WO2023237823A1 - Module de cellules a echange thermique hybride, pour une batterie d'un systeme - Google Patents

Module de cellules a echange thermique hybride, pour une batterie d'un systeme Download PDF

Info

Publication number
WO2023237823A1
WO2023237823A1 PCT/FR2023/000087 FR2023000087W WO2023237823A1 WO 2023237823 A1 WO2023237823 A1 WO 2023237823A1 FR 2023000087 W FR2023000087 W FR 2023000087W WO 2023237823 A1 WO2023237823 A1 WO 2023237823A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
faces
heat exchange
exchange device
cell module
Prior art date
Application number
PCT/FR2023/000087
Other languages
English (en)
Inventor
Mouad Diny
Thibault VAN'T VEER
Original Assignee
Stellantis Auto Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stellantis Auto Sas filed Critical Stellantis Auto Sas
Publication of WO2023237823A1 publication Critical patent/WO2023237823A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation

Definitions

  • TITLE HYBRID HEAT EXCHANGE CELL MODULE, FOR A BATTERY OF A SYSTEM
  • the invention relates to batteries which comprise at least one module of electrical energy storage cells subject to thermal regulation.
  • Certain systems such as for example certain vehicles (possibly of the automobile type), comprise at least one battery comprising at least one module of electrical energy storage cells.
  • these electrical energy storage cells can be electrochemical. This is particularly the case for those of the lithium-ion (or Li-ion) or Ni-Mh or Ni-Cd or even lead type.
  • certain cell modules include a housing housing the cells and in which thermal regulation (cooling or heating) is carried out by heat exchange using heat exchange devices.
  • heat exchange devices which can be integrated into a cell module housing
  • Such a heat exchange device is arranged, in a cooling phase, so as to drain heat from a hot point towards a cold source or via a phase change (and resting in part on the latent heat of vaporization).
  • thermal drainage uses as a cold source either a convection mechanism (natural or forced) with air, or contact with a cold plate (as described in patent documents LIS-A1 2017/0003082 and CN-ll 210607530) , which makes integration into a cell module or a battery difficult (in particular due to the existing complexity and/or bulk).
  • passive and two-phase heat exchange devices currently have difficulty ensuring sufficient cooling of the cells when they are subject to significant heating, for example during ultra-rapid recharging requiring recharging currents. very important.
  • the invention aims in particular to improve the situation.
  • a cell module suitable for equipping a battery and comprising a housing housing at least two electrical energy storage cells and comprising a passive and two-phase heat exchange device.
  • the cell module according to the invention may include other characteristics which can be taken separately or in combination, and notably :
  • its heat exchange device can be in contact with the first lateral faces except at least in its lower sub-part.
  • its housing may comprise a lower zone located below the lower faces of the cells, and a lower wall comprising an upper face provided with protuberances supporting the cells and intended to raise them relative to the upper face to allow passage heat transfer and dielectric fluid under the lower faces of the cells;
  • connection elements in the presence of the last option, its cells can be coupled, at their upper faces, to connection elements.
  • the heat exchange device can be in contact with these connection elements;
  • its heat exchange device can be in contact with the first lateral faces except at least in the upper sub-part.
  • its housing may include an upper zone located above the upper faces of the cells and containing the heat transfer and dielectric fluid;
  • its heat exchange device can extend over at least part of a lower wall of the housing in order to be in contact with at least part of the lower faces of the cells;
  • each cell may comprise two second opposite side faces, the second side faces of neighboring cells, oriented towards each other, being separated at least in part by an intermediate element made of a thermally insulating and non-electrically conductive material, and capable of ensuring a seal against the heat transfer and dielectric fluid between cells to prevent passage of the heat transfer and dielectric fluid between the second lateral faces, as well as possibly managing swelling of the cells;
  • - its cells can be of electrochemical type.
  • the invention also proposes a battery comprising at least one cell module of the type presented above.
  • the invention also proposes a system, possibly a vehicle, comprising a battery of the type presented above.
  • a system possibly a vehicle, comprising a battery of the type presented above.
  • FIG. 1 illustrates schematically and functionally, in a side view, a first embodiment of a cell module according to the invention
  • FIG. 2 illustrates schematically and functionally, in a sectional view in the plane ll-ll of figure 1, the cell module of figure 1,
  • FIG. 3 illustrates schematically and functionally, in a sectional view in the plane III-III of Figures 1, 4, 6 and 8, the cell module of Figures 1, 4, 6 and 8,
  • FIG. 4 illustrates schematically and functionally, in a side view, a second embodiment of a cell module according to the invention
  • FIG. 5 illustrates schematically and functionally, in a sectional view in the V-V plane of Figure 4, the cell module of Figure 4,
  • FIG. 6 illustrates schematically and functionally, in a side view, a third embodiment of a cell module according to the invention
  • FIG. 7 illustrates schematically and functionally, in a sectional view in plane VII-VII of Figure 6, the cell module of Figure 6,
  • FIG. 8 illustrates schematically and functionally, in a side view, a fourth embodiment of a cell module according to the invention.
  • FIG. 9 illustrates schematically and functionally, in a sectional view in the plane IX-IX of Figure 8, the cell module of Figure 8.
  • the invention aims in particular to propose a module of MC cells with hybrid heat exchange and intended to equip a rechargeable battery with a system.
  • the rechargeable battery is intended to equip a system constituting a vehicle.
  • automobile type such as a car.
  • the invention is not limited to this type of system. It concerns in fact any system comprising at least one battery with module(s) of electrical energy storage cells, and in particular vehicles (land, sea (or river), and air), appliances (possibly household appliances), installations (possibly industrial type), and buildings.
  • the vehicle comprises a powertrain (or GMP) of all-electric type, that is to say comprising an electric driving machine coupled to the battery rechargeable (which is then called main (or traction)).
  • GMP powertrain
  • main (or traction) main (or traction)
  • the GMP could be of the hybrid type, that is to say comprising a thermal engine and an electric driving machine coupled to the rechargeable battery.
  • each CS cell of an MC cell module is of the electrochemical type. But the invention is not limited to this type of electrical energy storage cell. It concerns any type of electrical energy storage cell requiring thermal regulation.
  • the CS electrochemical cells of the battery are of the lithium-ion (or Li-ion) type.
  • these CS electrochemical cells could also be of the Ni-Mh or Ni-Cd or even lead type, for example.
  • an MC cell module comprises a BM housing, at least two electrical energy storage cells CS, a passive and two-phase heat exchange device DE, and a heat transfer and dielectric fluid (and therefore not conducting electricity).
  • the BM box houses the CS cells, the heat exchange device DE and the heat transfer and dielectric fluid.
  • this BM housing may comprise lower and upper sub-parts coupled together, for example by screwing, or else a part main and a cover.
  • the MC cell module includes three CS cells (see Figures 2, 3, 5, 7 and 9). But the number of CS cells in a MC cell module can take any value greater than or equal to two. Furthermore, the number of MC cell modules in a rechargeable battery can take any value greater than or equal to one.
  • each cell CS comprises at least two first lateral faces FL1 opposed to each other and here vertical, two second lateral faces FL2 opposed to each other, here vertical, and each joining the two first lateral faces FL1, an upper face FSC here horizontal, and a lower face FIC here horizontal.
  • the CS cells are coupled to EC connection elements. Note that in the four examples illustrated non-limitingly in Figures 1 to 9, the coupling of the cells CS to the connection elements EC is done at the level of their upper faces FSC. But in a variant embodiment (not illustrated) the coupling of the cells CS to the connection elements EC could be done at their lower faces FIC.
  • the heat exchange device DE is in contact with the first lateral faces FL1 of the cells CS, except in a lower sub-part ( Figures 1 and 4) and/or an upper sub-part ( Figures 6 and 8) where it is separated of these first lateral faces FL1 by a predefined space (or recess) EP. It will be understood that the heat exchange device DE can be in contact with the first side faces FL1:
