 mL)を添加し、室温で53時間、続いて35 ℃で41時間攪拌した後、室温に冷却した。反応混合物をEtOAc (50 mL)で希釈し、H2O (120 mL)、塩酸水溶液(1 M, 80 mL)、飽和NaHCO3水(80 mL)、及び飽和食塩水(80 mL)で順次洗浄した。有機層をNa2SO4で乾燥後濾過し、濾液を減圧下で濃縮した。残渣をカラムクロマトグラフィー(シリカ、ヘキサン/EtOAc = 6:1 to 4:1)で精製し、下記構造を有するCl-(III-4)-Clを薄黄色透明液体として得た(559.3 mg, 73%)。1H NMR (400 MHz, CDCl3): δ 4.60 (t, J = 6.0 Hz, 2H), 4.08 (s, 3H), 3.72 (t, J = 6.4 Hz, 2H), 2.27 (tt, J = 6.4, 6.0 Hz 2H);13C NMR (150 MHz, CDCl3): δ 172.8, 172.6, 172.0, 65.8, 56.2, 40.9, 31.4; HRMS (DART-TOF): C7H10Cl2N3O2[M + H]+計算値: 238.01501; 実測値: 238.01478。
[Example 20: Synthesis of (II-3)-(III-4)-(I)]
<1. Cl-(III-4)-Cl>
1,10-phenanthroline anhydride [prepared by heating 1,10-phenanthroline monohydrate (1585.9 mg, 8.000 mmol) under reduced pressure and then cooling to room temperature], cyanuric chloride (590.1 mg, 3.200 mmol), and molecular 3-chloro-1-propanol (294 μL, 3.52 mmol) was added to a suspension of Sieve 3A (321.0 mg) in THF (10.7 mL) at room temperature. The reaction mixture was stirred at room temperature for 87 hours, then at 40° C. for 27 hours, then cooled to room temperature. Next, MeOH (10.7 mL) was added and stirred at room temperature for 53 hours, followed by 41 hours at 35° C., then cooled to room temperature. The reaction mixture was diluted with EtOAc (50 mL) and washed sequentially with H 2 O (120 mL), aqueous hydrochloric acid (1 M, 80 mL), saturated aqueous NaHCO 3 (80 mL), and saturated brine (80 mL). did. The organic layer was dried over Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica, hexane/EtOAc = 6:1 to 4:1) to obtain Cl-(III-4)-Cl having the following structure as a pale yellow transparent liquid (559.3 mg, 73 %). 1 H NMR (400 MHz, CDCl 3 ): δ 4.60 (t, J = 6.0 Hz, 2H), 4.08 (s, 3H), 3.72 (t, J = 6.4 Hz, 2H), 2.27 (tt, J = 6.4 , 6.0 Hz 2H); 13 C NMR (150 MHz, CDCl 3 ): δ 172.8, 172.6, 172.0, 65.8, 56.2, 40.9, 31.4; HRMS (DART-TOF): C 7 H 10 Cl 2 N 3 O 2 [ M + H] + Calculated: 238.01501; Actual: 238.01478.
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
<2.Cl-(III-4)-(I)>
 合成例1で合成したH-(I) (114.7 mg, 0.2000 mmol)、Cl-(III-4)-Cl (71.4 mg, 0.300 mmol)、3,5-ルチジン(4.6 μL, 0.040 mmol)、及びN,N-ジメチルホルムアミド(1.0 mL)の混合物に対し、iPr2EtN (69.8 μL, 0.401 mmol)を室温で添加した。反応混合物を室温で30分、続いて60 ℃で40分攪拌した後、室温に冷却した。次に、反応混合物をシリカのパッド(ヘキサン/EtOAc = 1:2)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、ヘキサン/EtOAc = 1:1, 5回展開)で精製し、下記構造を有するCl-(III-4)-(I)を薄黄色固体として得た(101.7 mg, 66%)。1H NMR (600 MHz, CDCl3): δ11.31 (s, 1H), 7.72-7.68 (m, 1H), 7.55 (dd, J = 8.2, 1.4 Hz, 1H), 7.52 (dd, J = 9.6, 1.7 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 8.2, 7.9 Hz, 1H), 7.37 (br, s, 1H), 7.01 (dd, J = 7.9, 1.0 Hz, 1H), 6.70 (dd, J = 8.2, 8.2 Hz, 1H), 4.51 (t, J = 5.3 Hz, 2H), 3.97 (s, 3H), 3.71 (t, J = 6.4 Hz, 2H), 3.20 (s, 3H), 2.74 (tt, J = 7.3, 3.7 Hz, 1H), 2.23 (tt, J = 6.2 Hz, 2H), 1.46 (s, 3H), 1.15-1.08 (m, 2H), 0.83-0.75 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 166.4, 165.0, 163.9, 156.5, 153.9, 152.1, 151.7, 145.0, 140.5, 138.6, 134.1, 134.1, 129.4, 128.3, 128.1, 126.0, 125.8, 125.2, 124.2, 121.8, 120.2, 103.8, 89.9, 88.4, 88.3, 64.5, 55.1, 41.4, 34.8, 31.8, 25.3, 13.6, 8.5; HRMS (ESI-TOF): C31H29Cl1F1I1N8Na1O5[M + Na]+ 計算値: 797.08758; 実測値: 797.08516。
<2. Cl-(III-4)-(I)>
H-(I) (114.7 mg, 0.2000 mmol) synthesized in Synthesis Example 1, Cl-(III-4)-Cl (71.4 mg, 0.300 mmol), 3,5-lutidine (4.6 μL, 0.040 mmol), and i Pr 2 EtN (69.8 μL, 0.401 mmol) was added to a mixture of N,N-dimethylformamide (1.0 mL) at room temperature. The reaction mixture was stirred at room temperature for 30 minutes, then at 60° C. for 40 minutes, then cooled to room temperature. The reaction mixture was then passed through a pad of silica (hexane/EtOAc = 1:2) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, hexane/EtOAc = 1:1, developed 5 times) to obtain Cl-(III-4)-(I) with the following structure as a pale yellow solid ( 101.7 mg, 66%). 1H NMR (600 MHz, CDCl 3 ): δ11.31 (s, 1H), 7.72-7.68 (m, 1H), 7.55 (dd, J = 8.2, 1.4 Hz, 1H), 7.52 (dd, J = 9.6 , 1.7 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 8.2, 7.9 Hz, 1H), 7.37 (br, s, 1H), 7.01 (dd, J = 7.9, 1.0 Hz, 1H), 6.70 (dd, J = 8.2, 8.2 Hz, 1H), 4.51 (t, J = 5.3 Hz, 2H), 3.97 (s, 3H), 3.71 (t, J = 6.4 Hz, 2H) , 3.20 (s, 3H), 2.74 (tt, J = 7.3, 3.7 Hz, 1H), 2.23 (tt, J = 6.2 Hz, 2H), 1.46 (s, 3H), 1.15-1.08 (m, 2H), 0.83-0.75 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.4, 165.0, 163.9, 156.5, 153.9, 152.1, 151.7, 145.0, 140.5, 138.6, 134.1, 134.1 , 129.4, 128.3, 128.1 HRMS (ESI- TOF): C 31 H 29 Cl 1 F 1 I 1 N 8 Na 1 O 5 [M + Na] + Calculated: 797.08758; Actual: 797.08516.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
