WO2023238655A1 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
WO2023238655A1
WO2023238655A1 PCT/JP2023/019160 JP2023019160W WO2023238655A1 WO 2023238655 A1 WO2023238655 A1 WO 2023238655A1 JP 2023019160 W JP2023019160 W JP 2023019160W WO 2023238655 A1 WO2023238655 A1 WO 2023238655A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
emitting device
semiconductor light
light guide
Prior art date
Application number
PCT/JP2023/019160
Other languages
French (fr)
Japanese (ja)
Inventor
茂生 林
真治 吉田
靖利 川口
貴大 岡口
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2023238655A1 publication Critical patent/WO2023238655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • semiconductor light-emitting devices such as semiconductor laser devices that emit light from an active layer are conventionally known (see Patent Document 1, etc.).
  • the semiconductor light emitting device described in Patent Document 1 includes an active layer having a quantum well structure including a well layer made of InGaN.
  • the semiconductor laser device described in Patent Document 1 oscillates in the vicinity of the peak wavelength of the photoluminescence (PL) spectrum of the active layer (that is, in the wavelength range where high optical gain can be obtained).
  • PL photoluminescence
  • the laser oscillation wavelength is near the peak wavelength of the PL spectrum
  • the laser light generated by the semiconductor light emitting element is absorbed by the active layer. Therefore, the light output efficiency of the semiconductor light emitting device decreases. Furthermore, as the temperature of the active layer increases due to the energy of the absorbed laser light, thermal saturation in which the optical output is saturated and COD (catastrophic optical damage) may occur.
  • a known countermeasure against COD caused by absorption of laser light near the cavity end face of a semiconductor light emitting device is to reduce the absorption of laser light by increasing the bandgap energy of the active layer near the cavity end face. There is. This makes it possible to suppress COD near the cavity end face, but it is not possible to reduce absorption of laser light in areas other than the vicinity of the cavity end face. Therefore, the effect of suppressing thermal saturation by this measure is low.
  • the present disclosure aims to solve such problems, and to provide a semiconductor light emitting device that can reduce light absorption in the active layer.
  • one embodiment of a semiconductor light emitting device includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer disposed above the first cladding layer. a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type; and a second cladding layer disposed between the first cladding layer and the second cladding layer. and a light guide layer in which the peak photon energy of photoluminescence of the active layer is higher by 0.050 eV or more than the peak photon energy of laser light emitted from the semiconductor light emitting element into which current is injected.
  • another aspect of the semiconductor light emitting device includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer of the first conductivity type. an active layer disposed above; a second cladding layer of a second conductivity type different from the first conductivity type disposed above the active layer; and between the first cladding layer and the second cladding layer.
  • the intensity of the photoluminescence at the peak photon energy of the laser light emitted from the semiconductor light emitting device into which current is injected is equal to the spectrum of the photoluminescence of the active layer; It is 40% or less of the peak intensity.
  • another aspect of the semiconductor light emitting device is a semiconductor light emitting device including an active layer, wherein the peak photon energy of photoluminescence of the active layer is It is 0.070 eV or more higher than the peak photon energy of spontaneous emission light emitted from the semiconductor light emitting device.
  • another aspect of the semiconductor light emitting device includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer of the first conductivity type. an active layer disposed above; a second cladding layer of a second conductivity type different from the first conductivity type disposed above the active layer; and between the first cladding layer and the second cladding layer.
  • the active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately laminated, and each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less, and the optical guide layer is a first cladding layer disposed between the first cladding layer and the active layer.
  • Each of the first light guide layer and the second light guide layer has at least one of a light guide layer and a second light guide layer disposed between the active layer and the second cladding layer. has a band gap energy smaller than the two or more barrier layers and a band gap energy larger than the one or more well layers, and the first light guide layer and the first light guide layer among the two or more barrier layers.
  • the difference in band gap energy between the barrier layer closest to the guide layer is less than 0.080 eV, and the second light guide layer and the barrier layer closest to the second light guide layer among the two or more barrier layers
  • the difference in band gap energy between the two is less than 0.080 eV.
  • FIG. 1 is a schematic top view showing the overall configuration of a semiconductor light emitting device according to an embodiment.
  • 1 is a schematic cross-sectional view showing the overall configuration of a semiconductor light emitting device according to an embodiment.
  • 3 is a graph showing an example of a PL spectrum of a semiconductor light emitting device according to an embodiment. It is a graph which shows an example of the PL spectrum of the element which removed the active layer from the semiconductor light emitting element based on embodiment. It is a graph showing an example of a PL spectrum of an active layer concerning an embodiment.
  • FIG. 3 is a diagram showing the layer structure of each example of the semiconductor light emitting device according to the embodiment.
  • 1 is a schematic cross-sectional view showing the structure of an active layer of a semiconductor light emitting device according to Example 1.
  • FIG. 3 is a graph schematically showing a bandgap energy distribution in the stacking direction of the semiconductor light emitting device according to Example 1.
  • FIG. 3 is a graph schematically showing the bandgap energy distribution in the stacking direction of the semiconductor light emitting device according to Example 2.
  • FIG. 12 is a graph schematically showing a bandgap energy distribution in the stacking direction of a semiconductor light emitting device according to Example 4. It is a figure which shows the characteristic of each Example of embodiment. 12 is a graph showing the relationship between the injection current and the optical output of the semiconductor light emitting device according to Example 5.
  • 7 is a graph showing the relationship between the light output of the semiconductor light emitting device according to Example 5 and the ratio of the light output to input power.
  • FIG. 3 is a graph showing a laser beam spectrum and a PL spectrum of a semiconductor light emitting device according to Example 1.
  • FIG. 3 is a graph showing the relationship between the optical output at the output saturation starting point of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example and the PL-laser light energy difference.
  • 3 is a graph showing the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less.
  • 2 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to a comparative example.
  • 2 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 1.
  • 3 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 2.
  • 3 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 5.
  • 3 is a graph showing the relationship between the light output at the output saturation starting point of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example and the PL-spontaneous emission light energy difference.
  • 3 is a graph showing the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scale etc. in each figure are not necessarily the same.
  • symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
  • the terms “upper” and “lower” do not refer to the upper direction (vertically upward) or the lower direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the stacked structure. Used as a term defined by the relative positional relationship. Additionally, the terms “above” and “below” are used not only when two components are spaced apart and there is another component between them; This also applies when they are placed in contact with each other.
  • FIG. 1 and 2 are a schematic top view and a cross-sectional view, respectively, showing the basic configuration of a semiconductor light emitting device 1 according to this embodiment.
  • each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the X, Y, and Z axes are a right-handed Cartesian coordinate system.
  • the stacking direction of the semiconductor light emitting device 1 (that is, the thickness direction of each layer included in the semiconductor light emitting device 1) is parallel to the Z-axis direction, and the main propagation direction of light (laser light) is parallel to the Y-axis direction. be.
  • the semiconductor light emitting device 1 is a device that emits light by current injection.
  • the semiconductor light emitting device 1 is a semiconductor laser device that emits laser light with a peak wavelength of 400 nm or less (peak photon energy of 3.1 eV or less).
  • the semiconductor light emitting device 1 has two end faces 1F and 1R forming a resonator.
  • the end surface 1F is a front end surface that emits laser light
  • the end surface 1R is a rear end surface that has a higher reflectance than the end surface 1F.
  • the semiconductor light emitting device 1 has a waveguide formed between the end surface 1F and the end surface 1R.
  • the resonator length of the semiconductor light emitting device 1, that is, the distance between the end surfaces 1F and 1R in the laser beam propagation direction (the Y-axis direction in each figure, that is, the resonance direction) is not particularly limited, but in this embodiment , 1200 ⁇ m.
  • the semiconductor light emitting device 1 may include a reflective film disposed at the end in the propagation direction of the laser beam.
  • the reflective films are films for adjusting the reflectance of the end faces 1F and 1R, respectively.
  • a dielectric multilayer film or the like can be used as the reflective film.
  • the semiconductor light emitting device 1 includes a substrate 10, a first cladding layer 30 disposed above the substrate 10, an active layer 40 disposed above the first cladding layer 30, and an active layer 40 disposed above the first cladding layer 30.
  • a second cladding layer 50 disposed above the layer 40 and a light guide layer 60 disposed between the first cladding layer 30 and the second cladding layer 50 are provided.
  • the semiconductor light emitting device 1 includes a base layer 21 disposed between the substrate 10 and the first cladding layer 30, and a crack prevention layer disposed between the base layer 21 and the first cladding layer 30.
  • the semiconductor device further includes an upper electrode 91 and a lower electrode 92 arranged on the lower surface of the substrate 10 (that is, the main surface on the back side of the main surface on which each semiconductor layer is laminated).
  • the substrate 10 is a plate-like member that serves as a base for the semiconductor light emitting device 1.
  • the first conductivity type is N type.
  • the base layer 21 is a first conductivity type semiconductor layer disposed above the substrate 10. In this embodiment, base layer 21 is laminated on the main surface of substrate 10 .
  • the crack prevention layer 22 is a first conductivity type semiconductor layer disposed above the substrate 10. In this embodiment, crack prevention layer 22 is placed above base layer 21 .
  • the first cladding layer 30 is a first conductivity type semiconductor layer disposed above the substrate 10.
  • the average refractive index of the first cladding layer 30 is lower than the average refractive index of the active layer 40.
  • the average refractive index of the first cladding layer 30 etc. is defined as the value obtained by integrating the refractive index in the thickness direction of the layer divided by the thickness of the layer.
  • first cladding layer 30 is placed above crack prevention layer 22 .
  • the active layer 40 is a light emitting layer disposed above the first cladding layer 30.
  • the peak photon energy of the PL of the active layer 40 is higher than the peak photon energy of the laser light emitted from the semiconductor light emitting device 1 into which current is injected by 0.050 eV or more.
  • FIG. 3 is a graph showing an example of the PL spectrum of the semiconductor light emitting device 1 according to this embodiment.
  • FIG. 4 is a graph showing an example of the PL spectrum of the semiconductor light emitting device 1 according to the present embodiment from which the active layer 40 is removed.
  • FIG. 5 is a graph showing an example of the PL spectrum of the active layer 40 according to this embodiment.
  • the horizontal axis of each graph in FIGS. 3 to 5 indicates the photon energy corresponding to the PL wavelength, and the vertical axis indicates the normalized PL intensity.
  • the semiconductor light emitting device 1 is optically excited using a He--Cd laser with a wavelength of 325 nm, and the spectrum of PL emitted from the semiconductor light emitting device 1 is measured.
  • a He--Cd laser with a wavelength of 325 nm
  • the spectrum of PL emitted from the semiconductor light emitting device 1 is measured.
  • the peak wavelength is 400 nm or less
  • GaN is often used as the substrate and InGaN is used as the crack prevention layer 22.
  • the bandgap energy of the crack prevention layer 22 is lower than that of the base layer 21 and the first cladding layer 30, so the PL spectrum obtained by the above-mentioned measurement includes an active region as shown in FIG.
  • the PL of layer 40 is included. Therefore, by removing the upper part of the optical guide layer 60 including the active layer 40 from the semiconductor light emitting device 1, the spectrum of PL emitted from the part is optically excited using a He-Cd laser with a wavelength of 325 nm (see Fig. 4) Measure.
  • the PL spectrum of the active layer 40 as shown in FIG. 5 is obtained. be able to. At this time, the intensity of the spectrum shown in FIG.
  • wet etching can be used, for example. Specifically, first, the upper electrode 91 and the lower electrode 92 are removed using an aqua regia-based etchant. Subsequently, the insulating layer 80 is removed using a hydrofluoric acid-based etchant. Subsequently, the active layer 40 and the semiconductor layer disposed above it are removed by reactive ion etching. For example, the first light guide layer 61 and the semiconductor layer disposed above it may be removed by reactive ion etching.
  • the active layer 40 has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked.
  • the difference in band gap energy between each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less.
  • the second cladding layer 50 is a semiconductor layer of a second conductivity type different from the first conductivity type, which is disposed above the active layer 40.
  • the average refractive index of the second cladding layer 50 is lower than the average refractive index of the active layer 40.
  • the second cladding layer 50 is arranged above the light guide layer 60 and the electron block layer 70.
  • the second conductivity type is P type.
  • a ridge 50R extending in the light propagation direction (that is, the Y-axis direction) is formed in the second cladding layer 50.
  • two grooves 50T extending along the light propagation direction are formed on the upper surface of the second cladding layer 50, and a ridge 50R is formed between the two grooves 50T.
  • a waveguide is formed along the ridge 50R.
  • the upper surface of the ridge 50R and the outline of the groove 50T are shown by broken lines.
  • the width of the ridge 50R (that is, the dimension of the upper surface of the ridge 50R in the X-axis direction) is, for example, 15 ⁇ m.
  • the light guide layer 60 is a semiconductor layer disposed between the first cladding layer 30 and the second cladding layer 50.
  • the light guide layer 60 includes a first light guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and a second light guide layer 61 disposed between the active layer 40 and the second cladding layer 50. It has at least one of the guide layers 62.
  • FIG. 2 shows an example in which the light guide layer 60 includes both a first light guide layer 61 and a second light guide layer 62.
  • Each of the first light guide layer 61 and the second light guide layer 62 has a smaller band gap energy than the barrier layers 41 and 43 and a larger band gap energy than the well layer 42 .
  • the electron block layer 70 is a semiconductor layer disposed between the active layer 40 and the second cladding layer 50.
  • the electron block layer 70 is a semiconductor layer having a larger bandgap energy than the second cladding layer 50.
  • the electron blocking layer 70 functions as a barrier for electrons traveling from the active layer 40 to the second cladding layer 50, thereby confining the electrons in the active layer 40.
  • the electron blocking layer 70 is disposed between the second light guide layer 62 and the second cladding layer 50.
  • the insulating layer 80 is an electrically insulating layer disposed above the second cladding layer 50.
  • the insulating layer 80 is arranged in a region of the upper surface of the second cladding layer 50 other than the upper surface of the ridge 50R.
  • the upper electrode 91 is a conductive layer placed above the second cladding layer 50.
  • upper electrode 91 is used as an electrode for injecting current into semiconductor light emitting device 1 through the opening in insulating layer 80 .
  • the upper electrode 91 is arranged on at least a portion of the upper surface of the ridge 50R of the second cladding layer 50.
  • the lower electrode 92 is an electrode placed on the lower surface of the substrate 10 and is used as an electrode for injecting current into the semiconductor light emitting device 1.
  • FIG. 6 is a diagram showing the layer structure of each example of the semiconductor light emitting device 1 according to the present embodiment.
  • FIG. 6 shows the composition and film thickness of each layer included in the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example.
  • FIG. 6 also shows the difference in band gap energy between the barrier layer and the well layer, and the band gap energy ( The difference in bandgap energy (Eg) between the top barrier layer (the barrier layer closest to the second light guide layer 62) and the second light guide layer 62 are also shown.
  • Eg bandgap energy
  • the semiconductor light emitting device of the comparative example also includes an insulating layer, an upper electrode, and a lower electrode, similarly to the semiconductor light emitting device 1 according to the present embodiment.
  • the substrate of the semiconductor light emitting device of the comparative example is an N-type GaN substrate doped with Si as an impurity.
  • the base layer is an N-type Al 0.02 Ga 0.98 N layer with a thickness of 1000 nm.
  • the crack prevention layer is an N-type In 0.03 Ga 0.97 N layer with a thickness of 150 nm.
  • the first cladding layer is an N-type Al 0.065 Ga 0.935 N layer doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 and has a thickness of 540 nm.
  • the first optical guide layer consists of an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 with a thickness of 127 nm, and a layer with a thickness of 180 nm disposed on the layer. undoped Al 0.02 Ga 0.98 N layer.
  • the active layer includes a well layer which is an undoped In 0.01 Ga 0.99 N layer with a thickness of 7.5 nm, and an undoped Al 0.05 Ga 0.95 N layer with a thickness of 12 nm placed below the well layer. and a barrier layer that is an undoped Al 0.05 Ga 0.95 N layer with a thickness of 12 nm disposed above the well layer.
  • the difference in band gap energy between each barrier layer and the well layer is larger than 0.140 eV.
  • the difference in band gap energy between each barrier layer and well layer of the active layer of the comparative example is 0.163 eV.
  • the second optical guide layer is a P-type Al 0.02 Ga 0.98 N layer with a thickness of 66 nm.
  • the electron block layer is a P-type Al 0.36 Ga 0.64 N layer with a thickness of 5.5 nm.
  • the second cladding layer is a P-type Al 0.065 Ga 0.935 N layer doped with Mg at a concentration of 8 ⁇ 10 18 cm ⁇ 3 and has a thickness of 660 nm.
  • the difference in band gap energy between the first light guide layer and the barrier layer closest to the first light guide layer among the barrier layers of the active layer is 0.080 eV
  • the difference in band gap energy between the light guide layer and the barrier layer closest to the second light guide layer among the barrier layers of the active layer is 0.053 eV.
  • the semiconductor light emitting device 1 according to Example 1 includes a substrate 10, a base layer 21, a crack prevention layer 22, a first cladding layer 30, a first light guide layer 61, an active layer 40, and a second light guide. layer 62 , an electron block layer 70 , and a second cladding layer 50 .
  • the second light guide layer 62 according to Example 1 is disposed between the active layer 40 and the electron blocking layer 70.
  • the substrate 10, base layer 21, crack prevention layer 22, first light guide layer 61, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 1 have the same configuration as the semiconductor light emitting device of the comparative example.
  • the first cladding layer 30 according to Example 1 is an N-type Al 0.065 Ga 0.935 N layer doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 and has a thickness of 800 nm.
  • FIG. 7 is a schematic cross-sectional view showing the structure of the active layer 40 of the semiconductor light emitting device 1 according to Example 1.
  • FIG. 7 shows a cross section of the semiconductor light emitting device 1 at the same position as in FIG.
  • the active layer 40 according to Example 1 includes a barrier layer 41, a well layer 42 disposed above the barrier layer 41, and a barrier layer 43 disposed above the well layer 42. has.
  • the barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 12 nm.
  • the well layer 42 is an undoped In 0.01 Ga 0.99 N layer with a thickness of 17.5 nm.
  • the barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer. Note that, as shown in FIG. 6, the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N), and the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N).
  • the total film thickness with 62 is 130 nm. That is, of the undoped Al 0.03 Ga 0.97 N layer with a thickness of 130 nm disposed above the well layer 42 , a portion close to the well layer 42 functions as a barrier layer 43 , and a portion far from the well layer 42 functions as a barrier layer 43 . functions as the second light guide layer 62.
  • the electron block layer 70 is a P-type Al 0.36 Ga 0.64 N layer with a thickness of 1.6 nm.
  • FIG. 8 is a graph schematically showing the bandgap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 1.
  • the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0.140 eV or less. be.
  • the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.053 eV. Further, since the second optical guide layer 62 and the barrier layer 43 have the same composition, there is no difference in band gap energy.
  • Example 2 As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 2 is mainly designed with respect to the positional relationship between the electron block layer 70 and the second light guide layer 62 and the composition of the first light guide layer 61. This is different from the semiconductor light emitting device 1 according to Example 1.
  • the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 2 are the same as the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 1 (and the semiconductor light emitting device of the comparative example), respectively. 21 and the crack prevention layer 22.
  • the first cladding layer 30, the well layer 42, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 2 are the same as the first cladding layer 30, the well layer 42, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 1, respectively. It has the same configuration as the electronic block layer 70.
  • the first optical guide layer 61 according to Example 2 includes an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 and a thickness of 127 nm, and a layer on the layer.
