WO2023238252A1 - Training device, method, and program - Google Patents

Training device, method, and program Download PDF

Info

Publication number
WO2023238252A1
WO2023238252A1 PCT/JP2022/023006 JP2022023006W WO2023238252A1 WO 2023238252 A1 WO2023238252 A1 WO 2023238252A1 JP 2022023006 W JP2022023006 W JP 2022023006W WO 2023238252 A1 WO2023238252 A1 WO 2023238252A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
stimulation
muscle
subject
training device
Prior art date
Application number
PCT/JP2022/023006
Other languages
French (fr)
Japanese (ja)
Inventor
真人 進藤
隆司 伊勢崎
良輔 青木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/023006 priority Critical patent/WO2023238252A1/en
Publication of WO2023238252A1 publication Critical patent/WO2023238252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/16Platforms for rocking motion about a horizontal axis, e.g. axis through the middle of the platform; Balancing drums; Balancing boards or the like

Definitions

  • Embodiments of the present invention relate to a training device, method, and program.
  • Non-Patent Document 1 has the following problems (1) and (2).
  • This problem (1) is a problem in that the movement in response to disturbances differs from person to person, resulting in different sensation-dependent changes for each individual, and it is not possible to control the sensation that is desired to be strengthened.
  • No measures have been taken to reduce postural sway in response to disturbances. This (2) is an issue that may lead to an increase in center of gravity sway for some people, even if the desired sensory-dependent change can be induced.
  • the present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a training device, method, and program that enable subjects to strengthen the senses that they rely on to stabilize their body posture. It is about providing.
  • a training device determines the sensations to be strengthened that the subject depends on in order to stabilize the body posture, based on time-series data of the sway of the body's center of gravity when the subject performs a physical movement. is calculated by the calculation unit, which calculates the feature amount of the sway of the body posture when the subject performs an action to stabilize the body posture when no stimulation to different types of sensations is applied; determining a main action muscle to which stimulation to the different types of sensations is to be applied in order to reduce the feature amount, and presenting stimulation to the different types of sensations to the determined main action muscles; and a stimulus presentation unit.
  • the calculation unit of the training device allows the subject to stabilize his or her body posture based on time-series data of fluctuations in the center of gravity of the body when the subject performs physical movements. Calculate the feature amount of the sway of the body posture when the subject performs a movement to stabilize the body posture when no stimulation is given to a sensation of a different type than the sensation to be reinforced that depends on the
  • the stimulus presentation unit of the training device determines the main action muscle to which stimulation of the different types of sensations is applied in order to reduce the feature quantity calculated by the calculation unit, and the determined main action muscle In contrast, stimuli to the different types of sensations are presented.
  • FIG. 1 is a diagram showing an example of functions related to a training device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of functions related to the training device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the training device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an example of the procedure of sensory dependence measurement and evaluation processing according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing an example of a functional configuration related to balance training processing (without stimulation intervention) according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of functions related to a training device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of functions related to the training device according to the first embodiment of the present
  • FIG. 7 is a flowchart illustrating an example of the procedure of balance training processing (without stimulation intervention) according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing an example of a functional configuration related to balance training processing (with stimulation intervention) according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing an example of the procedure of balance training processing (with stimulation intervention) according to the first embodiment of the present invention.
  • FIG. 10 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating an example of a procedure for retraining determination processing according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of functions related to the training device according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram showing an example of the functional configuration of a training device according to the second embodiment of the present invention.
  • FIG. 14 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the second embodiment of the present invention.
  • FIG. 15 is a flowchart illustrating an example of the procedure of sensory dependence measurement and evaluation processing according to the second embodiment of the present invention.
  • FIG. 16 is a block diagram showing an example of a functional configuration related to balance training processing (with EMS intervention) according to the second embodiment of the present invention.
  • FIG. 17 is a flowchart showing an example of the procedure of balance training processing (with EMS intervention) according to the second embodiment of the present invention.
  • FIG. 18 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the second embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating an example of the procedure of retraining determination processing according to the second embodiment of the present invention.
  • FIG. 20 is a block diagram showing an example of the hardware configuration of a training device according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of functions related to a training device according to an embodiment of the present invention.
  • S4 post-balance training
  • steps of measuring and evaluating the degree of sensory dependence before and after balance training without this stimulation S1 (measuring and evaluating the degree of sensory dependence before post-balance training)
  • S5 post-post balance training
  • An exercise to control sensory dependence whose components include a step (S6) of measuring and evaluating the degree of sensory dependence after balance training) and comparing the results before and after balance training to determine whether retraining is necessary.
  • S6 step of measuring and evaluating the degree of sensory dependence after balance training
  • An embodiment of the present invention enables training of motor skills to control sensory dependence, incorporating balance training in which external stimuli are intervened to correct movement during disturbances. Furthermore, in stimulation intervention, parameters such as a threshold for stimulation presentation can be set for each individual based on the center of gravity sway obtained in advance.
  • ankle joint movement is corrected during disturbances by balance training in which muscle electrical stimulation (EMS (Electrical Muscle Stimulation)) is applied to ankle joint muscles in response to body sway. It becomes possible to strengthen visual dependence.
  • EMS Electro Mechanical Muscle Stimulation
  • visual stimulation that teaches the movement to be performed in response to body sway allows the trainee to voluntarily move the ankle joint in accordance with the stimulation, making it possible to strengthen the reliance on foot somatosensation.
  • the root mean square (RMS ) is calculated using the following formula (1 ).
  • x m , y m are the average values of the foot pressure center position, and n is the number of time samples. Note that the center of gravity oscillation speed, rectangular area, etc. may be used as other parameters.
  • the somatosensory dependence evaluation unit 203 inputs the calculation results of the center of gravity sway s S when standing on a stable surface and the center of gravity sway s US when standing on an unstable surface, and based on these calculation results,
  • the somatosensory dependence d p of is calculated as in the following equation (2) (S11i).
  • the somatosensory dependence degree calculated as described above before training is stored in the storage device of the training device 103 as the pre-training somatosensory dependence degree dp_pre.
  • FIG. 6 is a block diagram showing an example of a functional configuration related to balance training processing (without stimulation intervention) according to the first embodiment of the present invention.
  • S12 is a step of implementing balance training without visual stimulus intervention, before balance training with visual stimulus intervention.
  • the motion capture system 102 includes a balance board height measurement section 301 and a balance board sway evaluation section 302, and the motion capture system 102 includes a balance board height measurement section 301 and a balance board sway evaluation section 302.
  • Balance training S12 without stimulation intervention can be realized by these 301 and 302.
  • the balance board sway evaluation unit 302 uses this stored data to calculate the balance board sway S BB as shown in equation (3) below.
  • the root mean square (RMS) is used as the balance board oscillation.
  • h m is the average height of the balance board
  • n is the number of time samples.
  • the balance board oscillation acquired in preliminary training is stored in the storage device of the training device 103 as S BB_pre .
  • FIG. 9 is a flowchart showing an example of the procedure of balance training processing (with stimulation intervention) according to the first embodiment of the present invention.
  • S13 as a training task, one-legged standing on a balance board tilted only in the front-back direction is performed multiple times for 30 seconds each (S13a).
  • This training task may be performed on a soft floor surface in addition to a balance board.
  • the above three channels correspond to, for example, a channel that lights up "keep”, a channel that lights up "up”, and a channel that outputs "down".
  • the balance board height measurement unit 401 of the motion capture system 102 measures the height (ht) of the marker and outputs the measurement result to the training device 103 as time series data of the subject's current body motion (S13b).
  • Time series data storage unit 402 of balance board oscillation during pre-training The "time series data of balance board height" explained in S12b and S12c is stored in the time series data storage unit 402 in the training device 103 as "time series data of balance board sway in pre-training", and is It can be output to the working muscle threshold determination unit 403.
  • the main action muscle threshold determination unit 403 inputs “time series data of balance board sway in pre-training” stored in the time series data storage unit 402, and selects an appropriate main action muscle for reducing balance board sway, i.e. A threshold value h_ta and a threshold h_so for determining the main action muscle to be stimulated in order to stabilize the subject's posture are output to the main action muscle determination unit 404.
  • a threshold value h_ta and a threshold h_so for determining the main action muscle to be stimulated in order to stabilize the subject's posture are output to the main action muscle determination unit 404.
  • the subject's tibialis anterior muscle (TA) is activated as described above.
  • the main action muscle determining unit 404 determines that it is a working muscle. In addition, when the height h of the front end of the balance board shown in the time-series data of the current body movement is greater than or equal to the threshold h_so, it is assumed that the subject's soleus (soleus: SO) is the appropriate main action muscle. The muscle determination unit 404 determines. If the average value of the time series data of the height h of the front end of the balance board is h_mean, and the standard deviation of the time series data is h_std, the following equations (4) and (5) are defined.
  • h_ta h_mean - h_std...Equation (4)
  • h_so h_mean + h_std...Equation (5)
  • the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement, it is assumed that the height h of the front end of the balance board is in the region of "h_ta ⁇ h ⁇ h_so", that is, it is not below the threshold h_ta but above the threshold h_so as described above. In the region where there is no balance, the subject can maintain balance relatively horizontally, so the height of the front end of the balance board can be called the "stable region.”
  • the height h of the front end of the balance board shown in the above-mentioned time-series data of the current body movement in areas other than the above-mentioned "h_ta ⁇ h ⁇ h_so", that is, in the area below the above-mentioned threshold h_ta or above the threshold h_so, the balance Because the board is highly tilted, the height h of the front edge of the balance board can be called the "unstable region.”
  • the main action muscle determination unit 404 inputs the time series data of the subject's current body motion transmitted from the balance board height measurement unit 102, and receives this time series data and the time series data output from the main action muscle threshold determination unit 403.
  • the threshold value and the height ht of the front end of the balance board at time t from the balance board height measurement unit 401 are input, and it is determined whether the height of the front end of the balance board is in a stable region or an unstable region. In other words, it is determined whether the movement of the subject to stabilize his or her body posture is stable enough to not require stimulation of the senses.
  • the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that lights up the "keep" button.
  • the main action muscle determining unit 404 determines whether the appropriate main action muscle should be the tibialis anterior (TA) or the soleus (SO) (S13c ). When it is determined that the tibialis anterior muscle is an appropriate main action muscle, the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that lights up the above-mentioned "up”. Furthermore, when it is determined that the soleus muscle is an appropriate main action muscle, the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that causes the above-mentioned "down" to be output.
  • TA tibialis anterior
  • SO soleus
  • ⁇ Visual stimulus presentation section 405 When the microcomputer 104 receives the trigger signal transmitted when the unstable region is determined, the visual stimulus presentation unit 405 presents a visual stimulus that causes the main action muscle corresponding to the trigger channel to operate (S13d). The trainee confirms that "up” is lit and performs an action to raise the front end of the balance board, and confirms that "down” is lit and performs an action to lower the front end of the balance board. Further, when the microcomputer 104 receives the transmitted trigger signal when the unstable region is determined, the visual stimulus presentation unit 405 presents a visual stimulus that maintains the stable region, corresponding to the trigger channel "keep”. (S13e). The trainee confirms that the above-mentioned "keep” is lit and performs an action to maintain the balance board in the same state. After S13d or S13e, the process returns to S13b with the time count advanced.
  • Post-balance training step S1 is a step of performing balance training without intervention after balance training with visual stimulus intervention, and is the same step as S12.
  • the configuration and flowchart are as shown in FIGS. 6 and 7.
  • Post-training sensory dependence evaluation step S15 is a step of measuring and evaluating the sensory dependence after training, and is similar to S11. The configuration and flowchart are as shown in FIGS. 4 and 5.
  • FIG. 10 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the first embodiment of the present invention.
  • S16 compares the somatosensory dependence (d p_pre , d p_post ) and balance board sway (S BB_pre , S BB_post ) before and after balance training using visual stimulation, and determines whether retraining of balance training is necessary. This is the step of determining whether or not.
  • the training device 103 has a retraining determination unit 501, and S16 can be realized by this 501.
  • FIG. 11 is a flowchart illustrating an example of a procedure for retraining determination processing according to the first embodiment of the present invention.
  • -Retraining determination unit 501 In S16, first, the retraining determination unit 501 reads out the balance board sway before and after balance training and the somatosensory dependence degree before and after balance training, which were stored in advance in the storage device of the training device 103. First, the balance board sway before and after balance training is compared (S16a).
  • the retraining determining unit 501 determines whether the balance board sway after training has been reduced compared to the balance board sway before training (S16b).
  • the retraining determination unit 501 compares the degree of somatosensory dependence read above before and after the balance training (S16c).
  • the retraining determination unit 501 determines that the somatosensory dependence is It is determined that learning of the motor skill to be strengthened has progressed, and the training is terminated. If not (No in S16c), retraining in S13 is performed.
  • Steps of balance training in which EMS is not intervened S22 (pre-balance training), S24 (post-balance training)
  • steps of measuring and evaluating the degree of sensory dependence before and after balance training in which EMS is not intervened S21, A motor skill training that strengthens visual dependence will be described, the components of which are S25) and a step of comparing the results before and after balance training to determine whether retraining is necessary (S26).
  • the floor reaction force meter 101, motion capture system 102, and microcomputer 104a are connected to a training device 103a, and an electrical stimulation device 105a is connected to the training device 103a via the microcomputer 104a.
  • the floor reaction force meter 101 measures the position of the center of foot pressure when the subject is standing, and this measurement result is used in S21 and S25 above, that is, the steps of sensory dependence measurement and evaluation processing after balance training. It will be done.
  • the motion capture system 102, the microcomputer 104a, and the electrical stimulation device 105a are used in S22, S23, and S24, that is, various balance training steps.
  • the motion capture system 102 measures the position of a subject's body or object by attaching a dedicated infrared reflective marker to an arbitrary location on the subject's body or object. According to the measured movement of the marker, a trigger is transmitted from the training device 103a to the microcomputer 104a, and at the timing of receiving this trigger, the microcomputer 104a transmits a signal to start electrical stimulation to the electrical stimulation device 105a.
  • FIG. 14 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the second embodiment of the present invention.
  • S21 is a step of evaluating the degree of sensory dependence before balance training.
  • the floor reaction force meter 101 has a center of gravity sway measuring section 201
  • the training device 103a has a center of gravity sway evaluation section 202 and a visual dependence evaluation section 203a.
  • the sensory dependence measurement/evaluation process S21 before form-based balance training can be realized by these 201 to 203a.
  • FIG. 15 is a flowchart illustrating an example of the procedure of sensory dependence evaluation processing according to the second embodiment of the present invention.
  • the subject first stands with both feet open on the ground reaction force meter 101 (on a stable surface) for 30 seconds (S21a), and then with both feet closed on the ground reaction force meter 101 (on a stable surface) for 30 seconds (S21a). Repeat 30 seconds (S21b) multiple times.
  • the standing time is just an example, and may be set to 60 seconds, for example.
  • the center of gravity sway evaluation unit 202 inputs the measurement result of the foot pressure center position (x t , y t ) when standing with both feet open, and stores it in the storage device in the training device 103a as time series data of the foot pressure center position. (S21e).
  • the training device 103a uses this stored data to calculate the center of gravity sway S EO when standing with eyes open, and outputs the calculation result to the visual dependence evaluation unit 203a (S21f).
  • the visual dependence evaluation unit 203a inputs the calculation results of the center of gravity sway S EO when standing with eyes open and the center of gravity sway S EC when standing with eyes closed, and based on these calculation results, evaluates the visual dependence before training.
  • d e is calculated as shown in equation (7) below (S21i).
  • FIG. 17 is a flowchart showing an example of the procedure of balance training processing (with EMS intervention) according to the second embodiment of the present invention.
  • electrical stimulation electrodes are attached to the tibialis anterior muscle and soleus muscle of the subject's ankle, respectively, and connected to each channel of the electrical stimulation device 105a.
  • the electrical stimulation device 105a can present EMS to each muscle of the subject to contract the muscle. Further, only two channels in total are connected between the external trigger output device attached to the training device 103a and the microcomputer 104a, and the electric stimulation device 105a is connected to the training device 103a via the microcomputer 104.
  • S23 as a training task, one-legged standing on a balance board tilted only in the front-back direction is performed multiple times for 30 seconds each (S23a).
  • This training task may be performed on a soft floor surface in addition to a balance board.
  • the balance board height measurement unit 401 of the motion capture system 102 measures the height (ht) of the marker and outputs this measurement result to the training device 103a (S23b).
  • time series data of balance board height explained in S12b and S12c in the first embodiment is "time series data of balance board sway during pre-training".
  • the data is stored in the time series data storage section 402 in the training device 103a as “series data,” and can be output to the main action muscle threshold determination section 403.
  • the balance in the region of "h_ta ⁇ h ⁇ h_so", the balance can be maintained relatively horizontally, so the height of the front end of the balance board can be called the “stable region”.
  • the balance board in areas other than the above "h_ta ⁇ h ⁇ h_so", the balance board is significantly tilted, so the height of the front end of the balance board is called the "unstable area”. I can do it.
  • the main action muscle determining unit 404 determines whether the appropriate main action muscle should be the tibialis anterior (TA) or the soleus (SO) (S23c ), sends a trigger to the channel that stimulates the muscle determined to be the appropriate prime mover muscle.
  • TA tibialis anterior
  • SO soleus
  • Post-training sensory dependence evaluation step S25 is a step of measuring and evaluating the sensory dependence after training, and is similar to S21.
  • the configuration and flowchart are as shown in FIGS. 14 and 15.
  • FIG. 18 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the second embodiment of the present invention.
  • S26 compares the degree of visual dependence (d e_pre , d e_post ) and the balance board sway (S BB_pre , S BB_post ) before and after balance training in which EMS has been intervened, and determines whether retraining of balance training is necessary.
  • This step is to As shown in FIG. 18, the training device 103a has a retraining determination unit 501a, and S26 can be realized by this 501a.
  • the retraining determining unit 501 determines whether the balance board sway after training has been reduced compared to the balance board sway before training (S26b).
  • the process advances to the next determination block. If not (No in S26), retraining in S23 is performed. When it is determined Yes in the above S26b, the retraining determination unit 501 compares the read visual dependence degrees before and after the balance training (S26c).
  • the time-series data of body movements in pre-training or the calculation results of each degree of dependence may be stored in advance in a storage device (not shown) in the server 106.
  • the main action muscle threshold determination unit 403 or the main action muscle determination unit 404 of the training device 103 requests distribution (acquisition) of the stored data to the server 106 via the communication network, as necessary.
  • the distribution unit (not shown) of the server 106 transmits the stored data to the training device 103, which is the source of the distribution request, via the communication network. can be delivered to.
  • the threshold determined by the main action muscle threshold determination unit 403 described above may be stored in advance in a storage device (not shown) in the server 105 as threshold data.
  • the main action muscle determining unit 404 of the training device 103 requests the server 106 to distribute the above-mentioned threshold value data, so-called a download request, via the communication network, and the distribution unit of the server 106
  • the stored threshold data can be distributed via the communication network to the training device 103 that is the source of the distribution request.
  • an external stimulus is applied to correct movement during a disturbance, and the stimulation timing is determined from the center of gravity sway measured in advance for each individual subject. , the subject can control sensory dependence to stabilize body posture.
  • FIG. 20 is a block diagram showing an example of the hardware configuration of a training device according to an embodiment of the present invention.
  • the training device 103 according to the above embodiment is configured by, for example, a server computer or a personal computer, and includes a hardware processor such as a CPU (Central Processing Unit). hardware processor) 611A.
  • a program memory 611B, a data memory 612, an input/output interface 613, and a communication interface 614 are connected to the hardware processor 611A via a bus 615.
  • the data memory 612 is a tangible storage medium that is used in combination with the above-mentioned nonvolatile memory and volatile memory such as RAM (Random Access Memory), and is used to perform various processes. It is used to store various data acquired and created during the process.
  • RAM Random Access Memory
  • each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done.
  • the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer.

