WO2023237801A1 - Glazed ceramic piece - Google Patents

Glazed ceramic piece Download PDF

Info

Publication number
WO2023237801A1
WO2023237801A1 PCT/ES2023/070379 ES2023070379W WO2023237801A1 WO 2023237801 A1 WO2023237801 A1 WO 2023237801A1 ES 2023070379 W ES2023070379 W ES 2023070379W WO 2023237801 A1 WO2023237801 A1 WO 2023237801A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent
luminescent composition
ceramic
composition
ceramic piece
Prior art date
Application number
PCT/ES2023/070379
Other languages
Spanish (es)
French (fr)
Inventor
Sonia MARÍN CORTÉS
Esther ENRÍQUEZ PÉREZ
José Francisco FERNÁNDEZ LOZANO
Víctor FUERTES DE LA LLAVE
Miguel Ángel GARCÍA GARCÍA-TUÑÓN
Luis GUAITA DELGADO
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Keraben Grupo Sau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Keraben Grupo Sau filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2023237801A1 publication Critical patent/WO2023237801A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D29/00Sacks or like containers made of fabrics; Flexible containers of open-work, e.g. net-like construction
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D29/00Sacks or like containers made of fabrics; Flexible containers of open-work, e.g. net-like construction
    • B65D29/04Net-like containers made of plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/20Containers, packaging elements or packages, specially adapted for particular articles or materials for incompressible or rigid rod-shaped or tubular articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/04Sack- or bag-like articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics

Definitions

  • the present invention is related to the technology of markers for ceramic products, both to prevent fraud and counterfeiting and for advertising purposes or to obtain decorative effects.
  • luminescent compositions which generally emit light in the region of the visible spectrum when illuminated with a certain type of light, for example, ultraviolet light. Even at the end of the product's useful life, for example, years after a building has been constructed and at the time of demolition, it is important to be able to identify, for example, the year of manufacture and/or the manufacturer and/or the plant from the manufacturer of the ceramic material used in the construction of the building.
  • luminescent compounds or pigments to verify the authenticity of a valuable document has been known for some time, for example, a document printed on paper with at least one element of authenticity in the form of a document is disclosed in DE 198 04 032.
  • luminescent substance based on a grid doped with at least one metal from the rare earth group, which absorbs essentially in the visible. Holmium is used as a rare earth element.
  • Document LIS2013193346 (A1) discloses a method of identifying an object, wherein the object comprises a security element containing one or more inorganic luminescent pigments, the method comprises generating an emission spectrum of an inorganic luminescent pigment; and compare the spectrum obtained with the predetermined spectrum for the inorganic luminescent pigment.
  • This document discloses a pigment, CaAhShC ⁇ Eu.Pr, for materials identification, such that said pigment is a plagioclase-type feldspar doped with a rare earth.
  • the purpose of the invention according to this document is to identify materials, among which ceramic materials are mentioned.
  • the luminescent pigment is said to be introduced into a matrix transparent to UV light.
  • transparent ceramic matrices usually have UV absorption
  • the meaning of “transparent to UV light” in this document US2013193346 is relative, since many ceramic enamel matrices, according to this, would be semi-transparent.
  • a pigment with a feldspar structure that includes the rare earth is not generated, but rather a lanthanide oxide is included in a matrix that generates feldspar crystals and the luminescence comes from the lanthanide oxide, not from the doped feldspar composition. , because lanthanide oxide is not incorporated into the feldspar crystal lattice.
  • EP3685864 discloses a luminescent composition
  • a luminescent composition comprising albite or anorthite and a doping substance.
  • the dopant can be an oxide of the lanthanide element, for example, europium oxide in a proportion between 1 and 30%.
  • the items marked with the luminescent composition are not ceramic pieces, but mentions valuable items, including documents on paper media such as passports. Therefore, it does not disclose or suggest the possibility of marking ceramic pieces.
  • US10203282B2 relates to a mineral wool product comprising mineral fibers, in particular mineral wool adapted for use as a construction material.
  • Substances active against UV or IR light are used in which the coloration can only be seen with the naked eye under ambient conditions when irradiated with a source of UV or IR radiation.
  • the weight percentage of the UV or IR active component, based on the total mineral wool product, or alternatively the mineral wool component (for composite structural elements), may be less than 1.0% by weight.
  • composition The purpose of this composition is to follow the trace of the construction material to know its origin.
  • the UV or IR active component may be distributed throughout the mineral fiber product, for example, homogeneously between the mineral fibers and is preferably applied to the mineral fibers prior to curing of any binder of the mineral fiber product.
  • the active component according to this document is distributed throughout the material that is intended to be marked.
  • This article discloses anorthite doped with rare earths and its use as a luminescent material, but it does not disclose ceramic pieces that include said luminescent materials, nor the use as a luminescent material for marking ceramic materials, so it does not describe how to obtain said marked ceramic materials.
  • CN108467727A also discloses a material that is albite doped with rare earths, such as Sm 3+ and its use as a luminescent material. It does not mention the use as a luminescent material for marking ceramic materials, as it refers particularly to its use in LEDs.
  • CN 107578254 (A) discloses Zr disclosed as a doping element of a luminescent composition. It does not mention the use as a luminescent material for marking ceramic materials, as it refers particularly to its use in LEDs.
  • CN110105950 also discloses a material that is albite doped with rare earths and its use as a luminescent material. It alludes to the use of albite in the enamel industry, although it does not mention its use as a luminescent material for marking ceramic materials.
  • CN111423118 discloses a ceramic piece comprising: 40-50 parts albite powder, 10-13 parts lithium/iron mica powder, 14-16 parts kaolin, 25-32 parts quartz powder, burnt talcum powders 7-8.5 parts, 5-6 parts titanium oxide, 3-3.6 parts sodium silicate. It may include 4-5 parts of rare earth oxides, preferably lanthanum and scandium. However, it does not disclose several fundamental characteristics of the present invention that require:
  • the lanthanide oxides are present only in certain crystalline particles of the luminescent composition, (as a crystalline phase therefore differentiable from the rest of the luminescent composition)
  • the luminescent composition has phases differentiated from each other.
  • the rare earth compound is not located in a discrete area, but rather distributed throughout the base mass of the piece (which would be the support) and/or throughout the enamel layer.
  • EP3685864 discloses a security marker, which comprises: a glass matrix comprising at least the elements silicon and oxygen; and a first crystalline phase formed by crystalline particles embedded in said matrix; where said particles are feldspars or feldspathoids; wherein the average size of said particles is less than 500 nm; and where there is an interface between the crystalline particles and the glass matrix
  • a lanthanide oxide can be included in the mixture of step (i).
  • lanthanide oxide is located in crystalline particles other than feldspar crystalline formations, nor is it located in the glass phase of the composition, as is the case of the present invention. Furthermore, in all cases it refers to materials in particle form and, therefore, does not integrate a luminescent region in glazes on ceramic tiles.
  • the dopant element or element that causes luminescence is incorporated into a crystalline structure that will act as a luminescent pigment or is incorporated in the frit production stage so that it is subsequently incorporated as a dopant in the crystalline phase. of feldspar to form the luminescent pigment.
  • the rare earth or element that causes luminescence is always incorporated as a “dopant” in a crystalline structure or in a glass structure.
  • the objective pursued in the state of the art is to be able to determine the presence of the doping element using equipment (a fluorometer) in order to be able to use very low proportions that are undetectable by other means.
  • crystalline particles that comprise lanthanide oxide in the luminescent composition are integrated into the glaze of the ceramic piece and said particles that comprise lanthanide oxide are maintained (at minus a significant proportion of it) as a marker signal that gives a very high luminescent signal response and therefore visible to the human eye.
  • the feldspar crystalline structure obtained according to the present invention is due to the crystals generated in the luminescent composition and in the event that the feldspar crystalline particles include lanthanide cations in solid solution, that is, they incorporate lanthanide cations as dopant , the luminescent signal is not relevant and is not visible to the human eye.
  • lanthanide oxide is incorporated as such into the mixture of components that produces, after thermal treatment during firing of the ceramic material, the luminescent composition.
  • Said luminescent composition is integrated into the glaze of the ceramic material.
  • This precursor mixture of the luminescent composition is heat treated and ground to then make an ink.
  • This heat treatment and grinding are steps that have not been carried out until now in the state of the art.
  • a mixture of frit, kaolin and lanthanide oxide is the precursor of the luminescent composition, described later in this report.
  • the luminescent composition comprises regions of crystals with a feldspar structure and a minority phase without long-range structure, that is, a glass phase.
  • the luminescent composition integrated into the glaze is only present once the ceramic piece has been shaped into green and after the ceramic piece has been heat treated.
  • the main difference of the present invention with the state of the art is that in the state of the art the lanthanide element or combinations of lanthanide elements are included in the crystalline or glass structure of the luminescent composition. Consequently, the luminescence is very low and the use of a high concentration of dopant is not possible since the intensity decreases with increasing concentration. This effect is dominant if the excitation energy is transferred between many cations in the lattice in the time necessary for radiative decay, such as occurs when the concentration of rare earth cations in a crystalline or amorphous matrix increases.
  • luminescent properties are reported in terms of arbitrary units, so they are not data that can be compared with others. If the number of luminescent photons is very low, they are only detected by fluorimeter-type equipment and the human eye is not capable of detecting them. Determining the authenticity of a document is generally performed by determining the characteristic rare earth emission at a specific wavelength using optical equipment. In fact, this limitation in the detection processes of the luminescent marker is enhanced to avoid the detection of the presence of said marker and thus hide it from possible falsification attempts.
  • the problem that the present invention solves is to achieve a luminescent signal high enough for observation by the human eye.
  • a process has been developed that allows the particles that comprise the lanthanide oxide to be maintained in dispersed or agglomerated form in the glass phase region.
  • the lanthanide oxide does not form a solid solution with the feldspar crystalline phase, nor does it form a solid solution with the glassy phase of the luminescent composition. Even if it were incorporated in solid solution in the crystalline phase of the feldspar or in the glass phase, it would do so in a small proportion, so that the luminescence signal would not be affected by that proportion of lanthanide oxide in solid solution.
  • An essential advantage achieved in the present invention is related to the increase in luminescence performance with respect to pure lanthanide oxide, by using a maximum of 10% by weight of said lanthanide oxide or a maximum of 10% by weight. of a combination of lanthanide oxides, with respect to the weight of the composition, because said lanthanide oxide is dispersed in the region of the glass phase of the luminescent composition, outside the regions of feldspar crystals, in the form of an independent oxide of said crystalline network, that is, it is not integrated into it, or if it is, it is in such a low proportion that the decrease in luminescent signal is not relevant.
  • the present invention relates to a glazed ceramic piece comprising a luminescent composition, such that the composition is invisible in the visible, or IR, spectrum, but visible by illumination with UV light in the visible range, or in the near infrared range, and such that said luminescent composition comprises a doping agent that is one or more lanthanide oxides.
  • the present invention refers, more specifically, to a glazed ceramic piece that comprises: a) a ceramic support b) a final layer of ceramic glaze, c) a luminescent composition integrated in a discrete area, or several discrete areas, of the final layer of enamel, such that said luminescent composition comprises:
  • Ceramic support” and “support layer” are used interchangeably with the same meaning.
  • lanthanide oxide herein may refer to a lanthanide oxide or a combination of lanthanide oxides.
  • the crystalline particles comprising lanthanide oxide are present in the composition so that they are partially part of the crystallizations with a feldspar structure and partially dispersed in the glass phase, or so that they are not part of the crystallizations with a feldspar structure, but which are completely dispersed in the glass phase.
  • the crystalline particles comprising lanthanide oxide are preferably present in the composition, so that they are not part of the crystallizations with a feldspar structure, but are mainly dispersed in the glass phase.
  • the term “dispersed” means that the crystalline particles are distributed in the glass phase, forming particles independent of said glass phase.
  • the crystalline particles comprising lanthanide oxide may be in the form of individual particles separated from each other or forming agglomerates that are separated from each other so as not to form a percolating continuum.
  • Crystalline particles comprising lanthanide oxide may comprise other cations, such as Si4 + , Al3 + , Ca2 + , Sr2 + , Zn2 + , K + and/or Na + .
  • the crystalline particles comprising lanthanide oxide are arranged in the luminescent composition in a proportion of lanthanide oxide, with respect to the total lanthanide oxide dosed in step a) of the production process, such that when exposed to UV light the composition luminescent produces a luminescence signal of an intensity of at least 10 6 , preferably at least 10 7 , and more preferably at least 10 8 , for a surface area of 2 cm 2 , (measured in arbitrary units). Said luminescence values are comparable with the luminescence signal obtained for the amount of lanthanide oxide (100% by weight of lanthanide oxide) of the untreated starting material.
  • the lanthanide oxide of partic acid gives a luminescence signal of an intensity of 10 7 . That is, the amount of lanthanide oxide present in the luminescent composition is an amount such that the luminescence signal obtained is at least 10 6 in arbitrary units, with respect to the luminescence signal obtained for the case in which 100% of that amount was pure lanthanide oxide.
  • the amount of lanthanide oxide in the luminescent composition can also be defined indirectly, with respect to the amount of lanthanide oxide added in step a) and once it has been heat treated.
  • the crystalline particles comprising lanthanide oxide are present in the luminescent composition in a proportion of lanthanide oxide, with respect to the total lanthanide oxide dosed in step a) of the production process, in a proportion such that upon exposure to light UV the composition produces a luminescence signal of an intensity of at least 10 6 , preferably at least 10 7 , and more preferably at least 10 8 , for a surface area of 2 cm 2 , (measured in arbitrary units), compared with the measurement made for the lanthanide oxide powder (100% by weight of lanthanide oxide) starting with heat treatment at 1220°C 6 minutes similar to that of a ceramic tile which, using the same experimental measurement conditions, gives a luminescence signal with an intensity of 10 7 . That is, the response of the luminescent compositions of the present invention in terms of intensity of the luminescence signal (measured in arbitrary units) and with respect to the lanthanide oxide used is at least 10 2 times greater per percentage unit of lanthanide oxide.
  • these crystalline particles are arranged in the luminescent composition so that they do not form a solid solution with the feldspar crystalline phase, nor do they form a solid solution with the glassy phase of the luminescent composition. It can be verified that they do not form any of these solid solutions by measuring the luminescence as explained in the previous paragraph.
  • At least 80% of the lanthanide oxide in the form of crystalline particles, present in the composition is in the region of the glass phase, preferably 90%, and more preferably 100%.
  • Emission wavelength will depend on the specific lanthanide oxide, or oxides, used.
  • the thermal treatment mentioned in the luminescence measurement consists of a treatment in an air atmosphere at 1220°C with a stay at maximum temperature. of 6 minutes and following a characteristic temperature profile for obtaining ceramic tile firing with a total duration of less than 60 minutes.
  • the comparison between the signal of the luminescent composition comprising a maximum proportion of 10% by weight of the lanthanide oxide and the 100% lanthanide oxide itself reveals an increase in the efficiency in the use of lanthanide oxide for the purposes of the property. of luminescence.
  • Comparison of the luminescent composition with heat-treated lanthanide oxide shows that lanthanide oxides suffer a decrease in their luminescent signal due to rapid heat treatments.
  • the present invention requires heat treatments to consolidate the ceramic glaze on the surface of the ceramic tile and thus obtain the mechanical and resistance properties required for these construction materials.
  • the lanthanide elements whose oxides can be used in the luminescent composition of the present invention can be selected from Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, Tm and Eu and combinations thereof.
  • the luminescent composition comprises a glass phase and at least two crystalline phases, one of the crystalline phases is composed of crystallizations with a feldspar structure and the second is composed of crystalline particles that comprise lanthanide oxide.
  • the crystalline particles comprising lanthanide oxide are preferentially dispersed in the region of the glass phase.
  • active substance or “active particles” refers to the substance or substances responsible for luminescence.
  • crystalline particles based on” or “comprising” lanthanide oxide is used to define the active particles or active substances that are present in the luminescent composition and that are microstructurally distinguished from feldspar crystalline particles. and the glass phase.
  • the crystalline particles comprising lanthanide oxide have been generated from the lanthanide oxide particles added to the precursor mixture of the luminescent composition and during the heat treatment of the ceramic piece they are susceptible to incorporating cations in solid solution. These cations are mainly cations from the glass phase such as S ⁇ 4+ , Al 3+ , Ca 2+ , Sr 2+ , Zn 2+ , K + and/or Na + .
  • the authors of the present invention have verified that the luminescence of said crystalline particles of lanthanide oxide and other cations is higher than that corresponding to the starting lanthanide oxide thermally treated at the same temperature.