  • An undoped Al 0.03 Ga 0.97 N layer with a thickness of 90 nm is arranged.
  • the barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 10 nm.
  • the barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer with a thickness of 20 nm.
  • the second optical guide layer 62 is a 130 nm thick P-type Al 0.03 Ga 0.97 N layer disposed above the electron block layer 70 .
  • the second light guide layer 62 is doped with Mg at a concentration of 3 ⁇ 10 18 cm ⁇ 3 .
  • the second cladding layer 50 is a P-type Al 0.065 Ga 0.935 N layer with a thickness of 450 nm.
  • FIG. 9 is a graph schematically showing the band gap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 2.
  • the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0.140 eV or less. be. Furthermore, in Example 2, the difference in band gap energy between the barrier layer 41 and the first optical guide layer 61 is smaller than in Example 1.
  • the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.027 eV. Further, since the second optical guide layer 62 and the barrier layer 43 have the same composition, there is no difference in band gap energy.
  • the semiconductor light emitting device 1 according to Example 3 differs from the semiconductor light emitting device 1 according to Example 2 mainly in that the second optical guide layer 62 has a low impurity (Mg) concentration. do.
  • the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 3 are the same as the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 2 (and the semiconductor light emitting device of the comparative example), respectively. 21 and the crack prevention layer 22.
  • the first cladding layer 30, first optical guide layer 61, well layer 42, barrier layer 43, electron block layer 70, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 3 are the same as those of Example 2. It has the same configuration as the first cladding layer 30, first optical guide layer 61, well layer 42, barrier layer 43, electron block layer 70, and second cladding layer 50 of the semiconductor light emitting device 1.
  • the barrier layer 41 according to Example 3 is, like the barrier layer 41 according to Example 1, an undoped Al 0.04 Ga 0.96 N layer with a thickness of 12 nm.
  • the second light guide layer 62 is a P-type Al 0.03 Ga 0.97 N layer with a film thickness of 130 nm like the second light guide layer 62 according to Example 2, but the impurity concentration is different from that of Example 2. It is lower than the second light guide layer 62.
  • the Mg concentration of the second light guide layer 62 according to Example 3 is 2 ⁇ 10 18 cm ⁇ 3 .
  • the band gap energy distribution of the semiconductor light emitting device 1 according to Example 3 is similar to the band gap energy distribution of the semiconductor light emitting device 1 according to Example 2.
  • the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0. It is 140 eV or less.
  • Example 4 As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 4 differs from the semiconductor light emitting device 1 according to Example 2 mainly in the composition of the barrier layer 43.
  • the substrate 10 and base layer 21 of the semiconductor light emitting device 1 according to Example 4 have the same configuration as the substrate 10 and base layer 21 of the semiconductor light emitting device 1 according to Example 2 (and the semiconductor light emitting device of the comparative example), respectively. has.
  • the first cladding layer 30, the first optical guide layer 61, the well layer 42, the electron block layer 70, the second optical guide layer 62, and the second cladding layer 50 of the semiconductor light emitting device 1 according to Example 4 were It has the same configuration as the first cladding layer 30, first optical guide layer 61, well layer 42, electron block layer 70, second optical guide layer 62, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 2.
  • the crack prevention layer 22 according to Example 4 is an N-type In 0.04 Ga 0.96 N layer with a thickness of 150 nm.
  • the first optical guide layer 61 consists of an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 and a thickness of 127 nm, and a layer of N-type Al 0.03 Ga 0.97 N layer disposed on the layer. It has an 80 nm undoped Al 0.03 Ga 0.97 N layer.
  • the barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 14 nm.
  • the barrier layer 43 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 10 nm.
  • FIG. 10 is a graph schematically showing the band gap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 4.
  • the band gap energy between each barrier layer of the active layer 40 and the well layer 42 is The difference is less than 0.140 eV. Furthermore, in the semiconductor light emitting device 1 according to the fourth embodiment, the bandgap energy of the barrier layer 43 is larger than the bandgap energy of the barrier layer 43 according to the second embodiment.
  • the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.027 eV. Further, the difference in band gap energy between the second optical guide layer 62 and the barrier layer 43 is also 0.027 eV.
  • the semiconductor light emitting device 1 according to Example 5 differs from the semiconductor light emitting device 1 according to Example 1 mainly in that the well layer 42 is an AlInGaN layer.
  • the substrate 10, base layer 21, crack prevention layer 22, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 5 are the semiconductor light emitting device 1 according to Example 1 (and the semiconductor light emitting device of the comparative example), respectively. It has the same structure as the substrate 10, base layer 21, crack prevention layer 22, and second cladding layer 50.
  • the first cladding layer 30, the barrier layer 41, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 5 are the first cladding layer 30, the barrier layer 41, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 1, respectively. It has the same configuration as the electronic block layer 70.
  • the first optical guide layer 61 according to Example 5 is made of N-type Al 0 doped with Si at a concentration of 5 ⁇ 10 17 cm ⁇ 3 and has a thickness of 127 nm, like the first optical guide layer 61 according to Example 2 . It has a .03 Ga 0.97 N layer and a 90 nm thick P-type Al 0.03 Ga 0.97 N layer disposed on the layer.
  • the well layer 42 is an undoped Al 0.02 In 0.035 Ga 0.945 N layer with a thickness of 17.5 nm.
  • the barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer. As shown in FIG.
  • the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N);
  • the total film thickness is 70 nm. That is, of the undoped Al 0.03 Ga 0.97 N layer with a thickness of 70 nm disposed above the well layer 42 , a portion close to the well layer 42 functions as a barrier layer 43 , and a portion far from the well layer 42 functions as a barrier layer 43 . functions as the second light guide layer 62.
  • the band gap energy distribution of the semiconductor light emitting device 1 according to Example 5 is similar to the band gap energy distribution of the semiconductor light emitting device 1 according to Example 1.
  • the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0. It is 140 eV or less.
  • FIG. 11 is a diagram showing the characteristics of each example of this embodiment.
  • FIG. 11 shows the characteristics obtained through experiments of the semiconductor light emitting device 1 according to each example, as well as the characteristics obtained through experiments of the semiconductor light emitting device of the comparative example. Note that in FIG. 11, characteristics that have not been measured at the time of filing of the present disclosure are described as "unmeasured.” Further, the characteristics of each semiconductor light emitting device shown in FIG. 11 during laser oscillation are those when the device is operated in continuous (CW) oscillation with an optical output of 0.3 W at room temperature.
  • CW continuous
  • the peak photon energy (peak position) and half-width (full width at half-maximum) of the spontaneous emission shown in FIG. This is the obtained value.
  • the peak photon energy (peak position) and half-width (full width at half maximum) of the laser beam shown in FIG. 11 are obtained by measuring the emission spectrum of each semiconductor light-emitting element into which a current larger than the oscillation threshold is injected using a spectrum analyzer. is the value given.
  • the PL-laser light energy difference shown in FIG. 11 is the difference between the peak photon energy of the PL spectrum measured by the above-described method shown in FIG. 11 and the peak photon energy of the laser light.
  • the PL-Spontaneous emission light energy difference shown in FIG. 11 is the difference between the peak photon energy of the PL spectrum measured by the method described above and the peak photon energy of the spontaneous emission light shown in FIG.
  • the PL intensity ratio at the laser beam peak position shown in FIG. 11 is the ratio of the PL intensity at the peak photon energy of the laser beam emitted from the semiconductor light emitting element into which current is injected to the peak PL intensity.
  • the PL intensity ratio at a position 0.050 eV lower energy than the PL peak position shown in FIG. 11 is the ratio of the PL intensity at a photon energy 0.050 eV lower energy than the peak photon energy of the PL spectrum to the peak PL intensity. It is.
  • FIG. 12A is a graph showing the relationship between the injection current and the optical output of the semiconductor light emitting device 1 according to Example 5, in which the IL curve is shown as a solid line, and the slope efficiency curve (the slope of the IL curve ) is indicated by a dashed line.
  • FIG. 12B is a graph showing the relationship between the optical output of the semiconductor light emitting device 1 according to Example 5 and the ratio of the optical output to input power (that is, wall plug efficiency WPE).
  • the slope efficiency is an increment in optical output per increment in current, and is a value corresponding to the slope of the IL curve shown in FIG. 12A.
  • FIG. 11 shows the slope efficiency for each optical output range.
  • the output saturation starting point is a point corresponding to the inflection point where the slope of the IL curve begins to decrease, and as shown in FIG. 12A, the optical output at the output saturation starting point is 2.1 W (2100 mW). be. Further, the output saturation starting point may be defined as the point at which the ratio of the optical output to the input power to the semiconductor light emitting element becomes maximum, as shown in FIG. 12B.
  • FIGS. 13 and 14 are graphs showing the laser light spectrum and PL spectrum of the semiconductor light emitting device of the comparative example and the semiconductor light emitting device 1 according to Example 1, respectively.
  • the laser light spectrum is shown by a solid line
  • the PL spectrum is shown by a broken line, respectively.
  • the peak photon energy of PL is 0.049 eV higher than the peak photon energy of laser light.
  • the peak photon energy of PL is 0.112 eV higher than the peak photon energy of laser light.
  • the semiconductor light emitting device 1 according to Example 1 has a larger PL-laser light energy difference than the semiconductor light emitting device of the comparative example.
  • the intensity of PL at the peak photon energy of the laser beam is smaller than that of the semiconductor light emitting device of the comparative example.
  • the PL intensity ratio at the laser beam peak position was 0.84
  • the PL intensity ratio was 0.84. , 0.02, as shown in FIGS. 11 and 14.
  • the intensity of PL is considered to correspond to the magnitude of light absorption. Therefore, in the semiconductor light emitting device 1 according to Example 1, absorption of laser light in the active layer 40 can be reduced more than in the semiconductor light emitting device of the comparative example. As a result, as shown in FIG. 11, the semiconductor light emitting device 1 according to Example 1 has higher output saturation starting point optical output, output saturation starting point current density, and slope efficiency than the semiconductor light emitting device of the comparative example. I can do it.
  • FIG. 15 is a graph showing the relationship between the optical output at the output saturation start point of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example and the PL-laser light energy difference.
  • FIGS. 15 and 16 show the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less. This is a graph showing.
  • black circles indicate data for each example, and black squares indicate data for a comparative example.
  • the range of optical output from 0.5 W to 1.0 W includes a high output region where the slope efficiency decreases in the comparative example, but in this embodiment, the output does not reach saturation and the slope This is an area where efficiency is stable.
  • the PL-laser light energy difference is less than 0.050 eV, whereas in the semiconductor light emitting device 1 according to each example, the PL - The laser beam energy difference is 0.050 eV or more. More specifically, in the semiconductor light emitting device 1 of each example, the peak photon energy of the PL of the active layer 40 is higher than the peak photon energy of the laser beam by 0.050 eV or more. Thereby, as described above, absorption of laser light in the active layer 40 can be reduced, so as shown in FIGS. 15 and 16, the optical output and slope efficiency at the output saturation start point can be increased.
  • the optical output at the start point of output saturation can be set to 0.7 W or more, and the slope efficiency can be set to 0.7 W/A or more.
  • the optical output increases linearly with respect to the injected current at least in a range where the optical output is 0.5 W or more and 0.7 W or less.
  • the current density at the output saturation starting point is 60 kA/mm 2 or more.
  • the peak photon energy of the PL of the active layer 40 may be higher than the peak photon energy of the laser light by 0.103 eV or more.
  • the slope efficiency at the output saturation starting point can be further improved.
  • the slope efficiency can be set to 0.75 W/A or more.
  • the peak photon energy of the PL of the active layer 40 may be higher than the peak photon energy of the laser beam by 0.111 V or more.
  • the optical output and slope efficiency at the start point of output saturation can be further increased.
  • the optical output at the start point of output saturation can be 1.4 W or more
  • the slope efficiency can be 1.1 W/A or more. Accordingly, even higher output of the semiconductor light emitting device 1 can be realized.
  • the current density at the start point of output saturation may be 78 kA/mm 2 or more.
  • the difference between the peak photon energy of PL of the active layer 40 and the peak photon energy of the laser beam may be 0.250 eV or less. Therefore, gain can be reliably obtained in the active layer 40 of the semiconductor light emitting device 1.
  • the PL intensity at the peak photon energy of the laser beam is 40% of the peak intensity of the PL spectrum. It may be the following. Thereby, the absorption of laser light in the active layer 40 can be reduced, so that the optical output at the start point of output saturation can be increased. Note that when the PL-laser light energy difference is 0.050 eV, the PL intensity at the peak photon energy of the laser light is PL It was about 40% of the peak intensity of the spectrum.
  • the PL intensity at the peak photon energy of the laser beam is 8% of the peak intensity of the PL spectrum. It may be the following. Thereby, the absorption of laser light in the active layer 40 can be further reduced, so that the optical output at the start point of output saturation can be further increased.
  • the effect of the semiconductor light emitting device 1 according to the present embodiment is more pronounced. That is, when the peak photon energy is large, the energy per photon is large, so the effect of heat generation due to light absorption is large. In particular, when the peak photon energy of the laser beam is 3.1 eV or more, the effect of reducing light absorption of the semiconductor light emitting device 1 according to this embodiment becomes remarkable. Therefore, it is also possible to suppress optical damage to the semiconductor light emitting device 1 due to light absorption.
  • FIGS. 17 to 22 are graphs showing spontaneous emission spectra and PL spectra of semiconductor light emitting devices according to Comparative Example, Example 1, Example 2, and Example 5, respectively. be.
  • the spontaneous emission spectrum is shown by a solid line
  • the PL spectrum is shown by a broken line.
  • FIG. 21 is a graph showing the relationship between the light output at the output saturation start point of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example and the PL-spontaneous emission light energy difference.
  • FIGS. 21 and 22 show the relationship between the slope efficiency and the PL-Spontaneous emission light energy difference when the optical output of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less. This is a graph showing.
  • black circles indicate data of each example, and black squares indicate data of a comparative example.
  • the PL-Spontaneous emission light energy difference is less than 0.070 eV, whereas as shown in FIGS.
  • the PL-spontaneous emission energy difference is 0.070 eV or more.
  • the peak photon energy of PL of the active layer 40 is higher than the peak photon energy of spontaneous emission by 0.070 eV or more.
  • the semiconductor light emitting devices 1 according to Examples 3 and 4 also have the same characteristics as the semiconductor light emitting device 1 according to Example 2, as shown in FIG.
  • the peak photon energy of the laser beam of a semiconductor light emitting device changes depending on the conditions of the resonator, and if it becomes larger than the peak photon energy of the spontaneous emission light within the gain region (photon energy range where gain can be obtained) of the spontaneous emission light. It is known that there may be cases where the In the semiconductor light emitting device 1 according to each example, the peak photon energy of PL of the active layer 40 is higher than the peak photon energy of spontaneous emission by 0.070 eV or more. For this reason, in the semiconductor light emitting device 1 according to the present embodiment, even if the oscillation wavelength deviates from the target wavelength depending on the conditions of the resonator, the difference in peak photon energy between the PL and the laser beam can be reduced. Since a sufficiently large amount can be ensured, absorption of laser light in the active layer 40 can be reduced. Therefore, the optical output at the start point of output saturation can be increased.
  • the peak photon energy of PL of the active layer 40 may be higher than the peak photon energy of spontaneous emission by 0.090 eV or more.
  • the optical output at the output saturation start point and the slope efficiency can be further increased. Accordingly, even higher output of the semiconductor light emitting device 1 can be realized.
  • the difference between the peak photon energy of PL of the active layer 40 and the peak photon energy of spontaneous emission light may be 0.250 eV or less. Thereby, gain can be reliably obtained in the active layer 40 of the semiconductor light emitting device 1.
  • the difference in band gap energy between barrier layers 41 and 43 and well layer 42 is 0.140 eV or less.
  • the detailed mechanism has not been elucidated, when the difference in band gap energy between each barrier layer and the well layer 42 is small as in the semiconductor light emitting device 1 according to the present embodiment, carriers injected into the well layer 42 A portion of the light passes through each barrier layer and flows into the first light guide layer 61 or the second light guide layer 62. It is estimated that the carriers flowing into each optical guide layer shift the PL spectrum of the active layer 40 to the higher energy side.
  • the difference in band gap energy between the first light guide layer 61 and the barrier layer 41 closest to the first light guide layer 61 is less than 0.080 eV. be.
  • the difference in band gap energy between the second optical guide layer 62 and the barrier layer 43 closest to the second optical guide layer 62 is less than 0.080 eV.
  • the semiconductor light emitting device 1 according to the present embodiment is arranged above the barrier layer 43 closest to the second cladding layer 50, and the barrier layer It may further include an electronic block layer in contact with 43. Electrons injected into the well layer 42 of the semiconductor light emitting device 1 have a smaller effective mass than holes, so they easily exceed the barrier layer 43. Therefore, more carriers cross the barrier layer 43 close to the second cladding layer 50, which is a P-type cladding layer, than holes cross the barrier layer 41 close to the first cladding layer 30. Therefore, the semiconductor light emitting device 1 according to Examples 2 to 4 includes an electron block layer 70 disposed above the barrier layer 43 and in contact with the barrier layer 43.
  • the adjacent barrier layers 43 and the second light guide layer 62 have the same composition. If so, these may be regarded as one barrier layer.
  • the electron block layer is in contact with the barrier layer that is a combination of the barrier layer 43 and the second light guide layer 62. . Therefore, in the semiconductor light emitting devices 1 according to Examples 1 and 5, the same effects due to the electron blocking layer 70 as in the semiconductor light emitting devices 1 according to Examples 2 to 4 can be obtained.
  • the semiconductor light emitting device 1 includes a first optical guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and a first optical guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and
  • the well layer 42 may have at least one of the second light guide layers 62 disposed therebetween, and the thickness of the well layer 42 may be 17.5 nm or more.
  • the active layer 40 has a single well layer 42 in each embodiment, it may have a plurality of well layers. That is, the active layer 40 may have a multiple quantum well structure. In this case, the total thickness of the plurality of well layers may be 17.5 nm.
  • each barrier layer is made of Al z Ga 1-z N (0 ⁇ z ⁇ 1)
  • the well layer 42 is made of Al x In y Ga 1-x -y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the active layer 40 has a multiple quantum well structure
  • three or more barrier layers are made of AlzGa1-zN (0 ⁇ z ⁇ 1), and two or more well layers are made of AlxInyGa1-xyN (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the same effect as in the case of a single quantum well structure (for example, Example 5) can be obtained.
  • the semiconductor light emitting device 1 is a semiconductor laser device, but the semiconductor light emitting device 1 is not limited to a semiconductor laser device.
  • the semiconductor light emitting device according to the present disclosure includes an active layer 40, and the peak photon energy of PL of the active layer 40 is 0.070 eV higher than the peak photon energy of spontaneous emission light emitted from the semiconductor light emitting device into which current is injected. It may be higher than that.
  • the semiconductor light emitting device according to the present disclosure may be, for example, a superluminescent diode.
  • the semiconductor light emitting device 1 includes one second light guide layer 62 between the active layer 40 and the second cladding layer 50, but may include two or more second light guide layers 62. Good too.
  • the semiconductor light emitting device according to the present disclosure includes a second optical guide layer 62 disposed between the active layer 40 and the electron block layer 70 and a second light guide layer disposed between the electron block layer 70 and the second cladding layer 50.
  • a second light guide layer 62 may be provided. In this case, the configurations of each second light guide layer 62 may be different from each other.
  • the active layer 40 of the semiconductor light emitting device 1 has a single quantum well structure, it may have a multiple quantum well structure. That is, it may have a structure in which three or more barrier layers and two or more well layers are alternately stacked.
  • the well layer 42 was made of InGaN or AlInGaN, but the configuration of the well layer 42 is not limited to this.
  • the well layer 42 may be made of GaN, for example.
  • the semiconductor light emitting device of the present disclosure can be used, for example, as a high output and highly efficient light source for laser processing.