  • Each predefined space (or recess) EP is defined by a local reduction in the thickness of the heat exchange device DE (here following the direction which is perpendicular to the first lateral faces FL1).
  • the CS cells have a rectangular section, and their first side faces FL1 have a smaller surface area than that of the second side faces FL2. But in a variant embodiment (not illustrated) the first side faces FL1 could have a larger surface area than that of the second side faces FL2.
  • the BM box comprises at least one zone ZI or ZS located below the lower faces FIC of the cells CS ( Figures 1 and 4) or above the upper faces FSC of the cells CS ( Figures 6 and 8), communicating with the predefined space EP, and containing the heat transfer and dielectric fluid.
  • the latter then serves as a cold or hot source for the heat exchange device DE for the exchange of calories in a cooling or heating phase. It therefore serves as a cold source in a cooling phase and a hot source in a warming phase.
  • the heat transfer and dielectric fluid serving as a cold (or hot) source replaces the convection mechanism or the cold plate, thus allowing a notable simplification and a reduction in the bulk and cost of the MC cell module, which facilitates its integration into a battery and makes it less expensive and more compact.
  • the heat transfer and dielectric fluid may be a liquid.
  • it can for example be an oil, preferably non-fluorinated in order to remain monophasic, and also preferably biodegradable.
  • the heat exchange device DE may be of the so-called heat pipe type, preferably flat.
  • it could be of the so-called oscillating heat pipe (or “pulsating heat pipe” (or PHP) type).
  • oscillating heat pipe is in the form of a capillary-sized coil partially filled with a saturated fluid which is distributed into vapor pockets and liquid plugs. The pressure difference between two vapor pockets provides the driving force for the movement of the fluid.
  • the heat exchange device DE When the heat exchange device DE has heat pipes, it can, by example, be produced by means of a first plate machined to form a closed circuit in which the two-phase fluid will circulate and a second plate brazed onto the first plate to make the assembly watertight. Then, the heat exchange device DE is attached to the housing BM, and for example welded to at least one internal face of the latter (BM), before the introduction of the cells CS. Alternatively, one of the two plates of the heat exchange device DE may be a wall (or walls) of the housing BM, the other plate then being brazed onto the internal face of this (these) wall(s). of the BM box.
  • the internal face of the wall(s) of the BM housing can be machined to form the closed circuit for the two-phase fluid, or a plate forming the closed circuit can be machined. for the two-phase fluid and braze this machined plate onto the internal face of at least one wall of the BM housing.
  • thermosyphon or capillary pump heat pipes Other types of heat pipes can be used, including thermosyphon or capillary pump heat pipes.
  • the use of heat pipes is advantageous because it allows the heat exchange device DE to have a low thickness, typically less than 2.5 mm.
  • the heat exchange device DE of a cell module MC can possibly be subdivided into two independent sub-parts and associated respectively with the first two lateral faces FL1. But we could consider having a DE heat exchange device in a single part.
  • the heat exchange device DE is in contact with the first lateral faces FL1 except at least in the sub -lower part.
  • the BM housing comprises a lower zone ZI located below the lower faces FIC of the cells CS and a lower wall PI which comprises an upper face FSP provided with protuberances (or spacers) PS supporting the cells CS.
  • protuberances (or spacers) PS are intended to raise the cells CS relative to the upper face FS of the lower wall PI in order to allow the passage of the heat transfer and dielectric fluid under the lower faces FIC of the CS cells (and therefore in the lower zone ZI), and possibly at least in part between the second lateral faces FL2 of the CS cells.
  • the heat transfer and dielectric fluid then serves not only as a cold (or hot) source for the heat exchange device DE where the predefined space EP is defined, but also to cool (heat) directly (by contact) the lower faces FIC and the lower sub-parts of the first side faces FL1 as well as possibly the lower sub-parts of the second side faces FL2.
  • the heat exchange device DE is not only in contact with the first lateral faces FL1 except at least in the lower sub-part, but also in contact with the EC connection elements.
  • the heat exchange device DE is in contact with the first lateral faces FL1 except at least in the upper sub-part.
  • the BM housing comprises an upper zone ZS located above the upper faces FSC of the cells CS and containing the heat transfer and dielectric fluid, and in which the connection elements EC are possibly installed. Note that the heat transfer and dielectric fluid is present above the upper faces FSC of the cells CS, and possibly also at least partly between the second lateral faces FL2 of the cells CS.
  • the heat transfer and dielectric fluid then serves not only as a cold (or hot) source for the heat exchange device DE where the predefined space EP is defined, but also to cool (heat) directly (by contact) the upper faces FSC and the upper sub-parts of the first side faces FL1 as well as possibly the upper sub-parts of the second side faces FL2 and the possible connection elements EC.
  • the heat exchange device DE not only is in contact with the first lateral faces FL1 except at least in the upper sub-part, but also extends over at least part of the lower wall PI of the housing BM in order to be in contact with a part at minus the lower FIC faces of the CS cells.
  • the second lateral faces FL2 of neighboring CS cells can be separated at least in part by an element El interlayer made of a thermally insulating and non-electrically conductive material.
  • Each intermediate element El is then capable of ensuring a seal against the heat transfer and dielectric fluid between neighboring cells (between at least part of their second lateral faces FL2) to prevent the passage of the heat transfer and dielectric fluid between these second lateral faces FL2 (except there where there is no interposed element El).
  • each intermediate element El extends over part of the second lateral faces FL2 of the neighboring cells CS, so as to allow an extension of the lower zone ZI upwards ( Figures 1 to 5) or from the upper zone ZS downwards (figures 6 to 9). This makes it possible to further improve thermal regulation. But in a variant embodiment (not illustrated) each intermediate element El could extend over the entirety of the second lateral faces FL2 of the neighboring CS cells.
  • each intermediate element El is chosen according to the desired performances, in particular in terms of thermal insulation and possibly the absorption of swelling.
  • the intermediate elements El are intended to prevent the passage of heat transfer fluid and dielectric between at least part of the second lateral faces FL2 (to limit pressure losses) and to limit thermal conduction and/or thermal radiation during 'a thermal runaway of a CS cell, as well as possibly (and preferably) to manage the swelling of the CS cells (which then requires that they have flexible mechanical properties with low hardness so as not to compress the CS cells too much and degrade their internal electrochemical layers).
  • the contact between the heat exchange device DE and each cell CS (and possibly the connection elements EC) can be made via a thermal interface pad (made from a TIM type material (“Thermal Interface Material”). » - thermal interface material)), possibly in the form of a thermal paste which makes it possible to avoid air pockets at the contact surfaces and to insulate the EC connection elements from all the conductive parts of 'electricity.
  • a thermal interface pad made from a TIM type material (“Thermal Interface Material”). » - thermal interface material)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Un module de cellules (MC) équipe une batterie et comprend un boîtier (BM) logeant au moins deux cellules (CS) de stockage d'énergie électrique et comprenant un dispositif d'échange thermique (DE) passif et diphasique. Ce dernier (DE) est au contact de premières faces latérales (FL1 ) opposées des cellules (CS), hormis dans une sous-partie inférieure et/ou une sous-partie supérieure où il est séparé de ces premières faces latérales (FL1 ) par un espace prédéfini (ER). Le boîtier (BM) comprend au moins une zone (ZI) située en-dessous ou au-dessus des faces inférieures (FIC) ou supérieures (FSC) des cellules (CS), communiquant avec l'espace prédéfini (ER), et contenant un fluide caloporteur et diélectrique servant de source froide au dispositif d'échange thermique (DE) pour l'échange de calories dans une phase de refroidissement.