  • the authors have observed a greater intensity in the comparative luminescence value of the luminescent composition.
  • dosages of lanthanide oxide greater than 5% by weight produce the formation of a new crystalline phase based on silicates that correlates with a reduction in the comparative value of the luminescent signal.
  • the crystalline particles comprising lanthanide oxide can form crystalline agglomerates.
  • the crystalline particles or these agglomerates that they can form are mainly dispersed in the glass phase of the luminescent composition.
  • Lanthanide oxide refers to a chemical compound that contains the element lanthanide in any of the oxidation states described in the state of the art, including a mixture of different oxidation states.
  • Lanthanide elements are called “rare earth” elements because they are found in the form of oxides.
  • feldspar crystalline structure and “feldspar crystals” are used interchangeably with the same meaning. In all cases it means that the component referred to has a feldspar crystalline structure. Apart from these crystalline regions with a feldspar structure, the glass phase may comprise cations in a proportion equivalent to that of the chemical composition of a feldspar.
  • the glassy phase is present in the luminescent composition in a proportion by weight equal to or less than 30%, and preferably equal to or less than 20%, with respect to the corresponding weight of all the crystalline phases in the luminescent composition, that is, after stage h) of the procedure.
  • glass phase refers to inorganic materials or compounds that do not exhibit long-range crystalline order in their atomic structure.
  • the percentage by mass of crystalline phases of the luminescent composition is equal to or greater than 70% by weight, preferably equal to or greater than 80% by weight or with particular preference greater than 85% by weight with respect to the total weight of the luminescent composition.
  • the weight of the luminescent composition with respect to the ceramic piece is defined in terms of weight, g/m 2 .
  • the luminescent composition in glazed ceramics, has a grammage of between 10 and 90 grams/m 2 , preferably between 20 and 80 grams/m 2 , and more preferably, 30 and 60 grams/m 2 .
  • discrete zone means that the luminescent composition is not mixed with the enamel (as seen in Figure 4), nor distributed throughout the final enamel layer, but in one or several specific areas of the final enamel layer. . These discrete areas do not occupy more than 50% of the surface of the enamel layer, preferably less than 30% and more preferably, they occupy a surface equal to or less than 10%.
  • the luminescent composition is arranged in at least one or more discrete areas of the enamel layer that covers the ceramic piece, or final enamel layer.
  • final layer means that it is the one that constitutes the external surface of the piece, and therefore, visible.
  • the ceramic piece comprises at least one support layer and a final layer of glaze on the support layer.
  • the ceramic piece comprises between the support layer and the final glaze layer: a layer of ceramic slip as an opacifier for the ceramic support.
  • the ceramic piece comprises, in addition to the slip layer, a first layer of ceramic glaze between the support layer and the slip layer.
  • the luminescent composition is always in the final layer of the enamel and can be on the ceramic support or on a layer of enamel. In all cases it is covered with a final layer of enamel so that it is integrated into the glaze of the ceramic piece.
  • the amount of lanthanide oxides in the luminescent composition is between 0.1% and 10% by weight, including both limits, with respect to the total weight of the luminescent composition, preferably, between 0.1% and 5% by weight and more preferably between 0.1% and 2% by weight, including both limits, with respect to the total weight of the luminescent composition.
  • the precursor mixture of the luminescent composition gives rise to an ink, and said ink is deposited on a green glazed ceramic piece, that is, before its heat treatment. After the heat treatment process, the ink has become the luminescent composition integrated into the glazed ceramic piece.
  • the precursor mixture of the luminescent composition of the invention is thermally treated during the process of obtaining the ceramic piece, but since the only losses that occur due to calcination, fundamentally, are those of dehydroxylation of kaolin that have a value between 8-12% by weight of kaolin itself.
  • the proportion of kaolin used in the precursor mixture of the luminescent composition is between 5 and 10% by weight.
  • the weight loss experienced by the precursor mixture after heat treatment is thus between 0.4 and 1.2% by weight. It can be confirmed that the amount of lanthanide oxides in the luminescent composition and in the ink is within the same range.
  • the luminescent composition as defined above, is obtained once the ink has been applied to a ceramic piece and it has been heat treated.
  • ink refers to the ink that comprises the precursor mixture of the "luminescent composition” of the invention.
  • Printing is one of the ways in which ink can be applied to a ceramic piece.
  • the ink is prepared with the precursors of the luminescent composition that have been heat treated and ground for incorporation into the mixture that gives rise to the ink.
  • the ink already includes lanthanide oxide, its luminescent signal in terms of the emission spectrum is similar in “green” and in firing, that is, when the luminescent composition has already been obtained. The difference is that in green it is alterable and in fired it is an integrated part of the ceramic piece. And this feature is a sign of the preservation of the crystalline structure of the particles comprising lanthanide oxide. Likewise, the luminescent signal alters in intensity as a consequence of the thermal treatment.
  • the luminescent composition comprises an amorphous phase or glassy phase and the following crystalline phases:
  • - a crystalline phase in the form of particles with a feldspar structure which we have called “crystallizations with a feldspar structure”; and - a crystalline phase comprising one or more oxides of the elements: Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La, Tm and Eu, or combinations thereof.
  • the crystalline particles comprising the lanthanide oxides are the luminescent active particles of the luminescent composition.
  • the luminescent composition according to preferred embodiments comprises crystalline particles comprising europium oxide as a luminescent active substance.
  • Europium oxide refers to an oxide having europium in any of its oxidation states.
  • Crystallizations with a feldspar structure are characterized by presenting a dual morphology with particles of size in the range of micrometers and particles of size in the range of nanometers.
  • Microcrystalline particles with a feldspar structure are characterized by being surrounded by regions of nanoparticles with a feldspar structure and glass phase.
  • the microcrystalline particles with a feldspar structure have a size range between 1 and 12 pm, preferably between 2 and 8 pm, and more preferably between 3 and 6 pm.
  • Nanostructured particles or nanoparticles with a feldspar structure have particle sizes ⁇ 500 nm, preferably ⁇ 350 nm, and more preferably ⁇ 200 nm.
  • nanoparticles it is very common for nanoparticles to give only the upper limit, since it is implicit that when the size is less than 1 nm, the nanoparticles would stop being nanometric and become sub-nanometric.
  • the sizes of the crystal lattice are usually subnanometric; if the size of one unit cell is reached, there is no longer a long-range crystalline structure and they are no longer crystalline particles.
  • the crystalline particles comprising lanthanide oxide in the luminescent composition are preferably located in the region where the glass phase and the nanostructured particles with a feldspar structure are located. That is, they are found among the microc ⁇ stalline particles with a feldspar structure, they coexist with the microparticles with a feldspar structure, the nanoparticles with a feldspar structure and the glass phase.
  • the particles comprising lanthanide oxide in the luminescent composition are the active particles and are characterized by having particle sizes ⁇ 2 pm, preferably ⁇ 1.5 pm, and preferably ⁇ 1 pm.
  • the crystalline particles comprising lanthanide oxide are crystalline particles comprising europium oxide.
  • the glaze that is part of the ceramic piece may include, among the usual crystalline phases used in the ceramic glaze sector, tertiary crystalline phases, such as phases of: SiC>2 type quartz or cristobalite; zircon, ZrSiC; zirconia, ZrO 2 ; wollastonite, CaSiCh; diopside, MgCaS ⁇ 2 0 6 ; mullite, AleSkO ; spinel, MgAhC; gahnite, ZnAhC ; cordierite, (Mg.Fe ⁇ AUSisOis; sphene, CaTiSiOs; and its solid solutions.
  • tertiary crystalline phases such as phases of: SiC>2 type quartz or cristobalite; zircon, ZrSiC; zirconia, ZrO 2 ; wollastonite, CaSiCh; diopside, MgCaS ⁇ 2 0 6 ; mullite, AleSkO ; spine
  • the role of the tertiary crystalline phases defined in ceramic glazes is to modify the mechanical properties of the glaze and/or its optical response.
  • the presence of these phases does not contribute to the active luminescent response of the luminescent composition. Its presence is related to the usual processes and uses in ceramic glazes, specifically for tiles.
  • the crystallizations with a feldspar structure that are part of the luminescent composition preferably have a plagioclase type structure.
  • Plagioclases are a group of minerals that belong to the feldspar group and crystallize in the triclinic system. They belong to the group of tectosilicates, which include sodium and calcium in their composition; preferably they have a structure of albite, oligoclase, andesine, labradorite, banalsite, bytownite, anorthite or combinations of them.
  • Said luminescent composition arranged in one or several discrete areas in the final enamel layer of the ceramic piece can have various shapes so that it allows information about the ceramic piece to be associated with it for recognition.
  • the glazed ceramic piece comprises the luminescent composition arranged in such a way that a recognizable pattern can be seen when illuminated with ultraviolet light. That is, the luminescent composition has a certain shape that is obtained at the time of decorating the ceramic piece.
  • the luminescent composition is visible in the visible or near-infrared spectrum, under ultraviolet illumination, generating on the surface of the piece when illuminated with said light, an image of a recognizable pattern, such as an image of a code.
  • the luminescent composition has a form of a recognizable pattern selected from, for example, codes such as a QR code, a barcode, a nomenclature code, a letter code, texts, symbols, names, logos, brands, signatures, numbers, link to a web page, a decorative figure, a graphic and a texture.
  • codes such as a QR code, a barcode, a nomenclature code, a letter code, texts, symbols, names, logos, brands, signatures, numbers, link to a web page, a decorative figure, a graphic and a texture.
  • a recognizable element can be generated, for example, a letter code such as XL, which means “Extra Large”.
  • the luminescent composition is not distinguished from the rest of the surface of the enameled piece by its color or texture. Since the luminescent composition is integrated, that is, within the final enamel layer, the differences in brightness generated by differences in the light diffraction index and by the roughness of the surface of the luminescent composition with respect to the ceramic support or the enamel, are not noticeable by the human eye, even for individuals trained in examining the surfaces of ceramic pieces.
  • the advantage of incorporating the luminescent composition in a ceramic piece corresponds to its integration into the final layer of the glaze of the piece, so that its presence is not perceptible under visible lighting, while through exposure to a UV light source
  • the drawing or pattern represented by the luminescent composition is shown.
  • a traceability system for ceramic pieces includes:
  • the ceramic piece comprises a luminescent composition that is a code, which:
  • UV light illumination in the visible range or in the near infrared range (not being visible to the human eye),
  • the ceramic piece of the invention is a tile or a tile.
  • the printing process is the preferred process to integrate the luminescent composition into the glaze of the ceramic piece.
  • printing is the best solution in terms of resolution and costs. Other techniques can be used, but they have less resolution and a higher cost.
  • a luminescent composition integrated into the glaze of a ceramic piece allows preserving the aesthetic qualities of the ceramic under visible light and the technical characteristics of said ceramic such as its easy cleaning, resistance to stains, resistance to chemical agents, resistance mechanics and resistance to light exposure.
  • the ceramic piece comprises a support or support layer that can be made of any material known in the common art in the ceramic industry, in particular, it can be a support selected from porcelain stoneware, red stoneware, white body, terracotta or clinker. These supports make up the four most common product types in the ceramic tile industry.
  • the present invention also refers to a procedure for obtaining the ceramic piece defined above.
  • Obtaining a glazed ceramic piece that comprises the integrated luminescent composition defined above comprises: a) Homogenization of a precursor mixture of the luminescent composition by wet grinding; b) Drying of the homogenized composition obtained in step a); c) Sifting of the product obtained in stage b); d) Thermal treatment in an air atmosphere of the product obtained in stage c); obtaining a precursor luminescent composition; e) Grinding to condition the particle size of the precursor luminescent composition obtained in step d); f) formation of a ceramic ink with the precursor luminescent composition resulting from step e), g) decoration of a ceramic piece in green with the ceramic ink from step f) and h) firing of the ceramic piece that comprises the luminescent composition giving place to the enameled piece.
  • the precursor mixture of the luminescent composition in step a), comprises a frit, kaolin, water, dispersant and lanthanide oxide.
  • the materials that can be used for the frits and dispersant are common in the art.
  • all the materials described in document WO2016155909 and in the proportions indicated in WO2016155909 can be used in this invention. They are frits corresponding to vitro-ceramic enamels that present thermal warmth.
  • the materials used and the procedures followed in WO2016155909 have been followed to obtain the frits used in the present invention.
  • the kaolin can be any, and preferably contain at least 35% by equivalent weight of AI2O3.
  • a glaze is obtained by thermally treating a mixture of a frit, kaolin, water and dispersant.
  • enamel is also used.
  • liquid or enamel slip or enamel powder to refer to the precursor mixture that, once heat treated, gives rise to ceramic enamel.
  • the size of the particles of the starting material of the lanthanide oxide(s) used in the precursor luminescent composition (in step a)) has a dso value of between 1 ⁇ 0.5 pm and 12 ⁇ 1 pm, preferably, between 2 ⁇ 1 pm and 8 ⁇ 1 pm, and even more preferably between 3 ⁇ 1 and 6 ⁇ 1 pm.
  • the drying of the homogenized composition obtained in step a) is carried out in a conventional manner in the glaze processing technology for ceramic pieces, such as tiles, for example, using a forced air oven at 60°C for 4 hours.
  • the sieving of the product obtained in step b) is carried out in a conventional manner in the technology of processing glazes for ceramic pieces, such as tiles, for example, using a vibrosieve that uses a 150 mesh stainless steel mesh that is equivalent to a mesh light of 100 pm.
  • the thermal treatment in an air atmosphere of the product obtained in step c) is carried out in a conventional manner in the glaze processing technology for ceramic pieces such as ceramic tiles, for example, using an electric oven or a gas oven equipped with thermal regulation. to follow a programmed thermal cycle.
  • the precursor luminescent composition obtained by steps a) to d) of the procedure defined above comprises:
  • the precursor luminescent composition is not a product that is isolated, but is only the product resulting from step d). Therefore, it cannot be defined by the components that are used in stage a) of the procedure, because they have undergone various transformations so that they can only be defined through these stages of the procedure.
  • Stage g) of the procedure includes:
  • the luminescent composition is integrated into the glaze of the ceramic piece in step g) through, for example, digital decoration on the piece in green, that is, before its heat treatment in step h).
  • the ceramic piece must be subjected in step h) to a subsequent synthesizing heat treatment to obtain the final ceramic piece.
  • the ink application can be carried out with any of the known printing methods: planographic printing, gravure printing, digital printing.
  • the ceramic ink necessarily has to have the usual properties of the inks used in the sector.
  • the essential thing is the precursor luminescent composition that it includes.
  • step f) obtaining the ink is achieved through a dispersion process in a liquid medium by mechanical stirring of a composition that comprises:
  • solvent refers to at least one chemical substance that dissolves a solute (solid, liquid or gas, chemically different). Generally the solvent is a liquid at the working temperature. In this invention, the term solvent is also used to prepare a suspension of at least one solid with low solubility in a liquid for processing.
  • solvent, solvent or vehicle are used as equivalents in this invention.
  • a preferred procedure for incorporating the luminescent composition into the green ceramic piece consists of a digital decoration process using a digital ceramic ink or ink-jet ink, obtained in step f) of the procedure.
  • This ink comprises at least one lanthanide oxide - which has been included in step a) of the procedure - and a solvent, which is included in step f), and, preferably the solvent is an organic chemical compound, or is base aqueous or a mixture of both.
  • the ink also includes a dispersing agent that acts by increasing the stability of the ink and its solids content.
  • the decoration process is carried out on the green piece (which is then fired) by printing, for example, digital printing or ink-jet printing.
  • Stage h) of the procedure includes:
  • step g) carry out a heat treatment of the piece resulting from step g) above, through which the luminescent composition is consolidated and becomes a part integral with the ceramic piece, as it is integrated into it.
  • the heat treatment of step h) is carried out at a cooking temperature between 1100 and 1240°C, preferably between 1120°C and 1230°C, and more preferably between 1130°C and 1225°C.
  • the duration of the heat treatment requires a thermal cycle with a total duration of between 45 minutes to 120 minutes with a stay time at the maximum treatment temperature between 6 minutes and 60 minutes.
  • the heat treatment is carried out in standard heat treatment ovens for the ceramic pieces industry, such as tiles, such as gas tunnel ovens or electric ovens.
  • the composition of the invention can also be used for the authentication or anti-counterfeiting of security documents, security articles and valuables.
  • FIG. 1 Micrographs obtained by scanning electron microscopy of the precursor mixtures of the luminescent compositions thermally treated at different temperatures in step d) and of the precursor mixtures after grinding in step e). Micrographs corresponding to: A) CL1 1100°C; B) CL1 1220°C; C) CL2 1100°C; and D) CL2 1220°C.