Abstract

A semiconductor light emitting element (1) according to the present invention comprises: a substrate (10); a first cladding layer (30) of a first conductivity type, the first cladding layer (30) being arranged above the substrate (10); an active layer (40) which is arranged above the first cladding layer (30); a second cladding layer (50) of a second conductivity type, which is different from the first conductivity type, the second cladding layer (50) being arranged above the active layer (40); and a light guide layer (60) which is arranged between the first cladding layer (30) and the second cladding layer (50). The peak photon energy of the photoluminescence of the active layer (40) is higher than the peak photon energy of the laser light emitted from the semiconductor light emitting element (1), into which an electric current has been injected, by 0.050 eV or more.

Description

半導体発光素子semiconductor light emitting device
 本開示は、半導体発光素子に関する。 The present disclosure relates to a semiconductor light emitting device.
 従来、活性層から光を出射する半導体レーザ素子などの半導体発光素子が知られている(特許文献1など)。特許文献1に記載される半導体発光素子は、InGaNからなる井戸層を含む量子井戸構造を有する活性層を備える。特許文献1に記載される半導体レーザ素子は、活性層のフォトルミネッセンス(PL)スペクトルのピーク波長付近(つまり、高い光利得が得られる波長領域)でレーザ発振する。 Semiconductor light-emitting devices such as semiconductor laser devices that emit light from an active layer are conventionally known (see Patent Document 1, etc.). The semiconductor light emitting device described in Patent Document 1 includes an active layer having a quantum well structure including a well layer made of InGaN. The semiconductor laser device described in Patent Document 1 oscillates in the vicinity of the peak wavelength of the photoluminescence (PL) spectrum of the active layer (that is, in the wavelength range where high optical gain can be obtained).
特開2009-252861号公報JP2009-252861A
 しかしながら、このようにレーザ発振波長が、PLスペクトルのピーク波長付近である場合、半導体発光素子で生成されるレーザ光が活性層で吸収される。そのために半導体発光素子の光出力効率が低下する。さらに、吸収されたレーザ光のエネルギーに起因して活性層の温度が上がることにより、光出力が飽和する熱飽和、及び、COD(Catastrophic Optical Damage)が発生し得る。 However, when the laser oscillation wavelength is near the peak wavelength of the PL spectrum, the laser light generated by the semiconductor light emitting element is absorbed by the active layer. Therefore, the light output efficiency of the semiconductor light emitting device decreases. Furthermore, as the temperature of the active layer increases due to the energy of the absorbed laser light, thermal saturation in which the optical output is saturated and COD (catastrophic optical damage) may occur.
 半導体発光素子の共振器端面付近におけるレーザ光の吸収に起因するCODに対しては、共振器端面付近の活性層のバンドギャップエネルギーを大きくすることでレーザ光の吸収を低減する対策も知られている。これにより、共振器端面付近におけるCODを抑制することは可能であるが、共振器端面付近以外においては、レーザ光の吸収を低減できない。このため当該対策による熱飽和に対する抑制効果は低い。 A known countermeasure against COD caused by absorption of laser light near the cavity end face of a semiconductor light emitting device is to reduce the absorption of laser light by increasing the bandgap energy of the active layer near the cavity end face. There is. This makes it possible to suppress COD near the cavity end face, but it is not possible to reduce absorption of laser light in areas other than the vicinity of the cavity end face. Therefore, the effect of suppressing thermal saturation by this measure is low.
 本開示は、このような課題を解決するものであり、活性層における光吸収を低減できる半導体発光素子を提供することを目的とする。 The present disclosure aims to solve such problems, and to provide a semiconductor light emitting device that can reduce light absorption in the active layer.
 上記課題を解決するために、本開示に係る半導体発光素子の一態様は、基板と、前記基板の上方に配置される第一導電型の第一クラッド層と、前記第一クラッド層の上方に配置される活性層と、前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、前記活性層のフォトルミネッセンスのピークフォトンエネルギーは、電流注入された前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーより、0.050eV以上高い。 In order to solve the above problems, one embodiment of a semiconductor light emitting device according to the present disclosure includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer disposed above the first cladding layer. a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type; and a second cladding layer disposed between the first cladding layer and the second cladding layer. and a light guide layer in which the peak photon energy of photoluminescence of the active layer is higher by 0.050 eV or more than the peak photon energy of laser light emitted from the semiconductor light emitting element into which current is injected.
 上記課題を解決するために、本開示に係る半導体発光素子の他の一態様は、基板と、前記基板の上方に配置される第一導電型の第一クラッド層と、前記第一クラッド層の上方に配置される活性層と、前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、前記活性層のフォトルミネッセンスのスペクトルにおいて、電流注入された前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーにおける前記フォトルミネッセンスの強度は、前記スペクトルのピーク強度の40%以下である。 In order to solve the above problems, another aspect of the semiconductor light emitting device according to the present disclosure includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer of the first conductivity type. an active layer disposed above; a second cladding layer of a second conductivity type different from the first conductivity type disposed above the active layer; and between the first cladding layer and the second cladding layer. in the photoluminescence spectrum of the active layer, the intensity of the photoluminescence at the peak photon energy of the laser light emitted from the semiconductor light emitting device into which current is injected is equal to the spectrum of the photoluminescence of the active layer; It is 40% or less of the peak intensity.
 上記課題を解決するために、本開示に係る半導体発光素子の他の一態様は、活性層を備える半導体発光素子であって、前記活性層のフォトルミネッセンスのピークフォトンエネルギーは、電流注入された前記半導体発光素子から出射される自然放出光のピークフォトンエネルギーより、0.070eV以上高い。 In order to solve the above problems, another aspect of the semiconductor light emitting device according to the present disclosure is a semiconductor light emitting device including an active layer, wherein the peak photon energy of photoluminescence of the active layer is It is 0.070 eV or more higher than the peak photon energy of spontaneous emission light emitted from the semiconductor light emitting device.
 上記課題を解決するために、本開示に係る半導体発光素子の他の一態様は、基板と、前記基板の上方に配置される第一導電型の第一クラッド層と、前記第一クラッド層の上方に配置される活性層と、前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、前記2以上の障壁層の各々と、前記1以上の井戸層の各々とのバンドギャップエネルギーの差は、0.140eV以下であり、前記光ガイド層は、前記第一クラッド層と前記活性層との間に配置される第一光ガイド層、及び、前記活性層と前記第二クラッド層との間に配置される第二光ガイド層の少なくとも一方を有し、前記第一光ガイド層、及び前記第二光ガイド層の各々は、前記2以上の障壁層よりバンドギャップエネルギーが小さく、かつ、前記1以上の井戸層よりバンドギャップエネルギーが大きく、前記第一光ガイド層と、前記2以上の障壁層のうち前記第一光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満であり、前記第二光ガイド層と、前記2以上の障壁層のうち前記第二光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満である。 In order to solve the above problems, another aspect of the semiconductor light emitting device according to the present disclosure includes a substrate, a first cladding layer of a first conductivity type disposed above the substrate, and a first cladding layer of the first conductivity type. an active layer disposed above; a second cladding layer of a second conductivity type different from the first conductivity type disposed above the active layer; and between the first cladding layer and the second cladding layer. the active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately laminated, and each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less, and the optical guide layer is a first cladding layer disposed between the first cladding layer and the active layer. Each of the first light guide layer and the second light guide layer has at least one of a light guide layer and a second light guide layer disposed between the active layer and the second cladding layer. has a band gap energy smaller than the two or more barrier layers and a band gap energy larger than the one or more well layers, and the first light guide layer and the first light guide layer among the two or more barrier layers. The difference in band gap energy between the barrier layer closest to the guide layer is less than 0.080 eV, and the second light guide layer and the barrier layer closest to the second light guide layer among the two or more barrier layers The difference in band gap energy between the two is less than 0.080 eV.
 本開示によれば、活性層における光吸収を低減できる半導体発光素子を提供できる。 According to the present disclosure, it is possible to provide a semiconductor light emitting device that can reduce light absorption in the active layer.
実施の形態に係る半導体発光素子の全体構成を示す模式的な上面図である。FIG. 1 is a schematic top view showing the overall configuration of a semiconductor light emitting device according to an embodiment. 実施の形態に係る半導体発光素子の全体構成を示す模式的な断面図である。1 is a schematic cross-sectional view showing the overall configuration of a semiconductor light emitting device according to an embodiment. 実施の形態に係る半導体発光素子のPLスペクトルの一例を示すグラフである。3 is a graph showing an example of a PL spectrum of a semiconductor light emitting device according to an embodiment. 実施の形態に係る半導体発光素子から活性層を除去した素子のPLスペクトルの一例を示すグラフである。It is a graph which shows an example of the PL spectrum of the element which removed the active layer from the semiconductor light emitting element based on embodiment. 実施の形態に係る活性層のPLスペクトルの一例を示すグラフである。It is a graph showing an example of a PL spectrum of an active layer concerning an embodiment. 実施の形態に係る半導体発光素子の各実施例の層構成を示す図である。FIG. 3 is a diagram showing the layer structure of each example of the semiconductor light emitting device according to the embodiment. 実施例1に係る半導体発光素子の活性層の構成を示す模式的な断面図である。1 is a schematic cross-sectional view showing the structure of an active layer of a semiconductor light emitting device according to Example 1. FIG. 実施例1に係る半導体発光素子の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。3 is a graph schematically showing a bandgap energy distribution in the stacking direction of the semiconductor light emitting device according to Example 1. FIG. 実施例2に係る半導体発光素子の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。3 is a graph schematically showing the bandgap energy distribution in the stacking direction of the semiconductor light emitting device according to Example 2. FIG. 実施例4に係る半導体発光素子の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。12 is a graph schematically showing a bandgap energy distribution in the stacking direction of a semiconductor light emitting device according to Example 4. 実施の形態の各実施例の特性を示す図である。It is a figure which shows the characteristic of each Example of embodiment. 実施例5に係る半導体発光素子の注入電流と光出力との関係を示すグラフである。12 is a graph showing the relationship between the injection current and the optical output of the semiconductor light emitting device according to Example 5. 実施例5に係る半導体発光素子の光出力と、入力電力に対する光出力の割合との関係を示すグラフである。7 is a graph showing the relationship between the light output of the semiconductor light emitting device according to Example 5 and the ratio of the light output to input power. 比較例の半導体発光素子のレーザ光スペクトルと、PLスペクトルとを示すグラフである。It is a graph which shows the laser beam spectrum and PL spectrum of the semiconductor light emitting device of a comparative example. 実施例1に係る半導体発光素子のレーザ光スペクトルと、PLスペクトルとを示すグラフである。3 is a graph showing a laser beam spectrum and a PL spectrum of a semiconductor light emitting device according to Example 1. FIG. 各実施例に係る半導体発光素子及び比較例の半導体発光素子の出力飽和開始点における光出力と、PL-レーザ光エネルギー差との関係を示すグラフである。3 is a graph showing the relationship between the optical output at the output saturation starting point of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example and the PL-laser light energy difference. 各実施例に係る半導体発光素子及び比較例の半導体発光素子の光出力が0.5W以上1.0W以下である場合のスロープ効率と、PL-レーザ光エネルギー差との関係を示すグラフである。3 is a graph showing the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less. 比較例に係る半導体発光素子の自然放出光スペクトルと、PLスペクトルとを示すグラフである。2 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to a comparative example. 実施例1に係る半導体発光素子の自然放出光スペクトルと、PLスペクトルとを示すグラフである。2 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 1. 実施例2に係る半導体発光素子の自然放出光スペクトルと、PLスペクトルとを示すグラフである。3 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 2. 実施例5に係る半導体発光素子の自然放出光スペクトルと、PLスペクトルとを示すグラフである。3 is a graph showing a spontaneous emission spectrum and a PL spectrum of a semiconductor light emitting device according to Example 5. 各実施例に係る半導体発光素子及び比較例の半導体発光素子の出力飽和開始点における光出力と、PL-自然放出光エネルギー差との関係を示すグラフである。3 is a graph showing the relationship between the light output at the output saturation starting point of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example and the PL-spontaneous emission light energy difference. 各実施例に係る半導体発光素子及び比較例の半導体発光素子の光出力が0.5W以上1.0W以下である場合のスロープ効率と、PL-レーザ光エネルギー差との関係を示すグラフである。3 is a graph showing the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the embodiments described below each represent a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement positions and connection forms of the components shown in the following embodiments are merely examples and do not limit the present disclosure.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scale etc. in each figure are not necessarily the same. In addition, in each figure, the same code|symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。 Furthermore, in this specification, the terms "upper" and "lower" do not refer to the upper direction (vertically upward) or the lower direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the stacked structure. Used as a term defined by the relative positional relationship. Additionally, the terms "above" and "below" are used not only when two components are spaced apart and there is another component between them; This also applies when they are placed in contact with each other.
 (実施の形態)
 実施の形態に係る半導体発光素子について説明する。
(Embodiment)
A semiconductor light emitting device according to an embodiment will be described.
 [1.基本構成]
 本実施の形態に係る半導体発光素子の基本構成について図1を用いて説明する。図1、及び図2は、それぞれ、本実施の形態に係る半導体発光素子1の基本構成を示す模式的な上面図、及び断面図である。なお、各図には、互いに直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は、右手系の直交座標系である。半導体発光素子1の積層方向(つまり、半導体発光素子1が備える各層の厚さ方向)は、Z軸方向に平行であり、光(レーザ光)の主な伝搬方向は、Y軸方向に平行である。
[1. Basic configuration]
The basic configuration of the semiconductor light emitting device according to this embodiment will be explained using FIG. 1. 1 and 2 are a schematic top view and a cross-sectional view, respectively, showing the basic configuration of a semiconductor light emitting device 1 according to this embodiment. Note that each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other. The X, Y, and Z axes are a right-handed Cartesian coordinate system. The stacking direction of the semiconductor light emitting device 1 (that is, the thickness direction of each layer included in the semiconductor light emitting device 1) is parallel to the Z-axis direction, and the main propagation direction of light (laser light) is parallel to the Y-axis direction. be.
 半導体発光素子1は、電流注入によって光を出射する素子である。本実施の形態では、半導体発光素子1は、ピーク波長が400nm以下(ピークフォトンエネルギーが3.1eV以下)のレーザ光を出射する半導体レーザ素子である。図1に示されるように、半導体発光素子1は、共振器を形成する二つの端面1F及び1Rを有する。端面1Fは、レーザ光を出射するフロント端面であり、端面1Rは、端面1Fより反射率が高いリア端面である。また、半導体発光素子1は、端面1Fと端面1Rとの間に形成された導波路を有する。 The semiconductor light emitting device 1 is a device that emits light by current injection. In this embodiment, the semiconductor light emitting device 1 is a semiconductor laser device that emits laser light with a peak wavelength of 400 nm or less (peak photon energy of 3.1 eV or less). As shown in FIG. 1, the semiconductor light emitting device 1 has two end faces 1F and 1R forming a resonator. The end surface 1F is a front end surface that emits laser light, and the end surface 1R is a rear end surface that has a higher reflectance than the end surface 1F. Further, the semiconductor light emitting device 1 has a waveguide formed between the end surface 1F and the end surface 1R.
 半導体発光素子1の共振器長、つまり、レーザ光の伝搬方向(各図のY軸方向、つまり、共振方向)の端面1F及び1Rの間の距離は、特に限定されないが、本実施の形態では、1200μmである。半導体発光素子1は、レーザ光の伝搬方向の端部に配置される反射膜を備えてもよい。反射膜は、それぞれ、端面1F及び1Rの反射率を調整するための膜である。反射膜として、誘電体多層膜などを用いることができる。 The resonator length of the semiconductor light emitting device 1, that is, the distance between the end surfaces 1F and 1R in the laser beam propagation direction (the Y-axis direction in each figure, that is, the resonance direction) is not particularly limited, but in this embodiment , 1200 μm. The semiconductor light emitting device 1 may include a reflective film disposed at the end in the propagation direction of the laser beam. The reflective films are films for adjusting the reflectance of the end faces 1F and 1R, respectively. A dielectric multilayer film or the like can be used as the reflective film.
 図2に示されるように、半導体発光素子1は、基板10と、基板10の上方に配置される第一クラッド層30と、第一クラッド層30の上方に配置される活性層40と、活性層40の上方に配置される第二クラッド層50と、第一クラッド層30と、第二クラッド層50との間に配置される光ガイド層60とを備える。本実施の形態では、半導体発光素子1は、基板10と第一クラッド層30との間に配置される下地層21と、下地層21と第一クラッド層30との間に配置されるクラック防止層22と、活性層40と第二クラッド層50との間に配置される電子ブロック層70と、第二クラッド層50の上方に配置される絶縁層80と、絶縁層80の上方に配置される上部電極91と、基板10の下面(つまり、各半導体層が積層される主面の裏側の主面)に配置される下部電極92とをさらに備える。 As shown in FIG. 2, the semiconductor light emitting device 1 includes a substrate 10, a first cladding layer 30 disposed above the substrate 10, an active layer 40 disposed above the first cladding layer 30, and an active layer 40 disposed above the first cladding layer 30. A second cladding layer 50 disposed above the layer 40 and a light guide layer 60 disposed between the first cladding layer 30 and the second cladding layer 50 are provided. In this embodiment, the semiconductor light emitting device 1 includes a base layer 21 disposed between the substrate 10 and the first cladding layer 30, and a crack prevention layer disposed between the base layer 21 and the first cladding layer 30. an electron blocking layer 70 disposed between the active layer 40 and the second cladding layer 50; an insulating layer 80 disposed above the second cladding layer 50; The semiconductor device further includes an upper electrode 91 and a lower electrode 92 arranged on the lower surface of the substrate 10 (that is, the main surface on the back side of the main surface on which each semiconductor layer is laminated).
 基板10は、半導体発光素子1の基台となる板状部材である。本実施の形態では、第一導電型は、N型である。 The substrate 10 is a plate-like member that serves as a base for the semiconductor light emitting device 1. In this embodiment, the first conductivity type is N type.
 下地層21は、基板10の上方に配置される第一導電型の半導体層である。本実施の形態では、下地層21は、基板10の主面に積層される。 The base layer 21 is a first conductivity type semiconductor layer disposed above the substrate 10. In this embodiment, base layer 21 is laminated on the main surface of substrate 10 .
 クラック防止層22は、基板10の上方に配置される第一導電型の半導体層である。本実施の形態では、クラック防止層22は、下地層21の上方に配置される。 The crack prevention layer 22 is a first conductivity type semiconductor layer disposed above the substrate 10. In this embodiment, crack prevention layer 22 is placed above base layer 21 .
 第一クラッド層30は、基板10の上方に配置される第一導電型の半導体層である。第一クラッド層30の平均屈折率は、活性層40の平均屈折率より低い。ここで、第一クラッド層30などの平均屈折率は、層の厚さ方向において屈折率を積分した値を層の厚さで割った値で定義される。本実施の形態では、第一クラッド層30は、クラック防止層22の上方に配置される。 The first cladding layer 30 is a first conductivity type semiconductor layer disposed above the substrate 10. The average refractive index of the first cladding layer 30 is lower than the average refractive index of the active layer 40. Here, the average refractive index of the first cladding layer 30 etc. is defined as the value obtained by integrating the refractive index in the thickness direction of the layer divided by the thickness of the layer. In this embodiment, first cladding layer 30 is placed above crack prevention layer 22 .
 活性層40は、第一クラッド層30の上方に配置される発光層である。本実施の形態では、活性層40のPLのピークフォトンエネルギーは、電流注入された半導体発光素子1から出射されるレーザ光のピークフォトンエネルギーより、0.050eV以上高い。 The active layer 40 is a light emitting layer disposed above the first cladding layer 30. In this embodiment, the peak photon energy of the PL of the active layer 40 is higher than the peak photon energy of the laser light emitted from the semiconductor light emitting device 1 into which current is injected by 0.050 eV or more.
 ここで、活性層40のPLのピークフォトンエネルギーの測定方向について、図3~図5を用いて説明する。図3は、本実施の形態に係る半導体発光素子1のPLスペクトルの一例を示すグラフである。図4は、本実施の形態に係る半導体発光素子1から活性層40を除去した素子のPLスペクトルの一例を示すグラフである。図5は、本実施の形態に係る活性層40のPLスペクトルの一例を示すグラフである。図3~図5の各グラフの横軸は、PLの波長に対応するフォトンエネルギーを示し、縦軸は、規格化されたPL強度を示す。 Here, the direction in which the peak photon energy of PL of the active layer 40 is measured will be explained using FIGS. 3 to 5. FIG. 3 is a graph showing an example of the PL spectrum of the semiconductor light emitting device 1 according to this embodiment. FIG. 4 is a graph showing an example of the PL spectrum of the semiconductor light emitting device 1 according to the present embodiment from which the active layer 40 is removed. FIG. 5 is a graph showing an example of the PL spectrum of the active layer 40 according to this embodiment. The horizontal axis of each graph in FIGS. 3 to 5 indicates the photon energy corresponding to the PL wavelength, and the vertical axis indicates the normalized PL intensity.
