WO2023238347A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2023238347A1
WO2023238347A1 PCT/JP2022/023358 JP2022023358W WO2023238347A1 WO 2023238347 A1 WO2023238347 A1 WO 2023238347A1 JP 2022023358 W JP2022023358 W JP 2022023358W WO 2023238347 A1 WO2023238347 A1 WO 2023238347A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
groove
holder
drive shaft
rotary
Prior art date
Application number
PCT/JP2022/023358
Other languages
French (fr)
Japanese (ja)
Inventor
和哉 浅川
修 長井
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/023358 priority Critical patent/WO2023238347A1/en
Publication of WO2023238347A1 publication Critical patent/WO2023238347A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/24Tool holders for a plurality of cutting tools, e.g. turrets

Definitions

  • a rotary tool such as a tool turning unit that operates by receiving rotational driving force from the tool post can be attached to each of the holders of the tool post.
  • a turret lathe changes the rotating tool connected to the drive shaft by rotating the tool rest.
  • the shape of the protruding portion of the rotary tool may be changed depending on the degree of rigidity required of the tool, the type of manufacturer that manufactures the rotary tool, and the like. For this reason, there is a need for a technology that allows rotary tools with different shapes of protrusions to be attached to one tool rest.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to provide a machine tool in which a rotary tool having protrusions of different shapes can be attached to a tool rest.
  • the present specification includes a drive source, a drive shaft that rotates based on the drive of the drive source, and a tool rest to which a plurality of rotating tools can be attached, and the drive shaft is , a clutch portion is provided for transmitting rotational driving force from the drive shaft to a transmission shaft of the rotary tool, and each of the plurality of rotary tools is provided with a protruding portion on the transmission shaft, and the shape of the protruding portion is determined by the shape of the protruding portion.
  • the present invention discloses a machine tool in which the clutch portion includes grooves that are different from each other, and the clutch portion is provided with a groove portion formed to match the shape of each of the protruding portions having different shapes.
  • the plurality of rotating tools include tools whose convex portions have mutually different shapes.
  • the clutch portion of the drive shaft is provided with a plurality of groove portions formed to match the shapes of the convex portions having different shapes.
  • the concave groove portion can be switched according to the shape of the protruding portion of the transmission shaft connected to the drive shaft. Therefore, rotary tools having protrusions of different shapes can be attached to the tool rest.
  • FIG. 1 is a block diagram of a machine tool 10 according to a first embodiment.
  • FIG. 2 is a schematic diagram showing the main parts of the turret device 12.
  • FIG. 3 is a sectional view taken along line II shown in FIG. 2;
  • FIG. 2 is a perspective view of a holder member 23 of a tool rest 21 and a rotary tool 25;
  • FIG. 2 is a perspective view showing members in the tool rest 21 and a partially enlarged view thereof.
  • FIG. 6 is a perspective view showing a state in which the shaft housing 67 and guide rail 63 of FIG. 5 are removed, and a partially enlarged view thereof.
  • FIG. 5 is an exploded perspective view of the clutch device 51. A partially enlarged view of FIG. 3.
  • FIG. 5 is an exploded perspective view of the clutch device 51. A partially enlarged view of FIG. 3.
  • FIG. 7 is a perspective view of the holder member 23 and the clutch member 71.
  • FIG. 5 is a partially enlarged view of FIG. 4 with the rotary tool 25 removed.
  • FIG. 7 is a perspective view of a clutch member 71A of the second embodiment.
  • FIG. 7 is a sectional view of a clutch member 71A of the second embodiment.
  • FIG. 1 shows a block diagram of a machine tool 10 according to a first embodiment.
  • the machine tool 10 of the first embodiment is, for example, a turret-type NC lathe, and includes a spindle device 11, a turret device 12, an operation panel 13, and a control device 15, as shown in FIG.
  • the machine tool of the present disclosure is not limited to a turret-type lathe, and may be, for example, a turret-type machining center.
  • the machine tool of the present disclosure may be configured to include two or more spindle devices 11 and turret devices 12, or may be a composite machine tool that includes both a lathe and a machining center.
  • the main spindle device 11 includes chuck claws and collet chucks that clamp the workpiece, and rotates the clamped workpiece around the main shaft.
  • the turret device 12 includes a tool rest 21 (see FIG. 2) to which a plurality of tools can be attached, and rotates the tool rest 21 to index (exchange) tools. Further, the turret device 12 includes a slide device 12A. The slide device 12A slides the tool rest 21, for example, in the Z-axis direction parallel to the main axis of the spindle device 11 and in the X-axis direction perpendicular to the Z-axis direction. Details of the tool rest 21 will be described later.
  • the operation panel 13 is a user interface, and includes, for example, a touch panel 13A and an operation device 13B.
  • the operating device 13B is a push button switch, a rotary switch, a warning lamp, or the like.
  • the operation panel 13 receives operation input from the user via the touch panel 13A and the operation device 13B, and outputs a signal to the control device 15 according to the received operation input. Further, the operation panel 13 changes the display contents of the touch panel 13A, the lighting state of the warning lamp of the operation device 13B, etc. based on the control of the control device 15.
  • the control device 15 is a processing device mainly composed of a computer and includes a CPU 15A, and performs numerical control and sequence control to comprehensively control the operation of the machine tool 10.
  • the control device 15 is electrically connected to each device (spindle device 11, etc.) of the machine tool 10 via a drive circuit 17.
  • the drive circuit 17 is, for example, an amplifier that controls the motors of the spindle device 11 and the turret device 12.
  • control device 15 includes a storage device 15B.
  • the storage device 15B includes, for example, RAM, ROM, flash memory, hard disk, and the like.
  • a control program PG is stored in the storage device 15B.
  • the control program PG is, for example, a program that controls the operation of the spindle device 11 and the turret device 12, and is a sequence control program (ladder circuit), an NC program, or the like.
  • the control device 15 controls each device of the machine tool 10 by executing a control program PG with the CPU 15A.
  • the fact that the control device 15 executes the control program PG on the CPU 15A to control each device may be simply described by the device name.
  • the control device 15 controls the spindle device 11 means "the control device 15 executes the control program PG on the CPU 15A and controls the spindle device 11 via the drive circuit 17.” .
  • the storage device 15B can store setting data DT.
  • holder identification information that can identify the holder 23A (see FIG. 2) of the tool rest 21 and information on the tool attached to the holder 23A indicated by the holder identification information can be stored in association with each other. There is. Details of the setting data DT will be described later.
  • the control device 15 controls each device with the above-described configuration to execute machining on the workpiece.
  • the control device 15 controls the turret device 12 to adjust the position of the tool rest 21 and index the tool, and processes the workpiece of the spindle device 11 using the indexed tool.
  • the configuration of the machine tool 10 described above is an example.
  • the machine tool 10 may include a workpiece transport device that transports the workpiece, a reversing device that reverses the workpiece, and the like.
  • FIG. 2 schematically shows a plan view of the tool rest 21 of the turret device 12.
  • FIG. 3 is a cross-sectional view taken along the line II shown in FIG. 2, and shows a partial cross-sectional view of the turret device 12.
  • the vertical direction in the drawing of FIG. 2 is referred to as the X direction, the left and right direction as the Y direction, and the direction perpendicular to the plane of the paper as the Z direction.
  • the X direction is a direction parallel to the axial direction of a drive shaft 45 described later
  • the Z direction is a direction parallel to a central axis 35 of a turning shaft 39 described later
  • the Y direction is a direction perpendicular to the XY direction. be.
  • FIG. 4 shows a state in which the rotary tool 25 is attached to the holder member 23.
  • the holder member 23 of this embodiment has, for example, a regular decagonal outer peripheral shape when viewed in the Z-axis direction, has a circular through hole formed inside, and has a predetermined thickness in the radial direction. It is an annular member. Holders 23A are formed on ten outer circumferential surfaces of the holder member 23 to which a rotary tool 25 or a cutting tool (not shown) can be attached. As an example, FIG.
  • FIG. 4 shows a state in which rotary tools 25 are attached to all ten holders 23A, but a cutting tool that performs cutting without rotation can also be attached to the holders 23A. Note that FIG. 4 omits illustration of the cutting tool 57 (see FIG. 3) of the rotary tool 25. Further, the holders 23A may have a configuration in which only the rotary tool 25 can be attached to all ten holders 23A, or a configuration in which a cutting tool can be attached to at least one of the ten holders 23A.
  • a spacer 27 can be attached to the holder 23A.
  • the spacer 27 is a member that adjusts the position of the protruding portion 65 of the rotary tool 25 in the radial direction of the tool rest 21 (direction perpendicular to the Z-axis direction). Details of the holder 23A and the spacer 27 will be described later.
  • the turret device 12 is provided with a rotating body 29 (see FIG. 3) inside the device.
  • the rotating body 29 is rotatably supported via a bearing member 31.
  • the bearing member 31 is, for example, a ball bearing.
  • a tool rest 21 is attached to the tip of the rotating body 29.
  • the turret device 12 includes a turning motor 33 (see FIG. 3) such as a servo motor as a drive source for rotating the tool post 21.
  • the control device 15 controls the turning motor 33 to rotate the rotating body 29, turns the tool rest 21 in a rotational direction 36 about a central axis 35 parallel to the Z direction, and rotates the rotating tool 25 and the cutting tool (hereinafter referred to as (sometimes referred to as a tool).
  • the tool rest 21 executes machining on a workpiece using a tool placed at a working position 37, and by rotating, replaces the tool at the working position 37, that is, the tool that executes machining on the workpiece.
  • a pivot shaft 39 is provided within the turret device 12 along the central axis 35.
  • the pivot shaft 39 is disposed within the rotating body 29 and rotatably supported by a bearing member 41.
  • a servo motor 43 is attached to the base end of the pivot shaft 39 (the left end in FIG. 3) as a drive source.
  • the control device 15 controls the servo motor 43 to rotate the pivot shaft 39 about the central shaft 35 .
  • the pivot shaft 39 may be provided at a position offset from the central axis 35.
  • the tool rest 21 is provided with a drive shaft 45 extending along the X-axis direction.
  • the tip of the pivot shaft 39 (the right end in FIG. 3) is inserted into the tool rest 21 and connected to the drive shaft 45.
  • the drive shaft 45 is, for example, a substantially cylindrical shaft, and is supported by a bearing member 46 so as to be rotatable about a rotation shaft 47 along the X direction.
  • the drive shaft 45 is connected to the rotation shaft 39 via, for example, a bevel gear 48, and the rotational driving force of the rotation shaft 39 is transmitted to the drive shaft 45.
  • the drive shaft 45 is orthogonal to the pivot shaft 39 and rotates in accordance with the rotation of the pivot shaft 39 .
  • the means for connecting the rotating shaft 39 and the drive shaft 45 is not limited to gears such as the bevel gear 48, but may also be a method using a cam or a belt.
  • the transmission shaft 49 of the rotary tool 25 is rotatably provided, for example, by a bearing member 53 provided within the housing 26 of the rotary tool 25.
  • the rotary tool 25 is provided with a transmission mechanism 55 for transmitting the rotational driving force of the transmission shaft 49.
  • the rotary tool 25 is provided with a tool holder 59 that holds a cutting tool 57, for example.
  • the tool holder 59 is, for example, a collet chuck.
  • the transmission mechanism 55 is composed of, for example, a plurality of gears, and transmits the rotational driving force of the transmission shaft 49 to the tool holder 59 to rotate the tool holder 59.
  • Various cutting tools 57 can be attached to the tool holder 59.
  • the cutting tool 57 for example, a drill, tap, end mill, etc. can be adopted.
  • the tool holder 59 is rotatably supported by a bearing member 61 provided on the rotary tool 25.
  • the cutting tool 57 is held by the tool holder 59 with its tip protruding from the rotary tool 25 and rotates together with the tool holder 59.
  • Each of the plurality of rotary tools 25 is placed at the working position 37, so that the transmission shaft 49 is connected to the drive shaft 45 via the clutch device 51, and the rotational driving force of the rotation shaft 39 is transmitted to the cutting tool 57. Rotate.
  • the internal configuration of the rotary tool 25 shown in FIGS. 2 and 3 is an example.
  • the configuration of the rotary tool 25 may vary depending on the application, function, manufacturer, etc.
  • the tool holder 59 is not limited to a collet chuck, but may be a milling chuck, a hydraulic chuck, a side lock holder, a shrink fit holder, an arbor, or other holding member.
  • the rotary tool 25 may not include the tool holder 59 and may have a configuration in which the cutting tool 57 cannot be replaced.
  • the rotary tool 25 may have a structure in which the cutting tool 57 is directly connected to the transmission shaft 49 without the transmission mechanism 55, or the cutting tool 57 and the transmission shaft 49 are integrated.
  • the rotary tool 25 may have a configuration in which the tool holder 59 is rotatably held in a direction orthogonal to the axial direction of the transmission shaft 49.
  • FIG. 5 shows the tool post 21 with the holder member 23 and other members removed.
  • an annular guide rail 63 is provided within the tool rest 21.
  • a notch 63A (see FIG. 2) is formed in the guide rail 63 in accordance with the position of the clutch device 51 (working position 37).
  • the drive shaft 45 is connected to the pivot shaft 39 on the base end side in the X direction, and has a distal end portion aligned with the position of the notch portion 63A of the guide rail 63.
  • a clutch device 51 is attached to the tip of the drive shaft 45 .
  • each rotary tool 25 protrudes from the housing 26 of the rotary tool 25, and extends toward the guide rail 63 when the rotary tool 25 is attached to the holder 23A.
  • a convex portion 65 is formed at the tip of the transmission shaft 49 protruding from the rotary tool 25.
  • the tip end 77 of the drive shaft 45 is provided with an insertion hole 79 formed along the axial direction of the drive shaft 45 (rotation shaft 47).
  • the tip portion 77 may be the same member as the drive shaft 45 formed by processing the tip of the drive shaft 45, or may be a separate member attached to the tip of the drive shaft 45.
  • the insertion hole 79 is a hole with a circular cross section, and an opening is formed on the tip side.
  • the clutch member 71 includes a base portion 81 and a connecting portion 82 .
  • the connecting portion 82 has, for example, a substantially cylindrical shape having a predetermined thickness in the axial direction of the rotating shaft 47.
  • the pin 73 is, for example, a metal member having a substantially cylindrical shape.
  • a pair of through holes 77A are formed in the distal end portion 77 of the drive shaft 45.
  • Each of the pair of through holes 77A is a circular hole formed to match the size of the pin 73, and communicates the inside and outside of the insertion hole 79.
  • the pair of through holes 77A are formed at positions facing each other in a direction orthogonal to the axial direction of the rotating shaft 47.
  • the base portion 81 is formed with a through hole 81A formed in accordance with the position of the pair of through holes 77A.
  • the through hole 81A is a cylindrical hole formed to match the size of the pin 73.
  • the pin 73 is inserted into the pair of through holes 77A and the through hole 81A of the base 81 inserted into the first insertion portion 79A. Thereby, the clutch member 71 is held with respect to the drive shaft 45 by the pin 73.
  • the method for attaching the clutch member 71 to the drive shaft 45 is not limited to the method using the pin 73 described above.
  • the base 81 is formed into a cylindrical shape, and a pair of through holes 81A are formed to communicate the inside and outside.
  • Each of the pair of through holes 81A and the pair of through holes 77A may be held by a rivet.
  • the clutch member 71 may be formed integrally with the drive shaft 45 by machining the tip of the drive shaft 45 by cutting or the like.
  • the insertion hole 79 is formed with an inner diameter slightly larger than the outer diameter of the clutch member 71 to be inserted, for example, and a gap (about 0.1 mm to 0.3 mm) is provided between the insertion hole 79 and the clutch member 71. ing.
  • the clutch member 71 has a degree of freedom that allows it to move relative to the tip portion 77 (drive shaft 45) along a direction orthogonal to the rotating shaft 47. This degree of freedom is a degree of freedom that allows misalignment of the transmission shaft 49 with respect to the drive shaft 45.
  • the gap between the connecting portion 82 and the inner circumferential surface of the second insertion portion 79B is slightly wider than the gap between the base portion 81 and the inner circumferential surface of the first insertion portion 79A.
  • an elastic member groove 81B into which the O-ring 75 is fitted is formed on the outer peripheral surface of the connecting portion 82.
  • the depth of the elastic member groove 81B is, for example, slightly shallower than the thickness of the O-ring 75.
  • the clutch member 71 is inserted into the insertion hole 79 with the O-ring 75 fitted into the elastic member groove 81B.
  • the O-ring 75 is placed in contact with and sandwiched between the inner circumferential surface of the second insertion portion 79B and the bottom of the elastic member groove 81B.
  • the connecting portion 82 is formed with two grooves, a first groove 91 and a second groove 92, into which the protrusion 65 of the transmission shaft 49 is inserted.
  • FIG. 9 shows a perspective view of the holder member 23 and the clutch member 71.
  • the first and second groove portions 91 and 92 are provided closer to the distal end than the elastic member groove 81B in the axial direction of the rotating shaft 47, and are connected to the protruding strip portion 65 in the axial direction. They are located at opposite positions.
  • Each of the first and second groove portions 91 and 92 is formed by recessing the connecting portion 82 in a direction parallel to the axial direction of the rotating shaft 47, and is formed along a direction perpendicular to the axial direction.
  • the second groove part 92 extends in both the direction along the groove of the first groove part 91 and the axial direction of the rotating shaft 47. It is formed along the orthogonal direction, that is, the axial direction of the pin 73. Further, as shown in FIG. 8, for example, the bottom of the first groove 91 is slightly lower than the bottom of the second groove 92.
  • the shape of the convex strip 65 of the rotary tool 25 depends on the cutting and drilling ability required of the cutting tool 57, the required high rigidity, the type of manufacturer that manufactures the rotary tool 25, etc. Be changed.
  • the protrusions 65 of the rotary tool 25 that can be attached to the tool post 21 of this embodiment include those having different widths W from each other.
  • the width W is, for example, 6 mm, 8 mm, or 10 mm.
  • the user may want to use a different rotary tool 25 depending on the size of the hole to be machined, the required machining accuracy, the price of the rotary tool 25, etc.
  • only one groove is provided, and the rotary tool 25 used can only be one in which the protruding stripes 65 have the same shape.
  • the clutch member 71 of this embodiment has two grooves, a first groove 91 having a width W1 and a second groove 92 having a width W2.
  • the concave groove to be connected to the protruding part 65 can be switched, so that the rotary tool 25 with the protruding part 65 having a different shape can be used. It can be used with one tool post 21. Switching control of the first and second groove portions 91 and 92 will be described later.
  • the width W1 is assumed to be 6 mm and the width W2 is 8 mm, as an example.
  • the widths W are different will be described as an example in which groove portions are provided in accordance with the shapes of the protruding stripes 65 having different shapes, but the present invention is not limited to this.
  • the depth of each of the first and second groove parts 91 and 92 may be changed according to the height H of the protruding line part 65. good.
  • the first groove has a depth matching the height H of the product of company A.
  • 91 and a second groove portion 92 having a depth matching the height H of the product of company B may be provided in the clutch member 71.
  • a shaft housing 67 that covers the clutch device 51 and accommodates the drive shaft 45 is provided at the working position 37 of the tool post 21.
  • the shaft housing 67 has a recess 67A cut out in a direction parallel to the guide rail 63 (circumferential direction of the guide rail 63).
  • the recess 67A is a groove formed at the outer peripheral end of the shaft housing 67 and extending along the circumferential direction of the guide rail 63.
  • first and second groove portions 91 and 92 of the clutch member 71 are arranged in an exposed state (visible from the outside).
  • Each spacer 27A has four bolt holes 97 into which four bolts 96 are inserted.
  • the positions of the four bolt holes 97 formed in any spacer 27 are the same as the positions of the four bolt holes 97 formed in other spacers 27. Therefore, the holder member 23 can attach different types of spacers 27A, 27B, and 27C to any of the ten holders 23A.
  • each holder 23A of the holder member 23 is formed with a shaft insertion hole 103 into which the transmission shaft 49 is inserted.
  • the shaft insertion hole 103 is a circular hole that penetrates the holder 23A along the radial direction of the tool rest 21.
  • the inner diameter of the shaft insertion hole 103 is, for example, larger than the largest outer diameter R1 of the outer diameters R1 of the rotary tool 25 attached to the holder 23A. Thereby, regardless of the type of rotary tool 25, the transmission shaft 49 of the rotary tool 25 can be inserted into the shaft insertion hole 103 of the holder 23A to which it is attached.
  • the shaft insertion hole 103 may have a different hole diameter for each holder 23A.
  • any holder 23A may have a shaft insertion hole 103 for a thick transmission shaft 49
  • the other holders 23A may have a shaft insertion hole 103 for a thin transmission shaft 49.
  • a shaft insertion hole 105 into which the transmission shaft 49 is inserted is formed in the spacer 27.
  • the shaft insertion hole 105 is a circular hole that penetrates the spacer 27 in the thickness direction (radial direction of the tool rest 21).
  • the inner diameter of the shaft insertion hole 105 is, for example, larger than the outer diameter R1 of the transmission shaft 49 of the rotary tool 25 to be attached to the spacer 27 having the shaft insertion hole 105. Thereby, the transmission shaft 49 can be stably held by the shaft insertion hole 105 of the spacer 27.
  • the hole diameter of the shaft insertion hole 105 of all the spacers 27 is made to be larger than or equal to the thickest outer diameter R1 of the outer diameter R1 of the rotary tool 25 attached to the holder 23A. It's okay.
  • each spacer 27 is formed with a pair of grooves 107 that are perpendicular to each other.
  • This is a groove into which, for example, when a positioning projection is provided on the surface of the rotary tool 25 on the spacer 27 side, the projection is inserted.
  • the position and orientation of the rotary tool 25 relative to the spacer 27 (holder 23A) is determined by inserting the protrusion into the groove 107.
  • the rotary tool 25 can be attached to the holder 23A at an appropriate position and orientation.
  • a groove having the same shape as the groove 107 may be formed in the holder 23A so that the rotary tool 25 having a protrusion can be attached to the holder 23A, that is, without using the spacer 27.
  • the rotary tool 25 may have a structure without a protrusion. In this case, the spacer 27 does not need to include the groove 107.
  • the second figure from the top in FIG. 11 shows a state in which the mounting positions of the rotary tools 25 are aligned at position 109.
  • the position 109 is the position of the mounting surface of each rotary tool 25A to 25F.
  • the positions of the protrusions 65 of each rotary tool 25 are different from each other in the radial direction of the tool post 21.
  • a position 111 in FIG. 11 indicates the position of the protruding portion 65 (the protruding portion 65 of the rotary tool 25F) that is disposed innermost in the radial direction.
  • the length (protrusion amount) of the power transmission shaft 49 protruding from position 109 is shorter than that of the rotary tool 25F.
  • the protrusions 65 of the rotary tools 25A to 25E are arranged radially outward compared to the protrusions 65 of the rotary tool 25F.
  • the spacer 27 is formed with a thickness W3 that corresponds to the length of the power transmission shaft 49 of the rotary tool 25 to be attached (the amount of protrusion from the mounting surface position 109). Then, the thickness W3 of each spacer 27 is set so that all the protrusions 65 are arranged at the positions in the radial direction of the tool post 21, that is, at the positions of the first and second grooves 91 and 92. has been done.
  • the rotary tools 25A to 25F are attached to the holder 23A via the spacer 27, so that the protrusions 65 of each other are aligned in the radial direction of the tool rest 21 with respect to the rotation center of the tool rest 21 (center axis 35 in FIG. 2). ) at the same radius R2. Further, each of the protrusions 65 of the rotary tools 25A to 25F is arranged at a position with the same radius R2 as the first and second grooves 91 and 92 from the rotation center of the tool rest 21.
  • the bottom diagram in FIG. 11 shows a state in which the protrusions 65 of all the rotary tools 25 are aligned at position 113.
  • the plane of the holder 23A the plane of the holder 23A to which the spacer 27 is attached
  • the rotary tool 25F has the largest protrusion amount by which the transmission shaft 49 protrudes from the position 109. Therefore, in the rotary tool 25F, when the protruding stripes 65 are aligned at the position 113, the distance from the position 115 to the mounting surface (corresponding to the thickness W3) is the longest.
  • a spacer having a thicker thickness W3 is used, for example, as shown in a spacer 27C in FIG. 10.
  • the amount by which the transmission shaft 49 protrudes from the position 109 is the smallest. Therefore, as the spacer 27 to which the rotary tool 25A is attached, for example, a spacer 27 having a thinner (smaller) thickness W3 is used, as shown in a spacer 27A in FIG.
  • the spacer 27 with the thickness W3 corresponding to the protrusion amount of each rotary tool 25 (the length of the transmission shaft 49 and the position of the protruding strip 65), the radial position of the tool post 21 can be adjusted to the radius R2.
  • the protruding portion 65 can be inserted into the first and second groove portions 91 and 92 in accordance with the position shown in FIG.
  • FIG. 12 shows the contents of the tool exchange process.
  • the control device 15 changes the type of tool indexed to the work position 37 by executing the tool exchange process. For example, upon receiving an instruction to start machining the workpiece, the control device 15 starts the process shown in FIG. 12 .
  • control device 15 When the control device 15 starts the process shown in FIG. 12, first, in step (hereinafter simply referred to as S) 11, it determines whether or not to start tool exchange.
  • the control device 15 makes a negative determination in S11 (S11: NO) in a state where tool replacement is not necessary, such as during machining of a workpiece, and repeatedly executes the determination process in S11. Further, for example, when machining by an arbitrary rotary tool 25 is completed, the control device 15 executes indexing of a tool necessary for machining in the next process based on the control program PG. When executing tool indexing, the control device 15 makes an affirmative determination in S11 (S11: YES) and starts turning the tool post 21 (S13).
  • the conditions for determining S11 are not limited to the conditions under which the control device 15 described above automatically determines tool replacement based on the machining process.
  • the control device 15 may determine whether to replace the tool based on an instruction from the user.
  • the control device 15 may make an affirmative determination in S11.
  • the control device 15 may make an affirmative determination in S11 if the tool in use has reached its end of life and is replaced with a spare tool of the same type.
  • the control device 15 stops the rotation of the rotary tool 25 before starting rotation in S13.
  • the control device 15 controls the servo motor 43 so that the attitude (rotational position) of the groove part in use (the first groove part 91 or the second groove part 92) is such that the protruding strip part 65 can be attached and detached. Then, the rotation of the drive shaft 45 is stopped.
  • the control device 15 controls the drive shaft when the first groove 91 is located along the circumferential direction of the guide rail 63. 45 is stopped.
  • the control device 15 stops the drive shaft 45 so that the first groove portion 91 stops at the same rotational position as before starting machining. Thereby, the control device 15 can remove the protruding portion 65 inserted into the first groove portion 91 by controlling the turning motor 33 to turn the tool rest 21 .
  • the first groove part 91 is used before the tool is replaced, and the clutch member 71 aligns the first groove part 91 in the circumferential direction of the guide rail 63 before turning in S13. The vehicle shall be stopped in this state.
  • control device 15 determines whether it is necessary to switch between the first and second groove portions 91 and 92 (S15).
  • the control device 15 executes the determination in S15 depending on the tool attached to the holder 23A that will arrive at the working position 37 next in the rotational direction 36 of the tool post 21.
  • holder identification information and information about the tool attached to the holder 23A indicated by the holder identification information are stored in association with each other.
  • the holder identification information for example, a holder number given to each holder 23A can be used.
  • the control device 15 determines the tool of the holder 23A (sometimes referred to as the next holder 23A) that will arrive at the work position 37 next based on the setting data DT. For example, the control device 15 searches the setting data DT for the holder number of the next holder 23A, and detects the type of tool and the width W of the protruding portion 65. If the tool of the next holder 23A is a cutting tool, the control device 15 makes a negative determination in S15 (S15: NO) and rotates the tool rest 21 until the next holder 23A is placed at the working position 37 (S19). . In this case, since there is no need to connect the tool placed at the work position 37 and the power transmission shaft 49, the tool is rotated without being switched.
  • S15 negative determination in S15
  • the control device 15 determines, based on the setting data DT, that the tool in the next holder 23A is the rotary tool 25, and that the width W of the protruding portion 65 of the rotary tool 25 is the width W2 (for example, 8 mm). If there is, an affirmative determination is made in S15 (S15: YES), and S17 is executed. In this case, it is necessary to rotate the clutch member 71 in order to arrange the rotary tool 25 of the next holder 23A at the working position 37 or to cause it to pass through the working position 37.
  • the control device 15 executes S17 every time to The convex strip 65 is inserted into the concave groove while switching between 91 and 92 to pass through the working position 37. That is, when the width W of the protruding strip 65 of the next holder 23A does not match the width (width W1 or width W2) of the concave groove disposed along the circumferential direction of the guide rail 63, the control device 15 , S17 are executed as appropriate to switch the concave groove portion.
  • the control device 15 rotates the tool rest 21 to a position where the protruding strip portion 65 comes out, the first and second recessed groove portions 91 and 92 Switch.
  • the control device 15 arranges the clutch member 71 so that the second groove portion 92 runs along the circumferential direction of the guide rail 63 until the tool to be indexed becomes the next holder 23A. That is, the second recessed groove portion 92 having a wide groove width is disposed until the desired tool reaches the next holder 23A.
  • any of the cutting tool, the 6 mm rotary tool 25, and the 8 mm rotary tool 25 can be passed through the working position 37.
  • the control device 15 leaves the clutch member 71 in the same state without rotating it.
  • the control device 15 executes S17 to switch from the second groove part 92 to the first groove part 91. . That is, while the tool rest 21 is being rotated, the second groove part 92 may be placed, and only when the 6 mm rotary tool 25 is finally placed, switching to the first groove part 91 may be performed. Thereby, in the tool switching operation, it is possible to reduce the number of times the first and second groove portions 91 and 92 are switched, that is, the number of times the drive shaft 45 is rotated.
  • the clutch member 71 of this embodiment rotates with the rotation of the drive shaft 45, and the positions of the first groove portion 91 and the second groove portion 92 are changed. According to this, it is possible to rotate the drive shaft 45 and switch between the first and second groove portions 91 and 92 according to the width W of the protruding portion 65 .
  • the control device 15 determines that the rotating tool 25 is placed at a rotating position where the protruding portion 65 can be inserted into the second groove portion 92 of 8 mm (the guide rail 63).
  • the drive shaft 45 is rotated to a position along the circumferential direction).
  • the control device 15 can automatically switch between the first and second groove portions 91 and 92 and connect the drive shaft 45 and the transmission shaft 49. That is, it is possible to automatically switch between rotary tools 25 having protrusions 65 of different shapes.
  • the user may operate the touch panel 13A to switch between the first and second groove portions 91 and 92.
  • the control device 15 may detect a connection error based on rattling or rotation error.
  • Each of the rotary tools 25A to 25F which is one aspect of the present application, includes tools in which a protruding strip 65 is provided on the transmission shaft 49, and the width W of the protruding strip 65 is different from each other.
  • the clutch member 71 of the drive shaft 45 is provided with first and second groove portions 91 and 92, which are formed to match the width W of each of the protrusions 65. According to this, the first and second groove portions 91 and 92 can be switched according to the width W of the protruding strip portion 65 of the transmission shaft 49 connected to the drive shaft 45, that is, the rotary tool 25 to be indexed. Therefore, the rotary tool 25 having the protruding portions 65 of different shapes can be attached to the tool post 21.
  • the first and second groove portions 91 and 92 are provided at positions that are out of phase by 90 degrees in the rotation direction 50.
  • the second embodiment differs in that the first and second groove portions 91 and 92 are provided at different positions in the axial direction of the clutch member 71.
  • the same members as those in the first embodiment described above will be denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the first groove portion 91 is formed with a smaller width than the second groove portion 92, and the position of the second groove portion 92 in the direction along the rotation axis 47 of the clutch member 71A. It is provided on the proximal end side (base 81 side).
  • the first and second groove portions 91 and 92 are formed along the radial direction (along the direction perpendicular to the paper plane of FIG. 14) passing through the center of the clutch member 71A (the midpoint in the left-right direction in FIG. 14). ing.
  • the opening of the first groove portion 91 is formed in the bottom portion 92A of the second groove portion 92.
  • the rotary tool of the present disclosure is not limited to the configuration in which the cutting tool 57 is attached as in the first embodiment.
  • it may be a unit that rotates a tool (bite), such as the tool rotation unit described in the prior art document. Therefore, the rotational driving force transmitted by the clutch member of the present disclosure may not be used as the power to rotate the cutting tool 57, but may be used as other power, such as the power to rotate the tool.
  • the machine tool 10 may have a configuration that does not use the spacer 27.
  • the rotary tools 25 having the same length of the transmission shaft 49 but different widths W of the protrusions 65 may be used by being attached to the tool rest 21.
  • the machine tool of the present disclosure is not limited to a lathe, but may be any other machine tool such as a machining center that can attach a rotary tool to a tool rest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The objective of the present invention is to provide a machine tool in which rotating tools having differently shaped ridge portions can be attached to a tool post. This machine tool comprises a drive source, a drive shaft that rotates on the basis of the drive of the drive source, and a tool post to which a plurality of rotating tools can be attached. The drive shaft is provided with a clutch portion for transmitting a rotational driving force from the drive shaft to a transmission shaft of the rotating tool. Each of a plurality of rotating tools is provided with a ridge portion on the transmission shaft, some of the ridge portions having mutually different shapes. The clutch portion is provided with recessed groove portions formed to match the shapes of each of the differently shaped ridge portions.