Abstract

A training device according to one embodiment comprises: a calculating unit that, on the basis of time-series data for body center of mass sway when a subject has performed a body motion, calculates features of posture sway when the subject has performed a motion for stabilizing posture when a sense of a different type from a strengthening-target sense that the subject depends upon in order to stabilize posture is not stimulated; and a stimulus presenting unit that determines an agonist muscle, being the target of stimulating the different type of sense, for reducing the features calculated by the calculating unit, and presents the stimulus provided to the different type of sense to the determined agonist muscle.

Description

トレーニング装置、方法およびプログラムTraining equipment, methods and programs
 本発明の実施形態は、トレーニング装置、方法およびプログラムに関する。 Embodiments of the present invention relate to a training device, method, and program.
 ヒトは、立位または歩行等の基礎運動時に身体姿勢、例えば身体動揺、を安定させるために姿勢制御を自ら行なう。ヒトの姿勢制御では、主に視覚(目)、体性感覚(足裏など)、および前庭感覚(三半規管など)でなる3つの感覚器により外界の情報を受け取り、これらの情報が脳の中枢神経系で正しく感覚統合されることで姿勢を安定させることが分かっており、感覚統合において各個人が特定の感覚に依存する傾向が知られている。 Humans perform postural control themselves to stabilize their body posture, such as body sway, during basic movements such as standing or walking. When controlling posture in humans, information from the outside world is received mainly through three sensory organs: vision (eyes), somatic sensation (sole of the foot, etc.), and vestibular sensation (semicircular canals, etc.), and this information is transmitted to the central nervous system of the brain. It is known that correct sensory integration in the system stabilizes posture, and it is known that each individual tends to rely on a specific sense in sensory integration.
 このような感覚依存性の偏りが長年にわたり続くと、強く依存した感覚器の機能が将来的な加齢によって低下したときに、姿勢制御が、より困難になるという問題が生じる。 
 将来的な加齢に伴う感覚器の機能低下は個人差が大きく予測が困難であることを踏まえると、どの感覚が機能低下しても姿勢を安定できるスキル、つまり視覚、体性感覚および前庭感覚のそれぞれに対する感覚依存を強めた状態で姿勢を安定させるスキル(skill)、すなわち感覚依存性を制御する運動スキル、を健常なうちに身に付けておくことが必要となる。 
 これにより、不安定な状況下、例えば軟らかい床面など、において、劣化していない感覚に依存を強めて姿勢を安定させることが可能となる。
If this bias in sensory dependence continues for many years, a problem arises in that postural control becomes more difficult when the functions of the sensory organs on which the body is strongly dependent decline due to aging.
Considering that the future decline in the function of sensory organs due to aging is difficult to predict due to individual differences, we need skills that allow us to maintain a stable posture even when the function of any sense decreases, that is, visual, somatosensory, and vestibular senses. It is necessary to acquire the skills to stabilize one's posture in a state of heightened sensory dependence on each of the above, in other words, the motor skills to control sensory dependence, while one is still healthy.
This makes it possible to stabilize one's posture under unstable conditions, such as on a soft floor, by relying more heavily on sensations that have not deteriorated.
 様々な感覚依存状態への遷移を促す従来の訓練方法としては、感覚器または外部環境を通じて外乱を与える方法があり、不安定面上立位も、その一つである(例えば非特許文献1を参照)。 Conventional training methods that encourage transitions to various sensory-dependent states include methods of applying disturbances through sensory organs or the external environment, and standing on an unstable surface is one such method (for example, see Non-Patent Document 1). reference).
 しかしながら、上記非特許文献1に開示されるような、感覚器または外部環境を通じて外乱を与える方法では、以下の課題(1)、(2)が挙げられる。 However, the method of applying disturbance through a sensory organ or the external environment as disclosed in Non-Patent Document 1 has the following problems (1) and (2).
 (1) 目的の感覚依存性変化を引き起こすことが困難である。 
 この(1)は、外乱に対する運動が個人ごとに異なるため、結果として個人ごとに異なる感覚依存変化が生じており、強めたい感覚を制御できていない課題である。 
 (2) 外乱に対して重心動揺(postural sway)を低減させる工夫が施されていない。 
 この(2)は、目的の感覚依存性変化を引き起こせたとしても、人によっては重心動揺の増大を招く可能性がある課題である。
(1) It is difficult to induce the desired sensory-dependent changes.
This problem (1) is a problem in that the movement in response to disturbances differs from person to person, resulting in different sensation-dependent changes for each individual, and it is not possible to control the sensation that is desired to be strengthened.
(2) No measures have been taken to reduce postural sway in response to disturbances.
This (2) is an issue that may lead to an increase in center of gravity sway for some people, even if the desired sensory-dependent change can be induced.
 この発明は、上記事情に着目してなされたもので、その目的とするところは、被験者が身体姿勢を安定させるために依存する感覚を強化することができるようにしたトレーニング装置、方法およびプログラムを提供することにある。 The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a training device, method, and program that enable subjects to strengthen the senses that they rely on to stabilize their body posture. It is about providing.
 本発明の一態様に係るトレーニング装置は、被験者が身体動作を行なったときの身体の重心の動揺の時系列データに基づいて、前記被験者が身体姿勢を安定させるために依存する強化対象の感覚とは異なる種別の感覚への刺激を与えないときの、前記被験者が身体姿勢を安定させるための動作を行なったときの身体姿勢の動揺の特徴量を計算する計算部と、前記計算部により計算された特徴量を低減させるための、前記異なる種別の感覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚へ与える刺激を提示する刺激提示部と、を備える。 A training device according to one aspect of the present invention determines the sensations to be strengthened that the subject depends on in order to stabilize the body posture, based on time-series data of the sway of the body's center of gravity when the subject performs a physical movement. is calculated by the calculation unit, which calculates the feature amount of the sway of the body posture when the subject performs an action to stabilize the body posture when no stimulation to different types of sensations is applied; determining a main action muscle to which stimulation to the different types of sensations is to be applied in order to reduce the feature amount, and presenting stimulation to the different types of sensations to the determined main action muscles; and a stimulus presentation unit.
 本発明の一態様に係るトレーニング方法は、前記トレーニング装置の計算部により、被験者が身体動作を行なったときの身体の重心の動揺の時系列データに基づいて、前記被験者が身体姿勢を安定させるために依存する強化対象の感覚とは異なる種別の感覚への刺激を与えないときの、前記被験者が身体姿勢を安定させるための動作を行なったときの身体姿勢の動揺の特徴量を計算し、前記トレーニング装置の刺激提示部により、前記計算部により計算された特徴量を低減させるための、前記異なる種別の感覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚へ与える刺激を提示する。 In the training method according to one aspect of the present invention, the calculation unit of the training device allows the subject to stabilize his or her body posture based on time-series data of fluctuations in the center of gravity of the body when the subject performs physical movements. Calculate the feature amount of the sway of the body posture when the subject performs a movement to stabilize the body posture when no stimulation is given to a sensation of a different type than the sensation to be reinforced that depends on the The stimulus presentation unit of the training device determines the main action muscle to which stimulation of the different types of sensations is applied in order to reduce the feature quantity calculated by the calculation unit, and the determined main action muscle In contrast, stimuli to the different types of sensations are presented.
 本発明によれば、被験者が身体姿勢を安定させるために依存する感覚を強化することができる。 According to the present invention, it is possible to strengthen the senses that the subject relies on to stabilize his or her body posture.
図1は、本発明の一実施形態に係るトレーニング(training)装置に係る機能の一例を示す図である。FIG. 1 is a diagram showing an example of functions related to a training device according to an embodiment of the present invention. 図2は、本発明の第1の実施形態に係るトレーニング装置に係る機能の一例を示す図である。FIG. 2 is a diagram showing an example of functions related to the training device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係るトレーニング装置の機能構成例を示すブロック図である。FIG. 3 is a block diagram showing an example of the functional configuration of the training device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態による感覚依存度計測・評価処理に係る機能構成例を示すブロック図である。FIG. 4 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態による感覚依存度計測・評価処理の手順の一例を示すフローチャート(flowchart)である。FIG. 5 is a flowchart illustrating an example of the procedure of sensory dependence measurement and evaluation processing according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態によるバランス訓練(balance training)処理(刺激介入なし)に係る機能構成例を示すブロック図である。FIG. 6 is a block diagram showing an example of a functional configuration related to balance training processing (without stimulation intervention) according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態によるバランス訓練処理(刺激介入なし)の手順の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of the procedure of balance training processing (without stimulation intervention) according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態によるバランス訓練処理(刺激介入あり)に係る機能構成例を示すブロック図である。FIG. 8 is a block diagram showing an example of a functional configuration related to balance training processing (with stimulation intervention) according to the first embodiment of the present invention. 図9は、本発明の第1の実施形態によるバランス訓練処理(刺激介入あり)の手順の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the procedure of balance training processing (with stimulation intervention) according to the first embodiment of the present invention. 図10は、本発明の第1の実施形態による再訓練判定処理に係る機能構成例を示すブロック図である。FIG. 10 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the first embodiment of the present invention. 図11は、本発明の第1の実施形態による再訓練判定処理の手順の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of a procedure for retraining determination processing according to the first embodiment of the present invention. 図12は、本発明の第2の実施形態に係るトレーニング装置に係る機能の一例を示す図である。FIG. 12 is a diagram showing an example of functions related to the training device according to the second embodiment of the present invention. 図13は、本発明の第2の実施形態に係るトレーニング装置の機能構成例を示すブロック図である。FIG. 13 is a block diagram showing an example of the functional configuration of a training device according to the second embodiment of the present invention. 図14は、本発明の第2の実施形態による感覚依存度計測・評価処理に係る機能構成例を示すブロック図である。FIG. 14 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the second embodiment of the present invention. 図15は、本発明の第2の実施形態による感覚依存度計測・評価処理の手順の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of the procedure of sensory dependence measurement and evaluation processing according to the second embodiment of the present invention. 図16は、本発明の第2の実施形態によるバランス訓練処理(EMS介入あり)に係る機能構成例を示すブロック図である。FIG. 16 is a block diagram showing an example of a functional configuration related to balance training processing (with EMS intervention) according to the second embodiment of the present invention. 図17は、本発明の第2の実施形態によるバランス訓練処理(EMS介入あり)の手順の一例を示すフローチャートである。FIG. 17 is a flowchart showing an example of the procedure of balance training processing (with EMS intervention) according to the second embodiment of the present invention. 図18は、本発明の第2の実施形態による再訓練判定処理に係る機能構成例を示すブロック図である。FIG. 18 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the second embodiment of the present invention. 図19は、本発明の第2の実施形態による再訓練判定処理の手順の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of the procedure of retraining determination processing according to the second embodiment of the present invention. 図20は、本発明の一実施形態に係るトレーニング装置のハードウエア(hardware)構成の一例を示すブロック図である。FIG. 20 is a block diagram showing an example of the hardware configuration of a training device according to an embodiment of the present invention.
 以下、図面を参照しながら、この発明に係わる一実施形態を説明する。 
 (共通説明)
 ここでは、後述する第1および第2の実施形態に共通する事項について説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
(Common explanation)
Here, matters common to the first and second embodiments described later will be explained.
 図1は、本発明の一実施形態に係るトレーニング装置に係る機能の一例を示す図である。 
 本発明の一実施形態では、図1に示すように、身体動揺に応じた刺激が介入されたバランス訓練(S3)と、この訓練の前後における、刺激が介入されないバランス訓練(S2(事前バランス訓練)、S4(事後バランス訓練))と、この刺激を介入しないバランス訓練の前後における、感覚依存度を計測および評価するステップ(S1(事後バランス訓練前の感覚依存度計測・評価)、S5(事後バランス訓練後の感覚依存度計測・評価))、バランス訓練の前後の結果を比較して再訓練が必要か否かを判定するステップ(S6)を構成要素とする、感覚依存性を制御する運動スキルの訓練について説明する。
FIG. 1 is a diagram showing an example of functions related to a training device according to an embodiment of the present invention.
In one embodiment of the present invention, as shown in FIG. ), S4 (post-balance training)), steps of measuring and evaluating the degree of sensory dependence before and after balance training without this stimulation (S1 (measuring and evaluating the degree of sensory dependence before post-balance training), S5 (post-post balance training)). An exercise to control sensory dependence, whose components include a step (S6) of measuring and evaluating the degree of sensory dependence after balance training) and comparing the results before and after balance training to determine whether retraining is necessary. Explain skill training.
 また、上記の、身体動揺に応じた刺激が介入されたバランス訓練(S3)には、S2で事前に取得された重心動揺に基づき、安定または不安定状態が判定され、刺激の提示に係る閾値を決定する機能が含まれる。 In addition, in the above-mentioned balance training (S3) in which a stimulus corresponding to body sway is intervened, a stable or unstable state is determined based on the center of gravity sway obtained in advance in S2, and a threshold value related to the presentation of the stimulus is determined. Contains the function to determine the
 本発明の一実施形態により、外乱中に運動を矯正するための外部的な刺激が介入されるバランス訓練を取り入れた、感覚依存性を制御する運動スキルの訓練を実現できる。 
 さらに、刺激介入において、事前に取得された重心動揺に基づき、個人ごとに刺激提示の閾値などのパラメータ(parameter)が設定され得る。
An embodiment of the present invention enables training of motor skills to control sensory dependence, incorporating balance training in which external stimuli are intervened to correct movement during disturbances.
Furthermore, in stimulation intervention, parameters such as a threshold for stimulation presentation can be set for each individual based on the center of gravity sway obtained in advance.
 さらに、上記刺激を介入させたバランス訓練の前後に、刺激を介入させないバランス訓練と、バランス訓練後の感覚依存度を計測および評価することにより、感覚依存性を制御する運動スキルの学習状態を定量的に確認することが可能となる。 
 さらに、バランス訓練の前後の結果を比較して再訓練が必要か判定することにより、学習状態に応じて再訓練を繰り返して、確実に学習を進めることができる。
Furthermore, by measuring and evaluating the degree of sensory dependence before and after balance training with the above-mentioned stimulation, balance training without stimulation, and after balance training, we will quantify the state of learning of motor skills that control sensory dependence. This makes it possible to confirm the situation.
Furthermore, by comparing the results before and after balance training and determining whether retraining is necessary, it is possible to repeat the retraining depending on the learning state and advance the learning reliably.
 また、後述する第1の実施形態では、身体動揺に応じて行なうべき運動を教示する視覚刺激により、訓練者自身が刺激に従って足関節運動を随意的に動作させるため、足部体性感覚依存を強めることが可能となる。 In addition, in the first embodiment described below, visual stimulation that teaches the movement to be performed in response to body sway allows the trainee to voluntarily move the ankle joint in accordance with the stimulation, thereby reducing dependence on foot somatosensation. It is possible to strengthen it.
 さらに、後述する第2の実施形態では、身体動揺に応じた足関節筋に対する筋電気刺激(EMS(Electrical Muscle Stimulation))が介入されたバランス訓練により、外乱中に足関節運動を矯正して、視覚依存を強めることが可能となる。 Furthermore, in a second embodiment described below, ankle joint movement is corrected during disturbances by balance training in which muscle electrical stimulation (EMS (Electrical Muscle Stimulation)) is applied to ankle joint muscles in response to body sway. It becomes possible to strengthen visual dependence.
 (第1の実施形態)
 次に、第1の実施形態について説明する。ここでは、体性感覚依存を強める運動スキルの訓練について説明する。 
 第1の実施形態の背景について説明する。ヒトは立位または歩行等の基礎運動時に身体姿勢、例えば身体動揺を安定させるために姿勢制御を自ら行なう。ヒトの姿勢制御では、主に視覚(目)、足部体性感覚(足裏、足関節周辺など)、前庭感覚(三半規管など)でなる3つの感覚器により外界の情報を受け取り、これらの情報が脳の中枢神経系で正しく感覚統合されることで姿勢を安定させることが分かっており、感覚統合において各個人が特定の感覚に依存する傾向が知られている。
(First embodiment)
Next, a first embodiment will be described. Here, we will explain motor skill training that strengthens somatosensory dependence.
The background of the first embodiment will be explained. Humans perform postural control on their own in order to stabilize their body posture, for example, body sway, during basic movements such as standing or walking. Postural control in humans involves receiving information from the outside world through three sensory organs: vision (eyes), foot somatosensation (sole of the foot, around ankle joints, etc.), and vestibular sensation (semicircular canals, etc.). It is known that correct sensory integration in the brain's central nervous system stabilizes posture, and it is known that each individual tends to rely on a specific sense when it comes to sensory integration.
 このような感覚依存性の偏りが長年にわたり続くと、強く依存した感覚器の機能が将来的な加齢によって低下したときに、姿勢制御が、より困難になるという問題が生じる。 
 将来的な加齢に伴う感覚器の機能低下は個人差が大きく予測が困難であることを踏まえると、どの感覚が機能低下しても姿勢を安定できるスキル、つまり視覚、足部体性感覚および前庭感覚のそれぞれに対する感覚依存が強い状態に遷移させる運動スキルを健常なうちに身に付けておくことが必要となる。 
 これにより、不安定な状況下、例えば軟らかい床面など、において、劣化していない感覚に依存を強めて姿勢を安定させることが可能となる。
If this bias in sensory dependence continues for many years, a problem arises in that postural control becomes more difficult when the functions of the sensory organs on which the body is strongly dependent decline due to aging.
Considering that the future decline in function of sensory organs due to aging is difficult to predict due to large individual differences, it is important to have skills that allow you to stabilize your posture even if the function of any sense decreases, that is, visual sense, somatosensory sensation in the feet, It is necessary to acquire motor skills to transition to a state of strong sensory dependence on each of the vestibular sensations while still healthy.