 活性層40のPLスペクトルを測定するために、まず、半導体発光素子1を、波長325nmのHe-Cdレーザなどを用いて光励起することで半導体発光素子1から出射されるPLのスペクトルを測定する。例えばGaN系の半導体レーザ素子においては、ピーク波長が400nm以下の場合、基板としてGaNが用いられ、クラック防止層22としてInGaNが用いられることが多い。この場合、クラック防止層22のバンドギャップエネルギーが、下地層21及び第一クラッド層30よりも低くなるため、上述したような測定によって得られるPLスペクトルには、図3に示されるように、活性層40のPLだけでなく、クラック防止層22のPLも含まれる。そこで、半導体発光素子1から活性層40を含む光ガイド層60より上部を除去した部分を、波長325nmのHe-Cdレーザなどを用いて光励起することで当該部分から出射されるPLのスペクトル(図4)を測定する。図3に示されるような半導体発光素子1のPLスペクトルから、図4に示されるクラック防止層22のPL成分を除去することで、図5に示されるような、活性層40のPLスペクトルを得ることができる。この際、図5に示される除去後のスペクトルにおいてクラック防止層22のPLスペクトルのピークが残らないように、図4に示すスペクトルの強度は調整される。具体的には、図3では3.31eV付近の位置のピーク強度は0.91であるのに対し、図4のピーク強度が0.84となるように強度を調整する。これにより、図3のスペクトル強度から図4のスペクトル強度を差し引いた図5のスペクトルにおいて、3.31eV付近にはピークが見られなくなっている。 In order to measure the PL spectrum of the active layer 40, first, the semiconductor light emitting device 1 is optically excited using a He--Cd laser with a wavelength of 325 nm, and the spectrum of PL emitted from the semiconductor light emitting device 1 is measured. For example, in a GaN-based semiconductor laser device, when the peak wavelength is 400 nm or less, GaN is often used as the substrate and InGaN is used as the crack prevention layer 22. In this case, the bandgap energy of the crack prevention layer 22 is lower than that of the base layer 21 and the first cladding layer 30, so the PL spectrum obtained by the above-mentioned measurement includes an active region as shown in FIG. Not only the PL of layer 40 but also the PL of anti-crack layer 22 is included. Therefore, by removing the upper part of the optical guide layer 60 including the active layer 40 from the semiconductor light emitting device 1, the spectrum of PL emitted from the part is optically excited using a He-Cd laser with a wavelength of 325 nm (see Fig. 4) Measure. By removing the PL component of the crack prevention layer 22 shown in FIG. 4 from the PL spectrum of the semiconductor light emitting device 1 as shown in FIG. 3, the PL spectrum of the active layer 40 as shown in FIG. 5 is obtained. be able to. At this time, the intensity of the spectrum shown in FIG. 4 is adjusted so that the peak of the PL spectrum of the crack prevention layer 22 does not remain in the spectrum after removal shown in FIG. Specifically, while the peak intensity at a position near 3.31 eV in FIG. 3 is 0.91, the intensity is adjusted so that the peak intensity in FIG. 4 is 0.84. As a result, in the spectrum of FIG. 5 obtained by subtracting the spectrum intensity of FIG. 4 from the spectrum intensity of FIG. 3, no peak is seen around 3.31 eV.
 半導体発光素子1から活性層40を除去する際には、例えば、ウェットエッチングを用いることができる。具体的には、まず、王水系のエッチャントを用いて、上部電極91、及び下部電極92を除去する。続いて、フッ酸系のエッチャントを用いて、絶縁層80を除去する。続いて、反応性イオンエッチングによって、活性層40及びその上方に配置される半導体層を除去する。反応性イオンエッチングによって、例えば、第一光ガイド層61及びその上方に配置される半導体層を除去してもよい。 When removing the active layer 40 from the semiconductor light emitting device 1, wet etching can be used, for example. Specifically, first, the upper electrode 91 and the lower electrode 92 are removed using an aqua regia-based etchant. Subsequently, the insulating layer 80 is removed using a hydrofluoric acid-based etchant. Subsequently, the active layer 40 and the semiconductor layer disposed above it are removed by reactive ion etching. For example, the first light guide layer 61 and the semiconductor layer disposed above it may be removed by reactive ion etching.
 本実施の形態では、活性層40は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有する。2以上の障壁層の各々と、1以上の井戸層の各々とのバンドギャップエネルギーの差は、0.140eV以下である。 In this embodiment, the active layer 40 has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked. The difference in band gap energy between each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less.
 第二クラッド層50は、活性層40の上方に配置される第一導電型と異なる第二導電型の半導体層である。第二クラッド層50の平均屈折率は、活性層40の平均屈折率より低い。本実施の形態では、第二クラッド層50は、光ガイド層60、及び電子ブロック層70の上方に配置される。第二導電型は、P型である。 The second cladding layer 50 is a semiconductor layer of a second conductivity type different from the first conductivity type, which is disposed above the active layer 40. The average refractive index of the second cladding layer 50 is lower than the average refractive index of the active layer 40. In this embodiment, the second cladding layer 50 is arranged above the light guide layer 60 and the electron block layer 70. The second conductivity type is P type.
 本実施の形態では、第二クラッド層50には、光の伝搬方向(つまり、Y軸方向)に延在するリッジ50Rが形成されている。言い換えると、第二クラッド層50の上面には、光の伝搬方向に沿って延在する二つの溝50Tが形成されており、二つの溝50Tの間にリッジ50Rが形成される。リッジ50Rに沿って導波路が形成される。なお、図1には、リッジ50Rの上面、及び溝50Tの輪郭が破線で示されている。リッジ50Rの幅(つまり、リッジ50Rの上面のX軸方向の寸法)は、例えば、15μmである。 In this embodiment, a ridge 50R extending in the light propagation direction (that is, the Y-axis direction) is formed in the second cladding layer 50. In other words, two grooves 50T extending along the light propagation direction are formed on the upper surface of the second cladding layer 50, and a ridge 50R is formed between the two grooves 50T. A waveguide is formed along the ridge 50R. In addition, in FIG. 1, the upper surface of the ridge 50R and the outline of the groove 50T are shown by broken lines. The width of the ridge 50R (that is, the dimension of the upper surface of the ridge 50R in the X-axis direction) is, for example, 15 μm.
 光ガイド層60は、第一クラッド層30と第二クラッド層50との間に配置される半導体層である。光ガイド層60は、第一クラッド層30と活性層40との間に配置される第一光ガイド層61、及び、活性層40と第二クラッド層50との間に配置される第二光ガイド層62の少なくとも一方を有する。なお、図2には、光ガイド層60が、第一光ガイド層61、及び第二光ガイド層62の両方を有する例が示されている。第一光ガイド層61、及び第二光ガイド層62の各々は、障壁層41、43よりバンドギャップエネルギーが小さく、かつ、井戸層42よりバンドギャップエネルギーが大きい。 The light guide layer 60 is a semiconductor layer disposed between the first cladding layer 30 and the second cladding layer 50. The light guide layer 60 includes a first light guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and a second light guide layer 61 disposed between the active layer 40 and the second cladding layer 50. It has at least one of the guide layers 62. Note that FIG. 2 shows an example in which the light guide layer 60 includes both a first light guide layer 61 and a second light guide layer 62. Each of the first light guide layer 61 and the second light guide layer 62 has a smaller band gap energy than the barrier layers 41 and 43 and a larger band gap energy than the well layer 42 .
 電子ブロック層70は、活性層40と第二クラッド層50との間に配置される半導体層である。電子ブロック層70は、第二クラッド層50よりバンドギャップエネルギーが大きい半導体層である。これにより、電子ブロック層70は、活性層40から第二クラッド層50へ向かう電子の障壁として機能することで、電子を活性層40に閉じ込める。図2に示される例では、電子ブロック層70は、第二光ガイド層62と第二クラッド層50との間に配置される。 The electron block layer 70 is a semiconductor layer disposed between the active layer 40 and the second cladding layer 50. The electron block layer 70 is a semiconductor layer having a larger bandgap energy than the second cladding layer 50. Thereby, the electron blocking layer 70 functions as a barrier for electrons traveling from the active layer 40 to the second cladding layer 50, thereby confining the electrons in the active layer 40. In the example shown in FIG. 2, the electron blocking layer 70 is disposed between the second light guide layer 62 and the second cladding layer 50.
 絶縁層80は、第二クラッド層50の上方に配置される電気絶縁性の層である。本実施の形態では、絶縁層80は、第二クラッド層50の上面のうち、リッジ50Rの上面以外の領域に配置される。 The insulating layer 80 is an electrically insulating layer disposed above the second cladding layer 50. In this embodiment, the insulating layer 80 is arranged in a region of the upper surface of the second cladding layer 50 other than the upper surface of the ridge 50R.
 上部電極91は、第二クラッド層50の上方に配置される導電層である。本実施の形態では、上部電極91は、絶縁層80の開口を通じて半導体発光素子1に電流注入を行うための電極として用いられる。上部電極91は、第二クラッド層50のリッジ50Rの上面の少なくとも一部に配置される。 The upper electrode 91 is a conductive layer placed above the second cladding layer 50. In this embodiment, upper electrode 91 is used as an electrode for injecting current into semiconductor light emitting device 1 through the opening in insulating layer 80 . The upper electrode 91 is arranged on at least a portion of the upper surface of the ridge 50R of the second cladding layer 50.
 下部電極92は、基板10の下面に配置される電極であり、半導体発光素子1に電流注入を行うための電極として用いられる。 The lower electrode 92 is an electrode placed on the lower surface of the substrate 10 and is used as an electrode for injecting current into the semiconductor light emitting device 1.
 [2.実施例]
 本実施の形態に係る半導体発光素子1の実施例について図6を用いて説明する。図6は、本実施の形態に係る半導体発光素子1の各実施例の層構成を示す図である。図6には、各実施例に係る半導体発光素子1、及び比較例の半導体発光素子が備える各層の組成、及び膜厚が記載されている。また、図6には、障壁層と井戸層とのバンドギャップエネルギーの差、最下部の障壁層(最も第一光ガイド層61に近い障壁層)と第一光ガイド層とのバンドギャップエネルギー(Eg)の差、及び、最上部の障壁層(最も第二光ガイド層62に近い障壁層)と第二光ガイド層62とのバンドギャップエネルギー(Eg)の差も併せて示されている。以下、比較例の半導体発光素子、及び各実施例に係る半導体発光素子1の詳細構成について説明する。
[2. Example]
An example of the semiconductor light emitting device 1 according to this embodiment will be described using FIG. 6. FIG. 6 is a diagram showing the layer structure of each example of the semiconductor light emitting device 1 according to the present embodiment. FIG. 6 shows the composition and film thickness of each layer included in the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example. FIG. 6 also shows the difference in band gap energy between the barrier layer and the well layer, and the band gap energy ( The difference in bandgap energy (Eg) between the top barrier layer (the barrier layer closest to the second light guide layer 62) and the second light guide layer 62 are also shown. Hereinafter, detailed configurations of a semiconductor light emitting device of a comparative example and a semiconductor light emitting device 1 according to each example will be described.
 [2-1.比較例]
 図6に示される比較例の半導体発光素子は、本実施の形態に係る半導体発光素子1と同様に、基板と、下地層と、クラック防止層と、第一クラッド層と、第一光ガイド層と、活性層と、電子ブロック層と、第二光ガイド層と、第二クラッド層とを備える。なお、図6に示されないが、比較例の半導体発光素子も、本実施の形態に係る半導体発光素子1と同様に、絶縁層、上部電極、及び下部電極を備える。
[2-1. Comparative example]
The semiconductor light emitting device of the comparative example shown in FIG. 6, like the semiconductor light emitting device 1 according to the present embodiment, includes a substrate, a base layer, a crack prevention layer, a first cladding layer, and a first optical guide layer. , an active layer, an electron blocking layer, a second optical guide layer, and a second cladding layer. Although not shown in FIG. 6, the semiconductor light emitting device of the comparative example also includes an insulating layer, an upper electrode, and a lower electrode, similarly to the semiconductor light emitting device 1 according to the present embodiment.
 比較例の半導体発光素子の基板は、不純物としてSiが添加されたN型GaN基板である。下地層は、膜厚1000nmのN型Al0.02Ga0.98N層である。クラック防止層は、膜厚150nmのN型In0.03Ga0.97N層である。第一クラッド層は、膜厚540nmの濃度5×1017cm-3のSiが添加されているN型Al0.065Ga0.935N層である。第一光ガイド層は、膜厚127nmの濃度5×1017cm-3のSiが添加されているN型Al0.03Ga0.97N層と、当該層上に配置される膜厚180nmのアンドープAl0.02Ga0.98N層とを有する。 The substrate of the semiconductor light emitting device of the comparative example is an N-type GaN substrate doped with Si as an impurity. The base layer is an N-type Al 0.02 Ga 0.98 N layer with a thickness of 1000 nm. The crack prevention layer is an N-type In 0.03 Ga 0.97 N layer with a thickness of 150 nm. The first cladding layer is an N-type Al 0.065 Ga 0.935 N layer doped with Si at a concentration of 5×10 17 cm −3 and has a thickness of 540 nm. The first optical guide layer consists of an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5×10 17 cm −3 with a thickness of 127 nm, and a layer with a thickness of 180 nm disposed on the layer. undoped Al 0.02 Ga 0.98 N layer.
 活性層は、膜厚7.5nmのアンドープIn0.01Ga0.99N層である井戸層と、井戸層の下方に配置される膜厚12nmのアンドープAl0.05Ga0.95N層である障壁層と、井戸層の上方に配置される膜厚12nmのアンドープAl0.05Ga0.95N層である障壁層とを有する。図6に示されるように、比較例の活性層においては、本実施の形態に係る活性層40と異なり、各障壁層と井戸層とのバンドギャップエネルギーの差は、0.140eVより大きい。比較例の活性層の各障壁層と井戸層とのバンドギャップエネルギーの差は、0.163eVである。 The active layer includes a well layer which is an undoped In 0.01 Ga 0.99 N layer with a thickness of 7.5 nm, and an undoped Al 0.05 Ga 0.95 N layer with a thickness of 12 nm placed below the well layer. and a barrier layer that is an undoped Al 0.05 Ga 0.95 N layer with a thickness of 12 nm disposed above the well layer. As shown in FIG. 6, in the active layer of the comparative example, unlike the active layer 40 according to the present embodiment, the difference in band gap energy between each barrier layer and the well layer is larger than 0.140 eV. The difference in band gap energy between each barrier layer and well layer of the active layer of the comparative example is 0.163 eV.
 第二光ガイド層は、膜厚66nmのP型Al0.02Ga0.98N層である。電子ブロック層は、膜厚5.5nmのP型Al0.36Ga0.64N層である。第二クラッド層は、膜厚660nmの濃度8×1018cm-3のMgが添加されているP型Al0.065Ga0.935N層である。 The second optical guide layer is a P-type Al 0.02 Ga 0.98 N layer with a thickness of 66 nm. The electron block layer is a P-type Al 0.36 Ga 0.64 N layer with a thickness of 5.5 nm. The second cladding layer is a P-type Al 0.065 Ga 0.935 N layer doped with Mg at a concentration of 8×10 18 cm −3 and has a thickness of 660 nm.
 比較例の半導体発光素子においては、第一光ガイド層と、活性層の障壁層のうち第一光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eVであり、第二光ガイド層と、活性層の障壁層のうち第二光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.053eVである。 In the semiconductor light emitting device of the comparative example, the difference in band gap energy between the first light guide layer and the barrier layer closest to the first light guide layer among the barrier layers of the active layer is 0.080 eV, The difference in band gap energy between the light guide layer and the barrier layer closest to the second light guide layer among the barrier layers of the active layer is 0.053 eV.
 [2-2.実施例1]
 実施例1に係る半導体発光素子1は、基板10と、下地層21と、クラック防止層22と、第一クラッド層30と、第一光ガイド層61と、活性層40と、第二光ガイド層62と、電子ブロック層70と、第二クラッド層50とを備える。実施例1に係る第二光ガイド層62は、活性層40と電子ブロック層70との間に配置される。
[2-2. Example 1]
The semiconductor light emitting device 1 according to Example 1 includes a substrate 10, a base layer 21, a crack prevention layer 22, a first cladding layer 30, a first light guide layer 61, an active layer 40, and a second light guide. layer 62 , an electron block layer 70 , and a second cladding layer 50 . The second light guide layer 62 according to Example 1 is disposed between the active layer 40 and the electron blocking layer 70.
 実施例1に係る半導体発光素子1の基板10、下地層21、クラック防止層22、第一光ガイド層61、及び第二クラッド層50は、比較例の半導体発光素子と同じ構成を有する。 The substrate 10, base layer 21, crack prevention layer 22, first light guide layer 61, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 1 have the same configuration as the semiconductor light emitting device of the comparative example.
 実施例1に係る第一クラッド層30は、膜厚800nmの濃度5×1017cm-3のSiが添加されているN型Al0.065Ga0.935N層である。 The first cladding layer 30 according to Example 1 is an N-type Al 0.065 Ga 0.935 N layer doped with Si at a concentration of 5×10 17 cm −3 and has a thickness of 800 nm.
 実施例1に係る活性層40について、図7を用いて説明する。図7は、実施例1に係る半導体発光素子1の活性層40の構成を示す模式的な断面図である。図7には、図2と同様の位置における半導体発光素子1の断面が示されている。図7に示されるように、実施例1に係る活性層40は、障壁層41と、障壁層41の上方に配置される井戸層42と、井戸層42の上方に配置される障壁層43とを有する。障壁層41は、膜厚12nmのアンドープAl0.04Ga0.96N層である。井戸層42は、膜厚17.5nmのアンドープIn0.01Ga0.99N層である。障壁層43は、アンドープAl0.03Ga0.97N層である。なお、図6に示されるように、障壁層43と第二光ガイド層62とは、同一の組成(Al0.03Ga0.97N)を有し、障壁層43と第二光ガイド層62との合計膜厚は130nmである。つまり、井戸層42の上方に配置される膜厚130nmのアンドープAl0.03Ga0.97N層のうち、井戸層42に近い部分は、障壁層43として機能し、井戸層42から遠い部分は、第二光ガイド層62として機能する。 The active layer 40 according to Example 1 will be explained using FIG. 7. FIG. 7 is a schematic cross-sectional view showing the structure of the active layer 40 of the semiconductor light emitting device 1 according to Example 1. FIG. 7 shows a cross section of the semiconductor light emitting device 1 at the same position as in FIG. As shown in FIG. 7, the active layer 40 according to Example 1 includes a barrier layer 41, a well layer 42 disposed above the barrier layer 41, and a barrier layer 43 disposed above the well layer 42. has. The barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 12 nm. The well layer 42 is an undoped In 0.01 Ga 0.99 N layer with a thickness of 17.5 nm. The barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer. Note that, as shown in FIG. 6, the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N), and the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N). The total film thickness with 62 is 130 nm. That is, of the undoped Al 0.03 Ga 0.97 N layer with a thickness of 130 nm disposed above the well layer 42 , a portion close to the well layer 42 functions as a barrier layer 43 , and a portion far from the well layer 42 functions as a barrier layer 43 . functions as the second light guide layer 62.
 電子ブロック層70は、膜厚1.6nmのP型Al0.36Ga0.64N層である。 The electron block layer 70 is a P-type Al 0.36 Ga 0.64 N layer with a thickness of 1.6 nm.
 実施例1に係る半導体発光素子1のバンドギャップエネルギー分布について、図8を用いて説明する。図8は、実施例1に係る半導体発光素子1の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。 The bandgap energy distribution of the semiconductor light emitting device 1 according to Example 1 will be explained using FIG. 8. FIG. 8 is a graph schematically showing the bandgap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 1.
 図8(及び図6)に示されるように、実施例1に係る半導体発光素子1において、活性層40の各障壁層と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。 As shown in FIG. 8 (and FIG. 6), in the semiconductor light emitting device 1 according to Example 1, the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0.140 eV or less. be.
 また、図6に示されるように、実施例1に係る半導体発光素子1においては、第一光ガイド層61と、障壁層41とのバンドギャップエネルギーの差は、0.053eVである。また、第二光ガイド層62と、障壁層43とは、同一の組成を有するためバンドギャップエネルギーに差はない。 Further, as shown in FIG. 6, in the semiconductor light emitting device 1 according to Example 1, the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.053 eV. Further, since the second optical guide layer 62 and the barrier layer 43 have the same composition, there is no difference in band gap energy.
 [2-3.実施例2]
 実施例2に係る半導体発光素子1は、図6に示されるように、主に、電子ブロック層70と第二光ガイド層62との位置関係、及び第一光ガイド層61の組成において、実施例1に係る半導体発光素子1と相違する。
[2-3. Example 2]
As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 2 is mainly designed with respect to the positional relationship between the electron block layer 70 and the second light guide layer 62 and the composition of the first light guide layer 61. This is different from the semiconductor light emitting device 1 according to Example 1.
 実施例2に係る半導体発光素子1の基板10、下地層21、及びクラック防止層22は、それぞれ、実施例1に係る半導体発光素子1(及び比較例の半導体発光素子)の基板10、下地層21、及びクラック防止層22と同じ構成を有する。実施例2に係る半導体発光素子1の第一クラッド層30、井戸層42、及び電子ブロック層70は、それぞれ、実施例1に係る半導体発光素子1の第一クラッド層30、井戸層42、及び電子ブロック層70と同じ構成を有する。 The substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 2 are the same as the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 1 (and the semiconductor light emitting device of the comparative example), respectively. 21 and the crack prevention layer 22. The first cladding layer 30, the well layer 42, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 2 are the same as the first cladding layer 30, the well layer 42, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 1, respectively. It has the same configuration as the electronic block layer 70.
 実施例2に係る第一光ガイド層61は、膜厚127nmの濃度5×1017cm-3のSiが添加されているN型Al0.03Ga0.97N層と、当該層上に配置される膜厚90nmのアンドープAl0.03Ga0.97N層とを有する。障壁層41は、膜厚10nmのアンドープAl0.04Ga0.96N層である。障壁層43は、膜厚20nmのアンドープAl0.03Ga0.97N層である。第二光ガイド層62は、電子ブロック層70の上方に配置される膜厚130nmのP型Al0.03Ga0.97N層である。第二光ガイド層62には、濃度3×1018cm-3のMgが添加されている。第二クラッド層50は、膜厚450nmのP型Al0.065Ga0.935N層である。 The first optical guide layer 61 according to Example 2 includes an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5×10 17 cm −3 and a thickness of 127 nm, and a layer on the layer. An undoped Al 0.03 Ga 0.97 N layer with a thickness of 90 nm is arranged. The barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 10 nm. The barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer with a thickness of 20 nm. The second optical guide layer 62 is a 130 nm thick P-type Al 0.03 Ga 0.97 N layer disposed above the electron block layer 70 . The second light guide layer 62 is doped with Mg at a concentration of 3×10 18 cm −3 . The second cladding layer 50 is a P-type Al 0.065 Ga 0.935 N layer with a thickness of 450 nm.
 実施例2に係る半導体発光素子1のバンドギャップエネルギー分布について、図9を用いて説明する。図9は、実施例2に係る半導体発光素子1の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。 The bandgap energy distribution of the semiconductor light emitting device 1 according to Example 2 will be explained using FIG. 9. FIG. 9 is a graph schematically showing the band gap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 2.
 図9(及び図6)に示されるように、実施例2に係る半導体発光素子1において、活性層40の各障壁層と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。また、実施例2では、実施例1と比較して、障壁層41と、第一光ガイド層61とのバンドギャップエネルギーの差が小さい。 As shown in FIG. 9 (and FIG. 6), in the semiconductor light emitting device 1 according to Example 2, the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0.140 eV or less. be. Furthermore, in Example 2, the difference in band gap energy between the barrier layer 41 and the first optical guide layer 61 is smaller than in Example 1.
 また、図6に示されるように、実施例2に係る半導体発光素子1においては、第一光ガイド層61と、障壁層41とのバンドギャップエネルギーの差は、0.027eVである。また、第二光ガイド層62と、障壁層43とは、同一の組成を有するためバンドギャップエネルギーに差はない。 Further, as shown in FIG. 6, in the semiconductor light emitting device 1 according to Example 2, the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.027 eV. Further, since the second optical guide layer 62 and the barrier layer 43 have the same composition, there is no difference in band gap energy.
 [2-4.実施例3]
 実施例3に係る半導体発光素子1は、図6に示されるように、主に、第二光ガイド層62の不純物(Mg)濃度が低い点において、実施例2に係る半導体発光素子1と相違する。
[2-4. Example 3]
As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 3 differs from the semiconductor light emitting device 1 according to Example 2 mainly in that the second optical guide layer 62 has a low impurity (Mg) concentration. do.
 実施例3に係る半導体発光素子1の基板10、下地層21、及びクラック防止層22は、それぞれ、実施例2に係る半導体発光素子1(及び比較例の半導体発光素子)の基板10、下地層21、及びクラック防止層22と同じ構成を有する。実施例3に係る半導体発光素子1の第一クラッド層30、第一光ガイド層61、井戸層42、障壁層43、電子ブロック層70、及び第二クラッド層50は、それぞれ、実施例2に係る半導体発光素子1の第一クラッド層30、第一光ガイド層61、井戸層42、障壁層43、電子ブロック層70、及び第二クラッド層50と同じ構成を有する。 The substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 3 are the same as the substrate 10, base layer 21, and crack prevention layer 22 of the semiconductor light emitting device 1 according to Example 2 (and the semiconductor light emitting device of the comparative example), respectively. 21 and the crack prevention layer 22. The first cladding layer 30, first optical guide layer 61, well layer 42, barrier layer 43, electron block layer 70, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 3 are the same as those of Example 2. It has the same configuration as the first cladding layer 30, first optical guide layer 61, well layer 42, barrier layer 43, electron block layer 70, and second cladding layer 50 of the semiconductor light emitting device 1.