Description

工作機械Machine Tools
 本開示は、複数の回転工具を取り付け可能な刃物台を備える工作機械に関するものである。 The present disclosure relates to a machine tool equipped with a tool rest to which a plurality of rotating tools can be attached.
 従来、タレット型の旋盤に係わる技術について種々提案されている。例えば、下記特許文献1のタレット旋盤は、多角形の刃物台を備えている。刃物台の平面形状の各外周面には、工具旋回ユニットを取り付けるホルダがそれぞれ設けられている。工具旋回ユニットに設けられた伝達軸の端部には、凸条部が形成されている。また、刃物台内に設けられた駆動軸の先端には、凸条部を挿入可能な凹溝部が形成されている。工具旋回ユニットの工具ホルダは、駆動軸から伝達軸に回転駆動力が伝達されることで回転する。 Conventionally, various technologies related to turret-type lathes have been proposed. For example, the turret lathe disclosed in Patent Document 1 below includes a polygonal tool rest. A holder to which a tool rotation unit is attached is provided on each outer peripheral surface of the planar shape of the tool rest. A protruding portion is formed at the end of the transmission shaft provided in the tool rotation unit. Furthermore, a recessed groove portion into which a protruding portion can be inserted is formed at the tip of the drive shaft provided within the tool post. The tool holder of the tool turning unit rotates as rotational driving force is transmitted from the drive shaft to the transmission shaft.
特開2007-210062号公報(図6)Japanese Patent Application Publication No. 2007-210062 (Figure 6)
 上記した種類のタレット旋盤は、刃物台から回転駆動力を伝達されて動作する工具旋回ユニットなどの回転工具を、刃物台のホルダのそれぞれに取り付けることができる。タレット旋盤は、刃物台を旋回させることで、駆動軸に連結する回転工具を変更する。しかしながら、回転工具の凸条部の形状は、工具に要求される剛性の高さや、回転工具を製造するメーカの種類などに応じて変更される虞がある。このため、1つの刃物台に対し、凸条部の形状が異なる回転工具を取り付け可能な技術が望まれている。 In the above-mentioned type of turret lathe, a rotary tool such as a tool turning unit that operates by receiving rotational driving force from the tool post can be attached to each of the holders of the tool post. A turret lathe changes the rotating tool connected to the drive shaft by rotating the tool rest. However, the shape of the protruding portion of the rotary tool may be changed depending on the degree of rigidity required of the tool, the type of manufacturer that manufactures the rotary tool, and the like. For this reason, there is a need for a technology that allows rotary tools with different shapes of protrusions to be attached to one tool rest.
 本開示は、上記の課題に鑑みてなされたものであり、形状の異なる凸条部を有する回転工具を刃物台に取り付け可能な工作機械を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to provide a machine tool in which a rotary tool having protrusions of different shapes can be attached to a tool rest.
 上記課題を解決するために、本明細書は、駆動源と、前記駆動源の駆動に基づいて回転する駆動軸と、複数の回転工具を取り付け可能な刃物台と、を備え、前記駆動軸は、前記駆動軸から前記回転工具の伝動軸に回転駆動力を伝達するクラッチ部が設けられ、複数の前記回転工具の各々は、前記伝動軸に凸条部が設けられ、前記凸条部の形状が互いに異なるものが含まれ、前記クラッチ部は、形状の異なる前記凸条部の各々の形状に合わせて形成された凹溝部がそれぞれ設けられる、工作機械を開示する。 In order to solve the above problems, the present specification includes a drive source, a drive shaft that rotates based on the drive of the drive source, and a tool rest to which a plurality of rotating tools can be attached, and the drive shaft is , a clutch portion is provided for transmitting rotational driving force from the drive shaft to a transmission shaft of the rotary tool, and each of the plurality of rotary tools is provided with a protruding portion on the transmission shaft, and the shape of the protruding portion is determined by the shape of the protruding portion. The present invention discloses a machine tool in which the clutch portion includes grooves that are different from each other, and the clutch portion is provided with a groove portion formed to match the shape of each of the protruding portions having different shapes.
 本開示の工作機械によれば、複数の回転工具の中には、凸状部の形状が互いに異なるものが含まれる。駆動軸のクラッチ部には、この形状の異なる凸状部の形状に合わせて形成された複数の凹溝部が設けられる。これにより、駆動軸に連結する伝動軸の凸条部の形状に合わせて、凹溝部を切り替えることができる。従って、形状の異なる凸条部を有する回転工具が刃物台に取り付け可能となる。 According to the machine tool of the present disclosure, the plurality of rotating tools include tools whose convex portions have mutually different shapes. The clutch portion of the drive shaft is provided with a plurality of groove portions formed to match the shapes of the convex portions having different shapes. Thereby, the concave groove portion can be switched according to the shape of the protruding portion of the transmission shaft connected to the drive shaft. Therefore, rotary tools having protrusions of different shapes can be attached to the tool rest.
第1実施例に係わる工作機械10のブロック図。FIG. 1 is a block diagram of a machine tool 10 according to a first embodiment. タレット装置12の要部を示す模式図。FIG. 2 is a schematic diagram showing the main parts of the turret device 12. 図2に示すI-I線で切断した矢視断面図。FIG. 3 is a sectional view taken along line II shown in FIG. 2; 刃物台21のホルダ部材23と回転工具25の斜視図。FIG. 2 is a perspective view of a holder member 23 of a tool rest 21 and a rotary tool 25; 刃物台21内の部材を示す斜視図、及びその一部拡大図。FIG. 2 is a perspective view showing members in the tool rest 21 and a partially enlarged view thereof. 図5の軸ハウジング67やガイドレール63を取り外した状態を示す斜視図、及びその一部拡大図。FIG. 6 is a perspective view showing a state in which the shaft housing 67 and guide rail 63 of FIG. 5 are removed, and a partially enlarged view thereof. クラッチ装置51の分解斜視図。FIG. 5 is an exploded perspective view of the clutch device 51. 図3の一部拡大図。A partially enlarged view of FIG. 3. ホルダ部材23及びクラッチ部材71の斜視図。FIG. 7 is a perspective view of the holder member 23 and the clutch member 71. 図4の回転工具25を取り外した状態の一部拡大図。FIG. 5 is a partially enlarged view of FIG. 4 with the rotary tool 25 removed. 複数の回転工具25A~25Fを比較するための図。A diagram for comparing a plurality of rotary tools 25A to 25F. 工具交換処理のフローチャート。Flowchart of tool exchange processing. 第2実施例のクラッチ部材71Aの斜視図。FIG. 7 is a perspective view of a clutch member 71A of the second embodiment. 第2実施例のクラッチ部材71Aの断面図。FIG. 7 is a sectional view of a clutch member 71A of the second embodiment.
(工作機械10について)
 以下、本開示の工作機械を具体化した一実施例である第1実施例について図面を参照しながら説明する。図1は、第1実施例の工作機械10のブロック図を示している。第1実施例の工作機械10は、例えば、タレット型のNC旋盤であり、図1に示すように、主軸装置11、タレット装置12、操作盤13、制御装置15を備えている。尚、本開示の工作機械は、タレット型の旋盤に限らず、例えば、タレット型のマシニングセンタなどでも良い。また、本開示の工作機械は、2つ以上の主軸装置11やタレット装置12を備える構成でも良く、旋盤とマシニングセンタの両方を備える複合型の工作機械でも良い。
(About machine tool 10)
Hereinafter, a first embodiment, which is an embodiment of the machine tool of the present disclosure, will be described with reference to the drawings. FIG. 1 shows a block diagram of a machine tool 10 according to a first embodiment. The machine tool 10 of the first embodiment is, for example, a turret-type NC lathe, and includes a spindle device 11, a turret device 12, an operation panel 13, and a control device 15, as shown in FIG. Note that the machine tool of the present disclosure is not limited to a turret-type lathe, and may be, for example, a turret-type machining center. Further, the machine tool of the present disclosure may be configured to include two or more spindle devices 11 and turret devices 12, or may be a composite machine tool that includes both a lathe and a machining center.
 主軸装置11は、ワークを挟持するチャック爪やコレットチャックを備え、挟持したワークを、主軸を中心に回転させる。タレット装置12は、複数の工具を取り付け可能な刃物台21(図2参照)を備え、刃物台21を回転させて工具の割り出し(入れ替え)を実行する。また、タレット装置12は、スライド装置12Aを有する。スライド装置12Aは、例えば、主軸装置11の主軸と平行なZ軸方向及びZ軸方向に垂直なX軸方向へ刃物台21をスライド移動させる。刃物台21の詳細については後述する。 The main spindle device 11 includes chuck claws and collet chucks that clamp the workpiece, and rotates the clamped workpiece around the main shaft. The turret device 12 includes a tool rest 21 (see FIG. 2) to which a plurality of tools can be attached, and rotates the tool rest 21 to index (exchange) tools. Further, the turret device 12 includes a slide device 12A. The slide device 12A slides the tool rest 21, for example, in the Z-axis direction parallel to the main axis of the spindle device 11 and in the X-axis direction perpendicular to the Z-axis direction. Details of the tool rest 21 will be described later.
 操作盤13は、ユーザインタフェースであり、例えば、タッチパネル13Aや操作装置13Bを備えている。操作装置13Bは、押しボタンスイッチ、ロータリースイッチ、警告ランプなどである。操作盤13は、タッチパネル13Aや操作装置13Bを介してユーザからの操作入力を受け付け、受け付けた操作入力に応じた信号を制御装置15に出力する。また、操作盤13は、制御装置15の制御に基づいて、タッチパネル13Aの表示内容や操作装置13Bの警告ランプの点灯状態等を変更する。 The operation panel 13 is a user interface, and includes, for example, a touch panel 13A and an operation device 13B. The operating device 13B is a push button switch, a rotary switch, a warning lamp, or the like. The operation panel 13 receives operation input from the user via the touch panel 13A and the operation device 13B, and outputs a signal to the control device 15 according to the received operation input. Further, the operation panel 13 changes the display contents of the touch panel 13A, the lighting state of the warning lamp of the operation device 13B, etc. based on the control of the control device 15.
 制御装置15は、CPU15Aを備え、コンピュータを主体とする処理装置であり、数値制御やシーケンス制御を実行し工作機械10の動作を統括的に制御する。制御装置15は、駆動回路17を介して工作機械10の各装置(主軸装置11など)と電気的に接続されている。駆動回路17は、例えば、主軸装置11やタレット装置12のモータを制御するアンプ等である。 The control device 15 is a processing device mainly composed of a computer and includes a CPU 15A, and performs numerical control and sequence control to comprehensively control the operation of the machine tool 10. The control device 15 is electrically connected to each device (spindle device 11, etc.) of the machine tool 10 via a drive circuit 17. The drive circuit 17 is, for example, an amplifier that controls the motors of the spindle device 11 and the turret device 12.
 また、制御装置15は、記憶装置15Bを備えている。記憶装置15Bは、例えば、RAM、ROM、フラッシュメモリ、ハードディスク等を備えている。記憶装置15Bには、制御プログラムPGが記憶されている。制御プログラムPGは、例えば、主軸装置11やタレット装置12の動作を制御するプログラムであり、シーケンス制御のプログラム(ラダー回路)やNCプログラムなどである。制御装置15は、CPU15Aで制御プログラムPGを実行することで、工作機械10の各装置を制御する。尚、以下の説明では、制御装置15が制御プログラムPGをCPU15Aで実行して各装置を制御することを、単に装置名で記載する場合がある。例えば、「制御装置15が主軸装置11を制御する」とは、「制御装置15が制御プログラムPGをCPU15Aで実行し、駆動回路17を介して主軸装置11を制御する」ことを意味している。 Additionally, the control device 15 includes a storage device 15B. The storage device 15B includes, for example, RAM, ROM, flash memory, hard disk, and the like. A control program PG is stored in the storage device 15B. The control program PG is, for example, a program that controls the operation of the spindle device 11 and the turret device 12, and is a sequence control program (ladder circuit), an NC program, or the like. The control device 15 controls each device of the machine tool 10 by executing a control program PG with the CPU 15A. In the following description, the fact that the control device 15 executes the control program PG on the CPU 15A to control each device may be simply described by the device name. For example, "the control device 15 controls the spindle device 11" means "the control device 15 executes the control program PG on the CPU 15A and controls the spindle device 11 via the drive circuit 17." .
 また、記憶装置15Bには、設定データDTが記憶可能となっている。設定データDTには、刃物台21のホルダ23A(図2参照)を識別可能なホルダ識別情報と、そのホルダ識別情報が示すホルダ23Aに取り付けられた工具の情報が対応付けて記憶可能となっている。設定データDTの詳細については後述する。制御装置15は、上記した構成により各装置を制御してワークに対する加工を実行する。例えば、制御装置15は、タレット装置12を制御して刃物台21の位置の調整や工具の割り出しを実行し、割り出した工具によって主軸装置11のワークの加工を実行する。尚、上記した工作機械10の構成は、一例である。例えば、工作機械10は、ワークを搬送するワーク搬送装置や、ワークを反転させる反転装置などを備えても良い。 Furthermore, the storage device 15B can store setting data DT. In the setting data DT, holder identification information that can identify the holder 23A (see FIG. 2) of the tool rest 21 and information on the tool attached to the holder 23A indicated by the holder identification information can be stored in association with each other. There is. Details of the setting data DT will be described later. The control device 15 controls each device with the above-described configuration to execute machining on the workpiece. For example, the control device 15 controls the turret device 12 to adjust the position of the tool rest 21 and index the tool, and processes the workpiece of the spindle device 11 using the indexed tool. Note that the configuration of the machine tool 10 described above is an example. For example, the machine tool 10 may include a workpiece transport device that transports the workpiece, a reversing device that reverses the workpiece, and the like.
(タレット装置12について)
 次に、タレット装置12について説明する。図2は、タレット装置12の刃物台21を平面視した状態を模式的に示している。図3は、図2に示すI-I線で切断した矢視断面図であって、タレット装置12の一部の断面図を示している。以下の説明では、図2及び図3に示すように、図2の図面における上下方向をX方向、左右方向をY方向、紙面に垂直な方向をZ方向と称して説明する。X方向は、後述する駆動軸45の軸方向と平行な方向であり、Z方向は、後述する旋回軸39の中心軸35と平行な方向であり、Y方向は、XY方向に直交する方向である。
(About the turret device 12)
Next, the turret device 12 will be explained. FIG. 2 schematically shows a plan view of the tool rest 21 of the turret device 12. FIG. 3 is a cross-sectional view taken along the line II shown in FIG. 2, and shows a partial cross-sectional view of the turret device 12. As shown in FIG. In the following description, as shown in FIGS. 2 and 3, the vertical direction in the drawing of FIG. 2 is referred to as the X direction, the left and right direction as the Y direction, and the direction perpendicular to the plane of the paper as the Z direction. The X direction is a direction parallel to the axial direction of a drive shaft 45 described later, the Z direction is a direction parallel to a central axis 35 of a turning shaft 39 described later, and the Y direction is a direction perpendicular to the XY direction. be.
 図2及び図3に示すように刃物台21の外周部分には、環状のホルダ部材23が設けられている。図4は、ホルダ部材23に回転工具25を取り付けた状態を示している。図4に示すように、本実施例のホルダ部材23は、例えば、Z軸方向視において正10角形の外周形状をなし、内側に円形の貫通孔を形成され、半径方向に所定の厚みを有する環状の部材である。ホルダ部材23の10個の外周面には、回転工具25やバイト(図示略)が取り付け可能なホルダ23Aが形成されている。図4は、一例として、10個のホルダ23Aの全てに回転工具25を取り付けた状態を示しているが、回転させずに切削を行なうバイト(刃物)もホルダ23Aに取り付けることができる。尚、図4は、回転工具25の切削工具57(図3参照)の図示を省略している。また、ホルダ23Aは、10個のホルダ23Aの全てに回転工具25のみを取り付け可能な構成でもよく、10個のホルダ23Aのうち、少なくとも1つにバイトを取り付け可能な構成でも良い。 As shown in FIGS. 2 and 3, an annular holder member 23 is provided on the outer periphery of the tool post 21. FIG. 4 shows a state in which the rotary tool 25 is attached to the holder member 23. As shown in FIG. As shown in FIG. 4, the holder member 23 of this embodiment has, for example, a regular decagonal outer peripheral shape when viewed in the Z-axis direction, has a circular through hole formed inside, and has a predetermined thickness in the radial direction. It is an annular member. Holders 23A are formed on ten outer circumferential surfaces of the holder member 23 to which a rotary tool 25 or a cutting tool (not shown) can be attached. As an example, FIG. 4 shows a state in which rotary tools 25 are attached to all ten holders 23A, but a cutting tool that performs cutting without rotation can also be attached to the holders 23A. Note that FIG. 4 omits illustration of the cutting tool 57 (see FIG. 3) of the rotary tool 25. Further, the holders 23A may have a configuration in which only the rotary tool 25 can be attached to all ten holders 23A, or a configuration in which a cutting tool can be attached to at least one of the ten holders 23A.
 また、図2~図4に示すように、ホルダ23Aには、スペーサ27が取り付け可能となっている。スペーサ27は、刃物台21の半径方向(Z軸方向に垂直な方向)における回転工具25の凸条部65の位置を調整する部材である。ホルダ23A及びスペーサ27の詳細については後述する。 Furthermore, as shown in FIGS. 2 to 4, a spacer 27 can be attached to the holder 23A. The spacer 27 is a member that adjusts the position of the protruding portion 65 of the rotary tool 25 in the radial direction of the tool rest 21 (direction perpendicular to the Z-axis direction). Details of the holder 23A and the spacer 27 will be described later.
 図2及び図3に示すように、タレット装置12は、装置内に回転体29(図3参照)が設けられている。回転体29は、軸受部材31を介して回転可能に支持されている。軸受部材31は、例えば、ボールベアリングである。回転体29の先端には、刃物台21が取り付けられている。タレット装置12は、刃物台21を回転させる駆動源として、サーボモータ等の旋回用モータ33(図3参照)を備えている。制御装置15は、旋回用モータ33を制御して回転体29を回転させ、Z方向と平行な中心軸35を中心に刃物台21を回転方向36へ旋回させ、回転工具25及びバイト(以下、工具という場合がある)の割り出しを実行する。刃物台21は、作業位置37に配置した工具を用いてワークに対する加工を実行し、旋回することで作業位置37の工具、即ち、ワークに対して加工を実行する工具を入れ替える。 As shown in FIGS. 2 and 3, the turret device 12 is provided with a rotating body 29 (see FIG. 3) inside the device. The rotating body 29 is rotatably supported via a bearing member 31. The bearing member 31 is, for example, a ball bearing. A tool rest 21 is attached to the tip of the rotating body 29. The turret device 12 includes a turning motor 33 (see FIG. 3) such as a servo motor as a drive source for rotating the tool post 21. The control device 15 controls the turning motor 33 to rotate the rotating body 29, turns the tool rest 21 in a rotational direction 36 about a central axis 35 parallel to the Z direction, and rotates the rotating tool 25 and the cutting tool (hereinafter referred to as (sometimes referred to as a tool). The tool rest 21 executes machining on a workpiece using a tool placed at a working position 37, and by rotating, replaces the tool at the working position 37, that is, the tool that executes machining on the workpiece.
 また、タレット装置12内には、中心軸35に沿って旋回軸39が設けられている。旋回軸39は、回転体29内に配置され、軸受部材41によって回転可能に支持されている。旋回軸39の基端部(図3の左側端部)には、駆動源として、例えば、サーボモータ43が取り付けられている。制御装置15は、サーボモータ43を制御して、中心軸35を中心に旋回軸39を回転させる。尚、旋回軸39は、中心軸35からずれた位置に設けられる構成でも良い。 Additionally, a pivot shaft 39 is provided within the turret device 12 along the central axis 35. The pivot shaft 39 is disposed within the rotating body 29 and rotatably supported by a bearing member 41. For example, a servo motor 43 is attached to the base end of the pivot shaft 39 (the left end in FIG. 3) as a drive source. The control device 15 controls the servo motor 43 to rotate the pivot shaft 39 about the central shaft 35 . Note that the pivot shaft 39 may be provided at a position offset from the central axis 35.
 刃物台21には、X軸方向に沿った駆動軸45が設けられている。旋回軸39の先端(図3の右側端部)は、刃物台21内に挿入され、駆動軸45と連結されている。駆動軸45は、例えば、略円柱形状の軸で有り、軸受部材46によって、X方向に沿った回転軸47を中心に回転可能に支持されている。駆動軸45は、例えば、かさ歯車48を介して旋回軸39と連結され、旋回軸39の回転駆動力を伝達される。駆動軸45は、旋回軸39と直交する状態で、旋回軸39の回転に応じて回転する。尚、旋回軸39と駆動軸45を連結する手段は、かさ歯車48などの歯車に限らず、カムやベルトを用いた方法でも良い。 The tool rest 21 is provided with a drive shaft 45 extending along the X-axis direction. The tip of the pivot shaft 39 (the right end in FIG. 3) is inserted into the tool rest 21 and connected to the drive shaft 45. The drive shaft 45 is, for example, a substantially cylindrical shaft, and is supported by a bearing member 46 so as to be rotatable about a rotation shaft 47 along the X direction. The drive shaft 45 is connected to the rotation shaft 39 via, for example, a bevel gear 48, and the rotational driving force of the rotation shaft 39 is transmitted to the drive shaft 45. The drive shaft 45 is orthogonal to the pivot shaft 39 and rotates in accordance with the rotation of the pivot shaft 39 . Note that the means for connecting the rotating shaft 39 and the drive shaft 45 is not limited to gears such as the bevel gear 48, but may also be a method using a cam or a belt.
 複数の回転工具25の各々には、伝動軸49が設けられている。また、駆動軸45の作業位置37側の先端には、駆動軸45と伝動軸49を連結するクラッチ装置51が設けられている。作業位置37に配置された回転工具25の伝動軸49は、クラッチ装置51を介して駆動軸45の先端と連結される。伝動軸49は、例えば、略円柱形状の軸であり、駆動軸45と連結された状態では駆動軸45の中心軸に沿った状態で回転可能に配置される。伝動軸49は、クラッチ装置51を介して駆動軸45の回転駆動力を伝達される。従って、伝動軸49は、旋回軸39の回転に伴って回転する。 Each of the plurality of rotating tools 25 is provided with a transmission shaft 49. Furthermore, a clutch device 51 that connects the drive shaft 45 and the transmission shaft 49 is provided at the end of the drive shaft 45 on the working position 37 side. A transmission shaft 49 of the rotary tool 25 disposed at the working position 37 is connected to the tip of the drive shaft 45 via a clutch device 51 . The transmission shaft 49 is, for example, a substantially cylindrical shaft, and is arranged rotatably along the central axis of the drive shaft 45 when connected to the drive shaft 45 . The rotational driving force of the drive shaft 45 is transmitted to the transmission shaft 49 via the clutch device 51. Therefore, the transmission shaft 49 rotates as the rotation shaft 39 rotates.
 回転工具25の伝動軸49は、例えば、回転工具25のハウジング26内に設けられた軸受部材53によって回転可能に設けられている。回転工具25には、伝動軸49の回転駆動力を伝達するための伝達機構55が設けられている。また、回転工具25には、例えば、切削工具57を保持するツールホルダ59が設けられている。ツールホルダ59は、例えば、コレットチャックである。伝達機構55は、例えば、複数の歯車で構成され、伝動軸49の回転駆動力をツールホルダ59に伝達し、ツールホルダ59を回転させる。ツールホルダ59には、各種の切削工具57が取り付け可能となっている。切削工具57としては、例えば、ドリル、タップ、エンドミルなどを採用することができる。ツールホルダ59は、回転工具25に設けられた軸受部材61により回転可能に支持されている。切削工具57は、回転工具25から先端を突出させた状態でツールホルダ59に保持され、ツールホルダ59とともに回転する。複数の回転工具25の各々は、作業位置37に配置されることで、クラッチ装置51を介して伝動軸49を駆動軸45に連結され、旋回軸39の回転駆動力を伝達され、切削工具57を回転させる。 The transmission shaft 49 of the rotary tool 25 is rotatably provided, for example, by a bearing member 53 provided within the housing 26 of the rotary tool 25. The rotary tool 25 is provided with a transmission mechanism 55 for transmitting the rotational driving force of the transmission shaft 49. Further, the rotary tool 25 is provided with a tool holder 59 that holds a cutting tool 57, for example. The tool holder 59 is, for example, a collet chuck. The transmission mechanism 55 is composed of, for example, a plurality of gears, and transmits the rotational driving force of the transmission shaft 49 to the tool holder 59 to rotate the tool holder 59. Various cutting tools 57 can be attached to the tool holder 59. As the cutting tool 57, for example, a drill, tap, end mill, etc. can be adopted. The tool holder 59 is rotatably supported by a bearing member 61 provided on the rotary tool 25. The cutting tool 57 is held by the tool holder 59 with its tip protruding from the rotary tool 25 and rotates together with the tool holder 59. Each of the plurality of rotary tools 25 is placed at the working position 37, so that the transmission shaft 49 is connected to the drive shaft 45 via the clutch device 51, and the rotational driving force of the rotation shaft 39 is transmitted to the cutting tool 57. Rotate.
 尚、図2及び図3に示す回転工具25の内部構成は、一例である。回転工具25の構成は、用途・機能・製造メーカ等によって異なる場合がある。例えば、ツールホルダ59は、コレットチャックに限らず、ミーリングチャック、油圧チャック、サイドロックホルダ、焼きばめホルダ、アーバなどの他の保持部材でも良い。また、回転工具25は、ツールホルダ59を備えず、切削工具57を交換できない構成でも良い。また、回転工具25は、伝達機構55を備えず、切削工具57を伝動軸49に直接連結する、あるいは、切削工具57と伝動軸49が一体的となっている構成でも良い。また、回転工具25は、伝動軸49の軸方向に対してツールホルダ59を直交する方向に回転可能に保持する構成でも良い。 Note that the internal configuration of the rotary tool 25 shown in FIGS. 2 and 3 is an example. The configuration of the rotary tool 25 may vary depending on the application, function, manufacturer, etc. For example, the tool holder 59 is not limited to a collet chuck, but may be a milling chuck, a hydraulic chuck, a side lock holder, a shrink fit holder, an arbor, or other holding member. Further, the rotary tool 25 may not include the tool holder 59 and may have a configuration in which the cutting tool 57 cannot be replaced. Further, the rotary tool 25 may have a structure in which the cutting tool 57 is directly connected to the transmission shaft 49 without the transmission mechanism 55, or the cutting tool 57 and the transmission shaft 49 are integrated. Further, the rotary tool 25 may have a configuration in which the tool holder 59 is rotatably held in a direction orthogonal to the axial direction of the transmission shaft 49.
