WO2023238651A1 - Power supply unit and power supply system - Google Patents

Power supply unit and power supply system Download PDF

Info

Publication number
WO2023238651A1
WO2023238651A1 PCT/JP2023/019112 JP2023019112W WO2023238651A1 WO 2023238651 A1 WO2023238651 A1 WO 2023238651A1 JP 2023019112 W JP2023019112 W JP 2023019112W WO 2023238651 A1 WO2023238651 A1 WO 2023238651A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
power supply
power
supply unit
partition wall
Prior art date
Application number
PCT/JP2023/019112
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 岡本
裕昭 樋口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023238651A1 publication Critical patent/WO2023238651A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/08Distribution boxes; Connection or junction boxes
    • H02G3/16Distribution boxes; Connection or junction boxes structurally associated with support for line-connecting terminals within the box
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the disclosure described herein relates to a power supply unit and a power supply system.
  • Patent Document 1 describes an engine control device that includes an injector wire harness that is connected to an injector drive unit, a control wire harness that connects an ECU and various sensors, and an intake manifold.
  • the intake manifold has a shielding effect that suppresses electromagnetic noise generated from the injector wire harness from entering the control wire harness.
  • An intake manifold is provided between the injector wire harness and the control wire harness.
  • An object of the present disclosure is to provide a power supply unit that is capable of improving the degree of freedom in arrangement of two conductive members and suppressing noise from entering electrical components connected from one conductive member to the other conductive member; and to provide a power supply system.
  • a power supply unit includes: electrical parts and a first conductive member connected to the electrical component; a second conductive member having a different energization timing from the first conductive member; A first partition wall and a second partition wall are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up, A first conductive member and a second conductive member are provided between the first partition wall and the second partition wall.
  • the first conductive member and the second conductive member have different energization timings, it is possible to suppress noise from entering the electrical component due to the energization of the second conductive member. There is no need to provide a member between the first conductive member and the second conductive member to shield noise propagated between the first conductive member and the second conductive member. Furthermore, the degree of freedom in arranging the first conductive member and the second conductive member between the first partition wall and the second partition wall is improved.
  • a power supply system includes: electrical parts and a first conductive member connected to the electrical component; a second conductive member having a different energization timing from the first conductive member; A power supply unit having a first partition wall and a second partition wall that are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up; A switching device that switches between a energized state and a non-energized state of the first conductive member and the second conductive member, A first conductive member and a second conductive member are provided between the first partition wall and the second partition wall.
  • the power supply system includes a power supply unit. Since the first conductive member and the second conductive member have different energization timings, it is possible to suppress noise from entering the electrical component due to the energization of the second conductive member. The degree of freedom in arranging the first conductive member and the second conductive member between the first partition wall and the second partition wall is improved.
  • FIG. 1 is a block diagram of a power supply system and a power supply unit.
  • FIG. 2 is a block diagram illustrating energization timing. It is a flow chart explaining control of energization timing. It is a timing chart of energization timing.
  • FIG. 3 is a plan view of the power supply unit.
  • FIG. 3 is a cross-sectional view of the power supply unit.
  • FIG. 1 is a block diagram of a power supply system and a power supply unit.
  • FIG. 2 is a block diagram illustrating a method of controlling energization timing.
  • FIG. 1 is a block diagram of a power supply system and a power supply unit.
  • FIG. 3 is a cross-sectional view of the power supply unit.
  • FIG. 3 is a cross-sectional view of the power supply unit.
  • a power supply system 1 and a power supply unit 20 according to the present embodiment will be explained based on FIGS. 1 to 6.
  • the power supply system 1 and the power supply unit 20 are applied to electric vehicles such as electric vehicles and plug-in hybrid vehicles.
  • electric vehicles such as electric vehicles and plug-in hybrid vehicles.
  • a configuration in which the power supply system 1 and the power supply unit 20 are applied to an electric vehicle will be described as an example.
  • the power supply unit 20 is included in the vehicle power supply system 1.
  • the power supply system 1 includes a battery pack 10, a first vehicle load 30, a second vehicle load 40, a PCU 50, an MG 51, and a vehicle ECU 52.
  • a DC power supply 70 and an AC power supply 80 are connected to this power supply system 1 from the outside.
  • PCU is an abbreviation for Power Control Unit.
  • MG is an abbreviation for Motor Generator.
  • ECU is an abbreviation for electronic control unit.
  • the in-vehicle ECU 52 is abbreviated as "PCECU". Further, in the drawings, in order to simplify the explanation, a configuration in which the power supply system 1 is provided with one PCU 50 and one MG 51 is illustrated. However, the power supply system 1 may be provided with a plurality of PCUs 50 and a plurality of MGs 51.
  • the power supply system 1 may include an FrPCU that drives and controls the FrMG and an RrPCU that drives and controls the RrMG.
  • the battery pack 10 and the power supply unit 20 are electrically connected via a conductive member such as a wire harness or a bus bar.
  • a first vehicle load 30 and a second vehicle load 40 are electrically connected to the power supply unit 20 via a conductive member.
  • a PCU 50 is electrically connected to the power supply unit 20 via a conductive member.
  • the MG 51 is electrically connected to the PCU 50 via a conductive member.
  • the PCU 50 also includes an inverter and a converter for converting power. A plurality of switches included in these inverters and converters are on/off controlled by an on-vehicle ECU 52. The PCU 50 is controlled by an on-vehicle ECU 52.
  • the DC power output from the battery pack 10 is supplied to the first on-vehicle load 30, the second on-vehicle load 40, and the PCU 50 via the power supply unit 20.
  • the PCU 50 includes an inverter and a converter for performing power conversion.
  • the PCU 50 converts the supplied DC power into AC power.
  • the PCU 50 converts the supplied AC power into DC power.
  • MG51 is a motor generator for driving the vehicle to provide propulsive force to the vehicle.
  • the MG51 is powered by AC power supplied from the PCU50.
  • the wheels rotate due to the power running of MG51.
  • the MG51 generates regenerative power using the vehicle's propulsion force.
  • the AC power generated by this regenerative power generation is converted into DC power by the PCU 50.
  • This DC power is supplied to the first on-vehicle load 30 and the second on-vehicle load 40 via the power supply unit 20.
  • This DC power is supplied to the battery pack 10 via the power supply unit 20.
  • the DC power supplied from the battery pack 10 will be referred to as power source power.
  • the power generated by regenerative power generation and converted into DC power by the PCU 50 is referred to as regenerative power.
  • the power supply unit 20 functions to supply power source power and regenerated power output inside the vehicle to various electrical devices mounted on the vehicle. Further, the power supply unit 20 has a function of supplying charging power supplied from an external power source to various electrical devices mounted on the vehicle.
  • the components included in the battery pack 10 and the power supply unit 20 will be explained individually.
  • the battery pack 10 includes a battery pack 11, an SMR 12, a power relay 13, a battery ECU 14, and battery connectors 15A and 15B.
  • the driving of the SMR 12 and the power relay 13 is controlled by the battery ECU 14.
  • the output to the battery connectors 15A and 15B is controlled to be energized and cut off by driving the SMR 12 and the power relay 13.
  • the battery ECU 14 is abbreviated as "BAECU”.
  • the assembled battery 11 has a plurality of battery cells connected in series.
  • the voltage corresponding to the potential difference between the positive terminal of the battery cell with the highest potential among the plurality of battery cells connected in series and the negative terminal of the battery cell with the lowest potential corresponds to the power supply voltage of the battery pack 11.
  • a secondary battery such as a lithium ion battery can be employed.
  • One end of the first power supply line 10A is connected to the positive terminal of the battery cell located at the highest potential among the plurality of battery cells connected in series.
  • One end of the second power supply line 10B is connected to the negative terminal of the battery cell located at the lowest potential.
  • the other end of the first power line 10A and the other end of the second power line 10B are provided in the first battery connector 15A.
  • SMRs 12 are provided on the first power line 10A and the second power line 10B.
  • the SMR 12 is a mechanical switch element.
  • the SMR 12 is a switch element that is switched between an on state and an off state by inputting a drive signal output from the battery ECU 14.
  • SMR is an abbreviation for System Main Relay.
  • One end of the third power line 10C is connected to the midpoint between the assembled battery 11 and the SMR 12 on the first power line 10A.
  • One end of the fourth power line 10D is connected to the middle point between the assembled battery 11 and the SMR 12 on the second power line 10B.
  • the other end of the third power line 10C and the other end of the fourth power line 10D are provided in the second battery connector 15B.
  • a power relay 13 is provided on the third power line 10C and the fourth power line 10D.
  • Power supply relay 13 is a mechanical switch element.
  • the power relay 13 is a switch element that is switched between an on state and an off state by inputting a drive signal output from the battery ECU 14.
  • the battery ECU 14 communicates with an on-vehicle ECU 52 and a power supply ECU 26 (described later) via wiring (not shown).
  • the battery ECU 14 controls the driving of the SMR 12 and the power relay 13 based on communication with these ECUs.
  • the first battery connector 15A is provided with the other ends of the first power line 10A and the second power line 10B.
  • the other ends of the third power line 10C and the fourth power line 10D are provided. Electrical connection and disconnection with the assembled battery 11 on the other end side of these four power supply lines is controlled by outputting and not outputting drive signals from the battery ECU 14 to the SMR 12 and the power relay 13. The other ends of these four power lines are connected to the power supply unit 20.
  • Power supply unit 20 includes DC relays 23A, 23B, DCDC converter 24, ACDC converter 25, power supply ECU 26, and distribution connector 28.
  • DC relays 23A and 23B are mechanical switches.
  • the DC relays 23A and 23B are switches that are switched between an on state and an off state by inputting a drive signal output from the power supply ECU 26.
  • the DC/DC converter 24 steps down the supplied power to 12V and supplies it to the second on-vehicle load 40.
  • ACDC converter 25 converts AC power supplied from AC power supply 80 into DC power.
  • the power supply ECU 26 is abbreviated as "PDECU”.
  • the power supply ECU 26 corresponds to an electrical component.
  • the power supply ECU 26 may also be referred to as a control device.
  • the power supply ECU 26 communicates with the vehicle ECU 52 and the battery ECU 14 via wiring (not shown).
  • the power supply ECU 26 controls the driving of the DCDC converter 24, the DC relays 23A and 23B, and the ACDC converter 25 based on communication with these ECUs and vehicle signals including vehicle information input from onboard sensors (not shown).
  • the distribution connector 28 has a first power connector 28A, a second power connector 28B, a first load connector 28C, a second load connector 28D, a DC connector 28E, a PCU connector 28F, and an AC power connector 28G.
  • the first power connector 28A is provided with one end of the first power line 20A and the second power line 20B.
  • the first battery connector 15A of the battery pack 10 is electrically connected to the first power supply connector 28A.
  • the other end of the first power line 10A is connected to one end of the first power line 20A.
  • the other end of the second power line 10B is connected to one end of the second power line 20B.
  • the first power line 20A branches into a plurality of positive electrode lines.
  • the second power line 20B branches into a plurality of negative electrode lines. Tips of the plurality of positive electrode lines are provided at the first load connector 28C, second load connector 28D, DC connector 28E, and PCU connector 28F as the other ends of the first power line 20A. Tips of the plurality of negative electrode lines are provided at the first load connector 28C, second load connector 28D, DC connector 28E, and PCU connector 28F as the other ends of the second power line 20B.
  • DC relays 23A, 23B and a DC/DC converter 24 are provided on the positive line and the negative line. The positive electrode line and negative electrode line will be explained in detail later.
  • the second power connector 28B is provided with one end of the third power line 20C and the fourth power line 20D.
  • the second battery connector 15B of the battery pack 10 is electrically connected to the second power supply connector 28B.
  • the other end of the third power line 10C is connected to one end of the third power line 20C.
  • the other end of the fourth power line 10D is connected to one end of the fourth power line 20D.
  • An ACDC converter 25 is provided on the third power line 20C and the fourth power line 20D.
  • the other end of the third power line 20C and the other end of the fourth power line 20D are provided at the AC power connector 28G.
  • An AC power source 80 is connected to this AC power connector 28G from the outside. As a result, the power relay 13 is turned on, and the assembled battery 11 and the AC power source 80 are electrically connected via the ACDC converter 25.
  • the first power line 20A branches from the first main wiring into four lines: a first positive line 21A, a second positive line 21B, a third positive line 21C, and a fourth positive line 21D. are doing.
  • the second power line 20B branches from the second main wiring into four lines: a first negative line 22A, a second negative line 22B, a third negative line 22C, and a fourth negative line 22D.
  • the tip of the first positive line 21A and the tip of the first negative line 22A are provided in the first load connector 28C. Thereby, the assembled battery 11 and the first on-vehicle load 30 are electrically connected with the SMR 12 in the on state.
  • the tip of the second positive line 21B and the tip of the second negative line 22B are provided in the second load connector 28D.
  • a DCDC converter 24 is provided on the second positive line 21B and the second negative line 22B. Thereby, when power is supplied to the DCDC converter 24, 12V DC power is supplied to the second on-vehicle load 40.
  • the tip of the third positive electrode line 21C and the tip of the third negative electrode line 22C are provided in the DC connector 28E.
  • DC relays 23A and 23B are provided on the third positive line 21C and the third negative line 22C.
  • the DC relays 23A and 23B include a first DC relay 23A and a second DC relay 23B.
  • a first DC relay 23A is provided on the third positive electrode line 21C.
  • a second DC relay 23B is provided on the third negative electrode line 22C.
  • first communication line 23C that communicates with the power supply ECU 26 is connected to the first DC relay 23A.
  • Power supply ECU 26 and first DC relay 23A are electrically connected via first communication line 23C.
  • a second communication line 23D that communicates with the power supply ECU 26 is connected to the second DC relay 23B.
  • Power supply ECU 26 and second DC relay 23B are electrically connected via second communication line 23D.
  • first communication line 23C and the second communication line 23D may be collectively referred to as communication lines 23C and 23D, as appropriate.
  • a first monitoring line 23E is provided for monitoring whether or not a leakage occurs in the third positive electrode line 21C.
  • One end of the first monitoring line 23E is electrically connected to the third positive electrode line 21C.
  • the other end of the first monitoring line 23E is electrically connected to the power supply ECU 26.
  • the power supply ECU 26 monitors whether a leakage occurs in the third positive electrode line 21C via the first monitoring line 23E.
  • a second monitoring line 23F is provided on the third negative electrode line 22C to monitor whether a leakage occurs in the third negative electrode line 22C.
  • One end of the second monitoring line 23F is electrically connected to the third negative electrode line 22C.
  • the other end of the second monitoring line 23F is electrically connected to the power supply ECU 26.
  • the power supply ECU 26 monitors whether a leakage occurs in the third negative electrode line 22C via the second monitoring line 23F.
  • the first monitoring line 23E and the second monitoring line 23F may be collectively referred to as monitoring lines 23E and 23F, as appropriate. Note that the monitoring lines 23E and 23F correspond to the first conductive member.
  • the tip of the fourth positive electrode line 21D and the tip of the fourth negative electrode line 22D are provided in the PCU connector 28F. Thereby, the first on-vehicle load 30 and the DCDC converter 24 are electrically connected to the PCU 50. When the SMR 12 is in the on state, the assembled battery 11 and the PCU 50 are electrically connected.
  • the fourth positive line 21D and the fourth negative line 22D are also power lines that supply power to drive the MG 51.
  • the fourth positive electrode line 21D may be referred to as a first drive line 21D.
  • the fourth negative electrode line 22D may be referred to as a second drive line 22D.
  • the first drive line 21D and the second drive line 22 may be collectively referred to as drive lines 21D and 22D. Note that the drive lines 21D and 22D correspond to the second conductive member.
  • a DC power supply 70 and an AC power supply 80 are connected to the power supply unit 20 from the outside. If the DC power source 70 or the AC power source 80 is, for example, a charger connected to a charging station, the power supply ECU 26 communicates with a CPU included in the charging station. In the present embodiment, a case in which power is supplied to the power supply unit 20 from the DC power supply 70, which is a charger, will be described below.
  • the battery ECU 14 turns on the SMR 12. Further, the battery ECU 14 turns off the power relay 13. The power supply ECU 26 turns off the DC relays 23A and 23B. Thereby, the power source of the assembled battery 11 is supplied to the first on-vehicle load 30, the DCDC converter 24, and the PCU 50. Conversely, the regenerated power of the MG 510 is supplied to the first on-vehicle load 30, the DCDC converter 24, and the assembled battery 11. At this time, the drive lines 21D and 22D are in an energized state. Monitoring lines 23E and 23F are in a de-energized state.
  • the battery ECU 14 turns on the SMR 12.
  • the battery ECU 14 turns off the power relay 13.
  • the power supply ECU 26 turns on the DC relays 23A and 23B.
  • the DC power supplied from the DC power supply 70 is supplied to the assembled battery 11, the first on-vehicle load 30, and the DCDC converter 24.
  • the monitoring lines 23E and 23F are in a energized state.
  • Drive lines 21D and 22D are in a non-energized state.
  • the reason why the drive lines 21D and 22D are in a non-energized state during DC charging is because the PCU 50 is in an OFF state during DC charging.
  • the power supply ECU 26 communicates with the vehicle ECU 52 and the battery ECU 14 via wiring (not shown).
  • the on-board ECU 52 includes a mask circuit 52A that turns off the PCU 50.
  • the power supply ECU 26 outputs an operation signal to the on-vehicle ECU 52 to operate the mask circuit 52A.
  • the on-vehicle ECU 52 operates the mask circuit 52A based on the operation signal.
  • the PCU 50 is turned off.
  • the PCU 50 is turned off by the mask circuit 52A. Accordingly, no potential difference occurs between the DC power supply 70 and the PCU 50.
  • the drive lines 21D and 22D are in a non-energized state.
  • the energization timing is simply shown.
  • the power supply ECU 26 When power is supplied to the power supply unit 20 from the DC power supply 70, the power supply ECU 26 outputs an on signal to the DC relays 23A, 23B to turn on the DC relays 23A, 23B, for example.
  • the power supply ECU 26 outputs an operation signal to the mask circuit 52A to operate the mask circuit 52A.
  • the monitoring lines 23E and 23F are energized.
  • Drive lines 21D and 22D are in a non-energized state.
  • the on signal and the operation signal correspond to switching signals.
  • the DC relays 23A, 23B and the mask circuit 52A correspond to a switching device.
  • the power supply ECU 26 When the DC power supply 70 is removed from the power supply unit 20, the power supply ECU 26 does not output ON signals to the DC relays 23A and 23B. At the same time, the power supply ECU 26 does not output the operation signal to the mask circuit 52A.
  • the monitoring lines 23E and 23F are de-energized.
  • the drive lines 21D and 22D are energized.
  • the power supply ECU 26 includes a processing device such as a CPU, a memory device such as a ROM and a RAM, and the like.
  • the power supply ECU 26 performs various controls by the CPU executing programs stored in the ROM.
  • the CPU includes a determination section 26A and a signal output section 26B. Functions are also referred to as functional blocks. It can be said that the program includes the functions of the determination section 26A and the signal output section 26B.
  • the determination unit 26A is abbreviated as "JDP”.
  • the signal output section 26B is abbreviated as "STP".
  • the means and/or functions provided by the power supply ECU 26 can be provided by software recorded in a tangible memory device and a computer that executes it, only software, only hardware, or a combination thereof.
  • the power supply ECU 26 is provided by an electronic circuit that is hardware, it may be provided by a digital circuit including multiple logic circuits, or by an analog circuit.
  • the power supply ECU 26 has a switching control flow that controls switching of the energization timing of the monitoring lines 23E, 23F and the drive lines 21D, 22D.
  • the power supply ECU 26 repeatedly performs the switching control flow at predetermined time intervals.
  • the power supply ECU 26 always repeats the switching control flow at predetermined time intervals.
  • step S110 the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized.
  • the determination unit 26A communicates with the CPU included in the DC power supply 70. As a result of the communication, it is determined whether or not it is connected to the DC power supply 70. Based on this, the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized. If the determining unit 26A determines in step S110 that the monitoring lines 23E and 23F are energized, the process advances to step S121.
  • step S121 the signal output section 26B outputs an on signal to the DC relays 23A and 23B.
  • step S122 an operation signal is output to the mask circuit 52A. Then proceed to the end.
  • the monitoring lines 23E and 23F are energized.