 実施例3に係る障壁層41は、実施例1に係る障壁層41と同じく、膜厚12nmのアンドープAl0.04Ga0.96N層である。第二光ガイド層62は、実施例2に係る第二光ガイド層62と同じく膜厚130nmのP型Al0.03Ga0.97N層であるが、不純物濃度が、実施例2に係る第二光ガイド層62より低い。実施例3に係る第二光ガイド層62のMg濃度は、2×1018cm-3である。 The barrier layer 41 according to Example 3 is, like the barrier layer 41 according to Example 1, an undoped Al 0.04 Ga 0.96 N layer with a thickness of 12 nm. The second light guide layer 62 is a P-type Al 0.03 Ga 0.97 N layer with a film thickness of 130 nm like the second light guide layer 62 according to Example 2, but the impurity concentration is different from that of Example 2. It is lower than the second light guide layer 62. The Mg concentration of the second light guide layer 62 according to Example 3 is 2×10 18 cm −3 .
 実施例3に係る半導体発光素子1のバンドギャップエネルギー分布は、実施例2に係る半導体発光素子1のバンドギャップエネルギー分布と同様である。図6に示されるように、実施例3に係る半導体発光素子1においても、実施例2と同様に、活性層40の各障壁層と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。 The band gap energy distribution of the semiconductor light emitting device 1 according to Example 3 is similar to the band gap energy distribution of the semiconductor light emitting device 1 according to Example 2. As shown in FIG. 6, in the semiconductor light emitting device 1 according to the third embodiment, as in the second embodiment, the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0. It is 140 eV or less.
 [2-5.実施例4]
 実施例4に係る半導体発光素子1は、図6に示されるように、主に、障壁層43の組成において、実施例2に係る半導体発光素子1と相違する。
[2-5. Example 4]
As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 4 differs from the semiconductor light emitting device 1 according to Example 2 mainly in the composition of the barrier layer 43.
 実施例4に係る半導体発光素子1の基板10、及び下地層21は、それぞれ、実施例2に係る半導体発光素子1(及び比較例の半導体発光素子)の基板10、及び下地層21と同じ構成を有する。実施例4に係る半導体発光素子1の第一クラッド層30、第一光ガイド層61、井戸層42、電子ブロック層70、第二光ガイド層62、及び第二クラッド層50は、それぞれ、実施例2に係る半導体発光素子1の第一クラッド層30、第一光ガイド層61、井戸層42、電子ブロック層70、第二光ガイド層62、及び第二クラッド層50と同じ構成を有する。 The substrate 10 and base layer 21 of the semiconductor light emitting device 1 according to Example 4 have the same configuration as the substrate 10 and base layer 21 of the semiconductor light emitting device 1 according to Example 2 (and the semiconductor light emitting device of the comparative example), respectively. has. The first cladding layer 30, the first optical guide layer 61, the well layer 42, the electron block layer 70, the second optical guide layer 62, and the second cladding layer 50 of the semiconductor light emitting device 1 according to Example 4 were It has the same configuration as the first cladding layer 30, first optical guide layer 61, well layer 42, electron block layer 70, second optical guide layer 62, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 2.
 実施例4に係るクラック防止層22は、膜厚150nmのN型In0.04Ga0.96N層である。第一光ガイド層61は、膜厚127nmの濃度5×1017cm-3のSiが添加されているN型Al0.03Ga0.97N層と、当該層上に配置される膜厚80nmのアンドープAl0.03Ga0.97N層とを有する。障壁層41は、膜厚14nmのアンドープAl0.04Ga0.96N層である。障壁層43は、膜厚10nmのアンドープAl0.04Ga0.96N層である。 The crack prevention layer 22 according to Example 4 is an N-type In 0.04 Ga 0.96 N layer with a thickness of 150 nm. The first optical guide layer 61 consists of an N-type Al 0.03 Ga 0.97 N layer doped with Si at a concentration of 5×10 17 cm −3 and a thickness of 127 nm, and a layer of N-type Al 0.03 Ga 0.97 N layer disposed on the layer. It has an 80 nm undoped Al 0.03 Ga 0.97 N layer. The barrier layer 41 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 14 nm. The barrier layer 43 is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 10 nm.
 実施例4に係る半導体発光素子1のバンドギャップエネルギー分布について、図10を用いて説明する。図10は、実施例4に係る半導体発光素子1の積層方向におけるバンドギャップエネルギー分布を模式的に示すグラフである。 The bandgap energy distribution of the semiconductor light emitting device 1 according to Example 4 will be explained using FIG. 10. FIG. 10 is a graph schematically showing the band gap energy distribution in the stacking direction of the semiconductor light emitting device 1 according to Example 4.
 図10(及び図6)に示されるように、実施例4に係る半導体発光素子1においても、実施例2と同様に、活性層40の各障壁層と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。また、実施例4に係る半導体発光素子1では、障壁層43のバンドギャップエネルギーが、実施例2に係る障壁層43のバンドギャップエネルギーより大きい。 As shown in FIG. 10 (and FIG. 6), in the semiconductor light emitting device 1 according to the fourth embodiment, as in the second embodiment, the band gap energy between each barrier layer of the active layer 40 and the well layer 42 is The difference is less than 0.140 eV. Furthermore, in the semiconductor light emitting device 1 according to the fourth embodiment, the bandgap energy of the barrier layer 43 is larger than the bandgap energy of the barrier layer 43 according to the second embodiment.
 また、図6に示されるように、実施例4に係る半導体発光素子1においては、第一光ガイド層61と、障壁層41とのバンドギャップエネルギーの差は、0.027eVである。また、第二光ガイド層62と、障壁層43とのバンドギャップエネルギーの差も、0.027eVである。 Further, as shown in FIG. 6, in the semiconductor light emitting device 1 according to Example 4, the difference in band gap energy between the first optical guide layer 61 and the barrier layer 41 is 0.027 eV. Further, the difference in band gap energy between the second optical guide layer 62 and the barrier layer 43 is also 0.027 eV.
 [2-6.実施例5]
 実施例5に係る半導体発光素子1は、図6に示されるように、主に、井戸層42がAlInGaN層である点において、実施例1に係る半導体発光素子1と相違する。
[2-6. Example 5]
As shown in FIG. 6, the semiconductor light emitting device 1 according to Example 5 differs from the semiconductor light emitting device 1 according to Example 1 mainly in that the well layer 42 is an AlInGaN layer.
 実施例5に係る半導体発光素子1の基板10、下地層21、クラック防止層22、及び第二クラッド層50は、それぞれ、実施例1に係る半導体発光素子1(及び比較例の半導体発光素子)の基板10、下地層21、クラック防止層22、及び第二クラッド層50と同じ構成を有する。実施例5に係る半導体発光素子1の第一クラッド層30、障壁層41、及び電子ブロック層70は、それぞれ、実施例1に係る半導体発光素子1の第一クラッド層30、障壁層41、及び電子ブロック層70と同じ構成を有する。 The substrate 10, base layer 21, crack prevention layer 22, and second cladding layer 50 of the semiconductor light emitting device 1 according to Example 5 are the semiconductor light emitting device 1 according to Example 1 (and the semiconductor light emitting device of the comparative example), respectively. It has the same structure as the substrate 10, base layer 21, crack prevention layer 22, and second cladding layer 50. The first cladding layer 30, the barrier layer 41, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 5 are the first cladding layer 30, the barrier layer 41, and the electron block layer 70 of the semiconductor light emitting device 1 according to Example 1, respectively. It has the same configuration as the electronic block layer 70.
 実施例5に係る第一光ガイド層61は、実施例2に係る第一光ガイド層61と同じく、膜厚127nmの濃度5×1017cm-3のSiが添加されているN型Al0.03Ga0.97N層と、当該層上に配置される膜厚90nmのP型Al0.03Ga0.97N層とを有する。井戸層42は、膜厚17.5nmのアンドープAl0.02In0.035Ga0.945N層である。障壁層43は、アンドープAl0.03Ga0.97N層である。図6に示されるように、障壁層43と第二光ガイド層62とは、同一の組成(Al0.03Ga0.97N)を有し、障壁層43と第二光ガイド層62との合計膜厚は70nmである。つまり、井戸層42の上方に配置される膜厚70nmのアンドープAl0.03Ga0.97N層のうち、井戸層42に近い部分は、障壁層43として機能し、井戸層42から遠い部分は、第二光ガイド層62として機能する。 The first optical guide layer 61 according to Example 5 is made of N-type Al 0 doped with Si at a concentration of 5×10 17 cm −3 and has a thickness of 127 nm, like the first optical guide layer 61 according to Example 2 . It has a .03 Ga 0.97 N layer and a 90 nm thick P-type Al 0.03 Ga 0.97 N layer disposed on the layer. The well layer 42 is an undoped Al 0.02 In 0.035 Ga 0.945 N layer with a thickness of 17.5 nm. The barrier layer 43 is an undoped Al 0.03 Ga 0.97 N layer. As shown in FIG. 6, the barrier layer 43 and the second light guide layer 62 have the same composition (Al 0.03 Ga 0.97 N); The total film thickness is 70 nm. That is, of the undoped Al 0.03 Ga 0.97 N layer with a thickness of 70 nm disposed above the well layer 42 , a portion close to the well layer 42 functions as a barrier layer 43 , and a portion far from the well layer 42 functions as a barrier layer 43 . functions as the second light guide layer 62.
 実施例5に係る半導体発光素子1のバンドギャップエネルギー分布は、実施例1に係る半導体発光素子1のバンドギャップエネルギー分布と同様である。図6に示されるように、実施例5に係る半導体発光素子1においても、実施例1と同様に、活性層40の各障壁層と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。 The band gap energy distribution of the semiconductor light emitting device 1 according to Example 5 is similar to the band gap energy distribution of the semiconductor light emitting device 1 according to Example 1. As shown in FIG. 6, in the semiconductor light emitting device 1 according to the fifth embodiment, as in the first embodiment, the difference in band gap energy between each barrier layer of the active layer 40 and the well layer 42 is 0. It is 140 eV or less.
 [3.特性、及び効果]
 本実施の形態に係る半導体発光素子1の特性、及び効果について、上述した比較例と各実施例とを比較しながら、図6、及び図11を用いて説明する。図11は、本実施の形態の各実施例の特性を示す図である。図11には、各実施例に係る半導体発光素子1の実験によって得られた特性と併せて、比較例の半導体発光素子の実験によって得られた特性も併せて示されている。なお、図11において、本開示の出願時において未測定の特性については、「未測定」と記載されている。また、図11に示される各半導体発光素子のレーザ発振時における特性は、室温にて、光出力0.3Wで連続(CW)発振動作させた場合の特性が示されている。
[3. Characteristics and effects]
The characteristics and effects of the semiconductor light emitting device 1 according to this embodiment will be described using FIGS. 6 and 11 while comparing the above-mentioned comparative example and each example. FIG. 11 is a diagram showing the characteristics of each example of this embodiment. FIG. 11 shows the characteristics obtained through experiments of the semiconductor light emitting device 1 according to each example, as well as the characteristics obtained through experiments of the semiconductor light emitting device of the comparative example. Note that in FIG. 11, characteristics that have not been measured at the time of filing of the present disclosure are described as "unmeasured." Further, the characteristics of each semiconductor light emitting device shown in FIG. 11 during laser oscillation are those when the device is operated in continuous (CW) oscillation with an optical output of 0.3 W at room temperature.
 図11に示される自然放出光のピークフォトンエネルギー(ピーク位置)、及び半値幅(半値全幅)は、発振閾値未満の電流が注入された各半導体発光素子の発光スペクトルをスペクトルアナライザによって測定することで求められた値である。図11に示されるレーザ光のピークフォトンエネルギー(ピーク位置)、及び半値幅(半値全幅)は、発振閾値より大きい電流が注入された各半導体発光素子の発光スペクトルをスペクトルアナライザによって測定することで求められた値である。 The peak photon energy (peak position) and half-width (full width at half-maximum) of the spontaneous emission shown in FIG. This is the obtained value. The peak photon energy (peak position) and half-width (full width at half maximum) of the laser beam shown in FIG. 11 are obtained by measuring the emission spectrum of each semiconductor light-emitting element into which a current larger than the oscillation threshold is injected using a spectrum analyzer. is the value given.
 図11に示されるPL-レーザ光エネルギー差は、図11に示される上述した方法によって測定されたPLスペクトルのピークフォトンエネルギーと、レーザ光のピークフォトンエネルギーとの差である。 The PL-laser light energy difference shown in FIG. 11 is the difference between the peak photon energy of the PL spectrum measured by the above-described method shown in FIG. 11 and the peak photon energy of the laser light.
 図11に示されるPL-自然放出光エネルギー差は、上述した方法によって測定されたPLスペクトルのピークフォトンエネルギーと、図11に示される自然放出光のピークフォトンエネルギーとの差である。 The PL-Spontaneous emission light energy difference shown in FIG. 11 is the difference between the peak photon energy of the PL spectrum measured by the method described above and the peak photon energy of the spontaneous emission light shown in FIG.
 図11に示されるレーザ光ピーク位置におけるPL強度比は、電流注入された半導体発光素子から出射されるレーザ光のピークフォトンエネルギーにおけるPL強度の、ピークPL強度に対する比である。 The PL intensity ratio at the laser beam peak position shown in FIG. 11 is the ratio of the PL intensity at the peak photon energy of the laser beam emitted from the semiconductor light emitting element into which current is injected to the peak PL intensity.
 図11に示されるPLピーク位置より0.050eV低エネルギー側の位置におけるPL強度比は、PLスペクトルのピークフォトンエネルギーより0.050eVだけ低エネルギー側のフォトンエネルギーにおけるPL強度の、ピークPL強度に対する比である。 The PL intensity ratio at a position 0.050 eV lower energy than the PL peak position shown in FIG. 11 is the ratio of the PL intensity at a photon energy 0.050 eV lower energy than the peak photon energy of the PL spectrum to the peak PL intensity. It is.
 図11に示されるスロープ効率、及び出力飽和開始点について、一例として図12A及び図12Bに示される実施例5の半導体発光素子1の特性を用いて説明する。図12Aは、実施例5に係る半導体発光素子1の注入電流と光出力との関係を示すグラフであり、I-L曲線が実線で示されており、スロープ効率曲線(I-L曲線の傾き)が破線で示されている。図12Bは、実施例5に係る半導体発光素子1の光出力と、入力電力に対する光出力の割合(つまり、ウォールプラグ効率WPE)との関係を示すグラフである。 The slope efficiency and output saturation start point shown in FIG. 11 will be explained using, as an example, the characteristics of the semiconductor light emitting device 1 of Example 5 shown in FIGS. 12A and 12B. FIG. 12A is a graph showing the relationship between the injection current and the optical output of the semiconductor light emitting device 1 according to Example 5, in which the IL curve is shown as a solid line, and the slope efficiency curve (the slope of the IL curve ) is indicated by a dashed line. FIG. 12B is a graph showing the relationship between the optical output of the semiconductor light emitting device 1 according to Example 5 and the ratio of the optical output to input power (that is, wall plug efficiency WPE).
 スロープ効率とは、電流増分当たりの光出力増分であり、図12Aに示されるI-L曲線の傾きに対応する値である。図11には、光出力範囲毎のスロープ効率が示されている。 The slope efficiency is an increment in optical output per increment in current, and is a value corresponding to the slope of the IL curve shown in FIG. 12A. FIG. 11 shows the slope efficiency for each optical output range.
 出力飽和開始点は、I-L曲線の傾きが減少し始める変曲点に相当する点であり、図12Aに示されるように、出力飽和開始点における光出力は、2.1W(2100mW)である。また、出力飽和開始点は、図12Bに示すように、半導体発光素子への入力電力に対する光出力の割合が最大となる点と定義してもよい。 The output saturation starting point is a point corresponding to the inflection point where the slope of the IL curve begins to decrease, and as shown in FIG. 12A, the optical output at the output saturation starting point is 2.1 W (2100 mW). be. Further, the output saturation starting point may be defined as the point at which the ratio of the optical output to the input power to the semiconductor light emitting element becomes maximum, as shown in FIG. 12B.
 まず、本実施の形態に係る半導体発光素子1のレーザ光のピークフォトンエネルギーと、PLピークフォトンエネルギーとの関係について、比較例と比較しながら、図13及び図14を用いて説明する。図13、及び図14は、それぞれ、比較例の半導体発光素子、及び実施例1に係る半導体発光素子1のレーザ光スペクトルと、PLスペクトルとを示すグラフである。図13、及び図14において、レーザ光スペクトルが実線で、PLスペクトルが破線でそれぞれ示されている。 First, the relationship between the peak photon energy of the laser beam of the semiconductor light emitting device 1 according to the present embodiment and the PL peak photon energy will be explained using FIGS. 13 and 14 while comparing with a comparative example. 13 and 14 are graphs showing the laser light spectrum and PL spectrum of the semiconductor light emitting device of the comparative example and the semiconductor light emitting device 1 according to Example 1, respectively. In FIGS. 13 and 14, the laser light spectrum is shown by a solid line, and the PL spectrum is shown by a broken line, respectively.
 図13に示されるように、比較例の半導体発光素子では、PLのピークフォトンエネルギーは、レーザ光のピークフォトンエネルギーより0.049eV高い。これに対して、実施例1に係る半導体発光素子1では、PLのピークフォトンエネルギーは、レーザ光のピークフォトンエネルギーより0.112eV高い。このように、実施例1に係る半導体発光素子1では、比較例の半導体発光素子より、PL-レーザ光エネルギー差が大きい。これにより、実施例1に係る半導体発光素子1では、レーザ光のピークフォトンエネルギーにおけるPLの強度が、比較例の半導体発光素子と比較して小さくなる。図11、及び図13に示されるように、比較例の半導体発光素子では、レーザ光ピーク位置におけるPL強度比は、0.84であるのに対して、実施例1に係る半導体発光素子1では、図11、及び図14に示されるように、0.02である。ここで、PLの強度は、光吸収の大きさに対応すると考えられる。したがって、実施例1に係る半導体発光素子1では、比較例の半導体発光素子より、レーザ光の活性層40におけるレーザ光の吸収を低減できる。これにより、図11に示されるように、実施例1に係る半導体発光素子1では、比較例の半導体発光素子より、出力飽和開始点光出力、出力飽和開始点電流密度、及びスロープ効率を高めることができる。 As shown in FIG. 13, in the semiconductor light emitting device of the comparative example, the peak photon energy of PL is 0.049 eV higher than the peak photon energy of laser light. On the other hand, in the semiconductor light emitting device 1 according to Example 1, the peak photon energy of PL is 0.112 eV higher than the peak photon energy of laser light. As described above, the semiconductor light emitting device 1 according to Example 1 has a larger PL-laser light energy difference than the semiconductor light emitting device of the comparative example. As a result, in the semiconductor light emitting device 1 according to Example 1, the intensity of PL at the peak photon energy of the laser beam is smaller than that of the semiconductor light emitting device of the comparative example. As shown in FIGS. 11 and 13, in the semiconductor light emitting device of the comparative example, the PL intensity ratio at the laser beam peak position was 0.84, whereas in the semiconductor light emitting device 1 according to Example 1, the PL intensity ratio was 0.84. , 0.02, as shown in FIGS. 11 and 14. Here, the intensity of PL is considered to correspond to the magnitude of light absorption. Therefore, in the semiconductor light emitting device 1 according to Example 1, absorption of laser light in the active layer 40 can be reduced more than in the semiconductor light emitting device of the comparative example. As a result, as shown in FIG. 11, the semiconductor light emitting device 1 according to Example 1 has higher output saturation starting point optical output, output saturation starting point current density, and slope efficiency than the semiconductor light emitting device of the comparative example. I can do it.
 図11に示されるように、実施例2~実施例5に係る各半導体発光素子1においても、実施例1に係る半導体発光素子1と同様の特性が得られる。ここで、各実施例に係る半導体発光素子1と比較例の半導体発光素子の出力飽和開始点、及びスロープ効率と、PL-レーザ光エネルギー差との関係について、図15、及び図16を用いて説明する。図15は、各実施例に係る半導体発光素子1及び比較例の半導体発光素子の出力飽和開始点における光出力と、PL-レーザ光エネルギー差との関係を示すグラフである。図16は、各実施例に係る半導体発光素子1及び比較例の半導体発光素子の光出力が0.5W以上1.0W以下である場合のスロープ効率と、PL-レーザ光エネルギー差との関係を示すグラフである。図15、及び図16において、黒丸印は、各実施例のデータを示し、黒四角印は、比較例のデータを示す。ここで、光出力が0.5W以上1.0W以下の範囲は、比較例においてはスロープ効率が低下してしまう高出力領域を含むが、本実施の形態においては出力が飽和に至らず、スロープ効率が安定している領域となっている。 As shown in FIG. 11, the same characteristics as the semiconductor light emitting device 1 according to Example 1 can be obtained in each of the semiconductor light emitting devices 1 according to Examples 2 to 5. Here, the relationship between the output saturation start point and slope efficiency of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example, and the PL-laser light energy difference will be explained using FIGS. 15 and 16. explain. FIG. 15 is a graph showing the relationship between the optical output at the output saturation start point of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example and the PL-laser light energy difference. FIG. 16 shows the relationship between the slope efficiency and the PL-laser light energy difference when the optical output of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less. This is a graph showing. In FIGS. 15 and 16, black circles indicate data for each example, and black squares indicate data for a comparative example. Here, the range of optical output from 0.5 W to 1.0 W includes a high output region where the slope efficiency decreases in the comparative example, but in this embodiment, the output does not reach saturation and the slope This is an area where efficiency is stable.
 図15、及び図16に示されるように、比較例の半導体発光素子では、PL-レーザ光エネルギー差が0.050eV未満であるのに対して、各実施例に係る半導体発光素子1では、PL-レーザ光エネルギー差が0.050eV以上である。より詳細には、各実施例の半導体発光素子1では、活性層40のPLのピークフォトンエネルギーは、レーザ光のピークフォトンエネルギーより、0.050eV以上高い。これにより、上述したように、活性層40におけるレーザ光の吸収を低減できるため、図15、及び図16に示されるように、出力飽和開始点における光出力、及びスロープ効率を高めることができる。ば具体的には、出力飽和開始点における光出力を0.7W以上とすることができ、スロープ効率を0.7W/A以上とすることができる。言い換えると、少なくとも光出力が0.5W以上、0.7W以下である範囲において、光出力が注入電流に対してリニアに増加する。また、この場合、出力飽和開始点における電流密度は、60kA/mm以上となる。 As shown in FIGS. 15 and 16, in the semiconductor light emitting device of the comparative example, the PL-laser light energy difference is less than 0.050 eV, whereas in the semiconductor light emitting device 1 according to each example, the PL - The laser beam energy difference is 0.050 eV or more. More specifically, in the semiconductor light emitting device 1 of each example, the peak photon energy of the PL of the active layer 40 is higher than the peak photon energy of the laser beam by 0.050 eV or more. Thereby, as described above, absorption of laser light in the active layer 40 can be reduced, so as shown in FIGS. 15 and 16, the optical output and slope efficiency at the output saturation start point can be increased. Specifically, the optical output at the start point of output saturation can be set to 0.7 W or more, and the slope efficiency can be set to 0.7 W/A or more. In other words, the optical output increases linearly with respect to the injected current at least in a range where the optical output is 0.5 W or more and 0.7 W or less. Further, in this case, the current density at the output saturation starting point is 60 kA/mm 2 or more.
 以上のような特性を有する半導体発光素子1においては、高出力化を実現できる。各実施例においては、室温にて1Wの光出力で、少なくとも連続100時間以上の連続発振が可能であることが実験によって確認されている。 In the semiconductor light emitting device 1 having the above characteristics, high output can be achieved. In each of the examples, it has been confirmed through experiments that continuous oscillation for at least 100 hours or more is possible with an optical output of 1 W at room temperature.
 また、PL-レーザ光エネルギー差が大きいほど、出力飽和開始点、及びスロープ効率などの出力特性が向上する傾向があることが確認された。 It was also confirmed that the larger the PL-laser light energy difference, the more the output characteristics such as the output saturation start point and slope efficiency tended to improve.