  • the indicated temperature refers to the treatment temperature in d) and the reference to the luminescent composition is the reference to the composition of the precursor mixture.
  • FIG. 1 Micrographs obtained by scanning electron microscopy of the CL6 luminescent compositions after step h). Micrographs corresponding to the luminescent compositions polished and chemically etched using a 5% HF solution for 2 seconds. The micrographs correspond to different magnifications. In the micrographs, the darker regions correspond to crystalline particles of the feldspar phase, 1, and the lighter regions to crystalline particles that comprise lanthanide oxides, 2. The glassy phase is not observed in the micrograph because to highlight the microstructure A chemical attack is carried out on the polished surface that eliminates said glassy phase. Thus the gaps between the crystalline particles constitute the regions where the glass phase is located.
  • FIG. Glazed porcelain stoneware ceramic tile that presents rectangle-shaped drawings using T3 ink once fired and under UV lighting.
  • FIG. 4 Scheme of some options for integrating a luminescent composition 5 into a ceramic piece.
  • the integration of a luminescent composition 5 in a ceramic enamel 4 on a ceramic support 3 is carried out by depositing the luminescent composition 5 either on the ceramic support 3, or on a layer of enamel 6 that is covering the ceramic support 3, or on a layer of enamel 6 that is covering a layer of slip 7 covering the ceramic support 3.
  • FIG. 1 Glazed porcelain stoneware ceramic tile integrating a CL1 luminescent composition formulated with T3 ink for digital printing forming QR code type drawings and company logo after stage h). The photographs correspond to the tile under A) visible lighting and B) UV lighting.
  • Figure 6. Representation of the luminescent composition according to the invention, showing schematically: micrometric crystalline particles with feldspar structure, 1; crystalline particles comprising lanthanide oxide, 2; glass phase, 8; nanometric crystalline particles with feldspar structure, 9.
  • CL1 and CL2 designate precursor compositions of luminescent compositions that are called by the same term. Simply depending on the stage of the procedure that is being referred to is what determines whether it is the precursor composition or the final luminescent composition.
  • EXAMPLE 1 Preparation of a luminescent composition with a plagioclase structure incorporating EU2O3 particles.
  • the luminescent compositions CL1 and CL2 were prepared by a process that includes steps a) to d) described above, followed by f) Formation of a ceramic ink for digital decoration with the product obtained in step e).
  • steps g) and h are carried out: g) Digital decoration of a ceramic piece in green; h) Firing of the ceramic piece.
  • the precursor mixture of the luminescent composition CL1 was prepared by mixing in step a) the following components:
  • the weight loss due to calcination of the kaolin used was considered, which was 14% by weight, for a treatment of 600°C and 6 minutes.
  • the dosage of kaolin in the formula once this loss was considered corresponded to 17.25 grams.
  • Glass frit is a material melted at 1500°C and suddenly cooled in water and is characterized by being glassy in nature and does not present short-range crystalline order.
  • the size of the EU2O3 starting particles used has a dso value of 4 ⁇ 1 pm.
  • Frit A has the composition shown in table 1
  • the luminescent composition CL2 was prepared in a similar way using frit B, the composition of which is shown in Table 1.
  • frit A The composition of frit A, frit B and kaolin expressed in terms of equivalent oxides is shown in Table 1.
  • minor oxides are considered such as B2O3, P2O5, T ⁇ O2, Fe2Ü3, MgO, among other minor oxides, where the percentage by weight of each of them is less than 1% by weight with respect to the total.
  • the weight loss of kaolin by calcination at 540°C is 14% by weight corresponding to the loss of hydroxyls from the network. The chemical analysis was carried out on the sample calcined at 600°C for 6 minutes.
  • stage a a process of manual weighing and dosing of the components was used in a porcelain jar mill containing 10 mm diameter alumina balls.
  • the weight of the ceramic balls used is 500 grams.
  • the ball mill used is from Heramika S.A.
  • the grinding duration was 20 minutes.
  • step a) a homogeneous suspension is obtained that was extracted from the porcelain grinding jar using a 100 pm sieve.
  • the homogeneous suspension or slip is deposited in a glass tray and dried in a forced air oven until the humidity is less than 1% by weight.
  • an oven at 60°C was used for a time of 24 hours.
  • the dry product obtained in stage b) was dry sieved using a 100 pm sieve in stage c), achieving a particle size (D50) of this material with a monomodal distribution of 6 ⁇ 3 pm.
  • the determination of the particle size distribution was carried out using a laser system particle analyzer (Mastersizer S, Malvern).
  • the dried and sieved product was placed in an alumina crucible for thermal treatment in step d).
  • stage d an electric oven was used in an air atmosphere at temperatures of 600, 700, 800, 900, 1000, 1100 and 1220°C for 6 minutes with a heating speed of 15°C/min and cooling according to the oven. , so that different samples were obtained, depending on the heat treatment received.
  • step d) The material resulting from step d) was conditioned in a step e) to obtain a particle size suitable for the formulation of a digital decoration ink (common sizes in digital printing technology), it was first ground in a ball mill. of alumina in an aqueous medium similar to step a) and was subsequently ground in a laboratory attrition mill that reproduces the conditions of the Miniseries attrition mill with Minipur chamber from NETZSCH, for 1 hour using zirconia microballs stabilized with yttrium of 1mm diameter.
  • a digital decoration ink common sizes in digital printing technology
  • This microball grinding process (in a mill analogous to the Miniseries attrition mill with Minipur chamber from NETZSCH) is a simplification of the standard process for preparing a ceramic ink for digital decoration that usually requires 6 hours of grinding in different types of microbeads to obtain a particle size less than 2 pm.
  • All the precursors of the prepared luminescent compositions that is, CL1 and CL2, thermally treated in stage d) at different temperatures and conditioned in stage e) were pressed into disc-type specimens of 2 cm in diameter and 2 mm thick. .
  • these pressed specimens replace processes f) and g) to obtain a standard material and evaluate the luminescence of the composition after step h).
  • stage h The specimens were treated in stage h) with a thermal cycle with a maximum temperature of 1220°C maintained for 6 minutes and with a total cycle duration of 50 minutes in an electric laboratory oven from PIROMETROL that simulates a sintering cycle. of industrial ceramic tile for a porcelain stoneware material.
  • pressed disk samples of the precursor luminescent compositions after heat treatment in step d) and, for comparative purposes, of the precursor luminescent compositions after step d) were prepared.
  • the luminescent compositions CL1 and CL2 after step h) present a crystalline structure determined by X-ray powder diffraction (XRD D8 Advance, Bruker) that corresponds to an albite-type plagioclase for composition CL1 and anorthite-type for composition CL2.
  • the percentage of crystalline phase of the compositions determined from the X-ray diffraction diagrams corresponds to values greater than 92% in both luminescent compositions.
  • XRD X-ray powder diffraction
  • the average particle size (dso) of the luminescent compositions determined by laser diffraction (Mastersizer S, Malvern) after step e) of particle size conditioning showed a value ⁇ 2 pm for compositions CL1 and CL2 treated in a thermal cycle up to 1000°C 6 minutes in step d). Treatments at higher temperatures generate average particle sizes >10 pm. It is therefore more advantageous to use temperatures lower than 1000 °C for 6 minutes and obtain particle sizes smaller than 10 pm, which result in greater efficiency of the subsequent stage e). Additionally, it was examined by scanning electron microscopy (FE-SEM S- 4700, Hitachi) to analyze the size and distribution of the particles in more detail.
  • Figure 1 shows the micrographs of the samples based on the luminescent compositions CL1 and after the pretreatment of step d) at temperatures at 1100°C and 1220°C for 6 minutes and after step e).
  • the microstructural characterization particles with irregular morphologies were observed characterized by the presence of multiple fracture edges with crystal sizes preferably less than 2 pm and more rounded particles with sizes less than 1 pm and with abundant presence of particles of sizes less than 0.5 pm.
  • the particles have a tendency to form agglomerates where irregular particles are surrounded by more rounded particles.
  • the particle sizes observed by scanning electron microscopy were smaller than those previously reported by the laser diffraction method, indicating that the laser diffraction technique is measuring the size of aggregates rather than particles.
  • step f For the formation of inks in step f), according to the state of the art, a particle size of less than 2 pm is required. This size is obtained through intensive microgrinding.
  • the particle size obtained in the present invention presents an advantage from the point of view of processing a ceramic ink for decoration by printing, for example digital, since step e) of the procedure allows obtaining a suitable particle size, that is ⁇ 2 pm, for stage f) from a microgrinding process that involves a lower energy cost with a reduction in grinding times of at least 80%.
  • the luminescent response of the luminescent compositions was determined using a fluorimeter (FluoroLog-3 Modular Spectrofluorometer, HORIBA Scientific).
  • the fluorometer is equipped with an IR detector (IGA1.9010L) covering a wide wavelength range from 800 to 2100 nm, and a low dark current PMT detector (R2658) (1 nA at 1250 V) for measurements in the range of 185 to 1010 nm.
  • the experimental measurements were carried out using different methods depending on the format of the sample: tablet in the case of stage d) and h) and powder in stage e). Both methods comprise an excitation wavelength of 393 nm, vaing the entrance and exit slits.
  • the luminescent compositions of the present invention have an advantage over the reference pure EU2O3 material in step d) since the luminescent intensity values are higher per unit of weight percentage of EU2O3 in the composition of only 1% in weight of EU2O3.
  • the reference pure EU2O3 composition would present a luminescent signal of 5.0x10 7 which per percentage unit of EU2O3 corresponds to a value of 5.0x10 5 , this value for CL1 being >5.0x10 8 in all thermal treatments of the stage d).
  • greater efficiency is achieved in the use of lanthanide oxide in terms of luminescent emission, which is at least 10 2 per percentage unit of lanthanide oxide.
  • Frit C was prepared with a chemical composition similar to the chemical composition of Frit A where a proportion of EU2O3 was incorporated prior to the melting or frying stage at 1500°C in a ratio of components of the f ⁇ ta/oxide of europium of 180/2. Frit C had a chemical composition such that when formulating in step a), 182 grams of frit C, 19.67 grams of kaolin and 135 grams of water were added. This formulation is chemically analogous to that of composition CL1, that is, it contains 1% by weight of EU2O3.
  • composition CL1 and luminescent composition CL3 The fundamental difference between composition CL1 and luminescent composition CL3 is that the lanthanide oxide in composition CL3 is incorporated during the fritting process of the material, which reaches higher temperatures (1500°C) favoring the decomposition of the oxide, and causing the Eu 3+ cation to become embedded in the glass phase of frit C, that is, as a dopant of said glass network. Therefore, crystalline particles comprising europium oxide are not added to the precursor mixture of the luminescent composition in step a). After step h), in the luminescent composition CL3, the Eu 3+ cations are found as a dopant distributed either in the crystal lattice of the feldspar crystals or in the glass phase.
  • the luminescent composition CL1 exhibits a luminescence that is >5 orders of magnitude higher than the luminescence of CL3.
  • EXAMPLE 2 Preparation of a luminescent composition with a plagioclase structure incorporating different percentages of EU2O3.
  • the luminescent response of the luminescent compositions was determined using the same fluorimeter as in the previous case.
  • the experimental measurements were carried out using the method developed for samples in pellet format of 2 cm in diameter and 2 mm in thickness. A 17.4 mm x 6.2 mm rectangular mask was used.
  • the luminescent intensity values recorded for the maximum of the emission band centered 610-625 nm of the different compositions in the different treatment stages are collected in a comparative way with the reference sample: europium oxide, measured under the same conditions. experimental and corresponding thermal treatment of each stage. All luminescent compositions presented the two characteristic bands of Eu 3+ around 590-592 nm and 610-625 nm, respectively, using an excitation wavelength of 395 nm.
  • the luminescent compositions CL5 and CL6 had a value of the maximum of the luminescence band centered at 610-625 nm that is up to 15% and 50% lower in intensity compared to the luminescent composition CL1, respectively. In this way, compositions with proportions between 1% and 2% of EU2O3 have an adequate luminescent response.
  • Table 3 Maximum values of the luminescent emission band centered between 610-612 nm for an excitation wavelength of 395 nm of the different luminescent compositions, in different process stages (steps e) and h)).
  • the luminescent emission was characterized comparatively using samples of the same surface and thickness under the same experimental conditions, specifically discs of 2 cm in diameter and 2 mm in thickness)
  • the microstructure of the luminescent composition CL6 Figure 2 showed the presence of crystalline particles comprising europium oxide in coexistence with feldspar microparticles.
  • the crystalline particles comprising europium oxide in Figure 2 correspond to the lighter regions in the image that are grouped in clusters of grains.
  • the sizes of the crystalline particles comprising europium oxide have grain sizes between 100 and 500 nm.
  • the microstructure shows an abundance of plagioclase-type feldspar microcstals. Between the plagioclase microcrystals and the regions with crystalline particles that comprise europium oxide, voids are observed corresponding to the glassy phase that has been eliminated by immersion of the surface in the acid solution for chemical attack.
  • EXAMPLE 3 Preparation of luminescent plagioclase compositions of different emission wavelengths.
  • Example 1 The process described in Example 1 for the luminescent composition CL1 was followed. 1% by weight of lanthanide oxides was added.
  • the lanthanide oxides used were crystalline oxides of the following elements: Er, Eu, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La and Tm.
  • stage d a ceramic disc of each composition was directly pressed, which was thermally treated at a single temperature of 1220°C for 6 min following a standard industrial cycle for a ceramic tile. .
  • Table 3 shows the different excitation wavelengths along with the emission wavelengths for each of the rare earths in the luminescent compositions CL7 to CL17.
  • Luminescent compositions CL7 to CL17 have the advantage of emitting at different wavelengths under UV excitation, that is, they allow emitting in different colors.
  • the luminescent compositions CL7, CL11, CL13 and CL15 have an additional advantage by emitting in the near infrared for excitation in the visible area. Since infrared emissions are not detectable by the human eye, the presence of these compositions allows obtaining a luminescent composition detectable only by equipment with optoelectronic detectors.
  • EXAMPLE 4 Integration of a luminescent composition in a glazed ceramic tile.
  • the process of integrating a luminescent composition requires the preparation of the decoration ink in step f).
  • the characteristics of luminescent compositions obtained in examples 1 to 3 were suitable with respect to their particle size for the formulation of a ceramic digital ink or ink-jet ink.
  • This ink was formulated in step f) through a dispersion process in a liquid medium by mechanical stirring of a composition that comprises:
  • a solvent-based ink, T1 was prepared in the laboratory by adding 40 grams of CL1 treated at 600°C in step e) of the luminescent composition, in 100 grams of a mixture of tri(propylene glycol) butyl. ether and poly(propylene glycol) monobutyl ether in a 50/50 ratio as solvents. To homogenize the ink, a T25 high shear agitator from IKA was used, working at 10,000 rpm for 10 minutes.
  • an aqueous-based ink, T2 was prepared in the laboratory by adding 33 grams of CL1 treated at 600°C in step e) of the luminescent composition, in 45 grams of deionized water and 20 grams of ethylene glycol as solvents and the addition of 0.6 grams of sodium salt of polycarboxylic acid as dispersant.
  • the laboratory inks T1 and T2 had parameters suitable for use as digital decoration inks on ceramics with zeta potential values ⁇ -45 mV (determined with a Nanolab, Microme ⁇ tics equipment) and viscosities at 200 s -1 of 25 mPa. s (determined by a rotational viscometer from HAAKE).
  • Porcelain stoneware requires a firing temperature between 1200-1220°C and generates a product with a water absorption of less than 0.5% by weight.
  • Porcelain stoneware ceramic tiles are preferably used as ceramic flooring both indoors and outdoors.
  • the white paste support requires a lower firing temperature, 1135 °C, and has a greater water absorption capacity, between 6 to 10%.
  • White-body ceramic tile is used as wall covering.
  • a layer of matte glaze for porcelain stoneware obtained from frit B by combining it with kaolin was deposited on the green support layers of porcelain stoneware following what is described in WO2016155909.
  • a layer of slip suitable for white body was deposited on the green support layer of white body.
  • step f On said support layers in green, porcelain with enamel and white paste with slip, defined areas of the precursor mixture of the luminescent composition were deposited in the form of digital ink obtained in step f).
  • the deposition of said defined areas of the digital ink was carried out by digital printing with different grammages corresponding to 20, 40, 60 and 80 g/m 2 , obtaining different ceramic pieces with thicknesses of different luminescent compositions.
  • the glazes and slips used in these applications are standard glazes and slips used in the ceramic tile industry.