<3.(II-3)-(III-4)-(I)>
 実施例7と同様の方法で得られた(II-3)-H・2TFA (15.6 mg)をアミン修飾シリカのパッド(CHCl3/MeOH = 12:1)に通過させ、溶離液を減圧下で濃縮して得た脱TFA体(8.4 mg, 0.039 mmol)に、Cl-(III-4)-(I) (8.9 mg, 0.011 mmol)、モレキュラーシーブ4A (1.2 mg)、N,N-ジメチルアセトアミド(38.3 μL)、及びiPr2EtN (4.0 μL, 0.023 mmol)を室温で添加した。反応混合物を80 ℃で1時間、続いて100 ℃で20時間加熱した後、室温に冷却した。反応混合物をシリカのパッド(CHCl3/MeOH = 9:1)に通過させ、溶離液を減圧下で濃縮した。残渣を分取薄層クロマトグラフィー(シリカ、CHCl3/MeOH = 9:1, 2回展開)で精製し、下記構造を有する(II-3)-(III-4)-(I)を白色固体として得た(2.6 mg, 24%)。1H NMR (400 MHz, CDCl3): δ 11.30 (s, 1H), 11.19 (br, s, 1H), 8.88 (br, s, 1H), 8.25 (s, 1H), 7.78-7.65 (m, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.52 (dd, J = 9.6, 1.9 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.38 (dd, J = 8.3, 7.8 Hz, 1H), 7.06 (d, J = 3.7 Hz, 1H), 6.99 (d, J = 7.3 Hz, 1H), 6.69 (dd, J = 8.3, 8.2 Hz, 1H), 6.47 (d, J = 3.6 Hz, 1H), 4.72-4.61 (m, 2H), 4.54-4.42 (m, 2H), 3.95 (s, 3H), 3.28-3.12 (m, 5H), 2.95-2.81 (m, 3H), 2.75 (tt, J = 7.3, 3.7 Hz, 1H), 2.10-1.98 (m, 4H), 1.55-1.38 (m, 5H), 1.17-1.06 (m, 2H), 0.84-0.75 (m, 2H), 13C NMR (150 MHz, CDCl3): δ 166.4, 165.0, 163.9, 157.1, 156.1, 154.4, 152.2, 151.9, 151.8, 151.2, 145.1, 140.5, 140.5, 134.2, 134.2, 131.1, 129.5, 128.3, 128.2, 126.0, 125.9, 125.3, 124.1, 121.7, 120.4, 120.2, 103.9, 102.9, 101.8, 101.7, 90.0, 88.4, 88.3, 55.3, 55.1, 44.9, 44.8, 43.3, 34.8, 32.2, 29.9, 25.4, 13.6, 8.5;  HRMS (ESI-TOF): C42H44F1I1N13O5[M + H]+ 計算値: 956.2617; 実測値: 956.2642。
<3. (II-3)-(III-4)-(I)>
(II-3)-H2TFA (15.6 mg) obtained in the same manner as in Example 7 was passed through an amine-modified silica pad (CHCl 3 /MeOH = 12:1), and the eluent was evaporated under reduced pressure. Cl-(III-4)-(I) (8.9 mg, 0.011 mmol), molecular sieve 4A (1.2 mg), and N,N-dimethylacetamide were added to the TFA-free product (8.4 mg, 0.039 mmol) obtained by concentration. (38.3 μL) and i Pr 2 EtN (4.0 μL, 0.023 mmol) were added at room temperature. The reaction mixture was heated at 80° C. for 1 hour, then at 100° C. for 20 hours, then cooled to room temperature. The reaction mixture was passed through a pad of silica (CHCl 3 /MeOH = 9:1) and the eluent was concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography (silica, CHCl 3 /MeOH = 9:1, developed twice) to obtain (II-3)-(III-4)-(I) with the following structure as a white solid. (2.6 mg, 24%). 1 H NMR (400 MHz, CDCl 3 ): δ 11.30 (s, 1H), 11.19 (br, s, 1H), 8.88 (br, s, 1H), 8.25 (s, 1H), 7.78-7.65 (m, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.52 (dd, J = 9.6, 1.9 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.38 (dd, J = 8.3, 7.8 Hz, 1H), 7.06 (d, J = 3.7 Hz, 1H), 6.99 (d, J = 7.3 Hz, 1H), 6.69 (dd, J = 8.3, 8.2 Hz, 1H), 6.47 (d, J = 3.6 Hz, 1H), 4.72-4.61 (m, 2H), 4.54-4.42 (m, 2H), 3.95 (s, 3H), 3.28-3.12 (m, 5H), 2.95-2.81 (m, 3H), 2.75 ( tt, J = 7.3, 3.7 Hz, 1H), 2.10-1.98 (m, 4H), 1.55-1.38 (m, 5H), 1.17-1.06 (m, 2H), 0.84-0.75 (m, 2H), 13 C NMR (150 MHz, CDCl 3 ): δ 166.4, 165.0, 163.9, 157.1, 156.1, 154.4, 152.2, 151.9, 151.8, 151.2, 145.1, 140.5, 140.5, 134.2, 134.2, 131.1, 129.5, 128.3, 128.2, 126.0, 125.9, 125.3, 124.1, 121.7, 120.4, 120.2, 103.9, 102.9, 101.8, 101.7, 90.0, 88.4, 88.3, 55.3, 55.1, 44.9, 44.8, 43.3, 34. 8, 32.2, 29.9, 25.4, 13.6, 8.5; HRMS ( ESI-TOF): C 42 H 44 F 1 I 1 N 13 O 5 [M + H] + Calculated: 956.2617; Actual: 956.2642.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
[実施例21:(II-4)-(III-4)-(I)の合成]
 実施例20と同様の方法で得られたCl-(III-4)-(I) (23.2 mg, 0.0299 mmol)、実施例8と同様の方法で得られた(II-4)-H (17.4 mg, 0.0596 mmol)、iPr2EtN (10.5 μL, 0.0603 mmol)、及びモレキュラーシーブ4A(3.2 mg)のN,N-ジメチルアセトアミド(100 μL)溶液を120 ℃で6時間加熱した後、室温に冷却した。反応混合物をCH2Cl2で希釈し、シリカのパッド(CHCl3/MeOH = 9:1)に通過させた。溶離液を減圧下で濃縮後、残渣を分取薄層クロマトグラフィー(シリカ、3回展開、CHCl3/MeOH = 15:1)により精製し、下記構造を有する(II-4)-(III-4)-(I)を白色固体として得た(2.0 mg, 6 %)。1H NMR (600 MHz, CDCl3): δ 11.3 (s, 1H), 8.25 (s, 1H), 7.76-7.57 (m, 2H), 7.51 (dd, J = 9.6, 1.4 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.39 (dd, J = 8.2, 7.9 Hz, 1H), 7.08 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.69 (dd, J = 8.3, 8.2 Hz, 1H), 4.43 (t, J = 5.9 Hz, 2H), 3.97 (s, 3H), 3.93 (t, J = 7.1 Hz, 2H), 3.72 (s, 2H), 3.20 (s, 3H), 2.74 (tt, J = 7.3, 3.7 Hz, 1H), 2.69-2.49 (m, 4H), 2.46-2.32 (m, 2H), 2.05-1.96 (m, 2H), 1.87 (t, J = 7.1 Hz, 2H), 1.80-1.60 (m, 4H), 1.46 (s, 3H), 1.16-1.09 (m, 2H), 0.82-0.77 (m, 2H); 13C NMR (150 MHz, CDCl3): δ 166.4, 165.0, 163.9, 156.1, 155.6, 154.4, 152.2, 151.7, 151.1, 150.8, 145.0, 140.5, 138.9, 134.2. 134.1, 131.1, 129.5, 128.3, 128.2, 126.0. 125.9, 125.3, 124.1, 121.6, 120.2, 119.0, 103.9, 103.3, 100.9, 90.0, 88.4, 88.3, 66.7, 55.4, 55.2, 55.1, 51.3, 48.9, 48.8, 40.1, 34.8, 34.8, 29.9, 26.6, 25.4, 13.6, 8.5; HRMS (ESI-TOF): C45H47Cl1F1I1N13O5[M + H]+ 計算値: 1030.2540; 実測値: 1030.2526。