  • Drive lines 21D and 22D are in a non-energized state. Note that the on signal and the operation signal may be output at the same time. The on signal and the operation signal may be output in sequence.
  • step S110 if the determining unit 26A determines that the monitoring lines 23E and 23F are not energized, the process advances to step S131.
  • step S131 the signal output unit 26B does not output the ON signal to the DC relays 23A and 23B.
  • step S132 the operation signal is not output to the mask circuit 52A. Then proceed to the end.
  • the monitoring lines 23E and 23F are in a non-energized state.
  • Drive lines 21D and 22D are in an energized state. Note that the non-output of the on signal and the non-output of the operation signal may be performed simultaneously. The non-output of the on signal and the non-output of the operation signal may be performed in sequence.
  • the switching timing of energization of the monitoring lines 23E, 23F and the drive lines 21D, 22D will be explained.
  • the vehicle In the timing chart, from time t1 to time t2, the vehicle is in a parked or stopped state or a running state. From time t2 to time t3, the vehicle is in a parked and stopped state and is also in a charging state.
  • the DC power supply 70 is connected to the DC connector 28E. Between time t1 and time t2, the power supply ECU 26 executes step S131 and step S132.
  • the power supply ECU 26 executes step S121 and step S122 from time t2 to time t3. According to this, the monitoring lines 23E, 23F and the drive lines 21D, 22D are not energized at the same time.
  • the timing of energization of the monitoring lines 23E and 23F is different from the timing of energization of the drive lines 21D and 22D.
  • the thickness direction of the substrate 27 which will be described later, may be referred to as a TD (thickness direction) direction.
  • the two depth directions orthogonal to the thickness direction of the substrate 27 are sometimes referred to as a DP (depth direction) direction, and the width direction is sometimes referred to as a WD (width direction) direction.
  • the DP direction and the WD direction correspond to the direction in which the front surface 27A and the back surface 27B of the substrate 27 extend.
  • the DP direction corresponds to the first orthogonal direction.
  • the WD direction corresponds to the second orthogonal direction.
  • the power supply unit 20 includes a substrate 27, an electromagnetic shield 29, a housing 60, and a terminal block 90 in addition to the components described above.
  • the board 27 includes a power supply ECU 26 and electrical wiring electrically connected to the power supply ECU 26.
  • the substrate 27 has a flat shape with a thin thickness in the TD direction.
  • the substrate 27 includes a front surface 27A and a back surface 27B, which are spaced apart by a thickness in the TD direction.
  • a power supply ECU 26 and electrical wiring are provided on the surface 27A.
  • the electromagnetic shield 29 is a shield member for suppressing noise from entering electrical components. In this embodiment, it is provided on the back surface 27B side of the substrate 27. Note that the manner in which various components are housed in the housing 60 will be explained later.
  • the housing 60 is a case for housing the battery pack 10 and the components included in the power supply unit 20.
  • the housing 60 is mainly composed of metal such as aluminum.
  • the housing 60 includes an annular side wall 62 that opens in the TD direction.
  • the battery pack 10 and the components included in the power supply unit 20 are housed in a space surrounded by the side wall 62.
  • the side wall 62 includes a first wall 62A and a third wall 62C that are spaced apart in the WD direction, and a second wall 62B and a fourth wall 62D that are spaced apart in the DP direction.
  • the first wall portion 62A to the fourth wall portion 62D are continuous in the clockwise direction, with the first wall portion 62A, the second wall portion 62B, the third wall portion 62C, and the fourth wall portion 62D continuing.
  • the side wall 62 is provided with a partition wall 63 that divides the space in the TD direction.
  • the partition wall 63 is continuous with the side wall 62 by the same member.
  • the partition wall 63 divides the space inside the housing 60 into a first space and a second space.
  • a power supply unit 20 is housed in the first space.
  • the battery pack 10 is housed in the second space.
  • the plan view perpendicular to the WD direction shows the configuration when the power supply unit 20 is viewed from the first space side. In the plan view, illustrations of the DCDC converter 24, the ACDC converter 25, and the conductive members and connectors connected thereto are omitted.
  • a DC connector 28E is provided on the first wall portion 62A.
  • a first power connector 28A and a PCU connector 28F are provided on the third wall portion 62C.
  • the DC connector 28E is provided on the fourth wall 62D side of the first wall 62A.
  • the first power connector 28A is provided on the fourth wall 62D side of the third wall 62C.
  • the DC connector 28E and the first power connector 28A are provided on the side wall 62 so as to face each other in the WD direction.
  • a PCU connector 28F is provided on the second wall portion 62B side of the third wall portion 62C. In the third wall portion 62C, the PCU connector 28F is provided closer to the second wall portion 62B than the first power connector 28A.
  • a third positive electrode line 21C and a third negative electrode line 22C extend from the DC connector 28E toward the first power connector 28A. The ends of the third positive electrode line 21C and the third negative electrode line 22C on the DC connector 28E side are connected to the DC connector 28E.
  • a first power line 20A and a second power line 20B extend from the first power connector 28A toward the DC connector 28E. Ends of the first power line 20A and the second power line 20B on the first power connector 28A side are connected to the first power connector 28A.
  • a first DC relay 23A is provided between the end of the third positive electrode line 21C on the first power connector 28A side and the end of the first power line 20A on the DC connector 28E side.
  • a second DC relay 23B is provided between the end of the third negative electrode line 22C on the first power connector 28A side and the end of the second power line 20B on the DC connector 28E side.
  • first power line 20A extends toward the second wall portion 62B on the way from the first power connector 28A toward the DC connector 28E.
  • the second power line 20B extends from the first power connector 28A toward the DC connector 28E, and extends toward the second wall portion 62B.
  • the tip of the portion of the first power line 20A that extends toward the second wall portion 62B will be referred to as a first tip.
  • the tip of the portion of the second power line 20B that extends toward the second wall portion 62B is referred to as a second tip.
  • the PCU connector 28F is provided on the second wall portion 62B side of the third wall portion 62C.
  • a fourth positive electrode line 21D extends from the PCU connector 28F toward the first tip.
  • the fourth positive electrode line 21D extends along the WD direction. It can also be said that the fourth positive electrode line 21D extends from the third wall 62C toward the first wall 62A.
  • the end of the fourth positive electrode line 21D on the first tip side is connected to the first tip.
  • An end of the fourth positive electrode line 21D on the PCU connector 28F side is connected to the PCU connector 28F.
  • a fourth negative electrode line 22D extends from the PCU connector 28F toward the second tip.
  • the fourth negative electrode line 22D extends along the WD direction. It can also be said that the fourth negative electrode line 22D extends from the third wall 62C toward the first wall 62A.
  • the end of the fourth negative electrode line 22D on the second tip side is connected to the second tip.
  • An end of the fourth negative electrode line 22D on the PCU connector 28F side is connected to the PCU connector 28F.
  • the PCU connector 28F, the fourth positive electrode line 21D, and the fourth negative electrode line 22D are provided on the terminal block 90.
  • the terminal block 90 is supported by the housing 60.
  • the terminal block 90 supports the fourth positive electrode line 21D and the fourth negative electrode line 22D, and also supports the PCU connector 28F.
  • the terminal block 90 is mainly composed of resin or the like.
  • the terminal block 90 includes a support portion 91, a first support wall portion 92, and a second support wall portion 93.
  • a first support wall portion 92 and a second support wall portion 93 are provided on the upper surface 91A of the support portion 91.
  • the first support wall part 92 and the second support wall part 93 are provided so as to face each other at a predetermined distance apart in the DP direction.
  • a fourth positive electrode line 21D and a fourth negative electrode line 22D are provided between the first support wall portion 92 and the second support wall portion 93 in the terminal block 90.
  • a substrate 27 is provided in a space closer to the second wall portion 62B than the third positive electrode line 21C and the third negative electrode line 22C in the first space.
  • the electromagnetic shield 29 is provided on the back surface 27B side of the substrate 27.
  • the electromagnetic shield 29 is a shield member for suppressing noise from entering the drive lines 21D, 22D and the monitoring lines 23E, 23F from the outside.
  • the electromagnetic shield 29 has a shape that follows the substrate 27. In plan view, the electromagnetic shield 29 is one size larger than the substrate 27. The electromagnetic shield 29 and the substrate 27 overlap in the WD direction. The electromagnetic shield 29 overlaps with a portion of the terminal block 90, a portion of the drive lines 21D and 22D, and a portion of the monitoring lines 23E and 23F in the WD direction.
  • a communication plug 27C connected to the power supply ECU 26 is provided on the surface 27A of the board 27.
  • a first communication line 23C extends from the communication plug 27C toward the first DC relay 23A.
  • a second communication line 23D extends from the communication plug 27C toward the second DC relay 23B.
  • Communication plug 27C and DC relays 23A and 23B are connected via communication lines 23C and 23D.
  • a monitoring plug 27D connected to the power supply ECU 26 is provided on the surface 27A of the board 27.
  • a first monitoring line 23E extends from the monitoring plug 27D toward the third positive electrode line 21C.
  • a second monitoring line 23F extends from the monitoring plug 27D toward the third negative electrode line 22C.
  • the monitoring plug 27D, the third positive electrode line 21C, and the third negative electrode line 22C are connected via monitoring lines 23E and 23F.
  • the monitoring lines 23E and 23F extend from the monitoring plug 27D toward the third wall portion 62C, and then toward the fourth wall portion 62D.
  • the monitoring lines 23E and 23F cross the electromagnetic shield 29 while extending toward the fourth wall 62D.
  • the monitoring lines 23E and 23F are provided closer to the partition wall 63 than the electromagnetic shield 29.
  • the monitoring lines 23E and 23F overlap the electromagnetic shield 29 in the WD direction.
  • the portions of the monitoring lines 23E and 23F that overlap with the electromagnetic shield 29 in the WD direction overlap with the drive lines 21D and 22D and the terminal block 90 on the partition wall 63 side.
  • a support portion 91, drive lines 21D and 22D, monitoring lines 23E and 23F, and electromagnetic shield 29 are provided in the order of overlapping from the partition wall 63 toward the substrate 27.
  • the direction in which the drive lines 21D and 22D extend differs from the direction in which the monitoring lines 23E and 23F extend by 90 degrees.
  • the drive lines 21D, 22D and the monitoring lines 23E, 23F are orthogonal to each other.
  • Drive lines 21D, 22D and monitoring lines 23E, 23F are provided between the support portion 91 and the electromagnetic shield 29 in the TD direction.
  • Drive lines 21D and 22D and monitoring lines 23E and 23F are provided between the first support wall portion 92 and the second support wall portion 93.
  • cutouts are provided in the first support wall portion 92 and the second support wall portion 93 to allow the monitoring lines 23E and 23F to pass therethrough.
  • Monitoring lines 23E and 23F are passed through the notches.
  • Drive lines 21D and 22D and monitoring lines 23E and 23F are provided in a space formed by the support part 91, the first support wall part 92, the second support wall part 93, and the electromagnetic shield 29.
  • the support portion 91 corresponds to the first partition.
  • the electromagnetic shield 29 corresponds to the second partition.
  • monitoring lines 23E and 23F extend from the second wall 62B toward the fourth wall 62D, and then from the third wall 62C toward the first wall 62A. Thereafter, the monitoring lines 23E and 23F extend toward the third positive electrode line 21C and the third negative electrode line 22C.
  • the first monitoring line 23E is connected to the third positive electrode line 21C via a conductive connecting member or the like.
  • the second monitoring line 23F is connected to the third negative electrode line 22C via a conductive connecting member or the like.
  • the monitoring lines 23E, 23F and the drive lines 21D, 22D are provided between the support portion 91 and the electromagnetic shield 29.
  • the monitoring lines 23E and 23F are lines connected to the power supply ECU 26 as electrical components.
  • the drive lines 21D and 22D are lines connected to the PCU 50 as electrical components.
  • the monitoring lines 23E, 23F and the drive lines 21D, 22D have different energization timings.
  • the energization timing of the monitoring lines 23E, 23F and the energization timing of the drive lines 21D, 22D are different, it is possible to suppress noise generated due to energization of the drive lines 21D, 22D from entering the power supply ECU 26. Accordingly, there is no need to provide a member between the monitoring lines 23E, 23F and the drive lines 21D, 22D to shield noise propagating between the lines. Between the electromagnetic shield 29 and the support part 91, the degree of freedom in arranging the monitoring lines 23E, 23F and the drive lines 21D, 22D is improved.
  • the monitoring lines 23E and 23F are electrically connected to the power supply ECU 26.
  • Drive lines 21D and 22D are electrically connected to a PCU 50 that is connected to the MG 51.
  • the timing of energization of the monitoring lines 23E and 23F is different from the timing of energization of the drive lines 21D and 22D.
  • the power supply ECU 26 outputs an on signal to the DC relays 23A and 23B, and also outputs an operation signal to the mask circuit 52A. This makes the monitoring lines 23E and 23F energized.
  • the drive lines 21D and 22D are de-energized.
  • the power supply ECU 26 does not output ON signals to the DC relays 23A and 23B, and also does not output an operation signal to the mask circuit 52A. This causes the monitoring lines 23E and 23F to be de-energized.
  • the drive lines 21D and 22D are energized. Monitoring lines 23E, 23F and drive lines 21D, 22D are prevented from being energized at the same time.
  • the power supply ECU 26 includes a determination section 26A and a signal output section 26B.
  • the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized.
  • the determination unit 26A communicates with the CPU included in the DC power supply 70. As a result of the communication, it is determined whether or not it is connected to the DC power supply 70. Based on this, the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized.
  • the signal output unit 26B When the determining unit 26A determines that the monitoring lines 23E and 23F are energized, the signal output unit 26B outputs an ON signal to the DC relays 23A and 23B and outputs an operation signal to the mask circuit 52A. According to this, the monitoring lines 23E and 23F are in a energized state, and the drive lines 21D and 22D are in a non-energized state.
  • the signal output section 26B disables the on-signal to the DC relays 23A and 23B, and also disables the output of the operation signal to the mask circuit 52A. do. According to this, the monitoring lines 23E and 23F are in a non-energized state, and the drive lines 21D and 22D are in a energized state.
  • the power supply unit 20 includes a first changeover switch 21E and a second changeover switch 22E that control power supply to the PCU 50.
  • a first changeover switch 21E is provided on the first drive line 21D.
  • a second changeover switch 22E is provided on the second drive line 22D.
  • the mask circuit 52A is not mounted on the vehicle ECU 52. Note that the mask circuit 52A may be mounted on the on-vehicle ECU 52. Note that the DC relays 23A, 23B and the changeover switches 21E, 22E correspond to a changeover device.
  • the power supply ECU 26 When power is supplied from the outside to the power supply unit 20 from the DC power supply 70, the power supply ECU 26 sends an on signal to the DC relays 23A, 23B to turn on the DC relays 23A, 23B, as shown in FIG. Output. At the same time, the power supply ECU 26 does not output the ON signal to the changeover switches 21E, 22E, and turns the changeover switches 21E, 22E into the OFF state. According to this, the monitoring lines 23E and 23F become energized. Drive lines 21D and 22D are de-energized.
  • the power supply ECU 26 When the DC power supply 70 is removed from the power supply unit 20, the power supply ECU 26 does not output the ON signal to the DC relays 23A, 23B, and turns the DC relays 23A, 23B into the OFF state. At the same time, the power supply ECU 26 outputs an on signal to the changeover switches 21E, 22E to turn on the changeover switches 21E, 22E. According to this, the monitoring lines 23E and 23F become de-energized. The drive lines 21D and 22D become energized.
  • the power supply unit 20 is provided with a related signal generating device 20E.
  • the related signal generator 20E is associated with the energization state of one of the monitoring lines 23E, 23F and the drive lines 21D, 22D.
  • the related signal generator 20E outputs the related signal to the power supply ECU 26 when one of these lines is energized. Power supply ECU 26 de-energizes the other of these lines based on the received relevant signals.
  • Examples of the related signal generating device 20E include a related signal generating section, a time-operated timer, a temperature sensor, and the like. Note that the related signal generating device 20E may or may not be included in the power supply ECU 26. In addition, in the drawings, the related signal generating device 20E is abbreviated as "RSG".
  • the related signal generation unit in the third embodiment determines whether the monitoring lines 23E, 23F are energized, and generates a related signal when it is determined that the monitoring lines 23E, 23F are energized, It has a function of outputting related signals to the signal output section 26B.
  • the signal output unit 26B de-energizes the drive lines 21D and 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that when the related signal generating section determines that the monitoring lines 23E and 23F are not energized, the opposite control is performed.
  • the related signal generation section also has a function of determining whether or not the drive lines 21D and 22D are energized, and outputting a related signal to the signal output section 26B when it is determined that the drive lines 21D and 22D are energized. may be provided. In that case, the signal output unit 26B de-energizes the monitoring lines 23E and 23F based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that when the related signal generating section determines that the drive lines 21D and 22D are not energized, the opposite control is performed.
  • the temperature sensor determines whether the temperature of one of the monitoring lines 23E, 23F and the drive lines 21D, 22D is higher than a preset threshold. Then, when it is determined that it is equal to or greater than the threshold value, a related signal is output to the signal output section 26B. The signal output unit 26B then de-energizes the other of the monitoring lines 23E, 23F and the drive lines 21D, 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time.
  • the temperature sensor may be provided in the DC relays 23A and 23B. The temperature sensor may be provided in the monitoring lines 23E, 23F or the drive lines 21D, 22D.
  • time-operated timer for example, it is determined whether one of the monitoring lines 23E, 23F and the drive lines 21D, 22D is energized for a preset predetermined time or longer. Then, when it is determined that the power has been on for a predetermined time or longer, a related signal is output to the signal output section 26B. The signal output unit 26B then de-energizes the other of the monitoring lines 23E, 23F and the drive lines 21D, 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time.
  • the time-operated timer may be provided in the DC relays 23A and 23B. Time-operated timers may be provided in the monitoring lines 23E, 23F or in the drive lines 21D, 22D.
  • the electromagnetic shield 29 is provided closer to the support portion 91 than the ends of the support walls 92 and 93 in the TD direction. Furthermore, an electromagnetic shield 29 is provided between the first support wall part 92 and the second support wall part 93 in the DP direction. Monitoring lines 23E, 23F and drive lines 21D, 22D are provided between the electromagnetic shield 29 and the terminal block 90. This also produces the same effect. Furthermore, it is possible to suppress an increase in body size in the TD direction. The degree of freedom in layout of the parts constituting the power supply unit 20 is improved. Note that the same holds true even if the terminal block 90 is replaced with a metal housing 60 or the like.
  • the housing 60 includes a bottom wall 61 and a side wall 62.
  • a side wall 62 is continuously provided on the surface of the bottom portion 61 and made of the same material.
  • the electromagnetic shield 29 is provided closer to the bottom wall 61 than the end of the side wall 62 in the TD direction. Further, an electromagnetic shield 29 is provided between the two side walls 62 in the DP direction.
  • Monitoring lines 23E, 23F and drive lines 21D, 22D are provided between the electromagnetic shield 29 and the housing 60. This also produces the same effect.
  • a configuration to which the terminal block 90 is applied is shown as a representative.
  • another support stand 94 is provided in the space between the support section 91 and the support wall sections 92 and 93.
  • the support base 94 has an opening in the TD direction, and an electromagnetic shield 29 is provided to close the opening.
  • Monitoring lines 23E, 23F and drive lines 21D, 22D are provided in the space between the support base 94 and the electromagnetic shield 29. This also produces the same effect.
  • the electrical component switches the first electrically conductive member and the second electrically conductive member between a energized state and a non-energized state by outputting and not outputting a switching signal to a switching device (21E, 22E, 23A, 23B, 52A).
  • the controlling power supply unit according to technical idea 2.
  • the electrical component outputs or does not output the switching signal when detecting an energized state of one of the first conductive member and the second conductive member, or outputs or non-outputs the switching signal.
  • the power supply unit according to technical idea 3 which outputs or does not output the switching signal when receiving a signal related to the energization state of one of the conductive members.
  • the electric component includes a determination unit (26A) that determines whether the first conductive member is in an energized state;
  • the power supply unit according to technical concept 3 or 4, further comprising a signal output section (26B) that controls output and non-output of the switching signal based on the judgment of the judgment section.
  • the first partition wall is a part of a terminal block (90),
  • the first conductive member is connected to a charger (70) that can communicate with the electrical component,
  • the power supply system according to technical idea 9, wherein the electric component determines whether the first conductive member is energized based on communication with the charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Connection Or Junction Boxes (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

