WO2023238672A1 - Actuator driver, and camera module and electronic device using same - Google Patents

Actuator driver, and camera module and electronic device using same Download PDF

Info

Publication number
WO2023238672A1
WO2023238672A1 PCT/JP2023/019374 JP2023019374W WO2023238672A1 WO 2023238672 A1 WO2023238672 A1 WO 2023238672A1 JP 2023019374 W JP2023019374 W JP 2023019374W WO 2023238672 A1 WO2023238672 A1 WO 2023238672A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
actuator driver
position detection
correction
control signal
Prior art date
Application number
PCT/JP2023/019374
Other languages
French (fr)
Japanese (ja)
Inventor
淳 前出
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023238672A1 publication Critical patent/WO2023238672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type
    • H02P7/025Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type the DC motors being of the moving coil type, e.g. voice coil motors

Definitions

  • the present disclosure relates to an actuator driver and a camera module using the same.
  • a camera module with optical image stabilization includes an image sensor, a lens movable in an XY plane parallel to the imaging surface of the image sensor (referred to as an image stabilization lens), an actuator that positions the lens, and an actuator driver that controls the actuator. Equipped with.
  • a shake detection means such as a gyro sensor
  • the actuator driver drives the actuator to shift the lens so that the shake is canceled out.
  • MM Microving Magnet
  • a plurality of voice coils are arranged along the movable direction of a mover having a magnet in order to lengthen the stroke length.
  • the magnitude or direction of the propulsive force generated by one voice coil changes depending on the position of the mover. Since the propulsive force of the actuator is the sum of propulsive forces generated by a plurality of voice coils, the propulsive force varies depending on the position of the movable element.
  • the present disclosure has been made under such circumstances, and one of its exemplary objectives is to provide an actuator driver that reduces the position dependence of propulsive force.
  • An aspect of the present disclosure relates to an actuator driver that drives an actuator that positions a movable part.
  • the actuator is an MM (Moving Magnet) type voice coil motor that includes a mover including a magnet and a plurality of voice coils arranged along the moving direction of the mover.
  • the actuator driver includes a drive section that drives the plurality of voice coils according to a control signal.
  • the drive section corresponds to a plurality of voice coils, each of which corrects a control signal according to a position detection signal indicating the position of the movable element, and a plurality of voice coils, each of which , and a plurality of drivers that drive corresponding voice coils according to outputs of corresponding correction sections.
  • the position of the movable part can be detected in combination with an actuator having a long stroke length.
  • FIG. 1 is a block diagram of a camera module equipped with an image stabilization function.
  • FIG. 2 is a block diagram of the actuator driver.
  • FIG. 3 is a block diagram of the actuator driver according to the embodiment.
  • FIG. 4 is a diagram showing propulsive forces generated by each of a plurality of voice coils.
  • FIG. 5 is a diagram illustrating correction of the propulsive force by the drive unit.
  • FIG. 6 is a block diagram showing an example of the configuration of the correction section.
  • FIG. 7 is a block diagram of an actuator driver according to Modification 1.
  • An actuator driver drives an actuator that positions a movable part.
  • the actuator is an MM (Moving Magnet) type voice coil motor that includes a mover including a magnet and a plurality of voice coils arranged along the moving direction of the mover.
  • the actuator driver includes a drive section that drives the plurality of voice coils according to a control signal.
  • the drive section corresponds to a plurality of voice coils, each of which corrects a control signal according to a position detection signal indicating the position of the movable element, and a plurality of voice coils, each of which , a plurality of drivers that drive corresponding voice coils according to outputs of corresponding correction sections.
  • each of the plurality of correction units may generate a correction gain according to the position detection signal, and may multiply the control signal by the correction gain.
  • the actuator driver may further include a servo controller that generates a control signal so that the position detection signal approaches a target value.
  • the servo controller may include an error detector that generates an error between the target value and the position detection signal, and a proportional-integral controller that receives the error.
  • the actuator driver may be monolithically integrated on one semiconductor substrate.
  • “Integration” includes cases where all of the circuit components are formed on a semiconductor substrate, cases where the main components of the circuit are integrated, and some of the components are integrated to adjust the circuit constants.
  • a resistor, a capacitor, etc. may be provided outside the semiconductor substrate.
  • a camera module includes an image sensor, an image stabilization mechanism provided on an incident optical path to the image sensor, an actuator that positions a movable part of the image stabilization mechanism, and one of the actuator drivers described above. and may also be provided.
  • a state in which member A is connected to member B refers to not only a case where member A and member B are physically directly connected, but also a state in which member A and member B are electrically connected. This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
  • a state in which member C is provided between member A and member B refers to the case where member A and member C or member B and member C are directly connected, This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
  • FIG. 1 is a block diagram of a camera module equipped with an image stabilization function.
  • the camera module 100 includes an image sensor 102, an image stabilization lens 104, a first actuator 106_1, a second actuator 106_2, an actuator driver 200, position detection elements 110_1, 110_2, a shake detection means 112, and a CPU (Central Processing Unit) 114. .
  • the camera module 100 also includes an autofocus lens, an actuator, etc., but these are omitted in FIG.
  • the optical axis direction of the camera shake correction lens 104 is assumed to be the Z-axis. Further, when the camera module 100 is in the attitude shown in FIG. 1, the horizontal direction is assumed to be the X axis, and the vertical direction is assumed to be the Y axis.
  • the X axis is also referred to as the first axis, and the Y axis is also referred to as the second axis.
  • the camera shake correction lens 104 is placed on the optical path of light incident on the image sensor 102.
  • the image sensor 102 is a CMOS sensor or CCD, and captures an image transmitted through the camera shake correction lens 104.
  • the camera shake correction lens 104 is supported so as to be movable in the X direction and the Y direction in a plane parallel to the imaging surface of the image sensor 102 (XY plane).
  • the first actuator 106_1 positions the movable part 105 including the camera shake correction lens 104 in the first axis (X-axis) direction
  • the second actuator 106_2 positions the movable part 105 in the second axis (Y-axis) direction.
  • the first actuator 106_1 and the second actuator 106_2 are linear actuators, and for example, voice coil motors are used.
  • the movable portion 105 including the camera shake correction lens 104 has a movable range mechanically restricted in each of the first axis direction and the second axis direction. The end of the movable range is called the mechanical end. Mechanical ends exist in the positive direction and negative direction in the first axis direction, and mechanical ends exist in the positive direction and the negative direction in the second axis direction as well.
  • the shake detection means 112 detects shake of the camera module 100 and generates a shake detection signal S1 indicating the shake.
  • the shake detection means 112 is, for example, a gyro sensor, and detects the angular velocity ⁇ X around the X axis, the angular velocity ⁇ Y around the Y axis, and the angular velocity ⁇ Z around the Z axis of the camera module 100.
  • rotation (shake) around the Y-axis can be corrected
  • the shake detection signal S1 includes angular velocities ⁇ X and ⁇ Y of at least two axes.
  • the actuator driver 200 Based on the shake detection signal S1 detected by the shake detection means 112, the actuator driver 200 generates a target code (position command) indicating a target value of the displacement of the camera shake correction lens 104 so that the shake is canceled out.
  • the actuator driver 200 generates drive signals S2_1 and S2_2 for the first actuator 106_1 and the second actuator 106_2, respectively, based on internally generated target codes.
  • the position detection elements 110_1 and 110_2 respectively generate position detection signals S3_1 and S3_2 indicating the position (displacement amount) PX in the first axis direction and the position (displacement amount) PY in the second axis direction of the camera shake correction lens 104. do.
  • a Hall sensor or the like can be used as the position detection element 110.
  • the actuator driver 200 drives the first actuator 106_1 and the second actuator 106_2 so that camera shake is corrected. Specifically, in the first mode, the actuator driver 200 operates so that the position PX of the camera shake correction lens 104 indicated by the first position detection signal S3_1 matches the target position PX (REF) indicated by the target code.
  • the drive signal S2_1 is feedback-controlled.
  • the actuator driver 200 performs feedback control on the drive signal S2_2 so that the position P Y of the camera shake correction lens 104 indicated by the second position detection signal S3_2 matches the target position P Y (REF) indicated by the target code. do.
  • the above is the overall configuration of the camera module 100. Next, the actuator driver 200 will be explained.
  • FIG. 2 is a block diagram of the actuator driver 200.
  • the actuator driver 200 includes a control section 210, a first drive section 220_1, and a second drive section 220_2.
  • the gyro sensor 112A is the shake detection means 112 in FIG. 1 and detects the angular velocity of the camera module 100.
  • the control unit 210 includes a position command generation unit 212, a first servo controller 230_1, a second servo controller 230_2, a first position detection unit 240_1, and a second position detection unit 240_2.
  • the position command generation unit 212 receives the shake detection signal S1 generated by the gyro sensor 112A, and generates a position indicating the position of the camera shake correction lens 104 that can offset the shake for each of the X-axis and Y-axis. Generate commands X REF and Y REF .