[Example 21: Synthesis of (II-4)-(III-4)-(I)]
Cl-(III-4)-(I) (23.2 mg, 0.0299 mmol) obtained in the same manner as in Example 20, (II-4)-H (17.4) obtained in the same manner as in Example 8. A solution of i Pr 2 EtN (10.5 μL, 0.0603 mmol), and Molecular Sieve 4A (3.2 mg) in N,N-dimethylacetamide (100 μL) was heated at 120 °C for 6 hours, then cooled to room temperature. Cooled. The reaction mixture was diluted with CH 2 Cl 2 and passed through a pad of silica (CHCl 3 /MeOH = 9:1). After concentrating the eluent under reduced pressure, the residue was purified by preparative thin layer chromatography (silica, developed three times, CHCl 3 /MeOH = 15:1) to obtain (II-4)-(III- 4)-(I) was obtained as a white solid (2.0 mg, 6%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.3 (s, 1H), 8.25 (s, 1H), 7.76-7.57 (m, 2H), 7.51 (dd, J = 9.6, 1.4 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.39 (dd, J = 8.2, 7.9 Hz, 1H), 7.08 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.69 (dd, J = 8.3, 8.2 Hz, 1H), 4.43 (t, J = 5.9 Hz, 2H), 3.97 (s, 3H), 3.93 (t, J = 7.1 Hz, 2H), 3.72 (s, 2H), 3.20 (s, 3H), 2.74 (tt, J = 7.3, 3.7 Hz, 1H), 2.69-2.49 (m, 4H), 2.46-2.32 (m, 2H), 2.05-1.96 (m, 2H), 1.87 (t, J = 13 C NMR (150 MHz, CDCl 3 ) : δ 166.4, 165.0, 163.9, 156.1, 155.6, 154.4, 152.2, 151.7, 151.1, 150.8, 145.0, 140.5, 138.9, 134.2. 134.1, 131.1, 129.5, 128.3, 128.2, 126.0. 125.9, 125.3, 124.1, 121.6, 120.2, 119.0, 103.9, 103.3, 100.9, 90.0, 88.4, 88.3, 66.7, 55.4, 55.2, 55.1, 51.3, 48.9, 48.8, 40.1, 34.8, 34.8, 29.9, 26 .6, 25.4, 13.6, 8.5; HRMS (ESI- TOF): C 45 H 47 Cl 1 F 1 I 1 N 13 O 5 [M + H] + calculated: 1030.2540; found: 1030.2526.
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
[実施例22:(II-1)-(III-4)-(I)の合成]
 実施例20と同様の方法で得られたCl-(III-4)-(I) (7.7 mg, 0.0099 mmol)、アフレセルチブ(12.8 mg, 0.0300 mmol)、iPr2EtN (3.5 μL, 0.020 mmol)、NaI (1.6 mg, 0.011 mmol)、ジメチルスルホキシド(50 μL)の混合物を40 ℃で39時間加熱した後、室温に冷却した。反応混合物をCH2Cl2で希釈し、シリカのパッド(CHCl3/MeOH = 9:1)に通過させた。溶離液を減圧下で濃縮後、残渣を2回の分取薄層クロマトグラフィー(1回目:シリカ、3回展開、CHCl3/MeOH = 29:1→19:1→19:1、2回目:シリカ、CHCl3/EtOH = 15:1)で精製し、下記構造を有する(II-1)-(III-4)-(I)を白色固体として得た(0.8 mg, 7 %)。1H NMR (600 MHz, CDCl3): δ 11.31 (s, 1H), 7.71 (br, s, 1H), 7.56-7.50 (m, 2H), 7.49 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.41-7.36 (m, 2H), 7.27-7.20 (m, 1H), 7.01 (dd, J = 7.9, 1.0 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 6.95-6.87 (m, 2H), 6.70 (dd, J = 8.3, 8.2 Hz, 1H), 4.55-4.26 (m, 3H), 3.94 (s, 3H), 3.75 (s, 3H), 3.18 (s, 3H), 3.08-2.97 (m, 1H), 2.87-2.64 (m, 6H), 1.98-1.84 (m, 2H), 1.46 (s, 3H), 1.18-1.05 (m, 2H), 0.85-0.73 (m, 2H); HRMS (ESI-TOF): C49H46Cl2F2I1N12O6S1[M + H]+ 計算値: 1165.1774; 実測値: 1165.1747。
[Example 22: Synthesis of (II-1)-(III-4)-(I)]
Cl-(III-4)-(I) (7.7 mg, 0.0099 mmol) obtained in the same manner as Example 20, aflesertib (12.8 mg, 0.0300 mmol), i Pr 2 EtN (3.5 μL, 0.020 mmol) , NaI (1.6 mg, 0.011 mmol), and dimethyl sulfoxide (50 μL) was heated at 40° C. for 39 hours and then cooled to room temperature. The reaction mixture was diluted with CH 2 Cl 2 and passed through a pad of silica (CHCl 3 /MeOH = 9:1). After concentrating the eluent under reduced pressure, the residue was subjected to preparative thin layer chromatography twice (first time: silica, developed three times, CHCl 3 /MeOH = 29:1 → 19:1 → 19:1, second time: It was purified with silica (CHCl 3 /EtOH = 15:1) to obtain (II-1)-(III-4)-(I) having the following structure as a white solid (0.8 mg, 7%). 1 H NMR (600 MHz, CDCl 3 ): δ 11.31 (s, 1H), 7.71 (br, s, 1H), 7.56-7.50 (m, 2H), 7.49 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.41-7.36 (m, 2H), 7.27-7.20 (m, 1H), 7.01 (dd, J = 7.9, 1.0 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 6.95-6.87 (m, 2H), 6.70 (dd, J = 8.3, 8.2 Hz, 1H), 4.55-4.26 (m, 3H), 3.94 (s, 3H), 3.75 (s, 3H), 3.18 (s, 3H), 3.08-2.97 (m, 1H), 2.87-2.64 (m, 6H), 1.98-1.84 (m, 2H), 1.46 (s, 3H), 1.18-1.05 (m, 2H), 0.85-0.73 ( m, 2H); HRMS (ESI-TOF): C 49 H 46 Cl 2 F 2 I 1 N 12 O 6 S 1 [M + H] + calculated: 1165.1774; found: 1165.1747.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