 また、本実施の形態に係る半導体発光素子1において、活性層40のPLのピークフォトンエネルギーは、レーザ光のピークフォトンエネルギーより、0.103eV以上高くてもよい。これにより、出力飽和開始点におけるスロープ効率をより一層高めることができる。具体的には、スロープ効率を0.75W/A以上とすることができる。また、活性層40のPLのピークフォトンエネルギーは、レーザ光のピークフォトンエネルギーより、0.111V以上高くてもよい。これにより、出力飽和開始点における光出力及びスロープ効率をより一層高めることができる。具体的には、出力飽和開始点における光出力を1.4W以上とすることができ、スロープ効率を1.1W/A以上とすることができる。これに伴い、半導体発光素子1のより一層の高出力化を実現できる。これらの場合、出力飽和開始点における電流密度は、78kA/mm以上であってもよい。 Further, in the semiconductor light emitting device 1 according to the present embodiment, the peak photon energy of the PL of the active layer 40 may be higher than the peak photon energy of the laser light by 0.103 eV or more. Thereby, the slope efficiency at the output saturation starting point can be further improved. Specifically, the slope efficiency can be set to 0.75 W/A or more. Further, the peak photon energy of the PL of the active layer 40 may be higher than the peak photon energy of the laser beam by 0.111 V or more. Thereby, the optical output and slope efficiency at the start point of output saturation can be further increased. Specifically, the optical output at the start point of output saturation can be 1.4 W or more, and the slope efficiency can be 1.1 W/A or more. Accordingly, even higher output of the semiconductor light emitting device 1 can be realized. In these cases, the current density at the start point of output saturation may be 78 kA/mm 2 or more.
 また、本実施の形態に係る半導体発光素子1において、活性層40のPLのピークフォトンエネルギーと、レーザ光のピークフォトンエネルギーとの差は、0.250eV以下であってもよい。これにより、半導体発光素子1の活性層40において、確実にゲインを得ることができる。 Furthermore, in the semiconductor light emitting device 1 according to the present embodiment, the difference between the peak photon energy of PL of the active layer 40 and the peak photon energy of the laser beam may be 0.250 eV or less. Thereby, gain can be reliably obtained in the active layer 40 of the semiconductor light emitting device 1.
 また、本実施の形態に係る半導体発光素子1において、図11に示されるように、活性層40のPLスペクトルにおいて、レーザ光のピークフォトンエネルギーにおけるPLの強度は、PLスペクトルのピーク強度の40%以下であってもよい。これにより、活性層40におけるレーザ光の吸収を低減できるため、出力飽和開始点における光出力を高めることができる。なお、PL-レーザ光エネルギー差が0.050eVである場合、本実施例における活性層40のPLスペクトルのうち、最も半値幅が広い例において、レーザ光のピークフォトンエネルギーにおけるPLの強度は、PLスペクトルのピーク強度の40%程度であった。 Further, in the semiconductor light emitting device 1 according to the present embodiment, as shown in FIG. 11, in the PL spectrum of the active layer 40, the PL intensity at the peak photon energy of the laser beam is 40% of the peak intensity of the PL spectrum. It may be the following. Thereby, the absorption of laser light in the active layer 40 can be reduced, so that the optical output at the start point of output saturation can be increased. Note that when the PL-laser light energy difference is 0.050 eV, the PL intensity at the peak photon energy of the laser light is PL It was about 40% of the peak intensity of the spectrum.
 さらに、本実施の形態に係る半導体発光素子1では、図11に示されるように、活性層40のPLスペクトルにおいて、レーザ光のピークフォトンエネルギーにおけるPLの強度は、PLスペクトルのピーク強度の8%以下であってもよい。これにより、活性層40におけるレーザ光の吸収をより一層低減できるため、出力飽和開始点における光出力をより一層高めることができる。 Furthermore, in the semiconductor light emitting device 1 according to the present embodiment, as shown in FIG. 11, in the PL spectrum of the active layer 40, the PL intensity at the peak photon energy of the laser beam is 8% of the peak intensity of the PL spectrum. It may be the following. Thereby, the absorption of laser light in the active layer 40 can be further reduced, so that the optical output at the start point of output saturation can be further increased.
 また、本実施の形態に係る半導体発光素子1において、各実施例のように、レーザ光のピークフォトンエネルギーは、3.1eV以上である場合に、本実施の形態に係る半導体発光素子1の効果はより顕著である。つまり、ピークフォトンエネルギーが大きい場合、1フォトン当たりのエネルギーが大きいため、光吸収による発熱の影響が大きい。特に、レーザ光のピークフォトンエネルギーが3.1eV以上である場合には、本実施の形態に係る半導体発光素子1の光吸収の低減による効果が顕著となる。したがって、光吸収に伴う半導体発光素子1の光損傷を抑制することも可能となる。 Further, in the semiconductor light emitting device 1 according to the present embodiment, when the peak photon energy of the laser light is 3.1 eV or more as in each example, the effect of the semiconductor light emitting device 1 according to the present embodiment is is more pronounced. That is, when the peak photon energy is large, the energy per photon is large, so the effect of heat generation due to light absorption is large. In particular, when the peak photon energy of the laser beam is 3.1 eV or more, the effect of reducing light absorption of the semiconductor light emitting device 1 according to this embodiment becomes remarkable. Therefore, it is also possible to suppress optical damage to the semiconductor light emitting device 1 due to light absorption.
 次に、本実施の形態に係る半導体発光素子1の自然放出光、及びPLのスペクトルの関係について図17~図22を用いて説明する。図17、図18、図19、及び図20は、それぞれ、比較例、実施例1、実施例2、及び実施例5に係る半導体発光素子の自然放出光スペクトルと、PLスペクトルとを示すグラフである。図17~図20において、自然放出光スペクトルが実線で、PLスペクトルが破線でそれぞれ示されている。図21は、各実施例に係る半導体発光素子1及び比較例の半導体発光素子の出力飽和開始点における光出力と、PL-自然放出光エネルギー差との関係を示すグラフである。図22は、各実施例に係る半導体発光素子1及び比較例の半導体発光素子の光出力が0.5W以上1.0W以下である場合のスロープ効率と、PL-自然放出光エネルギー差との関係を示すグラフである。図21、及び図22において、黒丸印は、各実施例のデータを示し、黒四角印は、比較例のデータを示す。 Next, the relationship between the spontaneous emission light of the semiconductor light emitting device 1 according to this embodiment and the spectrum of PL will be explained using FIGS. 17 to 22. 17, FIG. 18, FIG. 19, and FIG. 20 are graphs showing spontaneous emission spectra and PL spectra of semiconductor light emitting devices according to Comparative Example, Example 1, Example 2, and Example 5, respectively. be. In FIGS. 17 to 20, the spontaneous emission spectrum is shown by a solid line, and the PL spectrum is shown by a broken line. FIG. 21 is a graph showing the relationship between the light output at the output saturation start point of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example and the PL-spontaneous emission light energy difference. FIG. 22 shows the relationship between the slope efficiency and the PL-Spontaneous emission light energy difference when the optical output of the semiconductor light emitting device 1 according to each example and the semiconductor light emitting device of the comparative example is 0.5 W or more and 1.0 W or less. This is a graph showing. In FIGS. 21 and 22, black circles indicate data of each example, and black squares indicate data of a comparative example.
 図17、図21、及び図22に示されるように、比較例の半導体発光素子では、PL-自然放出光エネルギー差が0.070eV未満であるのに対して、図18~図20に示されるように実施例1、2、5に係る半導体発光素子1では、PL-自然放出光エネルギー差が0.070eV以上である。より詳細には、各実施例に係る半導体発光素子1では、活性層40のPLのピークフォトンエネルギーは、自然放出光のピークフォトンエネルギーより、0.070eV以上高い。実施例3、4に係る半導体発光素子1についても、図11に示されるように、実施例2に係る半導体発光素子1と同様の特性を有する。 As shown in FIGS. 17, 21, and 22, in the semiconductor light emitting device of the comparative example, the PL-Spontaneous emission light energy difference is less than 0.070 eV, whereas as shown in FIGS. Thus, in the semiconductor light emitting devices 1 according to Examples 1, 2, and 5, the PL-spontaneous emission energy difference is 0.070 eV or more. More specifically, in the semiconductor light emitting device 1 according to each example, the peak photon energy of PL of the active layer 40 is higher than the peak photon energy of spontaneous emission by 0.070 eV or more. The semiconductor light emitting devices 1 according to Examples 3 and 4 also have the same characteristics as the semiconductor light emitting device 1 according to Example 2, as shown in FIG.
 半導体発光素子のレーザ光のピークフォトンエネルギーは、共振器の諸条件によって変化し、自然放出光のゲイン領域(ゲインを得られるフォトンエネルギー範囲)内において、自然放出光のピークフォトンエネルギーにより大きくなる場合も、小さくなる場合もあり得ることが知られている。各実施例に係る半導体発光素子1においては、活性層40のPLのピークフォトンエネルギーは、自然放出光のピークフォトンエネルギーより、0.070eV以上高い。このため、本実施の形態に係る半導体発光素子1においては、共振器の条件に依存して発振波長が目標とする波長からずれた場合にも、PLとレーザ光とのピークフォトンエネルギーの差を十分に大きく確保することができるため、レーザ光の活性層40におけるレーザ光の吸収を低減できる。したがって、出力飽和開始点における光出力を高めることができる。 The peak photon energy of the laser beam of a semiconductor light emitting device changes depending on the conditions of the resonator, and if it becomes larger than the peak photon energy of the spontaneous emission light within the gain region (photon energy range where gain can be obtained) of the spontaneous emission light. It is known that there may be cases where the In the semiconductor light emitting device 1 according to each example, the peak photon energy of PL of the active layer 40 is higher than the peak photon energy of spontaneous emission by 0.070 eV or more. For this reason, in the semiconductor light emitting device 1 according to the present embodiment, even if the oscillation wavelength deviates from the target wavelength depending on the conditions of the resonator, the difference in peak photon energy between the PL and the laser beam can be reduced. Since a sufficiently large amount can be ensured, absorption of laser light in the active layer 40 can be reduced. Therefore, the optical output at the start point of output saturation can be increased.
 また、本実施の形態に係る半導体発光素子1において、活性層40のPLのピークフォトンエネルギーは、自然放出光のピークフォトンエネルギーより、0.090eV以上高くてもよい。これにより、出力飽和開始点における光出力、及びスロープ効率をより一層高めることができる。これに伴い、半導体発光素子1のより一層の高出力化を実現できる。 Furthermore, in the semiconductor light emitting device 1 according to the present embodiment, the peak photon energy of PL of the active layer 40 may be higher than the peak photon energy of spontaneous emission by 0.090 eV or more. Thereby, the optical output at the output saturation start point and the slope efficiency can be further increased. Accordingly, even higher output of the semiconductor light emitting device 1 can be realized.
 また、本実施の形態に係る半導体発光素子1において、活性層40のPLのピークフォトンエネルギーと、自然放出光のピークフォトンエネルギーとの差は、0.250eV以下であってもよい。これにより、半導体発光素子1の活性層40において、確実にゲインを得ることができる。 Furthermore, in the semiconductor light emitting device 1 according to the present embodiment, the difference between the peak photon energy of PL of the active layer 40 and the peak photon energy of spontaneous emission light may be 0.250 eV or less. Thereby, gain can be reliably obtained in the active layer 40 of the semiconductor light emitting device 1.
 ここで、上述したような特性を得られる半導体発光素子1の構成について説明する。本実施の形態では、図6に示されるように、障壁層41、43と、井戸層42とのバンドギャップエネルギーの差は、0.140eV以下である。詳細なメカニズムは解明されていないが、本実施の形態に係る半導体発光素子1のように、各障壁層と井戸層42とのバンドギャップエネルギーの差が小さい場合、井戸層42に注入されたキャリアの一部が各障壁層を超えて第一光ガイド層61、又は第二光ガイド層62に流出する。各光ガイド層に流出したキャリアにより、活性層40のPLスペクトルが高エネルギー側へシフトすると推測される。 Here, the configuration of the semiconductor light emitting device 1 that can obtain the characteristics described above will be explained. In this embodiment, as shown in FIG. 6, the difference in band gap energy between barrier layers 41 and 43 and well layer 42 is 0.140 eV or less. Although the detailed mechanism has not been elucidated, when the difference in band gap energy between each barrier layer and the well layer 42 is small as in the semiconductor light emitting device 1 according to the present embodiment, carriers injected into the well layer 42 A portion of the light passes through each barrier layer and flows into the first light guide layer 61 or the second light guide layer 62. It is estimated that the carriers flowing into each optical guide layer shift the PL spectrum of the active layer 40 to the higher energy side.
 また、本実施の形態では、図6に示されるように、第一光ガイド層61と、第一光ガイド層61に最も近い障壁層41とのバンドギャップエネルギーの差は、0.080eV未満である。また、第二光ガイド層62と、第二光ガイド層62に最も近い障壁層43とのバンドギャップエネルギーの差は、0.080eV未満である。このように、各光ガイド層と、当該光ガイド層に最も近い障壁層とのバンドギャップエネルギーを小さくすることで、当該障壁を超えて当該光ガイド層に流出したキャリアが、再度井戸層42に戻ることが可能となる。 Further, in this embodiment, as shown in FIG. 6, the difference in band gap energy between the first light guide layer 61 and the barrier layer 41 closest to the first light guide layer 61 is less than 0.080 eV. be. Further, the difference in band gap energy between the second optical guide layer 62 and the barrier layer 43 closest to the second optical guide layer 62 is less than 0.080 eV. In this way, by reducing the bandgap energy between each light guide layer and the barrier layer closest to the light guide layer, the carriers that have flowed out into the light guide layer over the barrier can flow back into the well layer 42. It is possible to return.
 また、実施例2~実施例4に係る半導体発光素子1のように、本実施の形態に係る半導体発光素子1は、第二クラッド層50に最も近い障壁層43の上方に配置され、障壁層43に接する電子ブロック層をさらに備えてもよい。半導体発光素子1の井戸層42に注入される電子は、正孔よりも有効質量が小さいため、障壁層43を超えやすい。このため、P型クラッド層である第二クラッド層50に近い障壁層43を超えるキャリアの方が、第一クラッド層30に近い障壁層41を超える正孔よりも多い。そこで、実施例2~実施例4に係る半導体発光素子1では、障壁層43の上方に配置され、障壁層43に接する電子ブロック層70を備える。これにより、障壁層43と、電子ブロック層70との間に、障壁層43及び電子ブロック層70よりバンドギャップエネルギーが低い領域が形成されない。したがって、障壁層43を超えた電子が井戸層42に戻りやすくなる。これにより、井戸層42以外の領域での電子と正孔との再結合確率を低減できるため、半導体発光素子1の発光効率(及びスロープ効率など)を高めることができる。 Further, like the semiconductor light emitting device 1 according to Examples 2 to 4, the semiconductor light emitting device 1 according to the present embodiment is arranged above the barrier layer 43 closest to the second cladding layer 50, and the barrier layer It may further include an electronic block layer in contact with 43. Electrons injected into the well layer 42 of the semiconductor light emitting device 1 have a smaller effective mass than holes, so they easily exceed the barrier layer 43. Therefore, more carriers cross the barrier layer 43 close to the second cladding layer 50, which is a P-type cladding layer, than holes cross the barrier layer 41 close to the first cladding layer 30. Therefore, the semiconductor light emitting device 1 according to Examples 2 to 4 includes an electron block layer 70 disposed above the barrier layer 43 and in contact with the barrier layer 43. As a result, a region having a lower band gap energy than the barrier layer 43 and the electron block layer 70 is not formed between the barrier layer 43 and the electron block layer 70. Therefore, electrons that have passed through the barrier layer 43 easily return to the well layer 42. Thereby, the probability of recombination of electrons and holes in regions other than the well layer 42 can be reduced, so that the luminous efficiency (and slope efficiency, etc.) of the semiconductor light emitting device 1 can be increased.
 また、実施例1、及び実施例5に係る半導体発光素子1の障壁層43、及び第二光ガイド層62のように、隣り合う障壁層43、及び第二光ガイド層62が同一の組成を有する場合には、これらを一つの障壁層とみなしてもよい。この場合には、実施例1、及び実施例5に係る半導体発光素子1では、障壁層43と第二光ガイド層62とをまとめた障壁層に電子ブロック層が接しているとみなすことができる。したがって、実施例1、及び実施例5に係る半導体発光素子1においても、実施例2~実施例4に係る半導体発光素子1と同様の、電子ブロック層70による効果が得られる。 Further, as in the barrier layer 43 and the second light guide layer 62 of the semiconductor light emitting device 1 according to Examples 1 and 5, the adjacent barrier layers 43 and the second light guide layer 62 have the same composition. If so, these may be regarded as one barrier layer. In this case, in the semiconductor light emitting device 1 according to Examples 1 and 5, it can be considered that the electron block layer is in contact with the barrier layer that is a combination of the barrier layer 43 and the second light guide layer 62. . Therefore, in the semiconductor light emitting devices 1 according to Examples 1 and 5, the same effects due to the electron blocking layer 70 as in the semiconductor light emitting devices 1 according to Examples 2 to 4 can be obtained.
 また、本実施の形態に係る半導体発光素子1は、第一クラッド層30と活性層40との間に配置される第一光ガイド層61、及び、活性層40と第二クラッド層50との間に配置される第二光ガイド層62の少なくとも一方を有し、井戸層42の厚さは、17.5nm以上であってもよい。 Further, the semiconductor light emitting device 1 according to the present embodiment includes a first optical guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and a first optical guide layer 61 disposed between the first cladding layer 30 and the active layer 40 and The well layer 42 may have at least one of the second light guide layers 62 disposed therebetween, and the thickness of the well layer 42 may be 17.5 nm or more.
 このように井戸層42が厚いことと、各光ガイド層内に、キャリアが存在することとの相乗効果で、PLスペクトルをレーザ光のピークフォトンエネルギーより0.050eV大きくすることが可能となる。なお、各実施例では、活性層40は、単一の井戸層42を有したが、複数の井戸層を有してもよい。つまり、活性層40は、多重量子井戸構造を有してもよい。この場合、複数の井戸層の合計厚さが、17.5nmであってもよい。 The synergistic effect of the thick well layer 42 and the presence of carriers in each optical guide layer makes it possible to make the PL spectrum 0.050 eV larger than the peak photon energy of the laser beam. Although the active layer 40 has a single well layer 42 in each embodiment, it may have a plurality of well layers. That is, the active layer 40 may have a multiple quantum well structure. In this case, the total thickness of the plurality of well layers may be 17.5 nm.
 また、実施例5に係る半導体発光素子1のように、各障壁層は、AlGa1-zN(0<z<1)からなり、井戸層42は、AlInGa1-x-yN(0<x<1、0<y<1)からなってもよい。これにより、実施例1~実施例4に係る半導体発光素子1のように井戸層42がInGaNからなる場合と同様のPL-レーザ光エネルギー差、及びPL-自然放出光エネルギー差を得られる。さらに、実施例5に係る半導体発光素子1では、出力飽和開始点における光出力、及びスロープ効率を、実施例1~実施例4に係る半導体発光素子1より高めることができる。 Further, as in the semiconductor light emitting device 1 according to Example 5, each barrier layer is made of Al z Ga 1-z N (0<z<1), and the well layer 42 is made of Al x In y Ga 1-x -y N (0<x<1, 0<y<1). Thereby, the same PL-laser light energy difference and PL-spontaneous emission light energy difference as in the case where the well layer 42 is made of InGaN as in the semiconductor light emitting device 1 according to Examples 1 to 4 can be obtained. Furthermore, in the semiconductor light emitting device 1 according to Example 5, the optical output at the start point of output saturation and the slope efficiency can be increased compared to the semiconductor light emitting devices 1 according to Examples 1 to 4.
 なお、活性層40が多重量子井戸構造を有する場合には、3以上の障壁層は、AlzGa1-zN(0<z<1)からなり、2以上の井戸層は、AlxInyGa1-x-yN(0<x<1、0<y<1)からなってもよい。この場合にも、単一量子井戸構造の場合(例えば、実施例5)と同様の効果が得られる。 Note that when the active layer 40 has a multiple quantum well structure, three or more barrier layers are made of AlzGa1-zN (0<z<1), and two or more well layers are made of AlxInyGa1-xyN (0 <x<1, 0<y<1). Also in this case, the same effect as in the case of a single quantum well structure (for example, Example 5) can be obtained.
 (変形例など)
 以上、本開示に係る半導体発光素子について、実施の形態の各実施例に基づいて説明したが、本開示は、上記実施の形態の各実施例に限定されない。
(Variations, etc.)
The semiconductor light emitting device according to the present disclosure has been described above based on each example of the embodiment, but the present disclosure is not limited to each example of the above embodiment.
 例えば、上記各実施例では、半導体発光素子1が半導体レーザ素子である例を示したが、半導体発光素子1は、半導体レーザ素子に限定されない。例えば、本開示に係る半導体発光素子は、活性層40を備え、活性層40のPLのピークフォトンエネルギーは、電流注入された半導体発光素子から出射される自然放出光のピークフォトンエネルギーより0.070eV以上高くてもよい。本開示に係る半導体発光素子は、例えば、スーパールミネッセントダイオードであってもよい。 For example, in each of the above embodiments, an example was shown in which the semiconductor light emitting device 1 is a semiconductor laser device, but the semiconductor light emitting device 1 is not limited to a semiconductor laser device. For example, the semiconductor light emitting device according to the present disclosure includes an active layer 40, and the peak photon energy of PL of the active layer 40 is 0.070 eV higher than the peak photon energy of spontaneous emission light emitted from the semiconductor light emitting device into which current is injected. It may be higher than that. The semiconductor light emitting device according to the present disclosure may be, for example, a superluminescent diode.
 上記各実施例に係る半導体発光素子1は、活性層40と第二クラッド層50との間に一層の第二光ガイド層62を備えるが、二層以上の第二光ガイド層62を備えてもよい。例えば、本開示に係る半導体発光素子は、活性層40と電子ブロック層70との間に配置される第二光ガイド層62と、電子ブロック層70と第二クラッド層50との間に配置される第二光ガイド層62とを備えてもよい。この場合、各第二光ガイド層62の構成は互いに異なってもよい。 The semiconductor light emitting device 1 according to each of the above embodiments includes one second light guide layer 62 between the active layer 40 and the second cladding layer 50, but may include two or more second light guide layers 62. Good too. For example, the semiconductor light emitting device according to the present disclosure includes a second optical guide layer 62 disposed between the active layer 40 and the electron block layer 70 and a second light guide layer disposed between the electron block layer 70 and the second cladding layer 50. A second light guide layer 62 may be provided. In this case, the configurations of each second light guide layer 62 may be different from each other.
 上記各実施例に係る半導体発光素子1の活性層40は、単一量子井戸構造を有したが、多重量子井戸構造を有してもよい。つまり、3以上の障壁層と2以上の井戸層とが交互に積層された構造を有してもよい。 Although the active layer 40 of the semiconductor light emitting device 1 according to each of the above embodiments has a single quantum well structure, it may have a multiple quantum well structure. That is, it may have a structure in which three or more barrier layers and two or more well layers are alternately stacked.
 また、上記実施の形態において、井戸層42は、InGaN、又はAlInGaNからなったが、井戸層42の構成はこれに限定されない。井戸層42は、例えば、GaNからなってもよい。 Furthermore, in the embodiments described above, the well layer 42 was made of InGaN or AlInGaN, but the configuration of the well layer 42 is not limited to this. The well layer 42 may be made of GaN, for example.
 また、上記実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, the embodiments and modifications described above may be modified in various ways that those skilled in the art may think of, and the components and functions of the embodiments and modifications described above may be arbitrarily modified without departing from the spirit of the present disclosure. The present disclosure also includes forms realized by combining.
 本開示の半導体発光素子などは、例えば、高出力かつ高効率な光源としてレーザ加工用の光源などにおいて利用できる。 The semiconductor light emitting device of the present disclosure can be used, for example, as a high output and highly efficient light source for laser processing.
 1 半導体発光素子
 1F、1R 端面
 10 基板
 21 下地層
 22 クラック防止層
 30 第一クラッド層
 40 活性層
 41、43 障壁層
 42 井戸層
 50 第二クラッド層
 50R リッジ
 50T 溝
 60 光ガイド層
 61 第一光ガイド層
 62 第二光ガイド層
 70 電子ブロック層
 80 絶縁層
 91 上部電極
 92 下部電極
1 Semiconductor light emitting device 1F, 1R end surface 10 substrate 21 base layer 22 crack prevention layer 30 first cladding layer 40 active layer 41, 43 barrier layer 42 well layer 50 second cladding layer 50R ridge 50T groove 60 light guide layer 61 first light Guide layer 62 Second optical guide layer 70 Electronic block layer 80 Insulating layer 91 Upper electrode 92 Lower electrode