  • the position command generation unit 212 generates the position command X REF by integrating the angular velocity ⁇ X around the X-axis and multiplying it by a predetermined gain.
  • the position command generation unit 212 generates the position command Y REF by integrating the angular velocity ⁇ Y around the Y-axis and multiplying it by a predetermined gain.
  • the position detection signal S3_1 generated by the position detection element 110_1 is input to the first position detection section 240_1.
  • the first position detection unit 240_1 generates a feedback signal XFB indicating the position of the movable element of the actuator 106_1 based on the position detection signal S3_1.
  • the position detection signal S3_2 generated by the position detection element 110_2 is input to the second position detection section 240_2.
  • the second position detection unit 240_2 generates a feedback signal YFB indicating the position of the movable element of the actuator 106_2 based on the position detection signal S3_2.
  • Feedback signals X FB and Y FB indicate the positions of the movable portion 105 in the X direction and Y direction (X coordinate, Y coordinate), respectively.
  • the first servo controller 230_1 generates the control signal S4_1 so that the error between the feedback signal X FB and the position command X REF approaches zero.
  • the first drive unit 220_1 generates a drive signal S2_1 according to the control signal S4_1.
  • the control signal S4_1 is, for example, a current command, and the first drive unit 220_1 supplies the first actuator 106_1 with a drive current having an amount of current according to the control signal S4_1.
  • the control signal S4_1 may be considered as a torque command.
  • the second servo controller 230_2 receives the position detection signal S3_2 generated by the position detection element 110_2 as a feedback signal YFB indicating the Y coordinate of the movable part 105.
  • the second servo controller 230_2 generates the control signal S4_2 so that the error between the feedback signal Y FB and the position command Y REF approaches zero.
  • the second drive unit 220_2 generates a drive signal S2_2 according to the control signal S4_2.
  • the configuration of the actuator driver 200 (220_1, 230_1, 240_1) corresponding to the actuator 106_1 is the same as the configuration (220_2, 230_2, 240_2) of the actuator driver 200 corresponding to the actuator 106_2.
  • FIG. 3 is a block diagram of the actuator driver 200 according to the embodiment.
  • the servo controller 230 in FIG. 3 corresponds to the first servo controller 230_1 or the second servo controller 230_2 in FIG. 2.
  • P in FIG. 3 is X or Y in FIG.
  • the driving unit 220 in FIG. 3 corresponds to the first driving unit 220_1 or the second driving unit 220_2 in FIG. 2.
  • the position detection unit 240 in FIG. 3 corresponds to the first position detection unit 240_1 or the second position detection unit 240_2 in FIG. 2.
  • Actuator 120 in FIG. 3 corresponds to actuator 106 in FIG. 2.
  • the actuator 120 is a voice coil motor, and includes a magnet 122 and a plurality of (three in this example) voice coils L1 to L3. Magnet 122 is attached to mover 124. The plurality of voice coils L1 to L3 are provided along the movable direction of the movable element 124.
  • the position detection section 240 generates a position detection signal (feedback signal) PFB based on the output of the position detection element 110.
  • the position detection unit 240 includes an A/D converter that converts the output signal of the position detection element 110 into a digital signal.
  • the position detection unit 240 may further include a correction unit that corrects the position detection signal.
  • the position detection signal PFB is fed back to the servo controller 230.
  • the servo controller 230 includes an error detector 232 and a compensator 234.
  • the error detector 232 generates an error err between the position command P REF and the feedback signal P FB indicating the position of the movable part 105 .
  • Error detector 232 can be configured with a subtracter.
  • the compensator 234 generates a control signal ctrl according to the error err.
  • Compensator 234 is also referred to as a servo filter.
  • the compensator 234 is, for example, a PI (proportional/integral) controller, and adds the value obtained by multiplying the error err by a proportional gain kp and the value obtained by multiplying the integral value of the error err by an integral gain ki, and generates a control signal.
  • ctrl may be generated.
  • Compensator 234 may be a PID (proportional-integral-derivative controller).
  • the drive section 220 includes a plurality of correction sections COMP1 to COMP3 and a plurality of drivers DR1 to DR3.
  • the plurality of correction units COMP1 to COMP3 and the plurality of drivers DR1 to DR3 correspond to the plurality of voice coils L1 to L3.
  • a control signal ctrl is supplied to the plurality of correction units COMP1 to COMP3.
  • the corrected control signal ctrli is supplied to the corresponding driver DRi.
  • the correction unit COMPi generates a correction gain gi according to the position detection signal PFB .
  • the correction unit COMPi then generates the control signal ctrli by multiplying the control signal ctrl by the correction gain gi.
  • ctrli gi ⁇ ctrl
  • the driver DRi drives the corresponding voice coil Li based on the corresponding corrected control signal ctrli.
  • FIG. 4 is a diagram showing propulsive forces F1 to F3 generated by each of the plurality of voice coils L1 to L3.
  • the propulsive force Fi is the propulsive force obtained when the control signal ctrl before correction is input to the driver DRi.
  • the horizontal axis indicates the position P of the mover.
  • the propulsive force of each voice coil Li has a constant value within a certain range Ai, but when it deviates from that range Ai, it decreases and eventually reverses its direction.
  • the range Ai is referred to as a stable output region.
  • FIG. 3 shows a composite propulsive force F SUM that is the sum of a plurality of propulsive forces F1 to F3.
  • the synthetic propulsive force F SUM has position dependence, and the followability and stability differ depending on the position, which is not preferable.
  • the control signal ctrl is corrected so that a constant propulsive force is obtained regardless of the position, that is, so that the unidependence of the composite propulsive force is reduced. be done.
  • FIG. 5 is a diagram illustrating correction of the propulsive force by the drive unit 220.
  • the upper part of FIG. 5 shows the propulsive forces F1 to F3 without correction.
  • correction gains g1 to g3 are shown.
  • the correction gain gi of the i-th correction unit COMPi is determined to take a constant value in a stable output area Ai where a constant propulsive force is obtained, and to be 0 outside the stable output area Ai.
  • the propulsive force Fi' after correction is the propulsive force Fi before correction multiplied by the correction gain gi.
  • the combined propulsive force F SUM which is the sum of the corrected propulsive forces F1' to F3', remains substantially constant regardless of the position P. Note that here, in order to facilitate understanding and simplify the explanation, it is assumed that the composite propulsive force F SUM is constant regardless of the position, but the present disclosure is not limited thereto. In reality, it is difficult to completely eliminate the positional dependence of the resultant propulsive force F SUM , so compared to the resultant propulsive force F SUM without the correction shown in Fig. 4, the resultant propulsive force F SUM after correction is It is sufficient if the positional dependence of ' is small.
  • the position dependence of the propulsive forces F1 to F1 before correction shown in FIG. 5 is an example, and will vary depending on the structure of the actuator 120. Therefore, the correction gains g1 to g3 are not limited to those shown in FIG. 5, and may be determined so that the position dependence of the corrected combined propulsive force F SUM ′ becomes small.
  • FIG. 6 is a block diagram showing an example of the configuration of the correction units COMP1 to COMP3.
  • the lookup table 224 of the correction unit COMPi stores the correspondence relationship between the position detection signal PFB and the correction gain gi, and the correction gain gi corresponding to the current position detection signal PFB is read out and the gain is supplied to circuit 222.
  • the gain circuit 222 multiplies the control signal ctrl by a correction gain gi and outputs a corrected control signal ctrli.
  • the relationship between the position detection signal PFB and the correction gain gi may be converted into a function, and the correction gain gi may be calculated by calculation.
  • Modification 1 In the embodiment, a closed-loop position control system has been described, but the present disclosure is not limited thereto, and the present disclosure is also applicable to an open-loop position control system.
  • FIG. 7 is a block diagram of an actuator driver 200A according to Modification 1.
  • a controller 230A is provided in place of the servo controller 230 in FIG. 3.
  • the controller 230A supplies the position command PREF to the drive unit 220 as a control signal ctrl.
  • Modification 2 In the embodiment, a camera module 100 having an image stabilization mechanism using an image stabilization lens 104 has been described, but the image stabilization mechanism is not limited to one using a lens shift, and the present disclosure also applies to an image stabilization mechanism using a prism. is applicable.
  • each of the plurality of correction units generates a correction gain according to the position detection signal, and multiplies the control signal by the correction gain.
  • the actuator driver according to item 1 or 2 further comprising a servo controller that generates the control signal so that the position detection signal approaches a target value.
  • the servo controller is an error detector that generates an error between the target value and the position detection signal; a proportional-integral controller subject to the error;
  • the present disclosure relates to an actuator driver and a camera module using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

An actuator 120 includes a movable element 124 including a magnet 122, and a plurality of voice coils L1-L3 arranged along the movement direction of the movable element 124. A controller 230 generates a control signal ctrl. A drive unit 220 drives the plurality of voice coils L1-L3 according to the control signal ctrl. A correction unit COMPi of the drive unit 220 corrects the control signal ctrl in accordance with a position detection signal PFB, which corresponds to a voice coil Li and indicates the position of the movable element 124. A driver DRi drives the corresponding voice coil Li according to the output ctrl' of the corresponding correction unit COMPi.