[実施例23:細胞増殖阻害活性評価(IC50)]
 実施例1~22で得られたハイブリッド型化合物の活性を、細胞生存率の測定に広く利用されるMTTアッセイにより評価した[MTT: 3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド]。このアッセイでは、還元酵素の作用によりMTTから生成するホルマザン色素の量が生存細胞数に比例するため、吸光度測定により細胞生存率を求めることができる。又は、市販の細胞増殖測定キット(Cell Count Reaget SF; ナカライ #755344)を用いて、販売元プロトコールに従って、生細胞数を計測することで増殖阻害活性(IC50)を算出した。
[Example 23: Cell proliferation inhibitory activity evaluation (IC50)]
The activities of the hybrid compounds obtained in Examples 1 to 22 were evaluated by MTT assay, which is widely used to measure cell viability [MTT: 3-(4,5-dimethylthiazol-2-yl)-2 ,5-diphenyltetrazolium bromide]. In this assay, the amount of formazan dye produced from MTT by the action of reductase is proportional to the number of viable cells, so cell viability can be determined by measuring absorbance. Alternatively, the growth inhibitory activity (IC50) was calculated by counting the number of living cells using a commercially available cell proliferation measurement kit (Cell Count Reaget SF; Nacalai #755344) according to the manufacturer's protocol.
 96ウェルプレートを用いて、H358細胞(5×103cells/well)を培地(RPMI-1640、10%ウシ胎児血清添加)(100 μL/well)中で24時間培養した。各ウェルにハイブリッド型化合物又は対照化合物(トラメチニブ)の培地溶液(100 μL、0.2%以下のジメチルスルホキシド含有)を添加し、72時間培養後、各ウェルにMTT溶液(50 μL、2 mg/mL)を添加した。2時間後、各ウェルの上清を除去し、残渣にジメチルスルホキシド(50 μL)を添加した。マイクロプレートリーダーを用いて吸光度(570 nm)を測定し、陰性対照(100%)に対する吸光度の百分率を細胞生存率として算出した。各ハイブリッド型化合物又は対照化合物の濃度を変えて、複数回実験を繰り返すことにより、細胞生存率50%となる各ハイブリッド型化合物又は対照化合物の濃度を求め、該濃度をIC50とした。各ハイブリッド型化合物又は対照化合物におけるIC50を、以下の表1に示す。 H358 cells (5×10 3 cells/well) were cultured in a medium (RPMI-1640, supplemented with 10% fetal bovine serum) (100 μL/well) for 24 hours using a 96-well plate. A medium solution (100 μL, containing 0.2% or less dimethyl sulfoxide) of the hybrid compound or control compound (trametinib) was added to each well, and after culturing for 72 hours, MTT solution (50 μL, 2 mg/mL) was added to each well. was added. After 2 hours, the supernatant of each well was removed and dimethyl sulfoxide (50 μL) was added to the residue. Absorbance (570 nm) was measured using a microplate reader, and the percentage of absorbance relative to the negative control (100%) was calculated as cell viability. By repeating the experiment multiple times by changing the concentration of each hybrid compound or control compound, the concentration of each hybrid compound or control compound at which the cell survival rate was 50% was determined, and this concentration was defined as IC50. The IC50 for each hybrid compound or control compound is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
 表1より、いずれのハイブリッド型化合物も、細胞増殖阻害活性を有することが示唆された。また、一部のハイブリッド型化合物は、トラメチニブと同等以上の細胞増殖阻害活性を有することが分かった。 Table 1 suggested that all hybrid compounds had cell proliferation inhibitory activity. In addition, some hybrid compounds were found to have cell proliferation inhibitory activity equivalent to or higher than that of trametinib.
[実施例24:Akt阻害活性評価]
 市販のAktキナーゼ活性測定キット(Akt Kinase Activity Kit, Catalog # ADI-EKS-400A, Enzo Lifescience社製)を用いて、ハイブリッド型化合物((II-1)-(III-1(m=5, n=0))-(I)、(II-3)-(III-1(m=5, n=0))-(I)、(II-4)-(III-1(m=5, n=0))-(I)、(II-1)-(III-3(r=1))-(I)、(II-3)-(III-3(r=1))-(I)、(II-4)-(III-3(r=1))-(I)、(II-1)-(III-4)-(I)、(II-3)-(III-4)-(I)、(II-4)-(III-4)-(I)、(II-4)-(III-1(m=2, n=1))-(I))及び薬剤(アフレセルチブ、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン、2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカン)のAkt阻害活性を評価した。陰性対照(化合物無添加)のAkt活性を100%として、IC50となる、各ハイブリッド型化合物及び薬剤の濃度(μM)を表2に示した。IC50となる濃度が低いほどハイブリッド型化合物又は薬剤のAkt活性の阻害が強いことを表す。
[Example 24: Akt inhibitory activity evaluation]
A hybrid compound ((II-1)-(III-1(m=5, n =0))-(I), (II-3)-(III-1(m=5, n=0))-(I), (II-4)-(III-1(m=5, n =0))-(I), (II-1)-(III-3(r=1))-(I), (II-3)-(III-3(r=1))-(I) , (II-4)-(III-3(r=1))-(I), (II-1)-(III-4)-(I), (II-3)-(III-4)- (I), (II-4)-(III-4)-(I), (II-4)-(III-1(m=2, n=1))-(I)) and drugs (aflesertib, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine, 2-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-2 ,8-diazaspiro[4.5]decane) was evaluated for its Akt inhibitory activity. Table 2 shows the concentration (μM) of each hybrid type compound and drug, which is the IC50, assuming that the Akt activity of the negative control (no compound added) is 100%. The lower the IC50 concentration, the stronger the inhibition of Akt activity by the hybrid compound or drug.