Description

DESCRIPTION
TITRE : MODULE DE CELLULES À ÉCHANGE THERMIQUE HYBRIDE, POUR UNE BATTERIE D’UN SYSTÈME
La présente invention revendique la priorité de la demande française N°2205438 déposée le 07.06.2022 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
Domaine technique de l’invention
L’invention concerne les batteries qui comprennent au moins un module de cellules de stockage d’énergie électrique faisant l’objet d’une régulation thermique.
Etat de la technique
Certains systèmes, comme par exemple certains véhicules (éventuellement de type automobile), comprennent au moins une batterie comportant au moins un module de cellules de stockage d’énergie électrique. Par exemple, ces cellules de stockage d’énergie électrique peuvent être électrochimiques. C’est notamment le cas de celles de type lithium-ion (ou Li-ion) ou Ni-Mh ou Ni-Cd ou encore plomb.
Afin que la durée de vie des cellules puisse être optimisée, elles ont besoin de faire l’objet d’un contrôle quasi permanent, en particulier de leur température qui doit demeurer dans une plage prédéfinie. Afin de permettre un tel contrôle, certains modules de cellules comprennent un boîtier logeant les cellules et dans lequel on réalise une régulation thermique (refroidissement ou réchauffement) par échange de calories grâce à des dispositifs d’échange thermique.
Parmi les dispositifs d’échange thermique qui peuvent être intégrés dans un boîtier de module de cellules, on peut notamment citer ceux qui sont passifs et diphasiques. Un tel dispositif d’échange thermique est agencé, dans une phase de refroidissement, de manière à drainer la chaleur d’un point chaud vers une source froide ou par l’intermédiaire d’un changement de phase (et reposant en partie sur la chaleur latente de vaporisation). Généralement, le drainage thermique utilise comme source froide soit un mécanisme de convection (naturelle ou forcée) avec l’air, soit un contact avec une plaque froide (comme décrit dans les documents brevet LIS-A1 2017/0003082 et CN-ll 210607530), ce qui rend difficile l’intégration dans un module de cellules ou une batterie (notamment en raison de la complexité et/ou de l’encombrement existant(s)). En outre, les dispositifs d’échange thermique passifs et diphasiques ont actuellement des difficultés à assurer un refroidissement suffisant des cellules lorsqu’elles font l’objet d’un important échauffement, par exemple lors d’une recharge ultra rapide nécessitant des courants de recharge très importants. L’invention a notamment pour but d’améliorer la situation.
Présentation de l’invention
Elle propose notamment à cet effet un module de cellules propre à équiper une batterie et comprenant un boîtier logeant au moins deux cellules de stockage d’énergie électrique et comprenant un dispositif d’échange thermique passif et diphasique.
Ce module de cellules se caractérise par le fait :
- que son dispositif d’échange thermique est au contact de premières faces latérales opposées des cellules, hormis dans une sous-partie inférieure et/ou une sous-partie supérieure où il est séparé de ces premières faces latérales par un espace prédéfini, et
- que son boîtier comprend au moins une zone située en-dessous ou au- dessus de faces inférieures ou supérieures des cellules, communiquant avec l’espace prédéfini, et contenant un fluide caloporteur et diélectrique servant de source froide ou chaude au dispositif d’échange thermique pour l’échange de calories dans une phase de refroidissement ou de réchauffement.
Ainsi, on dispose d’un module de cellules à échange thermique hybride très efficace en matière de régulation de température, tout en étant plus simple, moins encombrant et moins onéreux que les modules de cellules de l’art antérieur.
Le module de cellules selon l’invention peut comporter d’autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- son dispositif d’échange thermique peut être de type dit à caloducs, éventuellement oscillants ;
- son dispositif d’échange thermique peut être au contact des premières faces latérales hormis au moins dans sa sous-partie inférieure. Dans ce cas, son boîtier peut comprendre une zone inférieure située en-dessous des faces inférieures des cellules, et une paroi inférieure comprenant une face supérieure munie de protubérances supportant les cellules et destinées à les surélever par rapport à la face supérieure pour permettre un passage du fluide caloporteur et diélectrique sous les faces inférieures des cellules ;
- en présence de la dernière option, ses cellules peuvent être couplées, au niveau de leurs faces supérieures, à des éléments de connexion. Dans ce cas, le dispositif d’échange thermique peut être au contact de ces éléments de connexion ;
- son dispositif d’échange thermique peut être au contact des premières faces latérales hormis au moins dans la sous-partie supérieure. Dans ce cas, son boîtier peut comprendre une zone supérieure située au-dessus des faces supérieures des cellules et contenant le fluide caloporteur et diélectrique ;
- en présence de la dernière option, son dispositif d’échange thermique peut s’étendre sur une partie au moins d’une paroi inférieure du boîtier afin d’être au contact d’une partie au moins des faces inférieures des cellules ;
- chaque cellule peut comprendre deux secondes faces latérales opposées, les secondes faces latérales de cellules voisines, orientées l’une vers l’autre, étant séparées au moins en partie par un élément intercalaire réalisé dans un matériau isolant thermiquement et non conducteur électriquement, et propre à assurer une étanchéité au fluide caloporteur et diélectrique entre cellules pour empêcher un passage du fluide caloporteur et diélectrique entre les secondes faces latérales, ainsi qu’éventuellement gérer un gonflement des cellules ;