Description

アクチュエータドライバおよびこれを用いたカメラモジュール、電子機器Actuator drivers and camera modules and electronic devices using them
 本開示は、アクチュエータドライバおよびこれを用いたカメラモジュールに関する。 The present disclosure relates to an actuator driver and a camera module using the same.
 近年、スマートフォンなどの電子機器に搭載されるカメラモジュールに、光学手ぶれ補正(OIS:Optical Image Stabilizer)の採用が進められている。光学手ぶれ補正付きのカメラモジュールは、イメージセンサ、イメージセンサの撮像面と平行なXY平面内で移動可能なレンズ(手ブレ補正用レンズと称する)、レンズを位置決めするアクチュエータ、アクチュエータを制御するアクチュエータドライバを備える。ジャイロセンサなどのブレ検出手段によってブレが検出されると、アクチュエータドライバは、ブレが相殺されるようにアクチュエータを駆動し、レンズをシフトさせる。 In recent years, optical image stabilizer (OIS) has been increasingly adopted in camera modules installed in electronic devices such as smartphones. A camera module with optical image stabilization includes an image sensor, a lens movable in an XY plane parallel to the imaging surface of the image sensor (referred to as an image stabilization lens), an actuator that positions the lens, and an actuator driver that controls the actuator. Equipped with. When a shake is detected by a shake detection means such as a gyro sensor, the actuator driver drives the actuator to shift the lens so that the shake is canceled out.
特開2018-138984号公報Japanese Patent Application Publication No. 2018-138984
 MM(Moving Magnet)式のボイスコイルモータにおいて、ストローク長を長くするために、磁石を有する可動子の可動方向に沿って、複数のボイスコイルが配置される。 In an MM (Moving Magnet) type voice coil motor, a plurality of voice coils are arranged along the movable direction of a mover having a magnet in order to lengthen the stroke length.
 ストローク長が長いアクチュエータにおいては、同じ量の駆動電流を供給したときに、ひとつのボイスコイルが発生する推進力の大きさ、あるいはその方向は、可動子の位置によって変化する。アクチュエータの推進力は、複数のボイスコイルが発生する推進力の総和であるため、可動子の位置によって推進力が変動することとなる。 In an actuator with a long stroke length, when the same amount of drive current is supplied, the magnitude or direction of the propulsive force generated by one voice coil changes depending on the position of the mover. Since the propulsive force of the actuator is the sum of propulsive forces generated by a plurality of voice coils, the propulsive force varies depending on the position of the movable element.
 本開示は係る状況においてなされたものであり、その例示的な目的のひとつは、推進力の位置依存性を低減したアクチュエータドライバの提供にある。 The present disclosure has been made under such circumstances, and one of its exemplary objectives is to provide an actuator driver that reduces the position dependence of propulsive force.
 本開示のある態様は、可動部を位置決めするアクチュエータを駆動するアクチュエータドライバに関する。アクチュエータは、磁石を含む可動子と、可動子の可動方向に沿って配置される複数のボイスコイルを含むMM(Moving Magnet)式のボイスコイルモータである。アクチュエータドライバは、制御信号に応じて、複数のボイスコイルを駆動する駆動部と、を備える。駆動部は、複数のボイスコイルに対応し、それぞれが、可動子の位置を示す位置検出信号に応じて、制御信号を補正する、複数の補正部と、複数のボイスコイルに対応し、それぞれが、対応する補正部の出力に応じて、対応するボイスコイルを駆動する複数のドライバと、を備える。 An aspect of the present disclosure relates to an actuator driver that drives an actuator that positions a movable part. The actuator is an MM (Moving Magnet) type voice coil motor that includes a mover including a magnet and a plurality of voice coils arranged along the moving direction of the mover. The actuator driver includes a drive section that drives the plurality of voice coils according to a control signal. The drive section corresponds to a plurality of voice coils, each of which corrects a control signal according to a position detection signal indicating the position of the movable element, and a plurality of voice coils, each of which , and a plurality of drivers that drive corresponding voice coils according to outputs of corresponding correction sections.
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Note that arbitrary combinations of the above components, and mutual substitution of components and expressions among methods, devices, systems, etc., are also effective as aspects of the present invention or the present disclosure. Furthermore, the description in this section (Means for Solving the Problems) does not describe all essential features of the present invention, and therefore, subcombinations of the described features may also constitute the present invention. .
 本開示によれば、長いストローク長を有するアクチュエータとの組み合わせにおいて、可動部の位置を検出できる。 According to the present disclosure, the position of the movable part can be detected in combination with an actuator having a long stroke length.
図1は、手振れ補正機能を備えるカメラモジュールのブロック図である。FIG. 1 is a block diagram of a camera module equipped with an image stabilization function. 図2は、アクチュエータドライバのブロック図である。FIG. 2 is a block diagram of the actuator driver. 図3は、実施形態に係るアクチュエータドライバのブロック図である。FIG. 3 is a block diagram of the actuator driver according to the embodiment. 図4は、複数のボイスコイルそれぞれが発生する推進力を示す図である。FIG. 4 is a diagram showing propulsive forces generated by each of a plurality of voice coils. 図5は、駆動部による推進力の補正を説明する図である。FIG. 5 is a diagram illustrating correction of the propulsive force by the drive unit. 図6は、補正部の構成例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the correction section. 図7は、変形例1に係るアクチュエータドライバのブロック図である。FIG. 7 is a block diagram of an actuator driver according to Modification 1.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Summary of embodiment)
1 provides an overview of some example embodiments of the present disclosure. This Summary is intended to provide a simplified description of some concepts of one or more embodiments in order to provide a basic understanding of the embodiments and as a prelude to the more detailed description that is presented later. It does not limit the size. This summary is not an exhaustive overview of all possible embodiments and is not intended to identify key elements of all embodiments or to delineate the scope of any or all aspects. For convenience, "one embodiment" may be used to refer to one embodiment (example or modification) or multiple embodiments (examples or modifications) disclosed in this specification.
 一実施形態に係るアクチュエータドライバは、可動部を位置決めするアクチュエータを駆動する。アクチュエータは、磁石を含む可動子と、可動子の可動方向に沿って配置される複数のボイスコイルを含むMM(Moving Magnet)式のボイスコイルモータである。アクチュエータドライバは、制御信号に応じて、複数のボイスコイルを駆動する駆動部と、を備える。駆動部は、複数のボイスコイルに対応し、それぞれが、可動子の位置を示す位置検出信号に応じて、制御信号を補正する、複数の補正部と、複数のボイスコイルに対応し、それぞれが、対応する補正部の出力に応じて、対応するボイスコイルを駆動する、複数のドライバと、を備える。 An actuator driver according to one embodiment drives an actuator that positions a movable part. The actuator is an MM (Moving Magnet) type voice coil motor that includes a mover including a magnet and a plurality of voice coils arranged along the moving direction of the mover. The actuator driver includes a drive section that drives the plurality of voice coils according to a control signal. The drive section corresponds to a plurality of voice coils, each of which corrects a control signal according to a position detection signal indicating the position of the movable element, and a plurality of voice coils, each of which , a plurality of drivers that drive corresponding voice coils according to outputs of corresponding correction sections.
 この構成では、補正部を設け、複数のボイスコイルが発生する推進力が逆向きにならないように、制御信号を補正することで、可動子の位置に応じた推進力の変動を抑制できる。 In this configuration, by providing a correction unit and correcting the control signal so that the propulsive forces generated by the plurality of voice coils do not go in opposite directions, it is possible to suppress fluctuations in the propulsive force depending on the position of the movable element.
 一実施形態において、複数の補正部はそれぞれ、位置検出信号に応じた補正ゲインを生成し、制御信号に補正ゲインを乗算してもよい。 In one embodiment, each of the plurality of correction units may generate a correction gain according to the position detection signal, and may multiply the control signal by the correction gain.
 一実施形態において、アクチュエータドライバは、位置検出信号が目標値に近づくように、制御信号を生成するサーボコントローラをさらに備えてもよい。 In one embodiment, the actuator driver may further include a servo controller that generates a control signal so that the position detection signal approaches a target value.
 一実施形態において、サーボコントローラは、目標値と位置検出信号の誤差を生成する誤差検出器と、誤差を受ける比例積分制御器と、を含んでもよい。 In one embodiment, the servo controller may include an error detector that generates an error between the target value and the position detection signal, and a proportional-integral controller that receives the error.
 一実施形態において、アクチュエータドライバは、ひとつの半導体基板に一体集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。回路を1つのチップ上に集積化することにより、回路面積を削減することができるとともに、回路素子の特性を均一に保つことができる。 In one embodiment, the actuator driver may be monolithically integrated on one semiconductor substrate. "Integration" includes cases where all of the circuit components are formed on a semiconductor substrate, cases where the main components of the circuit are integrated, and some of the components are integrated to adjust the circuit constants. A resistor, a capacitor, etc. may be provided outside the semiconductor substrate. By integrating circuits on one chip, the circuit area can be reduced and the characteristics of circuit elements can be kept uniform.
 一実施形態に係るカメラモジュールは、イメージセンサと、イメージセンサへの入射光路上に設けられた手ブレ補正機構と、手ブレ補正機構の可動部を位置決めするアクチュエータと、上述のいずれかのアクチュエータドライバと、を備えてもよい。 A camera module according to an embodiment includes an image sensor, an image stabilization mechanism provided on an incident optical path to the image sensor, an actuator that positions a movable part of the image stabilization mechanism, and one of the actuator drivers described above. and may also be provided.
(実施形態)
 以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, preferred embodiments will be described with reference to the drawings. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Furthermore, the embodiments are illustrative rather than limiting the disclosure and invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the disclosure and invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to not only a case where member A and member B are physically directly connected, but also a state in which member A and member B are electrically connected. This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state in which member C is provided between member A and member B" refers to the case where member A and member C or member B and member C are directly connected, This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