 図5は、刃物台21のホルダ部材23等の部材を取り外した状態を示している。図2及び図5に示すように、刃物台21内には、環状のガイドレール63が設けられている。ガイドレール63には、クラッチ装置51の位置(作業位置37)に合わせて切り欠き部63A(図2参照)が形成されている。駆動軸45は、X方向における基端側に旋回軸39を連結され、ガイドレール63の切り欠き部63Aの位置に合わせて先端部を配置されている。駆動軸45の先端部には、クラッチ装置51が取り付けられている。各回転工具25の伝動軸49は、回転工具25のハウジング26から突出しており、回転工具25をホルダ23Aに取り付けた状態では、ガイドレール63に向かって延びている。回転工具25から突出した伝動軸49の先端には、凸条部65(図2参照)が形成されている。複数の回転工具25の各々は、ホルダ23Aに取り付けられた状態では、刃物台21の旋回にともなって凸条部65をガイドレール63に沿って移動させながら刃物台21とともに旋回する。 FIG. 5 shows the tool post 21 with the holder member 23 and other members removed. As shown in FIGS. 2 and 5, an annular guide rail 63 is provided within the tool rest 21. As shown in FIGS. A notch 63A (see FIG. 2) is formed in the guide rail 63 in accordance with the position of the clutch device 51 (working position 37). The drive shaft 45 is connected to the pivot shaft 39 on the base end side in the X direction, and has a distal end portion aligned with the position of the notch portion 63A of the guide rail 63. A clutch device 51 is attached to the tip of the drive shaft 45 . The transmission shaft 49 of each rotary tool 25 protrudes from the housing 26 of the rotary tool 25, and extends toward the guide rail 63 when the rotary tool 25 is attached to the holder 23A. A convex portion 65 (see FIG. 2) is formed at the tip of the transmission shaft 49 protruding from the rotary tool 25. Each of the plurality of rotary tools 25, when attached to the holder 23A, rotates together with the tool rest 21 while moving the protruding strip 65 along the guide rail 63 as the tool rest 21 turns.
(クラッチ装置51について)
 次に、クラッチ装置51の詳細について説明する。図5は、刃物台21内の部材を示す斜視図であり、駆動軸45やクラッチ装置51を覆う軸ハウジング67を取り付けた状態を示している。図6は、この軸ハウジング67やガイドレール63を取り外した状態を示している。図7は、クラッチ装置51の分解斜視図を示している。図8は、図3の破線で囲った部分を拡大した拡大図である。図5~図8に示すように、クラッチ装置51は、クラッチ部材71、ピン73、Oリング75を備えている。クラッチ装置51は、刃物台21の駆動軸45に回転工具25の伝動軸49を、連結する、又は、連結を解除する装置である。
(About the clutch device 51)
Next, details of the clutch device 51 will be explained. FIG. 5 is a perspective view showing the members inside the tool rest 21, and shows a state in which a shaft housing 67 covering the drive shaft 45 and the clutch device 51 is attached. FIG. 6 shows the shaft housing 67 and guide rail 63 removed. FIG. 7 shows an exploded perspective view of the clutch device 51. FIG. 8 is an enlarged view of the part surrounded by the broken line in FIG. 3. As shown in FIGS. 5 to 8, the clutch device 51 includes a clutch member 71, a pin 73, and an O-ring 75. The clutch device 51 is a device that connects or disconnects the power transmission shaft 49 of the rotary tool 25 to the drive shaft 45 of the tool rest 21 .
 駆動軸45の先端部77には、駆動軸45の軸方向(回転軸47)に沿って形成された挿入穴79が設けられている。先端部77は、駆動軸45の先端を加工して形成した駆動軸45と同一の部材でも良く、駆動軸45の先端に取り付けた別部材でも良い。挿入穴79は、断面が円形の穴で有り、先端側に開口が形成されている。また、クラッチ部材71は、基部81と、連結部82を備えている。連結部82は、例えば、回転軸47の軸方向に所定の厚みを有する略円柱形状をなしている。基部81は、連結部82の駆動軸45側の端面82Aの中央から回転軸47の軸方向に沿って突出した略円柱形状をなしている。クラッチ部材71は、基部81側から挿入穴79に挿入される。基部81の外径は、例えば、円柱形状の連結部82の外径に比べて小さくなっている。挿入穴79は、この基部81及び連結部82の外形形状に合わせて段差を有し、内径の異なる2つの円筒形状の穴を回転軸47の軸方向に並べた形状をなしている。挿入穴79は、基部81の外形形状に合わせて円筒形状に形成された第1挿入部79Aと、連結部82の外形形状に合わせて円筒形状に形成された第2挿入部79Bを有する。 The tip end 77 of the drive shaft 45 is provided with an insertion hole 79 formed along the axial direction of the drive shaft 45 (rotation shaft 47). The tip portion 77 may be the same member as the drive shaft 45 formed by processing the tip of the drive shaft 45, or may be a separate member attached to the tip of the drive shaft 45. The insertion hole 79 is a hole with a circular cross section, and an opening is formed on the tip side. Further, the clutch member 71 includes a base portion 81 and a connecting portion 82 . The connecting portion 82 has, for example, a substantially cylindrical shape having a predetermined thickness in the axial direction of the rotating shaft 47. The base portion 81 has a substantially cylindrical shape that protrudes from the center of the end surface 82A of the connecting portion 82 on the drive shaft 45 side along the axial direction of the rotating shaft 47. The clutch member 71 is inserted into the insertion hole 79 from the base 81 side. The outer diameter of the base portion 81 is, for example, smaller than the outer diameter of the cylindrical connecting portion 82. The insertion hole 79 has a step corresponding to the outer shape of the base portion 81 and the connecting portion 82, and has a shape in which two cylindrical holes having different inner diameters are arranged in the axial direction of the rotating shaft 47. The insertion hole 79 has a first insertion part 79A formed in a cylindrical shape to match the external shape of the base 81, and a second insertion part 79B formed in a cylindrical shape to match the external shape of the connecting part 82.
 ピン73は、例えば、略円柱形状をなす金属製の部材である。駆動軸45の先端部77には、一対の貫通孔77Aが形成されている。一対の貫通孔77Aの各々は、ピン73の大きさに合わせて形成された円形の穴であり、挿入穴79の内外を連通している。一対の貫通孔77Aは、回転軸47の軸方向と直交する方向において互いに対向する位置に形成されている。また、基部81には、一対の貫通孔77Aの位置に合わせて形成された貫通孔81Aが形成されている。貫通孔81Aは、ピン73の大きさに合わせて形成された円筒形状の穴である。ピン73は、一対の貫通孔77A、及び第1挿入部79Aに挿入された基部81の貫通孔81Aに挿入される。これにより、クラッチ部材71は、駆動軸45に対してピン73によって保持される。 The pin 73 is, for example, a metal member having a substantially cylindrical shape. A pair of through holes 77A are formed in the distal end portion 77 of the drive shaft 45. Each of the pair of through holes 77A is a circular hole formed to match the size of the pin 73, and communicates the inside and outside of the insertion hole 79. The pair of through holes 77A are formed at positions facing each other in a direction orthogonal to the axial direction of the rotating shaft 47. Further, the base portion 81 is formed with a through hole 81A formed in accordance with the position of the pair of through holes 77A. The through hole 81A is a cylindrical hole formed to match the size of the pin 73. The pin 73 is inserted into the pair of through holes 77A and the through hole 81A of the base 81 inserted into the first insertion portion 79A. Thereby, the clutch member 71 is held with respect to the drive shaft 45 by the pin 73.
 また、ピン73は、貫通孔77Aに挿入した状態において、基端部に形成された円形の係合部73Aを先端部77の外周面に係合させることで、軸方向における一方側への移動を規制される。また、ピン73の先端には、リング用溝73Bが外周に沿って形成されている。ピン73は、一対の貫通孔77A及び貫通孔81Aに挿入された状態で先端のリング用溝73Bに金属リング83(C型の止め輪など)を取り付けられ、先端部77に対する相対的な移動を規制される。尚、クラッチ部材71を駆動軸45に取り付ける方法は、上記したピン73を用いる方法に限らない。例えば、基部81を円筒形状に形成し、内外を連通する一対の貫通孔81Aを形成する。そして、一対の貫通孔81Aと、一対の貫通孔77Aの各々をリベットによって保持しても良い。また、クラッチ部材71を、駆動軸45の先端に切削等で加工し、駆動軸45に対して一体的に形成しても良い。 Furthermore, when the pin 73 is inserted into the through hole 77A, the circular engaging portion 73A formed at the base end engages with the outer circumferential surface of the distal end portion 77, so that the pin 73 can be moved to one side in the axial direction. is regulated. Further, a ring groove 73B is formed at the tip of the pin 73 along the outer periphery. The pin 73 is inserted into the pair of through holes 77A and 81A, and a metal ring 83 (such as a C-shaped retaining ring) is attached to the ring groove 73B at the tip to prevent relative movement with respect to the tip 77. Regulated. Note that the method for attaching the clutch member 71 to the drive shaft 45 is not limited to the method using the pin 73 described above. For example, the base 81 is formed into a cylindrical shape, and a pair of through holes 81A are formed to communicate the inside and outside. Each of the pair of through holes 81A and the pair of through holes 77A may be held by a rivet. Alternatively, the clutch member 71 may be formed integrally with the drive shaft 45 by machining the tip of the drive shaft 45 by cutting or the like.
 また、挿入穴79は、例えば、挿入されるクラッチ部材71の外径に比べて若干だけ大きい内径で形成され、クラッチ部材71との間に隙間(0.1mm~0.3mm程度)が設けられている。クラッチ部材71は、回転軸47と直交する方向に沿って、先端部77(駆動軸45)に対して相対的に移動可能な自由度を有している。この自由度は、駆動軸45に対する伝動軸49の軸ずれを許容する自由度となる。また、例えば、連結部82と第2挿入部79Bの内周面との間の隙間は、基部81と第1挿入部79Aの内周面との間の隙間に比べて若干だけ広くなっている。また、連結部82の外周面には、Oリング75を嵌め込む弾性部材用溝81Bが形成されている。弾性部材用溝81Bの深さは、例えば、Oリング75の太さに比べて若干だけ浅くなっている。クラッチ部材71は、Oリング75を弾性部材用溝81Bに嵌め込まれた状態で、挿入穴79に挿入される。Oリング75は、第2挿入部79Bの内周面と弾性部材用溝81Bの底部とに接触して挟まれた状態で配置される。 Further, the insertion hole 79 is formed with an inner diameter slightly larger than the outer diameter of the clutch member 71 to be inserted, for example, and a gap (about 0.1 mm to 0.3 mm) is provided between the insertion hole 79 and the clutch member 71. ing. The clutch member 71 has a degree of freedom that allows it to move relative to the tip portion 77 (drive shaft 45) along a direction orthogonal to the rotating shaft 47. This degree of freedom is a degree of freedom that allows misalignment of the transmission shaft 49 with respect to the drive shaft 45. Further, for example, the gap between the connecting portion 82 and the inner circumferential surface of the second insertion portion 79B is slightly wider than the gap between the base portion 81 and the inner circumferential surface of the first insertion portion 79A. . Furthermore, an elastic member groove 81B into which the O-ring 75 is fitted is formed on the outer peripheral surface of the connecting portion 82. The depth of the elastic member groove 81B is, for example, slightly shallower than the thickness of the O-ring 75. The clutch member 71 is inserted into the insertion hole 79 with the O-ring 75 fitted into the elastic member groove 81B. The O-ring 75 is placed in contact with and sandwiched between the inner circumferential surface of the second insertion portion 79B and the bottom of the elastic member groove 81B.
 ピン73の軸方向に発生する軸ずれの許容量は、クラッチ部材71と、挿入穴79の間の隙間を広くすることで増大できる。しかしながら、必要な許容量を確保できる大きさまで隙間を単純に増大させると、クラッチ部材71は、自重や回転工具25の重さによって位置がずれる虞がある。結果として重力等によってクラッチ部材71の位置がずれ、軸ずれが発生し、振動や異音が発生する虞がある。そこで、本実施例のクラッチ装置51は、クラッチ部材71と挿入穴79の間に隙間を設けるとともに、クラッチ部材71と挿入穴79の間にOリング75を設けている。これにより、隙間を大きくしたとしても、Oリング75の弾性力によってクラッチ部材71を重力等に抗して正しい位置に配置することができる。尚、工作機械10は、クラッチ部材71と挿入穴79の間の隙間やOリング75を有しない構成でも良い。 The allowable amount of axial misalignment that occurs in the axial direction of the pin 73 can be increased by widening the gap between the clutch member 71 and the insertion hole 79. However, if the gap is simply increased to a size that can secure the necessary tolerance, there is a risk that the clutch member 71 will be displaced due to its own weight or the weight of the rotary tool 25. As a result, the position of the clutch member 71 may shift due to gravity or the like, causing shaft misalignment, which may cause vibrations or abnormal noises. Therefore, in the clutch device 51 of this embodiment, a gap is provided between the clutch member 71 and the insertion hole 79, and an O-ring 75 is provided between the clutch member 71 and the insertion hole 79. Thereby, even if the gap is increased, the elastic force of the O-ring 75 allows the clutch member 71 to be placed in the correct position against gravity and the like. Note that the machine tool 10 may have a configuration in which the gap between the clutch member 71 and the insertion hole 79 and the O-ring 75 are not provided.
(凸条部65、第1及び第2凹溝部91,92について)
 次に、クラッチ部材71と伝動軸49の連結構成について説明する。図2、図4及び図7に示すように、伝動軸49の先端には、凸条部65が形成されている。凸条部65は、例えば、所定の厚みを有する板形状をなし、伝動軸49の円形の先端面66から軸方向の外側に向かって突出している。凸条部65の軸方向の長さを高さH、厚さ方向の長さを幅W、高さ方向及び厚さ方向の両方に直交する方向の長さを長さLとする。例えば、凸条部65は、円形の先端面66の中心(回転中心)を通り、円形の伝動軸49の直径に沿った板形状をなしている。
(Regarding the protruding portion 65 and the first and second groove portions 91 and 92)
Next, a connection structure between the clutch member 71 and the power transmission shaft 49 will be explained. As shown in FIGS. 2, 4, and 7, a protruding portion 65 is formed at the tip of the transmission shaft 49. As shown in FIGS. The convex portion 65 is, for example, in the shape of a plate having a predetermined thickness, and protrudes outward in the axial direction from the circular tip surface 66 of the power transmission shaft 49 . The length of the protruding strip 65 in the axial direction is the height H, the length in the thickness direction is the width W, and the length in the direction perpendicular to both the height direction and the thickness direction is the length L. For example, the protruding portion 65 has a plate shape that passes through the center (rotation center) of the circular tip surface 66 and extends along the diameter of the circular power transmission shaft 49 .
 一方、連結部82は、伝動軸49の凸条部65を挿入するための第1凹溝部91及び第2凹溝部92の2つの凹溝部が形成されている。図9は、ホルダ部材23及びクラッチ部材71の斜視図を示している。図7~図9に示すように、第1及び第2凹溝部91,92は、回転軸47の軸方向において弾性部材用溝81Bよりも先端側に設けられ、軸方向において凸条部65と対向する位置に設けられている。第1及び第2凹溝部91,92の各々は、回転軸47の軸方向と並行な方向に連結部82を凹設して形成され、軸方向と直交する方向に沿って形成されている。 On the other hand, the connecting portion 82 is formed with two grooves, a first groove 91 and a second groove 92, into which the protrusion 65 of the transmission shaft 49 is inserted. FIG. 9 shows a perspective view of the holder member 23 and the clutch member 71. As shown in FIGS. 7 to 9, the first and second groove portions 91 and 92 are provided closer to the distal end than the elastic member groove 81B in the axial direction of the rotating shaft 47, and are connected to the protruding strip portion 65 in the axial direction. They are located at opposite positions. Each of the first and second groove portions 91 and 92 is formed by recessing the connecting portion 82 in a direction parallel to the axial direction of the rotating shaft 47, and is formed along a direction perpendicular to the axial direction.
 第1及び第2凹溝部91,92は、互いに直交する方向に形成されている。このため、クラッチ部材71を軸方向の先端側から見た場合、十字形状の溝が形成されている。第1凹溝部91は、回転軸47を中心とした回転方向50(図9参照)において、第2凹溝部92の位置から90度だけ回転した位置に配置されている。例えば、第1凹溝部91は、ピン73の軸方向における幅W1を一定としながら、回転軸47の軸方向、及びピン73の軸方向の両方に直交する方向に沿って形成されている。また、第2凹溝部92は、第1凹溝部91の溝に沿った方向における幅W2を一定としながら、第1凹溝部91の溝に沿った方向、及び回転軸47の軸方向の両方に直交する方向、即ち、ピン73の軸方向に沿って形成されている。また、図8に示すように、例えば、第1凹溝部91の底部は、第2凹溝部92の底部に比べて若干だけ低くなっている。 The first and second groove portions 91 and 92 are formed in directions perpendicular to each other. Therefore, when the clutch member 71 is viewed from the distal end side in the axial direction, a cross-shaped groove is formed. The first groove portion 91 is arranged at a position rotated by 90 degrees from the position of the second groove portion 92 in a rotation direction 50 (see FIG. 9) about the rotating shaft 47. For example, the first groove portion 91 is formed along a direction perpendicular to both the axial direction of the rotating shaft 47 and the axial direction of the pin 73 while keeping the width W1 of the pin 73 constant in the axial direction. Further, while keeping the width W2 constant in the direction along the groove of the first groove part 91, the second groove part 92 extends in both the direction along the groove of the first groove part 91 and the axial direction of the rotating shaft 47. It is formed along the orthogonal direction, that is, the axial direction of the pin 73. Further, as shown in FIG. 8, for example, the bottom of the first groove 91 is slightly lower than the bottom of the second groove 92.
 ここで、回転工具25の凸条部65の形状は、切削工具57に要求される切削や穴開けの能力、要求される剛性の高さ、回転工具25を製造するメーカの種類などに応じて変更される。例えば、本実施例の刃物台21に取り付け可能な回転工具25の凸条部65は、互いに幅Wが異なるものが含まれる。幅Wは、例えば、6mm、8mm、10mmである。一方で、ユーザは、加工したい穴の大きさ、要求される加工精度、回転工具25の価格などに応じて使用する回転工具25を使い分けたい場合がある。しかしながら、一般的な従来のクラッチ部材では、凹溝部が一つしか設けられておらず、使用する回転工具25として、凸条部65が同一形状のものしか使用することができなかった。 Here, the shape of the convex strip 65 of the rotary tool 25 depends on the cutting and drilling ability required of the cutting tool 57, the required high rigidity, the type of manufacturer that manufactures the rotary tool 25, etc. Be changed. For example, the protrusions 65 of the rotary tool 25 that can be attached to the tool post 21 of this embodiment include those having different widths W from each other. The width W is, for example, 6 mm, 8 mm, or 10 mm. On the other hand, the user may want to use a different rotary tool 25 depending on the size of the hole to be machined, the required machining accuracy, the price of the rotary tool 25, etc. However, in a typical conventional clutch member, only one groove is provided, and the rotary tool 25 used can only be one in which the protruding stripes 65 have the same shape.
 これに対し、本実施例のクラッチ部材71には、幅W1の第1凹溝部91及び幅W2の第2凹溝部92の2つの凹溝部が形成されている。これにより、使用する(割り出す)回転工具25の凸条部65の幅Wに応じて、その凸条部65と連結させる凹溝部を切り替えることで、凸条部65の形状が異なる回転工具25を1つの刃物台21で使用することができる。第1及び第2凹溝部91,92の切り替え制御については後述する。尚、以下の説明では、一例として、幅W1を6mm、幅W2を8mmとして説明する。また、実際には、幅Wが6mm、8mm、10mmなどの凸条部65を挿入するためには、例えば、幅W1を6mmよりも若干だけ大きい幅(6.数mmなど)にする必要がある。即ち、凸条部65の幅Wに若干だけ余裕を持たせた溝の幅W1,W2が必要となる。以下の説明では、説明の便宜上、6mm+αの幅W1を、6mmの幅W1、8mm+αの幅W2を、8mmの幅W2と記載する。 On the other hand, the clutch member 71 of this embodiment has two grooves, a first groove 91 having a width W1 and a second groove 92 having a width W2. As a result, depending on the width W of the protruding part 65 of the rotary tool 25 to be used (indexed), the concave groove to be connected to the protruding part 65 can be switched, so that the rotary tool 25 with the protruding part 65 having a different shape can be used. It can be used with one tool post 21. Switching control of the first and second groove portions 91 and 92 will be described later. In the following description, the width W1 is assumed to be 6 mm and the width W2 is 8 mm, as an example. Furthermore, in reality, in order to insert the protruding strip 65 having a width W of 6 mm, 8 mm, 10 mm, etc., it is necessary to make the width W1 slightly larger than 6 mm (6.0 mm, etc.), for example. be. That is, the widths W1 and W2 of the grooves are required to be slightly larger than the width W of the protruding portion 65. In the following description, for convenience of explanation, the width W1 of 6 mm+α will be described as the width W1 of 6 mm, and the width W2 of 8 mm+α will be described as the width W2 of 8 mm.
 また、本実施例では、形状の異なる凸条部65の各々の形状に合わせて凹溝部を設ける例として、幅Wが異なる場合を説明するが、これに限らない。例えば、回転工具25ごとに凸条部65の高さHが異なる場合、凸条部65の高さHに合わせて第1及び第2凹溝部91,92の各々の深さを変更しても良い。例えば、A社製品の凸条部65の高さHが、B社製品の凸条部65の高さHよりも長い場合、A社製品の高さHに合わせた深さの第1凹溝部91と、B社製品の高さHに合わせた深さの第2凹溝部92とをクラッチ部材71に設けても良い。 Furthermore, in this embodiment, a case where the widths W are different will be described as an example in which groove portions are provided in accordance with the shapes of the protruding stripes 65 having different shapes, but the present invention is not limited to this. For example, if the height H of the protruding line part 65 differs for each rotary tool 25, the depth of each of the first and second groove parts 91 and 92 may be changed according to the height H of the protruding line part 65. good. For example, if the height H of the protruding strip 65 of the product of company A is longer than the height H of the protruding strip 65 of the product of company B, the first groove has a depth matching the height H of the product of company A. 91 and a second groove portion 92 having a depth matching the height H of the product of company B may be provided in the clutch member 71.
 同様に、例えば、回転工具25ごとに凸条部65の長さLが異なる場合、凸条部65の長さLに合わせて、第1及び第2凹溝部91,92の溝の長さを変更しても良い。また、回転工具25ごとに凸条部65の幅W、高さH、長さLの少なくとも2つが異なる場合にも、各凸条部65の形状に合わせた第1及び第2凹溝部91,92を設けても良い。 Similarly, for example, if the length L of the protruding part 65 is different for each rotary tool 25, the length of the groove of the first and second groove parts 91 and 92 is adjusted according to the length L of the protruding part 65. You may change it. Further, even if at least two of the width W, height H, and length L of the protruding strip 65 differ for each rotary tool 25, the first and second groove portions 91, which match the shape of each protruding strip 65, 92 may be provided.
 また、本実施例におけるクラッチ部材71の形状は、一例である。例えば、第1凹溝部91は、回転方向50において第2凹溝部92と90度だけ位相が異なる位置に配置されなくとも良い。第1凹溝部91は、第2凹溝部92の位置から回転方向50に45度だけ位相がずれた位置に配置される構成でも良い。また、クラッチ部材71は、3つ以上の凹溝部を備えても良い。例えば、クラッチ部材71は、6mm、8mm、10mmの各幅の凹溝部を備える構成でも良い。この場合、3つ、又はそれ以上の複数の凹溝部を、クラッチ部材71の回転方向50に同一回転角度ごとに設けても良く、異なる回転角度で配置しても良い。 Further, the shape of the clutch member 71 in this embodiment is an example. For example, the first groove portion 91 does not need to be disposed at a position that is out of phase with the second groove portion 92 by 90 degrees in the rotation direction 50. The first groove portion 91 may be arranged at a position shifted from the position of the second groove portion 92 by 45 degrees in phase in the rotational direction 50. Further, the clutch member 71 may include three or more groove portions. For example, the clutch member 71 may have a configuration including grooves each having a width of 6 mm, 8 mm, or 10 mm. In this case, three or more grooves may be provided at the same rotation angle in the rotation direction 50 of the clutch member 71, or may be arranged at different rotation angles.
(スペーサ27)
 次にスペーサ27について説明する。ホルダ部材23の複数のホルダ23Aの各々に取り付けられた回転工具25は、刃物台21を旋回させた際に、伝動軸49の凸条部65の姿勢を所定方向(所定の回転位置)に保ったまま、刃物台21の回転方向36へ移動する。例えば、図4に示すように、各回転工具25の凸条部65は、ホルダ部材23の周方向に、長さL(図7参照)の辺を沿わせる姿勢で回転方向36へ移動する。
(Spacer 27)
Next, the spacer 27 will be explained. The rotary tool 25 attached to each of the plurality of holders 23A of the holder member 23 maintains the posture of the protruding portion 65 of the transmission shaft 49 in a predetermined direction (predetermined rotational position) when the tool rest 21 is rotated. The tool rest 21 moves in the rotational direction 36 while keeping the position. For example, as shown in FIG. 4, the protruding portion 65 of each rotary tool 25 moves in the rotation direction 36 with a side of length L (see FIG. 7) along the circumferential direction of the holder member 23.