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
 その結果、リンカー部が(III-3(r=1))又は(III-1(m=2, n=1))である場合、薬剤と同程度のAkt阻害活性を有していることが示唆された。 As a result, when the linker part is (III-3(r=1)) or (III-1(m=2, n=1)), it was found that it had the same level of Akt inhibitory activity as the drug. It was suggested.
[実施例25:細胞増殖阻害活性評価(IC90)]
 ハイブリッド型化合物((II-4)-(III-1(m=2, n=1))-(I)、(II-4)-(III-3(r=1))-(I)、(II-1)-(III-3(r=3))-(I)、(II-4)-(III-4)-(I))又は薬剤(トラメチニブ)の細胞増殖阻害活性(IC90)を評価した。実施例23と同様の条件でH358細胞の培養を開始し、ハイブリッド型化合物又は薬剤添加前の培養期間を1日~2日延ばし、プレート底面でH358細胞がsemi-confluentになった時に、各ハイブリッド型化合物又は薬剤の培地溶液(100 μL、0.2%以下のジメチルスルホキシド含有)を添加し、48時間培養した。市販の細胞増殖測定キット(Cell Count Reaget SF; ナカライ #755344)を用いて、販売元プロトコールに従って、生細胞数を450nm 吸光度で算出した。化合物無添加の生細胞数の吸光度に対して、その10%の吸光度の薬剤濃度をIC90濃度として算出し、以下の表3に示した。比較のために、この培養及び薬剤添加条件におけるIC50濃度(50%吸光度の薬剤濃度)を求めた。この同一試験内におけるIC90/IC50値を算出した。
[Example 25: Cell proliferation inhibitory activity evaluation (IC90)]
Hybrid compound ((II-4)-(III-1(m=2, n=1))-(I), (II-4)-(III-3(r=1))-(I), Cell proliferation inhibitory activity (IC90) of (II-1)-(III-3(r=3))-(I), (II-4)-(III-4)-(I)) or the drug (trametinib) was evaluated. Culture of H358 cells was started under the same conditions as in Example 23, and the culture period before adding the hybrid compound or drug was extended for 1 to 2 days. When the H358 cells became semi-confluent at the bottom of the plate, each hybrid A medium solution (100 μL, containing 0.2% or less dimethyl sulfoxide) of the type compound or drug was added and cultured for 48 hours. Using a commercially available cell proliferation measurement kit (Cell Count Reaget SF; Nacalai #755344), the number of viable cells was calculated by absorbance at 450 nm according to the manufacturer's protocol. The drug concentration at 10% of the absorbance of the number of living cells without addition of the compound was calculated as the IC90 concentration, and is shown in Table 3 below. For comparison, the IC50 concentration (drug concentration at 50% absorbance) under these culture and drug addition conditions was determined. IC90/IC50 values within this same test were calculated.
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
 同一条件にて検出したIC90濃度は、ハイブリッド型化合物((II-4)-(III-3(r=1))-(I)、(II-1)-(III-3(r=3))-(I)、(II-4)-(III-4)-(I))において、トラメチニブよりも低値を示した。また算出したIC90/IC50値を指標にすると、トラメチニブはハイブリッド化合物に比べ、生細胞数を10%まで減少させるために、IC50濃度の100倍程度の濃度で用いる必要があることが示された。一方、ハイブリッド型化合物はIC50濃度に近い濃度域で、生細胞数を十分に低下させることが示唆された。 The IC90 concentration detected under the same conditions is the hybrid type compound ((II-4)-(III-3(r=1))-(I), (II-1)-(III-3(r=3) )-(I), (II-4)-(III-4)-(I)) showed lower values than trametinib. Furthermore, using the calculated IC90/IC50 value as an index, it was shown that trametinib needs to be used at a concentration approximately 100 times the IC50 concentration in order to reduce the number of viable cells by 10% compared to the hybrid compound. On the other hand, it was suggested that the hybrid compound sufficiently reduces the number of viable cells in a concentration range close to the IC50 concentration.
[実施例26:マウス血中濃度試験]
 本発明のハイブリッド型化合物((II-1)-(III-1(m=5, n=0))-(I)、(II-3)-(III-1(m=5, n=0))-(I)、及び(II-1)-(III-3(r=1))-(I))のマウスの血中濃度の推移を評価した。
[Example 26: Mouse blood concentration test]
Hybrid compound of the present invention ((II-1)-(III-1(m=5, n=0))-(I), (II-3)-(III-1(m=5, n=0 ))-(I) and (II-1)-(III-3(r=1))-(I)) in the blood of mice was evaluated.
 ハイブリッド型化合物と対比するために、化合物(MK2206及びトラメチニブ混合物1(MK2206:トラメチニブ(重量比)=50:50)、MK2206及びトラメチニブ混合物2(MK2206:トラメチニブ(重量比)=50:50)、アフレセルチブ及びトラメチニブ混合物1(アフレセルチブ:トラメチニブ(重量比)=50:50)、アフレセルチブ及びトラメチニブ混合物2(アフレセルチブ:トラメチニブ(重量比)=50:50))を使用した。 For comparison with hybrid compounds, compounds (MK2206 and trametinib mixture 1 (MK2206: trametinib (weight ratio) = 50:50), MK2206 and trametinib mixture 2 (MK2206: trametinib (weight ratio) = 50:50), aflesertib and trametinib mixture 1 (aflesertib: trametinib (weight ratio) = 50:50) and aflesertib and trametinib mixture 2 (aflesertib: trametinib (weight ratio) = 50:50).
 ハイブリッド型化合物又は前記化合物を、20 μg/100 μLの量で含むin vivo投与液(2% DMSO, 1% Tween-20, PBS)を調製した。Balb/c(nu/nu)マウス(メス、8週齢;日本クレア)2匹を1群として、前記in vivo投与液を、1.0 mg/kg(ca. 20 μg/20g/100 μL)の用量で、マウスの背部皮下に投与した。 An in vivo administration solution (2% DMSO, 1% Tween-20, PBS) containing the hybrid compound or the above compound in an amount of 20 μg/100 μL was prepared. The above in vivo administration solution was administered at a dose of 1.0 mg/kg (ca. 20 μg/20g/100 μL) to two groups of Balb/c (nu/nu) mice (female, 8 weeks old; CLEA Japan). It was administered subcutaneously to the back of mice.