 図1は、手振れ補正機能を備えるカメラモジュールのブロック図である。カメラモジュール100は、イメージセンサ102、手ブレ補正レンズ104、第1アクチュエータ106_1、第2アクチュエータ106_2、アクチュエータドライバ200、位置検出素子110_1,110_2、ブレ検出手段112、CPU(Central Processing Unit)114を備える。カメラモジュール100はその他、オートフォーカス用のレンズ、アクチュエータなどを備えるが、図1では省略している。 FIG. 1 is a block diagram of a camera module equipped with an image stabilization function. The camera module 100 includes an image sensor 102, an image stabilization lens 104, a first actuator 106_1, a second actuator 106_2, an actuator driver 200, position detection elements 110_1, 110_2, a shake detection means 112, and a CPU (Central Processing Unit) 114. . The camera module 100 also includes an autofocus lens, an actuator, etc., but these are omitted in FIG.
 理解の容易化のため、手ブレ補正レンズ104の光軸方向をZ軸にとるものとする。また、カメラモジュール100が、図1の姿勢にあるときの、左右方向をX軸、上下方向をY軸にとるものとする。X軸を第1軸、Y軸を第2軸とも表記する。 For ease of understanding, the optical axis direction of the camera shake correction lens 104 is assumed to be the Z-axis. Further, when the camera module 100 is in the attitude shown in FIG. 1, the horizontal direction is assumed to be the X axis, and the vertical direction is assumed to be the Y axis. The X axis is also referred to as the first axis, and the Y axis is also referred to as the second axis.
 手ブレ補正レンズ104は、イメージセンサ102に入射する光の光路上に配置される。イメージセンサ102は、CMOSセンサやCCDであり、手ブレ補正レンズ104を透過した像を撮影する。 The camera shake correction lens 104 is placed on the optical path of light incident on the image sensor 102. The image sensor 102 is a CMOS sensor or CCD, and captures an image transmitted through the camera shake correction lens 104.
 手ブレ補正レンズ104は、イメージセンサ102の撮像面と平行な面内(XY平面)において、X方向およびY方向に移動可能な状態で支持されている。第1アクチュエータ106_1は、手ブレ補正レンズ104を含む可動部105を第1軸(X軸)方向に位置決めし、第2アクチュエータ106_2は、可動部105を第2軸(Y軸)方向に位置決めする。第1アクチュエータ106_1および第2アクチュエータ106_2は、リニアアクチュエータであり、たとえばボイスコイルモータが用いられる。手ブレ補正レンズ104を含む可動部105は、第1軸方向、第2軸方向それぞれについて、可動範囲が機械的に制約されている。可動範囲の端部を、メカ端と称する。第1軸方向について、正方向と負方向それぞれに、メカ端が存在し、第2軸方向についても正方向と負方向それぞれに、メカ端が存在する。 The camera shake correction lens 104 is supported so as to be movable in the X direction and the Y direction in a plane parallel to the imaging surface of the image sensor 102 (XY plane). The first actuator 106_1 positions the movable part 105 including the camera shake correction lens 104 in the first axis (X-axis) direction, and the second actuator 106_2 positions the movable part 105 in the second axis (Y-axis) direction. . The first actuator 106_1 and the second actuator 106_2 are linear actuators, and for example, voice coil motors are used. The movable portion 105 including the camera shake correction lens 104 has a movable range mechanically restricted in each of the first axis direction and the second axis direction. The end of the movable range is called the mechanical end. Mechanical ends exist in the positive direction and negative direction in the first axis direction, and mechanical ends exist in the positive direction and the negative direction in the second axis direction as well.
 ブレ検出手段112は、カメラモジュール100のブレを検出し、ブレを示すブレ検出信号S1を生成する。ブレ検出手段112はたとえばジャイロセンサであり、カメラモジュール100のX軸周りの角速度ω、Y軸周りの角速度ω、Z軸周りの角速度ωを検出する。手ブレ補正レンズ104のX軸方向の位置が制御することにより、Y軸周りの回転(ブレ)を補正することができ、手ブレ補正レンズ104のY軸方向の位置が制御することにより、X軸周りの回転(ブレ)を補正することができる。ブレ検出信号S1は、少なくとも2軸の角速度ω,ωを含む。 The shake detection means 112 detects shake of the camera module 100 and generates a shake detection signal S1 indicating the shake. The shake detection means 112 is, for example, a gyro sensor, and detects the angular velocity ω X around the X axis, the angular velocity ω Y around the Y axis, and the angular velocity ω Z around the Z axis of the camera module 100. By controlling the position of the image stabilization lens 104 in the X-axis direction, rotation (shake) around the Y-axis can be corrected, and by controlling the position of the image stabilization lens 104 in the Y-axis direction, the Rotation (shake) around the axis can be corrected. The shake detection signal S1 includes angular velocities ω X and ω Y of at least two axes.
 アクチュエータドライバ200は、ブレ検出手段112が検出したブレ検出信号S1にもとづいて、ブレが相殺されるように、手ブレ補正レンズ104の変位の目標値を示すターゲットコード(位置指令)を生成する。アクチュエータドライバ200は、内部で生成したターゲットコードにもとづいて、第1アクチュエータ106_1および第2アクチュエータ106_2それぞれに対する駆動信号S2_1,S2_2を生成する。アクチュエータ106_i(i=1,2)は、対応する駆動信号S2_iに応じて手ブレ補正レンズ104を位置決めする。 Based on the shake detection signal S1 detected by the shake detection means 112, the actuator driver 200 generates a target code (position command) indicating a target value of the displacement of the camera shake correction lens 104 so that the shake is canceled out. The actuator driver 200 generates drive signals S2_1 and S2_2 for the first actuator 106_1 and the second actuator 106_2, respectively, based on internally generated target codes. The actuator 106_i (i=1, 2) positions the camera shake correction lens 104 according to the corresponding drive signal S2_i.
 手振れ補正では、手ブレ補正レンズ104を正確に位置決めする必要があるため、フィードバック制御(クローズドループ制御)が採用される。位置検出素子110_1,110_2はそれぞれ、手ブレ補正レンズ104の第1軸方向の位置(変位量)Pおよび第2軸方向の位置(変位量)Pを示す位置検出信号S3_1,S3_2を生成する。位置検出素子110はたとえばホールセンサなどを用いることができる。 In camera shake correction, since it is necessary to accurately position the camera shake correction lens 104, feedback control (closed loop control) is employed. The position detection elements 110_1 and 110_2 respectively generate position detection signals S3_1 and S3_2 indicating the position (displacement amount) PX in the first axis direction and the position (displacement amount) PY in the second axis direction of the camera shake correction lens 104. do. For example, a Hall sensor or the like can be used as the position detection element 110.
 アクチュエータドライバ200は、手ブレが補正されるように、第1アクチュエータ106_1および第2アクチュエータ106_2を駆動する。具体的には第1モードにおいて、アクチュエータドライバ200は、第1位置検出信号S3_1の示す手ブレ補正レンズ104の位置Pが、ターゲットコードが示す目標位置PX(REF)と一致するように、駆動信号S2_1をフィードバック制御する。同様に、アクチュエータドライバ200は、第2位置検出信号S3_2の示す手ブレ補正レンズ104の位置Pが、ターゲットコードが示す目標位置PY(REF)と一致するように、駆動信号S2_2をフィードバック制御する。 The actuator driver 200 drives the first actuator 106_1 and the second actuator 106_2 so that camera shake is corrected. Specifically, in the first mode, the actuator driver 200 operates so that the position PX of the camera shake correction lens 104 indicated by the first position detection signal S3_1 matches the target position PX (REF) indicated by the target code. The drive signal S2_1 is feedback-controlled. Similarly, the actuator driver 200 performs feedback control on the drive signal S2_2 so that the position P Y of the camera shake correction lens 104 indicated by the second position detection signal S3_2 matches the target position P Y (REF) indicated by the target code. do.
 以上がカメラモジュール100の全体の構成である。続いて、アクチュエータドライバ200について説明する。 The above is the overall configuration of the camera module 100. Next, the actuator driver 200 will be explained.
 図2は、アクチュエータドライバ200のブロック図である。アクチュエータドライバ200は、制御部210および第1駆動部220_1および第2駆動部220_2を備える。ジャイロセンサ112Aは、図1のブレ検出手段112であり、カメラモジュール100の角速度を検出する。 FIG. 2 is a block diagram of the actuator driver 200. The actuator driver 200 includes a control section 210, a first drive section 220_1, and a second drive section 220_2. The gyro sensor 112A is the shake detection means 112 in FIG. 1 and detects the angular velocity of the camera module 100.
 制御部210は、位置指令生成部212、第1サーボコントローラ230_1、第2サーボコントローラ230_2、第1位置検出部240_1、第2位置検出部240_2を備える。 The control unit 210 includes a position command generation unit 212, a first servo controller 230_1, a second servo controller 230_2, a first position detection unit 240_1, and a second position detection unit 240_2.
 位置指令生成部212は、第1モードにおいて、ジャイロセンサ112Aが生成するブレ検出信号S1を受け、X軸およびY軸それぞれについて、ブレを相殺することができる手ブレ補正レンズ104の位置を示す位置指令XREF,YREFを生成する。たとえば位置指令生成部212は、X軸周りの角速度ωを積分して所定のゲインを乗算することにより、位置指令XREFを生成する。同様に、位置指令生成部212は、Y軸周りの角速度ωを積分して所定のゲインを乗算することにより、位置指令YREFを生成する。 In the first mode, the position command generation unit 212 receives the shake detection signal S1 generated by the gyro sensor 112A, and generates a position indicating the position of the camera shake correction lens 104 that can offset the shake for each of the X-axis and Y-axis. Generate commands X REF and Y REF . For example, the position command generation unit 212 generates the position command X REF by integrating the angular velocity ω X around the X-axis and multiplying it by a predetermined gain. Similarly, the position command generation unit 212 generates the position command Y REF by integrating the angular velocity ω Y around the Y-axis and multiplying it by a predetermined gain.
 位置検出素子110_1が生成する位置検出信号S3_1は、第1位置検出部240_1に入力される。第1位置検出部240_1は、位置検出信号S3_1にもとづいて、アクチュエータ106_1の可動子の位置を示すフィードバック信号XFBを生成する。 The position detection signal S3_1 generated by the position detection element 110_1 is input to the first position detection section 240_1. The first position detection unit 240_1 generates a feedback signal XFB indicating the position of the movable element of the actuator 106_1 based on the position detection signal S3_1.
 同様に、位置検出素子110_2が生成する位置検出信号S3_2は、第2位置検出部240_2に入力される。第2位置検出部240_2は、位置検出信号S3_2にもとづいて、アクチュエータ106_2の可動子の位置を示すフィードバック信号YFBを生成する。フィードバック信号XFB,YFBはそれぞれ、可動部105のX方向、Y方向の位置(X座標,Y座標)を示す。 Similarly, the position detection signal S3_2 generated by the position detection element 110_2 is input to the second position detection section 240_2. The second position detection unit 240_2 generates a feedback signal YFB indicating the position of the movable element of the actuator 106_2 based on the position detection signal S3_2. Feedback signals X FB and Y FB indicate the positions of the movable portion 105 in the X direction and Y direction (X coordinate, Y coordinate), respectively.