 図5に示すように、刃物台21の作業位置37には、クラッチ装置51を覆い駆動軸45を収納する軸ハウジング67が設けられている。図5の拡大図に示すように、軸ハウジング67には、ガイドレール63と並行な方向(ガイドレール63の周方向)に切り欠かれた凹部67Aが形成されている。凹部67Aは、軸ハウジング67の外周端部に形成され、ガイドレール63の周方向に沿った溝である。この軸ハウジング67内には、クラッチ部材71の第1及び第2凹溝部91,92が露出した状態(外から見える状態)で配置されている。 As shown in FIG. 5, a shaft housing 67 that covers the clutch device 51 and accommodates the drive shaft 45 is provided at the working position 37 of the tool post 21. As shown in the enlarged view of FIG. 5, the shaft housing 67 has a recess 67A cut out in a direction parallel to the guide rail 63 (circumferential direction of the guide rail 63). The recess 67A is a groove formed at the outer peripheral end of the shaft housing 67 and extending along the circumferential direction of the guide rail 63. Inside this shaft housing 67, first and second groove portions 91 and 92 of the clutch member 71 are arranged in an exposed state (visible from the outside).
 複数の回転工具25の各々は、刃物台21の回転にともなって、ガイドレール63によって凸条部65の向きを案内されつつ、伝動軸49の姿勢を一定に保ちながら旋回し、作業位置37において第1凹溝部91又は第2凹溝部92に凸条部65を挿入する。換言すれば、回転工具25は、伝動軸49をクラッチ装置51と連結可能な姿勢をガイドレール63で維持されて旋回する。上記したように、ホルダ23Aには、スペーサ27が取り付け可能となっている。図10は、各ホルダ23Aにスペーサ27を取り付けた状態を示している。図9及び図10に示すように、複数のホルダ23Aの各々は、外周面に平面が形成され、複数のボルト穴(雌ネジを形成した穴)95が形成されている。複数のボルト穴95の各々には、スペーサ27を取り付けるボルト96が螺合される。複数のボルト穴95は、例えば、1つのホルダ23Aに対して4つ形成されている。4つのボルト穴95は、ホルダ23Aの平面において、所定の位置に形成されている。任意のホルダ23Aに形成された4つのボルト穴95の位置は、他のホルダ23Aに形成された4つのボルト穴95の位置とそれぞれ同一となっている。従って、本実施例のホルダ部材23は、各ホルダ23Aの各々に形成されるボルト穴95が全て同一(共通)となっている。 As the tool rest 21 rotates, each of the plurality of rotary tools 25 rotates while keeping the posture of the transmission shaft 49 constant while being guided in the direction of the protruding strip 65 by the guide rail 63, and reaches the working position 37. The protruding strip portion 65 is inserted into the first groove portion 91 or the second groove portion 92 . In other words, the rotary tool 25 rotates while being maintained by the guide rail 63 in a posture in which the transmission shaft 49 can be connected to the clutch device 51. As described above, the spacer 27 can be attached to the holder 23A. FIG. 10 shows the spacer 27 attached to each holder 23A. As shown in FIGS. 9 and 10, each of the plurality of holders 23A has a flat surface formed on its outer peripheral surface, and a plurality of bolt holes (holes with internal threads) 95. A bolt 96 for attaching the spacer 27 is screwed into each of the plurality of bolt holes 95. For example, four bolt holes 95 are formed for one holder 23A. Four bolt holes 95 are formed at predetermined positions on the plane of the holder 23A. The positions of the four bolt holes 95 formed in any holder 23A are the same as the positions of the four bolt holes 95 formed in the other holders 23A. Therefore, in the holder member 23 of this embodiment, the bolt holes 95 formed in each of the holders 23A are all the same (common).
 ホルダ部材23に取り付けられる複数のスペーサ27は、そのスペーサ27に取り付ける回転工具25に応じて形状等が異なるものの、ボルト96を取り付ける位置が同一となっている。スペーサ27は、例えば、刃物台21の半径方向において所定の厚みW3(図10参照)を有する直方体形状をなしている。スペーサ27の材料としては、例えば、JIS規格において、機械構造用の炭素鋼鋼材に分類される素材(S45C)を用いることができる。図10には、一例として、種類の異なる3つのスペーサ27A,27B,27Cが図示されている。尚、以下の説明において、種類の異なるスペーサを総称する場合は、スペーサ27と称する。スペーサ27Aの各々は、4つのボルト96を挿入するボルト穴97が4つ形成されている。任意のスペーサ27に形成される4つのボルト穴97の位置は、他のスペーサ27に形成される4つのボルト穴97の位置とそれぞれ同一となっている。従って、ホルダ部材23は、種類の異なるスペーサ27A,27B,27Cを、10個のホルダ23Aの何れにも取り付けることができる。 Although the plurality of spacers 27 attached to the holder member 23 have different shapes depending on the rotary tool 25 attached to the spacer 27, the positions where the bolts 96 are attached are the same. The spacer 27 has, for example, a rectangular parallelepiped shape having a predetermined thickness W3 (see FIG. 10) in the radial direction of the tool post 21. As a material for the spacer 27, for example, a material classified as carbon steel for mechanical structures (S45C) according to the JIS standard can be used. In FIG. 10, three different types of spacers 27A, 27B, and 27C are illustrated as an example. In the following description, different types of spacers will be collectively referred to as spacers 27. Each spacer 27A has four bolt holes 97 into which four bolts 96 are inserted. The positions of the four bolt holes 97 formed in any spacer 27 are the same as the positions of the four bolt holes 97 formed in other spacers 27. Therefore, the holder member 23 can attach different types of spacers 27A, 27B, and 27C to any of the ten holders 23A.
 また、図10に示すように、スペーサ27は、回転工具25のボルト98(図1、図4参照)を取り付ける複数のボルト穴99が形成されている。スペーサ27には、例えば、4つのボルト穴99が形成され、各ボルト穴99にボルト98が螺合されることによって回転工具25を取り付けられる。ここで、回転工具25は、上記した機能、剛性、製造メーカ等の違いによって、凸条部65の形状だけでなく、ボルト98を取り付ける位置、ボルト98の太さ、伝動軸49の長さが他の回転工具25と異なる場合がある。そこで、スペーサ27は、形状の異なる回転工具25に合わせた構造となっている。 Further, as shown in FIG. 10, the spacer 27 is formed with a plurality of bolt holes 99 for attaching bolts 98 of the rotary tool 25 (see FIGS. 1 and 4). For example, four bolt holes 99 are formed in the spacer 27, and the rotary tool 25 is attached by screwing a bolt 98 into each bolt hole 99. Here, the rotary tool 25 differs not only in the shape of the protruding portion 65 but also in the position where the bolt 98 is attached, the thickness of the bolt 98, and the length of the transmission shaft 49 due to the above-mentioned differences in function, rigidity, manufacturer, etc. It may be different from other rotary tools 25. Therefore, the spacer 27 has a structure adapted to the rotary tool 25 having a different shape.
 図11は、複数の回転工具25と、回転工具25の伝動軸49の外径、回転工具25の挿入孔101を示している。図11は、一例として6種類の回転工具25A,25B,25C,25D,25E,25Fを示している。尚、以下の説明では、回転工具25A~25Fを総称する場合は、回転工具25と記載する。図11は、縦に並ぶ各組の図面が同じ回転工具25に係わる図を示している。一番上の図には、各回転工具25の挿入孔101のピッチ(間隔)PTを示している。回転工具25A~25Fの各々には、ボルト98を挿入する挿入孔101が4つ形成されている。回転工具25A~25Fは、挿入孔101に挿入されたボルト98を、スペーサ27のボルト穴99(図10参照)に螺合されることで、スペーサ27に対して固定される。4つの挿入孔101のうち、2つの挿入孔101の間の距離であるピッチPTや、4つの挿入孔101の位置は、回転工具25の種類等に応じて異なる。このため、スペーサ27は、取り付けられる回転工具25の挿入孔101のピッチPTや位置に合わせてボルト穴99が形成されている。また、ボルト98の太さは、回転工具25に要求される剛性に応じて異なる。このため、ボルト穴99の穴径は、取り付けられるボルト98の太さに応じた大きさとなっている。これにより、スペーサ27を介して回転工具25をホルダ23Aに取り付けることで、複数のホルダ23Aの何れにも構造の異なる回転工具25A~25Fを取り付けることができる。 FIG. 11 shows a plurality of rotary tools 25, the outer diameter of the transmission shaft 49 of the rotary tools 25, and the insertion hole 101 of the rotary tools 25. FIG. 11 shows six types of rotary tools 25A, 25B, 25C, 25D, 25E, and 25F as an example. In the following description, when the rotary tools 25A to 25F are collectively referred to, they will be referred to as the rotary tool 25. FIG. 11 shows a diagram in which each set of drawings arranged vertically relates to the same rotary tool 25. The top diagram shows the pitch (interval) PT of the insertion holes 101 of each rotary tool 25. Four insertion holes 101 into which bolts 98 are inserted are formed in each of the rotary tools 25A to 25F. The rotary tools 25A to 25F are fixed to the spacer 27 by screwing a bolt 98 inserted into the insertion hole 101 into a bolt hole 99 of the spacer 27 (see FIG. 10). The pitch PT, which is the distance between two of the four insertion holes 101, and the positions of the four insertion holes 101 differ depending on the type of the rotary tool 25, etc. Therefore, bolt holes 99 are formed in the spacer 27 in accordance with the pitch PT and position of the insertion hole 101 of the rotary tool 25 to be attached. Further, the thickness of the bolt 98 varies depending on the rigidity required of the rotary tool 25. Therefore, the diameter of the bolt hole 99 is determined according to the thickness of the bolt 98 to be attached. Thereby, by attaching the rotary tool 25 to the holder 23A via the spacer 27, the rotary tools 25A to 25F having different structures can be attached to any of the plurality of holders 23A.
 上記したボルト96は、スペーサ側螺合部材の一例である。ボルト穴95は、ホルダ側被螺合部の一例である。ボルト98は、回転工具側螺合部材の一例である。ボルト穴99は、スペーサ側被螺合部の一例である。尚、スペーサ27をホルダ23Aに取り付ける方法や、回転工具25をスペーサ27に取り付ける方法は、ボルトとボルト穴を用いる方法に限らない。例えば、ボルト98,99の代わりにネジを用いる方法や、ボルトとナットを用いる方法でも良い。 The bolt 96 described above is an example of a spacer-side threaded member. The bolt hole 95 is an example of a holder-side screwed part. The bolt 98 is an example of a rotary tool side screwing member. The bolt hole 99 is an example of a spacer-side screwed part. Note that the method for attaching the spacer 27 to the holder 23A and the method for attaching the rotary tool 25 to the spacer 27 are not limited to the method using bolts and bolt holes. For example, instead of the bolts 98 and 99, screws may be used, or bolts and nuts may be used.
 また、図11の一番上の図には、伝動軸49の外径R1が図示されている。外径R1は、例えば、伝動軸49においてホルダ部材23及びスペーサ27に挿入される部分の最も太い部分の外径である。この外径R1も、例えば、回転工具25に要求される剛性などに応じて変更される。図9に示すように、ホルダ部材23の各ホルダ23Aには、伝動軸49を挿入する軸挿入孔103が形成されている。軸挿入孔103は、刃物台21の半径方向に沿ってホルダ23Aを貫通する円形の穴である。軸挿入孔103の内径は、例えば、ホルダ23Aに取り付ける回転工具25の外径R1のうち、最も大きい外径R1以上の大きさの内径で形成されている。これにより、どの種類の回転工具25であっても、その回転工具25が備える伝動軸49を、取り付け先のホルダ23Aの軸挿入孔103に挿入することができる。尚、軸挿入孔103は、ホルダ23Aごとに異なる穴径でも良い。例えば、任意のホルダ23Aは、太い伝動軸49用の軸挿入孔103を形成され、他のホルダ23Aは、細い伝動軸49用の軸挿入孔103を形成される構成でも良い。 Furthermore, the outer diameter R1 of the power transmission shaft 49 is illustrated in the top diagram of FIG. The outer diameter R1 is, for example, the outer diameter of the thickest part of the transmission shaft 49 that is inserted into the holder member 23 and the spacer 27. This outer diameter R1 is also changed depending on, for example, the rigidity required of the rotary tool 25. As shown in FIG. 9, each holder 23A of the holder member 23 is formed with a shaft insertion hole 103 into which the transmission shaft 49 is inserted. The shaft insertion hole 103 is a circular hole that penetrates the holder 23A along the radial direction of the tool rest 21. The inner diameter of the shaft insertion hole 103 is, for example, larger than the largest outer diameter R1 of the outer diameters R1 of the rotary tool 25 attached to the holder 23A. Thereby, regardless of the type of rotary tool 25, the transmission shaft 49 of the rotary tool 25 can be inserted into the shaft insertion hole 103 of the holder 23A to which it is attached. Note that the shaft insertion hole 103 may have a different hole diameter for each holder 23A. For example, any holder 23A may have a shaft insertion hole 103 for a thick transmission shaft 49, and the other holders 23A may have a shaft insertion hole 103 for a thin transmission shaft 49.
 また、図10に示すように、スペーサ27には、伝動軸49を挿入する軸挿入孔105が形成されている。軸挿入孔105は、スペーサ27を厚さ方向(刃物台21の半径方向)に貫通する円形の穴である。軸挿入孔105の内径は、例えば、その軸挿入孔105を有するスペーサ27に取り付ける回転工具25の伝動軸49の外径R1以上の大きさとなっている。これにより、スペーサ27の軸挿入孔105によって伝動軸49を安定的に保持できる。尚、全てのスペーサ27の軸挿入孔105の穴径を、軸挿入孔103と同様に、ホルダ23Aに取り付ける回転工具25の外径R1のうち、最も太い外径R1以上の大きさで形成しても良い。 Further, as shown in FIG. 10, a shaft insertion hole 105 into which the transmission shaft 49 is inserted is formed in the spacer 27. The shaft insertion hole 105 is a circular hole that penetrates the spacer 27 in the thickness direction (radial direction of the tool rest 21). The inner diameter of the shaft insertion hole 105 is, for example, larger than the outer diameter R1 of the transmission shaft 49 of the rotary tool 25 to be attached to the spacer 27 having the shaft insertion hole 105. Thereby, the transmission shaft 49 can be stably held by the shaft insertion hole 105 of the spacer 27. Incidentally, similarly to the shaft insertion hole 103, the hole diameter of the shaft insertion hole 105 of all the spacers 27 is made to be larger than or equal to the thickest outer diameter R1 of the outer diameter R1 of the rotary tool 25 attached to the holder 23A. It's okay.
 また、図10に示すように、各スペーサ27には、互いに直交する一対の溝107が形成されている。これは、例えば、回転工具25のスペーサ27側の面に、位置決め用の突起が設けられている場合に、その突起を挿入するための溝である。回転工具25は、突起を溝107に挿入することで、スペーサ27(ホルダ23A)に対する位置・向きを位置決めされる。これにより、回転工具25を、ホルダ23Aに対して適切な位置や向きで取り付けることができる。尚、溝107と同形状の溝を、ホルダ23Aに形成し、突起を有する回転工具25を、ホルダ23Aに取り付け可能、即ち、スペーサ27を介さずに取り付け可能にしても良い。また、回転工具25は、突起を有しない構造でも良い。この場合、スペーサ27は、溝107を備えなくとも良い。 Furthermore, as shown in FIG. 10, each spacer 27 is formed with a pair of grooves 107 that are perpendicular to each other. This is a groove into which, for example, when a positioning projection is provided on the surface of the rotary tool 25 on the spacer 27 side, the projection is inserted. The position and orientation of the rotary tool 25 relative to the spacer 27 (holder 23A) is determined by inserting the protrusion into the groove 107. Thereby, the rotary tool 25 can be attached to the holder 23A at an appropriate position and orientation. Note that a groove having the same shape as the groove 107 may be formed in the holder 23A so that the rotary tool 25 having a protrusion can be attached to the holder 23A, that is, without using the spacer 27. Further, the rotary tool 25 may have a structure without a protrusion. In this case, the spacer 27 does not need to include the groove 107.
 図11の上から2番目の図は、各回転工具25の取り付ける位置を、位置109に揃えた状態を示している。例えば、仮に、スペーサ27を介さずに、全ての回転工具25をホルダ23Aに直接取り付けた場合、位置109は、ホルダ23Aの平面の位置となる。換言すれば、位置109は、各回転工具25A~25Fの取付面の位置となる。この場合、各回転工具25の凸条部65の位置は、刃物台21の半径方向において互いに異なる位置となる。図11の位置111は、半径方向において最も内側に配置される凸条部65(回転工具25Fの凸条部65)の位置を示している。他の回転工具25A~25Eは、位置109から突出する伝動軸49の長さ(突出量)が、回転工具25Fに比べて短くなっている。換言すれば、回転工具25A~25Eの凸条部65は、回転工具25Fの凸条部65に比べて半径方向の外側に配置される。その結果、このような位置109で全ての回転工具25A~25Fを取り付けた場合、回転工具25F以外の回転工具25A~25Eは、第1及び第2凹溝部まで凸条部65が届かない虞がある。 The second figure from the top in FIG. 11 shows a state in which the mounting positions of the rotary tools 25 are aligned at position 109. For example, if all the rotary tools 25 are directly attached to the holder 23A without using the spacer 27, the position 109 will be at the plane of the holder 23A. In other words, the position 109 is the position of the mounting surface of each rotary tool 25A to 25F. In this case, the positions of the protrusions 65 of each rotary tool 25 are different from each other in the radial direction of the tool post 21. A position 111 in FIG. 11 indicates the position of the protruding portion 65 (the protruding portion 65 of the rotary tool 25F) that is disposed innermost in the radial direction. In the other rotary tools 25A to 25E, the length (protrusion amount) of the power transmission shaft 49 protruding from position 109 is shorter than that of the rotary tool 25F. In other words, the protrusions 65 of the rotary tools 25A to 25E are arranged radially outward compared to the protrusions 65 of the rotary tool 25F. As a result, when all of the rotary tools 25A to 25F are installed at such position 109, there is a risk that the protrusions 65 of the rotary tools 25A to 25E other than the rotary tool 25F may not reach the first and second grooves. be.
 そこで、スペーサ27は、取り付ける回転工具25の伝動軸49の長さ(取付面の位置109からの突出量)に応じた厚みW3で形成されている。そして、上記した刃物台21の半径方向における位置、即ち、第1及び第2凹溝部91,92の位置に、全ての凸条部65が配置されるように、各スペーサ27の厚みW3が設定されている。これにより、回転工具25A~25Fは、スペーサ27を介してホルダ23Aに取り付けられることで、互いの凸条部65が刃物台21の半径方向において刃物台21の回転中心(図2の中心軸35の位置)から同じ半径R2の位置に配置される。また、回転工具25A~25Fの各々の凸条部65は、刃物台21の回転中心から第1及び第2凹溝部91,92と同じ半径R2の位置に配置される。 Therefore, the spacer 27 is formed with a thickness W3 that corresponds to the length of the power transmission shaft 49 of the rotary tool 25 to be attached (the amount of protrusion from the mounting surface position 109). Then, the thickness W3 of each spacer 27 is set so that all the protrusions 65 are arranged at the positions in the radial direction of the tool post 21, that is, at the positions of the first and second grooves 91 and 92. has been done. As a result, the rotary tools 25A to 25F are attached to the holder 23A via the spacer 27, so that the protrusions 65 of each other are aligned in the radial direction of the tool rest 21 with respect to the rotation center of the tool rest 21 (center axis 35 in FIG. 2). ) at the same radius R2. Further, each of the protrusions 65 of the rotary tools 25A to 25F is arranged at a position with the same radius R2 as the first and second grooves 91 and 92 from the rotation center of the tool rest 21.
 具体的には、図11の一番下の図は、全ての回転工具25の凸条部65の位置を、位置113で揃えた状態を示している。例えば、ホルダ23Aの平面(スペーサ27を取り付けるホルダ23Aの面)を、位置115に合わせたとする。図11の上から2番目の図に示すように、回転工具25Fは、位置109から伝動軸49を突出させる突出量が最も大きい。このため、回転工具25Fは、凸条部65を位置113に揃えた場合、位置115から取付面までの距離(厚みW3に相当)が最も長くなる。このため、回転工具25Fを取り付けるスペーサ27として、例えば、図10のスペーサ27Cに示すように、厚みW3がより厚いものを用いる。逆に、回転工具25Aは、位置109から伝動軸49を突出させる突出量が最も少ない。このため、回転工具25Aを取り付けるスペーサ27としては、例えば、図10のスペーサ27Aに示すように、厚みW3がより薄い(小さい)ものを用いる。このように、各回転工具25の突出量(伝動軸49の長さや凸条部65の位置)に応じた厚さW3のスペーサ27を取り付けることで、刃物台21の半径方向の位置を半径R2の位置に合わせ、第1及び第2凹溝部91,92に良好に凸条部65を挿入することができる。 Specifically, the bottom diagram in FIG. 11 shows a state in which the protrusions 65 of all the rotary tools 25 are aligned at position 113. For example, assume that the plane of the holder 23A (the plane of the holder 23A to which the spacer 27 is attached) is aligned with the position 115. As shown in the second diagram from the top in FIG. 11, the rotary tool 25F has the largest protrusion amount by which the transmission shaft 49 protrudes from the position 109. Therefore, in the rotary tool 25F, when the protruding stripes 65 are aligned at the position 113, the distance from the position 115 to the mounting surface (corresponding to the thickness W3) is the longest. For this reason, as the spacer 27 to which the rotary tool 25F is attached, a spacer having a thicker thickness W3 is used, for example, as shown in a spacer 27C in FIG. 10. Conversely, in the rotary tool 25A, the amount by which the transmission shaft 49 protrudes from the position 109 is the smallest. Therefore, as the spacer 27 to which the rotary tool 25A is attached, for example, a spacer 27 having a thinner (smaller) thickness W3 is used, as shown in a spacer 27A in FIG. In this way, by attaching the spacer 27 with the thickness W3 corresponding to the protrusion amount of each rotary tool 25 (the length of the transmission shaft 49 and the position of the protruding strip 65), the radial position of the tool post 21 can be adjusted to the radius R2. The protruding portion 65 can be inserted into the first and second groove portions 91 and 92 in accordance with the position shown in FIG.
(工具交換処理について)
 次に、制御装置15が実行する工具交換処理について説明する。図12は、工具交換処理の内容を示しいている。制御装置15は、工具交換処理を実行することで、作業位置37に割り出す工具の種類を変更する。制御装置15は、例えば、ワークに対する加工の開始指示を受け付けると、図12に示す処理を開始する。
(About tool exchange process)
Next, the tool exchange process executed by the control device 15 will be described. FIG. 12 shows the contents of the tool exchange process. The control device 15 changes the type of tool indexed to the work position 37 by executing the tool exchange process. For example, upon receiving an instruction to start machining the workpiece, the control device 15 starts the process shown in FIG. 12 .
 制御装置15は、図12の処理を開始すると、まず、ステップ(以下、単にSと記載する)11において、工具の交換を開始するか否かを判断する。制御装置15は、例えば、ワークの加工中などの工具の交換が必要でない状態では、S11で否定判断し(S11:NO)、S11の判断処理を繰り返し実行する。また、制御装置15は、例えば、任意の回転工具25による加工が終了すると、制御プログラムPGに基づいて、次の工程の加工に必要な工具の割り出しを実行する。制御装置15は、工具の割り出しを実行する場合、S11で肯定判断し(S11:YES)、刃物台21の旋回を開始する(S13)。尚、S11の判断条件は、上記した制御装置15が、加工工程に基づいて工具の交換を自動で判断する条件に限らない。例えば、制御装置15は、ユーザからの指示に基づいて工具の交換を判断しても良い。制御装置15は、工具の交換指示をタッチパネル13Aでユーザから受け付けた場合、S11で肯定判断しても良い。あるいは、制御装置15は、使用中の工具が寿命工具となり、同一種の予備工具へ交換する場合、S11で肯定判断しても良い。 When the control device 15 starts the process shown in FIG. 12, first, in step (hereinafter simply referred to as S) 11, it determines whether or not to start tool exchange. The control device 15 makes a negative determination in S11 (S11: NO) in a state where tool replacement is not necessary, such as during machining of a workpiece, and repeatedly executes the determination process in S11. Further, for example, when machining by an arbitrary rotary tool 25 is completed, the control device 15 executes indexing of a tool necessary for machining in the next process based on the control program PG. When executing tool indexing, the control device 15 makes an affirmative determination in S11 (S11: YES) and starts turning the tool post 21 (S13). Note that the conditions for determining S11 are not limited to the conditions under which the control device 15 described above automatically determines tool replacement based on the machining process. For example, the control device 15 may determine whether to replace the tool based on an instruction from the user. When the control device 15 receives a tool replacement instruction from the user on the touch panel 13A, the control device 15 may make an affirmative determination in S11. Alternatively, the control device 15 may make an affirmative determination in S11 if the tool in use has reached its end of life and is replaced with a spare tool of the same type.
 また、制御装置15は、使用中(交換前)の工具が回転工具25であった場合、S13で旋回を開始する前に、回転工具25の回転を停止する。制御装置15は、サーボモータ43を制御し、使用中の凹溝部(第1凹溝部91又は第2凹溝部92)の姿勢(回転位置)が、凸条部65が着脱可能な姿勢となるように、駆動軸45の回転を停止させる。例えば、使用中の回転工具25の凸条部65が第1凹溝部91に連結されていた場合、制御装置15は、第1凹溝部91がガイドレール63の周方向に沿った位置で駆動軸45を停止させる。換言すれば、制御装置15は、加工の開始前と同じ回転位置に第1凹溝部91が停止するように、駆動軸45を停止させる。これにより、制御装置15は、旋回用モータ33を制御して刃物台21を旋回させることで、第1凹溝部91に挿入された凸条部65を抜くことができる。以下の説明では、一例として、工具の交換前に第1凹溝部91が使用されており、クラッチ部材71は、S13の旋回前に、ガイドレール63の周方向に第1凹溝部91を沿わせた状態で停止しものとする。 Furthermore, if the tool in use (before replacement) is the rotary tool 25, the control device 15 stops the rotation of the rotary tool 25 before starting rotation in S13. The control device 15 controls the servo motor 43 so that the attitude (rotational position) of the groove part in use (the first groove part 91 or the second groove part 92) is such that the protruding strip part 65 can be attached and detached. Then, the rotation of the drive shaft 45 is stopped. For example, when the convex strip 65 of the rotary tool 25 in use is connected to the first groove 91, the control device 15 controls the drive shaft when the first groove 91 is located along the circumferential direction of the guide rail 63. 45 is stopped. In other words, the control device 15 stops the drive shaft 45 so that the first groove portion 91 stops at the same rotational position as before starting machining. Thereby, the control device 15 can remove the protruding portion 65 inserted into the first groove portion 91 by controlling the turning motor 33 to turn the tool rest 21 . In the following description, as an example, the first groove part 91 is used before the tool is replaced, and the clutch member 71 aligns the first groove part 91 in the circumferential direction of the guide rail 63 before turning in S13. The vehicle shall be stopped in this state.