- ses cellules peuvent être de type électrochimique.
L’invention propose également une batterie comprenant au moins un module de cellules du type de celui présenté ci-avant.
L’invention propose également un système, éventuellement un véhicule, comprenant une batterie du type de celle présentée ci-avant. Brève description des figures
D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés, sur lesquels : [Fig. 1] illustre schématiquement et fonctionnellement, dans une vue de côté, un premier exemple de réalisation d’un module de cellules selon l’invention, [Fig. 2] illustre schématiquement et fonctionnellement, dans une vue en coupe dans le plan ll-ll de la figure 1 , le module de cellules de la figure 1 ,
[Fig. 3] illustre schématiquement et fonctionnellement, dans une vue en coupe dans le plan lll-lll des figures 1 , 4, 6 et 8, le module de cellules des figures 1 , 4, 6 et 8,
[Fig. 4] illustre schématiquement et fonctionnellement, dans une vue de côté, un deuxième exemple de réalisation d’un module de cellules selon l’invention,
[Fig. 5] illustre schématiquement et fonctionnellement, dans une vue en coupe dans le plan V-V de la figure 4, le module de cellules de la figure 4,
[Fig. 6] illustre schématiquement et fonctionnellement, dans une vue de côté, un troisième exemple de réalisation d’un module de cellules selon l’invention, [Fig. 7] illustre schématiquement et fonctionnellement, dans une vue en coupe dans le plan VII-VII de la figure 6, le module de cellules de la figure 6,
[Fig. 8] illustre schématiquement et fonctionnellement, dans une vue de côté, un quatrième exemple de réalisation d’un module de cellules selon l’invention, et
[Fig. 9] illustre schématiquement et fonctionnellement, dans une vue en coupe dans le plan IX-IX de la figure 8, le module de cellules de la figure 8.
Description détaillée de l’invention
L’invention a notamment pour but de proposer un module de cellules MC à échange thermique hybride et destiné à équiper une batterie rechargeable d’un système.
Dans ce qui suit, on considère à titre d’exemple non limitatif, que la batterie rechargeable est destinée à équiper un système constituant un véhicule de type automobile, comme par exemple une voiture. Mais l’invention n’est pas limitée à ce type de système. Elle concerne en effet tout système comprenant au moins une batterie à module(s) de cellules de stockage d’énergie électrique, et notamment les véhicules (terrestres, maritimes (ou fluviaux), et aériens), les appareils (éventuellement électroménagers), les installations (éventuellement de type industriel), et les bâtiments.
Par ailleurs, on considère dans ce qui suit, à titre d’exemple non limitatif, que le véhicule comprend un groupe motopropulseur (ou GMP) de type tout électrique, c’est-à-dire comprenant une machine motrice électrique couplée à la batterie rechargeable (laquelle est alors dite principale (ou de traction)). Mais le GMP pourrait être de type hybride, c’est-à-dire comprenant un moteur thermique et une machine motrice électrique couplée à la batterie rechargeable.
Enfin, on considère dans ce qui suit, à titre d’exemple non limitatif, que chaque cellule CS d’un module de cellules MC est de type électrochimique. Mais l’invention n’est pas limitée à ce type de cellule de stockage d’énergie électrique. Elle concerne en effet tout type de cellule de stockage d’énergie électrique devant faire l’objet d’une régulation thermique.
Par exemple, les cellules électrochimiques CS de la batterie sont de type lithium-ion (ou Li-ion). Mais ces cellules électrochimiques CS pourraient également, être de type Ni-Mh ou Ni-Cd ou encore plomb, par exemple.
On a schématiquement illustré sur les figures 1 , 4, 6 et 8 quatre exemples de module de cellules MC selon l’invention destinés à équiper une batterie rechargeable d’un système (ici un véhicule automobile).
Comme illustré, un module de cellules MC, selon l’invention, comprend un boîtier BM, au moins deux cellules CS de stockage d’énergie électrique, un dispositif d’échange thermique DE passif et diphasique, et un fluide caloporteur et diélectrique (et donc ne conduisant pas l’électricité).
Le boîtier BM loge les cellules CS, le dispositif d’échange thermique DE et le fluide caloporteur et diélectrique.
Par ailleurs, ce boîtier BM peut comprendre des sous-parties inférieure et supérieure couplées entre elles, par exemple par vissage, ou bien une partie principale et un couvercle.
On notera que dans les quatre exemples illustrés le module de cellules MC comprend trois cellules CS (voir figures 2, 3, 5, 7 et 9). Mais le nombre de cellules CS d’un module de cellules MC peut prendre n’importe quelle valeur supérieure ou égale à deux. Par ailleurs, le nombre de modules de cellules MC d’une batterie rechargeable peut prendre n’importe quelle valeur supérieure ou égale à un.
Comme illustré au moins partiellement sur les différentes figures, chaque cellule CS comprend au moins deux premières faces latérales FL1 opposées entre elles et ici verticales, deux secondes faces latérales FL2 opposées entre elles, ici verticales, et chacune joignant les deux premières faces latérales FL1 , une face supérieure FSC ici horizontale, et une face inférieure FIC ici horizontale. De plus, les cellules CS sont couplées à des éléments de connexion EC. On notera que dans les quatre exemples illustrés non limitativement sur les figures 1 à 9, le couplage des cellules CS aux éléments de connexion EC se fait au niveau de leurs faces supérieures FSC. Mais dans une variante de réalisation (non illustrée) le couplage des cellules CS aux éléments de connexion EC pourrait se faire au niveau de leurs faces inférieures FIC.