  • Pieces were prepared with different ceramic supports, with different glazes and with different slips, and for the different glazes and/or slips tested, a linearity was observed in the intensity of the luminescent signal with the grammage value.
  • thickness values of the area of the luminescent composition lower than 20 pm were obtained for all the weights used.
  • the increase in weight corresponded to an increase in the thickness of the area or pattern of the luminescent composition on the ceramic tile.
  • the standard thicknesses of glazes on ceramic tiles are between 50 and 200 pm
  • the grammage values for the luminescent composition are between 40 and 10% of the thickness of the standard glazes.
  • the range of weights corresponding to standard enamel is between 5 and 500 grams/m 2 , which is equivalent to thicknesses of 4 to 400 pm.
  • Figure 2 corresponds to a fired ceramic piece representative of the use of T3 ink deposited on a porcelain stoneware tile coated with a matte glaze, and observed under UV lighting.
  • Table 5 shows the luminescence values for the different weights of ink applied and the thicknesses of the drawing of the luminescent composition obtained with the T3 ink after firing. The values obtained for the intensity of the luminescent emission are lower than those of the bulk material obtained for 2 mm thick discs. No However, these values are sufficient to be appreciated by the human eye as they notably exceed the phototopic and scotopic limits.
  • This aspect represents an advantage of luminescent compositions since it allows obtaining a thickness value such that it can be integrated into the interior of a standard enamel layer in the ceramic tile industry while maintaining luminescence values suitable for observation.
  • An advantage of the present invention is that, given the reduced thickness of the integrated luminescent composition, the luminescent composition had a grammage of between 10 and 90 grams/m 2 , more preferably between 20 and 80 grams/m 2 . In this way, the proportion of europium oxide required per m 2 of ceramic tile is between 0.2 and 8 g/m 2 . This amount will be reduced proportionally when integrating the luminescent composition with a certain shape, that is, without covering the total surface of the ceramic tile. A non-limiting calculation indicates that the cost incurred per m 2 of ceramic tile from the incorporation of a given form of a luminescent composition corresponds to units of euro cents. The passed-on cost of incorporating an integrated luminescent zone of the present invention is therefore an advantage for products intended as construction materials whose production cost per m 2 is in the region of euro units.
  • Figure 3 shows a glazed porcelain stoneware ceramic tile that presents rectangle-shaped drawings using T3 ink once fired and under UV lighting.
  • Table 5 Value of the maximum luminescent intensity for luminescent emission in the 610-625 nm region of regions where T3 ink was deposited on glazed porcelain stoneware ceramic tile once fired. The luminescent emission was determined for a circular region of 1 cm in diameter under an excitation wavelength of 393 nm, the experimental conditions being similar to those carried out in examples 1, 2 and 3 except with regard to the thickness of the composition. luminescent and, therefore, the intensity units are comparable
  • a relevant advantage of luminescent compositions for their integration into a glazed ceramic piece corresponds to the values of chromatic coordinates and expansion coefficients.
  • the luminescent compositions CL1 and CL2 present thermal expansion coefficient values (determined in the temperature range of 30 to 500°C in an 801 L dilatometer, Bahr) of 53 ⁇ 1x10 -7 and 65 ⁇ 1x10 -7 °C' 1 , which are suitable for adjustment with ceramic tile components that have values in the range of 50. 10' 7 to 75. 10' 7 °C' 1 .
  • the whiteness coefficient (L*) determined by colorimetry were 91 ⁇ 1 and 92 ⁇ 1 for CL1 and CL2 respectively. These values are suitable for white enamel values used in industry that require L* values greater than 87.
  • luminescent compositions are related to the presence of Zr 4 * cations in their composition.
  • the luminescent compositions comprise said cations which, expressed in terms of their equivalent oxide, ZrÜ2, correspond to 1.1% for the luminescent composition CL1 and 6.5% for the luminescent composition CL2.
  • the luminescent composition CL1 is transparent to visible light while the luminescent composition CL2 is opaque.
  • luminescent compositions are advantageous for regulating transparency, but what matters is that the luminescent composition is visible under UV light. Whether it is opaque or not is something that has to do with whether the region can be seen in visibility or whether it remains camouflaged.
  • the luminescent compositions CL4 to CL17 presented values in the referred properties similar to those described and included in the range of those determined between the values of CL1 and CL2 in terms of the physical properties of thermal expansion coefficient, whiteness coefficient and transparency.
  • Figure 5 shows an example of integrating a CL1 luminescent composition into a porcelain ges tile to generate a QR code or a company logo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wrappers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a glazed ceramic piece comprising: a) a ceramic substrate, b) a final layer of ceramic glaze, c) a luminescent composition integrated in a discreet area, or several discreet areas of the final layer of glaze, such that the luminescent composition comprises crystallisations with a feldspar structure, a vitreous phase, and crystalline particles comprising one or more lanthanide oxides.

Description

Pieza cerámica esmaltada Glazed ceramic piece
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con la tecnología de marcadores de productos cerámicos, tanto para impedir fraudes y falsificaciones como para fines publicitarios o para la obtención de efectos decorativos. The present invention is related to the technology of markers for ceramic products, both to prevent fraud and counterfeiting and for advertising purposes or to obtain decorative effects.
ANTECEDENTES BACKGROUND
En el campo de los materiales cerámicos que tienen utilidad en construcción, entre otras, es importante poder hacer un seguimiento del origen de una pieza cerámica y poder determinar su autenticidad, así como su antigüedad. In the field of ceramic materials that are useful in construction, among others, it is important to be able to track the origin of a ceramic piece and be able to determine its authenticity, as well as its age.
Para determinar la autenticidad de un producto y evitar fraudes, se han venido utilizando composiciones luminiscentes, que emiten generalmente luz en la región del espectro visible cuando se iluminan con determinado tipo de luz, por ejemplo, con luz ultravioleta. Incluso al final de la vida útil del producto, por ejemplo, años después de haber sido construido un edificio y en el momento de demolerlo, es importante poder identificar, por ejemplo, el año de fabricación y/o el fabricante y/o la planta del fabricante del material cerámico utilizado en la construcción del edificio. To determine the authenticity of a product and avoid fraud, luminescent compositions have been used, which generally emit light in the region of the visible spectrum when illuminated with a certain type of light, for example, ultraviolet light. Even at the end of the product's useful life, for example, years after a building has been constructed and at the time of demolition, it is important to be able to identify, for example, the year of manufacture and/or the manufacturer and/or the plant from the manufacturer of the ceramic material used in the construction of the building.
En la mayoría de los materiales cerámicos para construcción es necesario un tratamiento térmico que lleva asociada la formación de fase líquida reactiva a alta temperatura, que degrada la respuesta de una composición luminiscente y dificulta su integración en el material cerámico. Ante dicha dificultad, los procedimientos de obtención de materiales cerámicos para construcción no incorporan composiciones luminiscentes. In most ceramic materials for construction, a thermal treatment is necessary, which is associated with the formation of a reactive liquid phase at high temperature, which degrades the response of a luminescent composition and makes its integration into the ceramic material difficult. Given this difficulty, the procedures for obtaining ceramic materials for construction do not incorporate luminescent compositions.
Se conoce desde hace algún tiempo el uso de compuestos o pigmentos luminiscentes para la comprobación de la autenticidad de un documento de valor, por ejemplo, se divulga en DE 198 04 032 un documento impreso en papel con al menos un elemento de autenticidad en forma de sustancia luminiscente sobre la base de una rejilla, dopada con al menos un metal del grupo de tierras raras, que absorbe esencialmente en el visible. Como elemento de tierras raras se utiliza holmio. El documento LIS2013193346 (A1) divulga un método de identificar un objeto, en el que el objeto comprende un elemento de seguridad que contiene uno o más pigmentos luminiscentes inorgánicos, el método comprende generar un espectro de emisión de un pigmento luminiscente inorgánico; y comparar el espectro obtenido con el espectro predeterminado para el pigmento luminiscente inorgánico. The use of luminescent compounds or pigments to verify the authenticity of a valuable document has been known for some time, for example, a document printed on paper with at least one element of authenticity in the form of a document is disclosed in DE 198 04 032. luminescent substance based on a grid, doped with at least one metal from the rare earth group, which absorbs essentially in the visible. Holmium is used as a rare earth element. Document LIS2013193346 (A1) discloses a method of identifying an object, wherein the object comprises a security element containing one or more inorganic luminescent pigments, the method comprises generating an emission spectrum of an inorganic luminescent pigment; and compare the spectrum obtained with the predetermined spectrum for the inorganic luminescent pigment.
Este documento divulga un pigmento, CaAhShC^Eu.Pr, para identificación de materiales, tal que dicho pigmento es un feldespato tipo plagioclasa dopado con una tierra rara.This document discloses a pigment, CaAhShC^Eu.Pr, for materials identification, such that said pigment is a plagioclase-type feldspar doped with a rare earth.
Además, la finalidad de la invención según este documento es identificar materiales, entre los que se mencionan materiales cerámicos. Se dice que el pigmento luminiscente es introducido en una matriz transparente a la luz UV. A pesar de que las matrices transparentes cerámicas suelen presentar una absorción de UV, el significado de “transparente a la luz UV” en este documento US2013193346 es relativo, puesto que muchas matrices de esmaltes cerámicos, según esto, serían semitransparentes. Sin embargo, no divulga si el material luminiscente está, o no, integrado en la estructura cristalina del pigmento luminiscente, ni cómo obtener ese material cerámico con la composición luminiscente en su estructura. Furthermore, the purpose of the invention according to this document is to identify materials, among which ceramic materials are mentioned. The luminescent pigment is said to be introduced into a matrix transparent to UV light. Although transparent ceramic matrices usually have UV absorption, the meaning of “transparent to UV light” in this document US2013193346 is relative, since many ceramic enamel matrices, according to this, would be semi-transparent. However, it does not disclose whether or not the luminescent material is integrated into the crystalline structure of the luminescent pigment, nor how to obtain that ceramic material with the luminescent composition in its structure.
No se divulga ningún detalle de la obtención del “elemento de seguridad”, únicamente se dice que se puede incluir de forma inmediata en el objeto que se quiere marcar, por ejemplo, se puede mezclar con los materiales de partida, o se puede aplicar por impresión.No details of obtaining the “security element” are disclosed, it is only said that it can be included immediately in the object to be marked, for example, it can be mixed with the starting materials, or it can be applied by impression.
Según la presente invención no se genera un pigmento con estructura de feldespato que incluye la tierra rara, sino que se incluye un óxido de lantánido en una matriz que genera cristales de feldespato y la luminiscencia procede del óxido de lantánido no de la composición de feldespato dopada, porque el óxido de lantánido no se incorpora a la red cristalina del feldespato. According to the present invention, a pigment with a feldspar structure that includes the rare earth is not generated, but rather a lanthanide oxide is included in a matrix that generates feldspar crystals and the luminescence comes from the lanthanide oxide, not from the doped feldspar composition. , because lanthanide oxide is not incorporated into the feldspar crystal lattice.
EP3685864 divulga una composición luminiscente que comprende albita o anortita y una sustancia dopante. El dopante puede ser un óxido de elemento lantánido, por ejemplo, óxido de europio en una proporción entre 1 y 30%. Según EP3685864 los artículos marcados con la composición luminiscente no son piezas cerámicas, sino que menciona artículos de valor, y entre ellos documentos en soportes de papel como pasaportes. Por lo tanto, no divulga ni sugiere la posibilidad de marcar piezas cerámicas. EP3685864 discloses a luminescent composition comprising albite or anorthite and a doping substance. The dopant can be an oxide of the lanthanide element, for example, europium oxide in a proportion between 1 and 30%. According to EP3685864, the items marked with the luminescent composition are not ceramic pieces, but mentions valuable items, including documents on paper media such as passports. Therefore, it does not disclose or suggest the possibility of marking ceramic pieces.
US10203282B2 se refiere a un producto de lana mineral que comprende fibras minerales, en particular lana mineral adaptada para su uso como material de construcción. Se utilizan sustancias activas frente a luz UV o IR en las que la coloración solo se puede ver a simple vista en condiciones ambientales cuando se irradia con una fuente de radiación UV o IR. El porcentaje en peso del componente activo UV o IR, basado en el producto de lana mineral total, o alternativamente el componente de lana mineral (para elementos estructurales compuestos), puede ser inferior al 1 ,0% en peso. US10203282B2 relates to a mineral wool product comprising mineral fibers, in particular mineral wool adapted for use as a construction material. Substances active against UV or IR light are used in which the coloration can only be seen with the naked eye under ambient conditions when irradiated with a source of UV or IR radiation. The weight percentage of the UV or IR active component, based on the total mineral wool product, or alternatively the mineral wool component (for composite structural elements), may be less than 1.0% by weight.
El propósito de esta composición es seguir la huella del material de construcción para conocer su procedencia. The purpose of this composition is to follow the trace of the construction material to know its origin.
Sin embargo, no divulga una pieza cerámica marcada con composiciones luminiscentes y, por lo tanto, no resuelve los problemas concretos que plantean estos materiales cerámicos para incluir en ellos la composición luminiscente y conseguir una luminiscencia suficientemente elevada con una cantidad pequeña de material luminiscente. However, it does not disclose a ceramic piece marked with luminescent compositions and, therefore, it does not solve the specific problems posed by these ceramic materials to include the luminescent composition in them and achieve a sufficiently high luminescence with a small amount of luminescent material.
El componente activo UV o IR puede distribuirse a través del producto de fibra mineral, por ejemplo, de forma homogénea entre las fibras minerales y se aplica preferiblemente a las fibras minerales antes del curado de cualquier aglutinante del producto de fibra mineral.The UV or IR active component may be distributed throughout the mineral fiber product, for example, homogeneously between the mineral fibers and is preferably applied to the mineral fibers prior to curing of any binder of the mineral fiber product.
El componente activo según este documento queda distribuido por todo el material que se pretende marcar. The active component according to this document is distributed throughout the material that is intended to be marked.
El artículo titulado Preparation of Eu2+ and Dy3* co-activated CaA S Os-based phosphor and its optical properties, de Wang, YH; Wang, ZY; Qian, GD, Oct 2004, Material Letters, 58 (26), pp.3308-3311 divulga anortita dopada con un lantánido, como disprosio o Eu2+ y su uso como material luminiscente. No divulga ni sugiere el uso concreto como material luminiscente para mareaje de materiales cerámicos, ni la obtención de dichos materiales cerámicos marcados. The article entitled Preparation of Eu 2+ and Dy 3 * co-activated CaA S Os-based phosphor and its optical properties, by Wang, YH; Wang, ZY; Qian, GD, Oct 2004, Material Letters, 58 (26), pp.3308-3311 discloses anorthite doped with a lanthanide, such as dysprosium or Eu 2+ and its use as a luminescent material. It does not disclose or suggest the specific use as a luminescent material for marking ceramic materials, nor the obtaining of said marked ceramic materials.
El artículo titulado Persistent luminescence in CaAÍ2SÍ20a:Eu2+, R3+ (R = Pr, Nd, Dy, Ho and Er), de Guifang Ju, Yihua Hu, Li Chen, Xiaojuan Wang, Zhongfei Mu; Feb 2014, Journal of Luminescence, 146, pp.102-108, se refiere a la luminiscencia persistente en CaAhShOs dopado con europio tras el co-dopaje con iones auxiliares de tierras raras (Pr+i Nd +, Dy3+, Ho3+ y Er3+). Este artículo divulga anortita dopada con tierras raras y su uso como material luminiscente, pero no divulga piezas cerámicas que incluyan dichos materiales luminiscentes, ni el uso como material luminiscente para mareaje de materiales cerámicos, por lo que tampoco describe cómo obtener dichos materiales cerámicos marcados. The article titled Persistent luminescence in CaAÍ2SÍ20a:Eu 2+ , R 3+ (R = Pr, Nd, Dy, Ho and Er), by Guifang Ju, Yihua Hu, Li Chen, Xiaojuan Wang, Zhongfei Mu; Feb 2014, Journal of Luminescence, 146, pp.102-108, refers to the persistent luminescence in europium-doped CaAhShOs after co-doping with rare earth auxiliary ions (Pr +i Nd + , Dy 3+ , Ho 3 + and Er 3+ ). This article discloses anorthite doped with rare earths and its use as a luminescent material, but it does not disclose ceramic pieces that include said luminescent materials, nor the use as a luminescent material for marking ceramic materials, so it does not describe how to obtain said marked ceramic materials.