This makes it possible to stabilize one's posture under unstable conditions, such as on a soft floor, by relying more heavily on sensations that have not deteriorated.
 上記非特許文献1によれば、不安定面上立位は視覚依存を強める効果があると述べられている。ゆえに、この訓練を適用しても、将来的に視覚が機能低下したときは、不安定な状況下で姿勢の安定を保てない可能性が高い。そこで、本発明の第1の実施形態では、不安定面上立位において、足部体性感覚に依存を強めて姿勢を安定させるスキルの訓練を実現する形態について説明する。 According to the above-mentioned non-patent document 1, it is stated that standing on an unstable surface has the effect of strengthening visual dependence. Therefore, even if this training is applied, if visual function deteriorates in the future, there is a high possibility that the person will not be able to maintain postural stability in unstable situations. Therefore, in the first embodiment of the present invention, a mode will be described in which skill training for stabilizing the posture by increasing reliance on foot somatic sensations in a standing position on an unstable surface will be described.
 図2は、本発明の第1の実施形態に係るトレーニング装置に係る機能の一例を示す図である。 
 本発明の第1の実施形態では、図2に示されように、不安定面上立位訓練時に、身体動揺に応じて行うべき運動を教示する機能を有する刺激である視覚刺激が介入されたバランス訓練のステップ(S13)と、この訓練の前後における、視覚刺激が介入されないバランス訓練のステップ(S12(事前バランス訓練)、S14(事後バランス訓練))と、この視覚刺激が介入されないバランス訓練の前後における、体性感覚依存度を計測および評価するステップ(S11、S15)、およびバランス訓練の前後の結果を比較して再訓練が必要か否かを判定するステップ(S16)を構成要素とする、足部体性感覚依存性を強める運動スキルの訓練について説明する。
FIG. 2 is a diagram showing an example of functions related to the training device according to the first embodiment of the present invention.
In the first embodiment of the present invention, as shown in FIG. 2, visual stimulation, which is a stimulus that has the function of teaching movements to be performed in response to body sway, is intervened during standing training on an unstable surface. Balance training step (S13), balance training steps before and after this training in which visual stimulation is not intervened (S12 (pre-balance training), S14 (post-balance training)), and balance training in which visual stimulation is not intervened. The components include steps of measuring and evaluating the degree of somatosensory dependence before and after (S11, S15), and a step of comparing the results before and after balance training to determine whether retraining is necessary. , describes motor skill training that strengthens foot somatosensory dependence.
 本発明の第1の実施形態により、不安定面上立位訓練時に、身体動揺に応じて行うべき運動を教示する機能を有する視覚刺激が介入された訓練を取り入れた、足部体性感覚依存を強める運動スキルの訓練を実現できる。 According to a first embodiment of the present invention, a foot somatosensory-dependent training incorporating a visual stimulation intervention having a function of teaching movements to be performed in response to body sway during training while standing on an unstable surface. It is possible to train motor skills that strengthen the body.
 さらに、身体動揺に応じて行うべき運動を教示する視覚刺激により、訓練者自身が刺激に従って足関節運動を随意的に動作させるため、足部体性感覚依存を強めることが可能となる。 Furthermore, visual stimulation that teaches the movement to be performed in response to body sway allows the trainee to voluntarily move the ankle joint in accordance with the stimulation, making it possible to strengthen the reliance on foot somatosensation.
 さらに、上記視覚刺激が介入されたバランス訓練の前後に、視覚刺激が介入されないバランス訓練と、バランス訓練後の感覚依存度を計測および評価することにより、足部体性感覚依存を強める運動スキルの学習状態を定量的に確認することが可能となる。 
 さらに、バランス訓練前後の結果を比較して再訓練が必要か判定することにより、学習状態に応じて再訓練を繰り返して、確実に学習を進めることができる。
Furthermore, by measuring and evaluating the degree of sensory dependence after balance training, before and after balance training with visual stimulation, balance training without visual stimulation, and after balance training, we investigated motor skills that strengthen foot somatosensory dependence. It becomes possible to quantitatively check the learning state.
Furthermore, by comparing the results before and after balance training and determining whether retraining is necessary, it is possible to repeat retraining according to the learning state and advance learning reliably.
 図3は、本発明の第1の実施形態に係るトレーニング装置の機能構成例を示すブロック図である。 
 図3に示されるように、本発明の第1の実施形態に係るトレーニングシステム100は、床反力計101、モーションキャプチャシステム(motion capture system)102、トレーニング装置103、マイクロコンピュータ(microcomputer)(マイコン)104、視覚刺激用のモニタ105、およびサーバ(server)106を有する。
FIG. 3 is a block diagram showing an example of the functional configuration of the training device according to the first embodiment of the present invention.
As shown in FIG. 3, the training system 100 according to the first embodiment of the present invention includes a floor reaction force meter 101, a motion capture system 102, a training device 103, and a microcomputer (microcomputer). ) 104, a monitor 105 for visual stimulation, and a server 106.
 床反力計101とモーションキャプチャシステム102、およびマイコン104はトレーニング装置103に接続され、このトレーニング装置103にはマイコン104を介してモニタ105が接続されている。このうち、床反力計101は、被験者の立位時の足圧中心位置を計測し、この計測結果は、上記S11とS15、すなわちバランス訓練後の感覚依存度計測および評価処理のステップで用いられる。 
 モーションキャプチャシステム102、マイコン104、およびモニタ105は、上記S12、S13、S14、すなわち各種バランス訓練処理のステップで用いられる。 
 モーションキャプチャシステム102は、専用の赤外線反射マーカー(marker)(単にマーカーと称することがある)を被験者の身体または物体の任意の場所に貼り付けることで、その位置を計測する。計測されたマーカーの動きに応じて、トレーニング装置103からマイコン104へ制御信号であるトリガ(trigger)信号が送信され、このトリガ信号を受信したタイミング(timing)で、マイコン104がモニタ105へ視覚刺激に関する信号を送信する。
The floor reaction force meter 101, motion capture system 102, and microcomputer 104 are connected to a training device 103, and a monitor 105 is connected to the training device 103 via the microcomputer 104. Of these, the floor reaction force meter 101 measures the position of the center of foot pressure when the subject is standing, and this measurement result is used in S11 and S15 above, that is, the steps of sensory dependence measurement and evaluation processing after balance training. It will be done.
The motion capture system 102, microcomputer 104, and monitor 105 are used in steps S12, S13, and S14, that is, various balance training processing steps.
The motion capture system 102 measures the position of a subject's body or object by attaching a dedicated infrared reflective marker (sometimes simply referred to as a marker) to an arbitrary location on the subject's body or object. According to the measured movement of the marker, a trigger signal, which is a control signal, is transmitted from the training device 103 to the microcomputer 104, and at the timing of receiving this trigger signal, the microcomputer 104 issues a visual stimulus to the monitor 105. send signals regarding
 S11:訓練前の感覚依存度計測・評価ステップ
 図4は、本発明の第1の実施形態による感覚依存度計測・評価処理に係る機能構成例を示すブロック図である。 
 S11は、バランス訓練前の感覚依存度を計測評価するステップである。図4に示されるように、床反力計101は、重心動揺計測部201を有し、トレーニング装置103は、重心動揺評価部202および体性感覚依存度評価部203を有し、第1の実施形態によるバランス訓練前の感覚依存度計測・評価処理S11は、これらの201~203により実現され得る。
S11: Pre-training sensory dependence measurement/evaluation step FIG. 4 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the first embodiment of the present invention.
S11 is a step of measuring and evaluating the degree of sensory dependence before balance training. As shown in FIG. 4, the floor reaction force meter 101 has a center of gravity sway measurement section 201, the training device 103 has a center of gravity sway evaluation section 202, a somatosensory dependence evaluation section 203, and a first The sensory dependence measurement/evaluation process S11 before balance training according to the embodiment can be realized by these 201 to 203.
 図5は、本発明の第1の実施形態による感覚依存度評価処理の手順の一例を示すフローチャートである。 
 S11では、まず、被験者は、床反力計101の上(安定面上)で両足立位30秒間(S11a)と、床反力計101の上に軟らかいマットを置いた上(不安定面上)で両足立位30秒間(S11b)を複数回繰り返す。なお立位時間は例であり、例えば60秒などとしても良い。
FIG. 5 is a flowchart illustrating an example of the procedure of sensory dependence evaluation processing according to the first embodiment of the present invention.
In S11, the subject first stood with both feet on the floor reaction force meter 101 (on a stable surface) for 30 seconds (S11a), and then placed a soft mat on the floor reaction force meter 101 (on an unstable surface). ), repeat standing on both feet for 30 seconds (S11b) multiple times. Note that the standing time is just an example, and may be set to 60 seconds, for example.
 ・重心動揺計測部201
 重心動揺計測部201は、安定面立位時において、床反力計101により足圧中心位置(xt、 yt)を計測し、この計測結果をトレーニング装置103に出力する(S11c)。 
 同様に、重心動揺計測部201は、不安定面立位時において、床反力計101により足圧中心位置(xt、 yt)を計測し、この計測結果をトレーニング装置103に出力する(S11d)。
・Center of gravity sway measurement unit 201
The center of gravity sway measurement unit 201 measures the foot pressure center position (x t , y t ) using the floor reaction force meter 101 when standing on a stable surface, and outputs this measurement result to the training device 103 (S11c).
Similarly, the center of gravity sway measurement unit 201 measures the foot pressure center position (x t , y t ) using the floor reaction force meter 101 when standing on an unstable surface, and outputs this measurement result to the training device 103 ( S11d).
 ・重心動揺評価部202
 重心動揺評価部202は、安定面立位時において、足圧中心位置(xt、 yt)の計測結果を入力し、足圧中心位置の時系列データ(time series data)としてトレーニング装置103内の記憶装置に格納する(S11e)。 
 トレーニング装置103は、この格納されたデータを用いて、安定面立位時の重心動揺sSを計算し、この計算結果を体性感覚依存度評価部203へ出力する(S11f)。
- Center of gravity sway evaluation unit 202
The center of gravity sway evaluation unit 202 inputs the measurement result of the foot pressure center position (x t , y t ) when standing on a stable surface, and stores it in the training device 103 as time series data of the foot pressure center position. (S11e).
The training device 103 uses this stored data to calculate the center of gravity sway s S when standing on a stable surface, and outputs the calculation result to the somatosensory dependence evaluation unit 203 (S11f).
 同様に、重心動揺評価部202は、不安定面立位時において、足圧中心位置(xt、 yt)の計測結果を入力し、足圧中心位置の時系列データとしてトレーニング装置103内の記憶装置に格納する(S11g)。 
 トレーニング装置103は、この格納されたデータを用いて、不安定面立位時の重心動揺sUSを計算し、この計算結果を体性感覚依存度評価部203へ出力する(S11h)。
Similarly, the center of gravity sway evaluation unit 202 inputs the measurement result of the foot pressure center position (x t , y t ) when standing on an unstable surface, and stores it in the training device 103 as time series data of the foot pressure center position. Store it in the storage device (S11g).
The training device 103 uses this stored data to calculate the center of gravity sway s US when standing on an unstable surface, and outputs the calculation result to the somatosensory dependence evaluation unit 203 (S11h).
 本実施形態では、重心動揺、すなわち安定面立位時の重心動揺sSと、不安定面立位時の重心動揺sUSとして二乗平均平方根(Root Mean Square(RMS))を以下の式(1)のように計算する。 In this embodiment, the root mean square (RMS ) is calculated using the following formula (1 ).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、xm, ymは足圧中心位置の平均値であり、nは時間サンプル(sample)数である。なお、他のパラメータとして重心動揺速度または矩形面積などが用いられても良い。 Here, x m , y m are the average values of the foot pressure center position, and n is the number of time samples. Note that the center of gravity oscillation speed, rectangular area, etc. may be used as other parameters.
 ・体性感覚依存度評価部203
 体性感覚依存度評価部203は、安定面立位時の重心動揺sSと、不安定面立位時の重心動揺sUSの計算結果を入力し、これらの計算結果に基づいて、訓練前の体性感覚依存度dpを以下の式(2)のように計算する(S11i)。
・Somatosensory dependence evaluation unit 203
The somatosensory dependence evaluation unit 203 inputs the calculation results of the center of gravity sway s S when standing on a stable surface and the center of gravity sway s US when standing on an unstable surface, and based on these calculation results, The somatosensory dependence d p of is calculated as in the following equation (2) (S11i).
 d=SUS/S …式(2)
 この式(2)では、dpが大きいほど体性感覚依存度が強いことを意味する。
d p = S US /S S ...Formula (2)
In this equation (2), it means that the larger d p is, the stronger the somatosensory dependence is.
 本実施形態では、訓練前に上記のように計算された体性感覚依存度を訓練前の体性感覚依存度dp_preとして、トレーニング装置103の記憶装置に保存される。 In this embodiment, the somatosensory dependence degree calculated as described above before training is stored in the storage device of the training device 103 as the pre-training somatosensory dependence degree dp_pre.
 S12:事前バランス訓練ステップ
 図6は、本発明の第1の実施形態によるバランス訓練処理(刺激介入なし)に係る機能構成例を示すブロック図である。 
 S12は、視覚刺激が介入されるバランス訓練の前の、視覚刺激介入無しのバランス訓練を実施するステップである。図6に示されるように、モーションキャプチャシステム102は、バランスボード(balance board)高さ計測部301と、バランスボード動揺評価部302を有し、第1の実施形態によるバランス訓練の前の、視覚刺激介入無しのバランス訓練S12は、これらの301および302により実現され得る。
S12: Pre-balance training step FIG. 6 is a block diagram showing an example of a functional configuration related to balance training processing (without stimulation intervention) according to the first embodiment of the present invention.
S12 is a step of implementing balance training without visual stimulus intervention, before balance training with visual stimulus intervention. As shown in FIG. 6, the motion capture system 102 includes a balance board height measurement section 301 and a balance board sway evaluation section 302, and the motion capture system 102 includes a balance board height measurement section 301 and a balance board sway evaluation section 302. Balance training S12 without stimulation intervention can be realized by these 301 and 302.
 図7は、本発明の第1の実施形態によるバランス訓練処理(刺激介入なし)の手順の一例を示すフローチャートである。 
 S12では、訓練タスク(task)として、前後方向にのみ傾くバランスボード上での片足立位を30秒間ずつ複数回実施する(S12a)。この訓練タスクはバランスボードの他、軟らかい床面などで実施されても良い。
FIG. 7 is a flowchart illustrating an example of the procedure of balance training processing (without stimulation intervention) according to the first embodiment of the present invention.
In S12, as a training task, one-legged standing on a balance board tilted only in the front-back direction is performed multiple times for 30 seconds each (S12a). This training task may be performed on a soft floor surface in addition to a balance board.
 次に、事前準備として、バランスボード前端にモーションキャプチャ計測用マーカーを貼り付け、トレーニング装置103に電気的に接続する。本実施形態では、バランスボードの動揺を、バランスボード前端に取り付けられたマーカーの高さ(ht)の動揺とする。なお、バランスボードの両端にマーカーを取り付けた構成で、角度を計算し、この角度の変化を動揺としても良く、複数個のマーカーが被験者の身体骨盤に取り付けられた状態での角度の計算結果の変化骨盤動揺としても良い。 Next, as a preliminary preparation, a marker for motion capture measurement is pasted on the front end of the balance board and electrically connected to the training device 103. In this embodiment, the fluctuation of the balance board is defined as the fluctuation of the height (h t ) of the marker attached to the front end of the balance board. Note that the angle may be calculated using a configuration in which markers are attached to both ends of the balance board, and changes in this angle may be referred to as sway. It can also be used as a change in pelvic agitation.
 ・バランスボード高さ計測部301
 モーションキャプチャシステム102のバランスボード高さ計測部301は、バランスボードの高さとしてマーカーの高さ(ht)を計測し、この計測結果をトレーニング装置103に出力する(S12b)。
・Balance board height measurement section 301
The balance board height measurement unit 301 of the motion capture system 102 measures the height of the marker (h t ) as the height of the balance board, and outputs this measurement result to the training device 103 (S12b).
 ・バランスボード動揺評価部302
 バランスボード動揺評価部302は、マーカーの高さ(ht)の計測結果を入力し、「バランスボードの高さの時系列データ」としてトレーニング装置103内の記憶装置に格納する(S12c)。
・Balance board sway evaluation section 302
The balance board sway evaluation unit 302 inputs the measurement result of the height (h t ) of the marker, and stores it in the storage device within the training device 103 as “time series data of the height of the balance board” (S12c).
 バランスボード動揺評価部302は、この格納されたデータを用いて、バランスボード動揺SBBを以下の式(3)のように計算する。本実施形態では、バランスボード動揺として二乗平均平方根(RMS)が用いられる。 The balance board sway evaluation unit 302 uses this stored data to calculate the balance board sway S BB as shown in equation (3) below. In this embodiment, the root mean square (RMS) is used as the balance board oscillation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、hmはバランスボードの高さの平均値であり、nは時間サンプル数である。 Here, h m is the average height of the balance board, and n is the number of time samples.
 本実施形態では、事前訓練で取得されたバランスボード動揺がSBB_preとして、トレーニング装置103の記憶装置に保存される。 In this embodiment, the balance board oscillation acquired in preliminary training is stored in the storage device of the training device 103 as S BB_pre .
 S13:バランス訓練ステップ
 図8は、本発明の第1の実施形態によるバランス訓練処理(刺激介入あり)に係る機能構成例を示すブロック図である。 
 S13は、視覚刺激を介入するバランス訓練を実施するステップである。図8に示されるように、モーションキャプチャシステム102は、バランスボード高さ計測部401を有し、トレーニング装置103は、時系列データ格納部402、主動作筋(agonist muscle)閾値判定部403、および主動作筋判定部404を有し、マイコン104は、視覚刺激提示部405を有し、第1の実施形態による視覚刺激を介入するバランス訓練は、これら401~405により実現され得る。時系列データ格納部402には、事前訓練におけるバランスボード動揺の時系列データが格納される。この訓練では、バランスボードの高さが計測されてトレーニング装置103に送信され、その値に応じてマイコン104にトリガが送信され、このトリガに応じて視覚刺激が提示される。
S13: Balance training step FIG. 8 is a block diagram showing an example of a functional configuration related to balance training processing (with stimulation intervention) according to the first embodiment of the present invention.
S13 is a step of implementing balance training using visual stimulation. As shown in FIG. 8, the motion capture system 102 includes a balance board height measurement unit 401, and the training device 103 includes a time series data storage unit 402, an agonist muscle threshold determination unit 403, and a balance board height measurement unit 401. The microcomputer 104 has a main action muscle determination section 404, and a visual stimulation presentation section 405. Balance training using visual stimulation according to the first embodiment can be realized by these 401 to 405. The time-series data storage unit 402 stores time-series data of balance board sway during pre-training. In this training, the height of the balance board is measured and transmitted to the training device 103, a trigger is transmitted to the microcomputer 104 according to the measured value, and a visual stimulus is presented in response to this trigger.
 図9は、本発明の第1の実施形態によるバランス訓練処理(刺激介入あり)の手順の一例を示すフローチャートである。 