Le dispositif d’échange thermique DE est au contact des premières faces latérales FL1 des cellules CS, hormis dans une sous-partie inférieure (figures 1 et 4) et/ou une sous-partie supérieure (figures 6 et 8) où il est séparé de ces premières faces latérales FL1 par un espace (ou évidement) prédéfini EP. On comprendra que le dispositif d’échange thermique DE peut être au contact des premières faces latérales FL1 :
- hormis dans leur sous-partie inférieure (figures 1 et 4), ou
- hormis dans leur sous-partie supérieure (figures 6 et 8), ou encore
- hormis dans leurs sous-parties inférieure et supérieure (non illustré).
Chaque espace (ou évidement) prédéfini EP est défini par une réduction locale de l’épaisseur du dispositif d’échange thermique DE (ici suivant la direction qui est perpendiculaire aux premières faces latérales FL1 ).
On notera que dans les exemples de réalisation illustrés non limitativement sur les figures 1 à 9, les cellules CS ont une section rectangulaire, et leurs premières faces latérales FL1 ont une plus petite surface que celle des deuxièmes faces latérales FL2. Mais dans une variante de réalisation (non illustrée) les premières faces latérales FL1 pourraient avoir une plus grande surface que celle des deuxièmes faces latérales FL2.
Le boîtier BM comprend au moins une zone ZI ou ZS située en-dessous des faces inférieures FIC des cellules CS (figures 1 et 4) ou au-dessus des faces supérieures FSC des cellules CS (figures 6 et 8), communiquant avec l’espace prédéfini EP, et contenant le fluide caloporteur et diélectrique. Ce dernier sert alors de source froide ou chaude au dispositif d’échange thermique DE pour l’échange de calories dans une phase de refroidissement ou de réchauffement. Il sert donc de source froide dans une phase de refroidissement et de source chaude dans une phase de réchauffement.
On dispose ainsi d’un module de cellules MC à échange thermique hybride particulièrement efficace en matière de régulation de température, y compris lorsque les cellules CS font l’objet d’un important échauffement, par exemple lors d’une recharge ultra rapide nécessitant des courants de recharge très importants. En outre, le fluide caloporteur et diélectrique servant de source froide (ou chaude) remplace le mécanisme de convection ou la plaque froide, permettant ainsi une simplification notable et une réduction de l’encombrement et du coût du module de cellules MC, ce qui facilite son intégration dans une batterie et permet de rendre cette dernière moins onéreuse et plus compacte. Par exemple, le fluide caloporteur et diélectrique peut être un liquide. Ainsi, il peut par exemple s’agir d’une huile, de préférence non fluorée afin de rester monophasique, et également de préférence biodégradable.
Egalement par exemple, le dispositif d’échange thermique DE peut-être de type dit à caloducs, de préférence plats. A titre d’exemple illustratif, il pourrait être de type dit à caloducs oscillants (ou « pulsating heat pipe » (ou PHP)). Il est rappelé qu’un caloduc oscillant se présente sous la forme d’un serpentin de dimension capillaire et partiellement rempli d’un fluide à saturation qui se répartit en poches de vapeur et en bouchons liquides. La différence de pression entre deux poches de vapeur donne la force motrice pour le déplacement du fluide.
Lorsque le dispositif d’échange thermique DE est à caloducs, il peut, par exemple, être réalisé au moyen d’une première plaque usinée pour former un circuit fermé dans lequel circulera le fluide diphasique et d’une seconde plaque brasée sur la première plaque pour rendre l’ensemble étanche. Ensuite, le dispositif d’échange thermique DE est rapporté dans le boîtier BM, et par exemple soudé à au moins une face interne de ce dernier (BM), avant l’introduction des cellules CS. En variante, l’une des deux plaques du dispositif d’échange thermique DE peut-être une paroi (ou des parois) du boîtier BM, l’autre plaque étant ensuite brasée sur la face interne de cette (ces) paroi(s) du boîtier BM. Dans cette variante, la face interne de la (des) paroi(s) du boîtier BM peu(ven)t être usinée(s) pour former le circuit fermé pour le fluide diphasique, ou bien on peut usiner une plaque formant le circuit fermé pour le fluide diphasique et venir braser cette plaque usinée sur la face interne d’au moins une paroi du boîtier BM.
D’autres types de caloducs peuvent être utilisés, et notamment les caloducs thermosiphons ou à pompage capillaire.
L’utilisation de caloducs est avantageuse car elle permet au dispositif d’échange thermique DE d’avoir une faible épaisseur, typiquement inférieure à 2,5 mm.
On notera que le dispositif d’échange thermique DE d’un module de cellules MC peut éventuellement être subdivisé en deux sous-parties indépendantes et associées respectivement aux deux premières faces latérales FL1. Mais on pourrait envisager d’avoir un dispositif d’échange thermique DE en une seule partie.