This power supply unit (20) comprises: an electrical component (26); a first conductive member (23E, 23F) that is connected to the electrical component; a second conductive member (21D, 22D) that has a different current passage timing than the first conductive member does; and a first partition wall (91) and a second partition wall (29) that are provided apart from each other with respect to an arrangement direction in which the first conductive member and the second conductive member are arranged, wherein the first conductive member and the second conductive member are provided between the first partition wall and the second partition wall. As a result, it is possible to achieve both an improvement in the freedom of arrangement of the two conductive members and the suppression of noise intrusion into the electrical component, which connects from one of the conductive members to the other of the conductive members.

Description

電力供給ユニット、および、電力供給システムPower supply unit and power supply system 関連出願の相互参照Cross-reference of related applications
 この出願は、2022年6月10日に日本に出願された特許出願第2022-094442号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-094442 filed in Japan on June 10, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 本明細書に記載の開示は、電力供給ユニット、および、電力供給システムに関するものである。 The disclosure described herein relates to a power supply unit and a power supply system.
 特許文献1には、インジェクタ駆動ユニットに接続されるインジェクタ用ワイヤハーネス、ECUと各種センサとを接続する制御用ワイヤハーネス、および、インテークマニホールドを備えるエンジンの制御装置が記載されている。インテークマニホールドは、インジェクタ用ワイヤハーネスから発生する電磁ノイズが、制御用ワイヤハーネスに入り込むことを抑制するシールド効果を備えている。インジェクタ用ワイヤハーネスと制御用ワイヤハーネスの間にインテークマニホールドが設けられている。 Patent Document 1 describes an engine control device that includes an injector wire harness that is connected to an injector drive unit, a control wire harness that connects an ECU and various sensors, and an intake manifold. The intake manifold has a shielding effect that suppresses electromagnetic noise generated from the injector wire harness from entering the control wire harness. An intake manifold is provided between the injector wire harness and the control wire harness.
特開平11-343861号公報Japanese Patent Application Publication No. 11-343861
 2つのワイヤハーネスの間にシールド効果を備える部材が設けられているために、2つのワイヤハーネスの配置の自由度が低かった。また、一方のワイヤハーネスから他方のワイヤハーネスにつながる電気部品にノイズが侵入することを抑制することが難しかった。 Because a member with a shielding effect is provided between the two wire harnesses, the degree of freedom in arranging the two wire harnesses is low. Furthermore, it has been difficult to suppress noise from entering electrical components connected from one wire harness to the other wire harness.
 本開示の目的は、2つの導電部材における配置の自由度の向上と、一方の導電部材から他方の導電部材につながる電気部品へノイズが侵入することを抑制することが両立された電力供給ユニット、および、電力供給システムを提供することである。 An object of the present disclosure is to provide a power supply unit that is capable of improving the degree of freedom in arrangement of two conductive members and suppressing noise from entering electrical components connected from one conductive member to the other conductive member; and to provide a power supply system.
 本開示の一態様による電力供給ユニットは、
 電気部品と、
 電気部品に接続されている第1導電部材と、
 第1導電部材と通電タイミングの異なる第2導電部材と、
 第1導電部材と第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁および第2隔壁と、を備え、
 第1隔壁と第2隔壁との間に、第1導電部材および第2導電部材が設けられている。
A power supply unit according to one aspect of the present disclosure includes:
electrical parts and
a first conductive member connected to the electrical component;
a second conductive member having a different energization timing from the first conductive member;
A first partition wall and a second partition wall are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up,
A first conductive member and a second conductive member are provided between the first partition wall and the second partition wall.
 第1導電部材と第2導電部材とは通電タイミングが異なるために、電気部品に第2導電部材の通電に伴うノイズが侵入することを抑制できる。第1導電部材と第2導電部材の間に、第1導電部材と第2導電部材の間を伝播するノイズをシールドする部材を設ける必要がない。さらに、第1隔壁と第2隔壁との間において、第1導電部材と第2導電部材の配置の自由度が向上する。 Since the first conductive member and the second conductive member have different energization timings, it is possible to suppress noise from entering the electrical component due to the energization of the second conductive member. There is no need to provide a member between the first conductive member and the second conductive member to shield noise propagated between the first conductive member and the second conductive member. Furthermore, the degree of freedom in arranging the first conductive member and the second conductive member between the first partition wall and the second partition wall is improved.
 本開示の一態様による電力供給システムは、
 電気部品と、
 電気部品に接続されている第1導電部材と、
 第1導電部材と通電タイミングの異なる第2導電部材と、
 第1導電部材と第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁および第2隔壁と、を有する電力供給ユニットと、
 第1導電部材および第2導電部材の通電状態と非通電状態の切り替えを行う切り替え装置と、を備え、
 第1隔壁と第2隔壁との間に、第1導電部材および第2導電部材が設けられている。
A power supply system according to one aspect of the present disclosure includes:
electrical parts and
a first conductive member connected to the electrical component;
a second conductive member having a different energization timing from the first conductive member;
A power supply unit having a first partition wall and a second partition wall that are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up;
A switching device that switches between a energized state and a non-energized state of the first conductive member and the second conductive member,
A first conductive member and a second conductive member are provided between the first partition wall and the second partition wall.
 電力供給システムは電力供給ユニットを備えている。第1導電部材と第2導電部材とは通電タイミングが異なるために、電気部品に第2導電部材の通電に伴うノイズが侵入することを抑制できる。第1隔壁と第2隔壁との間において、第1導電部材と第2導電部材の配置の自由度が向上する。 The power supply system includes a power supply unit. Since the first conductive member and the second conductive member have different energization timings, it is possible to suppress noise from entering the electrical component due to the energization of the second conductive member. The degree of freedom in arranging the first conductive member and the second conductive member between the first partition wall and the second partition wall is improved.
 なお、添付した請求の範囲の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら制限するものではない。 Note that the reference numbers in parentheses in the appended claims only indicate correspondence with the configurations described in the embodiments described later, and do not limit the technical scope in any way.
電力供給システムと電力供給ユニットのブロック図である。FIG. 1 is a block diagram of a power supply system and a power supply unit. 通電タイミングを説明するブロック図である。FIG. 2 is a block diagram illustrating energization timing. 通電タイミングの制御を説明するフローチャートである。It is a flow chart explaining control of energization timing. 通電タイミングのタイミングチャートである。It is a timing chart of energization timing. 電力供給ユニットの平面図である。FIG. 3 is a plan view of the power supply unit. 電力供給ユニットの断面図である。FIG. 3 is a cross-sectional view of the power supply unit. 電力供給システムと電力供給ユニットのブロック図である。FIG. 1 is a block diagram of a power supply system and a power supply unit. 通電タイミングの制御方法を説明するブロック図である。FIG. 2 is a block diagram illustrating a method of controlling energization timing. 電力供給システムと電力供給ユニットのブロック図である。FIG. 1 is a block diagram of a power supply system and a power supply unit. 電力供給ユニットの断面図である。FIG. 3 is a cross-sectional view of the power supply unit. 電力供給ユニットの断面図である。FIG. 3 is a cross-sectional view of the power supply unit.
 以下、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。 Hereinafter, multiple embodiments for carrying out the present disclosure will be described with reference to the drawings. In each form, parts corresponding to matters explained in the preceding form may be given the same reference numerals and redundant explanation may be omitted. When only a part of the configuration is described in each form, the other forms previously described can be applied to other parts of the structure.
 また、各実施形態で組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。 In addition, it is not only possible to combine parts that are explicitly shown to be combinable in each embodiment, but also to combine embodiments with each other even if it is not explicitly stated, or between embodiments and modified examples, as long as there is no particular problem with the combination. It is also possible to partially combine the modified examples.
 (第1実施形態)
 図1~図6に基づいて本実施形態に係る電力供給システム1および電力供給ユニット20を説明する。電力供給システム1および電力供給ユニット20は電気自動車やプラグインハイブリッド自動車などの電動車両に適用される。本実施形態では電力供給システム1および電力供給ユニット20が電気自動車に適用された構成を一例として説明する。
(First embodiment)
A power supply system 1 and a power supply unit 20 according to the present embodiment will be explained based on FIGS. 1 to 6. The power supply system 1 and the power supply unit 20 are applied to electric vehicles such as electric vehicles and plug-in hybrid vehicles. In this embodiment, a configuration in which the power supply system 1 and the power supply unit 20 are applied to an electric vehicle will be described as an example.
 <電力供給システム>
 図1に示すように電力供給ユニット20は車両の電力供給システム1に含まれる。電力供給システム1は、電力供給ユニット20の他に、電池パック10、第1車載負荷30、第2車載負荷40、PCU50、MG51、および、車載ECU52を備えている。この電力供給システム1に外部からDC電源70やAC電源80が接続される。PCUはPower Control Unitの略である。MGはMotor Generatorの略である。ECUはelectronic control unitの略である。
<Power supply system>
As shown in FIG. 1, the power supply unit 20 is included in the vehicle power supply system 1. In addition to the power supply unit 20, the power supply system 1 includes a battery pack 10, a first vehicle load 30, a second vehicle load 40, a PCU 50, an MG 51, and a vehicle ECU 52. A DC power supply 70 and an AC power supply 80 are connected to this power supply system 1 from the outside. PCU is an abbreviation for Power Control Unit. MG is an abbreviation for Motor Generator. ECU is an abbreviation for electronic control unit.
 なお図面においては、車載ECU52を「PCECU」と略記している。また図面においては、説明を簡便にするために、電力供給システム1にPCU50とMG51が1つずつ設けられる構成を図示している。しかしながら、電力供給システム1にPCU50とMG51が複数ずつ設けられていてもよい。例えば、電力供給システム1にFrMGを駆動制御するFrPCUと、RrMGを駆動制御するRrPCUが含まれていても良い。 In the drawings, the in-vehicle ECU 52 is abbreviated as "PCECU". Further, in the drawings, in order to simplify the explanation, a configuration in which the power supply system 1 is provided with one PCU 50 and one MG 51 is illustrated. However, the power supply system 1 may be provided with a plurality of PCUs 50 and a plurality of MGs 51. For example, the power supply system 1 may include an FrPCU that drives and controls the FrMG and an RrPCU that drives and controls the RrMG.
 電力供給経路として、電池パック10と電力供給ユニット20とがワイヤハーネスやバスバなどの導電部材を介して電気的に接続されている。電力供給ユニット20に第1車載負荷30と第2車載負荷40が導電部材を介して電気的に接続されている。電力供給ユニット20にPCU50が導電部材を介して電気的に接続されている。PCU50にMG51が導電部材を介して電気的に接続されている。 As a power supply path, the battery pack 10 and the power supply unit 20 are electrically connected via a conductive member such as a wire harness or a bus bar. A first vehicle load 30 and a second vehicle load 40 are electrically connected to the power supply unit 20 via a conductive member. A PCU 50 is electrically connected to the power supply unit 20 via a conductive member. The MG 51 is electrically connected to the PCU 50 via a conductive member.
 なお、以下の説明において、ラインと称されるものがワイヤハーネスやバスバなどの導電部材に相当している。またPCU50は電力変換を行うためのインバータやコンバータを備える。これらインバータやコンバータに含まれる複数のスイッチが、車載ECU52によってオンオフ制御されている。PCU50が車載ECU52によって制御されている。 Note that in the following description, what is called a line corresponds to a conductive member such as a wire harness or a bus bar. The PCU 50 also includes an inverter and a converter for converting power. A plurality of switches included in these inverters and converters are on/off controlled by an on-vehicle ECU 52. The PCU 50 is controlled by an on-vehicle ECU 52.
 電池パック10から出力された直流電力は、電力供給ユニット20を介して第1車載負荷30と第2車載負荷40とPCU50に供給される。上記したように、PCU50に電力変換を行うためのインバータやコンバータが含まれている。PCU50は供給された直流電力を交流電力に変換する。逆に、PCU50は供給された交流電力を直流電力に変換する。MG51は車両に推進力を付与するための車両走行用のモータジェネレータである。MG51はPCU50から供給された交流電力によって力行する。 The DC power output from the battery pack 10 is supplied to the first on-vehicle load 30, the second on-vehicle load 40, and the PCU 50 via the power supply unit 20. As described above, the PCU 50 includes an inverter and a converter for performing power conversion. The PCU 50 converts the supplied DC power into AC power. Conversely, the PCU 50 converts the supplied AC power into DC power. MG51 is a motor generator for driving the vehicle to provide propulsive force to the vehicle. The MG51 is powered by AC power supplied from the PCU50.
 MG51の力行によって車輪が回転する。MG51は車両の推進力によって回生発電する。この回生発電によって生じた交流電力がPCU50で直流電力に変換される。この直流電力が電力供給ユニット20を介して第1車載負荷30と第2車載負荷40に供給される。この直流電力が電力供給ユニット20を介して電池パック10に供給される。 The wheels rotate due to the power running of MG51. The MG51 generates regenerative power using the vehicle's propulsion force. The AC power generated by this regenerative power generation is converted into DC power by the PCU 50. This DC power is supplied to the first on-vehicle load 30 and the second on-vehicle load 40 via the power supply unit 20. This DC power is supplied to the battery pack 10 via the power supply unit 20.
 以下、表記を簡便とするために、電池パック10から供給される直流電力を電源電力と示す。回生発電によって生成され、PCU50とで直流電力に変換された電力を回生電力と示す。電力供給ユニット20は車内で出力された電源電力と回生電力を車両に搭載された各種電気機器に供給する機能を果たしている。さらに電力供給ユニット20は外部電源から供給される充電電力を車両に搭載された各種電気機器に供給する機能を果たしている。以下、電池パック10と電力供給ユニット20の備える構成要素を個別に説明する。 Hereinafter, for ease of notation, the DC power supplied from the battery pack 10 will be referred to as power source power. The power generated by regenerative power generation and converted into DC power by the PCU 50 is referred to as regenerative power. The power supply unit 20 functions to supply power source power and regenerated power output inside the vehicle to various electrical devices mounted on the vehicle. Further, the power supply unit 20 has a function of supplying charging power supplied from an external power source to various electrical devices mounted on the vehicle. Hereinafter, the components included in the battery pack 10 and the power supply unit 20 will be explained individually.
 <電池パック>
 電池パック10は、組電池11、SMR12、電源リレー13、電池ECU14、および、電池コネクタ15A、15Bを有する。SMR12と電源リレー13の駆動が電池ECU14によって制御される。電池コネクタ15A、15B側への出力がSMR12と電源リレー13の駆動によって通電と遮断とに制御される。なお図面においては、電池ECU14を「BAECU」と略記している。
<Battery pack>
The battery pack 10 includes a battery pack 11, an SMR 12, a power relay 13, a battery ECU 14, and battery connectors 15A and 15B. The driving of the SMR 12 and the power relay 13 is controlled by the battery ECU 14. The output to the battery connectors 15A and 15B is controlled to be energized and cut off by driving the SMR 12 and the power relay 13. Note that in the drawings, the battery ECU 14 is abbreviated as "BAECU".
 組電池11は直列接続された複数の電池セルを有する。直列接続された複数の電池セルのうちの最高電位の電池セルの正極端子と最低電位の電池セルの負極端子との電位差に応じた電圧が組電池11の電源電圧に相当する。この組電池11に含まれる電池セルとしては、例えばリチウムイオン電池などの二次電池を採用することができる。直列接続された複数の電池セルのうちの最高電位に位置する電池セルの正極端子に第1電源ライン10Aの一端が接続されている。最低電位に位置する電池セルの負極端子に第2電源ライン10Bの一端が接続されている。これら第1電源ライン10Aの他端と第2電源ライン10Bの他端が第1電池コネクタ15Aに設けられている。 The assembled battery 11 has a plurality of battery cells connected in series. The voltage corresponding to the potential difference between the positive terminal of the battery cell with the highest potential among the plurality of battery cells connected in series and the negative terminal of the battery cell with the lowest potential corresponds to the power supply voltage of the battery pack 11. As the battery cells included in this assembled battery 11, for example, a secondary battery such as a lithium ion battery can be employed. One end of the first power supply line 10A is connected to the positive terminal of the battery cell located at the highest potential among the plurality of battery cells connected in series. One end of the second power supply line 10B is connected to the negative terminal of the battery cell located at the lowest potential. The other end of the first power line 10A and the other end of the second power line 10B are provided in the first battery connector 15A.
 第1電源ライン10Aと第2電源ライン10BにSMR12が設けられている。SMR12は機械式のスイッチ素子である。SMR12は、電池ECU14から出力される駆動信号の入力によってオン状態とオフ状態が切り替わるスイッチ素子である。SMRはSystem Main Relayの略である。 SMRs 12 are provided on the first power line 10A and the second power line 10B. The SMR 12 is a mechanical switch element. The SMR 12 is a switch element that is switched between an on state and an off state by inputting a drive signal output from the battery ECU 14. SMR is an abbreviation for System Main Relay.
 第1電源ライン10Aにおける組電池11とSMR12との間の中点に第3電源ライン10Cの一端が接続されている。第2電源ライン10Bにおける組電池11とSMR12との間の中点に第4電源ライン10Dの一端が接続されている。これら第3電源ライン10Cの他端と第4電源ライン10Dの他端が第2電池コネクタ15Bに設けられている。第3電源ライン10Cと第4電源ライン10Dに電源リレー13が設けられている。電源リレー13は機械式のスイッチ素子である。 One end of the third power line 10C is connected to the midpoint between the assembled battery 11 and the SMR 12 on the first power line 10A. One end of the fourth power line 10D is connected to the middle point between the assembled battery 11 and the SMR 12 on the second power line 10B. The other end of the third power line 10C and the other end of the fourth power line 10D are provided in the second battery connector 15B. A power relay 13 is provided on the third power line 10C and the fourth power line 10D. Power supply relay 13 is a mechanical switch element.
 電源リレー13は電池ECU14から出力される駆動信号の入力によってオン状態とオフ状態が切り替わるスイッチ素子である。電池ECU14は図示しない配線を介して車載ECU52や後述の電力供給ECU26と通信を行っている。電池ECU14はこれらECUとの通信に基づいてSMR12と電源リレー13の駆動を制御する。 The power relay 13 is a switch element that is switched between an on state and an off state by inputting a drive signal output from the battery ECU 14. The battery ECU 14 communicates with an on-vehicle ECU 52 and a power supply ECU 26 (described later) via wiring (not shown). The battery ECU 14 controls the driving of the SMR 12 and the power relay 13 based on communication with these ECUs.
 上記したように第1電池コネクタ15Aに、第1電源ライン10Aと第2電源ライン10Bの他端が設けられている。第、第3電源ライン10Cと第4電源ライン10Dの他端が設けられている。これら4つの電源ラインの他端側の組電池11との電気的な接続と遮断の制御が、電池ECU14からSMR12と電源リレー13への駆動信号の出力と不出力とによってなされる。これら4つの電源ラインの他端側が電力供給ユニット20に接続される。 As described above, the first battery connector 15A is provided with the other ends of the first power line 10A and the second power line 10B. The other ends of the third power line 10C and the fourth power line 10D are provided. Electrical connection and disconnection with the assembled battery 11 on the other end side of these four power supply lines is controlled by outputting and not outputting drive signals from the battery ECU 14 to the SMR 12 and the power relay 13. The other ends of these four power lines are connected to the power supply unit 20.
 <電力供給ユニット>
 電力供給ユニット20は、直流リレー23A、23B、DCDCコンバータ24、ACDC変換機25、電力供給ECU26、および、分配コネクタ28を有する。直流リレー23A、23Bは機械式のスイッチである。直流リレー23A、23Bは電力供給ECU26から出力される駆動信号の入力によってオン状態とオフ状態が切り替わるスイッチである。DCDCコンバータ24は供給された電力を12Vに降圧し、それを第2車載負荷40に供給する。ACDC変換機25はAC電源80から供給される交流電力を直流電力に変換する。なお図面においては、電力供給ECU26を「PDECU」と略記している。電力供給ECU26は電気部品に相当する。電力供給ECU26は制御装置とも称される場合がある。
<Power supply unit>
Power supply unit 20 includes DC relays 23A, 23B, DCDC converter 24, ACDC converter 25, power supply ECU 26, and distribution connector 28. DC relays 23A and 23B are mechanical switches. The DC relays 23A and 23B are switches that are switched between an on state and an off state by inputting a drive signal output from the power supply ECU 26. The DC/DC converter 24 steps down the supplied power to 12V and supplies it to the second on-vehicle load 40. ACDC converter 25 converts AC power supplied from AC power supply 80 into DC power. Note that in the drawings, the power supply ECU 26 is abbreviated as "PDECU". The power supply ECU 26 corresponds to an electrical component. The power supply ECU 26 may also be referred to as a control device.
 電力供給ECU26は図示しない配線を介して車載ECU52や電池ECU14と通信を行っている。電力供給ECU26はこれらECUとの通信や図示しない車載センサなどから入力される車両情報を含む車両信号に基づいてDCDCコンバータ24、直流リレー23A、23B、および、ACDC変換機25の駆動を制御する。分配コネクタ28は、第1電源コネクタ28A、第2電源コネクタ28B、第1負荷コネクタ28C、第2負荷コネクタ28D、DCコネクタ28E、PCUコネクタ28F、および、交流電源コネクタ28Gを有する。 The power supply ECU 26 communicates with the vehicle ECU 52 and the battery ECU 14 via wiring (not shown). The power supply ECU 26 controls the driving of the DCDC converter 24, the DC relays 23A and 23B, and the ACDC converter 25 based on communication with these ECUs and vehicle signals including vehicle information input from onboard sensors (not shown). The distribution connector 28 has a first power connector 28A, a second power connector 28B, a first load connector 28C, a second load connector 28D, a DC connector 28E, a PCU connector 28F, and an AC power connector 28G.