 S13では、訓練タスクとして、前後方向にのみ傾くバランスボード上での片足立位を30秒間ずつ複数回実施する(S13a)。この訓練タスクはバランスボードの他、軟らかい床面などで実施されても良い。
FIG. 9 is a flowchart showing an example of the procedure of balance training processing (with stimulation intervention) according to the first embodiment of the present invention.
In S13, as a training task, one-legged standing on a balance board tilted only in the front-back direction is performed multiple times for 30 seconds each (S13a). This training task may be performed on a soft floor surface in addition to a balance board.
 次に、事前準備として、トレーニング装置103に取り付けられた外部トリガ出力機とマイコン104を計3つのチャンネルだけ接続し、トレーニング装置103にはマイコン104を介して視覚刺激用のモニタが接続される。上記3つのチャンネルは、例えば「keep」を点灯させるチャンネルと、「up」を点灯させるチャンネルと、「down」を出力させるチャンネルに対応する。 Next, as a preliminary preparation, only three channels in total are connected between the external trigger output device attached to the training device 103 and the microcomputer 104, and a monitor for visual stimulation is connected to the training device 103 via the microcomputer 104. The above three channels correspond to, for example, a channel that lights up "keep", a channel that lights up "up", and a channel that outputs "down".
 ・バランスボード高さ計測部401
 モーションキャプチャシステム102のバランスボード高さ計測部401は、マーカーの高さ(ht)を計測し、この計測結果を被験者の現在の身体動作の時系列データとしてトレーニング装置103に出力する(S13b)。
・Balance board height measurement section 401
The balance board height measurement unit 401 of the motion capture system 102 measures the height (ht) of the marker and outputs the measurement result to the training device 103 as time series data of the subject's current body motion (S13b).
 ・事前訓練におけるバランスボード動揺の時系列データ格納部402
 S12bおよびS12cで説明した「バランスボードの高さの時系列データ」は、「事前訓練におけるバランスボード動揺の時系列データ」としてトレーニング装置103内の時系列データ格納部402に格納されており、主動作筋閾値判定部403に出力され得る。
- Time series data storage unit 402 of balance board oscillation during pre-training
The "time series data of balance board height" explained in S12b and S12c is stored in the time series data storage unit 402 in the training device 103 as "time series data of balance board sway in pre-training", and is It can be output to the working muscle threshold determination unit 403.
 ・主動作筋閾値判定部403
 主動作筋閾値判定部403は、時系列データ格納部402に格納される「事前訓練におけるバランスボード動揺の時系列データ」を入力し、バランスボード動揺を低減させるための適切な主動作筋、すなわち被験者の姿勢を安定させるために刺激が与えられるべき主動作筋が判定されるための閾値h_taおよび閾値h_soを主動作筋判定部404に出力する。 
 本実施形態では、被験者の現在の身体動作の時系列データで示されるバランスボード前端の高さhが閾値h_ta以下のときは、被験者の前脛骨筋(tibialis anterior muscle: TA)が上記適切な主動作筋であると主動作筋判定部404により判定される。また、上記現在の身体動作の時系列データで示されるバランスボード前端の高さhが閾値h_so以上のときは、被験者のヒラメ筋(soleus:SO)が上記適切な主動作筋であると主動作筋判定部404により判定される。 
 バランスボード前端の高さhの時系列データの平均値をh_meanとし、当該時系列データ標準偏差をh_stdとすると、以下の式(4)、(5)が定義される。
- Main action muscle threshold determination unit 403
The main action muscle threshold determination unit 403 inputs “time series data of balance board sway in pre-training” stored in the time series data storage unit 402, and selects an appropriate main action muscle for reducing balance board sway, i.e. A threshold value h_ta and a threshold h_so for determining the main action muscle to be stimulated in order to stabilize the subject's posture are output to the main action muscle determination unit 404.
In this embodiment, when the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement is less than or equal to the threshold h_ta, the subject's tibialis anterior muscle (TA) is activated as described above. The main action muscle determining unit 404 determines that it is a working muscle. In addition, when the height h of the front end of the balance board shown in the time-series data of the current body movement is greater than or equal to the threshold h_so, it is assumed that the subject's soleus (soleus: SO) is the appropriate main action muscle. The muscle determination unit 404 determines.
If the average value of the time series data of the height h of the front end of the balance board is h_mean, and the standard deviation of the time series data is h_std, the following equations (4) and (5) are defined.
 h_ta = h_mean - h_std …式(4)
 h_so = h_mean + h_std …式(5)
h_ta = h_mean - h_std...Equation (4)
h_so = h_mean + h_std…Equation (5)
 ここで、被験者の現在の身体動作の時系列データで示されるバランスボード前端の高さhについて、「h_ta < h < h_so」の領域、すなわち上記のような、閾値h_ta以下でなく閾値h_so以上でもない領域では、被験者は比較的水平にバランスを維持出来ているため、バランスボード前端の高さが「安定領域」であると呼ぶことができる。 Here, regarding the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement, it is assumed that the height h of the front end of the balance board is in the region of "h_ta < h < h_so", that is, it is not below the threshold h_ta but above the threshold h_so as described above. In the region where there is no balance, the subject can maintain balance relatively horizontally, so the height of the front end of the balance board can be called the "stable region."
 また、上記現在の身体動作の時系列データで示されるバランスボード前端の高さhについて、上記「h_ta < h < h_so」以外の領域、すなわち上記の閾値h_ta以下または閾値h_so以上の領域では、バランスボードが大きく傾いているため、バランスボード前端の高さhが「不安定領域」であると呼ぶことができる。 In addition, regarding the height h of the front end of the balance board shown in the above-mentioned time-series data of the current body movement, in areas other than the above-mentioned "h_ta < h < h_so", that is, in the area below the above-mentioned threshold h_ta or above the threshold h_so, the balance Because the board is highly tilted, the height h of the front edge of the balance board can be called the "unstable region."
 ・主動作筋判定部404
 主動作筋判定部404は、バランスボード高さ計測部102から送信された、被験者の現在の身体動作の時系列データを入力し、この時系列データと、主動作筋閾値判定部403から出力された閾値と、バランスボード高さ計測部401からの、時刻tにおけるバランスボード前端の高さhを入力し、バランスボード前端の高さが安定領域であるか不安定領域かを判定する。すなわち、被験者が身体姿勢を安定させるための動作が感覚への刺激を与えることを要しない安定性を有しているか否かが判定される。安定領域と判定されたときは、主動作筋判定部404は、上記「keep」を点灯させるチャンネルを通じてマイコン104へトリガを送信する。
- Main action muscle determination unit 404
The main action muscle determination unit 404 inputs the time series data of the subject's current body motion transmitted from the balance board height measurement unit 102, and receives this time series data and the time series data output from the main action muscle threshold determination unit 403. The threshold value and the height ht of the front end of the balance board at time t from the balance board height measurement unit 401 are input, and it is determined whether the height of the front end of the balance board is in a stable region or an unstable region. In other words, it is determined whether the movement of the subject to stabilize his or her body posture is stable enough to not require stimulation of the senses. When it is determined that it is in the stable region, the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that lights up the "keep" button.
 また、不安定領域と判定されたときは、主動作筋判定部404は、上記適切な主動作筋が前脛骨筋(TA)とヒラメ筋(SO)のどちらであるべきかを判定する(S13c)。 
 前脛骨筋が適切な主動作筋であると判定された場合、主動作筋判定部404は、上記「up」を点灯させるチャンネルを通じてマイコン104へトリガを送信する。 
 また、ヒラメ筋が適切な主動作筋であると判定された場合、主動作筋判定部404は、上記「down」を出力させるチャンネルを通じてマイコン104へトリガを送信する。
Furthermore, when it is determined that the region is unstable, the main action muscle determining unit 404 determines whether the appropriate main action muscle should be the tibialis anterior (TA) or the soleus (SO) (S13c ).
When it is determined that the tibialis anterior muscle is an appropriate main action muscle, the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that lights up the above-mentioned "up".
Furthermore, when it is determined that the soleus muscle is an appropriate main action muscle, the main action muscle determining unit 404 transmits a trigger to the microcomputer 104 through the channel that causes the above-mentioned "down" to be output.
 ・視覚刺激提示部405
 上記不安定領域と判定されたときの送信されたトリガ信号をマイコン104が受信すると、視覚刺激提示部405は、トリガのチャンネルに対応する主動作筋を動作させる視覚刺激を提示する(S13d)。訓練者は、上記「up」の点灯を確認してバランスボードの前端を上げる動作を行ない、上記「down」の点灯を確認してバランスボードの前端を下げる動作を行なう。
 また、上記不安定領域と判定されたときの送信されたトリガ信号をマイコン104が受信すると、視覚刺激提示部405は、トリガのチャンネル「keep」に対応する、安定領域を維持させる視覚刺激を提示する(S13e)。訓練者は、上記「keep」の点灯を確認してバランスボードをそのままの状態に維持する動作を行なう。 
 S13dまたはS13eの後は、時刻のカウントを進めた状態でS13bに戻る。
・Visual stimulus presentation section 405
When the microcomputer 104 receives the trigger signal transmitted when the unstable region is determined, the visual stimulus presentation unit 405 presents a visual stimulus that causes the main action muscle corresponding to the trigger channel to operate (S13d). The trainee confirms that "up" is lit and performs an action to raise the front end of the balance board, and confirms that "down" is lit and performs an action to lower the front end of the balance board.
Further, when the microcomputer 104 receives the transmitted trigger signal when the unstable region is determined, the visual stimulus presentation unit 405 presents a visual stimulus that maintains the stable region, corresponding to the trigger channel "keep". (S13e). The trainee confirms that the above-mentioned "keep" is lit and performs an action to maintain the balance board in the same state.
After S13d or S13e, the process returns to S13b with the time count advanced.
 S14:事後バランス訓練ステップ
 S1は、視覚刺激を介入するバランス訓練の後の、介入無しのバランス訓練を実施するステップであり、S12と同様のステップである。構成およびフローチャートは図6および図7に示される通りである。
S14: Post-balance training step S1 is a step of performing balance training without intervention after balance training with visual stimulus intervention, and is the same step as S12. The configuration and flowchart are as shown in FIGS. 6 and 7.
 ただし、上記S12では、事前訓練で取得されたバランスボード動揺は、SBB_preとし、トレーニング装置103の記憶装置に保存されると説明したが、S14では、事後訓練で取得されたバランスボード動揺は、SBB_postとして、トレーニング装置103の記憶装置に保存される。 However, in S12 above, it was explained that the balance board sway acquired in the pre-training is stored as S BB_pre in the storage device of the training device 103, but in S14, the balance board sway acquired in the post-training is It is saved in the storage device of the training device 103 as S BB_post .
 S15:訓練後感覚依存度評価ステップ
 S15は、訓練後の感覚依存度を計測および評価するステップであり、S11と同様である。構成およびフローチャートは図4および図5に示される通りである。
S15: Post-training sensory dependence evaluation step S15 is a step of measuring and evaluating the sensory dependence after training, and is similar to S11. The configuration and flowchart are as shown in FIGS. 4 and 5.
 ただし、上記S11では、訓練前に取得された体性感覚依存度はdp_preとして、トレーニング装置103の記憶装置に保存されると説明したが、S15では、訓練後に計算した体性感覚依存度はdp_postとして、トレーニング装置103の記憶装置に保存される。 However, in S11 above, it was explained that the somatosensory dependence degree obtained before training is stored as d p_pre in the storage device of the training device 103, but in S15, the somatosensory dependence degree calculated after training is It is saved in the storage device of the training device 103 as d p_post .
 S16:再訓練判定ステップ
 図10は、本発明の第1の実施形態による再訓練判定処理に係る機能構成例を示すブロック図である。 
 S16は、視覚刺激が介入されたバランス訓練の前後の体性感覚依存度(dp_pre, dp_post)とバランスボード動揺(SBB_pre, SBB_post)をそれぞれ比較し、バランス訓練の再訓練が必要か否かを判定するステップである。図6に示されるように、トレーニング装置103は、再訓練判定部501を有し、S16は、この501により実現され得る。
S16: Retraining determination step FIG. 10 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the first embodiment of the present invention.
S16 compares the somatosensory dependence (d p_pre , d p_post ) and balance board sway (S BB_pre , S BB_post ) before and after balance training using visual stimulation, and determines whether retraining of balance training is necessary. This is the step of determining whether or not. As shown in FIG. 6, the training device 103 has a retraining determination unit 501, and S16 can be realized by this 501.
 図11は、本発明の第1の実施形態による再訓練判定処理の手順の一例を示すフローチャートである。 
 ・再訓練判定部501
 S16では、初めに、再訓練判定部501は、予めトレーニング装置103の記憶装置に保存されていた、バランス訓練の前後のバランスボード動揺、およびバランス訓練の前後の体性感覚依存度を読み出して、まず、バランス訓練の前後のバランスボード動揺を比較する(S16a)。
FIG. 11 is a flowchart illustrating an example of a procedure for retraining determination processing according to the first embodiment of the present invention.
-Retraining determination unit 501
In S16, first, the retraining determination unit 501 reads out the balance board sway before and after balance training and the somatosensory dependence degree before and after balance training, which were stored in advance in the storage device of the training device 103. First, the balance board sway before and after balance training is compared (S16a).
 再訓練判定部501は、訓練前のバランスボード動揺と比べて、訓練後のバランスボード動揺が低減されたか否かを判定する(S16b)。 The retraining determining unit 501 determines whether the balance board sway after training has been reduced compared to the balance board sway before training (S16b).
 訓練前のバランスボード動揺と比べて、訓練後のバランスボード動揺が低減された場合(SBB_pre > SBB_post)(S16bのYes)、次の判定ブロックに進む。そうでない場合(S16のNo)、S13の再訓練が実施される。 If the balance board oscillation after training is reduced compared to the balance board oscillation before training (S BB_pre > S BB_post ) (Yes in S16b), the process advances to the next determination block. If not (No in S16), retraining in S13 is performed.
 上記S16bでYesと判定されたときは、再訓練判定部501は、上記読み出した、バランス訓練の前後の体性感覚依存度を比較する(S16c)。 When it is determined Yes in S16b above, the retraining determination unit 501 compares the degree of somatosensory dependence read above before and after the balance training (S16c).
 訓練前の体性感覚依存度と比べて、訓練後の体性感覚依存度が強まっている場合(dp_pre < dp_post)(S16cのYes)、再訓練判定部501は、体性感覚依存を強める運動スキルの学習が進んだと判定し、訓練を終了する。そうでない場合(S16cのNo)、S13の再訓練が実施される。 If the degree of somatosensory dependence after training is stronger than the degree of somatosensory dependence before training (d p_pre < d p_post ) (Yes in S16c), the retraining determination unit 501 determines that the somatosensory dependence is It is determined that learning of the motor skill to be strengthened has progressed, and the training is terminated. If not (No in S16c), retraining in S13 is performed.
 (第2の実施形態)
 次に、第2の実施形態について説明する。ここでは、視覚依存を強める運動スキルの訓練について説明する。 
 第1の実施形態の背景について説明する。ヒトは立位または歩行等の基礎運動時に身体姿勢、例えば身体動揺を安定させるために姿勢制御を自ら行なう。ヒトの姿勢制御では、主に視覚(目)、体性感覚(足裏など)、前庭感覚(三半規管など)でなる3つの感覚器により外界の情報を受け取り、これらの情報が脳の中枢神経系で正しく感覚統合されることで姿勢を安定させることが分かっており、感覚統合において各個人が特定の感覚に依存する傾向が知られている。
(Second embodiment)
Next, a second embodiment will be described. Here, we will explain motor skill training that strengthens visual dependence.
The background of the first embodiment will be explained. Humans perform postural control on their own in order to stabilize their body posture, for example, body sway, during basic movements such as standing or walking. Postural control in humans involves receiving information from the outside world through three sensory organs: vision (eyes), somatic sensation (sole of the foot, etc.), and vestibular sensation (semicircular canals, etc.), and this information is sent to the brain's central nervous system. It is known that correct sensory integration stabilizes posture, and it is known that each individual tends to rely on a specific sense during sensory integration.
 このような感覚依存性の偏りが長年にわたり続くと、強く依存した感覚器の機能が将来的な加齢によって低下したときに、姿勢制御が、より困難になるという問題が生じる。 
 将来的な加齢に伴う感覚器の機能低下は個人差が大きく予測が困難であることを踏まえると、どの感覚が機能低下しても姿勢を安定できるスキル、つまり視覚、体性感覚、および前庭感覚のそれぞれに対する感覚依存が強い状態に遷移させる運動スキルを健常なうちに身に付けておくことが必要となる。 
 これにより、不安定な状況下、例えば軟らかい床面など、において、劣化していない感覚に依存を強めて姿勢を安定させることが可能となる。
If this bias in sensory dependence continues for many years, a problem arises in that postural control becomes more difficult when the functions of the sensory organs on which the body is strongly dependent decline due to aging.
Considering that the future decline in function of sensory organs due to aging is difficult to predict due to large individual differences, we need to develop skills that allow us to maintain a stable posture even when the function of any sense decreases, namely visual, somatosensory, and vestibular functions. It is necessary to acquire motor skills to transition to a state of strong sensory dependence on each of the senses while still healthy.
This makes it possible to stabilize one's posture under unstable conditions, such as on a soft floor, by relying more heavily on sensations that have not deteriorated.
 上記非特許文献1によれば、不安定面上立位は視覚依存を強める効果があると述べられている。しかしながら、非特許文献1のような、感覚器または外部環境を通じて外乱を与える技術の場合、外乱に対する運動が個人ごとに異なるため、結果として個人ごとに異なる感覚依存変化が生じるという問題がある。ゆえに、視覚依存を強める運動スキルの訓練としては不十分である。そこで、本発明の第2の実施形態では、外乱中に運動を矯正するための外部的な刺激を介入する訓練を取り入れた、視覚依存を強める運動スキルの訓練を実現する形態について説明する。 According to the above-mentioned non-patent document 1, it is stated that standing on an unstable surface has the effect of strengthening visual dependence. However, in the case of the technique of applying a disturbance through a sensory organ or the external environment as in Non-Patent Document 1, there is a problem in that the movement in response to the disturbance differs from person to person, resulting in different sensation-dependent changes for each person. Therefore, it is insufficient for training motor skills that strengthen visual dependence. Accordingly, in a second embodiment of the present invention, a mode will be described that implements training for motor skills that strengthen visual dependence, which incorporates training that intervenes with external stimulation to correct movement during disturbances.
 図12は、本発明の第2の実施形態に係るトレーニング装置に係る機能の一例を示す図である。 
 本発明の第1の実施形態では、図2に示されるように、身体動揺に応じた足関節筋に対する筋電気刺激(EMS)が介入されたバランス訓練のステップ(S23)と、この訓練の前後に、EMSが介入されないバランス訓練のステップ(S22(事前バランス訓練)、S24(事後バランス訓練))と、このEMSが介入されないバランス訓練の前後における、感覚依存度を計測および評価するステップ(S21、S25)、およびバランス訓練の前後の結果を比較して再訓練が必要か否か判定するステップ(S26)を構成要素とする、視覚依存性を強める運動スキルの訓練について説明する。
FIG. 12 is a diagram showing an example of functions related to the training device according to the second embodiment of the present invention.