 投与後、5 min, 15 min, 30 min, 60 min, 2 hr, 4.5 hr, 及び25 hr経過後に頬下採血し、クエン酸溶液を×1/10量添加し氷冷した。冷却遠心機にて、3000 rpmで10分遠心し、上清を血漿画分として、LC-MS解析するまで-80 ℃で保管した。 After administration, 5 min, 15 min, 30 min, 60 min, 2 hr, 4.5 hr, and 25 hr later, subbuccal blood was collected, and 1/10 volume of citric acid solution was added and cooled on ice. Centrifugation was performed at 3000 rpm for 10 minutes in a refrigerated centrifuge, and the supernatant was stored as a plasma fraction at -80°C until LC-MS analysis.
 -80 ℃で保管した血漿画分を解凍し、4 ℃で、該血漿画分10 μLに、PBS 10 μLを加え、150 nM イマチニブ(Imatinib)と0.1% ギ酸を含むアセトニトリル60 μLを加えてよく撹拌した後、1500 rpmで5分遠心した。その上清を回収して、LC-MS/MSにて定量した。 Thaw the plasma fraction stored at -80 °C and add 10 μL of PBS and 60 μL of acetonitrile containing 150 nM Imatinib and 0.1% formic acid to 10 μL of the plasma fraction at 4 °C. After stirring, the mixture was centrifuged at 1500 rpm for 5 minutes. The supernatant was collected and quantified by LC-MS/MS.
 なお、前記ハイブリッド型化合物及び前記化合物について、事前に所定量を対照マウス血漿に添加し、イマチニブを内部標準とした添加回収試験を行い、検量線を作製することにより、各採血時の血中濃度を定量した。前記化合物のトラメチニブの血中濃度推移を図1に示し、前記化合物のアフレセルチブの血中濃度推移を図2に示し、(II-1)-(III-1(m=5, n=0))-(I)の血中濃度を図3に示し、(II-3)-(III-1(m=5, n=0))-(I)の血中濃度を図4に示し、(II-1)-(III-3(r=1))-(I)の血中濃度を図5に示す。前記ハイブリッド型化合物及び前記化合物の血中濃度の半減期(t1/2)表4に示す。 In addition, for the above hybrid compound and the above compound, a predetermined amount was added to control mouse plasma in advance, a spike recovery test was performed using imatinib as an internal standard, and a calibration curve was created to determine the blood concentration at each blood collection. was quantified. The blood concentration transition of the compound trametinib is shown in FIG. 1, and the blood concentration transition of the compound aflesertib is shown in FIG. 2, (II-1)-(III-1(m=5, n=0)) The blood concentration of -(I) is shown in Figure 3, the blood concentration of (II-3)-(III-1(m=5, n=0))-(I) is shown in Figure 4, and the blood concentration of (II Figure 5 shows the blood concentration of -1)-(III-3(r=1))-(I). The half-life (t 1/2 ) of the hybrid compound and the blood concentration of the compound are shown in Table 4.
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
 前記表4の結果から算出したトラメチニブの半減期の平均は744分であり、アフレセルチブの半減期の平均は191分であった。トラメチニブと、アフレセルチブや、MK2206等のAkt阻害薬とを併用した場合には、両者の半減期が異なるといった問題点が考えられるが、ハイブリッド型化合物とすることにより、当該問題を解決することができると考えられる。また、ハイブリッド型化合物の半減期はアフレセルチブより長く、有用性が高いと考えられる。なお、LC-MS/MSの測定条件は以下のものを採用した。 The average half-life of trametinib calculated from the results in Table 4 above was 744 minutes, and the average half-life of aflesertib was 191 minutes. When trametinib is used in combination with Akt inhibitors such as aflesertib or MK2206, there may be a problem such as the half-lives of the two being different, but this problem can be resolved by creating a hybrid compound. it is conceivable that. Furthermore, the half-life of the hybrid compound is longer than that of aflesertib, and it is considered to be more useful. Note that the following measurement conditions for LC-MS/MS were adopted.
 LC-MS/MS条件
・使用カラム:Shiseido CAPCELL PAK C18 Type : MGIII 3 μm
(Size : 2.0 mm I.D. x 50 mm、Cat. No. 92744、Col. No. A19IE01366)
・流速:0.4000 mL/分
・カラムオーブン温度:40 ℃
LC-MS/MS conditions/Column used: Shiseido CAPCELL PAK C18 Type: MGIII 3 μm
(Size: 2.0 mm ID x 50 mm, Cat. No. 92744, Col. No. A19IE01366)
・Flow rate: 0.4000 mL/min ・Column oven temperature: 40 ℃
[実施例27:Hybrid化合物のH-358担がんマウス増殖阻害効果の評価試験]
 本発明のハイブリッド型化合物((II-1)-(III-1(m=5, n=0))-(I)及び(II-1)-(III-3(r=1))-(I))を、In vivo担がんモデルで評価した。ハイブリッド型化合物と対比するために、トラメチニブを使用した。
[Example 27: Evaluation test of hybrid compound's growth inhibition effect on H-358 tumor-bearing mice]
Hybrid compounds of the present invention ((II-1)-(III-1(m=5, n=0))-(I) and (II-1)-(III-3(r=1))-( I)) was evaluated in an in vivo tumor-bearing model. Trametinib was used to contrast the hybrid compound.
 培養したH358細胞を、Balb/c(nu/nu)マウス(メス、7週齢;日本クレア)の腹側左右皮下にそれぞれ5×106個ずつ、Matrigel共存下で移植した。各移植部位の腫瘍径を計測して、腫瘍増大の観察を、マウスを4群に分けて実施した。 The cultured H358 cells were each subcutaneously transplanted into the left and right ventral sides of Balb/c (nu/nu) mice (female, 7 weeks old; Nippon Clea) in the presence of Matrigel. The tumor diameter at each implantation site was measured and tumor growth was observed by dividing the mice into four groups.
 各マウスに薬液を上背部皮下に投与した。投与間隔は3回/週(2~3日に1回投与)として、ハイブリッド型化合物の腫瘍増殖抑制作用をトラメチニブ、及びvehicleと比較した。薬液は、2% DMSOと1% Tween-20とを含むPBSにハイブリッド型化合物又はトラメチニブが下記用量、容量となるように溶解させたものを使用した。ハイブリッド型化合物又はトラメチニブを用いない2% DMSOと1% Tween-20とを含むPBSを投与する態様をvehicleと記した。 The drug solution was administered subcutaneously to the upper back of each mouse. The tumor growth suppressive effect of the hybrid compound was compared with that of trametinib and vehicle, with the administration interval being 3 times/week (administered once every 2 to 3 days). The drug solution used was a hybrid compound or trametinib dissolved in PBS containing 2% DMSO and 1% Tween-20 at the following doses and volumes. The embodiment in which PBS containing 2% DMSO and 1% Tween-20 without using the hybrid compound or trametinib was administered was described as a vehicle.