 第1サーボコントローラ230_1は、フィードバック信号XFBと位置指令XREFの誤差がゼロに近づくように、制御信号S4_1を生成する。第1駆動部220_1は、制御信号S4_1に応じた駆動信号S2_1を生成する。制御信号S4_1はたとえば電流指令であり、第1駆動部220_1は、制御信号S4_1に応じた電流量の駆動電流を、第1アクチュエータ106_1に供給する。制御信号S4_1は、トルク指令と捉えてもよい。 The first servo controller 230_1 generates the control signal S4_1 so that the error between the feedback signal X FB and the position command X REF approaches zero. The first drive unit 220_1 generates a drive signal S2_1 according to the control signal S4_1. The control signal S4_1 is, for example, a current command, and the first drive unit 220_1 supplies the first actuator 106_1 with a drive current having an amount of current according to the control signal S4_1. The control signal S4_1 may be considered as a torque command.
 同様に、第2サーボコントローラ230_2は、位置検出素子110_2が生成する位置検出信号S3_2を、可動部105のY座標を示すフィードバック信号YFBとして受ける。第2サーボコントローラ230_2は、フィードバック信号YFBと位置指令YREFの誤差がゼロに近づくように、制御信号S4_2を生成する。第2駆動部220_2は、制御信号S4_2に応じた駆動信号S2_2を生成する。 Similarly, the second servo controller 230_2 receives the position detection signal S3_2 generated by the position detection element 110_2 as a feedback signal YFB indicating the Y coordinate of the movable part 105. The second servo controller 230_2 generates the control signal S4_2 so that the error between the feedback signal Y FB and the position command Y REF approaches zero. The second drive unit 220_2 generates a drive signal S2_2 according to the control signal S4_2.
 図2において、アクチュエータ106_1に対応するアクチュエータドライバ200の構成(220_1,230_1,240_1)と、アクチュエータ106_2に対応するアクチュエータドライバ200の構成(220_2,230_2,240_2)は同様である。 In FIG. 2, the configuration of the actuator driver 200 (220_1, 230_1, 240_1) corresponding to the actuator 106_1 is the same as the configuration (220_2, 230_2, 240_2) of the actuator driver 200 corresponding to the actuator 106_2.
 図3は、実施形態に係るアクチュエータドライバ200のブロック図である。図3におけるサーボコントローラ230は、図2の第1サーボコントローラ230_1または第2サーボコントローラ230_2に対応する。図3におけるPは、図2のXまたはYである。図3における駆動部220は、図2の第1駆動部220_1または第2駆動部220_2に対応する。図3における位置検出部240は、図2の第1位置検出部240_1または第2位置検出部240_2に対応する。図3におけるアクチュエータ120は、図2のアクチュエータ106に対応する。 FIG. 3 is a block diagram of the actuator driver 200 according to the embodiment. The servo controller 230 in FIG. 3 corresponds to the first servo controller 230_1 or the second servo controller 230_2 in FIG. 2. P in FIG. 3 is X or Y in FIG. The driving unit 220 in FIG. 3 corresponds to the first driving unit 220_1 or the second driving unit 220_2 in FIG. 2. The position detection unit 240 in FIG. 3 corresponds to the first position detection unit 240_1 or the second position detection unit 240_2 in FIG. 2. Actuator 120 in FIG. 3 corresponds to actuator 106 in FIG. 2.
 アクチュエータ120はボイスコイルモータであり、磁石122と、複数(この例では3個)のボイスコイルL1~L3を備える。磁石122は可動子124に取り付けられている。複数のボイスコイルL1~L3は、可動子124の可動方向に沿って設けられる。 The actuator 120 is a voice coil motor, and includes a magnet 122 and a plurality of (three in this example) voice coils L1 to L3. Magnet 122 is attached to mover 124. The plurality of voice coils L1 to L3 are provided along the movable direction of the movable element 124.
 位置検出部240は、位置検出素子110の出力にもとづいて、位置検出信号(フィードバック信号)PFBを生成する。たとえば位置検出部240は、位置検出素子110の出力信号をデジタル信号に変換するA/Dコンバータなどを含む。位置検出部240は位置検出信号を補正する補正部をさらに含んでもよい。位置検出信号PFBは、サーボコントローラ230にフィードバックされる。 The position detection section 240 generates a position detection signal (feedback signal) PFB based on the output of the position detection element 110. For example, the position detection unit 240 includes an A/D converter that converts the output signal of the position detection element 110 into a digital signal. The position detection unit 240 may further include a correction unit that corrects the position detection signal. The position detection signal PFB is fed back to the servo controller 230.
 サーボコントローラ230は、誤差検出器232、補償器234を備える。誤差検出器232は、位置指令PREFと、可動部105の位置を示すフィードバック信号PFBとの誤差errを生成する。誤差検出器232は、減算器で構成できる。 The servo controller 230 includes an error detector 232 and a compensator 234. The error detector 232 generates an error err between the position command P REF and the feedback signal P FB indicating the position of the movable part 105 . Error detector 232 can be configured with a subtracter.
 補償器234は、誤差errに応じて、制御信号ctrlを生成する。補償器234をサーボフィルタとも称する。補償器234は、たとえばPI(比例・積分)制御器であり、誤差errに比例ゲインkpを乗算した値と、誤差errの積分値に積分ゲインkiを乗算した値と、を加算し、制御信号ctrlを生成してもよい。補償器234は、PID(比例・積分・微分制御器)であってもよい。 The compensator 234 generates a control signal ctrl according to the error err. Compensator 234 is also referred to as a servo filter. The compensator 234 is, for example, a PI (proportional/integral) controller, and adds the value obtained by multiplying the error err by a proportional gain kp and the value obtained by multiplying the integral value of the error err by an integral gain ki, and generates a control signal. ctrl may be generated. Compensator 234 may be a PID (proportional-integral-derivative controller).
 駆動部220は、複数の補正部COMP1~COMP3、複数のドライバDR1~DR3を備える。複数の補正部COMP1~COMP3、複数のドライバDR1~DR3は、複数のボイスコイルL1~L3に対応している。 The drive section 220 includes a plurality of correction sections COMP1 to COMP3 and a plurality of drivers DR1 to DR3. The plurality of correction units COMP1 to COMP3 and the plurality of drivers DR1 to DR3 correspond to the plurality of voice coils L1 to L3.
 複数の補正部COMP1~COMP3には、制御信号ctrlが供給される。各補正部COMPi(i=1,2,3)は、可動子の位置を示す位置検出信号PFBに応じて、制御信号ctrlを補正する。補正特性は、ボイスコイルごとに異なっている。補正後の制御信号ctrliは、対応するドライバDRiに供給される。 A control signal ctrl is supplied to the plurality of correction units COMP1 to COMP3. Each correction unit COMPi (i=1, 2, 3) corrects the control signal ctrl according to the position detection signal PFB indicating the position of the movable element. Correction characteristics differ for each voice coil. The corrected control signal ctrli is supplied to the corresponding driver DRi.
 本実施形態において、補正部COMPiは、位置検出信号PFBに応じた補正ゲインgiを生成する。そして、補正部COMPiは、制御信号ctrlに補正ゲインgiを乗ずることにより、制御信号ctrliを生成する。
 ctrli=gi×ctrl
In this embodiment, the correction unit COMPi generates a correction gain gi according to the position detection signal PFB . The correction unit COMPi then generates the control signal ctrli by multiplying the control signal ctrl by the correction gain gi.
ctrli=gi×ctrl
 ドライバDRiは、対応する補正後の制御信号ctrliにもとづいて、対応するボイスコイルLiを駆動する。 The driver DRi drives the corresponding voice coil Li based on the corresponding corrected control signal ctrli.
 以上がアクチュエータドライバ200の構成である。続いてその動作を説明する。 The above is the configuration of the actuator driver 200. Next, its operation will be explained.
 はじめに、制御信号ctrlの補正を行わないときの動作を説明する。 First, the operation when the control signal ctrl is not corrected will be explained.
 図4は、複数のボイスコイルL1~L3それぞれが発生する推進力F1~F3を示す図である。推進力Fiは、ドライバDRiに、補正前の制御信号ctrlを入力したときに得られる推進力である。横軸は、可動子の位置Pを示す。 FIG. 4 is a diagram showing propulsive forces F1 to F3 generated by each of the plurality of voice coils L1 to L3. The propulsive force Fi is the propulsive force obtained when the control signal ctrl before correction is input to the driver DRi. The horizontal axis indicates the position P of the mover.
 各ボイスコイルLiの推進力は、ある範囲Aiにおいては一定値となるが、その範囲Aiから逸脱すると、減少し、やがて向きが反転する。範囲Aiを、安定出力領域と称する。図3には、複数の推進力F1~F3の和である合成推進力FSUMが示される。合成推進力FSUMは、位置依存性を有しており、追従性や安定性が位置によって異なることとなり、好ましくない。以下で説明するように、実施形態に係るアクチュエータドライバ200では、位置によらずに一定の推進力が得られるように、つまり合成推進力の一依存性が小さくなるように、制御信号ctrlが補正される。 The propulsive force of each voice coil Li has a constant value within a certain range Ai, but when it deviates from that range Ai, it decreases and eventually reverses its direction. The range Ai is referred to as a stable output region. FIG. 3 shows a composite propulsive force F SUM that is the sum of a plurality of propulsive forces F1 to F3. The synthetic propulsive force F SUM has position dependence, and the followability and stability differ depending on the position, which is not preferable. As explained below, in the actuator driver 200 according to the embodiment, the control signal ctrl is corrected so that a constant propulsive force is obtained regardless of the position, that is, so that the unidependence of the composite propulsive force is reduced. be done.
 図5は、駆動部220による推進力の補正を説明する図である。図5の上段には、補正しない場合の推進力F1~F3が示される。図5の中段には、補正ゲインg1~g3が示される。図5の下段には、補正後の推進力F1’~F3’と、それらの和である合成推進力FSUM’=F1’+F2’+F3’が示される。 FIG. 5 is a diagram illustrating correction of the propulsive force by the drive unit 220. The upper part of FIG. 5 shows the propulsive forces F1 to F3 without correction. In the middle part of FIG. 5, correction gains g1 to g3 are shown. The lower part of FIG. 5 shows the corrected propulsive forces F1' to F3' and their sum, the composite propulsive force F SUM '=F1'+F2'+F3'.
 この例において、i番目の補正部COMPiの補正ゲインgiは、一定の推進力が得られる安定出力領域Aiにおいて一定値をとり、安定出力領域Ai外で0となるように定めされる。補正後の推進力Fi’は、補正前の推進力Fiに補正ゲインgiを乗じたものである。 In this example, the correction gain gi of the i-th correction unit COMPi is determined to take a constant value in a stable output area Ai where a constant propulsive force is obtained, and to be 0 outside the stable output area Ai. The propulsive force Fi' after correction is the propulsive force Fi before correction multiplied by the correction gain gi.