In the first embodiment of the present invention, as shown in FIG. 2, the step (S23) of balance training in which muscle electrical stimulation (EMS) is applied to the ankle joint muscles in response to body sway, and the steps before and after this training. Steps of balance training in which EMS is not intervened (S22 (pre-balance training), S24 (post-balance training)) and steps of measuring and evaluating the degree of sensory dependence before and after balance training in which EMS is not intervened (S21, A motor skill training that strengthens visual dependence will be described, the components of which are S25) and a step of comparing the results before and after balance training to determine whether retraining is necessary (S26).
 本発明の第2の実施形態により、外乱中に運動を矯正するための外部的な刺激が介入される訓練を取り入れた、視覚依存を強める運動スキルの訓練を実現できる。 According to the second embodiment of the present invention, it is possible to realize training for motor skills that strengthen visual dependence, which incorporates training in which external stimulation is intervened to correct movement during disturbances.
 さらに、身体動揺に応じた足関節筋に対するEMSが介入されたバランス訓練により、外乱中に足関節運動を矯正し、視覚に依存を強めることが可能となる。 Furthermore, balance training in which EMS intervenes on the ankle joint muscles in response to body sway makes it possible to correct ankle joint movement during disturbances and strengthen the reliance on vision.
 さらに、上記EMSが介入されたバランス訓練の前後にEMSが介入されないバランス訓練と、バランス訓練後に感覚依存度を計測および評価することにより、視覚依存を強める運動スキルの学習状態を定量的に確認することが可能となる。 Furthermore, by measuring and evaluating the degree of sensory dependence before and after the above-mentioned balance training with EMS intervention, balance training without EMS intervention, and after balance training, we will quantitatively confirm the learning state of motor skills that strengthen visual dependence. becomes possible.
 さらに、バランス訓練の前後の結果を比較して再訓練が必要か判定することにより、学習状態に応じて再訓練を繰り返して、確実に学習を進めることができる。 Furthermore, by comparing the results before and after balance training and determining whether retraining is necessary, it is possible to repeat retraining according to the learning state and advance learning reliably.
 図13は、本発明の第2の実施形態に係るトレーニング装置の機能構成例を示すブロック図である。 
 図13に示されるように、本発明の第2の実施形態に係るトレーニングシステム100aは、床反力計101、モーションキャプチャシステム102、トレーニング装置103a、マイクロコンピュータ(マイコン)104a、電気刺激装置105a、およびサーバ106を有する。
FIG. 13 is a block diagram showing an example of the functional configuration of a training device according to the second embodiment of the present invention.
As shown in FIG. 13, a training system 100a according to the second embodiment of the present invention includes a floor reaction force meter 101, a motion capture system 102, a training device 103a, a microcomputer 104a, an electrical stimulation device 105a, and a server 106.
 床反力計101とモーションキャプチャシステム102、およびマイコン104aは、トレーニング装置103aに接続され、このトレーニング装置103aにはマイコン104aを介してと電気刺激装置105aが接続されている。このうち、床反力計101は、被験者の立位時の足圧中心位置を計測し、この計測結果は、上記S21とS25、すなわちバランス訓練後の感覚依存度計測および評価処理のステップで用いられる。 The floor reaction force meter 101, motion capture system 102, and microcomputer 104a are connected to a training device 103a, and an electrical stimulation device 105a is connected to the training device 103a via the microcomputer 104a. Of these, the floor reaction force meter 101 measures the position of the center of foot pressure when the subject is standing, and this measurement result is used in S21 and S25 above, that is, the steps of sensory dependence measurement and evaluation processing after balance training. It will be done.
 モーションキャプチャシステム102、マイコン104a、および電気刺激装置105aは、上記S22、S23、S24、すなわち各種バランス訓練ステップで用いられる。 The motion capture system 102, the microcomputer 104a, and the electrical stimulation device 105a are used in S22, S23, and S24, that is, various balance training steps.
 モーションキャプチャシステム102は、専用の赤外線反射マーカーを被験者の身体または物体の任意の場所に貼り付けることで、その位置を計測する。計測されたマーカーの動きに応じて、トレーニング装置103aからマイコン104aへトリガが送信され、このトリガを受信したタイミングで、マイコン104aが電気刺激装置105aへ電気刺激開始の信号を送信する。 The motion capture system 102 measures the position of a subject's body or object by attaching a dedicated infrared reflective marker to an arbitrary location on the subject's body or object. According to the measured movement of the marker, a trigger is transmitted from the training device 103a to the microcomputer 104a, and at the timing of receiving this trigger, the microcomputer 104a transmits a signal to start electrical stimulation to the electrical stimulation device 105a.
 S21:訓練前の感覚依存度計測・評価ステップ
 図14は、本発明の第2の実施形態による感覚依存度計測・評価処理に係る機能構成例を示すブロック図である。 
 S21は、バランス訓練前の感覚依存度を評価するステップである。図14に示されるように、床反力計101は、重心動揺計測部201を有し、トレーニング装置103aは、重心動揺評価部202と、視覚依存度評価部203aを有し、第2の実施形態によるバランス訓練前の感覚依存度計測・評価処理S21は、これらの201~203aにより実現され得る。
S21: Pre-training sensory dependence measurement/evaluation step FIG. 14 is a block diagram showing an example of a functional configuration related to sensory dependence measurement/evaluation processing according to the second embodiment of the present invention.
S21 is a step of evaluating the degree of sensory dependence before balance training. As shown in FIG. 14, the floor reaction force meter 101 has a center of gravity sway measuring section 201, and the training device 103a has a center of gravity sway evaluation section 202 and a visual dependence evaluation section 203a. The sensory dependence measurement/evaluation process S21 before form-based balance training can be realized by these 201 to 203a.
 図15は、本発明の第2の実施形態による感覚依存度評価処理の手順の一例を示すフローチャートである。 
 S21では、まず、被験者は、床反力計101の上(安定面上)で開眼両足立位30秒間(S21a)と、同じく床反力計101の上(安定面上)で閉眼両足立位30秒間(S21b)を複数回繰り返す。なお立位時間は例であり、例えば60秒などとしても良い。
FIG. 15 is a flowchart illustrating an example of the procedure of sensory dependence evaluation processing according to the second embodiment of the present invention.
In S21, the subject first stands with both feet open on the ground reaction force meter 101 (on a stable surface) for 30 seconds (S21a), and then with both feet closed on the ground reaction force meter 101 (on a stable surface) for 30 seconds (S21a). Repeat 30 seconds (S21b) multiple times. Note that the standing time is just an example, and may be set to 60 seconds, for example.
 ・重心動揺計測部201
 重心動揺計測部201は、開眼両足立位時において、床反力計101により足圧中心位置(xt, yt)を計測し、この計測結果をトレーニング装置103aに出力する(S21c)。
・Center of gravity sway measurement unit 201
The center of gravity sway measuring unit 201 measures the foot pressure center position (x t , y t ) using the floor reaction force meter 101 when standing with both feet open and eyes open, and outputs the measurement result to the training device 103a (S21c).
 同様に、重心動揺計測部201は、閉眼両足立位時において、床反力計101により足圧中心位置(xt、 yt)を計測し、この計測結果をトレーニング装置103aに出力する(S21d)。 Similarly, the center of gravity sway measuring unit 201 measures the foot pressure center position (x t , y t ) using the floor reaction force meter 101 when standing with both feet closed and eyes closed, and outputs this measurement result to the training device 103a (S21d ).
 ・重心動揺評価部202
 重心動揺評価部202は、開眼両足立位時において、足圧中心位置(xt, yt) の計測結果を入力し、足圧中心位置の時系列データとしてトレーニング装置103a内の記憶装置に格納する(S21e)。 
 トレーニング装置103aは、この格納されたデータを用いて、開眼立位時の重心動揺SEOを計算し、この計算結果を視覚依存度評価部203aへ出力する(S21f)。
- Center of gravity sway evaluation unit 202
The center of gravity sway evaluation unit 202 inputs the measurement result of the foot pressure center position (x t , y t ) when standing with both feet open, and stores it in the storage device in the training device 103a as time series data of the foot pressure center position. (S21e).
The training device 103a uses this stored data to calculate the center of gravity sway S EO when standing with eyes open, and outputs the calculation result to the visual dependence evaluation unit 203a (S21f).
 同様に、重心動揺評価部202は、閉眼両足立位時において、足圧中心位置(xt、 yt)の計測結果を入力し、足圧中心位置の時系列データとしてトレーニング装置103a内の記憶装置に格納する(S21g)。 
 トレーニング装置103aは、この格納されたデータを用いて、閉眼立位時の重心動揺SECを計算し、この計算結果を視覚依存度評価部203aへ出力する(S21h)。
Similarly, the center of gravity sway evaluation unit 202 inputs the measurement result of the foot pressure center position (x t , y t ) when standing with both feet closed, and stores it in the training device 103a as time series data of the foot pressure center position. The information is stored in the device (S21g).
The training device 103a uses this stored data to calculate the center of gravity sway S EC when standing with eyes closed, and outputs the calculation result to the visual dependence evaluation unit 203a (S21h).
 本実施形態では、重心動揺、すなわち開眼立位時の重心動揺SEOおよび閉眼立位時の重心動揺SECとして二乗平均平方根(RMS)が以下の式(6)のように計算される。 In this embodiment, the root mean square (RMS) of the center of gravity sway, that is, the center of gravity sway when standing with eyes open S EO and the center of gravity sway S EC when standing with eyes closed, is calculated as shown in equation (6) below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、上記式(1)と同様に、xm, ymは足圧中心位置の平均値であり、nは時間サンプル数である。なお、他のパラメータとして重心動揺速度または矩形面積などが用いられても良い。 Here, as in the above formula (1), x m and y m are the average values of the foot pressure center position, and n is the number of time samples. Note that the center of gravity oscillation speed, rectangular area, etc. may be used as other parameters.
 ・視覚依存度評価部203a
 視覚依存度評価部203aは、開眼立位時の重心動揺SEOと、閉眼立位時の重心動揺SECがの計算結果を入力し、これらの計算結果に基づいて、訓練前の視覚依存度deを以下の式(7)のように計算する(S21i)。
-Visual dependence evaluation unit 203a
The visual dependence evaluation unit 203a inputs the calculation results of the center of gravity sway S EO when standing with eyes open and the center of gravity sway S EC when standing with eyes closed, and based on these calculation results, evaluates the visual dependence before training. d e is calculated as shown in equation (7) below (S21i).
 d=SEC/SEO …式(7)
 この式(7)では、deが大きいほど視覚依存度が強いことを意味する。 
 本実施形態では、訓練前に上記のように計算された視覚依存度をde_preとして、トレーニング装置103aの記憶装置に保存される。
d e =S EC /S EO ...Formula (7)
In this equation (7), the larger d e is, the stronger the visual dependence is.
In this embodiment, the degree of visual dependence calculated as described above before training is saved as d e_pre in the storage device of the training device 103a.
 S22:事前バランス訓練ステップ
 S22はEMSが介入されるバランス訓練(S23)の前の、介入無しのバランス訓練を実施するステップであり、第1の実施形態で説明したS12と同様のステップである。構成およびフローチャートは図6および図7に示される通りである。
S22: Pre-balance training step S22 is a step of performing balance training without intervention before balance training in which EMS is intervened (S23), and is the same step as S12 described in the first embodiment. The configuration and flowchart are as shown in FIGS. 6 and 7.
 S23:バランス訓練ステップ
 図16は、本発明の第2の実施形態によるバランス訓練処理(EMS介入あり)に係る機能構成例を示すブロック図である。 
 S23は、EMSが介入されるバランス訓練を実施するステップである。図16に示されるように、モーションキャプチャシステム102は、バランスボード高さ計測部401を有し、トレーニング装置103aは、時系列データ格納部402と、主動作筋閾値判定部403、および主動作筋判定部404を有し、マイコン104aは、電気刺激提示部405aを有し、第2の実施形態によるEMSを介入するバランス訓練は、これら401~405aにより実現され得る。時系列データ格納部402には、事前訓練におけるバランスボード動揺の時系列データが格納される。
S23: Balance training step FIG. 16 is a block diagram showing an example of a functional configuration related to balance training processing (with EMS intervention) according to the second embodiment of the present invention.
S23 is a step of implementing balance training in which EMS is involved. As shown in FIG. 16, the motion capture system 102 includes a balance board height measurement section 401, and the training device 103a includes a time series data storage section 402, a main action muscle threshold determination section 403, and a main action muscle The microcomputer 104a has a determination unit 404, and the microcomputer 104a has an electrical stimulation presentation unit 405a, and balance training using EMS according to the second embodiment can be realized by these 401 to 405a. The time-series data storage unit 402 stores time-series data of balance board sway during pre-training.
 図17は、本発明の第2の実施形態によるバランス訓練処理(EMS介入あり)の手順の一例を示すフローチャートである。 
 S23の事前準備として、被験者の足関節前脛骨筋およびヒラメ筋に電気刺激用電極をそれぞれ貼り付け、電気刺激装置105aの各チャンネルへ接続する。電気刺激装置105aは、被験者の各筋にEMSを提示して筋肉を収縮させることができる。また、トレーニング装置103aに取り付けられた外部トリガ出力機とマイコン104aを計2つのチャンネルだけ接続し、トレーニング装置103aにはマイコン104を介して電気刺激装置105aが接続される。上記2つのチャンネルは、例えば前脛骨筋を刺激するチャンネルと、ヒラメ筋を刺激するチャンネルに対応する。本実施形態では、バランスボードの動揺に応じて、被験者の前脛骨筋またはヒラメ筋に対してEMSが提示される。
FIG. 17 is a flowchart showing an example of the procedure of balance training processing (with EMS intervention) according to the second embodiment of the present invention.
As a preliminary preparation for S23, electrical stimulation electrodes are attached to the tibialis anterior muscle and soleus muscle of the subject's ankle, respectively, and connected to each channel of the electrical stimulation device 105a. The electrical stimulation device 105a can present EMS to each muscle of the subject to contract the muscle. Further, only two channels in total are connected between the external trigger output device attached to the training device 103a and the microcomputer 104a, and the electric stimulation device 105a is connected to the training device 103a via the microcomputer 104. The above two channels correspond to, for example, a channel that stimulates the tibialis anterior muscle and a channel that stimulates the soleus muscle. In this embodiment, EMS is presented to the tibialis anterior muscle or soleus muscle of the subject in accordance with the movement of the balance board.
 S23では、訓練タスクとして、前後方向にのみ傾くバランスボード上での片足立位を30秒間ずつ複数回実施する(S23a)。この訓練タスクはバランスボードの他、軟らかい床面などで実施されても良い。 In S23, as a training task, one-legged standing on a balance board tilted only in the front-back direction is performed multiple times for 30 seconds each (S23a). This training task may be performed on a soft floor surface in addition to a balance board.
 ・バランスボード高さ計測部401
 モーションキャプチャシステム102のバランスボード高さ計測部401は、マーカーの高さ(ht)を計測し、この計測結果をトレーニング装置103aに出力する(S23b)。
・Balance board height measurement section 401
The balance board height measurement unit 401 of the motion capture system 102 measures the height (ht) of the marker and outputs this measurement result to the training device 103a (S23b).
 ・事前訓練におけるバランスボード動揺の時系列データ
 第1の実施形態におけるS12bおよびS12cで説明した「バランスボードの高さの時系列データ」は、本実施形態では、「事前訓練におけるバランスボード動揺の時系列データ」としてトレーニング装置103a内の時系列データ格納部402に格納されており、主動作筋閾値判定部403に出力され得る。
・Time series data of balance board sway during pre-training In this embodiment, the "time series data of balance board height" explained in S12b and S12c in the first embodiment is "time series data of balance board sway during pre-training". The data is stored in the time series data storage section 402 in the training device 103a as "series data," and can be output to the main action muscle threshold determination section 403.
 ・主動作筋閾値判定部403
 主動作筋閾値判定部403は、時系列データ格納部402に格納される「事前訓練におけるバランスボード動揺の時系列データ」を入力し、バランスボード動揺を低減させるための適切な主動作筋が判定されるための閾値h_taおよび閾値h_soを「事前訓練におけるバランスボード動揺の時系列データ」ともに主動作筋判定部404に出力する。 
 本実施形態では、バランスボード前端の高さhが閾値h_ta以下のときは、被験者の前脛骨筋が上記適切な主動作筋であると主動作筋判定部404により判定される。また、バランスボード前端の高さhが閾値h_so以上のときは、被験者のヒラメ筋が上記適切な主動作筋であると主動作筋判定部404により判定される。 
 バランスボード前端の高さhの時系列データの平均値をh_meanとし、当該時系列データの標準偏差をh_stdとしたときの上記閾値との関係は第1の実施形態で説明した式(4)および式(5)で示される。
- Main action muscle threshold determination unit 403
The main action muscle threshold determination unit 403 inputs the “time series data of balance board sway during pre-training” stored in the time series data storage unit 402, and determines the appropriate main action muscle for reducing balance board sway. The threshold value h_ta and the threshold value h_so are output to the main action muscle determination unit 404 together with "time series data of balance board sway in pre-training".
In this embodiment, when the height h of the front end of the balance board is equal to or less than the threshold value h_ta, the main action muscle determining unit 404 determines that the subject's tibialis anterior muscle is the appropriate main action muscle. Furthermore, when the height h of the front end of the balance board is equal to or greater than the threshold value h_so, the main action muscle determining unit 404 determines that the subject's soleus muscle is the appropriate main action muscle.
When the average value of the time-series data of the height h of the front end of the balance board is h_mean, and the standard deviation of the time-series data is h_std, the relationship with the above threshold value is expressed by the equation (4) and the equation (4) described in the first embodiment. It is shown by formula (5).
 ここで、第1の実施形態と同様に、バランスボード前端の高さhについて、「h_ta < h < h_so」の領域では、比較的水平にバランスを維持できているため、バランスボード前端の高さが「安定領域」と呼ぶことができる。 
 また、バランスボード前端の高さhについて、上記「h_ta < h < h_so」以外の領域では、バランスボードが大きく傾いているため、バランスボード前端の高さが「不安定領域」であると呼ぶことができる。
Here, as in the first embodiment, regarding the height h of the front end of the balance board, in the region of "h_ta < h <h_so", the balance can be maintained relatively horizontally, so the height of the front end of the balance board can be called the "stable region".
In addition, regarding the height h of the front end of the balance board, in areas other than the above "h_ta < h <h_so", the balance board is significantly tilted, so the height of the front end of the balance board is called the "unstable area". I can do it.
 ・主動作筋判定部404
 主動作筋判定部404は、主動作筋閾値判定部403か出力された閾値と、バランスボード高さ計測部401からの、時刻tにおけるバランスボード前端の高さhを入力し、バランスボード前端の高さが安定領域であるか不安定領域であるかを判定する。安定領域と判定されたときは、主動作筋判定部404は、マイコン104aへトリガを送信しない。
- Main action muscle determination unit 404
The main action muscle determination unit 404 inputs the threshold output from the main action muscle threshold determination unit 403 and the height ht of the front end of the balance board at time t from the balance board height measurement unit 401, and inputs the front end of the balance board Determine whether the height of is in a stable region or an unstable region. When it is determined that it is in the stable region, the main action muscle determination unit 404 does not transmit a trigger to the microcomputer 104a.