Au moins quatre exemples de réalisation peuvent être envisagés pour un module de cellules MC. Ils sont décrits ci-après en référence aux figures 1 à 9. Dans un premier exemple de réalisation, illustré sur les figures 1 à 3, le dispositif d’échange thermique DE est au contact des premières faces latérales FL1 hormis au moins dans la sous-partie inférieure. Dans ce cas, le boîtier BM comprend une zone inférieure ZI située en-dessous des faces inférieures FIC des cellules CS et une paroi inférieure PI qui comprend une face supérieure FSP munie de protubérances (ou entretoises) PS supportant les cellules CS. Ces protubérances (ou entretoises) PS sont destinées à surélever les cellules CS par rapport à la face supérieure FS de la paroi inférieure PI afin de permettre le passage du fluide caloporteur et diélectrique sous les faces inférieures FIC des cellules CS (et donc dans la zone inférieure ZI), et possiblement au moins en partie entre les secondes faces latérales FL2 des cellules CS. On comprendra que le fluide caloporteur et diélectrique sert alors non seulement de source froide (ou chaude) pour le dispositif d’échange thermique DE là ou est défini l’espace prédéfini EP, mais aussi à refroidir (réchauffer) directement (par contact) les faces inférieures FIC et les sous- parties inférieures des premières faces latérales FL1 ainsi qu’éventuellement les sous-parties inférieures des secondes faces latérales FL2.
Dans un deuxième exemple de réalisation, illustré sur les figures 3 à 5 et variante du premier exemple de réalisation, le dispositif d’échange thermique DE est non seulement au contact des premières faces latérales FL1 hormis au moins dans la sous-partie inférieure, mais aussi au contact des éléments de connexion EC. Ainsi, on peut agir non seulement sur la température des cellules CS, mais aussi sur la température des éléments de connexion EC, ce qui est particulièrement avantageux.
Dans un troisième exemple de réalisation, illustré sur les figures 3, 6 et 7, le dispositif d’échange thermique DE est au contact des premières faces latérales FL1 hormis au moins dans la sous-partie supérieure. Dans ce cas, le boîtier BM comprend une zone supérieure ZS située au-dessus des faces supérieures FSC des cellules CS et contenant le fluide caloporteur et diélectrique, et dans lequel sont éventuellement installés les éléments de connexion EC. On notera que le fluide caloporteur et diélectrique est présent au-dessus des faces supérieures FSC des cellules CS, et possiblement aussi au moins en partie entre les secondes faces latérales FL2 des cellules CS. On comprendra que le fluide caloporteur et diélectrique sert alors non seulement de source froide (ou chaude) pour le dispositif d’échange thermique DE là ou est défini l’espace prédéfini EP, mais aussi à refroidir (réchauffer) directement (par contact) les faces supérieures FSC et les sous-parties supérieures des premières faces latérales FL1 ainsi qu’éventuellement les sous-parties supérieures des secondes faces latérales FL2 et les éventuels éléments de connexion EC.
Dans un quatrième exemple de réalisation, illustré sur les figures 3, 8 et 9 et variante du troisième exemple de réalisation, le dispositif d’échange thermique DE non seulement est au contact des premières faces latérales FL1 hormis au moins dans la sous-partie supérieure, mais aussi s’étend sur une partie au moins de la paroi inférieure PI du boîtier BM afin d’être au contact d’une partie au moins des faces inférieures FIC des cellules CS. Ainsi, on peut agir non seulement sur la température des cellules CS (via presque toutes leurs faces), mais aussi sur la température des éléments de connexion EC lorsqu’ils sont installés dans la zone supérieure ZS, ce qui est particulièrement avantageux.
On notera, comme illustré non limitativement sur les figures 2, 3, 5, 7 et 9, que les secondes faces latérales FL2 de cellules CS voisines, orientées l’une vers l’autre, peuvent être séparées au moins en partie par un élément intercalaire El réalisé dans un matériau isolant thermiquement et non conducteur électriquement. Chaque élément intercalaire El est alors propre à assurer une étanchéité au fluide caloporteur et diélectrique entre cellules voisines (entre une partie au moins de leurs secondes faces latérales FL2) pour empêcher le passage du fluide caloporteur et diélectrique entre ces secondes faces latérales FL2 (hormis là où il n’y a pas d’élément intercalaire El).
Dans les quatre exemples de réalisation illustrés non limitativement sur les figures, chaque élément intercalaire El s’étend sur une partie des secondes faces latérales FL2 des cellules CS voisines, de manière à permettre une extension de la zone inférieure ZI vers le haut (figures 1 à 5) ou de la zone supérieure ZS vers le bas (figures 6 à 9). Cela permet d’améliorer encore plus la régulation thermique. Mais dans une variante de réalisation (non illustrée) chaque élément intercalaire El pourrait s’étendre sur l’intégralité des secondes faces latérales FL2 des cellules CS voisines.
D’une manière générale la surface occupée par chaque élément intercalaire El est choisie en fonction des performances recherchées, en particulier en matière d’isolation thermique et éventuellement d’encaissement des gonflements. En effet, les éléments intercalaires El sont destinés à empêcher le passage de fluide caloporteur et diélectrique entre une partie au moins des secondes faces latérales FL2 (pour limiter les pertes de charge) et à limiter la conduction thermique et/ou le rayonnement thermique lors d’un emballement thermique d’une cellule CS, ainsi qu’éventuellement (et de préférence) à gérer le gonflement des cellules CS (ce qui nécessite alors qu’elles possèdent des propriétés mécaniques souples avec une dureté faible pour ne pas trop comprimer les cellules CS et dégrader leurs couches électrochimiques internes). On notera également que le contact entre le dispositif d’échange thermique DE et chaque cellule CS (et éventuellement les éléments de connexion EC) peut se faire via un pavé thermique d’interface (réalisé dans un matériau de type TIM (« Thermal Interface Material » - matériau d’interface thermique)), éventuellement sous la forme d’une pâte thermique qui permet d’éviter les poches d’air au niveau des surfaces de contact et d’isoler les éléments de connexion EC de toutes les parties conductrices d’électricité.