 補正後の推進力F1’~F3’の合計である合成推進力FSUMは、位置Pによらずに実質的に一定となる。なお、ここでは、理解の容易化および説明の簡潔化のために、合成推進力FSUMが位置によらずに一定であるとしているが、本開示はそれに限定されない。現実的には、合成推進力FSUMの位置依存性を完全に無くすことは困難であるから、図4の補正が無い場合の合成推進力FSUMに比べて、補正後の合成推進力FSUM’の位置依存性が小さくなっていればよい。 The combined propulsive force F SUM , which is the sum of the corrected propulsive forces F1' to F3', remains substantially constant regardless of the position P. Note that here, in order to facilitate understanding and simplify the explanation, it is assumed that the composite propulsive force F SUM is constant regardless of the position, but the present disclosure is not limited thereto. In reality, it is difficult to completely eliminate the positional dependence of the resultant propulsive force F SUM , so compared to the resultant propulsive force F SUM without the correction shown in Fig. 4, the resultant propulsive force F SUM after correction is It is sufficient if the positional dependence of ' is small.
 図5に示した補正前の推進力F1~F1の位置依存性は例示であって、アクチュエータ120の構造によって異なることが当業者には理解される。したがって、補正ゲインg1~g3も、図5に示したものに限定されず、補正後の合成推進力FSUM’の位置依存性が小さくなるように定めればよい。 Those skilled in the art will understand that the position dependence of the propulsive forces F1 to F1 before correction shown in FIG. 5 is an example, and will vary depending on the structure of the actuator 120. Therefore, the correction gains g1 to g3 are not limited to those shown in FIG. 5, and may be determined so that the position dependence of the corrected combined propulsive force F SUM ′ becomes small.
 図6は、補正部COMP1~COMP3の構成例を示すブロック図である。補正部COMPi(i=1~3)は、ゲイン回路222と、ルックアップテーブル224を含む。補正部COMPiのルックアップテーブル224には、位置検出信号PFBと、補正ゲインgiの対応関係が格納されており、現在の位置検出信号PFBに対応する補正ゲインgiが読み出されて、ゲイン回路222に供給される。ゲイン回路222は、制御信号ctrlに補正ゲインgiを乗算して、補正後の制御信号ctrliを出力する。 FIG. 6 is a block diagram showing an example of the configuration of the correction units COMP1 to COMP3. The correction unit COMPi (i=1 to 3) includes a gain circuit 222 and a lookup table 224. The lookup table 224 of the correction unit COMPi stores the correspondence relationship between the position detection signal PFB and the correction gain gi, and the correction gain gi corresponding to the current position detection signal PFB is read out and the gain is supplied to circuit 222. The gain circuit 222 multiplies the control signal ctrl by a correction gain gi and outputs a corrected control signal ctrli.
 位置検出信号PFBと補正ゲインgiの関係を関数化し、演算によって補正ゲインgiを計算してもよい。 The relationship between the position detection signal PFB and the correction gain gi may be converted into a function, and the correction gain gi may be calculated by calculation.
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。 The embodiments described above are merely examples, and those skilled in the art will understand that various modifications can be made to the combinations of their constituent elements and processing processes. Hereinafter, such modified examples will be explained.
(変形例1)
 実施形態では、クローズドループ型の位置制御システムを説明したが、その限りでなく、オープンループ型の位置制御システムにも本開示は適用可能である。
(Modification 1)
In the embodiment, a closed-loop position control system has been described, but the present disclosure is not limited thereto, and the present disclosure is also applicable to an open-loop position control system.
 図7は、変形例1に係るアクチュエータドライバ200Aのブロック図である。アクチュエータドライバ200Aでは、図3のサーボコントローラ230に代えて、コントローラ230Aが設けられる。コントローラ230Aは、位置指令PREFを、制御信号ctrlとして駆動部220に供給する。 FIG. 7 is a block diagram of an actuator driver 200A according to Modification 1. In the actuator driver 200A, a controller 230A is provided in place of the servo controller 230 in FIG. 3. The controller 230A supplies the position command PREF to the drive unit 220 as a control signal ctrl.
 一般的には、オープンループの位置制御システムでは、位置検出素子110は不要であるが、この変形例1では、補正ゲインg1~g3を決定するために、位置検出素子110が設けられている。このアクチュエータドライバ200Aによれば、合成推進力の位置依存性を小さくできる。 Generally, in an open-loop position control system, the position detection element 110 is not necessary, but in this modification 1, the position detection element 110 is provided in order to determine the correction gains g1 to g3. According to this actuator driver 200A, the positional dependence of the combined propulsive force can be reduced.
(変形例2)
 実施形態では、手ブレ補正レンズ104による手ブレ補正機構を有するカメラモジュール100について説明したが、手ブレ補正機構はレンズシフトによるものに限定されず、プリズムを用いた手ブレ補正機構にも本開示は適用可能である。
(Modification 2)
In the embodiment, a camera module 100 having an image stabilization mechanism using an image stabilization lens 104 has been described, but the image stabilization mechanism is not limited to one using a lens shift, and the present disclosure also applies to an image stabilization mechanism using a prism. is applicable.
(変形例3)
 実施形態では、手ブレ補正機構の位置制御システムを説明したが、本開示はそれに限定されず、オートフォーカス用の位置制御システムにも適用可能である。
(Modification 3)
In the embodiment, a position control system for a camera shake correction mechanism has been described, but the present disclosure is not limited thereto, and can also be applied to a position control system for autofocus.
(変形例4)
 ボイスコイルの個数は3個に限定されず、2個であってもよいし、4個、あるいはそれより多くてもよい。
(Modification 4)
The number of voice coils is not limited to three, but may be two, four, or more.
 本開示に係る実施形態について、具体的な用語を用いて説明したが、この説明は、理解を助けるための例示に過ぎず、本開示あるいは請求の範囲を限定するものではない。本発明の範囲は、請求の範囲によって規定されるものであり、したがって、ここでは説明しない実施形態、実施例、変形例も、本発明の範囲に含まれる。 Although the embodiments of the present disclosure have been described using specific terms, this description is merely an example to aid understanding, and does not limit the scope of the present disclosure or claims. The scope of the present invention is defined by the claims, and therefore embodiments, examples, and modifications not described here are also included within the scope of the present invention.
(付記)
 本開示に係る実施形態は、以下のように把握することができる。
(項目1)
 可動部を位置決めするアクチュエータを駆動するアクチュエータドライバであって、
 前記アクチュエータは、磁石を含む可動子と、前記可動子の可動方向に沿って配置される複数のボイスコイルを含むMM(Moving Magnet)式のボイスコイルモータであり、
 前記アクチュエータドライバは、
 制御信号に応じて、前記複数のボイスコイルを駆動する駆動部と、
 を備え、
 前記駆動部は、
 前記複数のボイスコイルに対応し、それぞれが、前記可動子の位置を示す位置検出信号に応じて、前記制御信号を補正する、複数の補正部と、
 前記複数のボイスコイルに対応し、それぞれが、対応する補正部の出力に応じて、対応するボイスコイルを駆動する、複数のドライバと、
 を備える、アクチュエータドライバ。
(項目2)
 前記複数の補正部はそれぞれ、前記位置検出信号に応じた補正ゲインを生成し、前記制御信号に前記補正ゲインを乗算する、項目1に記載のアクチュエータドライバ。
(項目3)
 前記位置検出信号が目標値に近づくように、前記制御信号を生成するサーボコントローラをさらに備える、項目1または2に記載のアクチュエータドライバ。
(項目4)
 前記サーボコントローラは、
 前記目標値と前記位置検出信号の誤差を生成する誤差検出器と、
 前記誤差を受ける比例積分制御器と、
 を含む、項目3に記載のアクチュエータドライバ。
(項目5)
 ひとつの半導体基板に一体集積化される、項目1から4のいずれかに記載のアクチュエータドライバ。
(項目6)
 イメージセンサと、
 前記イメージセンサへの入射光路上に設けられた手ブレ補正機構と、
 前記手ブレ補正機構の可動部を位置決めするアクチュエータと、
 項目1から4のいずれかに記載のアクチュエータドライバと、
 を備える、カメラモジュール。
(項目7)
 項目6に記載のカメラモジュールを備える、電子機器。
(Additional note)
Embodiments according to the present disclosure can be understood as follows.
(Item 1)
An actuator driver that drives an actuator that positions a movable part,
The actuator is an MM (Moving Magnet) type voice coil motor including a mover including a magnet and a plurality of voice coils arranged along a moving direction of the mover,
The actuator driver is
a drive unit that drives the plurality of voice coils according to a control signal;
Equipped with
The drive unit includes:
a plurality of correction units corresponding to the plurality of voice coils, each correcting the control signal according to a position detection signal indicating the position of the movable element;
a plurality of drivers corresponding to the plurality of voice coils, each of which drives a corresponding voice coil according to an output of a corresponding correction section;
Actuator driver.
(Item 2)
The actuator driver according to item 1, wherein each of the plurality of correction units generates a correction gain according to the position detection signal, and multiplies the control signal by the correction gain.
(Item 3)
The actuator driver according to item 1 or 2, further comprising a servo controller that generates the control signal so that the position detection signal approaches a target value.
(Item 4)
The servo controller is
an error detector that generates an error between the target value and the position detection signal;
a proportional-integral controller subject to the error;
The actuator driver according to item 3, comprising:
(Item 5)
The actuator driver according to any one of items 1 to 4, which is monolithically integrated on one semiconductor substrate.
(Item 6)
image sensor and
a camera shake correction mechanism provided on the optical path of incidence to the image sensor;
an actuator that positions a movable part of the image stabilization mechanism;
The actuator driver according to any one of items 1 to 4,
A camera module.
(Item 7)
An electronic device comprising the camera module according to item 6.
 本開示は、アクチュエータドライバおよびこれを用いたカメラモジュールに関する。 The present disclosure relates to an actuator driver and a camera module using the same.
 L1,L2,L3 ボイスコイル
 100 カメラモジュール
 102 イメージセンサ
 104 手ブレ補正レンズ
 105 可動部
 106 アクチュエータ
 110 位置検出素子
 112 ブレ検出手段
 112A ジャイロセンサ
 114 CPU
 120 アクチュエータ
 122 磁石
 124 可動子
 200 アクチュエータドライバ
 210 制御部
 212 位置指令生成部
 220 駆動部
 220_1 第1駆動部
 220_2 第2駆動部
 COMPi 補正部
 DRi ドライバ
 222 ゲイン回路
 224 ルックアップテーブル
 230_1 第1サーボコントローラ
 230_2 第2サーボコントローラ
 230 サーボコントローラ
 232 誤差検出器
 234 補償器
 240 位置検出部
 240_1 第1位置検出部
 240_2 第2位置検出部
L1, L2, L3 Voice coil 100 Camera module 102 Image sensor 104 Image stabilization lens 105 Movable part 106 Actuator 110 Position detection element 112 Shake detection means 112A Gyro sensor 114 CPU
120 Actuator 122 Magnet 124 Mover 200 Actuator driver 210 Control unit 212 Position command generation unit 220 Drive unit 220_1 First drive unit 220_2 Second drive unit COMPi correction unit DRi driver 222 Gain circuit 224 Lookup table 230_1 First servo controller 230_ 2nd 2 servo controller 230 servo controller 232 error detector 234 compensator 240 position detection section 240_1 first position detection section 240_2 second position detection section