 また、不安定領域と判定されたときは、主動作筋判定部404は、上記適切な主動作筋が前脛骨筋(TA)とヒラメ筋(SO)のどちらであるべきかを判定する(S23c)、適切な主動作筋と判定された筋を刺激するチャンネルにトリガを送信する。 Further, when it is determined that the region is unstable, the main action muscle determining unit 404 determines whether the appropriate main action muscle should be the tibialis anterior (TA) or the soleus (SO) (S23c ), sends a trigger to the channel that stimulates the muscle determined to be the appropriate prime mover muscle.
 ・電気刺激提示部405a
 上記不安定領域と判定されたときの送信されたトリガ信号をマイコン104aが受信すると、電気刺激提示部405aは、電気刺激装置105aによりEMSを提示する(S23d)。被験者の前脛骨筋(TA)にEMSが提示された場合、足関節背屈によるバランスボードの前端を上げる動作を不随意的に引き起こす。また、被験者のヒラメ筋(SO)にEMSが提示された場合、足関節底屈によるバランスボードの前端を下げる動作を不随意的に引き起こす。 
 S23dまたはS23eの後は、時刻のカウントを進めた状態でS23bに戻る。
・Electrical stimulation presentation section 405a
When the microcomputer 104a receives the transmitted trigger signal when the unstable region is determined, the electrical stimulation presentation unit 405a presents the EMS using the electrical stimulation device 105a (S23d). When an EMS is presented to the subject's tibialis anterior (TA) muscle, it causes an involuntary movement of raising the front end of the balance board through ankle dorsiflexion. In addition, when EMS is presented to the subject's soleus muscle (SO), it causes an involuntary movement of lowering the front end of the balance board by plantar flexion of the ankle joint.
After S23d or S23e, the process returns to S23b with the time count advanced.
 S24:事後バランス訓練ステップ
 S24は、EMSを介入するバランス訓練の後の、介入無しのバランス訓練を実施するステップであり、第1の実施形態で説明したS14と同様のステップである。構成およびフローチャートは図6および図7に示される通りである。
S24: Post-balance training step S24 is a step of performing balance training without intervention after balance training with EMS intervention, and is the same step as S14 described in the first embodiment. The configuration and flowchart are as shown in FIGS. 6 and 7.
 S25:訓練後感覚依存度評価ステップ
 S25は、訓練後の感覚依存度を計測および評価するステップであり、S21と同様である。構成およびフローチャートは図14および、図15に示される通りである。
S25: Post-training sensory dependence evaluation step S25 is a step of measuring and evaluating the sensory dependence after training, and is similar to S21. The configuration and flowchart are as shown in FIGS. 14 and 15.
 ただし、上記S21では、訓練前に取得された視覚依存度はde_preとして、トレーニング装置103aの記憶装置に保存されると説明したが、S25では、訓練後に計算した視覚依存度はde_postとして、トレーニング装置103aの記憶装置に保存される。 However, in S21 above, it was explained that the degree of visual dependence acquired before training is stored as d e_pre in the storage device of the training device 103a, but in S25, the degree of visual dependence calculated after training is stored as d e_post , It is saved in the storage device of the training device 103a.
 S26:再訓練判定ステップ
 図18は、本発明の第2の実施形態による再訓練判定処理に係る機能構成例を示すブロック図である。 
 S26は、EMSが介入されたバランス訓練前後の視覚依存度(de_pre, de_post)とバランスボード動揺(SBB_pre, SBB_post)をそれぞれ比較し、バランス訓練の再訓練が必要か否かを判定するステップである。図18に示されるように、トレーニング装置103aは、再訓練判定部501aを有し、S26は、この501aにより実現され得る。
S26: Retraining determination step FIG. 18 is a block diagram showing an example of a functional configuration related to retraining determination processing according to the second embodiment of the present invention.
S26 compares the degree of visual dependence (d e_pre , d e_post ) and the balance board sway (S BB_pre , S BB_post ) before and after balance training in which EMS has been intervened, and determines whether retraining of balance training is necessary. This step is to As shown in FIG. 18, the training device 103a has a retraining determination unit 501a, and S26 can be realized by this 501a.
 図19は、本発明の第2の実施形態による再訓練判定処理の手順の一例を示すフローチャートである。 
 ・再訓練判定部501a
 S26では、初めに、再訓練判定部501aは、予めトレーニング装置103aの記憶装置に保存されていた、バランス訓練の前後のバランスボード動揺、およびバランス訓練の前後の視覚依存度を読み出して(S26a)、まず、バランス訓練の前後のバランスボード動揺を比較する。
FIG. 19 is a flowchart illustrating an example of the procedure of retraining determination processing according to the second embodiment of the present invention.
-Retraining determination unit 501a
In S26, the retraining determination unit 501a first reads out the balance board oscillations before and after balance training and the degree of visual dependence before and after balance training, which have been stored in advance in the storage device of the training device 103a (S26a). First, we compare the balance board sway before and after balance training.
 再訓練判定部501は、訓練前のバランスボード動揺と比べて、訓練後のバランスボード動揺が低減されたか否かを判定する(S26b)。 The retraining determining unit 501 determines whether the balance board sway after training has been reduced compared to the balance board sway before training (S26b).
 訓練前のバランスボード動揺と比べて、訓練後のバランスボード動揺が低減された場合(SBB_pre > SBB_post)(S26bのYes)、次の判定ブロックに進む。そうでない場合(S26のNo)、S23の再訓練を実施される。 
 上記S26bでYesと判定されたときは、再訓練判定部501は、上記読み出した、バランス訓練前後の視覚依存度を比較する(S26c)。
If the balance board oscillation after training is reduced compared to the balance board oscillation before training (S BB_pre > S BB_post ) (Yes in S26b), the process advances to the next determination block. If not (No in S26), retraining in S23 is performed.
When it is determined Yes in the above S26b, the retraining determination unit 501 compares the read visual dependence degrees before and after the balance training (S26c).
 訓練前の視覚依存度と比べて、訓練後の視覚依存度が強まっている場合(de_pre < de_post)(S26cのYes)、再訓練判定部501は、視覚依存を強める運動スキルの学習が進んだと判定し、訓練を終了する。そうでない場合(S26cのNo)、S23の再訓練が実施される。 If the degree of visual dependence after training is stronger than the degree of visual dependence before training (d e_pre < d e_post ) (Yes in S26c), the retraining determination unit 501 determines whether learning motor skills that strengthen visual dependence is possible. It is determined that progress has been made and the training ends. If not (No in S26c), retraining in S23 is performed.
 次に、本実施形態に係るバリエーション(variation)について、以下の(1)~(3)にて説明する。 
 (1) 上記の時系列データ格納部402に格納される、事前訓練における身体動作の時系列データ、または各依存度の計算結果は、サーバ106内の図示しない記憶装置に予め記憶されてもよい。この場合、必要に応じて、トレーニング装置103の主動作筋閾値判定部403または主動作筋判定部404が、通信ネットワークを介して、サーバ106への上記記憶されるデータなどの配信(取得)要求、いわゆるダウンロード(download)のリクエスト(request)を行ない、サーバ106の図示しない配信部は、この配信要求に応じて、上記記憶されるデータを、通信ネットワークを介して配信要求元であるトレーニング装置103に配信することができる。
Next, variations according to this embodiment will be explained in (1) to (3) below.
(1) The time-series data of body movements in pre-training or the calculation results of each degree of dependence, which are stored in the above-described time-series data storage unit 402, may be stored in advance in a storage device (not shown) in the server 106. . In this case, the main action muscle threshold determination unit 403 or the main action muscle determination unit 404 of the training device 103 requests distribution (acquisition) of the stored data to the server 106 via the communication network, as necessary. In response to this distribution request, the distribution unit (not shown) of the server 106 transmits the stored data to the training device 103, which is the source of the distribution request, via the communication network. can be delivered to.
 (2) 上記の主動作筋閾値判定部403により判定される閾値は、サーバ105内の図示しない記憶装置に閾値データとして予め記憶されてもよい。 
 この場合、必要に応じて、トレーニング装置103の主動作筋判定部404が、通信ネットワークを介して、サーバ106への上記閾値データの配信要求、いわゆるダウンロードのリクエストを行ない、サーバ106の配信部は、この配信要求に応じて、上記記憶される閾値のデータを、通信ネットワークを介して配信要求元であるトレーニング装置103に配信することができる。
(2) The threshold determined by the main action muscle threshold determination unit 403 described above may be stored in advance in a storage device (not shown) in the server 105 as threshold data.
In this case, if necessary, the main action muscle determining unit 404 of the training device 103 requests the server 106 to distribute the above-mentioned threshold value data, so-called a download request, via the communication network, and the distribution unit of the server 106 In response to this distribution request, the stored threshold data can be distributed via the communication network to the training device 103 that is the source of the distribution request.
 (3) 上記の主動作筋閾値判定部403により判定される閾値を求めるための式は、上記の式(4)および(5)に示されたような一通りの式に限らず、複数の種類の閾値、例えばプロ選手(professional player)用の式と、アマチュア(amateur)選手用の式から利用者が任意に選択できる構成でもよい。プロ用の式は、例えばプロ選手が取り扱える比較的複雑なパラメータなどが含まれる式であり、アマチュア用の式は、例えばアマチュア選手が取り扱える比較的簡易なパラメータなどが含まれる式である。 (3) The formula for determining the threshold determined by the main action muscle threshold determination unit 403 is not limited to one formula as shown in formulas (4) and (5) above, but may include multiple formulas. The configuration may be such that the user can arbitrarily select different types of threshold values, for example, a formula for professional players and a formula for amateur players. The professional formula is a formula that includes, for example, relatively complex parameters that can be handled by a professional player, and the amateur formula is a formula that includes relatively simple parameters that can be handled by, for example, an amateur player.
 以上説明した、本発明の一実施形態では、外乱中に運動を矯正するための外部的な刺激を介入し、かつ、被験者の個人ごとに事前に測定した重心動揺から刺激タイミングを判定することで、被験者が身体姿勢を安定させるための感覚依存性を制御することができる。 In one embodiment of the present invention described above, an external stimulus is applied to correct movement during a disturbance, and the stimulation timing is determined from the center of gravity sway measured in advance for each individual subject. , the subject can control sensory dependence to stabilize body posture.
 図20は、本発明の一実施形態に係るトレーニング装置のハードウエア構成の一例を示すブロック図である。 
 図4に示された例では、上記の実施形態に係るトレーニング装置103は、例えばサーバコンピュータ(server computer)またはパーソナルコンピュータ(personal computer)により構成され、CPU(Central Processing Unit)等のハードウエアプロセッサ(hardware processor)611Aを有する。そして、このハードウエアプロセッサ611Aに対し、プログラムメモリ(program memory)611B、データメモリ(data memory)612、入出力インタフェース(interface)613及び通信インタフェース614が、バス(bus)615を介して接続される。図1に示されたマイコン104、およびサーバ106、ならびに図12に示されたトレーニング装置103a、マイコン104a、および電気刺激装置105aについても同様であり、サーバ106は上記のサーバコンピュータにより構成され得る。
FIG. 20 is a block diagram showing an example of the hardware configuration of a training device according to an embodiment of the present invention.
In the example shown in FIG. 4, the training device 103 according to the above embodiment is configured by, for example, a server computer or a personal computer, and includes a hardware processor such as a CPU (Central Processing Unit). hardware processor) 611A. A program memory 611B, a data memory 612, an input/output interface 613, and a communication interface 614 are connected to the hardware processor 611A via a bus 615. . The same applies to the microcomputer 104 and server 106 shown in FIG. 1, and the training device 103a, microcomputer 104a, and electric stimulation device 105a shown in FIG. 12, and the server 106 may be configured by the above-mentioned server computer.
 通信インタフェース614は、例えば1つ以上の無線の通信インタフェースユニットを含んでおり、通信ネットワーク(network)NWとの間で情報の送受信を可能にする。無線インタフェースとしては、例えば無線LAN(Local Area Network)などの小電力無線データ通信規格が採用されたインタフェースが使用される。 The communication interface 614 includes, for example, one or more wireless communication interface units, and enables transmission and reception of information with a communication network NW. As the wireless interface, for example, an interface adopting a low power wireless data communication standard such as a wireless LAN (Local Area Network) is used.
 入出力インタフェース613には、図1に示される床反力計101、モーションキャプチャシステム102、マイコン104、およびその他の図示しない入力デバイス、出力デバイスが接続される。 
 入出力インタフェース613は、キーボード、タッチパネル(touch panel)、タッチパッド(touchpad)、マウス(mouse)等の入力デバイスを通じて利用者などにより入力された操作データを取り込むことができ、出力データを液晶または有機EL(Electro Luminescence)等が用いられた表示デバイスを含む出力デバイスへ出力して表示させる処理を行なうことができる。なお、入力デバイスおよび出力デバイスには、トレーニング装置103に内蔵されたデバイスが使用されてもよく、また、ネットワークNWを介してトレーニング装置103と通信可能である他の情報端末の入力デバイスおよび出力デバイスが使用されてもよい。
The input/output interface 613 is connected to the floor reaction force meter 101 shown in FIG. 1, the motion capture system 102, the microcomputer 104, and other input devices and output devices (not shown).
The input/output interface 613 can receive operation data input by a user through an input device such as a keyboard, touch panel, touchpad, mouse, etc., and output data on a liquid crystal or organic display. It is possible to output and display the image on an output device including a display device using EL (Electro Luminescence) or the like. Note that the input device and the output device may be a device built into the training device 103, or an input device and an output device of another information terminal that can communicate with the training device 103 via the network NW. may be used.
 プログラムメモリ611Bは、非一時的な有形の記憶媒体として、例えば、HDD(Hard Disk Drive)またはSSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリ(non-volatile memory)と、ROM(Read Only Memory)等の不揮発性メモリとが組み合わせて使用されたもので、一実施形態に係る各種制御処理等を実行する為に必要なプログラムが格納されている。 The program memory 611B is a non-temporary tangible storage medium, such as a non-volatile memory such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that can be written to and read from at any time. It is used in combination with a nonvolatile memory such as a ROM (Read Only Memory), and stores programs necessary for executing various control processes and the like according to an embodiment.
 データメモリ612は、有形の記憶媒体として、例えば、上記の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリ(volatile memory)とが組み合わせて使用されたもので、各種処理が行なわれる過程で取得および作成された各種データが記憶される為に用いられる。 The data memory 612 is a tangible storage medium that is used in combination with the above-mentioned nonvolatile memory and volatile memory such as RAM (Random Access Memory), and is used to perform various processes. It is used to store various data acquired and created during the process.
 本発明の一実施形態に係るトレーニング装置103は、ソフトウエア(software)による処理機能部として、図4、5などに示される各部を有するデータ処理装置として構成され得る。 The training device 103 according to an embodiment of the present invention can be configured as a data processing device having each section shown in FIGS. 4, 5, etc. as a processing function section using software.
 トレーニング装置103の各部によるワークメモリ(working memory)などとして用いられる各情報記憶部および時系列データ格納部402は、図20に示されたデータメモリ612が用いられることで構成され得る。ただし、これらの構成される記憶領域はトレーニング装置103内に必須の構成ではなく、例えば、USB(Universal Serial Bus)メモリなどの外付け記憶媒体、又はクラウド(cloud)に配置されたデータベースサーバ(database server)等の記憶装置に設けられた領域であってもよい。 Each information storage unit and time-series data storage unit 402 used as a working memory by each part of the training device 103 may be configured by using the data memory 612 shown in FIG. 20. However, these storage areas are not essential to the training device 103, and may be stored in external storage media such as a USB (Universal Serial Bus) memory, or in a database server located in the cloud. It may also be an area provided in a storage device such as a server.
 上記の処理機能部は、いずれも、プログラムメモリ611Bに格納されたプログラムを上記ハードウエアプロセッサ611Aにより読み出させて実行させることにより実現され得る。なお、これらの処理機能部の一部または全部は、特定用途向け集積回路(ASIC(Application Specific Integrated Circuit))またはFPGA(Field-Programmable Gate Array)などの集積回路を含む、他の多様な形式によって実現されてもよい。 Any of the above processing function units can be realized by causing the hardware processor 611A to read and execute a program stored in the program memory 611B. Note that some or all of these processing functions may be implemented in a variety of other formats, including integrated circuits such as application specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). May be realized.
 また、各実施形態に記載された手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク(Floppy disk)、ハードディスク(hard disk)等)、光ディスク(optical disc)(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ(Flash memory)等)等の記録媒体に格納し、また通信媒体により伝送して頒布され得る。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブル(table)、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。 In addition, the method described in each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done. Note that the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer. A computer that realizes this device reads a program recorded on a recording medium, and if necessary, constructs software means using a setting program, and executes the above-described processing by controlling the operation of the software means. Note that the recording medium referred to in this specification is not limited to one for distribution, and includes storage media such as a magnetic disk and a semiconductor memory provided inside a computer or in a device connected via a network.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
  100,100a…トレーニングシステム
  101…床反力計
  102…モーションキャプチャシステム
  103,103a…トレーニング装置
  104,104a…マイクロコンピュータ(マイコン)
  105…モニタ
  105a…電気刺激装置
  106…サーバ
  201…重心動揺計測部
  202…重心動揺評価部
  203…体性感覚依存度評価部
  203a…視覚依存度評価部
  301,401…バランスボード高さ計測部
  302…バランスボード動揺評価部
  402…時系列データ格納部
  403…主動作筋閾値判定部
  404…主動作筋判定部
  405…視覚刺激提示部
  405a…電気刺激提示部
  501,501a…再訓練判定部
100, 100a... Training system 101... Floor reaction force meter 102... Motion capture system 103, 103a... Training device 104, 104a... Microcomputer (microcomputer)
105...Monitor 105a...Electrical stimulation device 106...Server 201...Center of gravity sway measuring section 202...Center of gravity sway evaluation section 203...Somatosensory dependence evaluation section 203a...Visual dependence evaluation section 301, 401...Balance board height measurement section 302 ...Balance board sway evaluation section 402...Time series data storage section 403...Main action muscle threshold determination section 404...Main action muscle determination section 405...Visual stimulus presentation section 405a...Electrical stimulation presentation section 501, 501a...Retraining judgment section