CN108467727A, también divulga un material que es albita dopada con tierras raras, tales como Sm3+ y su uso como material luminiscente. No menciona el uso como material luminiscente para mareaje de materiales cerámicos, pues se refiere particularmente a su uso en LEDs. CN 107578254 (A) divulga Zr divulgado como elemento dopante de una composición luminiscente. No menciona el uso como material luminiscente para mareaje de materiales cerámicos, pues se refiere particularmente a su uso en LEDs. CN108467727A, also discloses a material that is albite doped with rare earths, such as Sm 3+ and its use as a luminescent material. It does not mention the use as a luminescent material for marking ceramic materials, as it refers particularly to its use in LEDs. CN 107578254 (A) discloses Zr disclosed as a doping element of a luminescent composition. It does not mention the use as a luminescent material for marking ceramic materials, as it refers particularly to its use in LEDs.
CN110105950, también divulga un material que es albita dopada con tierras raras y su uso como material luminiscente. Hace alusión al uso de la albita en la industria del esmalte, aunque no menciona el uso como material luminiscente para mareaje de materiales cerámicos. CN110105950, also discloses a material that is albite doped with rare earths and its use as a luminescent material. It alludes to the use of albite in the enamel industry, although it does not mention its use as a luminescent material for marking ceramic materials.
CN111423118 divulga una pieza cerámica que comprende: 40-50 partes de polvo de albita, 10-13 partes de polvo de mica de litio / hierro, 14-16 partes de caolín, 25-32 partes de polvo de cuarzo, polvos de talco quemados 7-8.5 partes, 5-6 partes de óxido de titanio 3-3,6 partes de silicato de sodio. Puede incluir 4-5 partes de óxidos de tierras raras, preferiblemente de lantano y de escandio. Sin embargo, no divulga vahas características fundamentales de la presente invención que exige: CN111423118 discloses a ceramic piece comprising: 40-50 parts albite powder, 10-13 parts lithium/iron mica powder, 14-16 parts kaolin, 25-32 parts quartz powder, burnt talcum powders 7-8.5 parts, 5-6 parts titanium oxide, 3-3.6 parts sodium silicate. It may include 4-5 parts of rare earth oxides, preferably lanthanum and scandium. However, it does not disclose several fundamental characteristics of the present invention that require:
- que esté presente en la pieza cerámica una composición luminiscente (diferenciable por lo tanto del resto de la pieza) - that a luminescent composition is present in the ceramic piece (therefore distinguishable from the rest of the piece)
- que la composición luminiscente se encuentra únicamente en una o vahas zonas discretas de la capa final de esmalte cerámico, - that the luminescent composition is only found in one or several discrete areas of the final layer of ceramic enamel,
- que los óxidos de lantánido estén presentes únicamente en ciertas partículas cristalinas de la composición luminiscente, (como una fase cristalina diferenciable por lo tanto del resto de la composición luminiscente) - that the lanthanide oxides are present only in certain crystalline particles of the luminescent composition, (as a crystalline phase therefore differentiable from the rest of the luminescent composition)
- que la composición luminiscente tiene unas fases diferenciadas entre sí. - that the luminescent composition has phases differentiated from each other.
Según CN111423118, el compuesto de tierras raras no está localizado en una zona discreta, sino distribuido por toda la masa base de la pieza (que sería el soporte) y/o por toda la capa de esmalte. According to CN111423118, the rare earth compound is not located in a discrete area, but rather distributed throughout the base mass of the piece (which would be the support) and/or throughout the enamel layer.
EP3685864 divulga un marcador de seguridad, que comprende: una matriz vitrea que comprende al menos los elementos silicio y oxígeno; y una primera fase cristalina formada por partículas cristalinas embebidas en dicha matriz; donde dichas partículas son feldespatos o feldespatoides; en el que el tamaño medio de dichas partículas es inferior a 500 nm; y donde existe una interfaz entre las partículas cristalinas y la matriz vitrea EP3685864 discloses a security marker, which comprises: a glass matrix comprising at least the elements silicon and oxygen; and a first crystalline phase formed by crystalline particles embedded in said matrix; where said particles are feldspars or feldspathoids; wherein the average size of said particles is less than 500 nm; and where there is an interface between the crystalline particles and the glass matrix
Y según el procedimiento de obtención, en la mezcla de la etapa (i) se puede incluir un óxido de lantánido. And depending on the production procedure, a lanthanide oxide can be included in the mixture of step (i).
Sin embargo, no se indica que el óxido de lantánido esté localizado en partículas cristalinas distintas de las formaciones cristalinas de feldespatos, ni localizado en la fase vitrea de la composición, como es el caso de la presente invención. Además, en todos los casos se refiere a materiales en forma de partículas y, por tanto, no integra una región luminiscente en esmaltes en baldosas cerámicas. However, it is not indicated that lanthanide oxide is located in crystalline particles other than feldspar crystalline formations, nor is it located in the glass phase of the composition, as is the case of the present invention. Furthermore, in all cases it refers to materials in particle form and, therefore, does not integrate a luminescent region in glazes on ceramic tiles.
En el estado de la técnica el elemento dopante o elemento causante de la luminiscencia se incorpora en una estructura cristalina que actuará como pigmento luminiscente o bien se incorpora en la etapa de producción de la frita para que posteriormente, se incorpore como dopante en la fase cristalina de feldespato para formar el pigmento luminiscente. In the state of the art, the dopant element or element that causes luminescence is incorporated into a crystalline structure that will act as a luminescent pigment or is incorporated in the frit production stage so that it is subsequently incorporated as a dopant in the crystalline phase. of feldspar to form the luminescent pigment.
Según el estado de la técnica siempre se incorpora la tierra rara o elemento causante de la luminiscencia como “dopante” en una estructura cristalina o en una estructura vitrea.According to the state of the art, the rare earth or element that causes luminescence is always incorporated as a “dopant” in a crystalline structure or in a glass structure.
El objeto que se persigue en el estado de la técnica es poder determinar la presencia del elemento dopante mediante un equipo (un fluorímetro) para poder emplear proporciones muy bajas e indetectables por otros medios. The objective pursued in the state of the art is to be able to determine the presence of the doping element using equipment (a fluorometer) in order to be able to use very low proportions that are undetectable by other means.
A diferencia de lo indicado según el estado de la técnica, según la presente invención, partículas cristalinas que comprenden óxido de lantánido en la composición luminiscente, se integran en el esmalte de la pieza cerámica y dichas partículas que comprenden óxido de lantánido se mantienen (al menos una proporción significativa del mismo) como señal marcadora que da una respuesta de muy alta señal luminiscente y por tanto visible por el ojo humano. Unlike what is indicated according to the state of the art, according to the present invention, crystalline particles that comprise lanthanide oxide in the luminescent composition are integrated into the glaze of the ceramic piece and said particles that comprise lanthanide oxide are maintained (at minus a significant proportion of it) as a marker signal that gives a very high luminescent signal response and therefore visible to the human eye.
La estructura cristalina de feldespato que se obtiene de acuerdo con la presente invención se debe a los cristales generados en la composición luminiscente y en el caso de que las partículas cristalinas de feldespato incluyeran cationes lantánidos en solución sólida, esto es, incorporen cationes lantánidos como dopante, la señal luminiscente no es relevante y no es visible por el ojo humano. The feldspar crystalline structure obtained according to the present invention is due to the crystals generated in the luminescent composition and in the event that the feldspar crystalline particles include lanthanide cations in solid solution, that is, they incorporate lanthanide cations as dopant , the luminescent signal is not relevant and is not visible to the human eye.
En la presente invención se incorpora el óxido lantánido como tal en la mezcla de componentes que produce, tras el tratamiento térmico en la cocción del material cerámico, la composición luminiscente. Dicha composición luminiscente se integra en el esmalte del material cerámico. In the present invention, lanthanide oxide is incorporated as such into the mixture of components that produces, after thermal treatment during firing of the ceramic material, the luminescent composition. Said luminescent composition is integrated into the glaze of the ceramic material.
Esta mezcla precursora de la composición luminiscente se trata térmicamente y se moltura para luego hacer una tinta. Este tratamiento térmico y la molturación son etapas que no se han realizado hasta ahora en el estado de la técnica. This precursor mixture of the luminescent composition is heat treated and ground to then make an ink. This heat treatment and grinding are steps that have not been carried out until now in the state of the art.
Una mezcla de frita, caolín y óxido de lantánido es el precursor de la composición luminiscente, se describe más adelante en esta memoria. La composición luminiscente comprende regiones de cristales con estructura de feldespato y una fase minoritaria sin estructura a largo alcance, esto es, una fase vitrea. A mixture of frit, kaolin and lanthanide oxide is the precursor of the luminescent composition, described later in this report. The luminescent composition comprises regions of crystals with a feldspar structure and a minority phase without long-range structure, that is, a glass phase.
La composición luminiscente integrada en el esmalte solo se tiene una vez que se ha conformado la pieza cerámica en verde y después del tratamiento térmico de la pieza cerámica. The luminescent composition integrated into the glaze is only present once the ceramic piece has been shaped into green and after the ceramic piece has been heat treated.
La principal diferencia de la presente invención con el estado de la técnica es que en el estado de la técnica el elemento lantánido o combinaciones de elementos lantánidos están incluidos en la estructura cristalina o vitrea de la composición luminiscente. En consecuencia, la luminiscencia es muy baja y el empleo de alta concentración de dopante no es posible dado que la intensidad disminuye al aumentar la concentración del mismo. Este efecto es dominante si la energía de excitación se transfiere entre muchos cationes de la red en el tiempo necesario para el decaimiento radiativo, tal y como ocurre cuando la concentración de cationes de tierra rara en una matriz cristalina o amorfa aumenta. The main difference of the present invention with the state of the art is that in the state of the art the lanthanide element or combinations of lanthanide elements are included in the crystalline or glass structure of the luminescent composition. Consequently, the luminescence is very low and the use of a high concentration of dopant is not possible since the intensity decreases with increasing concentration. This effect is dominant if the excitation energy is transferred between many cations in the lattice in the time necessary for radiative decay, such as occurs when the concentration of rare earth cations in a crystalline or amorphous matrix increases.
En la mayoría de los documentos del estado de la técnica, las propiedades luminiscentes se reportan en términos de unidades arbitrarías, por lo que no son datos que se puedan comparar con otros. Si el número de fotones luminiscentes es muy bajo, solo se detectan por equipos tipo fluorímetro y el ojo humano no es capaz de detectarlos. La determinación de autenticidad de un documento generalmente se realiza por la determinación de la emisión característica de la tierra rara a una longitud de onda específica mediante un equipo óptico. De hecho, esta limitación en los procesos de detección del marcador luminiscente se potencia para evitar la detección de la presencia de dicho marcador y así ocultarlo ante posibles intentos de falsificación. In most prior art documents, luminescent properties are reported in terms of arbitrary units, so they are not data that can be compared with others. If the number of luminescent photons is very low, they are only detected by fluorimeter-type equipment and the human eye is not capable of detecting them. Determining the authenticity of a document is generally performed by determining the characteristic rare earth emission at a specific wavelength using optical equipment. In fact, this limitation in the detection processes of the luminescent marker is enhanced to avoid the detection of the presence of said marker and thus hide it from possible falsification attempts.
El problema que resuelve la presente invención es conseguir una señal luminiscente suficientemente alta para su observación por el ojo humano. Para ello, se ha desarrollado un proceso que permite mantener las partículas que comprenden el óxido del lantánido en forma dispersa o aglomeradas en la región de fase vitrea. De esta forma, el óxido de lantánido no forma solución sólida con la fase cristalina de feldespato, ni forma solución sólida con la fase vitrea de la composición luminiscente. Incluso si se incorporase en solución sólida en la fase cristalina del feldespato o en la fase vitrea, lo haría en pequeña proporción, de modo que la señal de luminiscencia no se vería afectada por esa proporción de óxido de lantánido en solución sólida. The problem that the present invention solves is to achieve a luminescent signal high enough for observation by the human eye. To this end, a process has been developed that allows the particles that comprise the lanthanide oxide to be maintained in dispersed or agglomerated form in the glass phase region. In this way, the lanthanide oxide does not form a solid solution with the feldspar crystalline phase, nor does it form a solid solution with the glassy phase of the luminescent composition. Even if it were incorporated in solid solution in the crystalline phase of the feldspar or in the glass phase, it would do so in a small proportion, so that the luminescence signal would not be affected by that proportion of lanthanide oxide in solid solution.
Una ventaja esencial que se consigue en la presente invención está relacionada con el aumento del rendimiento en luminiscencia respecto al óxido de lantánido puro, al emplear como máximo un 10% en peso de dicho óxido de lantánido o un máximo de 10% en peso de una combinación de óxidos de lantánido, respecto al peso de la composición, debido a que dicho óxido de lantánido está disperso en la región de la fase vitrea de la composición luminiscente, fuera de las regiones de cristales de feldespato, en forma de óxido independiente de dicha red cristalina, es decir, no está integrado en ella, o si lo está, es en una proporción tan baja que la disminución de señal luminiscente no es relevante. An essential advantage achieved in the present invention is related to the increase in luminescence performance with respect to pure lanthanide oxide, by using a maximum of 10% by weight of said lanthanide oxide or a maximum of 10% by weight. of a combination of lanthanide oxides, with respect to the weight of the composition, because said lanthanide oxide is dispersed in the region of the glass phase of the luminescent composition, outside the regions of feldspar crystals, in the form of an independent oxide of said crystalline network, that is, it is not integrated into it, or if it is, it is in such a low proportion that the decrease in luminescent signal is not relevant.
Sin embargo a pesar de toda la actividad investigadora en la tecnología de materiales de construcción cerámicos, no se han resuelto los problemas que éstos plantean a la hora de poder integrar en ellos una marca o elemento identificador, o decorativo, que se revele únicamente bajo ciertas condiciones de iluminación y que sea durable y estable durante años para que pueda servir también, no solo para efectos decorativos, sino también para conocer el tiempo de vida de un material, o de una construcción en la que se ha usado ese material. Y en particular, es necesario conseguir estos objetivos mencionados con una pequeña cantidad de material luminiscente para que los costes productivos asociados a materias primas como los elementos lantánidos no impidan su empleo en materiales de construcción. However, despite all the research activity in the technology of ceramic construction materials, the problems that these pose when it comes to being able to integrate into them a brand or identifying or decorative element that is revealed only under certain conditions have not been resolved. lighting conditions and that it is durable and stable for years so that it can also be used, not only for decorative effects, but also to know the life time of a material, or of a construction in which that material has been used. And in particular, it is necessary to achieve these aforementioned objectives with a small amount of luminescent material so that the production costs associated with raw materials such as lanthanide elements do not prevent their use in construction materials.
Descripción de la invención Description of the invention
La presente invención se refiere a una pieza cerámica esmaltada que comprende una composición luminiscente, tal que la composición es invisible en el espectro visible, o IR, pero visible mediante iluminación con luz UV en el rango visible, o en el rango de infrarrojo cercano, y tal que dicha composición luminiscente comprende un agente dopante que es uno o más óxidos de lantánido. The present invention relates to a glazed ceramic piece comprising a luminescent composition, such that the composition is invisible in the visible, or IR, spectrum, but visible by illumination with UV light in the visible range, or in the near infrared range, and such that said luminescent composition comprises a doping agent that is one or more lanthanide oxides.
La presente invención se refiere, más concretamente, a una pieza cerámica esmaltada que comprende: a) un soporte cerámico b) una capa final de esmalte cerámico, c) una composición luminiscente integrada en una zona discreta, o vahas zonas, discretas, de la capa final de esmalte, tal que dicha composición luminiscente comprende: The present invention refers, more specifically, to a glazed ceramic piece that comprises: a) a ceramic support b) a final layer of ceramic glaze, c) a luminescent composition integrated in a discrete area, or several discrete areas, of the final layer of enamel, such that said luminescent composition comprises:
- cristalizaciones con estructura de feldespato; - crystallizations with a feldspar structure;
- una fase vitrea; y - a glassy phase; and
- partículas cristalinas que comprenden uno o más óxidos de lantánido. - crystalline particles comprising one or more lanthanide oxides.
Soporte cerámico” y “capa soporte” se usan de manera indistinta con el mismo significado. La expresión “óxido de lantánido” en esta memoria se puede referir a un óxido de lantánido o a una combinación de óxidos de lantánido. Ceramic support” and “support layer” are used interchangeably with the same meaning. The term "lanthanide oxide" herein may refer to a lanthanide oxide or a combination of lanthanide oxides.
Las partículas cristalinas que comprenden óxido de lantánido están presentes en la composición de modo que forman parte parcialmente de las cristalizaciones con estructura de feldespato y parcialmente dispersas en la fase vitrea, o de forma que no forman parte de las cristalizaciones con estructura de feldespato, sino que están completamente dispersas en la fase vitrea. The crystalline particles comprising lanthanide oxide are present in the composition so that they are partially part of the crystallizations with a feldspar structure and partially dispersed in the glass phase, or so that they are not part of the crystallizations with a feldspar structure, but which are completely dispersed in the glass phase.