Claims (19)

  1.  半導体発光素子であって、
     基板と、
     前記基板の上方に配置される第一導電型の第一クラッド層と、
     前記第一クラッド層の上方に配置される活性層と、
     前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、
     前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、
     前記活性層のフォトルミネッセンスのピークフォトンエネルギーは、電流注入された前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーより、0.050eV以上高い
     半導体発光素子。
    A semiconductor light emitting device,
    A substrate and
    a first cladding layer of a first conductivity type disposed above the substrate;
    an active layer disposed above the first cladding layer;
    a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type;
    a light guide layer disposed between the first cladding layer and the second cladding layer,
    The peak photon energy of photoluminescence of the active layer is higher than the peak photon energy of laser light emitted from the semiconductor light emitting element into which current is injected by 0.050 eV or more.
  2.  半導体発光素子であって、
     基板と、
     前記基板の上方に配置される第一導電型の第一クラッド層と、
     前記第一クラッド層の上方に配置される活性層と、
     前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、
     前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、
     前記活性層のフォトルミネッセンスのスペクトルにおいて、電流注入された前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーにおける前記フォトルミネッセンスの強度は、前記スペクトルのピーク強度の40%以下である
     半導体発光素子。
    A semiconductor light emitting device,
    A substrate and
    a first cladding layer of a first conductivity type disposed above the substrate;
    an active layer disposed above the first cladding layer;
    a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type;
    a light guide layer disposed between the first cladding layer and the second cladding layer,
    In the photoluminescence spectrum of the active layer, the intensity of the photoluminescence at the peak photon energy of the laser light emitted from the semiconductor light-emitting element into which current is injected is 40% or less of the peak intensity of the spectrum.Semiconductor light-emitting element .
  3.  活性層を備える半導体発光素子であって、
     前記活性層のフォトルミネッセンスのピークフォトンエネルギーは、電流注入された前記半導体発光素子から出射される自然放出光のピークフォトンエネルギーより、0.070eV以上高い
     半導体発光素子。
    A semiconductor light emitting device comprising an active layer,
    The peak photon energy of photoluminescence of the active layer is higher than the peak photon energy of spontaneous emission light emitted from the semiconductor light emitting device into which current is injected by 0.070 eV or more. A semiconductor light emitting device.
  4.  基板と、
     前記基板と前記活性層との間に配置される第一導電型の第一クラッド層と、
     前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、
     前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とをさらに備える
     請求項3に記載の半導体発光素子。
    A substrate and
    a first cladding layer of a first conductivity type disposed between the substrate and the active layer;
    a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type;
    The semiconductor light emitting device according to claim 3, further comprising a light guide layer disposed between the first cladding layer and the second cladding layer.
  5.  前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーは、3.1eV以上である
     請求項1、2、4のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 1, 2, and 4, wherein the laser light emitted from the semiconductor light emitting device has a peak photon energy of 3.1 eV or more.
  6.  前記半導体発光素子の出力飽和開始点における光出力は、0.7W以上である
     請求項1、2、4、5のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 1, 2, 4, and 5, wherein the light output of the semiconductor light emitting device at an output saturation starting point is 0.7 W or more.
  7.  前記半導体発光素子の出力飽和開始点における電流密度は、60kA/mm以上である
     請求項1、2、4、5のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 1, 2, 4, and 5, wherein the current density at the start point of output saturation of the semiconductor light emitting device is 60 kA/mm 2 or more.
  8.  前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、
     前記2以上の障壁層の各々と、前記1以上の井戸層の各々とのバンドギャップエネルギーの差は、0.140eV以下である
     請求項1、2、4~7のいずれか1項に記載の半導体発光素子。
    The active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked,
    The difference in band gap energy between each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less, according to any one of claims 1, 2, and 4 to 7. Semiconductor light emitting device.
  9.  前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、
     前記光ガイド層は、前記第一クラッド層と前記活性層との間に配置される第一光ガイド層、及び、前記活性層と前記第二クラッド層との間に配置される第二光ガイド層の少なくとも一方を有し、
     前記第一光ガイド層、及び前記第二光ガイド層の各々は、前記2以上の障壁層よりバンドギャップエネルギーが小さく、かつ、前記1以上の井戸層よりバンドギャップエネルギーが大きく、
     前記第一光ガイド層と、前記2以上の障壁層のうち前記第一光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満であり、
     前記第二光ガイド層と、前記2以上の障壁層のうち前記第二光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満である
     請求項1、2、4~7のいずれか1項に記載の半導体発光素子。
    The active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked,
    The light guide layer includes a first light guide layer disposed between the first cladding layer and the active layer, and a second light guide disposed between the active layer and the second cladding layer. at least one of the layers;
    Each of the first light guide layer and the second light guide layer has a band gap energy smaller than the two or more barrier layers and a band gap energy larger than the one or more well layers,
    The difference in band gap energy between the first light guide layer and the barrier layer closest to the first light guide layer among the two or more barrier layers is less than 0.080 eV;
    A difference in band gap energy between the second light guide layer and the barrier layer closest to the second light guide layer among the two or more barrier layers is less than 0.080 eV. 7. The semiconductor light emitting device according to any one of 7.
  10.  前記2以上の障壁層のうち前記第二クラッド層に最も近い障壁層の上方に配置され、当該障壁層に接する電子ブロック層をさらに備え、
     前記光ガイド層は、前記第一光ガイド層を有する
     請求項9に記載の半導体発光素子。
    further comprising an electron blocking layer disposed above the barrier layer closest to the second cladding layer among the two or more barrier layers and in contact with the barrier layer,
    The semiconductor light emitting device according to claim 9, wherein the light guide layer includes the first light guide layer.
  11.  前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、
     前記光ガイド層は、前記第一クラッド層と前記活性層との間に配置される第一光ガイド層、及び、前記活性層と前記第二クラッド層との間に配置される第二光ガイド層の少なくとも一方を有し、
     前記1以上の井戸層の合計厚さは、17.5nm以上である
     請求項1、2、4~7のいずれか1項に記載の半導体発光素子。
    The active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked,
    The light guide layer includes a first light guide layer disposed between the first cladding layer and the active layer, and a second light guide disposed between the active layer and the second cladding layer. at least one of the layers;
    8. The semiconductor light emitting device according to claim 1, wherein the total thickness of the one or more well layers is 17.5 nm or more.
  12.  前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、
     前記2以上の障壁層は、AlGa1-zN(0<z<1)からなり、
     前記1以上の井戸層は、AlInGa1-x-yN(0<x<1、0<y<1)からなる
     請求項1、2、4~7のいずれか1項に記載の半導体発光素子。
    The active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked,
    The two or more barrier layers are made of Al z Ga 1-z N (0<z<1),
    The one or more well layers are made of Al x In y Ga 1-xy N (0<x<1, 0<y<1) according to any one of claims 1, 2, and 4 to 7. semiconductor light emitting device.
  13.  半導体発光素子であって、
     基板と、
     前記基板の上方に配置される第一導電型の第一クラッド層と、
     前記第一クラッド層の上方に配置される活性層と、
     前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二クラッド層と、
     前記第一クラッド層と前記第二クラッド層との間に配置される光ガイド層とを備え、
     前記活性層は、2以上の障壁層と、1以上の井戸層とが交互に積層された量子井戸構造を有し、
     前記2以上の障壁層の各々と、前記1以上の井戸層の各々とのバンドギャップエネルギーの差は、0.140eV以下であり、
     前記光ガイド層は、前記第一クラッド層と前記活性層との間に配置される第一光ガイド層、及び、前記活性層と前記第二クラッド層との間に配置される第二光ガイド層の少なくとも一方を有し、
     前記第一光ガイド層、及び前記第二光ガイド層の各々は、前記2以上の障壁層よりバンドギャップエネルギーが小さく、かつ、前記1以上の井戸層よりバンドギャップエネルギーが大きく、
     前記第一光ガイド層と、前記2以上の障壁層のうち前記第一光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満であり、
     前記第二光ガイド層と、前記2以上の障壁層のうち前記第二光ガイド層に最も近い障壁層とのバンドギャップエネルギーの差は、0.080eV未満である
     半導体発光素子。
    A semiconductor light emitting device,
    A substrate and
    a first cladding layer of a first conductivity type disposed above the substrate;
    an active layer disposed above the first cladding layer;
    a second cladding layer disposed above the active layer and having a second conductivity type different from the first conductivity type;
    a light guide layer disposed between the first cladding layer and the second cladding layer,
    The active layer has a quantum well structure in which two or more barrier layers and one or more well layers are alternately stacked,
    The difference in band gap energy between each of the two or more barrier layers and each of the one or more well layers is 0.140 eV or less,
    The light guide layer includes a first light guide layer disposed between the first cladding layer and the active layer, and a second light guide disposed between the active layer and the second cladding layer. at least one of the layers;
    Each of the first light guide layer and the second light guide layer has a band gap energy smaller than the two or more barrier layers and a band gap energy larger than the one or more well layers,
    The difference in band gap energy between the first light guide layer and the barrier layer closest to the first light guide layer among the two or more barrier layers is less than 0.080 eV;
    The difference in band gap energy between the second optical guide layer and the barrier layer closest to the second optical guide layer among the two or more barrier layers is less than 0.080 eV. A semiconductor light emitting device.
  14.  前記2以上の障壁層のうち前記第二クラッド層に最も近い障壁層の上方に配置され、当該障壁層に接する電子ブロック層をさらに備え、
     前記光ガイド層は、前記第一光ガイド層を有する
     請求項13に記載の半導体発光素子。
    further comprising an electron blocking layer disposed above the barrier layer closest to the second cladding layer among the two or more barrier layers and in contact with the barrier layer,
    The semiconductor light emitting device according to claim 13, wherein the light guide layer includes the first light guide layer.
  15.  前記1以上の井戸層の合計厚さは、17.5nm以上である
     請求項13又は14に記載の半導体発光素子。
    The semiconductor light emitting device according to claim 13 or 14, wherein the total thickness of the one or more well layers is 17.5 nm or more.
  16.  前記2以上の障壁層は、AlGa1-zN(0<z<1)からなり、
     前記1以上の井戸層は、AlInGa1-x-yN(0<x<1、0<y<1)からなる
     請求項13~15のいずれか1項に記載の半導体発光素子。
    The two or more barrier layers are made of Al z Ga 1-z N (0<z<1),
    The semiconductor light emitting device according to any one of claims 13 to 15, wherein the one or more well layers are made of Al x In y Ga 1-xy N (0<x<1, 0<y<1). .
  17.  前記半導体発光素子から出射されるレーザ光のピークフォトンエネルギーは、3.1eV以上である
     請求項13~16のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 13 to 16, wherein the peak photon energy of the laser light emitted from the semiconductor light emitting device is 3.1 eV or more.
  18.  前記半導体発光素子の出力飽和開始点における光出力は、0.7W以上である
     請求項13~17のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 13 to 17, wherein the light output of the semiconductor light emitting device at the start point of output saturation is 0.7 W or more.
  19.  前記半導体発光素子の出力飽和開始点における電流密度は、60kA/mm以上である
     請求項13~18のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting device according to any one of claims 13 to 18, wherein the current density at the start point of output saturation of the semiconductor light emitting device is 60 kA/mm 2 or more.
PCT/JP2023/019160 2022-06-07 2023-05-23 Semiconductor light emitting element WO2023238655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092401 2022-06-07
JP2022092401 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023238655A1 true WO2023238655A1 (en) 2023-12-14