Claims (7)

  1.  被験者が身体動作を行なったときの身体の重心の動揺の時系列データに基づいて、前記被験者が身体姿勢を安定させるために依存する強化対象の感覚とは異なる種別の感覚への刺激を与えないときの、前記被験者が身体姿勢を安定させるための動作を行なったときの身体姿勢の動揺の特徴量を計算する計算部と、
     前記計算部により計算された特徴量を低減させるための、前記異なる種別の感覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚へ与える刺激を提示する刺激提示部と、
     を備えるトレーニング装置。
    Based on time-series data of the fluctuation of the body's center of gravity when the subject performs a physical movement, stimulation is not given to a type of sensation different from the sensation to be reinforced that the subject relies on to stabilize his or her body posture. a calculation unit that calculates a feature amount of sway in the body posture when the subject performs an action to stabilize the body posture;
    In order to reduce the feature amount calculated by the calculation unit, a main action muscle to which stimulation of the different types of sensations is applied is determined, and for this determined main action muscle, the different types of stimulation are applied to the main action muscles. a stimulation presentation unit that presents stimulation to the senses;
    A training device equipped with.
  2.  前記刺激提示部は、
      被験対象物の身体動作の時系列データに基づいて、前記被験者が身体姿勢を安定させるための動作が前記異なる種別の感覚への刺激を与えることを要しない安定性を有しているか否かを判定し、
      前記安定性を有していないと判定したときに、前記異なる種別の感覚への刺激を与える対象である前記被験者の主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚への刺激を提示する、
     請求項1に記載のトレーニング装置。
    The stimulus presentation unit is
    Based on time-series data of the body movements of the test subject, determine whether the movement of the subject to stabilize the body posture has stability that does not require stimulation of the different types of sensations. judge,
    When it is determined that the subject does not have stability, the main action muscle of the subject to which stimulation of the different types of sensations is given is determined, and for this determined main action muscle, the different Presenting different types of sensory stimulation,
    A training device according to claim 1.
  3.  前記計算部により計算された特徴量は、通信ネットワークを介して接続可能な外部装置に記憶されており、
     前記刺激提示部は、
      前記外部装置に記憶される前記特徴量を前記通信ネットワークを介して取得し、この取得された特徴量を低減させるための、前記異なる種別の感覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚へ与える刺激を提示する、
     請求項1に記載のトレーニング装置。
    The feature amount calculated by the calculation unit is stored in an external device connectable via a communication network,
    The stimulus presentation unit is
    acquiring the feature amount stored in the external device via the communication network, and determining the main action muscle to which stimulation to the different types of sensations is applied in order to reduce the acquired feature amount; and presenting stimulation to the different types of sensations to the determined main action muscle,
    A training device according to claim 1.
  4.  前記依存する感覚は、前記被験者の足部体性感覚であり、
     前記刺激提示部は、
      前記計算部により計算された特徴量を低減させるための、前記被験者の視覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋を動作させる、前記視覚への刺激を提示する、
     請求項1に記載のトレーニング装置。
    the dependent sensation is a somatic sensation in the foot of the subject;
    The stimulus presentation unit is
    determining a main action muscle to which visual stimulation of the subject is to be given, and operating the determined main action muscle, in order to reduce the feature quantity calculated by the calculation unit; present,
    A training device according to claim 1.
  5.  前記依存する感覚は、前記被験者の視覚であり、
     前記刺激提示部は、
      前記計算部により計算された特徴量を低減させるための、前記被験者の足関節筋への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記足関節筋への刺激を提示する、
     請求項1に記載のトレーニング装置。
    the dependent sense is the subject's vision;
    The stimulus presentation unit is
    In order to reduce the feature amount calculated by the calculation unit, a main action muscle that is a target for stimulating the ankle joint muscles of the subject is determined, and for this determined main action muscle, the ankle joint muscle is Provides stimulation to muscles,
    A training device according to claim 1.
  6.  トレーニング装置により行なわれる方法であって、
     前記トレーニング装置の計算部により、被験者が身体動作を行なったときの身体の重心の動揺の時系列データに基づいて、前記被験者が身体姿勢を安定させるために依存する強化対象の感覚とは異なる種別の感覚への刺激を与えないときの、前記被験者が身体姿勢を安定させるための動作を行なったときの身体姿勢の動揺の特徴量を計算し、
     前記トレーニング装置の刺激提示部により、前記計算部により計算された特徴量を低減させるための、前記異なる種別の感覚への刺激を与える対象である主動作筋を判定し、この判定された主動作筋に対して、前記異なる種別の感覚へ与える刺激を提示する、
     トレーニング方法。
    A method performed by a training device, the method comprising:
    The calculation unit of the training device calculates, based on time-series data of the fluctuation of the body's center of gravity when the subject performs a physical movement, a type of sensation that is different from the sensation to be reinforced that the subject relies on to stabilize his or her body posture. Calculating the feature amount of sway in the body posture when the subject performs an action to stabilize the body posture when no stimulation is applied to the sensation,
    The stimulus presentation unit of the training device determines the main movement muscle to which stimulation of the different types of sensations is applied in order to reduce the feature amount calculated by the calculation unit, and the main movement muscle that is the target of the stimulation of the different types of sensations is determined by the stimulation presentation unit of the training device, Presenting stimulation to the different types of sensations to the muscle;
    training method.
  7.  請求項1乃至5のいずれか1項に記載のトレーニング装置の前記各部としてプロセッサを機能させるプログラム。 A program that causes a processor to function as each part of the training device according to any one of claims 1 to 5.
PCT/JP2022/023006 2022-06-07 2022-06-07 Training device, method, and program WO2023238252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023006 WO2023238252A1 (en) 2022-06-07 2022-06-07 Training device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023006 WO2023238252A1 (en) 2022-06-07 2022-06-07 Training device, method, and program