Claims

REVENDICATIONS
1. Module de cellules (MC) propre à équiper une batterie et comprenant un boîtier (BM) logeant au moins deux cellules (CS) de stockage d’énergie électrique et comprenant un dispositif d’échange thermique (DE) passif et diphasique, caractérisé en ce que ledit dispositif d’échange thermique (DE) est au contact de premières faces latérales (FL1 ) opposées desdites cellules (CS), hormis dans une sous-partie inférieure et/ou une sous-partie supérieure où il est séparé de ces premières faces latérales (FL1 ) par un espace prédéfini (EP), et en ce que ledit boîtier (BM) comprend au moins une zone (ZI, ZS) située en- dessous ou au-dessus de faces inférieures (FIC) ou supérieures (FSC) desdites cellules (CS), communiquant avec ledit espace prédéfini (EP), et contenant un fluide caloporteur et diélectrique servant de source froide ou chaude audit dispositif d’échange thermique (DE) pour l’échange de calories dans une phase de refroidissement ou de réchauffement.
2. Module de cellules selon la revendication 1 , caractérisé en ce que ledit dispositif d’échange thermique (DE) est de type dit à caloducs.
3. Module de cellules selon la revendication 2, caractérisé en ce que lesdits caloducs sont oscillants.
4. Module de cellules selon l’une des revendications 1 à 3, caractérisé en ce que ledit dispositif d’échange thermique (DE) est au contact desdites premières faces latérales (FL1 ) hormis au moins dans ladite sous-partie inférieure, et en ce que ledit boîtier (BM) comprend une zone inférieure (ZI) située en-dessous desdites faces inférieures (FIC) des cellules (CS), et une paroi inférieure (PI) comprenant une face supérieure (FSP) munie de protubérances (PS) supportant lesdites cellules (CS) et destinées à les surélever par rapport à ladite face supérieure (FSP) pour permettre un passage dudit fluide caloporteur et diélectrique sous lesdites faces inférieures (FIC) desdites cellules (CS).
5. Module de cellules selon la revendication 4, caractérisé en ce que lesdites cellules (CS) sont couplées, au niveau de leurs faces supérieures (FSC), à des éléments de connexion (EC), et en ce que ledit dispositif d’échange thermique (DE) est au contact desdits éléments de connexion (EC).
6. Module de cellules selon l’une des revendications 1 à 3, caractérisé en ce que ledit dispositif d’échange thermique (DE) est au contact desdites premières faces latérales (FL1 ) hormis au moins dans ladite sous-partie supérieure, et en ce que ledit boîtier (BM) comprend une zone supérieure (ZS) située au-dessus desdites faces supérieures (FSC) des cellules (CS) et contenant ledit fluide caloporteur et diélectrique.
7. Module de cellules selon la revendication 6, caractérisé en ce que ledit dispositif d’échange thermique (DE) s’étend sur une partie au moins d’une paroi inférieure (PI) dudit boîtier (BM) afin d’être au contact d’une partie au moins desdites faces inférieures (FIC) des cellules (CS).
8. Module de cellules selon l’une des revendications 1 à 7, caractérisé en ce que chaque cellule (CS) comprend deux secondes faces latérales (FL2) opposées, les secondes faces latérales (FL2) de cellules (CS) voisines, orientées l’une vers l’autre, étant séparées au moins en partie par un élément intercalaire (El) réalisé dans un matériau isolant thermiquement et non conducteur électriquement, et propre à assurer une étanchéité audit fluide caloporteur et diélectrique entre cellules (CS) pour empêcher un passage dudit fluide caloporteur et diélectrique entre lesdites secondes faces latérales (FL2).
9. Batterie, caractérisée en ce qu’elle comprend au moins un module de cellules (MC) selon l’une des revendications précédentes.
10. Système, caractérisé en ce qu’il comprend au moins une batterie selon la revendication 9.
PCT/FR2023/000087 2022-06-07 2023-05-09 Module de cellules a echange thermique hybride, pour une batterie d'un systeme WO2023237823A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2205438 2022-06-07
FR2205438A FR3136319B1 (fr) 2022-06-07 2022-06-07 Module de cellules à échange thermique hybride, pour une batterie d’un système