 次に、制御装置15は、S13で旋回を開始すると、第1及び第2凹溝部91,92の切り替えが必要か否かを判断する(S15)。制御装置15は、刃物台21の回転方向36において次に作業位置37に到着するホルダ23Aに取り付けられた工具に応じてS15の判断を実行する。記憶装置15Bの設定データDTには、上記したように、ホルダ識別情報と、そのホルダ識別情報が示すホルダ23Aに取り付けられた工具の情報が対応付けて記憶される。ホルダ識別情報としては、例えば、各ホルダ23Aに付与したホルダ番号を採用できる。刃物台21の10個のホルダ23Aには、例えば、任意のホルダ23Aから時計回り方向へ順番に1番から10番のホルダ番号が設定されている。また、工具の情報としては、ホルダ識別情報(ホルダ番号)が示すホルダ23Aに取り付けられた工具の種類(バイトや回転工具など)の情報、回転工具25の凸条部65の形状に係わる情報を採用できる。凸条部65の形状に係わる情報としては、本実施例では凸条部65の幅Wの情報を採用できる。例えば、ユーザは、ホルダ23Aに回転工具25を取り付ける際に、取り付けたホルダ23Aのホルダ番号、工具の種類の情報をタッチパネル13Aで入力する。また、ユーザは、回転工具25を取り付ける場合、取り付けた回転工具25の幅Wの値を、タッチパネル13Aで入力する。制御装置15は、受け付けたホルダ番号、工具の種類、幅Wの各情報を関連付けて設定データDTに記憶する。尚、凸条部65の形状に係わる情報は、幅Wの情報に限らない。上記したように、回転工具25A~25Fが、凸条部65の高さH、長さLが互いに異なる場合、高さHや長さLの情報を、凸条部65の形状に係わる情報として設定データDTに設定しても良い。 Next, when the control device 15 starts turning in S13, it determines whether it is necessary to switch between the first and second groove portions 91 and 92 (S15). The control device 15 executes the determination in S15 depending on the tool attached to the holder 23A that will arrive at the working position 37 next in the rotational direction 36 of the tool post 21. As described above, in the setting data DT of the storage device 15B, holder identification information and information about the tool attached to the holder 23A indicated by the holder identification information are stored in association with each other. As the holder identification information, for example, a holder number given to each holder 23A can be used. For example, holder numbers 1 to 10 are set to the ten holders 23A of the tool rest 21 in order from an arbitrary holder 23A in a clockwise direction. In addition, the tool information includes information on the type of tool (bit, rotary tool, etc.) attached to the holder 23A indicated by the holder identification information (holder number), and information on the shape of the protruding portion 65 of the rotary tool 25. Can be adopted. In this embodiment, information regarding the width W of the protruding part 65 can be used as information regarding the shape of the protruding part 65. For example, when attaching the rotary tool 25 to the holder 23A, the user inputs information on the holder number of the attached holder 23A and the type of tool using the touch panel 13A. Further, when attaching the rotary tool 25, the user inputs the value of the width W of the attached rotary tool 25 using the touch panel 13A. The control device 15 stores the received information on the holder number, the type of tool, and the width W in the setting data DT in association with each other. Note that the information regarding the shape of the protruding portion 65 is not limited to the information on the width W. As described above, when the heights H and lengths L of the protrusions 65 of the rotary tools 25A to 25F are different from each other, information on the height H and length L is used as information regarding the shape of the protrusions 65. It may also be set in the setting data DT.
 また、記憶装置15Bには、例えば、駆動軸45に取り付けた第1及び第2凹溝部91,92の幅W1,W2の情報や、クラッチ部材71の向きの情報が記憶される。ここでいう向きの情報とは、例えば、駆動軸45の回転位置を初期位置にした場合に、ガイドレール63の周方向に沿って配置される凹溝部が、第1凹溝部91又は第2凹溝部92であるのかを示す情報である。即ち、制御装置15が、第1及び第2凹溝部91,92の向きと、駆動軸45の回転位置との関係を判断可能な情報である。幅W1,W2や向きの情報は、ユーザがタッチパネル13Aで入力しても良い。あるいは、制御装置15は、ユーザが入力したクラッチ部材71の識別番号から幅W1,W2や向きの情報を判断しても良い。 Further, the storage device 15B stores, for example, information on the widths W1 and W2 of the first and second groove portions 91 and 92 attached to the drive shaft 45, and information on the orientation of the clutch member 71. The orientation information here means, for example, that when the rotational position of the drive shaft 45 is set to the initial position, the recessed groove portion arranged along the circumferential direction of the guide rail 63 is the first recessed groove portion 91 or the second recessed groove portion. This is information indicating whether it is the groove portion 92 or not. That is, this is information that allows the control device 15 to determine the relationship between the orientations of the first and second groove portions 91 and 92 and the rotational position of the drive shaft 45. The information on the widths W1, W2 and orientation may be input by the user using the touch panel 13A. Alternatively, the control device 15 may determine the widths W1, W2 and orientation information from the identification number of the clutch member 71 input by the user.
 S15において、制御装置15は、設定データDTに基づいて、次に作業位置37に到着するホルダ23A(次のホルダ23Aという場合がある)の工具を判断する。制御装置15は、例えば、次のホルダ23Aのホルダ番号を設定データDTから検索し、工具の種類や凸条部65の幅Wを検出する。制御装置15は、次のホルダ23Aの工具がバイトである場合、S15で否定判断し(S15:NO)、次のホルダ23Aが作業位置37に配置されるまで刃物台21を旋回させる(S19)。この場合、作業位置37に配置する工具と伝動軸49の連結が不要であるため、切り替えを実施せずに旋回させる。 In S15, the control device 15 determines the tool of the holder 23A (sometimes referred to as the next holder 23A) that will arrive at the work position 37 next based on the setting data DT. For example, the control device 15 searches the setting data DT for the holder number of the next holder 23A, and detects the type of tool and the width W of the protruding portion 65. If the tool of the next holder 23A is a cutting tool, the control device 15 makes a negative determination in S15 (S15: NO) and rotates the tool rest 21 until the next holder 23A is placed at the working position 37 (S19). . In this case, since there is no need to connect the tool placed at the work position 37 and the power transmission shaft 49, the tool is rotated without being switched.
 一方、制御装置15は、設定データDTに基づいて、次のホルダ23Aの工具が回転工具25であり、且つ、回転工具25の凸条部65の幅Wが、幅W2(例えば、8mm)である場合、S15で肯定判断し(S15:YES)、S17を実行する。この場合、次のホルダ23Aの回転工具25を、作業位置37に配置する、あるいは、作業位置37を通過させるために、クラッチ部材71を回転する必要がある。 On the other hand, the control device 15 determines, based on the setting data DT, that the tool in the next holder 23A is the rotary tool 25, and that the width W of the protruding portion 65 of the rotary tool 25 is the width W2 (for example, 8 mm). If there is, an affirmative determination is made in S15 (S15: YES), and S17 is executed. In this case, it is necessary to rotate the clutch member 71 in order to arrange the rotary tool 25 of the next holder 23A at the working position 37 or to cause it to pass through the working position 37.
 S17において、制御装置15は、交換する前に作業位置37に配置された回転工具25の凸条部65が第1凹溝部91から抜ける回転位置まで刃物台21を回転方向36へ旋回させた後、旋回を一時的に停止させる。例えば、制御装置15は、回転方向36で隣り合う2つのホルダ23A間の回転角度の半分(本実施例では13度(=360度*(1/10ホルダ)*(1/2))だけ刃物台21を旋回させて停止させる。これにより、第1凹溝部91から凸条部65が抜けた状態となる。制御装置15は、サーボモータ43を駆動して駆動軸45を90度だけ回転させ、第1及び第2凹溝部91,92の回転位置を入れ替える。クラッチ部材71は、ガイドレール63の周方向に第2凹溝部92が沿った状態となる。 In S17, the control device 15 rotates the tool rest 21 in the rotational direction 36 to a rotational position where the convex strip 65 of the rotary tool 25 placed at the working position 37 comes out of the first groove 91 before replacement. , temporarily stops turning. For example, the control device 15 controls the cutter by half (in this embodiment, 13 degrees (=360 degrees*(1/10 holder)*(1/2)) of the rotation angle between two adjacent holders 23A in the rotation direction 36. The stand 21 is rotated and stopped. As a result, the protruding portion 65 is removed from the first groove portion 91. The control device 15 drives the servo motor 43 to rotate the drive shaft 45 by 90 degrees. , the rotational positions of the first and second groove portions 91 and 92 are exchanged.The clutch member 71 is in a state where the second groove portion 92 extends along the circumferential direction of the guide rail 63.
 次に、制御装置15は、S19において、旋回用モータ33を駆動して刃物台21を旋回させ、次のホルダ23Aを作業位置37に配置するまで旋回させる(S19)。次のホルダ23Aが作業位置37に配置されると、次のホルダ23Aに取り付けられた回転工具25の凸条部65、即ち、幅W2の凸条部65は、刃物台21の旋回に伴って、作業位置37の第2凹溝部92に挿入される。これにより、駆動軸45と伝動軸49とがクラッチ装置51を介して連結される。 Next, in S19, the control device 15 drives the turning motor 33 to turn the tool rest 21 until the next holder 23A is placed at the working position 37 (S19). When the next holder 23A is placed at the working position 37, the protruding strip 65 of the rotary tool 25 attached to the next holder 23A, that is, the protruding strip 65 having a width W2, moves as the tool rest 21 rotates. , is inserted into the second groove portion 92 at the working position 37. Thereby, the drive shaft 45 and the transmission shaft 49 are connected via the clutch device 51.
 また、制御装置15は、S19を実行し次のホルダ23Aを作業位置37まで旋回させるまでの間、次のホルダ23Aを作業位置37に配置することで工具の切り替えが終了するか否かを判断する(S21)。制御装置15は、次のホルダ23Aに所望の工具、即ち、交換したい工具が取り付けられている場合、S21で肯定判断する(S21:YES)。制御装置15は、次のホルダ23Aを作業位置37に配置すると、刃物台21の旋回を停止する。これにより、所望の工具を作業位置37に割り出すことができる。制御装置15は、割り出した工具を用いてワークに対する加工を開始する(S23)。制御装置15は、図12に示す処理を終了する。 In addition, the control device 15 determines whether or not the tool switching is completed by placing the next holder 23A at the working position 37 until the next holder 23A is rotated to the working position 37 after executing S19. (S21). If the desired tool, that is, the tool to be replaced is attached to the next holder 23A, the control device 15 makes an affirmative determination in S21 (S21: YES). When the control device 15 places the next holder 23A at the working position 37, the control device 15 stops the rotation of the tool post 21. Thereby, a desired tool can be indexed to the working position 37. The control device 15 starts machining the workpiece using the determined tool (S23). The control device 15 ends the process shown in FIG. 12.
 例えば、制御装置15は、回転工具25から隣りのホルダ23Aのバイトに切り替える場合や、6mmの回転工具25から隣りのホルダ23Aの6mmの回転工具25に切り替える場合は、S17を実行せずに、刃物台21だけを回転させる。また、制御装置15は、6mmの回転工具25から隣りのホルダ23Aの8mmの回転工具25に切り替える場合は、S17を実行し第1凹溝部91から第2凹溝部92へ切り替える。これにより、回転工具25の幅Wに合った幅W2の第2凹溝部92を作業位置37に配置し連結させることができる。 For example, when switching from the rotary tool 25 to the cutting tool of the adjacent holder 23A, or when switching from the 6 mm rotary tool 25 to the 6 mm rotary tool 25 of the adjacent holder 23A, the control device 15 does not execute S17. Only the tool rest 21 is rotated. Further, when switching from the 6 mm rotary tool 25 to the 8 mm rotary tool 25 of the adjacent holder 23A, the control device 15 executes S17 and switches from the first groove portion 91 to the second groove portion 92. Thereby, the second groove portion 92 having a width W2 matching the width W of the rotary tool 25 can be arranged and connected to the working position 37.
 一方、制御装置15は、S21で否定判断した場合(S21:NO)、即ち、工具の交換が完了していない場合、次のホルダ23Aが作業位置37となる位置で刃物台21の旋回を停止させずに、刃物台21の旋回を継続する(S25)。制御装置15は、刃物台21を旋回させつつ、S15以降の処理を再度実行する。これにより、制御装置15は、回転方向36におけるさらに次のホルダ23Aに取り付けられた工具を設定データDTで判断しつつ、駆動軸45を適宜回転させ、所望の工具の位置まで刃物台21を回転させる。そして、最終的な工具が回転工具25である場合、その回転工具25の凸条部65の幅Wに応じた凹溝部を配置し、駆動軸45と伝動軸49の連結を適切に実行することができる。 On the other hand, if the control device 15 makes a negative determination in S21 (S21: NO), that is, if the tool exchange is not completed, the control device 15 stops the rotation of the tool rest 21 at the position where the next holder 23A becomes the working position 37. The turning of the tool rest 21 is continued without causing the rotation (S25). The control device 15 re-executes the processing from S15 onwards while rotating the tool post 21. Thereby, the control device 15 appropriately rotates the drive shaft 45 while determining the tool attached to the next holder 23A in the rotation direction 36 based on the setting data DT, and rotates the tool rest 21 to the desired tool position. let When the final tool is a rotary tool 25, a concave groove portion corresponding to the width W of the protruding portion 65 of the rotary tool 25 is arranged to appropriately connect the drive shaft 45 and the transmission shaft 49. I can do it.
 例えば、交換前の工具から交換先の工具までの間に、6mmと8mmの回転工具25が交互に配置されている場合、制御装置15は、S17を毎回実行して第1及び第2凹溝部91,92を切り替えながら凸条部65を凹溝部に挿入して作業位置37を通過させる。即ち、制御装置15は、次のホルダ23Aの凸条部65の幅Wが、ガイドレール63の周方向に沿って配置している凹溝部の幅(幅W1又は幅W2)と合っていない場合、S17を適宜実行して凹溝部を切り替える。また、交換前の工具から交換先の工具までの間に、バイト又は6mmの回転工具25のみが配置されている場合、制御装置15は、S17を実行せずに、刃物台21の旋回だけを実行する。尚、上記した例では、交換前の状態で第1凹溝部91が使用されている場合について説明したが、第2凹溝部92が使用されていた場合についても同様に切替を実施できる。 For example, if 6 mm and 8 mm rotary tools 25 are arranged alternately between the tool before replacement and the tool to be replaced, the control device 15 executes S17 every time to The convex strip 65 is inserted into the concave groove while switching between 91 and 92 to pass through the working position 37. That is, when the width W of the protruding strip 65 of the next holder 23A does not match the width (width W1 or width W2) of the concave groove disposed along the circumferential direction of the guide rail 63, the control device 15 , S17 are executed as appropriate to switch the concave groove portion. Furthermore, if only the cutting tool or 6mm rotary tool 25 is placed between the tool before replacement and the tool to be replaced, the control device 15 only rotates the tool rest 21 without executing S17. Execute. In addition, in the above example, the case where the first groove part 91 is used in the state before replacement has been described, but the switching can be performed in the same way even when the second groove part 92 is used.
 また、図12に示すフローチャートの内容・処理の順番等は一例である。例えば、制御装置15は、S17において、刃物台21の旋回を一時的に停止したが、停止しなくとも良い。制御装置15は、刃物台21の旋回を継続して実行しつつ、凸条部65が第1凹溝部91から抜けたタイミングで駆動軸45の回転を開始し、刃物台21の旋回と第1及び第2凹溝部91,92の切り替えを並列に実行しても良い。 Furthermore, the contents, processing order, etc. of the flowchart shown in FIG. 12 are merely examples. For example, although the control device 15 temporarily stops the rotation of the tool rest 21 in S17, it does not have to stop the rotation. The control device 15 continues to rotate the tool rest 21 and starts rotating the drive shaft 45 at the timing when the protruding portion 65 comes out of the first recessed groove portion 91. The switching of the second groove portions 91 and 92 may also be performed in parallel.
 また、図12に示すフローチャートでは、回転方向36において次のホルダ23Aに取り付けられた回転工具25の凸条部65の幅Wと一致する第1凹溝部91又は第2凹溝部92を配置したが、これに限らない。例えば、制御装置15は、2つの凹溝部のうち、幅が広い幅W2の第2凹溝部92を配置し、6mmの回転工具25の凸条部65を、8mmの第2凹溝部92で通過させても良い。具体的には、例えば、制御装置15は、第1凹溝部91を使用していた場合、凸条部65が抜ける位置まで刃物台21を旋回させると、第1及び第2凹溝部91,92を切り替える。制御装置15は、割り出したい工具が次のホルダ23Aとなるまでの間、ガイドレール63の周方向に第2凹溝部92が沿うようにクラッチ部材71を配置する。即ち、所望の工具が次のホルダ23Aになるまでの間、溝幅の広い第2凹溝部92を配置する。これにより、バイト、6mmの回転工具25、8mmの回転工具25の何れも作業位置37を通過させることができる。そして、制御装置15は、割り出したい工具が次のホルダ23Aとなり、且つ次のホルダ23Aの工具がバイト又は8mmの回転工具25である場合、クラッチ部材71を回転させずにそのままの状態とする。一方、制御装置15は、割り出したい工具が次のホルダ23Aとなり、且つ、割り出したい工具が6mmの回転工具25である場合、S17を実行して第2凹溝部92から第1凹溝部91へ切り替える。即ち、刃物台21を旋回させる間は、第2凹溝部92を配置し、最終的に6mmの回転工具25を配置する場合のみ、第1凹溝部91への切り替えを実行しても良い。これにより、工具の切り替え作業において、第1及び第2凹溝部91,92の切り替え回数、即ち、駆動軸45を回転させる回数を減らすことができる。 Furthermore, in the flowchart shown in FIG. 12, the first groove portion 91 or the second groove portion 92 is arranged to match the width W of the protruding portion 65 of the rotary tool 25 attached to the next holder 23A in the rotation direction 36. , but not limited to this. For example, the control device 15 arranges the second groove part 92 having a width W2, which is the wider of the two groove parts, so that the convex strip 65 of the 6 mm rotary tool 25 passes through the second groove part 92 of 8 mm. You can let me. Specifically, for example, when the first recessed groove portion 91 is used, the control device 15 rotates the tool rest 21 to a position where the protruding strip portion 65 comes out, the first and second recessed groove portions 91 and 92 Switch. The control device 15 arranges the clutch member 71 so that the second groove portion 92 runs along the circumferential direction of the guide rail 63 until the tool to be indexed becomes the next holder 23A. That is, the second recessed groove portion 92 having a wide groove width is disposed until the desired tool reaches the next holder 23A. As a result, any of the cutting tool, the 6 mm rotary tool 25, and the 8 mm rotary tool 25 can be passed through the working position 37. Then, when the tool to be indexed is the next holder 23A and the tool of the next holder 23A is a cutting tool or an 8 mm rotary tool 25, the control device 15 leaves the clutch member 71 in the same state without rotating it. On the other hand, if the tool to be indexed is the next holder 23A and the tool to be indexed is the 6 mm rotary tool 25, the control device 15 executes S17 to switch from the second groove part 92 to the first groove part 91. . That is, while the tool rest 21 is being rotated, the second groove part 92 may be placed, and only when the 6 mm rotary tool 25 is finally placed, switching to the first groove part 91 may be performed. Thereby, in the tool switching operation, it is possible to reduce the number of times the first and second groove portions 91 and 92 are switched, that is, the number of times the drive shaft 45 is rotated.
 また、制御装置15は、S15において、第1及び第2凹溝部91,92の切り替えの有無を、次のホルダ23Aまで旋回する間に判断したが、これに限らない。制御装置15は、例えば、S13で刃物台21の旋回を開始する前に、設定データDTに基づいて第1及び第2凹溝部91,92の切り替えタイミングを予め判断しても良い。例えば、制御装置15は、交換前の工具のホルダ23Aから、交換先の工具のホルダ23Aまで刃物台21を旋回させる間に、第1及び第2凹溝部91,92の切り替えをどのタイミング(ホルダ番号)で実行するのかを予め判断しても良い。この際、制御装置15は、回転方向36を最適化しても良い。例えば、ホルダ番号が1番の工具から5番の工具に時計回り方向に刃物台21を旋回させて切り替える場合を考える。この場合に、時計回り方向に刃物台21を旋回させた場合の第1及び第2凹溝部91,92の切り替え回数が、反時計回り方向に旋回させた場合の切り替え回数よりも多い場合、制御装置15は、回転方向36を反時計回りに決定しても良い。これにより、工具の切り替え作業において、第1及び第2凹溝部91,92の切り替え回数を減らすことができる。 Furthermore, in S15, the control device 15 determines whether or not the first and second groove portions 91 and 92 are to be switched while the holder 23A is being rotated to the next holder 23A, but the present invention is not limited to this. For example, the control device 15 may determine the switching timing of the first and second groove portions 91 and 92 in advance based on the setting data DT before starting the rotation of the tool rest 21 in S13. For example, the control device 15 determines at what timing (when the holder It may be determined in advance whether to execute the process based on the number). At this time, the control device 15 may optimize the rotation direction 36. For example, consider a case where the tool with holder number 1 is switched to the tool with holder number 5 by rotating the tool rest 21 in the clockwise direction. In this case, if the number of times the first and second groove parts 91 and 92 are switched when the turret 21 is rotated clockwise is greater than the number of times they are switched when the turret 21 is rotated counterclockwise, the control The device 15 may determine the direction of rotation 36 to be counterclockwise. Thereby, the number of times the first and second groove portions 91 and 92 are switched can be reduced in the tool switching operation.
 上記したように、本実施例のクラッチ部材71は、駆動軸45の回転にともなって回転し、第1凹溝部91と第2凹溝部92の位置が変更される。これによれば、凸条部65の幅Wに応じて、駆動軸45を回転させ第1及び第2凹溝部91,92を切り替えることができる。 As described above, the clutch member 71 of this embodiment rotates with the rotation of the drive shaft 45, and the positions of the first groove portion 91 and the second groove portion 92 are changed. According to this, it is possible to rotate the drive shaft 45 and switch between the first and second groove portions 91 and 92 according to the width W of the protruding portion 65 .
 また、制御装置15は、S17において、幅Wが8mmの回転工具25を作業位置37に配置する場合、8mmの第2凹溝部92に凸条部65が挿入可能な回転位置(ガイドレール63に周方向に沿った位置)まで駆動軸45を回転させる。これによれば、制御装置15によって第1及び第2凹溝部91,92の切り替えと、駆動軸45及び伝動軸49の連結を自動で実行することができる。即ち、形状の異なる凸条部65を有する回転工具25の切り替えを自動で実施できる。尚、第1及び第2凹溝部91,92の切り替えを、ユーザが、タッチパネル13Aを操作して実施しても良い。 Further, in S17, when the rotating tool 25 with a width W of 8 mm is placed at the working position 37, the control device 15 determines that the rotating tool 25 is placed at a rotating position where the protruding portion 65 can be inserted into the second groove portion 92 of 8 mm (the guide rail 63). The drive shaft 45 is rotated to a position along the circumferential direction). According to this, the control device 15 can automatically switch between the first and second groove portions 91 and 92 and connect the drive shaft 45 and the transmission shaft 49. That is, it is possible to automatically switch between rotary tools 25 having protrusions 65 of different shapes. Note that the user may operate the touch panel 13A to switch between the first and second groove portions 91 and 92.
 また、複数の回転工具25A~25Fは、凸条部65の向きを、他の回転工具25の凸条部65の向きと同じ向きにした状態で、刃物台21の旋回にともなって旋回する。第1及び第2凹溝部91,92は、直線形状の溝であり、クラッチ部材71において互いに直交する方向に沿って形成されている。これによれば、駆動軸45を90度回転させることで凹溝部を切り替えることができる。また、第1及び第2凹溝部91,92を互いに直交させることで溝以外の部分の肉厚を確保でき、複数の凹溝部をクラッチ部材71に形成したとしても各凹溝部の剛性として、凸条部65との連結・回転に耐えうる剛性を確保できる。 Further, the plurality of rotary tools 25A to 25F rotate with the rotation of the tool rest 21, with the protrusions 65 oriented in the same direction as the protrusions 65 of the other rotary tools 25. The first and second groove portions 91 and 92 are linear grooves, and are formed in the clutch member 71 along directions perpendicular to each other. According to this, the groove portion can be switched by rotating the drive shaft 45 by 90 degrees. Furthermore, by making the first and second grooves 91 and 92 orthogonal to each other, the thickness of the parts other than the grooves can be ensured, and even if a plurality of grooves are formed in the clutch member 71, the rigidity of each groove is Rigidity capable of withstanding connection and rotation with the strip portion 65 can be ensured.