Claims (7)

  1.  可動部を位置決めするアクチュエータを駆動するアクチュエータドライバであって、
     前記アクチュエータは、磁石を含む可動子と、前記可動子の可動方向に沿って配置される複数のボイスコイルを含むMM(Moving Magnet)式のボイスコイルモータであり、
     前記アクチュエータドライバは、
     制御信号に応じて、前記複数のボイスコイルを駆動する駆動部と、
     を備え、
     前記駆動部は、
     前記複数のボイスコイルに対応し、それぞれが、前記可動子の位置を示す位置検出信号に応じて、前記制御信号を補正する、複数の補正部と、
     前記複数のボイスコイルに対応し、それぞれが、対応する補正部の出力に応じて、対応するボイスコイルを駆動する、複数のドライバと、
     を備える、アクチュエータドライバ。
    An actuator driver that drives an actuator that positions a movable part,
    The actuator is an MM (Moving Magnet) type voice coil motor including a mover including a magnet and a plurality of voice coils arranged along a moving direction of the mover,
    The actuator driver is
    a drive unit that drives the plurality of voice coils according to a control signal;
    Equipped with
    The drive unit includes:
    a plurality of correction units corresponding to the plurality of voice coils, each correcting the control signal according to a position detection signal indicating the position of the movable element;
    a plurality of drivers corresponding to the plurality of voice coils, each of which drives a corresponding voice coil according to an output of a corresponding correction section;
    Actuator driver.
  2.  前記複数の補正部はそれぞれ、前記位置検出信号に応じた補正ゲインを生成し、前記制御信号に前記補正ゲインを乗算する、請求項1に記載のアクチュエータドライバ。 The actuator driver according to claim 1, wherein each of the plurality of correction units generates a correction gain according to the position detection signal, and multiplies the control signal by the correction gain.
  3.  前記位置検出信号が目標値に近づくように、前記制御信号を生成するサーボコントローラをさらに備える、請求項1または2に記載のアクチュエータドライバ。 The actuator driver according to claim 1 or 2, further comprising a servo controller that generates the control signal so that the position detection signal approaches a target value.
  4.  前記サーボコントローラは、
     前記目標値と前記位置検出信号の誤差を生成する誤差検出器と、
     前記誤差を受ける比例積分制御器と、
     を含む、請求項3に記載のアクチュエータドライバ。
    The servo controller is
    an error detector that generates an error between the target value and the position detection signal;
    a proportional-integral controller subject to the error;
    The actuator driver according to claim 3, comprising:
  5.  ひとつの半導体基板に一体集積化される、請求項1または2に記載のアクチュエータドライバ。 The actuator driver according to claim 1 or 2, which is monolithically integrated on one semiconductor substrate.
  6.  イメージセンサと、
     前記イメージセンサへの入射光路上に設けられた手ブレ補正機構と、
     前記手ブレ補正機構の可動部を位置決めするアクチュエータと、
     請求項1または2に記載のアクチュエータドライバと、
     を備える、カメラモジュール。
    image sensor and
    a camera shake correction mechanism provided on the optical path of incidence to the image sensor;
    an actuator that positions a movable part of the image stabilization mechanism;
    The actuator driver according to claim 1 or 2,
    A camera module.
  7.  請求項6に記載のカメラモジュールを備える、電子機器。 An electronic device comprising the camera module according to claim 6.
PCT/JP2023/019374 2022-06-06 2023-05-24 Actuator driver, and camera module and electronic device using same WO2023238672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091717 2022-06-06
JP2022091717 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238672A1 true WO2023238672A1 (en) 2023-12-14