 第1電源コネクタ28Aに第1電力ライン20Aと第2電力ライン20Bの一端が設けられている。第1電源コネクタ28Aに電池パック10の第1電池コネクタ15Aが電気的に接続される。第1電力ライン20Aの一端に第1電源ライン10Aの他端が接続される。第2電力ライン20Bの一端に第2電源ライン10Bの他端が接続される。これにより、組電池11のSMR12がオン状態で、第1電力ライン20Aと第2電力ライン20Bが組電池11と電気的に接続される。SMR12がオフ状態で、第1電力ライン20Aと第2電力ライン20Bの組電池11との電気的な接続が遮断される。 The first power connector 28A is provided with one end of the first power line 20A and the second power line 20B. The first battery connector 15A of the battery pack 10 is electrically connected to the first power supply connector 28A. The other end of the first power line 10A is connected to one end of the first power line 20A. The other end of the second power line 10B is connected to one end of the second power line 20B. As a result, the SMR 12 of the battery pack 11 is in the ON state, and the first power line 20A and the second power line 20B are electrically connected to the battery pack 11. When the SMR 12 is in the off state, the electrical connection between the assembled battery 11 of the first power line 20A and the second power line 20B is cut off.
 第1電力ライン20Aは複数の正極ラインに分岐している。同様にして、第2電力ライン20Bは複数の負極ラインに分岐している。複数の正極ラインの先端が、第1電力ライン20Aの他端として第1負荷コネクタ28C、第2負荷コネクタ28D、DCコネクタ28E、PCUコネクタ28Fに設けられている。複数の負極ラインの先端が、第2電力ライン20Bの他端として第1負荷コネクタ28C、第2負荷コネクタ28D、DCコネクタ28E、PCUコネクタ28Fに設けられている。なお、正極ラインと負極ラインに、直流リレー23A、23B、DCDCコンバータ24が設けられている。正極ラインと負極ラインについては後で詳説する。 The first power line 20A branches into a plurality of positive electrode lines. Similarly, the second power line 20B branches into a plurality of negative electrode lines. Tips of the plurality of positive electrode lines are provided at the first load connector 28C, second load connector 28D, DC connector 28E, and PCU connector 28F as the other ends of the first power line 20A. Tips of the plurality of negative electrode lines are provided at the first load connector 28C, second load connector 28D, DC connector 28E, and PCU connector 28F as the other ends of the second power line 20B. Note that DC relays 23A, 23B and a DC/DC converter 24 are provided on the positive line and the negative line. The positive electrode line and negative electrode line will be explained in detail later.
 第2電源コネクタ28Bに第3電力ライン20Cと第4電力ライン20Dの一端が設けられている。第2電源コネクタ28Bに電池パック10の第2電池コネクタ15Bが電気的に接続される。第3電力ライン20Cの一端に第3電源ライン10Cの他端が接続される。第4電力ライン20Dの一端に第4電源ライン10Dの他端が接続される。組電池11の電源リレー13がオン状態で、第3電力ライン20Cと第4電力ライン20Dとが組電池11と電気的に接続される。電源リレー13がオフ状態で、第3電力ライン20Cと第4電力ライン20Dの組電池11との電気的な接続が遮断される。 The second power connector 28B is provided with one end of the third power line 20C and the fourth power line 20D. The second battery connector 15B of the battery pack 10 is electrically connected to the second power supply connector 28B. The other end of the third power line 10C is connected to one end of the third power line 20C. The other end of the fourth power line 10D is connected to one end of the fourth power line 20D. When the power relay 13 of the assembled battery 11 is in the ON state, the third power line 20C and the fourth power line 20D are electrically connected to the assembled battery 11. When the power relay 13 is in the OFF state, the electrical connection between the assembled battery 11 of the third power line 20C and the fourth power line 20D is cut off.
 第3電力ライン20Cと第4電力ライン20DにACDC変換機25が設けられている。第3電力ライン20Cの他端と第4電力ライン20Dの他端が交流電源コネクタ28Gに設けられている。この交流電源コネクタ28Gに外部からAC電源80が接続される。これにより電源リレー13がオン状態で、組電池11とAC電源80とがACDC変換機25を介して電気的に接続される。 An ACDC converter 25 is provided on the third power line 20C and the fourth power line 20D. The other end of the third power line 20C and the other end of the fourth power line 20D are provided at the AC power connector 28G. An AC power source 80 is connected to this AC power connector 28G from the outside. As a result, the power relay 13 is turned on, and the assembled battery 11 and the AC power source 80 are electrically connected via the ACDC converter 25.
 <正極ラインと負極ライン>
 図1に示すように、第1電力ライン20Aは、第1主配線から、第1正極ライン21A、第2正極ライン21B、第3正極ライン21C、および、第4正極ライン21Dの4つに分岐している。第2電力ライン20Bは、第2主配線から、第1負極ライン22A、第2負極ライン22B、第3負極ライン22C、および、第4負極ライン22Dの4つに分岐している。
<Positive line and negative line>
As shown in FIG. 1, the first power line 20A branches from the first main wiring into four lines: a first positive line 21A, a second positive line 21B, a third positive line 21C, and a fourth positive line 21D. are doing. The second power line 20B branches from the second main wiring into four lines: a first negative line 22A, a second negative line 22B, a third negative line 22C, and a fourth negative line 22D.
 第1正極ライン21Aの先端と第1負極ライン22Aの先端が第1負荷コネクタ28Cに設けられている。これにより、SMR12がオン状態で組電池11と第1車載負荷30とが電気的に接続される。第2正極ライン21Bの先端と第2負極ライン22Bの先端が第2負荷コネクタ28Dに設けられている。これら第2正極ライン21Bと第2負極ライン22BにDCDCコンバータ24が設けられている。これにより、DCDCコンバータ24に電力が供給されると12Vの直流電力が第2車載負荷40に供給される。 The tip of the first positive line 21A and the tip of the first negative line 22A are provided in the first load connector 28C. Thereby, the assembled battery 11 and the first on-vehicle load 30 are electrically connected with the SMR 12 in the on state. The tip of the second positive line 21B and the tip of the second negative line 22B are provided in the second load connector 28D. A DCDC converter 24 is provided on the second positive line 21B and the second negative line 22B. Thereby, when power is supplied to the DCDC converter 24, 12V DC power is supplied to the second on-vehicle load 40.
 第3正極ライン21Cの先端と第3負極ライン22Cの先端がDCコネクタ28Eに設けられている。これら第3正極ライン21Cと第3負極ライン22Cに直流リレー23A、23Bが設けられている。直流リレー23A、23Bは第1直流リレー23Aと第2直流リレー23Bを備える。第3正極ライン21Cに第1直流リレー23Aが設けられている。第3負極ライン22Cに第2直流リレー23Bが設けられている。直流リレー23A、23Bがオン状態で、第1車載負荷30とDCDCコンバータ24がDC電源70と電気的に接続される。さらにSMR12がオン状態で組電池11がDC電源70と電気的に接続される。 The tip of the third positive electrode line 21C and the tip of the third negative electrode line 22C are provided in the DC connector 28E. DC relays 23A and 23B are provided on the third positive line 21C and the third negative line 22C. The DC relays 23A and 23B include a first DC relay 23A and a second DC relay 23B. A first DC relay 23A is provided on the third positive electrode line 21C. A second DC relay 23B is provided on the third negative electrode line 22C. With the DC relays 23A and 23B in the on state, the first on-vehicle load 30 and the DCDC converter 24 are electrically connected to the DC power supply 70. Further, the assembled battery 11 is electrically connected to the DC power source 70 while the SMR 12 is in the on state.
 また、第1直流リレー23Aに、電力供給ECU26との通信を行う第1通信ライン23Cが接続されている。電力供給ECU26と第1直流リレー23Aとが第1通信ライン23Cを介して電気的に接続されている。第2直流リレー23Bに、電力供給ECU26との通信を行う第2通信ライン23Dが接続されている。電力供給ECU26と第2直流リレー23Bとが第2通信ライン23Dを介して電気的に接続されている。以下適宜、第1通信ライン23Cと第2通信ライン23Dを合わせて、通信ライン23C、23Dと称する場合がある。 Furthermore, a first communication line 23C that communicates with the power supply ECU 26 is connected to the first DC relay 23A. Power supply ECU 26 and first DC relay 23A are electrically connected via first communication line 23C. A second communication line 23D that communicates with the power supply ECU 26 is connected to the second DC relay 23B. Power supply ECU 26 and second DC relay 23B are electrically connected via second communication line 23D. Hereinafter, the first communication line 23C and the second communication line 23D may be collectively referred to as communication lines 23C and 23D, as appropriate.
 さらに、第3正極ライン21Cに漏電が発生しているかどうかを監視するための第1監視ライン23Eが設けられている。第1監視ライン23Eの一端が第3正極ライン21Cに電気的に接続されている。第1監視ライン23Eの他端が電力供給ECU26に電気的に接続されている。第1監視ライン23Eを介して電力供給ECU26が第3正極ライン21Cに漏電が発生しているかどうかを監視している。 Further, a first monitoring line 23E is provided for monitoring whether or not a leakage occurs in the third positive electrode line 21C. One end of the first monitoring line 23E is electrically connected to the third positive electrode line 21C. The other end of the first monitoring line 23E is electrically connected to the power supply ECU 26. The power supply ECU 26 monitors whether a leakage occurs in the third positive electrode line 21C via the first monitoring line 23E.
 第3負極ライン22Cに、第3負極ライン22Cに漏電が発生しているかどうかを監視するための第2監視ライン23Fが設けられている。第2監視ライン23Fの一端が第3負極ライン22Cに電気的に接続されている。第2監視ライン23Fの他端が電力供給ECU26に電気的に接続されている。第2監視ライン23Fを介して電力供給ECU26が第3負極ライン22Cに漏電が発生しているかどうかを監視している。以下適宜、第1監視ライン23Eと第2監視ライン23Fを合わせて、監視ライン23E、23Fと称する場合がある。なお、監視ライン23E,23Fが第1導電部材に相当する。 A second monitoring line 23F is provided on the third negative electrode line 22C to monitor whether a leakage occurs in the third negative electrode line 22C. One end of the second monitoring line 23F is electrically connected to the third negative electrode line 22C. The other end of the second monitoring line 23F is electrically connected to the power supply ECU 26. The power supply ECU 26 monitors whether a leakage occurs in the third negative electrode line 22C via the second monitoring line 23F. Hereinafter, the first monitoring line 23E and the second monitoring line 23F may be collectively referred to as monitoring lines 23E and 23F, as appropriate. Note that the monitoring lines 23E and 23F correspond to the first conductive member.
 第4正極ライン21Dの先端と第4負極ライン22Dの先端がPCUコネクタ28Fに設けられている。これにより第1車載負荷30とDCDCコンバータ24がPCU50と電気的に接続される。SMR12がオン状態で組電池11とPCU50とが電気的に接続される。なお、第4正極ライン21Dおよび第4負極ライン22Dは、MG51を駆動させる電力を供給する電力ラインでもある。以下、第4正極ライン21Dを第1駆動ライン21Dと称する場合がある。第4負極ライン22Dを第2駆動ライン22Dと称する場合がある。第1駆動ライン21Dと第2駆動ライン22を合わせて駆動ライン21D、22Dと称する場合がある。なお、駆動ライン21D、22Dが第2導電部材に相当する。 The tip of the fourth positive electrode line 21D and the tip of the fourth negative electrode line 22D are provided in the PCU connector 28F. Thereby, the first on-vehicle load 30 and the DCDC converter 24 are electrically connected to the PCU 50. When the SMR 12 is in the on state, the assembled battery 11 and the PCU 50 are electrically connected. Note that the fourth positive line 21D and the fourth negative line 22D are also power lines that supply power to drive the MG 51. Hereinafter, the fourth positive electrode line 21D may be referred to as a first drive line 21D. The fourth negative electrode line 22D may be referred to as a second drive line 22D. The first drive line 21D and the second drive line 22 may be collectively referred to as drive lines 21D and 22D. Note that the drive lines 21D and 22D correspond to the second conductive member.
 <電力供給システムの動作>
 電力供給ユニット20には外部からDC電源70やAC電源80が接続される。DC電源70やAC電源80が例えば充電スタンドにつながる充電器である場合、電力供給ECU26は充電スタンドに含まれるCPUと通信を行う。以下、本実施形態では特に、電力供給ユニット20に、充電器であるDC電源70から電力が供給された場合について説明する。
<Operation of power supply system>
A DC power supply 70 and an AC power supply 80 are connected to the power supply unit 20 from the outside. If the DC power source 70 or the AC power source 80 is, for example, a charger connected to a charging station, the power supply ECU 26 communicates with a CPU included in the charging station. In the present embodiment, a case in which power is supplied to the power supply unit 20 from the DC power supply 70, which is a charger, will be described below.
 車両の駐停車時や通常走行時などの通常時において、電池ECU14はSMR12をオン状態にする。また、電池ECU14は電源リレー13をオフ状態にする。電力供給ECU26は直流リレー23A、23Bをオフ状態にする。これにより組電池11の電源電力が第1車載負荷30、DCDCコンバータ24、および、PCU50に供給される。逆に、MG510の回生電力が第1車載負荷30、DCDCコンバータ24、および、組電池11に供給される。このとき駆動ライン21D、22Dは通電状態にある。監視ライン23E、23Fは非通電状態にある。 During normal times, such as when the vehicle is parked or parked or during normal driving, the battery ECU 14 turns on the SMR 12. Further, the battery ECU 14 turns off the power relay 13. The power supply ECU 26 turns off the DC relays 23A and 23B. Thereby, the power source of the assembled battery 11 is supplied to the first on-vehicle load 30, the DCDC converter 24, and the PCU 50. Conversely, the regenerated power of the MG 510 is supplied to the first on-vehicle load 30, the DCDC converter 24, and the assembled battery 11. At this time, the drive lines 21D and 22D are in an energized state. Monitoring lines 23E and 23F are in a de-energized state.
 一方駐停車状態で電力供給ユニット20にDC電源70の接続されたDC充電時において、電池ECU14はSMR12をオン状態にする。電池ECU14は電源リレー13をオフ状態にする。電力供給ECU26は直流リレー23A、23Bをオン状態にする。これによりDC電源70から供給される直流電力が組電池11、第1車載負荷30、および、DCDCコンバータ24に供給される。このとき監視ライン23E、23Fは通電状態にある。駆動ライン21D、22Dは非通電状態にある。 On the other hand, during DC charging when the DC power source 70 is connected to the power supply unit 20 while the vehicle is parked or stopped, the battery ECU 14 turns on the SMR 12. The battery ECU 14 turns off the power relay 13. The power supply ECU 26 turns on the DC relays 23A and 23B. Thereby, the DC power supplied from the DC power supply 70 is supplied to the assembled battery 11, the first on-vehicle load 30, and the DCDC converter 24. At this time, the monitoring lines 23E and 23F are in a energized state. Drive lines 21D and 22D are in a non-energized state.
 DC充電時において、駆動ライン21D、22Dが非通電状態にあるのは、DC充電時において、PCU50がオフ状態にあるためである。上記したように、電力供給ECU26は図示しない配線を介して車載ECU52や電池ECU14と通信を行っている。車載ECU52はPCU50をオフ状態にするマスク回路52Aを備えている。DC充電時においては、電力供給ECU26が、車載ECU52に、マスク回路52Aを動作させる動作信号を出力する。 The reason why the drive lines 21D and 22D are in a non-energized state during DC charging is because the PCU 50 is in an OFF state during DC charging. As described above, the power supply ECU 26 communicates with the vehicle ECU 52 and the battery ECU 14 via wiring (not shown). The on-board ECU 52 includes a mask circuit 52A that turns off the PCU 50. During DC charging, the power supply ECU 26 outputs an operation signal to the on-vehicle ECU 52 to operate the mask circuit 52A.
 車載ECU52は、動作信号に基づいて、マスク回路52Aを動作させる。マスク回路52Aが動作すると、PCU50をオフ状態にする。マスク回路52AによってPCU50がオフ状態にされる。それに伴って、DC電源70とPCU50との間に電位差が生じない。その結果、DC充電時において、駆動ライン21D、22Dは非通電状態にある。 The on-vehicle ECU 52 operates the mask circuit 52A based on the operation signal. When the mask circuit 52A operates, the PCU 50 is turned off. The PCU 50 is turned off by the mask circuit 52A. Accordingly, no potential difference occurs between the DC power supply 70 and the PCU 50. As a result, during DC charging, the drive lines 21D and 22D are in a non-energized state.
 なお図2においては、通電タイミングを簡単に表している。電力供給ユニット20にDC電源70から電力が供給されると、電力供給ECU26は、直流リレー23A、23Bに、一例として直流リレー23A、23Bをオン状態にするオン信号を出力する。それとともに電力供給ECU26は、マスク回路52Aに、マスク回路52Aを動作させる動作信号を出力する。これによれば、電力供給ユニット20に外部からDC電源70から電力が供給される。この場合の監視ライン23E、23Fは通電状態にある。駆動ライン21D、22Dは非通電状態にある。なお、オン信号および動作信号は切り替え信号に相当する。直流リレー23A、23Bおよびマスク回路52Aは切り替え装置に相当する。 Note that in FIG. 2, the energization timing is simply shown. When power is supplied to the power supply unit 20 from the DC power supply 70, the power supply ECU 26 outputs an on signal to the DC relays 23A, 23B to turn on the DC relays 23A, 23B, for example. At the same time, the power supply ECU 26 outputs an operation signal to the mask circuit 52A to operate the mask circuit 52A. According to this, power is supplied to the power supply unit 20 from the DC power supply 70 from the outside. In this case, the monitoring lines 23E and 23F are energized. Drive lines 21D and 22D are in a non-energized state. Note that the on signal and the operation signal correspond to switching signals. The DC relays 23A, 23B and the mask circuit 52A correspond to a switching device.
 電力供給ユニット20からDC電源70が取り外されると、電力供給ECU26は、直流リレー23A、23Bへのオン信号を不出力にする。それとともに電力供給ECU26は、マスク回路52Aへの動作信号を不出力にする。電力供給ユニット20からDC電源70が取り外されると、監視ライン23E、23Fは非通電状態にされる。駆動ライン21D、22Dを通電状態にさせる。 When the DC power supply 70 is removed from the power supply unit 20, the power supply ECU 26 does not output ON signals to the DC relays 23A and 23B. At the same time, the power supply ECU 26 does not output the operation signal to the mask circuit 52A. When the DC power supply 70 is removed from the power supply unit 20, the monitoring lines 23E and 23F are de-energized. The drive lines 21D and 22D are energized.
 監視ライン23E、23Fと駆動ライン21D、22Dの通電タイミングの制御方法について、電力供給ECU26の備える機能に基づいて、以下に説明する。電力供給ECU26は、CPUなどの処理装置と、ROMやRAMなどのメモリ装置などを備えている。電力供給ECU26は、CPUがROMに記憶されたプログラムを実行することで各種制御を行う。機能として、CPUは、判断部26Aと、信号出力部26Bを備える。機能は機能ブロックとも称される。プログラムは、判断部26Aと、信号出力部26Bの機能を備えるとも言える。図面においては、判断部26Aを「JDP」と略記している。信号出力部26Bを「STP」と略記している。 A method of controlling the energization timing of the monitoring lines 23E, 23F and the drive lines 21D, 22D will be described below based on the functions provided by the power supply ECU 26. The power supply ECU 26 includes a processing device such as a CPU, a memory device such as a ROM and a RAM, and the like. The power supply ECU 26 performs various controls by the CPU executing programs stored in the ROM. Functionally, the CPU includes a determination section 26A and a signal output section 26B. Functions are also referred to as functional blocks. It can be said that the program includes the functions of the determination section 26A and the signal output section 26B. In the drawings, the determination unit 26A is abbreviated as "JDP". The signal output section 26B is abbreviated as "STP".
 なお、電力供給ECU26が提供する手段および/または機能は、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、電力供給ECU26がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 Note that the means and/or functions provided by the power supply ECU 26 can be provided by software recorded in a tangible memory device and a computer that executes it, only software, only hardware, or a combination thereof. For example, if the power supply ECU 26 is provided by an electronic circuit that is hardware, it may be provided by a digital circuit including multiple logic circuits, or by an analog circuit.
 電力供給ECU26は、監視ライン23E、23Fと駆動ライン21D、22Dの通電タイミングの切り替えを制御する切り替え制御フローを有している。電力供給ECU26は切り替え制御フローを所定時間毎に繰り返し行っている。電力供給ECU26は切り替え制御フローを、所定時間毎に常に繰り返し行っている。 The power supply ECU 26 has a switching control flow that controls switching of the energization timing of the monitoring lines 23E, 23F and the drive lines 21D, 22D. The power supply ECU 26 repeatedly performs the switching control flow at predetermined time intervals. The power supply ECU 26 always repeats the switching control flow at predetermined time intervals.
 図3に示す切り替え制御フローにおいては、ステップS110で、判断部26Aは監視ライン23E、23Fに通電されているかどうかを判断する。ステップS110で、判断部26Aは、DC電源70に含まれるCPUと通信を行う。通信の結果、DC電源70に接続されているかどうかを判断する。それに基づいて、判断部26Aが監視ライン23E、23Fに通電されているかどうかを判断する。ステップS110で判断部26Aが、監視ライン23E、23Fに通電されていると判断すると、ステップS121へ進む。 In the switching control flow shown in FIG. 3, in step S110, the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized. In step S110, the determination unit 26A communicates with the CPU included in the DC power supply 70. As a result of the communication, it is determined whether or not it is connected to the DC power supply 70. Based on this, the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized. If the determining unit 26A determines in step S110 that the monitoring lines 23E and 23F are energized, the process advances to step S121.
 ステップS121で、信号出力部26Bが直流リレー23A、23Bにオン信号を出力する。次にステップS122で、マスク回路52Aに動作信号を出力する。そしてエンドへ進む。この場合の監視ライン23E、23Fは通電状態にある。駆動ライン21D、22Dは非通電状態にある。なお、オン信号と動作信号は同時に出力されてもよい。オン信号と動作信号は順に出力されていてもよい。 In step S121, the signal output section 26B outputs an on signal to the DC relays 23A and 23B. Next, in step S122, an operation signal is output to the mask circuit 52A. Then proceed to the end. In this case, the monitoring lines 23E and 23F are energized. Drive lines 21D and 22D are in a non-energized state. Note that the on signal and the operation signal may be output at the same time. The on signal and the operation signal may be output in sequence.
 ステップS110において、判断部26Aが監視ライン23E、23Fに通電されていないと判断すると、ステップS131へ進む。ステップS131において、信号出力部26Bが直流リレー23A、23Bへのオン信号を不出力にする。次にステップS132でマスク回路52Aへ動作信号を不出力にする。そしてエンドへ進む。この場合の監視ライン23E、23Fは非通電状態にある。駆動ライン21D、22Dは通電状態にある。なお、オン信号の不出力と動作信号の不出力は同時に行われてもよい。オン信号の不出力と動作信号の不出力は順に行われていてもよい。 In step S110, if the determining unit 26A determines that the monitoring lines 23E and 23F are not energized, the process advances to step S131. In step S131, the signal output unit 26B does not output the ON signal to the DC relays 23A and 23B. Next, in step S132, the operation signal is not output to the mask circuit 52A. Then proceed to the end. In this case, the monitoring lines 23E and 23F are in a non-energized state. Drive lines 21D and 22D are in an energized state. Note that the non-output of the on signal and the non-output of the operation signal may be performed simultaneously. The non-output of the on signal and the non-output of the operation signal may be performed in sequence.