 また、制御装置15は、駆動軸45に連結する回転工具25が取り付けられたホルダ23Aのホルダ番号(ホルダ識別情報の一例)と、設定データDTに基づいて、クラッチ部材71を90度回転させることを決定する(回転位置を設定する)。これによれば、設定データDTを設定することで、制御装置15が、ホルダ番号と設定データDTに基づいて、回転の要否を判断することができる。 The control device 15 also rotates the clutch member 71 by 90 degrees based on the holder number (an example of holder identification information) of the holder 23A to which the rotary tool 25 connected to the drive shaft 45 is attached and the setting data DT. (set the rotation position). According to this, by setting the setting data DT, the control device 15 can determine whether or not rotation is necessary based on the holder number and the setting data DT.
 また、制御装置15は、回転工具25を変更する場合に、刃物台21を旋回させ変更前の回転工具25の凸条部65を第1凹溝部91から取り外す(S13、取り外し処理の一例)。制御装置15は、駆動軸45を回転させ第1及び第2凹溝部91,92の向きを変更する(S17、駆動軸回転処理の一例)。制御装置15は、S17を実行した後、刃物台21を旋回させ変更後の回転工具25の凸条部65を、変更前の回転工具25の凸条部65が挿入されていた第1凹溝部91とは異なる第2凹溝部92に挿入する(S19、挿入処理の一例)。これによれば、制御装置15が、刃物台21の旋回と、駆動軸45の回転を制御することで、形状の異なる凸条部65を有する回転工具25の切り替えを実行できる。 Further, when changing the rotary tool 25, the control device 15 rotates the tool post 21 and removes the protruding portion 65 of the rotary tool 25 before the change from the first groove portion 91 (S13, an example of a removal process). The control device 15 rotates the drive shaft 45 to change the orientation of the first and second groove portions 91 and 92 (S17, an example of a drive shaft rotation process). After executing S17, the control device 15 rotates the tool rest 21 and inserts the protruding portion 65 of the changed rotary tool 25 into the first groove portion into which the protruding portion 65 of the pre-changed rotary tool 25 was inserted. 91 (S19, an example of an insertion process). According to this, the control device 15 controls the rotation of the tool rest 21 and the rotation of the drive shaft 45, thereby making it possible to switch between the rotary tools 25 having the protrusions 65 having different shapes.
 また、制御装置15は、S13を実行して凸条部65を第1凹溝部91から取り外し、刃物台21の旋回を13度で停止し(S17)、停止した状態で駆動軸45を90度回転させる。制御装置15は、駆動軸45を90度回転させた後、刃物台21をさらに13度だけ旋回させ第2凹溝部92に凸条部65を挿入する。これによれば、刃物台21を停止させ第1及び第2凹溝部91,92を確実に切り替えた後に、凸条部65の挿入を実行できる。凹溝部と凸条部65の干渉の発生をなくし、回転工具25の切り替えをより確実に実行できる。 Further, the control device 15 executes S13 to remove the protruding portion 65 from the first groove portion 91, stops the rotation of the tool rest 21 at 13 degrees (S17), and rotates the drive shaft 45 at 90 degrees in the stopped state. Rotate. After rotating the drive shaft 45 by 90 degrees, the control device 15 further rotates the tool rest 21 by 13 degrees and inserts the convex portion 65 into the second groove portion 92 . According to this, the protruding portion 65 can be inserted after the tool rest 21 is stopped and the first and second groove portions 91 and 92 are reliably switched. Interference between the concave groove portion and the protruding portion 65 is eliminated, and the rotating tool 25 can be switched more reliably.
 また、上記したように、スペーサ27は、伝動軸49を挿入する軸挿入孔105と、回転工具25を取り付けるボルト98を螺合されるボルト穴99を有する。また、ホルダ23Aは、スペーサ27を取り付けるボルト96を螺合されるボルト穴95を有し、且つ、ボルト穴95を形成される位置が他のホルダ23Aと同一位置である。これにより、例えば、要求される剛性や製造メーカ等の違いによってボルト98の太さやピッチPTが異なる場合でも、スペーサ27を介してホルダ23Aに取り付けることができる。また、ホルダ23Aの構造を共通化できる。従って、刃物台21の汎用性を向上させることができる。 Furthermore, as described above, the spacer 27 has the shaft insertion hole 105 into which the transmission shaft 49 is inserted, and the bolt hole 99 into which the bolt 98 for attaching the rotary tool 25 is screwed. Further, the holder 23A has a bolt hole 95 into which a bolt 96 for attaching the spacer 27 is screwed, and the position where the bolt hole 95 is formed is the same as that of the other holders 23A. Thereby, for example, even if the thickness and pitch PT of the bolts 98 differ due to differences in required rigidity, manufacturer, etc., the bolts 98 can be attached to the holder 23A via the spacer 27. Further, the structure of the holder 23A can be made common. Therefore, the versatility of the tool post 21 can be improved.
(エラーの検出について)
 次に、工具の入れ替えに伴うエラーの検出方法について説明する。本実施例の工作機械10では、幅Wの異なる回転工具25A~25Fを刃物台21に取り付け可能である。仮に、回転工具25やスペーサ27の取り付けミス、設定データDTの入力ミスなどによって、形状の合ってない凸条部65が第1及び第2凹溝部91,92に挿入される事態(以下、連結ミスという)が発生する可能性がある場合、その対策を実施しても良い。例えば、回転工具25A~25Fの各々に、ICタグなどの情報部材を付加しても良い。情報部材に関連付ける情報としては、例えば、回転工具25の識別番号、凸条部65の幅Wの情報を関連付けても良い。そして、制御装置15は、作業位置37に配置する回転工具25の情報部材から情報を読取って、作業位置37に配置する凸条部65の幅Wに合った凹溝部(第1凹溝部91又は第2凹溝部92)を配置しても良い。この場合、工作機械10は、作業位置37の近傍に情報部材から情報を読取るリーダを備えても良い。また、情報部材は、ICタグに限らず、QRコード(登録商標)などでも良い。
(About error detection)
Next, a method for detecting errors associated with tool replacement will be described. In the machine tool 10 of this embodiment, rotating tools 25A to 25F having different widths W can be attached to the tool rest 21. Suppose that due to a mistake in attaching the rotary tool 25 or the spacer 27, or a mistake in inputting the setting data DT, the convex strips 65 with mismatched shapes are inserted into the first and second grooves 91 and 92 (hereinafter referred to as connection). If there is a possibility that a mistake (referred to as a mistake) may occur, countermeasures may be taken. For example, an information member such as an IC tag may be added to each of the rotary tools 25A to 25F. As the information associated with the information member, for example, the identification number of the rotary tool 25 and information on the width W of the protruding strip 65 may be associated. Then, the control device 15 reads information from the information member of the rotary tool 25 disposed at the working position 37, and controls the concave groove portion (first concave groove portion 91 or A second groove portion 92) may also be provided. In this case, the machine tool 10 may include a reader near the work position 37 that reads information from the information member. Further, the information member is not limited to an IC tag, but may be a QR code (registered trademark) or the like.
 また、制御装置15は、例えば、動作状態から連結ミスを検出しても良い。制御装置15は、旋回用モータ33のトルクの上昇に基づいて連結ミスを検出しても良い。例えば、6mmの幅W1の第1凹溝部91に、8mmの凸条部65を挿入しようとすると、第1凹溝部91と凸条部65が干渉して旋回用モータ33のトルクが上昇する可能性がある。そこで、制御装置15は、旋回用モータ33のトルクの上昇に基づいて連結ミスを検出し、エラーを報知しても良い。また、例えば、8mmの幅W2の第2凹溝部92に、6mmの凸条部65が嵌め込まれた場合、駆動軸45と伝動軸49のガタツキや回転誤差が生じる可能性がある。そこで、制御装置15は、ガタツキや回転誤差に基づいて、連結ミスを検出しても良い。 Furthermore, the control device 15 may detect a connection error based on the operating state, for example. The control device 15 may detect a connection error based on an increase in the torque of the swing motor 33. For example, if an 8 mm protruding portion 65 is inserted into the first concave groove portion 91 having a width W1 of 6 mm, the first concave groove portion 91 and the convex portion 65 may interfere and the torque of the turning motor 33 may increase. There is sex. Therefore, the control device 15 may detect the connection error based on the increase in the torque of the swing motor 33 and notify the error. Further, for example, when the 6 mm protruding portion 65 is fitted into the second groove portion 92 having a width W2 of 8 mm, there is a possibility that the drive shaft 45 and the transmission shaft 49 may wobble or cause a rotational error. Therefore, the control device 15 may detect a connection error based on rattling or rotation error.
 因みに、回転工具25,25A~25Fは、第1回転工具、及び第2回転工具の一例である。作業位置37は、連結位置の一例である。サーボモータ43は、駆動源の一例である。クラッチ部材71は、クラッチ部の一例である。第1及び第2凹溝部91,92は、凹溝部の一例である。凸条部65は、第1凸条部、及び第2凸条部の一例である。ボルト96は、スペーサ側螺合部材の一例である。ボルト穴95は、ホルダ側被螺合部の一例である。ボルト98は、回転工具側螺合部材の一例である。ボルト穴99は、スペーサ側被螺合部の一例である。 Incidentally, the rotating tools 25, 25A to 25F are examples of the first rotating tool and the second rotating tool. The work position 37 is an example of a connection position. The servo motor 43 is an example of a drive source. Clutch member 71 is an example of a clutch portion. The first and second groove portions 91 and 92 are examples of groove portions. The protruding portion 65 is an example of a first protruding portion and a second protruding portion. The bolt 96 is an example of a spacer-side threaded member. The bolt hole 95 is an example of a holder-side screwed part. The bolt 98 is an example of a rotary tool side screwing member. The bolt hole 99 is an example of a spacer-side screwed part.
 以上、上記した第1実施例では、以下の効果を奏する。
 本願の一態様である回転工具25A~25Fの各々は、伝動軸49に凸条部65が設けられ、凸条部65の幅Wが互いに異なるものが含まれている。駆動軸45のクラッチ部材71は、凸条部65の各々の幅Wに合わせて形成された第1及び第2凹溝部91,92がそれぞれ設けられている。これによれば、駆動軸45に連結する伝動軸49、即ち、割り出す回転工具25の凸条部65の幅Wに合わせて、第1及び第2凹溝部91,92を切り替えることができる。従って、形状の異なる凸条部65を有する回転工具25が刃物台21に取り付け可能となる。
As described above, the first embodiment described above has the following effects.
Each of the rotary tools 25A to 25F, which is one aspect of the present application, includes tools in which a protruding strip 65 is provided on the transmission shaft 49, and the width W of the protruding strip 65 is different from each other. The clutch member 71 of the drive shaft 45 is provided with first and second groove portions 91 and 92, which are formed to match the width W of each of the protrusions 65. According to this, the first and second groove portions 91 and 92 can be switched according to the width W of the protruding strip portion 65 of the transmission shaft 49 connected to the drive shaft 45, that is, the rotary tool 25 to be indexed. Therefore, the rotary tool 25 having the protruding portions 65 of different shapes can be attached to the tool post 21.
(第2実施例)
 次に、本開示の第2実施例について説明する。上記した第1実施例では、第1及び第2凹溝部91,92を、回転方向50において90度だけ位相が異なる位置に設けた。これに対し、第2実施例では、第1及び第2凹溝部91,92を、クラッチ部材71の軸方向で異なる位置に設ける点で異なる。以下の説明では、上記した第1実施例と同一部材については、同一符号を付し、その説明を適宜省略する。
(Second example)
Next, a second example of the present disclosure will be described. In the first embodiment described above, the first and second groove portions 91 and 92 are provided at positions that are out of phase by 90 degrees in the rotation direction 50. In contrast, the second embodiment differs in that the first and second groove portions 91 and 92 are provided at different positions in the axial direction of the clutch member 71. In the following description, the same members as those in the first embodiment described above will be denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 図13は、第2実施例のクラッチ部材71Aの斜視図を示している。図14は、クラッチ部材71Aの断面図を示している。上記したように、第1凹溝部91の幅W1は、例えば、6mmである。第2凹溝部92の幅W2は、例えば、8mmである。また、図11に示す回転工具25Aの凸条部65を、凸条部65Aと称し、凸条部65Aの幅W(本開示の第1幅の一例)を、6mmとする。また、回転工具25Bの凸条部65を、凸条部65Bと称し、凸条部65Bの幅W(本開示の第2幅の一例)を、8mmとする。図14は、回転工具25Aの凸条部65A(第1凸条部の一例)と、回転工具25Bの凸条部65B(第2凸条部の一例)を破線で図示している。 FIG. 13 shows a perspective view of a clutch member 71A of the second embodiment. FIG. 14 shows a cross-sectional view of the clutch member 71A. As described above, the width W1 of the first groove portion 91 is, for example, 6 mm. The width W2 of the second groove portion 92 is, for example, 8 mm. Further, the protruding part 65 of the rotary tool 25A shown in FIG. 11 is referred to as a protruding part 65A, and the width W (an example of the first width of the present disclosure) of the protruding part 65A is 6 mm. Further, the protruding portion 65 of the rotary tool 25B is referred to as a protruding portion 65B, and the width W (an example of the second width of the present disclosure) of the protruding portion 65B is 8 mm. In FIG. 14, the protruding part 65A (an example of a first protruding part) of the rotary tool 25A and the protruding part 65B (an example of a second protruding part) of the rotary tool 25B are illustrated with broken lines.
 図13及び図14に示すように、第1凹溝部91は、第2凹溝部92に比べて小さい幅で形成され、クラッチ部材71Aの回転軸47に沿った方向において第2凹溝部92の位置よりも基端側(基部81側)に設けられている。例えば、第1及び第2凹溝部91,92は、クラッチ部材71Aの中心(図14の左右方向の中点)を通り、半径方向に沿って(図14の紙面直交方向に沿って)形成されている。また、第2凹溝部92の底部92Aには、第1凹溝部91の開口が形成されている。 As shown in FIGS. 13 and 14, the first groove portion 91 is formed with a smaller width than the second groove portion 92, and the position of the second groove portion 92 in the direction along the rotation axis 47 of the clutch member 71A. It is provided on the proximal end side (base 81 side). For example, the first and second groove portions 91 and 92 are formed along the radial direction (along the direction perpendicular to the paper plane of FIG. 14) passing through the center of the clutch member 71A (the midpoint in the left-right direction in FIG. 14). ing. Further, the opening of the first groove portion 91 is formed in the bottom portion 92A of the second groove portion 92.
 図14に破線で示すように、第2凹溝部92には、回転工具25Bの凸条部65Bが挿入される。また、第1凹溝部91には、回転工具25Aの凸条部65Aが挿入される。凸条部65Aは、第2凹溝部92を介して第1凹溝部91に挿入される。換言すれば、第1凹溝部91は、第2凹溝部92に挿入された凸条部65Aの先端を挿入可能な位置に設けられている。 As shown by the broken line in FIG. 14, the protruding portion 65B of the rotary tool 25B is inserted into the second groove portion 92. Further, the protruding portion 65A of the rotary tool 25A is inserted into the first groove portion 91. The protruding portion 65A is inserted into the first groove portion 91 via the second groove portion 92. In other words, the first groove portion 91 is provided at a position into which the tip of the protruding portion 65A inserted into the second groove portion 92 can be inserted.
 回転軸47の軸方向における凸条部65A,65Bの位置調整は、スペーサ27の厚みW3(図10参照)で調整できる。具体的には、例えば、図13に示すように、軸方向における第1凹溝部91の深さをW5とする。この場合、回転工具25Aを取り付けるスペーサ27の厚みW3を、回転工具25Bを取り付けるスペーサ27の厚みW3に比べて深さW5だけ薄くする。これにより、凸条部65Aは、刃物台21の半径方向において、刃物台21の回転中心からの距離が凸条部65Bに比べて深さW5だけ短くなる。刃物台21を旋回させることで軸方向で異なる位置に設けられた凸条部65A,65Bの各々を、第1及び第2凹溝部91,92の各々に挿入することができる。 The position of the protrusions 65A and 65B in the axial direction of the rotating shaft 47 can be adjusted by adjusting the thickness W3 of the spacer 27 (see FIG. 10). Specifically, for example, as shown in FIG. 13, the depth of the first groove portion 91 in the axial direction is set to W5. In this case, the thickness W3 of the spacer 27 to which the rotary tool 25A is attached is made thinner by the depth W5 than the thickness W3 of the spacer 27 to which the rotary tool 25B is attached. As a result, the distance of the protruding portion 65A from the center of rotation of the tool rest 21 in the radial direction of the tool rest 21 is shorter than that of the protruding portion 65B by the depth W5. By rotating the tool post 21, each of the protrusions 65A and 65B provided at different positions in the axial direction can be inserted into each of the first and second grooves 91 and 92.
 以上、上記した第2実施例では、以下の効果を奏する。
 本願の一態様であるクラッチ部材71Aには、クラッチ部材71の軸方向で異なる位置に第1及び第2凹溝部91,92が設けられている。これによれば、回転工具25A,25Bを含む刃物台21の回転工具25を切り替える場合に、駆動軸45を回転させて第1及び第2凹溝部91,92を切り替える必要がなくなる。凸条部65の形状が異なる回転工具25をより迅速に切り替えることができる。
As described above, the second embodiment described above has the following effects.
In the clutch member 71A, which is one aspect of the present application, first and second groove portions 91 and 92 are provided at different positions in the axial direction of the clutch member 71. According to this, when switching the rotary tools 25 of the tool rest 21 including the rotary tools 25A and 25B, there is no need to rotate the drive shaft 45 to switch between the first and second groove portions 91 and 92. Rotary tools 25 having different shapes of the protruding stripes 65 can be switched more quickly.
 尚、図13、図14に示す第2実施例では、2の凹溝部を軸方向で異なる位置に設ける例を示したが、3つ以上の凹溝部を軸方向で異なる位置に設けても良い。即ち、クラッチ部材71Aは、軸方向で3段以上の凹溝部を備える構成でも良い。また、第1実施例のような回転方向50で異なる位置の凹溝部と、第2実施例のような軸方向で異なる位置の凹溝部を組み合わせて用いても良い。例えば、回転方向50で90度だけ異なる位置の第1及び第2凹溝部91,92と、軸方向で異なる位置に設けられた第3凹溝部、さらには第4凹溝部を、クラッチ部材71に形成しても良い。 In addition, in the second embodiment shown in FIGS. 13 and 14, an example was shown in which two groove portions are provided at different positions in the axial direction, but three or more groove portions may be provided at different positions in the axial direction. . That is, the clutch member 71A may have a configuration including three or more stages of grooves in the axial direction. Further, the groove portions located at different positions in the rotational direction 50 as in the first embodiment may be used in combination with the groove portions located at different positions in the axial direction as in the second embodiment. For example, first and second groove portions 91 and 92 located at different positions by 90 degrees in the rotational direction 50, a third groove portion provided at different positions in the axial direction, and even a fourth groove portion are provided in the clutch member 71. It may be formed.
 また、本開示の内容は、上記各実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
 例えば、第1実施例では、全てホルダ23Aにスペーサ27を取り付けたが、これに限らない。例えば、回転工具25やバイト(図示略)を、スペーサ27を介さずにホルダ23Aに直接取り付けても良い。この場合、回転工具25やバイトの十字の突起を入れる溝107をホルダ23Aに設けても良い。また、回転工具25やバイトにおけるホルダ23Aに取り付ける面を、突起を設けずに平面としても良い。
 また、本開示の回転工具は、第1実施例のように、切削工具57を取り付ける構成に限らない。例えば、先行技術文献の工具旋回ユニットのような工具(バイト)を旋回させるユニットでも良い。従って、本開示のクラッチ部材で伝達する回転駆動力を、切削工具57を回転させる動力として用いずに、工具を旋回させる動力等、他の動力として用いても良い。
Furthermore, the content of the present disclosure is not limited to the above embodiments, and can be implemented in various forms with various changes and improvements based on the knowledge of those skilled in the art.
For example, in the first embodiment, the spacer 27 is attached to the holder 23A in all cases, but the invention is not limited to this. For example, the rotary tool 25 or a cutting tool (not shown) may be directly attached to the holder 23A without using the spacer 27. In this case, the holder 23A may be provided with a groove 107 into which the rotary tool 25 or the cross-shaped protrusion of the cutting tool is inserted. Further, the surface of the rotary tool 25 or the cutting tool that is attached to the holder 23A may be a flat surface without providing a protrusion.
Further, the rotary tool of the present disclosure is not limited to the configuration in which the cutting tool 57 is attached as in the first embodiment. For example, it may be a unit that rotates a tool (bite), such as the tool rotation unit described in the prior art document. Therefore, the rotational driving force transmitted by the clutch member of the present disclosure may not be used as the power to rotate the cutting tool 57, but may be used as other power, such as the power to rotate the tool.
 また、クラッチ部材71は、互いに形状の異なる凹溝部を、3つ以上備える構成でも良い。
 また、凸条部65を伝動軸49に設け、第1及び第2凹溝部91,92を駆動軸45に設けたが、逆でも良い。即ち、伝動軸49に剛性等に応じた凹溝部を設け、駆動軸45に複数の凸条部を設けても良い。
 また、クラッチ部材71を駆動軸45の先端にピン73を用いて取り付けたが、これに限らない。第1及び第2凹溝部91,92のような凹溝部を、駆動軸45の先端に直接加工して形成しても良い。この場合、Oリング75等を駆動軸45に設けなくとも良い。
 また、工作機械10は、スペーサ27を用いない構成でも良い。例えば、伝動軸49の長さが同一であるものの、凸条部65の幅Wが異なる回転工具25を、刃物台21に取り付けて使用する構成でも良い。
 また、本開示の工作機械は、旋盤に限らず、マシニングセンタなどの回転工具を刃物台に取り付け可能な他の工作機械でも良い。
Further, the clutch member 71 may have a configuration including three or more groove portions having mutually different shapes.
Further, although the protruding portion 65 is provided on the transmission shaft 49 and the first and second groove portions 91 and 92 are provided on the drive shaft 45, the reverse may be used. That is, the transmission shaft 49 may be provided with a concave groove portion depending on the rigidity, etc., and the drive shaft 45 may be provided with a plurality of protrusions.
Further, although the clutch member 71 is attached to the tip of the drive shaft 45 using the pin 73, the present invention is not limited to this. Recessed grooves such as the first and second recessed grooves 91 and 92 may be formed by directly processing the tip of the drive shaft 45. In this case, it is not necessary to provide the O-ring 75 or the like on the drive shaft 45.
Furthermore, the machine tool 10 may have a configuration that does not use the spacer 27. For example, the rotary tools 25 having the same length of the transmission shaft 49 but different widths W of the protrusions 65 may be used by being attached to the tool rest 21.
Further, the machine tool of the present disclosure is not limited to a lathe, but may be any other machine tool such as a machining center that can attach a rotary tool to a tool rest.
 尚、本開示の内容は、請求項に記載の従属関係に限定されない。例えば、請求項5において「請求項1又は請求項2に記載の工作機械」を「請求項1から請求項4の何れか1項に記載の工作機械」に変更した技術思想についても、本明細書は開示している。また、例えば、請求項8において「請求項1又は請求項2に記載の工作機械」を「請求項1から請求項7の何れか1項に記載の工作機械」に変更した技術思想についても、本明細書は開示している。また、例えば、請求項10において「請求項1又は請求項2に記載の工作機械」を「請求項1から請求項9の何れか1項に記載の工作機械」に変更した技術思想についても、本明細書は開示している。 Note that the content of the present disclosure is not limited to the dependent relationships described in the claims. For example, the technical idea in which "the machine tool according to claim 1 or claim 2" is changed to "the machine tool according to any one of claims 1 to 4" in claim 5 is also included in the specification. The book is disclosed. Also, for example, regarding the technical idea in which "the machine tool according to claim 1 or claim 2" is changed to "the machine tool according to any one of claims 1 to 7" in claim 8, This specification discloses. Also, for example, regarding the technical idea in which "the machine tool according to claim 1 or claim 2" is changed to "the machine tool according to any one of claims 1 to 9" in claim 10, This specification discloses.
 10 工作機械、15 制御装置、15B 記憶装置、21 刃物台、23A ホルダ、25、25A~25F 回転工具(第1回転工具、第2回転工具)、27 スペーサ、37 作業位置(連結位置)、43 サーボモータ(駆動源)、45 駆動軸、49 伝動軸、65 凸条部(第1凸条部、第2凸条部)、65A 凸条部(第1凸条部)、65B 凸条部(第2凸条部)、71 ,71A クラッチ部材(クラッチ部)、91 第1凹溝部(凹溝部)、92 第2凹溝部(凹溝部)、96 ボルト(スペーサ側螺合部材)、95 ボルト穴(ホルダ側被螺合部)、98 ボルト(回転工具側螺合部材)、99 ボルト穴(スペーサ側被螺合部)、105 軸挿入孔、DT 設定データ、R2 半径。 10 Machine tool, 15 Control device, 15B Storage device, 21 Tool rest, 23A Holder, 25, 25A to 25F Rotary tool (first rotary tool, second rotary tool), 27 Spacer, 37 Working position (connection position), 43 Servo motor (drive source), 45 Drive shaft, 49 Transmission shaft, 65 Convex portion (first convex portion, second convex portion), 65A Convex portion (first convex portion), 65B Convex portion ( 2nd convex groove part), 71, 71A clutch member (clutch part), 91 first concave groove part (concave groove part), 92 second concave groove part (concave groove part), 96 bolt (spacer side screwing member), 95 bolt hole (Holder side threaded part), 98 bolt (rotary tool side threaded member), 99 bolt hole (spacer side threaded part), 105 shaft insertion hole, DT setting data, R2 radius.