Family

ID=89118139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019374 WO2023238672A1 (en) 2022-06-06 2023-05-24 Actuator driver, and camera module and electronic device using same

Country Status (1)

Country Link
WO (1) WO2023238672A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138984A (en) * 2017-02-24 2018-09-06 ローム株式会社 Actuator driver, imaging device, and calibration method
JP2019219564A (en) * 2018-06-21 2019-12-26 ローム株式会社 Actuator and camera module
JP2021175212A (en) * 2020-04-20 2021-11-01 キヤノン株式会社 Drive system, lithographic apparatus, and manufacturing method of article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138984A (en) * 2017-02-24 2018-09-06 ローム株式会社 Actuator driver, imaging device, and calibration method
JP2019219564A (en) * 2018-06-21 2019-12-26 ローム株式会社 Actuator and camera module
JP2021175212A (en) * 2020-04-20 2021-11-01 キヤノン株式会社 Drive system, lithographic apparatus, and manufacturing method of article

Similar Documents

Publication Publication Date Title
JP6654658B2 (en) Camera shake correction apparatus, camera shake correction circuit, and camera shake correction method
JP2964915B2 (en) Lens drive control device
US8588597B2 (en) Image blurring correction device, control method thereof, and image capture apparatus
US8325243B2 (en) Image stabilization control circuit for correcting vibration-caused displacement of optical axis, and image pickup apparatus provided with the same
WO2021065679A1 (en) Crosstalk correction method and actuator driver
JPH11271831A (en) Interchangeable lens and shake correction camera
WO2023238672A1 (en) Actuator driver, and camera module and electronic device using same
JP2021177245A (en) Imaging apparatus and actuator driver
US8026949B2 (en) Image stabilization control circuit for correcting vibration-caused displacement of optical axis, and image pickup apparatus provided with the same
WO2024034404A1 (en) Actuator driver and camera module using same, electronic apparatus, and movable unit position detection method
JPH10277771A (en) X-y stage controller
JP2003107554A (en) Support structure for vibration-proof correcting lens
JP2023150359A (en) Actuator driver circuit, camera module, and positioning system calibration method
JP2003177442A (en) Lens driver and method of adjusting lens driver
JP2023146476A (en) Actuator driver and camera module using the same, electronic device, and method for driving actuator
JPH11264444A (en) Vibration eliminating device
JP2023162907A (en) Actuator driver, camera module using the same, electronic apparatus, and method for driving actuator
JP2006349803A (en) Image blur correcting device and camera system equipped therewith
JPH0651176A (en) Lens barrel
JP2023163732A (en) Actuator driver, and camera module and electronic device using the same
JP2023148661A (en) Actuator driver, control method therefor, and camera module and electronic apparatus using the same
JP2023178805A (en) Actuator driver and its control method, camera module using the same, and electronic device
JP2023090314A (en) Actuator driver, camera module using the same, and electronic device
JP2023087505A (en) Actuator driver circuit and image capturing device
US12025814B2 (en) Methods and system for position stabilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819655

Country of ref document: EP

Kind code of ref document: A1