 次に図4に示すタイミングチャートに基づいて、監視ライン23E、23Fと、駆動ライン21D、22Dの通電の切り替えタイミングについて説明する。タイミングチャートにおいて、時間t1から時間t2においては、駐停車状態または走行状態である。時間t2から時間t3においては、駐停車状態にあってさらに充電状態である。時間t2でDCコネクタ28EにDC電源70が接続される。時間t1から時間t2の間、電力供給ECU26はステップS131とステップS132を実行する。時間t2で、監視ライン23E、23Fと、駆動ライン21D、22Dの通電が切り替えられると、時間t2から時間t3の間、電力供給ECU26はステップS121とステップS122を実行する。これによれば、監視ライン23E、23Fと、駆動ライン21D、22Dが、同時に通電状態にならない。監視ライン23E、23Fの通電タイミングと、駆動ライン21D、22Dの通電タイミングが異なる。 Next, based on the timing chart shown in FIG. 4, the switching timing of energization of the monitoring lines 23E, 23F and the drive lines 21D, 22D will be explained. In the timing chart, from time t1 to time t2, the vehicle is in a parked or stopped state or a running state. From time t2 to time t3, the vehicle is in a parked and stopped state and is also in a charging state. At time t2, the DC power supply 70 is connected to the DC connector 28E. Between time t1 and time t2, the power supply ECU 26 executes step S131 and step S132. At time t2, when the monitoring lines 23E, 23F and the drive lines 21D, 22D are energized, the power supply ECU 26 executes step S121 and step S122 from time t2 to time t3. According to this, the monitoring lines 23E, 23F and the drive lines 21D, 22D are not energized at the same time. The timing of energization of the monitoring lines 23E and 23F is different from the timing of energization of the drive lines 21D and 22D.
 <電力供給ユニットの機械的構成>
 電力供給ユニット20に含まれる構成要素を説明するに当たって、後述の基板27における厚さ方向をTD(thickness direction)方向と称することがある。基板27の厚さ方向に直交する二方向の奥行方向をDP(depth direction)方向、幅方向をWD(width direction)方向と称することがある。DP方向およびWD方向は、基板27の表面27Aと裏面27Bの広がる方向に相当する。DP方向が第1直交方向に相当する。WD方向が第2直交方向に相当する。
<Mechanical configuration of power supply unit>
In describing the components included in the power supply unit 20, the thickness direction of the substrate 27, which will be described later, may be referred to as a TD (thickness direction) direction. The two depth directions orthogonal to the thickness direction of the substrate 27 are sometimes referred to as a DP (depth direction) direction, and the width direction is sometimes referred to as a WD (width direction) direction. The DP direction and the WD direction correspond to the direction in which the front surface 27A and the back surface 27B of the substrate 27 extend. The DP direction corresponds to the first orthogonal direction. The WD direction corresponds to the second orthogonal direction.
 電力供給ユニット20は、これまでに説明した構成要素の他に、基板27と、電磁シールド29と、筐体60と、端子台90と、を備える。基板27は電力供給ECU26と、電力供給ECU26に電気的に接続される電気配線を備える。基板27は、TD方向に関して厚さが薄い扁平形状である。基板27は、TD方向に厚さ分、離れて配置された、表面27Aと裏面27Bを備える。表面27Aに電力供給ECU26と電気配線が設けられている。電磁シールド29はノイズが電気部品などに侵入することを抑制するためのシールド部材である。本実施形態においては、基板27の裏面27B側に設けられている。なお、筐体60における各種構成要素の収納形態については後で説明する。 The power supply unit 20 includes a substrate 27, an electromagnetic shield 29, a housing 60, and a terminal block 90 in addition to the components described above. The board 27 includes a power supply ECU 26 and electrical wiring electrically connected to the power supply ECU 26. The substrate 27 has a flat shape with a thin thickness in the TD direction. The substrate 27 includes a front surface 27A and a back surface 27B, which are spaced apart by a thickness in the TD direction. A power supply ECU 26 and electrical wiring are provided on the surface 27A. The electromagnetic shield 29 is a shield member for suppressing noise from entering electrical components. In this embodiment, it is provided on the back surface 27B side of the substrate 27. Note that the manner in which various components are housed in the housing 60 will be explained later.
 筐体60は、電池パック10、および、電力供給ユニット20に含まれる構成要素を収納するためのケースである。筐体60は、アルミニウムなどの金属を主成分として構成されている。図5に示すように、筐体60は、TD方向に開口する環状の側壁62を備える。側壁62によって囲まれる空間に、電池パック10、および、電力供給ユニット20に含まれる構成要素が収納されている。 The housing 60 is a case for housing the battery pack 10 and the components included in the power supply unit 20. The housing 60 is mainly composed of metal such as aluminum. As shown in FIG. 5, the housing 60 includes an annular side wall 62 that opens in the TD direction. The battery pack 10 and the components included in the power supply unit 20 are housed in a space surrounded by the side wall 62.
 側壁62は、WD方向に離れて配置される第1壁部62Aおよび第3壁部62Cと、DP方向に離れて配置される第2壁部62Bおよび第4壁部62Dを備える。第1壁部62A~第4壁部62Dが、第1壁部62A、第2壁部62B、第3壁部62C、第4壁部62Dが時計回りに連続している。 The side wall 62 includes a first wall 62A and a third wall 62C that are spaced apart in the WD direction, and a second wall 62B and a fourth wall 62D that are spaced apart in the DP direction. The first wall portion 62A to the fourth wall portion 62D are continuous in the clockwise direction, with the first wall portion 62A, the second wall portion 62B, the third wall portion 62C, and the fourth wall portion 62D continuing.
 また側壁62には空間をTD方向に関して区分けする仕切り壁63が設けられている。仕切り壁63は側壁62と同一部材によって連続している。仕切り壁63によって、筐体60の内部の空間が、第1空間と第2空間に区画される。第1空間に電力供給ユニット20が収納されている。第2空間に電池パック10が収納されている。なお、WD方向に直交する平面図においては、第1空間側から電力供給ユニット20を見たときの構成を示している。平面図においては、DCDCコンバータ24、ACDC変換機25、および、これらにつながる導電部材やコネクタの記載を省略している。 Further, the side wall 62 is provided with a partition wall 63 that divides the space in the TD direction. The partition wall 63 is continuous with the side wall 62 by the same member. The partition wall 63 divides the space inside the housing 60 into a first space and a second space. A power supply unit 20 is housed in the first space. The battery pack 10 is housed in the second space. Note that the plan view perpendicular to the WD direction shows the configuration when the power supply unit 20 is viewed from the first space side. In the plan view, illustrations of the DCDC converter 24, the ACDC converter 25, and the conductive members and connectors connected thereto are omitted.
 第1壁部62AにDCコネクタ28Eが設けられている。第3壁部62Cに第1電源コネクタ28AとPCUコネクタ28Fが設けられている。DCコネクタ28Eは第1壁部62Aの第4壁部62D側に設けられている。第1電源コネクタ28Aは第3壁部62Cの第4壁部62D側に設けられている。WD方向に関して、DCコネクタ28Eと第1電源コネクタ28Aが向かい合うように側壁62に設けられている。PCUコネクタ28Fが第3壁部62Cの第2壁部62B側に設けられている。第3壁部62Cにおいて、PCUコネクタ28Fが第1電源コネクタ28Aよりも第2壁部62B側に設けられている。 A DC connector 28E is provided on the first wall portion 62A. A first power connector 28A and a PCU connector 28F are provided on the third wall portion 62C. The DC connector 28E is provided on the fourth wall 62D side of the first wall 62A. The first power connector 28A is provided on the fourth wall 62D side of the third wall 62C. The DC connector 28E and the first power connector 28A are provided on the side wall 62 so as to face each other in the WD direction. A PCU connector 28F is provided on the second wall portion 62B side of the third wall portion 62C. In the third wall portion 62C, the PCU connector 28F is provided closer to the second wall portion 62B than the first power connector 28A.
 DCコネクタ28Eから第1電源コネクタ28Aに向かって、第3正極ライン21Cと第3負極ライン22Cが延びている。第3正極ライン21Cと第3負極ライン22CのDCコネクタ28E側の端部がDCコネクタ28Eに接続されている。第1電源コネクタ28AからDCコネクタ28Eに向かって、第1電力ライン20Aと第2電力ライン20Bが延びている。第1電力ライン20Aと第2電力ライン20Bの第1電源コネクタ28A側の端部が第1電源コネクタ28Aに接続されている。 A third positive electrode line 21C and a third negative electrode line 22C extend from the DC connector 28E toward the first power connector 28A. The ends of the third positive electrode line 21C and the third negative electrode line 22C on the DC connector 28E side are connected to the DC connector 28E. A first power line 20A and a second power line 20B extend from the first power connector 28A toward the DC connector 28E. Ends of the first power line 20A and the second power line 20B on the first power connector 28A side are connected to the first power connector 28A.
 第3正極ライン21Cにおける第1電源コネクタ28A側の端部と、第1電力ライン20AにおけるDCコネクタ28E側の端部との間に、第1直流リレー23Aが設けられている。第3負極ライン22Cにおける第1電源コネクタ28A側の端部と、第2電力ライン20BにおけるDCコネクタ28E側の端部との間に、第2直流リレー23Bが設けられている。 A first DC relay 23A is provided between the end of the third positive electrode line 21C on the first power connector 28A side and the end of the first power line 20A on the DC connector 28E side. A second DC relay 23B is provided between the end of the third negative electrode line 22C on the first power connector 28A side and the end of the second power line 20B on the DC connector 28E side.
 また第1電力ライン20Aは第1電源コネクタ28AからDCコネクタ28Eに向かって延びる途中で、第2壁部62Bに向かって延びている。第2電力ライン20Bは第1電源コネクタ28AからDCコネクタ28Eに向かって延びる途中で、第2壁部62Bに向かって延びている。以下、説明を簡便にするために、第1電力ライン20Aにおける第2壁部62Bに向かって延びる部位の先端を第1先端部と示す。第2電力ライン20Bにおける第2壁部62Bに向かって延びる部位の先端を第2先端部と示す。 Further, the first power line 20A extends toward the second wall portion 62B on the way from the first power connector 28A toward the DC connector 28E. The second power line 20B extends from the first power connector 28A toward the DC connector 28E, and extends toward the second wall portion 62B. Hereinafter, in order to simplify the explanation, the tip of the portion of the first power line 20A that extends toward the second wall portion 62B will be referred to as a first tip. The tip of the portion of the second power line 20B that extends toward the second wall portion 62B is referred to as a second tip.
 上記したように第3壁部62Cの第2壁部62B側にPCUコネクタ28Fが設けられている。PCUコネクタ28Fから第1先端部に向かって、第4正極ライン21Dが延びている。第4正極ライン21DはWD方向に沿って延びている。第4正極ライン21Dは第3壁部62Cから第1壁部62Aに向かって延びているとも言える。第4正極ライン21Dにおける第1先端部側の端部が第1先端部に接続されている。第4正極ライン21DにおけるPCUコネクタ28F側の端部がPCUコネクタ28Fに接続されている。 As described above, the PCU connector 28F is provided on the second wall portion 62B side of the third wall portion 62C. A fourth positive electrode line 21D extends from the PCU connector 28F toward the first tip. The fourth positive electrode line 21D extends along the WD direction. It can also be said that the fourth positive electrode line 21D extends from the third wall 62C toward the first wall 62A. The end of the fourth positive electrode line 21D on the first tip side is connected to the first tip. An end of the fourth positive electrode line 21D on the PCU connector 28F side is connected to the PCU connector 28F.
 PCUコネクタ28Fから第2先端部に向かって、第4負極ライン22Dが延びている。第4負極ライン22DはWD方向に沿って延びている。第4負極ライン22Dは第3壁部62Cから第1壁部62Aに向かって延びているとも言える。第4負極ライン22Dにおける第2先端部側の端部が第2先端部に接続されている。第4負極ライン22DにおけるPCUコネクタ28F側の端部がPCUコネクタ28Fに接続されている。 A fourth negative electrode line 22D extends from the PCU connector 28F toward the second tip. The fourth negative electrode line 22D extends along the WD direction. It can also be said that the fourth negative electrode line 22D extends from the third wall 62C toward the first wall 62A. The end of the fourth negative electrode line 22D on the second tip side is connected to the second tip. An end of the fourth negative electrode line 22D on the PCU connector 28F side is connected to the PCU connector 28F.
 PCUコネクタ28F、第4正極ライン21D、および、第4負極ライン22Dは端子台90に設けられている。端子台90は筐体60に支持されている。端子台90は、第4正極ライン21Dおよび第4負極ライン22Dを支持するとともに、PCUコネクタ28Fを支持する。端子台90は、樹脂などを主成分として構成されている。 The PCU connector 28F, the fourth positive electrode line 21D, and the fourth negative electrode line 22D are provided on the terminal block 90. The terminal block 90 is supported by the housing 60. The terminal block 90 supports the fourth positive electrode line 21D and the fourth negative electrode line 22D, and also supports the PCU connector 28F. The terminal block 90 is mainly composed of resin or the like.
 図6に示すように、端子台90は、支持部91と、第1支持壁部92と、第2支持壁部93と、を備える。支持部91の上面91Aに、第1支持壁部92と第2支持壁部93が設けられている。第1支持壁部92と第2支持壁部93がDP方向に関して、所定距離離れた位置で向かい合うように設けられている。端子台90における第1支持壁部92と第2支持壁部93の間に、第4正極ライン21Dと第4負極ライン22Dが設けられている。 As shown in FIG. 6, the terminal block 90 includes a support portion 91, a first support wall portion 92, and a second support wall portion 93. A first support wall portion 92 and a second support wall portion 93 are provided on the upper surface 91A of the support portion 91. The first support wall part 92 and the second support wall part 93 are provided so as to face each other at a predetermined distance apart in the DP direction. A fourth positive electrode line 21D and a fourth negative electrode line 22D are provided between the first support wall portion 92 and the second support wall portion 93 in the terminal block 90.
 また第1空間における第3正極ライン21Cおよび第3負極ライン22Cよりも第2壁部62B側の空間に、基板27が設けられている。上記したように、基板27の裏面27B側に、電磁シールド29が設けられている。電磁シールド29は、外部から駆動ライン21D、22Dおよび監視ライン23E,23Fにノイズが侵入することを抑制するためのシールド部材である。 Further, a substrate 27 is provided in a space closer to the second wall portion 62B than the third positive electrode line 21C and the third negative electrode line 22C in the first space. As described above, the electromagnetic shield 29 is provided on the back surface 27B side of the substrate 27. The electromagnetic shield 29 is a shield member for suppressing noise from entering the drive lines 21D, 22D and the monitoring lines 23E, 23F from the outside.
 電磁シールド29は、基板27に沿う形状をしている。平面視において、電磁シールド29は基板27よりも一回り大きい。WD方向に関して、電磁シールド29と基板27とが重なる。電磁シールド29はWD方向において、端子台90の一部、駆動ライン21D、22Dの一部、および、監視ライン23E,23Fの一部と重なる。 The electromagnetic shield 29 has a shape that follows the substrate 27. In plan view, the electromagnetic shield 29 is one size larger than the substrate 27. The electromagnetic shield 29 and the substrate 27 overlap in the WD direction. The electromagnetic shield 29 overlaps with a portion of the terminal block 90, a portion of the drive lines 21D and 22D, and a portion of the monitoring lines 23E and 23F in the WD direction.
 また基板27の表面27Aに電力供給ECU26に接続されている通信プラグ27Cが設けられている。通信プラグ27Cから第1直流リレー23Aに向かって第1通信ライン23Cが延びている。通信プラグ27Cから第2直流リレー23Bに向かって第2通信ライン23Dが延びている。通信プラグ27Cと直流リレー23A、23Bが、通信ライン23C、23Dを介して接続されている。 Further, a communication plug 27C connected to the power supply ECU 26 is provided on the surface 27A of the board 27. A first communication line 23C extends from the communication plug 27C toward the first DC relay 23A. A second communication line 23D extends from the communication plug 27C toward the second DC relay 23B. Communication plug 27C and DC relays 23A and 23B are connected via communication lines 23C and 23D.
 基板27の表面27Aに電力供給ECU26に接続されている監視プラグ27Dが設けられている。監視プラグ27Dから第3正極ライン21Cに向かって第1監視ライン23Eが延びている。監視プラグ27Dから第3負極ライン22Cに向かって第2監視ライン23Fが延びている。監視プラグ27Dと第3正極ライン21Cおよび第3負極ライン22Cが、監視ライン23E、23Fを介して接続されている。 A monitoring plug 27D connected to the power supply ECU 26 is provided on the surface 27A of the board 27. A first monitoring line 23E extends from the monitoring plug 27D toward the third positive electrode line 21C. A second monitoring line 23F extends from the monitoring plug 27D toward the third negative electrode line 22C. The monitoring plug 27D, the third positive electrode line 21C, and the third negative electrode line 22C are connected via monitoring lines 23E and 23F.
 監視ライン23E、23Fは、監視プラグ27Dから第3壁部62Cに向かって延びた後、第4壁部62Dに向かって延びている。監視ライン23E、23Fは、第4壁部62Dに向かって延びる途中で、電磁シールド29を横切っている。WD方向に関して、監視ライン23E、23Fは、電磁シールド29よりも仕切り壁63側に設けられている。監視ライン23E、23Fは、電磁シールド29にWD方向に関して重なる。 The monitoring lines 23E and 23F extend from the monitoring plug 27D toward the third wall portion 62C, and then toward the fourth wall portion 62D. The monitoring lines 23E and 23F cross the electromagnetic shield 29 while extending toward the fourth wall 62D. Regarding the WD direction, the monitoring lines 23E and 23F are provided closer to the partition wall 63 than the electromagnetic shield 29. The monitoring lines 23E and 23F overlap the electromagnetic shield 29 in the WD direction.
 さらに言えば、監視ライン23E、23Fにおける、電磁シールド29とWD方向に関して重複する部位は、仕切り壁63側で、駆動ライン21D、22D、および、端子台90と重複している。仕切り壁63から基板27に向かって、支持部91、駆動ライン21D、22D、監視ライン23E、23F、電磁シールド29の順に、重ねて設けられている。なお、駆動ライン21D、22Dの延びる方向と、監視ライン23E、23Fの延びる方向は90度異なる。平面視において、駆動ライン21D、22Dと監視ライン23E、23Fとが直交している。 Furthermore, the portions of the monitoring lines 23E and 23F that overlap with the electromagnetic shield 29 in the WD direction overlap with the drive lines 21D and 22D and the terminal block 90 on the partition wall 63 side. A support portion 91, drive lines 21D and 22D, monitoring lines 23E and 23F, and electromagnetic shield 29 are provided in the order of overlapping from the partition wall 63 toward the substrate 27. Note that the direction in which the drive lines 21D and 22D extend differs from the direction in which the monitoring lines 23E and 23F extend by 90 degrees. In plan view, the drive lines 21D, 22D and the monitoring lines 23E, 23F are orthogonal to each other.
 TD方向に関して支持部91と電磁シールド29の間に、駆動ライン21D、22Dと、監視ライン23E、23Fが設けられている。第1支持壁部92と第2支持壁部93の間に、駆動ライン21D、22Dと、監視ライン23E、23Fが設けられている。第1支持壁部92と第2支持壁部93には、一例として、監視ライン23E、23Fを通すために切り欠きが設けられている。切り欠きに監視ライン23E、23Fが通されている。支持部91と、第1支持壁部92と、第2支持壁部93と、電磁シールド29によって形成される空間に、駆動ライン21D、22Dと、監視ライン23E、23Fが設けられている。なお、支持部91が第1隔壁に相当する。電磁シールド29が第2隔壁に相当する。 Drive lines 21D, 22D and monitoring lines 23E, 23F are provided between the support portion 91 and the electromagnetic shield 29 in the TD direction. Drive lines 21D and 22D and monitoring lines 23E and 23F are provided between the first support wall portion 92 and the second support wall portion 93. For example, cutouts are provided in the first support wall portion 92 and the second support wall portion 93 to allow the monitoring lines 23E and 23F to pass therethrough. Monitoring lines 23E and 23F are passed through the notches. Drive lines 21D and 22D and monitoring lines 23E and 23F are provided in a space formed by the support part 91, the first support wall part 92, the second support wall part 93, and the electromagnetic shield 29. Note that the support portion 91 corresponds to the first partition. The electromagnetic shield 29 corresponds to the second partition.
 なお、監視ライン23E、23Fは、第2壁部62Bから第4壁部62Dに向かって延びた後、第3壁部62Cから第1壁部62Aに向かって延びている。その後、監視ライン23E、23Fは、第3正極ライン21Cおよび第3負極ライン22Cに向かって延びている。第1監視ライン23Eが第3正極ライン21Cに導電性の連結部材などを介して接続されている。第2監視ライン23Fが第3負極ライン22Cに導電性の連結部材などを介して接続されている。 Note that the monitoring lines 23E and 23F extend from the second wall 62B toward the fourth wall 62D, and then from the third wall 62C toward the first wall 62A. Thereafter, the monitoring lines 23E and 23F extend toward the third positive electrode line 21C and the third negative electrode line 22C. The first monitoring line 23E is connected to the third positive electrode line 21C via a conductive connecting member or the like. The second monitoring line 23F is connected to the third negative electrode line 22C via a conductive connecting member or the like.
 <作用効果>
 これまでに説明したように、支持部91と電磁シールド29の間に、監視ライン23E、23Fと、駆動ライン21D、22Dが設けられている。監視ライン23E、23Fは、電気部品として電力供給ECU26に接続されるラインである。駆動ライン21D、22Dは、電気部品としてPCU50に接続されるラインである。監視ライン23E、23Fと、駆動ライン21D、22Dの通電タイミングが異なる。
<Effect>
As described above, the monitoring lines 23E, 23F and the drive lines 21D, 22D are provided between the support portion 91 and the electromagnetic shield 29. The monitoring lines 23E and 23F are lines connected to the power supply ECU 26 as electrical components. The drive lines 21D and 22D are lines connected to the PCU 50 as electrical components. The monitoring lines 23E, 23F and the drive lines 21D, 22D have different energization timings.
 監視ライン23E、23Fの通電タイミングと、駆動ライン21D、22Dの通電タイミングが異なるために、電力供給ECU26に、駆動ライン21D、22Dの通電に伴って発生するノイズが侵入することを抑制できる。これに伴って、監視ライン23E、23Fと駆動ライン21D、22Dの間に、ライン間を伝搬するノイズをシールドする部材を設ける必要がない。電磁シールド29と支持部91との間において、監視ライン23E、23Fと、駆動ライン21D、22Dの配置の自由度が向上する。 Since the energization timing of the monitoring lines 23E, 23F and the energization timing of the drive lines 21D, 22D are different, it is possible to suppress noise generated due to energization of the drive lines 21D, 22D from entering the power supply ECU 26. Accordingly, there is no need to provide a member between the monitoring lines 23E, 23F and the drive lines 21D, 22D to shield noise propagating between the lines. Between the electromagnetic shield 29 and the support part 91, the degree of freedom in arranging the monitoring lines 23E, 23F and the drive lines 21D, 22D is improved.
 これまでに説明したように、監視ライン23E、23Fが電力供給ECU26に電気的に接続されている。駆動ライン21D、22DがMG51に接続されるPCU50に電気的に接続されている。監視ライン23E、23Fの通電タイミングと、駆動ライン21D、22Dの通電タイミングが異なる。駆動ライン21D、22Dが通電状態である時に、駆動ライン21D、22Dから監視ライン23E、23Fにつながる電力供給ECU26にノイズが侵入することが抑制される。電力供給ECU26に不具合が生じることが抑制される。 As explained above, the monitoring lines 23E and 23F are electrically connected to the power supply ECU 26. Drive lines 21D and 22D are electrically connected to a PCU 50 that is connected to the MG 51. The timing of energization of the monitoring lines 23E and 23F is different from the timing of energization of the drive lines 21D and 22D. When the drive lines 21D, 22D are energized, noise is suppressed from entering the power supply ECU 26 connected from the drive lines 21D, 22D to the monitoring lines 23E, 23F. Problems occurring in the power supply ECU 26 are suppressed.