Claims (10)

  1.  駆動源と、
     前記駆動源の駆動に基づいて回転する駆動軸と、
     複数の回転工具を取り付け可能な刃物台と、
     を備え、
     前記駆動軸は、
     前記駆動軸から前記回転工具の伝動軸に回転駆動力を伝達するクラッチ部が設けられ、
     複数の前記回転工具の各々は、
     前記伝動軸に凸条部が設けられ、前記凸条部の形状が互いに異なるものが含まれ、
     前記クラッチ部は、
     形状の異なる前記凸条部の各々の形状に合わせて形成された凹溝部がそれぞれ設けられる、工作機械。
    A driving source,
    a drive shaft that rotates based on the drive of the drive source;
    A turret to which multiple rotary tools can be attached,
    Equipped with
    The drive shaft is
    A clutch portion is provided for transmitting rotational driving force from the drive shaft to the transmission shaft of the rotary tool,
    Each of the plurality of rotating tools is
    The transmission shaft is provided with a protruding part, and the protruding parts have different shapes,
    The clutch portion is
    A machine tool provided with grooves formed to match the shapes of the protrusions having different shapes.
  2.  複数の前記回転工具の各々は、
     第1形状の第1凸条部が設けられた第1回転工具と、
     前記第1形状とは異なる形状である第2形状の第2凸条部が設けられた第2回転工具と、
     を含み、
     前記クラッチ部は、
     前記第1凸条部の前記第1形状に合わせて形成される第1凹溝部と、
     前記第2凸条部の前記第2形状に合わせて形成される第2凹溝部と、
     を有し、前記駆動軸の回転にともなって回転し、前記第1凹溝部と前記第2凹溝部の位置が変更される、請求項1に記載の工作機械。
    Each of the plurality of rotating tools is
    a first rotary tool provided with a first convex portion having a first shape;
    a second rotary tool provided with a second protruding portion having a second shape that is different from the first shape;
    including;
    The clutch portion includes:
    a first groove portion formed to match the first shape of the first protruding portion;
    a second groove portion formed to match the second shape of the second protruding portion;
    The machine tool according to claim 1, wherein the machine tool rotates as the drive shaft rotates, and the positions of the first groove portion and the second groove portion are changed.
  3.  前記刃物台及び前記駆動源を制御する制御装置を、さらに備え、
     複数の前記回転工具は、
     前記刃物台の旋回にともなって旋回し、連結位置において前記クラッチ部を介して前記駆動軸と連結され、
     前記制御装置は、
     前記連結位置に前記第1回転工具を配置する場合、前記第1凸条部が第1凹溝部に挿入可能な回転位置まで前記駆動軸を回転させ、前記連結位置に前記第2回転工具を配置する場合、前記第2凸条部が前記第2凹溝部に挿入可能な回転位置まで前記駆動軸を回転させる、請求項2に記載の工作機械。
    further comprising a control device that controls the tool rest and the drive source,
    The plurality of rotating tools include:
    Rotates as the tool rest rotates, and is connected to the drive shaft via the clutch portion at a connected position;
    The control device includes:
    When arranging the first rotating tool at the connecting position, the drive shaft is rotated to a rotational position where the first protruding portion can be inserted into the first groove, and the second rotating tool is placed at the connecting position. In this case, the machine tool according to claim 2, wherein the drive shaft is rotated to a rotational position where the second protruding portion can be inserted into the second groove portion.
  4.  複数の前記回転工具は、
     前記凸条部の向きを、他の前記回転工具の前記凸条部の向きと同じ向きにした状態で、前記刃物台の旋回にともなって旋回し、
     前記第1凹溝部及び前記第2凹溝部は、
     直線形状の溝であり、前記クラッチ部において互いに直交する方向に沿って形成される、請求項3に記載の工作機械。
    The plurality of rotating tools include:
    Rotating along with the rotation of the tool post with the protruding stripes oriented in the same direction as the protruding stripes of the other rotary tools;
    The first groove portion and the second groove portion are
    The machine tool according to claim 3, wherein the groove is a linear groove and is formed along directions orthogonal to each other in the clutch portion.
  5.  前記刃物台及び前記駆動源を制御する制御装置と、
     記憶装置と、
     をさらに備え、
     前記クラッチ部は、
     前記駆動軸の回転にともなって回転し、回転位置に応じて複数の前記凹溝部の向きが変更され、
     前記刃物台は、
     複数の前記回転工具の各々を取り付け可能なホルダを複数有し、
     前記記憶装置は、
     前記ホルダを識別可能なホルダ識別情報と、前記ホルダ識別情報が示す前記ホルダに取り付けられた前記回転工具の前記凸条部の形状に係わる情報と、が対応付けられた設定データを記憶可能であり、
     前記制御装置は、
     前記駆動軸に連結する前記回転工具が取り付けられた前記ホルダの前記ホルダ識別情報と、前記設定データに基づいて、前記クラッチ部の回転位置を設定する、請求項1又は請求項2に記載の工作機械。
    a control device that controls the tool rest and the drive source;
    a storage device;
    Furthermore,
    The clutch portion is
    rotates as the drive shaft rotates, and the orientation of the plurality of grooves is changed depending on the rotational position;
    The turret is
    having a plurality of holders to which each of the plurality of rotating tools can be attached;
    The storage device is
    It is possible to store setting data in which holder identification information that allows identification of the holder and information related to the shape of the convex strip of the rotary tool attached to the holder indicated by the holder identification information are associated. ,
    The control device includes:
    The work according to claim 1 or 2, wherein the rotational position of the clutch portion is set based on the holder identification information of the holder to which the rotary tool connected to the drive shaft is attached and the setting data. machine.
  6.  前記制御装置は、
     前記刃物台を旋回させ前記駆動軸に連結される前記回転工具を変更する場合に、前記刃物台を旋回させ変更前の前記回転工具の前記凸条部を前記凹溝部から取り外す取り外し処理と、
     前記取り外し処理を実行した後、前記駆動軸を回転させ複数の前記凹溝部の向きを変更する駆動軸回転処理と、
     前記駆動軸回転処理を実行した後、前記刃物台を旋回させ変更後の前記回転工具の前記凸条部を、変更前の前記回転工具の前記凸条部が挿入されていた前記凹溝部とは異なる凹溝部に挿入する挿入処理と、
     を実行する、請求項5に記載の工作機械。
    The control device includes:
    When changing the rotating tool connected to the drive shaft by rotating the tool post, a removal process of rotating the tool post and removing the protruding portion of the rotating tool before the change from the groove;
    After performing the removal process, a drive shaft rotation process of rotating the drive shaft to change the orientation of the plurality of grooves;
    After executing the drive shaft rotation process, the tool post is rotated to insert the convex portion of the changed rotary tool into the concave groove portion into which the convex portion of the pre-changed rotary tool was inserted. Insertion processing for inserting into different grooves,
    The machine tool according to claim 5, which performs the following.
  7.  前記制御装置は、
     前記取り外し処理により前記凸条部を前記凹溝部から取り外し、前記刃物台を所定の旋回位置まで旋回させ、前記刃物台の旋回を停止し、
     前記刃物台の旋回を停止した状態で前記駆動軸回転処理を実行し、
     前記駆動軸回転処理における前記駆動軸の回転が完了した後、前記刃物台を所定の前記旋回位置からさらに旋回させ前記挿入処理を実行する、請求項6に記載の工作機械。
    The control device includes:
    The removal process removes the protruding portion from the groove, rotates the tool rest to a predetermined turning position, and stops turning the tool rest;
    Executing the drive shaft rotation process while the rotation of the tool post is stopped;
    The machine tool according to claim 6, wherein after the rotation of the drive shaft in the drive shaft rotation process is completed, the tool post is further rotated from the predetermined rotation position and the insertion process is executed.
  8.  前記刃物台は、
     複数の前記回転工具の各々を取り付け可能なホルダを複数有し、前記ホルダと前記回転工具の間にスペーサを取り付け可能であり、
     複数の回転工具の各々は、
     前記スペーサを介して前記ホルダに取り付けられることで、互いの前記凸条部が前記刃物台の半径方向において前記刃物台の回転中心から同じ半径の位置に配置され、且つ、前記刃物台の半径方向において前記刃物台の回転中心から前記凹溝部と同じ半径の位置に配置される、請求項1又は請求項2に記載の工作機械。
    The turret is
    It has a plurality of holders to which each of the plurality of rotary tools can be attached, and a spacer can be attached between the holder and the rotary tool,
    Each of the plurality of rotating tools is
    By being attached to the holder via the spacer, the protrusions are arranged at the same radial position from the rotation center of the tool rest in the radial direction of the tool rest, and The machine tool according to claim 1 or 2, wherein the machine tool is disposed at a position having the same radius as the groove from the center of rotation of the tool post.
  9.  前記スペーサは、
     前記伝動軸を挿入する軸挿入孔と、
     前記回転工具を取り付ける回転工具側螺合部材を螺合されるスペーサ側被螺合部と、
     を有し、
     複数の前記ホルダの各々は、
     前記スペーサを取り付けるスペーサ側螺合部材を螺合されるホルダ側被螺合部を有し、且つ、前記ホルダ側被螺合部を形成される位置が他のホルダと同一位置である、請求項8に記載の工作機械。
    The spacer is
    a shaft insertion hole into which the transmission shaft is inserted;
    a spacer-side threaded part into which the rotating tool-side threaded member to which the rotating tool is attached is threaded;
    has
    Each of the plurality of holders includes:
    A holder-side screwed part to which a spacer-side screwed member to which the spacer is attached is screwed, and a position where the holder-side screwed part is formed is the same as another holder. 8. The machine tool described in 8.
  10.  複数の前記回転工具の各々は、
     第1幅の第1凸条部が設けられた第1回転工具と、
     前記第1幅とは異なる第2幅の第2凸条部が設けられた第2回転工具と、
     を含み、
     前記クラッチ部は、
     前記第1凸条部の前記第1幅に合わせて形成される第1凹溝部と、
     前記第2凸条部の前記第2幅に合わせて形成される第2凹溝部と、
     を有し、
     前記第1凹溝部は、
     前記第2凹溝部に比べて小さい幅で形成され、前記クラッチ部の回転軸に沿った方向において前記第2凹溝部の位置よりも基端側に設けられ、前記第2凹溝部に挿入された前記第1凸条部の先端を挿入可能な位置に設けられる、請求項1又は請求項2に記載の工作機械。
    Each of the plurality of rotating tools is
    a first rotary tool provided with a first protruding portion having a first width;
    a second rotary tool provided with a second protruding portion having a second width different from the first width;
    including;
    The clutch portion includes:
    a first groove portion formed to match the first width of the first protruding portion;
    a second groove portion formed to match the second width of the second protruding portion;
    has
    The first groove portion is
    It is formed with a smaller width than the second groove, is provided closer to the proximal end than the second groove in the direction along the rotation axis of the clutch, and is inserted into the second groove. The machine tool according to claim 1 or 2, wherein the machine tool is provided at a position where the tip of the first protruding portion can be inserted.
PCT/JP2022/023358 2022-06-09 2022-06-09 Machine tool WO2023238347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023358 WO2023238347A1 (en) 2022-06-09 2022-06-09 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023358 WO2023238347A1 (en) 2022-06-09 2022-06-09 Machine tool