Publications (1)

Publication Number Publication Date
WO2023237823A1 true WO2023237823A1 (fr) 2023-12-14

Family

ID=83188365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/000087 WO2023237823A1 (fr) 2022-06-07 2023-05-09 Module de cellules a echange thermique hybride, pour une batterie d'un systeme

Country Status (2)

Country Link
FR (1) FR3136319B1 (fr)
WO (1) WO2023237823A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2205438A1 (fr) 1972-11-04 1974-05-31 Messerschmitt Boelkow Blohm
US20170003082A1 (en) 2015-06-30 2017-01-05 Faraday&Future Inc. Heat pipe for vehicle energy-storage systems
CN210607530U (zh) 2019-01-21 2020-05-22 吉林大学 动力电池组R134a制冷剂直冷与热管耦合强化冷却装置
DE102019216050A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Gehäusevorrichtung für Traktionsbatterie mit fluidbasierter Kühlung mit Verdampfungsvorrichtung mit Mikrokanälen
US20210159556A1 (en) * 2019-11-26 2021-05-27 Samsung Electronics Co., Ltd. Cooling device and battery device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2205438A1 (fr) 1972-11-04 1974-05-31 Messerschmitt Boelkow Blohm
US20170003082A1 (en) 2015-06-30 2017-01-05 Faraday&Future Inc. Heat pipe for vehicle energy-storage systems
CN210607530U (zh) 2019-01-21 2020-05-22 吉林大学 动力电池组R134a制冷剂直冷与热管耦合强化冷却装置
DE102019216050A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Gehäusevorrichtung für Traktionsbatterie mit fluidbasierter Kühlung mit Verdampfungsvorrichtung mit Mikrokanälen
US20210159556A1 (en) * 2019-11-26 2021-05-27 Samsung Electronics Co., Ltd. Cooling device and battery device including the same

Also Published As

Publication number Publication date
FR3136319B1 (fr) 2024-04-19
FR3136319A1 (fr) 2023-12-08

Similar Documents

Publication Publication Date Title
EP2599154B1 (fr) Système de refroidissement de batterie électrique et batterie comprenant un tel système
FR3085469A1 (fr) Structure de gestion thermique a canaux integres
WO2020016138A1 (fr) Ensemble comportant un dispositif de refroidissement par changement de phase
WO2017103449A1 (fr) Pack de batterie refroidit par un matériau a changement de phase a pression constante
FR3060206A1 (fr) Dispositif de stockage d'energie electrique pour vehicule automobile et piece rapportee formant une partie du boitier d’un tel dispositif de stockage d’energie
FR2991106A1 (fr) Module de batteries comportant un materiau a changement de phase intermediaire entre des cellules et des caloducs
EP3925018A1 (fr) Unité de batterie et véhicule automobile équipé d'au moins une telle unité
FR2988918A3 (fr) Module de batterie offrant un mode de refroidissement et un mode de chauffage
WO2016135243A1 (fr) Dispositif de gestion thermique d'une unité de réserve d'énergie
WO2023237823A1 (fr) Module de cellules a echange thermique hybride, pour une batterie d'un systeme
EP3469287A1 (fr) Procede d'echange et de conditionnement d'un echangeur thermique
FR3056342A1 (fr) Gestion de temperature de batterie
FR2976739A3 (fr) Dispositif de regulation thermique d’une batterie d’accumulateurs d’un vehicule a motorisation electrique
EP3278393A1 (fr) Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant
FR2974249A1 (fr) Dispositif modulaire de transport de la temperature pour batterie de vehicule automobile, procede de montage de ce dispositif et batterie de vehicule automobile comprenant un tel dispositif
FR2895838A1 (fr) Batterie electrique conditionnee en temperature par un materiau a changement de phase
FR3105384A1 (fr) Dispositif d’échange thermique pour des composants électriques et/ou électroniques
EP3956931B1 (fr) Dispositif de stockage à cellule électrochimique prismatique à inserts de drainage, et batterie associée
WO2023198965A1 (fr) Dispositif d'échange thermique allégé pour une batterie d'un système
FR3061764A1 (fr) Echangeur thermique a deux rangees de tubes pour la regulation thermique d'une batterie d'un vehicule automobile
EP4193417A1 (fr) Dispositif de refroidissement de deux cellules électrochimiques, ensemble électrochimique et procédé correspondants
FR3134657A1 (fr) Dispositif de refroidissement d’un pack de batterie électrique
FR3145208A1 (fr) Dispositif de régulation thermique, et dispositif de charge comprenant un dispositif de régulation thermique
FR3147431A1 (fr) Module de batterie et procédé de fabrication associé
WO2024170839A1 (fr) Plaque de refroidissement de cellules d'un dispositif de stockage electrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23727631

Country of ref document: EP

Kind code of ref document: A1