Publications (1)

Publication Number Publication Date
WO2023238252A1 true WO2023238252A1 (en) 2023-12-14

Family

ID=89117716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023006 WO2023238252A1 (en) 2022-06-07 2022-06-07 Training device, method, and program

Country Status (1)

Country Link
WO (1) WO2023238252A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206932A (en) * 2007-02-26 2008-09-11 Hiroichi Ikeda Method for recovery support, evaluation, and training concerning nervous and sensory functions, and its apparatus
US20090240172A1 (en) * 2003-11-14 2009-09-24 Treno Corporation Vestibular rehabilitation unit
US20100248915A1 (en) * 2003-01-28 2010-09-30 Motion Therapeutics, Inc. Methods for weighting garments or orthotics and garments and orthotics therefor
JP2014528738A (en) * 2011-07-11 2014-10-30 ナイキ イノベイト シーブイ Multisensory operation
US9149222B1 (en) * 2008-08-29 2015-10-06 Engineering Acoustics, Inc Enhanced system and method for assessment of disequilibrium, balance and motion disorders
US20160098934A1 (en) * 2012-04-10 2016-04-07 Apexk Inc. Concussion rehabilitation device and method
JP2018023445A (en) * 2016-08-08 2018-02-15 日本電信電話株式会社 Muscular activity auralization device, muscular activity auralization method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248915A1 (en) * 2003-01-28 2010-09-30 Motion Therapeutics, Inc. Methods for weighting garments or orthotics and garments and orthotics therefor
US20090240172A1 (en) * 2003-11-14 2009-09-24 Treno Corporation Vestibular rehabilitation unit
JP2008206932A (en) * 2007-02-26 2008-09-11 Hiroichi Ikeda Method for recovery support, evaluation, and training concerning nervous and sensory functions, and its apparatus
US9149222B1 (en) * 2008-08-29 2015-10-06 Engineering Acoustics, Inc Enhanced system and method for assessment of disequilibrium, balance and motion disorders
JP2014528738A (en) * 2011-07-11 2014-10-30 ナイキ イノベイト シーブイ Multisensory operation
US20160098934A1 (en) * 2012-04-10 2016-04-07 Apexk Inc. Concussion rehabilitation device and method
JP2018023445A (en) * 2016-08-08 2018-02-15 日本電信電話株式会社 Muscular activity auralization device, muscular activity auralization method and program

Similar Documents

Publication Publication Date Title
US11278766B2 (en) Rehabilitation system performing rehabilitation program using wearable device and user electronic device
Buckley et al. Borg’s scales in strength training; from theory to practice in young and older adults
Hansson et al. Effect of vision, proprioception, and the position of the vestibular organ on postural sway
CA2886486C (en) Adaptive cognitive skills assessment and training
Pfusterschmied et al. Supervised slackline training improves postural stability
JP2017000522A (en) Information processor, information processing system and insole
US20170000388A1 (en) System and method for mapping moving body parts
Nae et al. Measurement properties of a test battery to assess postural orientation during functional tasks in patients undergoing anterior cruciate ligament injury rehabilitation
CN205729333U (en) A kind of exercise management system
CN105979869A (en) System for assisting in balancing body weight
Clarke et al. Direct and indirect measurement of neuromuscular fatigue in Canadian football players
Jie et al. Analogy learning in Parkinson's disease: a proof-of-concept study
KR20210004496A (en) Muscle stimulation apparatus, muscle stimulation pad, muscle stimulation system and method for muscle stimulation therof
Saeterbakken et al. The effects of performing integrated compared to isolated core exercises
JP6281876B2 (en) Exercise device evaluation system and exercise device evaluation method
US20110137213A1 (en) Method and system for therapeutic exergaming
CN115100333A (en) Virtual character generation method, device, system and computer readable storage medium
WO2023238252A1 (en) Training device, method, and program
Terziman et al. Personified and multistate camera motions for first-person navigation in desktop virtual reality
JP2009082428A (en) Exercise prescription proposing apparatus
KR102244148B1 (en) Dedicated content prescription and health care system based on tone
Stanek et al. Postural balance assessment in children aged 7 to 9 years, as related to body weight, height, and physical activity
Shigematsu et al. Adherence to and effects of multidirectional stepping exercise in the elderly: a long-term observational study following a randomized controlled trial
Kask et al. Data-driven modelling of fatigue in pelvic floor muscles when performing Kegel exercises
Zarei et al. Effects of proprioception and core stability training followed by detraining on balance performance in deaf male students: a three-arm randomized controlled trial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945759

Country of ref document: EP

Kind code of ref document: A1