 これまでに説明したように、電力供給ECU26は、直流リレー23A、23Bにオン信号を出力するとともに、マスク回路52Aに動作信号を出力する。これによって監視ライン23E、23Fを通電状態にする。駆動ライン21D、22Dを非通電状態にする。また電力供給ECU26は、直流リレー23A、23Bへのオン信号を不出力にするとともに、マスク回路52Aへの動作信号を不出力にする。これによって監視ライン23E、23Fを非通電状態にする。駆動ライン21D、22Dを通電状態にする。監視ライン23E、23Fと駆動ライン21D、22Dが同時に通電状態であることが抑制される。 As described above, the power supply ECU 26 outputs an on signal to the DC relays 23A and 23B, and also outputs an operation signal to the mask circuit 52A. This makes the monitoring lines 23E and 23F energized. The drive lines 21D and 22D are de-energized. Further, the power supply ECU 26 does not output ON signals to the DC relays 23A and 23B, and also does not output an operation signal to the mask circuit 52A. This causes the monitoring lines 23E and 23F to be de-energized. The drive lines 21D and 22D are energized. Monitoring lines 23E, 23F and drive lines 21D, 22D are prevented from being energized at the same time.
 これまでに説明したように、電力供給ECU26は、判断部26Aと信号出力部26Bを備えている。判断部26Aが監視ライン23E、23Fに通電されているかどうかを判断する。判断部26Aは、DC電源70に含まれるCPUと通信を行う。通信の結果、DC電源70に接続されているかどうかを判断する。それに基づいて、判断部26Aが監視ライン23E、23Fに通電されているかどうかを判断する。 As described above, the power supply ECU 26 includes a determination section 26A and a signal output section 26B. The determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized. The determination unit 26A communicates with the CPU included in the DC power supply 70. As a result of the communication, it is determined whether or not it is connected to the DC power supply 70. Based on this, the determining unit 26A determines whether or not the monitoring lines 23E and 23F are energized.
 判断部26Aが、監視ライン23E、23Fに通電されていると判断すると、信号出力部26Bが直流リレー23A、23Bにオン信号を出力するとともに、マスク回路52Aに動作信号を出力する。これによれば、監視ライン23E、23Fは通電状態となり、駆動ライン21D、22Dは非通電状態となる。判断部26Aが監視ライン23E、23Fに通電されていないと判断すると、信号出力部26Bが直流リレー23A、23Bへのオン信号を不出力にするとともに、マスク回路52Aへの動作信号を不出力にする。これによれば、監視ライン23E、23Fは非通電状態となり、駆動ライン21D、22Dは通電状態となる。 When the determining unit 26A determines that the monitoring lines 23E and 23F are energized, the signal output unit 26B outputs an ON signal to the DC relays 23A and 23B and outputs an operation signal to the mask circuit 52A. According to this, the monitoring lines 23E and 23F are in a energized state, and the drive lines 21D and 22D are in a non-energized state. When the determining section 26A determines that the monitoring lines 23E and 23F are not energized, the signal output section 26B disables the on-signal to the DC relays 23A and 23B, and also disables the output of the operation signal to the mask circuit 52A. do. According to this, the monitoring lines 23E and 23F are in a non-energized state, and the drive lines 21D and 22D are in a energized state.
 (第2実施形態)
 第2実施形態においては、図7に示すように、電力供給ユニット20はPCU50への通電を制御する第1切り替えスイッチ21Eと、第2切り替えスイッチ22Eを備える。第1切り替えスイッチ21Eが第1駆動ライン21Dに設けられている。第2切り替えスイッチ22Eが第2駆動ライン22Dに設けられている。第2実施形態においては、マスク回路52Aが車載ECU52に非搭載である。なお、マスク回路52Aが車載ECU52に搭載されていてもよい。なお、直流リレー23A、23Bおよび切り替えスイッチ21E、22Eは切り替え装置に相当する。
(Second embodiment)
In the second embodiment, as shown in FIG. 7, the power supply unit 20 includes a first changeover switch 21E and a second changeover switch 22E that control power supply to the PCU 50. A first changeover switch 21E is provided on the first drive line 21D. A second changeover switch 22E is provided on the second drive line 22D. In the second embodiment, the mask circuit 52A is not mounted on the vehicle ECU 52. Note that the mask circuit 52A may be mounted on the on-vehicle ECU 52. Note that the DC relays 23A, 23B and the changeover switches 21E, 22E correspond to a changeover device.
 電力供給ユニット20に外部からDC電源70から電力が供給されると、図8に示すように、電力供給ECU26は、直流リレー23A、23Bに、直流リレー23A、23Bをオン状態にするオン信号を出力する。それとともに電力供給ECU26は、切り替えスイッチ21E、22Eへのオン信号を不出力にして、切り替えスイッチ21E、22Eをオフ状態にする。これによれば、監視ライン23E、23Fが通電状態になる。駆動ライン21D、22Dが非通電状態になる。 When power is supplied from the outside to the power supply unit 20 from the DC power supply 70, the power supply ECU 26 sends an on signal to the DC relays 23A, 23B to turn on the DC relays 23A, 23B, as shown in FIG. Output. At the same time, the power supply ECU 26 does not output the ON signal to the changeover switches 21E, 22E, and turns the changeover switches 21E, 22E into the OFF state. According to this, the monitoring lines 23E and 23F become energized. Drive lines 21D and 22D are de-energized.
 電力供給ユニット20からDC電源70が取り外されると、電力供給ECU26は、直流リレー23A、23Bへのオン信号を不出力にして、直流リレー23A、23Bをオフ状態にする。それとともに電力供給ECU26は、切り替えスイッチ21E、22Eに、切り替えスイッチ21E、22Eをオン状態にするオン信号を出力する。これによれば、監視ライン23E、23Fが非通電状態になる。駆動ライン21D、22Dが通電状態になる。 When the DC power supply 70 is removed from the power supply unit 20, the power supply ECU 26 does not output the ON signal to the DC relays 23A, 23B, and turns the DC relays 23A, 23B into the OFF state. At the same time, the power supply ECU 26 outputs an on signal to the changeover switches 21E, 22E to turn on the changeover switches 21E, 22E. According to this, the monitoring lines 23E and 23F become de-energized. The drive lines 21D and 22D become energized.
 (第3実施形態)
 第3実施形態においては、図9に示すように、電力供給ユニット20に関連信号発生装置20Eが設けられている。関連信号発生装置20Eは、監視ライン23E、23Fと駆動ライン21D、22Dのうちの一方の通電状態に関連付けられている。関連信号発生装置20Eは、これらのラインのうちの一方が通電状態にある時に、関連信号を電力供給ECU26に出力する。電力供給ECU26は受け取った関連信号を基に、これらのラインのうちの他方を非通電状態にする。
(Third embodiment)
In the third embodiment, as shown in FIG. 9, the power supply unit 20 is provided with a related signal generating device 20E. The related signal generator 20E is associated with the energization state of one of the monitoring lines 23E, 23F and the drive lines 21D, 22D. The related signal generator 20E outputs the related signal to the power supply ECU 26 when one of these lines is energized. Power supply ECU 26 de-energizes the other of these lines based on the received relevant signals.
 関連信号発生装置20Eとしては、関連信号発生部、時間作動タイマー、温度センサなどが挙げられる。なお、関連信号発生装置20Eは電力供給ECU26に含まれていてもよいし、含まれていなくてもよい。なお、図面においては、関連信号発生装置20Eを「RSG」と略記している。 Examples of the related signal generating device 20E include a related signal generating section, a time-operated timer, a temperature sensor, and the like. Note that the related signal generating device 20E may or may not be included in the power supply ECU 26. In addition, in the drawings, the related signal generating device 20E is abbreviated as "RSG".
 一例として第3実施形態における関連信号発生部は、監視ライン23E、23Fが通電しているかどうかを判断し、監視ライン23E、23Fが通電していると判断した場合に、関連信号を発生し、信号出力部26Bに関連信号を出力する機能を備えている。信号出力部26Bは受信した関連信号に基づいて、駆動ライン21D、22Dを非通電状態とする。これによって、監視ライン23E、23Fと、駆動ライン21D、22Dが、同時に通電状態とならなくする。なお、関連信号発生部が監視ライン23E、23Fが通電していないと判断した場合には逆の制御を行う。 As an example, the related signal generation unit in the third embodiment determines whether the monitoring lines 23E, 23F are energized, and generates a related signal when it is determined that the monitoring lines 23E, 23F are energized, It has a function of outputting related signals to the signal output section 26B. The signal output unit 26B de-energizes the drive lines 21D and 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that when the related signal generating section determines that the monitoring lines 23E and 23F are not energized, the opposite control is performed.
 また、関連信号発生部は、駆動ライン21D、22Dが通電しているかどうかを判断し、駆動ライン21D、22Dが通電していると判断した場合に、信号出力部26Bに関連信号を出力する機能を備えていてもよい。その場合、信号出力部26Bは受信した関連信号に基づいて、監視ライン23E、23Fを非通電状態とする。これによって、監視ライン23E、23Fと、駆動ライン21D、22Dが、同時に通電状態とならなくする。なお、関連信号発生部が駆動ライン21D、22Dが通電していないと判断した場合には逆の制御を行う。 The related signal generation section also has a function of determining whether or not the drive lines 21D and 22D are energized, and outputting a related signal to the signal output section 26B when it is determined that the drive lines 21D and 22D are energized. may be provided. In that case, the signal output unit 26B de-energizes the monitoring lines 23E and 23F based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that when the related signal generating section determines that the drive lines 21D and 22D are not energized, the opposite control is performed.
 温度センサにおいては、一例として、監視ライン23E、23Fと駆動ライン21D、22Dのうちの一方が予め設定された閾値以上の温度であるかどうかを判断する。そして、閾値以上であると判断した場合に、信号出力部26Bに関連信号を出力する。そして信号出力部26Bは受信した関連信号に基づいて、監視ライン23E、23Fと駆動ライン21D、22Dのうちの他方を非通電状態とする。これによって、監視ライン23E、23Fと、駆動ライン21D、22Dが、同時に通電状態とならなくする。なお、温度センサは、直流リレー23A、23Bに設けられていてもよい。温度センサは、監視ライン23E、23F、または、駆動ライン21D、22Dに設けられていても良い。 For example, the temperature sensor determines whether the temperature of one of the monitoring lines 23E, 23F and the drive lines 21D, 22D is higher than a preset threshold. Then, when it is determined that it is equal to or greater than the threshold value, a related signal is output to the signal output section 26B. The signal output unit 26B then de-energizes the other of the monitoring lines 23E, 23F and the drive lines 21D, 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that the temperature sensor may be provided in the DC relays 23A and 23B. The temperature sensor may be provided in the monitoring lines 23E, 23F or the drive lines 21D, 22D.
 時間作動タイマーにおいては、一例として、監視ライン23E、23Fと駆動ライン21D、22Dのうちの一方が予め設定された所定時間以上通電しているかどうかを判断する。そして、所定時間以上通電していると判断した場合に、信号出力部26Bに関連信号を出力する。そして信号出力部26Bは受信した関連信号に基づいて、監視ライン23E、23Fと駆動ライン21D、22Dのうちの他方を非通電状態とする。これによって、監視ライン23E、23Fと、駆動ライン21D、22Dが、同時に通電状態とならなくする。なお、時間作動タイマーは、直流リレー23A、23Bに設けられていてもよい。時間作動タイマーは、監視ライン23E、23F、または、駆動ライン21D、22Dに設けられていても良い。 In the time-operated timer, for example, it is determined whether one of the monitoring lines 23E, 23F and the drive lines 21D, 22D is energized for a preset predetermined time or longer. Then, when it is determined that the power has been on for a predetermined time or longer, a related signal is output to the signal output section 26B. The signal output unit 26B then de-energizes the other of the monitoring lines 23E, 23F and the drive lines 21D, 22D based on the received related signal. This prevents the monitoring lines 23E, 23F and the drive lines 21D, 22D from being energized at the same time. Note that the time-operated timer may be provided in the DC relays 23A and 23B. Time-operated timers may be provided in the monitoring lines 23E, 23F or in the drive lines 21D, 22D.
 (第4実施形態)
 第4実施形態においては、図10に示すように、電磁シールド29が、TD方向に関して、支持壁部92、93の端部よりも支持部91側に設けられている。さらに電磁シールド29がDP方向に関して第1支持壁部92と第2支持壁部93の間に設けられている。電磁シールド29と端子台90の間に、監視ライン23E、23Fと駆動ライン21D、22Dが設けられている。これによっても同様の効果を奏する。さらに、TD方向に関して体格の増大が抑制可能である。電力供給ユニット20を構成する部品のレイアウトの自由度が向上する。なお、端子台90を金属製の筐体60などに置き換えても同様のことが言える。その場合、筐体60は底壁61と側壁62を備える。底部61の表面に側壁62が同一材料によって連続して設けられている。電磁シールド29が、TD方向に関して、側壁62の端部よりも底壁61側に設けられている。さらに電磁シールド29がDP方向に関して2つの側壁62の間に設けられている。電磁シールド29と筐体60の間に、監視ライン23E、23Fと駆動ライン21D、22Dが設けられている。これによっても同様の効果を奏する。図面においては、端子台90が適用される構成を代表として図示している。
(Fourth embodiment)
In the fourth embodiment, as shown in FIG. 10, the electromagnetic shield 29 is provided closer to the support portion 91 than the ends of the support walls 92 and 93 in the TD direction. Furthermore, an electromagnetic shield 29 is provided between the first support wall part 92 and the second support wall part 93 in the DP direction. Monitoring lines 23E, 23F and drive lines 21D, 22D are provided between the electromagnetic shield 29 and the terminal block 90. This also produces the same effect. Furthermore, it is possible to suppress an increase in body size in the TD direction. The degree of freedom in layout of the parts constituting the power supply unit 20 is improved. Note that the same holds true even if the terminal block 90 is replaced with a metal housing 60 or the like. In that case, the housing 60 includes a bottom wall 61 and a side wall 62. A side wall 62 is continuously provided on the surface of the bottom portion 61 and made of the same material. The electromagnetic shield 29 is provided closer to the bottom wall 61 than the end of the side wall 62 in the TD direction. Further, an electromagnetic shield 29 is provided between the two side walls 62 in the DP direction. Monitoring lines 23E, 23F and drive lines 21D, 22D are provided between the electromagnetic shield 29 and the housing 60. This also produces the same effect. In the drawings, a configuration to which the terminal block 90 is applied is shown as a representative.
 (第5実施形態)
 第5実施形態においては、図11に示すように、支持部91と支持壁部92、93の間の空間に、別の支持台94が設けられている。支持台94はTD方向に開口を備え、開口を閉塞するように電磁シールド29が設けられている。そして支持台94と電磁シールド29との間の空間に監視ライン23E、23Fと駆動ライン21D、22Dが設けられている。これによっても同様の効果を奏する。第4実施形態からさらに、体格の増大が抑制可能である。電力供給ユニット20を構成する部品のレイアウトの自由度が向上する。なお、第4実施形態と同様、端子台90を筐体60などに置き換えても同様のことが言える。図面においては、端子台90が適用される構成を代表として図示している。
(Fifth embodiment)
In the fifth embodiment, as shown in FIG. 11, another support stand 94 is provided in the space between the support section 91 and the support wall sections 92 and 93. The support base 94 has an opening in the TD direction, and an electromagnetic shield 29 is provided to close the opening. Monitoring lines 23E, 23F and drive lines 21D, 22D are provided in the space between the support base 94 and the electromagnetic shield 29. This also produces the same effect. In addition, from the fourth embodiment, it is possible to suppress an increase in body size. The degree of freedom in layout of the parts constituting the power supply unit 20 is improved. Note that similar to the fourth embodiment, the same holds true even if the terminal block 90 is replaced with the housing 60 or the like. In the drawings, a configuration to which the terminal block 90 is applied is shown as a representative.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範ちゅうや思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, while various combinations and configurations are shown in this disclosure, other combinations and configurations involving only one, more, or fewer elements are also within the scope and spirit of this disclosure. It is something that can be entered.
 (技術的思想の開示)
 この明細書は、以下に列挙する複数の項に記載された複数の技術的思想を開示している。いくつかの項は、後続の項において先行する項を択一的に引用する多項従属形式(a multiple dependent form)により記載されている場合がある。いくつかの項は、他の多項従属形式の項を引用する多項従属形式(a multiple dependent form referring to another multiple dependent form)により記載されている場合がある。これらの多項従属形式で記載された項は、複数の技術的思想を定義している。
(Disclosure of technical ideas)
This specification discloses multiple technical ideas described in multiple sections listed below. Some sections may be written in a multiple dependent form, in which subsequent sections alternatively cite preceding sections. Some terms may be written in a multiple dependent form referring to another multiple dependent form. The terms written in these multiple dependent forms define multiple technical ideas.
 (技術的思想1)
 電気部品(26)と、
 前記電気部品に接続されている第1導電部材(23E、23F)と、
 前記第1導電部材と通電タイミングの異なる第2導電部材(21D、22D)と、
 前記第1導電部材と前記第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁(91)および第2隔壁(29)と、を備え、
 前記第1隔壁と前記第2隔壁との間に、前記第1導電部材および前記第2導電部材が設けられている電力供給ユニット。
(Technical thought 1)
electrical parts (26);
a first conductive member (23E, 23F) connected to the electrical component;
a second conductive member (21D, 22D) whose energization timing is different from that of the first conductive member;
a first partition wall (91) and a second partition wall (29) provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up;
A power supply unit, wherein the first conductive member and the second conductive member are provided between the first partition wall and the second partition wall.
 (技術的思想2)
 前記電気部品は、前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを制御している技術的思想1に記載の電力供給ユニット。
(Technical thought 2)
The power supply unit according to technical idea 1, wherein the electric component controls switching between an energized state and a non-energized state of the first conductive member and the second conductive member.
 (技術的思想3)
 前記電気部品は、切り替え装置(21E、22E、23A、23B、52A)への切り替え信号の出力と不出力によって、前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを制御している技術的思想2に記載の電力供給ユニット。
(Technical thought 3)
The electrical component switches the first electrically conductive member and the second electrically conductive member between a energized state and a non-energized state by outputting and not outputting a switching signal to a switching device (21E, 22E, 23A, 23B, 52A). The controlling power supply unit according to technical idea 2.
 (技術的思想4)
 前記電気部品は、前記第1導電部材および前記第2導電部材のうちの一方の通電状態を検知した場合に前記切り替え信号の出力もしくは不出力を行う、または、前記第1導電部材および前記第2導電部材のうちの一方の通電状態に関連する信号を受け取った場合に前記切り替え信号の出力もしくは不出力を行う技術的思想3に記載の電力供給ユニット。
(Technical thought 4)
The electrical component outputs or does not output the switching signal when detecting an energized state of one of the first conductive member and the second conductive member, or outputs or non-outputs the switching signal. The power supply unit according to technical idea 3, which outputs or does not output the switching signal when receiving a signal related to the energization state of one of the conductive members.
 (技術的思想5)
 前記電気部品は、前記第1導電部材が通電状態であるかどうかを判断する判断部(26A)と、
 前記判断部の判断に基づいて前記切り替え信号の出力と不出力を制御する信号出力部(26B)と、を備える技術的思想3または4に記載の電力供給ユニット。
(Technical Thought 5)
The electric component includes a determination unit (26A) that determines whether the first conductive member is in an energized state;
The power supply unit according to technical concept 3 or 4, further comprising a signal output section (26B) that controls output and non-output of the switching signal based on the judgment of the judgment section.
 (技術的思想6)
 前記第1導電部材の通電状態に関連付けられた関連信号を発生する関連信号発生装置(20E)をさらに備え、
 前記電気部品は、前記関連信号を取得し、取得した前記関連信号に基づいて、前記切り替え信号の出力と不出力を制御する信号出力部(26B)を備える技術的思想3または4に記載の電力供給ユニット。
(Technical Thought 6)
Further comprising a related signal generating device (20E) that generates a related signal associated with the energization state of the first conductive member,
The electric power according to technical concept 3 or 4, wherein the electrical component includes a signal output unit (26B) that acquires the related signal and controls output and non-output of the switching signal based on the acquired related signal. supply unit.
 (技術的思想7)
 充電可能な車両に搭載されており、
 充電時において、前記第1導電部材が通電状態、かつ、前記第2導電部材が非通電状態で、
 走行時において、前記第1導電部材が非通電状態、かつ、前記第2導電部材が通電状態である技術的思想1~6のいずれか1項に記載の電力供給ユニット。
(Technical Thought 7)
It is installed in rechargeable vehicles,
During charging, the first electrically conductive member is in a energized state and the second electrically conductive member is in a non-energized state,
The power supply unit according to any one of technical ideas 1 to 6, wherein the first conductive member is in a non-energized state and the second conductive member is in an energized state during traveling.
 (技術的思想8)
 前記第1隔壁は端子台(90)の一部であり、
 前記第2隔壁は電磁シールドである技術的思想1~7のいずれか1項に記載の電力供給ユニット。
(Technical Thought 8)
The first partition wall is a part of a terminal block (90),
The power supply unit according to any one of technical ideas 1 to 7, wherein the second partition is an electromagnetic shield.
 (技術的思想9)
 電気部品(26)と、
 前記電気部品に接続されている第1導電部材(23E、23F)と、
 前記第1導電部材と通電タイミングの異なる第2導電部材(21D、22D)と、
 前記第1導電部材と前記第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁(91)および第2隔壁(29)と、を有する電力供給ユニット(20)と、
 前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを行う切り替え装置(21E、22E、23A、23B、52A)と、を備え、
 前記第1隔壁と前記第2隔壁との間に、前記第1導電部材および前記第2導電部材が設けられている電力供給システム。
(Technical Thought 9)
electrical parts (26);
a first conductive member (23E, 23F) connected to the electrical component;
a second conductive member (21D, 22D) whose energization timing is different from that of the first conductive member;
a power supply unit (20) having a first partition wall (91) and a second partition wall (29) that are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up;
A switching device (21E, 22E, 23A, 23B, 52A) that switches the first conductive member and the second conductive member between an energized state and a non-energized state,
A power supply system, wherein the first conductive member and the second conductive member are provided between the first partition wall and the second partition wall.
 (技術的思想10)
 前記第1導電部材は、前記電気部品の他に、前記電気部品と通信可能な充電器(70)に接続されており、
 前記電気部品は、前記充電器との通信に基づいて、前記第1導電部材が通電状態であるかどうかを判断している技術的思想9に記載の電力供給システム。
(Technical Thought 10)
In addition to the electrical component, the first conductive member is connected to a charger (70) that can communicate with the electrical component,
The power supply system according to technical idea 9, wherein the electric component determines whether the first conductive member is energized based on communication with the charger.