Las partículas cristalinas que comprenden óxido de lantánido están presentes, de forma preferente, en la composición, de modo que no forman parte de las cristalizaciones con estructura de feldespato, sino que están dispersas en la fase vitrea principalmente. The crystalline particles comprising lanthanide oxide are preferably present in the composition, so that they are not part of the crystallizations with a feldspar structure, but are mainly dispersed in the glass phase.
El término “dispersas” significa que las partículas cristalinas se encuentran distribuidas en la fase vitrea formando partículas independientes de dicha fase vitrea. Las partículas cristalinas que comprenden óxido de lantánido pueden estar en forma de partículas individuales separadas entre sí o formando aglomerados que están separados entre sí para no formar un continuo percolado. The term “dispersed” means that the crystalline particles are distributed in the glass phase, forming particles independent of said glass phase. The crystalline particles comprising lanthanide oxide may be in the form of individual particles separated from each other or forming agglomerates that are separated from each other so as not to form a percolating continuum.
Las partículas cristalinas que comprenden óxido de lantánido pueden comprender otros cationes, como por ejemplo S¡4+, Al3+, Ca2+, Sr2+, Zn2+, K+ y/o Na+. Crystalline particles comprising lanthanide oxide may comprise other cations, such as Si4 + , Al3 + , Ca2 + , Sr2 + , Zn2 + , K + and/or Na + .
Las partículas cristalinas que comprenden óxido de lantánido están dispuestas en la composición luminiscente en una proporción de óxido de lantánido, respecto al total de óxido de lantánido dosificado en la etapa a) del procedimiento de obtención, tal, que en exposición a luz UV la composición luminiscente produce una señal de luminiscencia de una intensidad de al menos 106, preferentemente de al menos 107, y más preferentemente de al menos 108, para una superficie de 2 cm2, (medido en unidades arbitrarias). Dichos valores de luminiscencia son comparables con la señal de luminiscencia obtenida para la cantidad de óxido de lantánido (100% en peso de óxido de lantánido) de partida sin tratar. Estas medidas de luminiscencia se realizan empleando las mismas condiciones experimentales de medida, y el óxido de lantánido de partica da una señal de luminiscencia de una intensidad de 107. O sea, la cantidad de óxido de lantánido presente en la composición luminiscente es una cantidad tal que la señal de luminiscencia obtenida es de al menos 106en unidades arbitrarias, respecto a la señal de luminiscencia obtenida para el caso en que el 100% de esa cantidad fuese óxido de lantánido puro. También se puede definir la cantidad de óxido de lantánido en la composición luminiscente de manera indirecta, respecto a la cantidad de óxido de lantánido añadido en la etapa a) y una vez que se ha tratado térmicamente. Las partículas cristalinas que comprenden óxido de lantánido están presentes en la composición luminiscente en una proporción de óxido de lantánido, respecto al total de óxido de lantánido dosificado en la etapa a) del procedimiento de obtención, en una proporción tal, que en exposición a luz UV la composición produce una señal de luminiscencia de una intensidad de al menos 106, preferentemente de al menos 107, y más preferentemente de al menos 108, para una superficie de 2 cm2, (medido en unidades arbitrarias), en comparación con la medida realizada para el polvo del óxido de lantánido (100% en peso de óxido de lantánido) de partida con tratamiento térmico a 1220°C 6 minutos similar al de un azulejo cerámico el cual, empleando las mismas condiciones experimentales de medida, da una señal de luminiscencia de una intensidad de 107. Es decir, la respuesta de las composiciones luminiscentes de la presente invención en términos de intensidad de la señal de luminiscencia (medida en unidades arbitrarias) y respecto al óxido de lantánido empleado es al menos 102 veces mayor para unidad porcentual de óxido de lantánido. The crystalline particles comprising lanthanide oxide are arranged in the luminescent composition in a proportion of lanthanide oxide, with respect to the total lanthanide oxide dosed in step a) of the production process, such that when exposed to UV light the composition luminescent produces a luminescence signal of an intensity of at least 10 6 , preferably at least 10 7 , and more preferably at least 10 8 , for a surface area of 2 cm 2 , (measured in arbitrary units). Said luminescence values are comparable with the luminescence signal obtained for the amount of lanthanide oxide (100% by weight of lanthanide oxide) of the untreated starting material. These luminescence measurements are carried out using the same experimental measurement conditions, and the lanthanide oxide of partic acid gives a luminescence signal of an intensity of 10 7 . That is, the amount of lanthanide oxide present in the luminescent composition is an amount such that the luminescence signal obtained is at least 10 6 in arbitrary units, with respect to the luminescence signal obtained for the case in which 100% of that amount was pure lanthanide oxide. The amount of lanthanide oxide in the luminescent composition can also be defined indirectly, with respect to the amount of lanthanide oxide added in step a) and once it has been heat treated. The crystalline particles comprising lanthanide oxide are present in the luminescent composition in a proportion of lanthanide oxide, with respect to the total lanthanide oxide dosed in step a) of the production process, in a proportion such that upon exposure to light UV the composition produces a luminescence signal of an intensity of at least 10 6 , preferably at least 10 7 , and more preferably at least 10 8 , for a surface area of 2 cm 2 , (measured in arbitrary units), compared with the measurement made for the lanthanide oxide powder (100% by weight of lanthanide oxide) starting with heat treatment at 1220°C 6 minutes similar to that of a ceramic tile which, using the same experimental measurement conditions, gives a luminescence signal with an intensity of 10 7 . That is, the response of the luminescent compositions of the present invention in terms of intensity of the luminescence signal (measured in arbitrary units) and with respect to the lanthanide oxide used is at least 10 2 times greater per percentage unit of lanthanide oxide.
Según realizaciones preferentes, estas partículas cristalinas están dispuestas en la composición luminiscente de modo que no forman solución sólida con la fase cristalina de feldespato, ni forman solución sólida con la fase vitrea de la composición luminiscente. Se puede comprobar que no forman ninguna de estas soluciones sólidas por la medida de la luminiscencia como se explica en el párrafo anterior. According to preferred embodiments, these crystalline particles are arranged in the luminescent composition so that they do not form a solid solution with the feldspar crystalline phase, nor do they form a solid solution with the glassy phase of the luminescent composition. It can be verified that they do not form any of these solid solutions by measuring the luminescence as explained in the previous paragraph.
Según realizaciones particulares en la pieza cerámica esmaltada, al menos el 80% del óxido de lantánido en forma de partículas cristalinas, presente en la composición, está en la región de la fase vitrea, preferentemente el 90%, y más preferentemente el 100%La longitud de onda de emisión va a depender del óxido, u óxidos, de lantánido concreto que se utilice. According to particular embodiments in the glazed ceramic piece, at least 80% of the lanthanide oxide in the form of crystalline particles, present in the composition, is in the region of the glass phase, preferably 90%, and more preferably 100%. Emission wavelength will depend on the specific lanthanide oxide, or oxides, used.
No es posible obtener una medida directa de la cantidad de óxido de lantánido dispersa en la fase vitrea (en la que se encuentra de forma mayoñtaña) o incluida en las cristalizaciones con estructura de feldespato, de la composición luminiscente, pero se puede saber de forma indirecta por la señal de luminiscencia que se obtiene. It is not possible to obtain a direct measurement of the amount of lanthanide oxide dispersed in the glass phase (in which it is mostly found) or included in the crystallizations with a feldspar structure, of the luminescent composition, but it can be known. indirect by the luminescence signal obtained.
El tratamiento térmico mencionado en la medida de la luminiscencia consiste en un tratamiento en atmósfera de aire a 1220°C con una permanencia a máxima temperatura de 6 minutos y siguiendo un perfil de temperaturas característico para la obtención de cocción de azulejos cerámicos con una duración total inferior a 60 minutos. La comparación entre la señal de la composición luminiscente que comprende una proporción máxima del 10% en peso del óxido de lantánido y el propio óxido de lantánido al 100% revela un aumento de la eficiencia en el empleo del óxido de lantánido a efectos de la propiedad de luminiscencia. La comparación de la composición luminiscente con el óxido de lantánido tratado térmicamente muestra que los óxidos de lantánido sufren una disminución de su señal luminiscente debido a ser tratamientos térmicos rápidos. La presente invención requiere de tratamientos térmicos para consolidar el esmalte cerámico en la superficie del azulejo cerámico y obtener así las propiedades mecánicas y de resistencia exigibles a estos materiales de construcción. The thermal treatment mentioned in the luminescence measurement consists of a treatment in an air atmosphere at 1220°C with a stay at maximum temperature. of 6 minutes and following a characteristic temperature profile for obtaining ceramic tile firing with a total duration of less than 60 minutes. The comparison between the signal of the luminescent composition comprising a maximum proportion of 10% by weight of the lanthanide oxide and the 100% lanthanide oxide itself reveals an increase in the efficiency in the use of lanthanide oxide for the purposes of the property. of luminescence. Comparison of the luminescent composition with heat-treated lanthanide oxide shows that lanthanide oxides suffer a decrease in their luminescent signal due to rapid heat treatments. The present invention requires heat treatments to consolidate the ceramic glaze on the surface of the ceramic tile and thus obtain the mechanical and resistance properties required for these construction materials.
Los elementos lantánidos cuyos óxidos pueden ser utilizados en la composición luminiscente de la presente invención se pueden seleccionar entre Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, Tm y Eu y combinaciones de los mismos. The lanthanide elements whose oxides can be used in the luminescent composition of the present invention can be selected from Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, Tm and Eu and combinations thereof.
La composición luminiscente comprende una fase vitrea y al menos dos fases cristalinas, una de las fases cristalinas la componen las cristalizaciones con estructura de feldespato y la segunda la componen las partículas cristalinas que comprenden óxido de lantánido. Las partículas cristalinas que comprenden óxido de lantánido están dispersas preferentemente en la región de la fase vitrea. The luminescent composition comprises a glass phase and at least two crystalline phases, one of the crystalline phases is composed of crystallizations with a feldspar structure and the second is composed of crystalline particles that comprise lanthanide oxide. The crystalline particles comprising lanthanide oxide are preferentially dispersed in the region of the glass phase.
La expresión “sustancia activa” o “partículas activas” se refiere a la sustancia o sustancias responsable de la luminiscencia. The expression “active substance” or “active particles” refers to the substance or substances responsible for luminescence.
En la presente memoria la expresión “partículas cristalinas basadas en” o “que comprenden” el óxido de lantánido, se emplea para definir las partículas activas o sustancias activas que están presentes en la composición luminiscente y que se distinguen microestructuralmente de las partículas cristalinas de feldespato y de la fase vitrea. Las partículas cristalinas que comprenden óxido de lantánido se han generado a partir de las partículas de óxidos de lantánidos añadidas a la mezcla precursora de la composición luminiscente y durante el tratamiento térmico de la pieza cerámica son susceptibles de incorporar cationes en solución sólida. Dichos cationes son principalmente cationes procedentes de la fase vitrea como por ejemplo S¡4+, Al3+, Ca2+, Sr2+, Zn2+, K+ y/o Na+. Los autores de la presente invención han constatado que la luminiscencia de dichas partículas cristalinas de óxido de lantánido y otros cationes es más elevada que la correspondiente al óxido de lantánido de partida tratado térmicamente a la misma temperatura. Sorprendentemente según la presente invención para dosificaciones de óxido de lantánido inferiores al 10% en peso (respecto a la mezcla precursora, que no pierde más del 2% en peso durante el tratamiento térmico), los autores han observado una mayor intensidad en el valor comparativo de luminiscencia de la composición luminiscente. Así mismo, según la presente invención se ha observado que dosificaciones de óxido de lantánido superiores al 5% en peso se produce la formación de una nueva fase cristalina basada en silicatos que se correlaciona con una reducción del valor comparativo de la señal luminiscente. Herein the expression “crystalline particles based on” or “comprising” lanthanide oxide is used to define the active particles or active substances that are present in the luminescent composition and that are microstructurally distinguished from feldspar crystalline particles. and the glass phase. The crystalline particles comprising lanthanide oxide have been generated from the lanthanide oxide particles added to the precursor mixture of the luminescent composition and during the heat treatment of the ceramic piece they are susceptible to incorporating cations in solid solution. These cations are mainly cations from the glass phase such as S¡ 4+ , Al 3+ , Ca 2+ , Sr 2+ , Zn 2+ , K + and/or Na + . The authors of the present invention have verified that the luminescence of said crystalline particles of lanthanide oxide and other cations is higher than that corresponding to the starting lanthanide oxide thermally treated at the same temperature. Surprisingly according to the present invention for lanthanide oxide dosages less than 10% by weight (compared to the precursor mixture, which does not lose more than 2% by weight during heat treatment), the authors have observed a greater intensity in the comparative luminescence value of the luminescent composition. Likewise, according to the present invention it has been observed that dosages of lanthanide oxide greater than 5% by weight produce the formation of a new crystalline phase based on silicates that correlates with a reduction in the comparative value of the luminescent signal.
Las partículas cristalinas que comprenden el óxido de lantánido pueden formar aglomerados cristalinos. Las partículas cristalinas o estos aglomerados que pueden formar, están dispersos mayoritariamente en la fase vitrea de la composición luminiscente. The crystalline particles comprising lanthanide oxide can form crystalline agglomerates. The crystalline particles or these agglomerates that they can form are mainly dispersed in the glass phase of the luminescent composition.
En la presente memoria la expresión “óxido de lantánido” se refiere a un compuesto químico que contiene el elemento lantánido en cualquiera de los estados de oxidación descritos en el estado de la técnica, incluido una mezcla de diferentes estados de oxidación. Los elementos lantánidos son llamados “tierras raras” debido a que se encuentran en forma de óxidos. Herein the term “lanthanide oxide” refers to a chemical compound that contains the element lanthanide in any of the oxidation states described in the state of the art, including a mixture of different oxidation states. Lanthanide elements are called “rare earth” elements because they are found in the form of oxides.
En la presente memoria la expresión “estructura cristalina de feldespato” y “cristales de feldespato” se usan de forma indistinta con el mismo significado. En todos los casos significa que el componente al que se hace referencia tiene estructura cristalina de feldespato. Aparte de estas regiones cristalinas con estructura de feldespato, la fase vitrea puede comprender cationes en una proporción equivalente a la de la composición química de un feldespato. Herein the expression “feldspar crystalline structure” and “feldspar crystals” are used interchangeably with the same meaning. In all cases it means that the component referred to has a feldspar crystalline structure. Apart from these crystalline regions with a feldspar structure, the glass phase may comprise cations in a proportion equivalent to that of the chemical composition of a feldspar.
La fase vitrea está presente en la composición luminiscente en una proporción en peso igual o inferior al 30 %, y preferentemente igual o inferior al 20%, respecto al peso correspondiente del conjunto de las fases cristalinas en la composición luminiscente, es decir, tras la etapa h) del procedimiento. The glassy phase is present in the luminescent composition in a proportion by weight equal to or less than 30%, and preferably equal to or less than 20%, with respect to the corresponding weight of all the crystalline phases in the luminescent composition, that is, after stage h) of the procedure.
La expresión “fase vitrea” se refiere a materiales o compuestos inorgánicos que no exhiben un orden cristalino de largo alcance en su estructura atómica. The term “glass phase” refers to inorganic materials or compounds that do not exhibit long-range crystalline order in their atomic structure.
El porcentaje en masa de fases cristalinas de la composición luminiscente es igual o superior al 70% en peso, preferentemente igual o superior al 80% en peso o con especial preferencia superior al 85% en peso respecto al peso total de la composición luminiscente. The percentage by mass of crystalline phases of the luminescent composition is equal to or greater than 70% by weight, preferably equal to or greater than 80% by weight or with particular preference greater than 85% by weight with respect to the total weight of the luminescent composition.
El peso de la composición luminiscente respecto a la pieza cerámica se define en términos de gramaje, g/m2. Según realizaciones particulares, en la cerámica esmaltada, la composición luminiscente tiene un gramaje de entre 10 y 90 gramos/m2, preferentemente entre 20 y 80 gramos/m2, y más preferentemente, de 30 y 60 gramos/m2. The weight of the luminescent composition with respect to the ceramic piece is defined in terms of weight, g/m 2 . According to particular embodiments, in glazed ceramics, the luminescent composition has a grammage of between 10 and 90 grams/m 2 , preferably between 20 and 80 grams/m 2 , and more preferably, 30 and 60 grams/m 2 .