Family

ID=89118199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019160 WO2023238655A1 (en) 2022-06-07 2023-05-23 Semiconductor light emitting element

Country Status (1)

Country Link
WO (1) WO2023238655A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335052A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Nitride semiconductor element
JP2017224866A (en) * 2017-09-27 2017-12-21 シャープ株式会社 Nitride semiconductor laser element
WO2020022116A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Semiconductor laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335052A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Nitride semiconductor element
JP2017224866A (en) * 2017-09-27 2017-12-21 シャープ株式会社 Nitride semiconductor laser element
WO2020022116A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Semiconductor laser element

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KLUDE MATTHIAS, PASSOW THORSTEN, ALEXE GABRIELA, HEINKE HEIDRUN, HOMMEL DETLEF: "New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560-nm emission", PROCEEDINGS OF SPIE, SPIE, vol. 4594, 29 October 2001 (2001-10-29), pages 260 - 270, XP093114674, ISSN: 0277-786X, DOI: 10.1117/12.446585 *
KOYAMA T., ONUMA T., MASUI H., CHAKRABORTY A., HASKELL B., KELLER S., MISHRA U., SPECK J., NAKAMURA S., DENBAARS S., SOTA T., CHIC: "Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN∕GaN blue light emitting diodes fabricated on freestanding GaN substrates", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 89, no. 9, 28 August 2006 (2006-08-28), 2 Huntington Quadrangle, Melville, NY 11747, pages 091906, XP012088712, ISSN: 0003-6951, DOI: 10.1063/1.2337085 *
UHLIG LUKAS; BECHT CONNY; FREIER ERIK; KANG JI HYE; HOFFMANN VEIT; STÖLMACKER CHRISTOPH; EINFELDT SVEN; SCHWARZ ULRICH T.: "Micro-electroluminescence and micro-photoluminescence study on GaN-based laser diode aging", PROCEEDINGS OF THE SPIE, SPIE, US, vol. 12001, 5 March 2022 (2022-03-05), US, pages 1200106-1 - 1200106-7, XP060155662, ISSN: 0277-786X, ISBN: 978-1-5106-5738-0, DOI: 10.1117/12.2609394 *
YI-FU WANG; MUSSAAB I. NIASS; FANG WANG; YU-HUAI LIU: "Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer", CHINESE PHYSICS LETTERS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 36, no. 5, 10 May 2019 (2019-05-10), GB , pages 057301, XP020336103, ISSN: 0256-307X, DOI: 10.1088/0256-307X/36/5/057301 *

Similar Documents

Publication Publication Date Title
US8471240B2 (en) Semiconductor layer structure with superlattice
CN103545714B (en) A kind of semiconductor laser and manufacture method with novel nearly chamber surface current non-injection region structure
US7907651B2 (en) Laser diode
US20070002914A1 (en) Semiconductor laser diode having an asymmetric optical waveguide layer
US11437780B2 (en) Semiconductor laser device, semiconductor laser module, and welding laser light source system
JP4805887B2 (en) Semiconductor laser device
US7796660B2 (en) Three-dimensional photonic crystal light emitting device
JP6807541B2 (en) Semiconductor light emitting device
JP2015530753A (en) ALGAINN semiconductor laser with improved mesa-type current conduction
US9431580B2 (en) Method for producing an optoelectronic component, and an optoelectronic component
US8660160B2 (en) Semiconductor laser element and method of manufacturing the same
US7251381B2 (en) Single-mode optical device
JP6700019B2 (en) Semiconductor light emitting element
WO2023238655A1 (en) Semiconductor light emitting element
US8526477B2 (en) Semiconductor light emitting device
US5031183A (en) Full aperture semiconductor laser
RU2361343C2 (en) Impulse injection laser
US6628688B2 (en) Semiconductor laser device
WO2023243518A1 (en) Nitride-based semiconductor light-emitting device
JP2009105184A (en) Nitride semiconductor laser device and method of producing the same
WO2023153330A1 (en) Nitride-based semiconductor light-emitting element
JPH09199782A (en) Semiconductor laser
US11509117B2 (en) Light emitting element
WO2023153035A1 (en) Nitride semiconductor light-emitting element
CN109787087B (en) Nitride semiconductor laser element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819639

Country of ref document: EP

Kind code of ref document: A1