Claims (10)

  1.  電気部品(26)と、
     前記電気部品に接続されている第1導電部材(23E、23F)と、
     前記第1導電部材と通電タイミングの異なる第2導電部材(21D、22D)と、
     前記第1導電部材と前記第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁(91)および第2隔壁(29)と、を備え、
     前記第1隔壁と前記第2隔壁との間に、前記第1導電部材および前記第2導電部材が設けられている電力供給ユニット。
    electrical parts (26);
    a first conductive member (23E, 23F) connected to the electrical component;
    a second conductive member (21D, 22D) whose energization timing is different from that of the first conductive member;
    A first partition wall (91) and a second partition wall (29) provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up,
    A power supply unit, wherein the first conductive member and the second conductive member are provided between the first partition wall and the second partition wall.
  2.  前記電気部品は、前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを制御している請求項1に記載の電力供給ユニット。 The power supply unit according to claim 1, wherein the electric component controls switching between an energized state and a non-energized state of the first conductive member and the second conductive member.
  3.  前記電気部品は、切り替え装置(21E、22E、23A、23B、52A)への切り替え信号の出力と不出力によって、前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを制御している請求項2に記載の電力供給ユニット。 The electrical component switches the first conductive member and the second conductive member between a energized state and a non-energized state by outputting and not outputting a switching signal to a switching device (21E, 22E, 23A, 23B, 52A). The power supply unit according to claim 2, which is controlling the power supply unit.
  4.  前記電気部品は、前記第1導電部材および前記第2導電部材のうちの一方の通電状態を検知した場合に前記切り替え信号の出力もしくは不出力を行う、または、前記第1導電部材および前記第2導電部材のうちの一方の通電状態に関連する信号を受け取った場合に前記切り替え信号の出力もしくは不出力を行う請求項3に記載の電力供給ユニット。 The electrical component outputs or does not output the switching signal when detecting an energized state of one of the first conductive member and the second conductive member, or outputs or non-outputs the switching signal. The power supply unit according to claim 3, wherein the switching signal is output or not output when a signal related to the energization state of one of the conductive members is received.
  5.  前記電気部品は、前記第1導電部材が通電状態であるかどうかを判断する判断部(26A)と、
     前記判断部の判断に基づいて前記切り替え信号の出力と不出力を制御する信号出力部(26B)と、を備える請求項3または4に記載の電力供給ユニット。
    The electric component includes a determination unit (26A) that determines whether the first conductive member is in an energized state;
    The power supply unit according to claim 3 or 4, further comprising a signal output section (26B) that controls output and non-output of the switching signal based on the judgment of the judgment section.
  6.  前記第1導電部材の通電状態に関連付けられた関連信号を発生する関連信号発生装置(20E)をさらに備え、
     前記電気部品は、前記関連信号を取得し、取得した前記関連信号に基づいて、前記切り替え信号の出力と不出力を制御する信号出力部(26B)を備える請求項3または4に記載の電力供給ユニット。
    Further comprising a related signal generating device (20E) that generates a related signal associated with the energization state of the first conductive member,
    The power supply according to claim 3 or 4, wherein the electric component includes a signal output unit (26B) that acquires the related signal and controls output and non-output of the switching signal based on the acquired related signal. unit.
  7.  充電可能な車両に搭載されており、
     充電時において、前記第1導電部材が通電状態、かつ、前記第2導電部材が非通電状態で、
     走行時において、前記第1導電部材が非通電状態、かつ、前記第2導電部材が通電状態である請求項1~4のいずれか1項に記載の電力供給ユニット。
    It is installed in rechargeable vehicles,
    During charging, the first electrically conductive member is in a energized state and the second electrically conductive member is in a non-energized state,
    The power supply unit according to any one of claims 1 to 4, wherein the first conductive member is in a non-energized state and the second conductive member is in an energized state during traveling.
  8.  前記第1隔壁は端子台(90)の一部であり、
     前記第2隔壁は電磁シールドである請求項1~4のいずれか1項に記載の電力供給ユニット。
    The first partition wall is a part of a terminal block (90),
    The power supply unit according to claim 1, wherein the second partition wall is an electromagnetic shield.
  9.  電気部品(26)と、
     前記電気部品に接続されている第1導電部材(23E、23F)と、
     前記第1導電部材と通電タイミングの異なる第2導電部材(21D、22D)と、
     前記第1導電部材と前記第2導電部材とが並ぶ並び方向に関して、離れて設けられている第1隔壁(91)および第2隔壁(29)と、を有する電力供給ユニット(20)と、
     前記第1導電部材および前記第2導電部材の通電状態と非通電状態の切り替えを行う切り替え装置(21E、22E、23A、23B、52A)と、を備え、
     前記第1隔壁と前記第2隔壁との間に、前記第1導電部材および前記第2導電部材が設けられている電力供給システム。
    electrical parts (26);
    a first conductive member (23E, 23F) connected to the electrical component;
    a second conductive member (21D, 22D) whose energization timing is different from that of the first conductive member;
    a power supply unit (20) having a first partition wall (91) and a second partition wall (29) that are provided apart from each other with respect to the direction in which the first conductive member and the second conductive member are lined up;
    A switching device (21E, 22E, 23A, 23B, 52A) that switches the first conductive member and the second conductive member between an energized state and a non-energized state,
    A power supply system, wherein the first conductive member and the second conductive member are provided between the first partition wall and the second partition wall.
  10.  前記第1導電部材は、前記電気部品の他に、前記電気部品と通信可能な充電器(70)に接続されており、
     前記電気部品は、前記充電器との通信に基づいて、前記第1導電部材が通電状態であるかどうかを判断している請求項9に記載の電力供給システム。
    In addition to the electrical component, the first conductive member is connected to a charger (70) that can communicate with the electrical component,
    The power supply system according to claim 9, wherein the electric component determines whether the first conductive member is energized based on communication with the charger.
PCT/JP2023/019112 2022-06-10 2023-05-23 Power supply unit and power supply system WO2023238651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022094442A JP2023180829A (en) 2022-06-10 2022-06-10 Power supply unit and power supply system
JP2022-094442 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238651A1 true WO2023238651A1 (en) 2023-12-14