El término “integrada” significa que forman un conjunto inseparable. The term “integrated” means that they form an inseparable whole.
La expresión “zona discreta” significa que la composición luminiscente no está mezclada con el esmalte (como se observa en la figura 4), ni distribuida en toda la capa final de esmalte, sino en una o vahas zonas concretas de la capa final de esmalte. Estas zonas discretas no ocupan más del 50% de la superficie de la capa de esmalte, preferentemente menos del 30% y más preferentemente, ocupan una superficie igual o menor del 10%. The expression “discrete zone” means that the luminescent composition is not mixed with the enamel (as seen in Figure 4), nor distributed throughout the final enamel layer, but in one or several specific areas of the final enamel layer. . These discrete areas do not occupy more than 50% of the surface of the enamel layer, preferably less than 30% and more preferably, they occupy a surface equal to or less than 10%.
De forma preferente, la composición luminiscente está dispuesta en al menos una o más zonas discretas de la capa de esmalte que recubre la pieza cerámica, o capa final de esmalte. Preferably, the luminescent composition is arranged in at least one or more discrete areas of the enamel layer that covers the ceramic piece, or final enamel layer.
El término “capa final” significa que es la que constituye la superficie externa de la pieza, y por lo tanto, visible. The term “final layer” means that it is the one that constitutes the external surface of the piece, and therefore, visible.
La pieza cerámica comprende al menos una capa soporte y una capa final de esmalte sobre la capa soporte. The ceramic piece comprises at least one support layer and a final layer of glaze on the support layer.
Opcionalmente, la pieza cerámica comprende entre la capa soporte y la capa final de esmalte: una capa de engobe cerámico como opacificante del soporte cerámico. Optionally, the ceramic piece comprises between the support layer and the final glaze layer: a layer of ceramic slip as an opacifier for the ceramic support.
Opcionalmente, la pieza cerámica comprende además de la capa de engobe, una primera capa de esmalte cerámico entre la capa soporte y la capa de engobe. Optionally, the ceramic piece comprises, in addition to the slip layer, a first layer of ceramic glaze between the support layer and the slip layer.
La composición luminiscente siempre está en la capa final del esmalte y puede estar sobre el soporte cerámico o sobre una capa de esmalte. En todos los casos se recubre con una capa final de esmalte para que esté integrada en el esmalte de la pieza cerámica. The luminescent composition is always in the final layer of the enamel and can be on the ceramic support or on a layer of enamel. In all cases it is covered with a final layer of enamel so that it is integrated into the glaze of the ceramic piece.
La cantidad de óxidos de lantánido en la composición luminiscente está comprendida entre 0,1% y 10% en peso, incluidos ambos límites, respecto al peso total de la composición luminiscente, preferentemente, entre 0,1 % y 5% en peso y más preferentemente entre 0,1% y 2% en peso, incluidos ambos límites, respecto al peso total de la composición luminiscente. La mezcla precursora de la composición luminiscente da lugar a una tinta, y dicha tinta se deposita en una pieza cerámica esmaltada en verde, esto es, antes de su tratamiento térmico. Tras el proceso de tratamiento térmico la tinta se ha convertido en la composición luminiscente integrada en la pieza cerámica esmaltada. The amount of lanthanide oxides in the luminescent composition is between 0.1% and 10% by weight, including both limits, with respect to the total weight of the luminescent composition, preferably, between 0.1% and 5% by weight and more preferably between 0.1% and 2% by weight, including both limits, with respect to the total weight of the luminescent composition. The precursor mixture of the luminescent composition gives rise to an ink, and said ink is deposited on a green glazed ceramic piece, that is, before its heat treatment. After the heat treatment process, the ink has become the luminescent composition integrated into the glazed ceramic piece.
La mezcla precursora de la composición luminiscente de la invención, con la que se obtiene una tinta, se trata térmicamente durante el procedimiento de obtención de la pieza cerámica, pero como las únicas pérdidas que se producen por calcinación, fundamentalmente, son las de la deshidroxilación del caolín que presentan un valor entre el 8-12% en peso del propio caolín. La proporción de caolín empleada en la mezcla precursora de la composición luminiscente es entre un 5 y un 10% en peso. La pérdida de peso que experimenta la mezcla precursor tras el tratamiento térmico está así comprendida entre 0,4 y 1 ,2% en peso. Se puede confirmar que la cantidad de óxidos de lantánido en la composición luminiscente y en la tinta se encuentra dentro del mismo intervalo. The precursor mixture of the luminescent composition of the invention, with which an ink is obtained, is thermally treated during the process of obtaining the ceramic piece, but since the only losses that occur due to calcination, fundamentally, are those of dehydroxylation of kaolin that have a value between 8-12% by weight of kaolin itself. The proportion of kaolin used in the precursor mixture of the luminescent composition is between 5 and 10% by weight. The weight loss experienced by the precursor mixture after heat treatment is thus between 0.4 and 1.2% by weight. It can be confirmed that the amount of lanthanide oxides in the luminescent composition and in the ink is within the same range.
La composición luminiscente, tal como se ha definido anteriormente, se obtiene una vez se ha aplicado la tinta a una pieza cerámica y se ha tratado térmicamente. The luminescent composition, as defined above, is obtained once the ink has been applied to a ceramic piece and it has been heat treated.
El término “tinta”, “tinta digital” o “tinta ink-jet” o “tinta cerámica” se refiere a la tinta que comprende la mezcla precursora de la “composición luminiscente” de la invención. La impresión es una de las formas en las que se puede aplicar la tinta a una pieza cerámica. The term "ink", "digital ink" or "ink-jet ink" or "ceramic ink" refers to the ink that comprises the precursor mixture of the "luminescent composition" of the invention. Printing is one of the ways in which ink can be applied to a ceramic piece.
La tinta se prepara con los precursores de la composición luminiscente y que han sido tratados térmicamente y molturados para su incorporación a la mezcla que da lugar a la tinta The ink is prepared with the precursors of the luminescent composition that have been heat treated and ground for incorporation into the mixture that gives rise to the ink.
Dado que la tinta ya comprende el óxido de lantánido, su señal luminiscente en términos del espectro de emisión es similar en “verde” y en cocido, es decir, cuando ya se ha obtenido la composición luminiscente. La diferencia es que en verde es alterable y en cocido forma parte integrada de la pieza cerámica. Y esta característica es una señal de la preservación de la estructura cristalina de las partículas que comprenden óxido de lantánido. Así mismo, la señal luminiscente se altera en intensidad como consecuencia del tratamiento térmico. Since the ink already includes lanthanide oxide, its luminescent signal in terms of the emission spectrum is similar in “green” and in firing, that is, when the luminescent composition has already been obtained. The difference is that in green it is alterable and in fired it is an integrated part of the ceramic piece. And this feature is a sign of the preservation of the crystalline structure of the particles comprising lanthanide oxide. Likewise, the luminescent signal alters in intensity as a consequence of the thermal treatment.
La composición luminiscente, según realizaciones particulares, comprende una fase amorfa o fase vitrea y las siguientes fases cristalinas: The luminescent composition, according to particular embodiments, comprises an amorphous phase or glassy phase and the following crystalline phases:
- una fase cristalina en forma de partículas con estructura de feldespato, que hemos llamado “cristalizaciones con estructura de feldespato”; y - una fase cristalina que comprende uno o más óxidos de los elementos: Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La, Tm y Eu, o combinaciones de los mismos. - a crystalline phase in the form of particles with a feldspar structure, which we have called “crystallizations with a feldspar structure”; and - a crystalline phase comprising one or more oxides of the elements: Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La, Tm and Eu, or combinations thereof.
Las partículas cristalinas que comprenden los óxidos de lantánidos son las partículas activas luminiscentes de la composición luminiscente. The crystalline particles comprising the lanthanide oxides are the luminescent active particles of the luminescent composition.
La composición luminiscente según realizaciones preferentes comprende como sustancia activa luminiscente partículas cristalinas que comprenden óxido de europio. The luminescent composition according to preferred embodiments comprises crystalline particles comprising europium oxide as a luminescent active substance.
“Óxido de europio” se refiere a un óxido que tiene europio en cualquiera de sus estados de oxidación. “Europium oxide” refers to an oxide having europium in any of its oxidation states.
Las cristalizaciones con estructura de feldespato se caracterizan por presentar una morfología dual con partículas de tamaño en el rango de micrometres y partículas de tamaño en el rango de nanometres. Las partículas microcñstalinas con estructura de feldespato se caracterizan por estar rodeadas por regiones de nanopartículas con estructura de feldespato y fase vitrea. Las partículas microcñstalinas con estructura de feldespato presentan un rango de tamaños entre 1 y 12 pm, preferentemente entre 2 y 8 pm, y de forma más preferente entre 3 y 6 pm. Las partículas nanoestructuradas o nanopartículas con estructura de feldespato presentan tamaños de partícula <500 nm, preferentemente <350 nm, y de forma más preferente <200 nm. Crystallizations with a feldspar structure are characterized by presenting a dual morphology with particles of size in the range of micrometers and particles of size in the range of nanometers. Microcrystalline particles with a feldspar structure are characterized by being surrounded by regions of nanoparticles with a feldspar structure and glass phase. The microcrystalline particles with a feldspar structure have a size range between 1 and 12 pm, preferably between 2 and 8 pm, and more preferably between 3 and 6 pm. Nanostructured particles or nanoparticles with a feldspar structure have particle sizes <500 nm, preferably <350 nm, and more preferably <200 nm.
Es muy habitual en nanopartículas dar solo el límite superior, ya que está implícito que cuando el tamaño es menor de 1 nm, las nanopartículas dejarían de ser nanométñcas para convertirse en subnanométñcas. Por otro lado, los tamaños de la red cristalina suelen ser subnanométñcos, si se llega a un tamaño de una celdilla unidad ya no hay una estructura cristalina a largo alcance y dejan de ser partículas cristalinas. It is very common for nanoparticles to give only the upper limit, since it is implicit that when the size is less than 1 nm, the nanoparticles would stop being nanometric and become sub-nanometric. On the other hand, the sizes of the crystal lattice are usually subnanometric; if the size of one unit cell is reached, there is no longer a long-range crystalline structure and they are no longer crystalline particles.
En la presente invención las partículas cristalinas que comprenden óxido de lantánido en la composición luminiscente se encuentran localizadas preferentemente en la región donde está situada la fase vitrea y las partículas nanoestructuradas con estructura de feldespato. Es decir, se encuentran entre las partículas microcñstalinas con estructura de feldespato, coexisten con las micropartículas con estructura de feldespato, las nanopartículas con estructura de feldespato y la fase vitrea. Las partículas que comprenden óxido de lantánido en la composición luminiscente son las partículas activas y están caracterizadas por presentar tamaños de partícula <2 pm, preferentemente, <1 ,5 pm, y de forma preferente <1 pm. En una realización particular, las partículas cristalinas que comprenden óxido de lantánido son partículas cristalinas que comprenden óxido de europio. In the present invention, the crystalline particles comprising lanthanide oxide in the luminescent composition are preferably located in the region where the glass phase and the nanostructured particles with a feldspar structure are located. That is, they are found among the microcñstalline particles with a feldspar structure, they coexist with the microparticles with a feldspar structure, the nanoparticles with a feldspar structure and the glass phase. The particles comprising lanthanide oxide in the luminescent composition are the active particles and are characterized by having particle sizes <2 pm, preferably <1.5 pm, and preferably <1 pm. In a particular embodiment, the crystalline particles comprising lanthanide oxide are crystalline particles comprising europium oxide.
El esmalte que forma parte de la pieza cerámica puede comprender entre las fases cristalinas habituales empleadas en el sector de los esmaltes cerámicos, fases cristalinas terciarias, tales como fases de: SiC>2 tipo cuarzo o cristobalita; zircón, ZrSiC ; circona, ZrO2; wollastonita, CaSiCh; diópsido, MgCaS¡206; mullita, AleSkO ; espinela, MgAhC ; gahnita, ZnAhC ; cordierita, (Mg.Fe^AUSisOis; esfena, CaTiSiOs; y sus soluciones sólidas. El papel de las fases cristalinas terciarias definidas en los esmaltes cerámicos es el de modificar las propiedades mecánicas del esmalte y/o su respuesta óptica. La presencia de estas fases no contribuye a la respuesta luminiscente activa de la composición luminiscente. Su presencia está relacionada con los procesos y usos habituales en los esmaltes cerámicos, en concreto para azulejos. The glaze that is part of the ceramic piece may include, among the usual crystalline phases used in the ceramic glaze sector, tertiary crystalline phases, such as phases of: SiC>2 type quartz or cristobalite; zircon, ZrSiC; zirconia, ZrO 2 ; wollastonite, CaSiCh; diopside, MgCaS¡ 2 0 6 ; mullite, AleSkO ; spinel, MgAhC; gahnite, ZnAhC ; cordierite, (Mg.Fe^AUSisOis; sphene, CaTiSiOs; and its solid solutions. The role of the tertiary crystalline phases defined in ceramic glazes is to modify the mechanical properties of the glaze and/or its optical response. The presence of these phases does not contribute to the active luminescent response of the luminescent composition. Its presence is related to the usual processes and uses in ceramic glazes, specifically for tiles.
Las cristalizaciones con estructura de feldespato que forman parte de la composición luminiscente tienen preferentemente, estructura de tipo plagioclasas. Las plagioclasas son un conjunto de minerales que pertenecen al grupo de los feldespatos y que cristalizan en el sistema triclínico. Pertenecen al grupo de los tectosilicates, que incluyen sodio y calcio en su composición; preferiblemente tienen estructura de albita, oligoclasa, andesina, labradorita, banalsita, bytownita, anortita o combinaciones de ellas. The crystallizations with a feldspar structure that are part of the luminescent composition preferably have a plagioclase type structure. Plagioclases are a group of minerals that belong to the feldspar group and crystallize in the triclinic system. They belong to the group of tectosilicates, which include sodium and calcium in their composition; preferably they have a structure of albite, oligoclase, andesine, labradorite, banalsite, bytownite, anorthite or combinations of them.
Dicha composición luminiscente dispuesta en una o vahas zonas discretas en la capa final de esmalte de la pieza cerámica puede tener diversas formas de modo que permite asociar a ella una información de la pieza cerámica para su reconocimiento. Said luminescent composition arranged in one or several discrete areas in the final enamel layer of the ceramic piece can have various shapes so that it allows information about the ceramic piece to be associated with it for recognition.
Según realizaciones particulares, la pieza cerámica esmaltada, comprende la composición luminiscente dispuesta de tal modo que se puede ver un patrón reconocible cuando se ilumina con luz ultravioleta. Es decir, la composición luminiscente tiene una forma determinada que se obtiene en el momento de la decoración de la pieza cerámica. According to particular embodiments, the glazed ceramic piece comprises the luminescent composition arranged in such a way that a recognizable pattern can be seen when illuminated with ultraviolet light. That is, the luminescent composition has a certain shape that is obtained at the time of decorating the ceramic piece.
La composición luminiscente es visible en el espectro visible o infrarrojo cercano, bajo iluminación ultravioleta generando en la superficie de la pieza al ser iluminada con dicha luz, una imagen de un patrón reconocible, tal como una imagen de un código. The luminescent composition is visible in the visible or near-infrared spectrum, under ultraviolet illumination, generating on the surface of the piece when illuminated with said light, an image of a recognizable pattern, such as an image of a code.
Por ejemplo, según realizaciones particulares, la composición luminiscente tiene una forma de un patrón reconocible seleccionado entre, por ejemplo, códigos tal como un código QR, un código de barras, un código de nomenclatura, un código de letras, textos, símbolos, nombres, logotipos, marcas, firmas números, enlace a una página web, una figura decorativa, un grafismo y una textura. For example, according to particular embodiments, the luminescent composition has a form of a recognizable pattern selected from, for example, codes such as a QR code, a barcode, a nomenclature code, a letter code, texts, symbols, names, logos, brands, signatures, numbers, link to a web page, a decorative figure, a graphic and a texture.
Se puede emplear una técnica de reconocimiento de imágenes, pero no es esencial. Se puede generar según la invención un elemento reconocible, por ejemplo, un código de letras como es XL, que significa “Extra Large”. An image recognition technique can be used, but is not essential. According to the invention, a recognizable element can be generated, for example, a letter code such as XL, which means “Extra Large”.