 薬液は、薬剤が1 μmol/kg用量となるように、5 mL/kgの容量で投与した。なお、vehicleでは、同量の液体(2% DMSOと1% Tween-20とを含むPBS)を投与した。腫瘍径を毎週計測し、5週間投与した結果を図6に示した。なお、実施例27では、各群のn数を8として試験を行い、最大及び最小を示した試験を除外し、n数を6として、結果を求めた。 The drug solution was administered in a volume of 5 mL/kg so that the drug dose was 1 μmol/kg. In the vehicle, the same amount of liquid (PBS containing 2% DMSO and 1% Tween-20) was administered. The tumor diameter was measured every week, and the results of administration for 5 weeks are shown in FIG. In Example 27, the test was conducted with the n number of each group being 8, and the tests that showed the maximum and minimum values were excluded, and the results were obtained with the n number being 6.
 トラメチニブ及びハイブリッド型化合物において、vehicleと比べて腫瘍増大の抑制が観察され、5週においてトラメチニブと、ハイブリッド型化合物とは同等の抗がん効果を示した。該試験により、ハイブリッド型化合物in vivo有効性が確認された。 Suppression of tumor growth was observed with trametinib and the hybrid compound compared to vehicle, and at 5 weeks, trametinib and the hybrid compound showed equivalent anticancer effects. The test confirmed the in vivo efficacy of the hybrid compound.
 本発明により、Ras変異がんに対して有効に作用できる新規な抗がん剤を提供することができる。 According to the present invention, it is possible to provide a novel anticancer agent that can effectively act against Ras mutant cancer.
 本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。また、本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。 The upper and/or lower limits of the numerical ranges described herein can be arbitrarily combined to define a preferred range. For example, a preferable range can be defined by arbitrarily combining the upper and lower limits of a numerical range, a preferable range can be defined by arbitrarily combining the upper limits of a numerical range, and the lower limit of a numerical range Preferred ranges can be defined by arbitrarily combining values. Furthermore, in the present application, a numerical range expressed using the symbol "~" includes each of the numerical values written before and after the symbol "~" as a lower limit value and an upper limit value.
 本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。したがって、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。 Throughout this specification, references to the singular should be understood to include the plural unless specifically stated otherwise. Accordingly, singular articles (e.g., "a," "an," "the," etc. in English) should be understood to also include the plural concept, unless specifically stated otherwise.
 以上、本実施形態を詳述したが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更があっても、それらは本開示に含まれるものである。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
Although the present embodiment has been described in detail above, the specific configuration is not limited to this embodiment, and even if there are design changes within the scope of the gist of the present disclosure, they are included in the present disclosure. It is something.
All publications, patents, and patent applications cited herein are incorporated by reference in their entirety.

Claims (9)

  1.  トラメチニブと、Akt阻害薬とをリンカーを介して連結してなるハイブリッド型化合物又はその塩。 A hybrid compound formed by linking trametinib and an Akt inhibitor via a linker, or a salt thereof.
  2.  Akt阻害薬がアフレセルチブ、MK2206、1-(7H-ピロロ[2,3-d]ピリミジン-4-イル)ピペリジン-4-アミン又は2-(5-クロロ-7H-ピロロ[2,3-d]ピリミジン-4-イル)-2,8-ジアザスピロ[4.5]デカンである、請求項1記載のハイブリッド型化合物又はその塩。 Akt inhibitors include aflesertib, MK2206, 1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amine or 2-(5-chloro-7H-pyrrolo[2,3-d] The hybrid compound or a salt thereof according to claim 1, which is pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane.
  3.  リンカーが脂肪族鎖、オキシエチレン基、フラン環、及びトリアジン環から選択される少なくとも1種の構造を有するリンカーである、請求項1記載のハイブリッド型化合物又はその塩。 The hybrid compound or salt thereof according to claim 1, wherein the linker has at least one structure selected from an aliphatic chain, an oxyethylene group, a furan ring, and a triazine ring.
  4.  前記トラメチニブと、Akt阻害薬との間のリンカー長が、原子数で2~25個である、請求項1記載のハイブリッド型化合物又はその塩。 The hybrid compound or salt thereof according to claim 1, wherein the linker length between the trametinib and the Akt inhibitor is 2 to 25 atoms.
  5.  下記式(I)で表されるトラメチニブ部と、下記式(II-1)~(II-4)から選択されるAkt阻害薬部と、下記式(III-1)~(III-4)から選択されるリンカー部とを有するハイブリッド型化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)において、*はリンカー部との結合部位である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II-1)~(II-4)において、**はリンカー部との結合部位である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(III-1)~(III-4)において、*はトラメチニブ部との結合部位であり、**はAkt阻害薬部との結合部位であり、
    式(III-1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはなく、
    式(III-2)において、qは0又は1であり、
    式(III-3)において、rは1~4の整数である。)
    A trametinib part represented by the following formula (I), an Akt inhibitor part selected from the following formulas (II-1) to (II-4), and a trametinib part selected from the following formulas (III-1) to (III-4) A hybrid compound having a selected linker moiety or a salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), * is the binding site with the linker part.)
    Figure JPOXMLDOC01-appb-C000002
    (In formulas (II-1) to (II-4), ** is the binding site with the linker part.)
    Figure JPOXMLDOC01-appb-C000003
    (In formulas (III-1) to (III-4), * is the binding site with the trametinib moiety, ** is the binding site with the Akt inhibitor moiety,
    In formula (III-1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time,
    In formula (III-2), q is 0 or 1,
    In formula (III-3), r is an integer from 1 to 4. )
  6.  下記式(1)~(14)から選択される構造を有する、ハイブリッド型化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
    Figure JPOXMLDOC01-appb-C000005
    [式(2)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
    Figure JPOXMLDOC01-appb-C000006
    [式(3)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
    Figure JPOXMLDOC01-appb-C000007
    [式(4)において、mは0~15の整数であり、nは0~3の整数であり、mとnとが同時に0になることはない。]
    Figure JPOXMLDOC01-appb-C000008
    [式(5)において、qは0又は1である。]
    Figure JPOXMLDOC01-appb-C000009
    [式(6)において、qは0又は1である。]
    Figure JPOXMLDOC01-appb-C000010
    [式(7)において、rは1~4の整数である。]
    Figure JPOXMLDOC01-appb-C000011
    [式(8)において、rは1~4の整数である。]
    Figure JPOXMLDOC01-appb-C000012
    [式(9)において、rは1~4の整数である。]
    Figure JPOXMLDOC01-appb-C000013
    [式(10)において、rは1~4の整数である。]
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    A hybrid compound or a salt thereof having a structure selected from the following formulas (1) to (14).