Publications (1)

Publication Number Publication Date
WO2023238347A1 true WO2023238347A1 (en) 2023-12-14

Family

ID=89117799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023358 WO2023238347A1 (en) 2022-06-09 2022-06-09 Machine tool

Country Status (1)

Country Link
WO (1) WO2023238347A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170103A (en) * 1997-12-08 1999-06-29 Mori Seiki Co Ltd Lathe tool rest equipped with tool rotation drive device
JP2007168033A (en) * 2005-12-22 2007-07-05 Tsugami Corp Tool rotary driving device on turret
JP2007210062A (en) * 2006-02-09 2007-08-23 Murata Mach Ltd Turret lathe
JP2009297795A (en) * 2008-06-10 2009-12-24 Alps Tool Co Ltd Clutch device of rotary tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170103A (en) * 1997-12-08 1999-06-29 Mori Seiki Co Ltd Lathe tool rest equipped with tool rotation drive device
JP2007168033A (en) * 2005-12-22 2007-07-05 Tsugami Corp Tool rotary driving device on turret
JP2007210062A (en) * 2006-02-09 2007-08-23 Murata Mach Ltd Turret lathe
JP2009297795A (en) * 2008-06-10 2009-12-24 Alps Tool Co Ltd Clutch device of rotary tool

Similar Documents

Publication Publication Date Title
US7117773B2 (en) Turret for turret lathe
EP1366851A1 (en) Tool holder for turret lathe
EP0375783B1 (en) Machine tool
CA2385578C (en) Shank attaching structure and cutter
EP3147052A1 (en) Turret cutting tool holder and machine tool provided with same
EP1671728B1 (en) Turret tool rest
JP6650171B1 (en) Cutting tool tool changer
CN111655424B (en) Tool magazine for machine tool
JP2002154007A (en) Composite tool
JP4572133B2 (en) Internal processing equipment for hollow workpieces
EP1557238A1 (en) Work phase determination method for machine tools, and device therefor
WO2023238347A1 (en) Machine tool
US20020137611A1 (en) Automatic-tool-changer-equipped lathe
US20030134731A1 (en) Automatic-tool-changer-equipped lathe
JP2005329493A (en) Machining tool and machining method
EP3257610A1 (en) Machine tool
JP2011230250A (en) Apparatus for machining inner surface of hollow workpiece
JP7464816B2 (en) Lathe and method for attaching guide member thereto
KR20020020671A (en) Method and tool holder for turning inside contours of workpieces
JPWO2018198648A1 (en) Manufacturing method of scroll compressor
JP2023012145A (en) Machining tool, machine tool, and machining method
KR102656741B1 (en) Tool holders and processing methods
US7165922B2 (en) Cutting tool assembly having construction enabling cutting tool to have large diameter
JP5121361B2 (en) Internal processing equipment for hollow workpieces
JP4714625B2 (en) Cutting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945849

Country of ref document: EP

Kind code of ref document: A1