Family

ID=89118285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019112 WO2023238651A1 (en) 2022-06-10 2023-05-23 Power supply unit and power supply system

Country Status (2)

Country Link
JP (1) JP2023180829A (en)
WO (1) WO2023238651A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305536A (en) * 2006-05-15 2007-11-22 Fuji Xerox Co Ltd Shielded flat cable
WO2010131428A1 (en) * 2009-05-14 2010-11-18 パナソニック株式会社 Communication cable
JP2013236246A (en) * 2012-05-09 2013-11-21 Renesas Electronics Corp Semiconductor device and data transfer method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305536A (en) * 2006-05-15 2007-11-22 Fuji Xerox Co Ltd Shielded flat cable
WO2010131428A1 (en) * 2009-05-14 2010-11-18 パナソニック株式会社 Communication cable
JP2013236246A (en) * 2012-05-09 2013-11-21 Renesas Electronics Corp Semiconductor device and data transfer method therefor

Also Published As

Publication number Publication date
JP2023180829A (en) 2023-12-21

Similar Documents

Publication Publication Date Title
EP2527184B1 (en) Vehicle
JP5817935B2 (en) Control device for electric vehicle
JP7013884B2 (en) vehicle
JP5421145B2 (en) connector
US10160328B2 (en) Electric vehicle
CN102177046A (en) Control device and charge control method
CN103444041A (en) Adapter, and vehicle which supplies power using same
US20130058011A1 (en) Device for distributing high-voltage power for vehicle
JP5196240B2 (en) High voltage equipment
JPWO2011086681A1 (en) Electric drive vehicle
WO2023238651A1 (en) Power supply unit and power supply system
CN112572169B (en) Vehicle with a vehicle body having a vehicle body support
US20220297556A1 (en) Power distribution device
US11325550B2 (en) Electric power distribution apparatus
US20220410825A1 (en) Wiring module and power distribution apparatus having the same
JP2009100565A (en) Electric vehicle
JP6123379B2 (en) Connector device
JP7163619B2 (en) Electrical components, electrical component units and battery packs
WO2024004726A1 (en) Power supply device
CN116513148A (en) Vehicle with a vehicle body having a vehicle body support
JP2011131714A (en) Floor panel of vehicle
KR20120100067A (en) Mounting and current path formation plate for power electronic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819635

Country of ref document: EP

Kind code of ref document: A1