    Figure JPOXMLDOC01-appb-C000004
    [In formula (1), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
    Figure JPOXMLDOC01-appb-C000005
    [In formula (2), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
    Figure JPOXMLDOC01-appb-C000006
    [In formula (3), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
    Figure JPOXMLDOC01-appb-C000007
    [In formula (4), m is an integer from 0 to 15, n is an integer from 0 to 3, and m and n are never 0 at the same time. ]
    Figure JPOXMLDOC01-appb-C000008
    [In formula (5), q is 0 or 1. ]
    Figure JPOXMLDOC01-appb-C000009
    [In formula (6), q is 0 or 1. ]
    Figure JPOXMLDOC01-appb-C000010
    [In formula (7), r is an integer from 1 to 4. ]
    Figure JPOXMLDOC01-appb-C000011
    [In formula (8), r is an integer from 1 to 4. ]
    Figure JPOXMLDOC01-appb-C000012
    [In formula (9), r is an integer from 1 to 4. ]
    Figure JPOXMLDOC01-appb-C000013
    [In formula (10), r is an integer from 1 to 4. ]
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
  7.  請求項1~6のいずれか1項記載のハイブリッド型化合物又はその塩を有効成分とする、Ras変異癌の治療剤。 A therapeutic agent for Ras mutant cancer, which comprises the hybrid compound according to any one of claims 1 to 6 or a salt thereof as an active ingredient.
  8.  請求項7記載の治療剤を含有する医薬組成物。 A pharmaceutical composition containing the therapeutic agent according to claim 7.
  9.  Ras変異癌の治療のための更なる薬剤を含有する、請求項8記載の医薬組成物。 9. The pharmaceutical composition according to claim 8, comprising a further agent for the treatment of Ras mutant cancer.
PCT/JP2023/021442 2022-06-09 2023-06-09 Hybrid type compound or salt thereof WO2023238919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093574 2022-06-09
JP2022093574A JP2023180347A (en) 2022-06-09 2022-06-09 Hybrid type compound or salt thereof

Publications (1)

Publication Number Publication Date
WO2023238919A1 true WO2023238919A1 (en) 2023-12-14

Family

ID=89118378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021442 WO2023238919A1 (en) 2022-06-09 2023-06-09 Hybrid type compound or salt thereof

Country Status (2)

Country Link
JP (1) JP2023180347A (en)
WO (1) WO2023238919A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519593A (en) * 2016-07-06 2019-07-11 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan Multifunctional inhibitors of MEK / PI3K and mTOR / MEK / PI3K biological pathways, and methods of treatment with the same multifunctional inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519593A (en) * 2016-07-06 2019-07-11 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan Multifunctional inhibitors of MEK / PI3K and mTOR / MEK / PI3K biological pathways, and methods of treatment with the same multifunctional inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU Y. LINDA, MAACHANI UDAY BHANU, SCHWEITZER MELANIE, SINGH RANJODH, WANG MELINDA, CHANG RAYMOND, SOUWEIDANE MARK M.: "Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells", TRANSLATIONAL ONCOLOGY, NEOPLASIA PRESS, UNITED STATES, vol. 10, no. 2, 1 April 2017 (2017-04-01), United States , pages 221 - 228, XP093114743, ISSN: 1936-5233, DOI: 10.1016/j.tranon.2016.12.008 *
YOSHIDA TAKAYUKI, KAKEGAWA JUNYA, YAMAGUCHI TAKAYUKI, HANTANI YOSHIJI, OKAJIMA NOBUYUKI, SAKAI TOSHIYUKI, WATANABE YOSHIHIRO, NAKA: "Identification and Characterization of a Novel Chemotype MEK Inhibitor Able to Alter the Phosphorylation State of MEK1/2", ONCOTARGET, IMPACT JOURNALS LLC, UNITED STATES, vol. 3, no. 12, 31 December 2012 (2012-12-31), United States , pages 1533 - 1545, XP093114742, ISSN: 1949-2553, DOI: 10.18632/oncotarget.747 *

Also Published As

Publication number Publication date
JP2023180347A (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6849711B2 (en) KRAS G12C covalent inhibitor
CN110177788B (en) Compounds as BCL-2 selective apoptosis inducers
KR20220119088A (en) KRAS mutant protein inhibitor
TWI527800B (en) 1-(arylmethyl)quinazoline-2,4(1h,3h)-diones as parp inhibitors and the use thereof
WO2016104617A1 (en) Quinoline derivative
JP6407955B2 (en) Coumarin derivatives and methods of use in treating hyperproliferative diseases
WO2000044726A1 (en) 2h-phthalazin-1-one derivatives and drugs comprising these derivatives as the active ingredient
KR20130008557A (en) Deuterated pyrrolopyrimidine compounds as inhibitors of cdk4/6
CN102471329A (en) Furazanobenzimidazoles as prodrugs to treat neoplastic or autoimmune diseases
US10851054B2 (en) Derivatives of indole for the treatment of cancer, viral infections and lung diseases
JP2016515997A (en) Deuterated phenylaminopyrimidine compound and drug composition containing the compound
WO2020092638A1 (en) Heterocyclic compounds as bet inhibitors
ES2351393T3 (en) SULPHOPIRROLES
KR102374033B1 (en) specific protein kinase inhibitors
Jiang et al. Discovery of 2-(cyclopropanecarboxamido)-N-(5-((1-(4-fluorobenzyl) piperidin-4-yl) methoxy) pyridin-3-yl) isonicotinamide as a potent dual AChE/GSK3β inhibitor for the treatment of Alzheimer's disease: Significantly increasing the level of acetylcholine in the brain without affecting that in intestine
CN110551102B (en) ALK covalent inhibitors and uses thereof
WO2023238919A1 (en) Hybrid type compound or salt thereof
Wu et al. Development and structure-activity relationship of tacrine derivatives as highly potent CDK2/9 inhibitors for the treatment of cancer
TW202116734A (en) Small molecule inhibitors of acetyl coenzyme a synthetase short chain 2 (acss2)
JP2005524671A (en) New azepane derivatives
KR20140044790A (en) Piperazinedione compounds
JP2018513835A (en) Anticancer agent containing aminoacetonitrile compound as active ingredient
CN112279863A (en) Conjugate of Hsp90 inhibitor and camptothecin derivative as well as preparation method and application thereof
CA3106118A1 (en) Improved compounds for myc inhibition
WO2023031246A1 (en) Substituted thiophene compounds as d-dopachrome tautomerase inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819899

Country of ref document: EP

Kind code of ref document: A1