La composición luminiscente no se distingue del resto de la superficie de la pieza esmaltada por su color ni por su textura. Al estar la composición luminiscente integrada, esto es, dentro de la capa de esmalte final, las diferencias de brillo generadas por diferencias en el índice de difracción de la luz y por la rugosidad de la superficie de la composición luminiscente respecto al soporte cerámico o al esmalte, no son apreciables por el ojo humano, incluso para individuos entrenados en el examen de superficies de piezas cerámicas. The luminescent composition is not distinguished from the rest of the surface of the enameled piece by its color or texture. Since the luminescent composition is integrated, that is, within the final enamel layer, the differences in brightness generated by differences in the light diffraction index and by the roughness of the surface of the luminescent composition with respect to the ceramic support or the enamel, are not noticeable by the human eye, even for individuals trained in examining the surfaces of ceramic pieces.
La ventaja de la incorporación de la composición luminiscente en una pieza cerámica se corresponde con la integración en la capa final del esmalte de la pieza, de forma que no es perceptible su presencia bajo iluminación visible, mientras que mediante exposición a una fuente de luz UV se muestra el dibujo o patrón representado por la composición luminiscente. The advantage of incorporating the luminescent composition in a ceramic piece corresponds to its integration into the final layer of the glaze of the piece, so that its presence is not perceptible under visible lighting, while through exposure to a UV light source The drawing or pattern represented by the luminescent composition is shown.
Las ventajas que produce la detección de esta composición bajo una iluminación con luz UV permiten generar: efectos de doble decoración solo visible con luz UV para discotecas o espacios públicos de distinto tipo, etc. textos o símbolos, nombre, logotipos, marcas y/o identidad de empresas fabricantes o de los clientes, códigos QR o códigos de barra como enlace a una página web de información que contengan número de lote de producción, características del producto o certificado de materias primas empleadas, firma de artista, número de serie o marca de autor de una colección de piezas cerámicas. The advantages produced by the detection of this composition under UV light illumination make it possible to generate: double decoration effects only visible with UV light for nightclubs or public spaces of different types, etc. texts or symbols, name, logos, brands and/or identity of manufacturing companies or clients, QR codes or bar codes as a link to an information web page containing production batch number, product characteristics or certificate of materials raw materials used, artist's signature, serial number or author's mark of a collection of ceramic pieces.
En particular un sistema de trazabilidad para piezas cerámicas comprende: In particular, a traceability system for ceramic pieces includes:
- un código formado por la composición luminiscente en la pieza cerámica que ha sido sinterizado con la propia pieza cerámica - a code formed by the luminescent composition in the ceramic piece that has been sintered with the ceramic piece itself
- un sistema de lectura de dicho código - la información correspondiente a la pieza cerámica, almacenada en un sistema informático. - a system for reading said code - the information corresponding to the ceramic piece, stored in a computer system.
Según realizaciones particulares, la pieza cerámica comprende una composición luminiscente que es un código, que: According to particular embodiments, the ceramic piece comprises a luminescent composition that is a code, which:
- no es visible cuando se ilumina con luz blanca y por tanto no interfiere con la decoración de la pieza cerámica, - it is not visible when illuminated with white light and therefore does not interfere with the decoration of the ceramic piece,
- es visible con iluminación mediante luz UV en el rango visible o en el rango de infrarrojo cercano (no siendo visible al ojo humano), - is visible with UV light illumination in the visible range or in the near infrared range (not being visible to the human eye),
- es indeleble y permanente - is indelible and permanent
- está asociado con la información del producto. - is associated with product information.
De modo preferente, la pieza cerámica de la invención es un azulejo o una baldosa.Preferably, the ceramic piece of the invention is a tile or a tile.
El proceso de impresión es el proceso preferente para integrar la composición luminiscente en el esmalte de la pieza cerámica. Para generar, por ejemplo, un código con la composición luminiscente, la impresión es la mejor solución en términos de resolución y costes. Se pueden emplear otras técnicas, pero son de menos resolución y con un coste mayor. The printing process is the preferred process to integrate the luminescent composition into the glaze of the ceramic piece. To generate, for example, a code with the luminescent composition, printing is the best solution in terms of resolution and costs. Other techniques can be used, but they have less resolution and a higher cost.
El empleo de una composición luminiscente integrada en el esmalte de una pieza cerámica permite preservar las cualidades estéticas de la cerámica bajo luz visible y las características técnicas de dicha cerámica como son su fácil limpieza, resistencia a las manchas, resistencia a los agentes químicos, resistencia mecánica y resistencia a la exposición lumínica. The use of a luminescent composition integrated into the glaze of a ceramic piece allows preserving the aesthetic qualities of the ceramic under visible light and the technical characteristics of said ceramic such as its easy cleaning, resistance to stains, resistance to chemical agents, resistance mechanics and resistance to light exposure.
En la presente invención, la pieza cerámica comprende un soporte o capa soporte que puede ser de cualquier material conocido en la técnica común en la industria cerámica, en particular, puede ser un soporte seleccionado entre gres porcelánico, gres rojo, pasta blanca, terracota o clinker. Estos soportes conforman las cuatro tipologías de producto más comunes en la industria de azulejos cerámicos. In the present invention, the ceramic piece comprises a support or support layer that can be made of any material known in the common art in the ceramic industry, in particular, it can be a support selected from porcelain stoneware, red stoneware, white body, terracotta or clinker. These supports make up the four most common product types in the ceramic tile industry.
La presente invención se refiere también a un procedimiento para la obtención de la pieza cerámica definida anteriormente. La obtención una pieza cerámica esmaltada que comprende la composición luminiscente integrada definida anteriormente, comprende: a) Homogeneización de una mezcla precursora de la composición luminiscente mediante molienda húmeda; b) Secado de la composición homogeneizada obtenida en la etapa a); c) Tamizado del producto obtenido en la etapa b); d) Tratamiento térmico en atmósfera de aire del producto obtenido en la etapa c); obteniendo una composición luminiscente precursora; e) Molturación para acondicionado del tamaño de partícula de la composición luminiscente precursora obtenida en la etapa d); f) formación de una tinta cerámica con la composición luminiscente precursora resultante de la etapa e), g) decoración de una pieza cerámica en verde con la tinta cerámica de la etapa f) y h) cocción de la pieza cerámica que comprende la composición luminiscente dando lugar a la pieza esmaltada. The present invention also refers to a procedure for obtaining the ceramic piece defined above. Obtaining a glazed ceramic piece that comprises the integrated luminescent composition defined above, comprises: a) Homogenization of a precursor mixture of the luminescent composition by wet grinding; b) Drying of the homogenized composition obtained in step a); c) Sifting of the product obtained in stage b); d) Thermal treatment in an air atmosphere of the product obtained in stage c); obtaining a precursor luminescent composition; e) Grinding to condition the particle size of the precursor luminescent composition obtained in step d); f) formation of a ceramic ink with the precursor luminescent composition resulting from step e), g) decoration of a ceramic piece in green with the ceramic ink from step f) and h) firing of the ceramic piece that comprises the luminescent composition giving place to the enameled piece.
Las etapas d) y e) descritas no se realizan en los procedimientos según el estado de la técnica. The steps d) and e) described are not carried out in the procedures according to the state of the art.
La mezcla precursora de la composición luminiscente, de la etapa a), comprende una frita, caolín, agua, dispersante y óxido de lantánido. The precursor mixture of the luminescent composition, in step a), comprises a frit, kaolin, water, dispersant and lanthanide oxide.
Los materiales que se pueden utilizar para las fritas y el dispersante son habituales en la técnica. En particular, en esta invención se pueden utilizar todos los materiales descritos en el documento WO2016155909 y en las proporciones que se indican en WO2016155909. Son fritas correspondientes a esmaltes vitro-cerámicos que presentan calidez térmica. Los materiales empleados y los procedimientos seguidos en WO2016155909 se han seguido para obtener las fritas empleadas en la presente invención. The materials that can be used for the frits and dispersant are common in the art. In particular, all the materials described in document WO2016155909 and in the proportions indicated in WO2016155909 can be used in this invention. They are frits corresponding to vitro-ceramic enamels that present thermal warmth. The materials used and the procedures followed in WO2016155909 have been followed to obtain the frits used in the present invention.
El caolín puede ser cualquiera, y preferentemente que contenga al menos un 35% en peso equivalente de AI2O3. The kaolin can be any, and preferably contain at least 35% by equivalent weight of AI2O3.
Un esmalte se obtiene tratando térmicamente una mezcla conformada de una frita, caolín, agua y dispersante. En el estado de la técnica se emplea así mismo el término esmalte líquido o barbotina de esmalte o esmalte en polvo para referirse a la mezcla precursora que una vez tratada térmicamente da lugar al esmalte cerámico. A glaze is obtained by thermally treating a mixture of a frit, kaolin, water and dispersant. In the state of the art, the term enamel is also used. liquid or enamel slip or enamel powder to refer to the precursor mixture that, once heat treated, gives rise to ceramic enamel.
Como el esmalte y la mezcla precursora de la composición luminiscente tienen matrices muy similares, esto es, que su comportamiento en términos de cocción presenta valores casi ¡guales de temperaturas de reblandecimiento, fusión y estiramiento, así como coeficientes térmicos de expansión que no difieren en más de un 5% en sus valores, dicha similitud produce la integración de forma efectiva de la composición luminiscente resultante y el esmalte de la pieza cerámica. As the enamel and the precursor mixture of the luminescent composition have very similar matrices, that is, their behavior in terms of firing presents almost equal values of softening, melting and stretching temperatures, as well as thermal expansion coefficients that do not differ in more than 5% in their values, said similarity produces the effective integration of the resulting luminescent composition and the glaze of the ceramic piece.
El tamaño de las partículas del material de partida del óxido(s) de lantánido empleadas en la composición luminiscente precursora (en la etapa a)) presenta un valor de dso de entre 1±0,5 pm y 12±1 pm, preferentemente, entre 2±1 pm y 8±1 pm, y de forma más preferente aún de entre 3±1 y 6±1 pm. The size of the particles of the starting material of the lanthanide oxide(s) used in the precursor luminescent composition (in step a)) has a dso value of between 1±0.5 pm and 12±1 pm, preferably, between 2±1 pm and 8±1 pm, and even more preferably between 3±1 and 6±1 pm.
El secado de la composición homogeneizada obtenida en la etapa a) se realiza de manera convencional en la tecnología de procesado de esmaltes para piezas cerámicas, tales como azulejos, por ejemplo, mediante una estufa de aire forzado a 60°C durante 4 horas. El tamizado del producto obtenido en la etapa b) se realiza de manera convencional en la tecnología de procesado de esmaltes para piezas cerámicas, tales como azulejos, por ejemplo, mediante un vibrotamiz que emplea una malla de acero inoxidable de 150 mesh que equivale a una luz de malla de 100 pm. The drying of the homogenized composition obtained in step a) is carried out in a conventional manner in the glaze processing technology for ceramic pieces, such as tiles, for example, using a forced air oven at 60°C for 4 hours. The sieving of the product obtained in step b) is carried out in a conventional manner in the technology of processing glazes for ceramic pieces, such as tiles, for example, using a vibrosieve that uses a 150 mesh stainless steel mesh that is equivalent to a mesh light of 100 pm.
El tratamiento térmico en atmósfera de aire del producto obtenido en la etapa c) se realiza de manera convencional en la tecnología de procesado de esmaltes para piezas cerámicas como azulejos cerámicos, por ejemplo, mediante un horno eléctrico o un horno a gas dotado de regulación térmica para seguir un ciclo térmico programado. The thermal treatment in an air atmosphere of the product obtained in step c) is carried out in a conventional manner in the glaze processing technology for ceramic pieces such as ceramic tiles, for example, using an electric oven or a gas oven equipped with thermal regulation. to follow a programmed thermal cycle.
La composición luminiscente precursora obtenida mediante las etapas a) a d) del procedimiento definido anteriormente comprende: The precursor luminescent composition obtained by steps a) to d) of the procedure defined above comprises:
- frita; - fried;
- caolina; y - kaolin; and
- partículas cristalinas de uno o más óxidos de lantánido. - crystalline particles of one or more lanthanide oxides.
La composición luminiscente precursora no es un producto que se aísla, sino que es únicamente el producto resultante de la etapa d). Por ello, no se puede definir por los componentes que se utilicen en la etapa a) del procedimiento, porque han sufrido vahas transformaciones de modo que solo se puede definir a través de estas etapas del procedimiento. The precursor luminescent composition is not a product that is isolated, but is only the product resulting from step d). Therefore, it cannot be defined by the components that are used in stage a) of the procedure, because they have undergone various transformations so that they can only be defined through these stages of the procedure.
La etapa g) del procedimiento comprende: Stage g) of the procedure includes:
- depositar en verde la tinta cerámica obtenida en la etapa f) del procedimiento: - deposit the ceramic ink obtained in step f) of the procedure in green:
- directamente sobre la capa soporte en verde de la pieza cerámica, o- directly on the green support layer of the ceramic piece, or
- sobre una primera capa de esmalte depositada sobre la capa soporte en verde o - on a first layer of enamel deposited on the support layer in green or
- sobre una capa de esmalte depositada sobre una capa de engobe depositada sobre la capa soporte en verde. - on a layer of enamel deposited on a layer of slip deposited on the green support layer.
En el caso de que sea depositada la tinta sobre una primera capa de esmalte, depositada a su vez sobre la capa soporte en verde, entonces, se aplicará una capa final de esmalte sobre ella. In the event that the ink is deposited on a first layer of enamel, which is in turn deposited on the green support layer, then a final layer of enamel will be applied over it.
En el caso de que sea depositada la tinta directamente sobre la capa soporte en verde, entonces, se aplicará una capa de esmalte sobre ella. If the ink is deposited directly on the green support layer, then a layer of enamel will be applied over it.
La composición luminiscente se integra en el esmalte de la pieza cerámica en la etapa g) mediante, por ejemplo, decoración digital en la pieza en verde, esto es, antes de su tratamiento térmico en la etapa h). La pieza cerámica tiene que someterse en la etapa h) a un tratamiento térmico de sintehzación posterior para obtener la pieza cerámica final. The luminescent composition is integrated into the glaze of the ceramic piece in step g) through, for example, digital decoration on the piece in green, that is, before its heat treatment in step h). The ceramic piece must be subjected in step h) to a subsequent synthesizing heat treatment to obtain the final ceramic piece.
Se puede realizar la aplicación de la tinta con cualquiera de los métodos de impresión conocidos: impresión planográfica, impresión por huecograbado, impresión digital. The ink application can be carried out with any of the known printing methods: planographic printing, gravure printing, digital printing.
La tinta cerámica necesariamente tiene que tener las propiedades habituales de las tintas empleadas en el sector. Lo esencial es la composición luminiscente precursora que incluye.The ceramic ink necessarily has to have the usual properties of the inks used in the sector. The essential thing is the precursor luminescent composition that it includes.
En la etapa f) la obtención de la tinta se consigue mediante un proceso de dispersión en medio líquido por agitación mecánica de una composición que comprende: In step f) obtaining the ink is achieved through a dispersion process in a liquid medium by mechanical stirring of a composition that comprises:
- una mezcla precursora de la composición luminiscente resultado de la etapa e);- a precursor mixture of the luminescent composition resulting from step e);
- un solvente; y - a solvent; and
- un dispersante. La obtención de tintas se realiza por un procedimiento convencional. Tanto los solventes que se pueden utilizar según la presente invención como los dispersantes, son cualquiera de uso habitual en el sector. - a dispersant. Obtaining inks is carried out by a conventional procedure. Both the solvents that can be used according to the present invention and the dispersants are any commonly used in the sector.
El término “solvente” se refiere a al menos una sustancia química que disuelve un soluto (sólido, líquido o gas, químicamente diferente). Generalmente el solvente es un líquido a la temperatura de trabajo. En esta invención el término solvente se emplea así mismo para preparar una suspensión de al menos un sólido con baja solubilidad en un líquido para su procesado. Los términos solvente, disolvente o vehículo se emplean como equivalentes en esta invención. The term “solvent” refers to at least one chemical substance that dissolves a solute (solid, liquid or gas, chemically different). Generally the solvent is a liquid at the working temperature. In this invention, the term solvent is also used to prepare a suspension of at least one solid with low solubility in a liquid for processing. The terms solvent, solvent or vehicle are used as equivalents in this invention.
Un procedimiento preferido de incorporación de la composición luminiscente a la pieza cerámica en verde consiste en un proceso de decoración digital mediante una tinta cerámica digital o tinta ink-jet, obtenida en la etapa f) del procedimiento. Esta tinta comprende al menos un óxido de lantánido - que se ha incluido en la etapa a) del procedimiento - y un solvente, que se incluye en la etapa f), y, preferentemente el solvente es un compuesto químico orgánico, o es de base acuosa o una mezcla de ambos. La tinta además comprende un agente dispersante que actúa aumentando la estabilidad de la tinta y su contenido en sólidos. El proceso de decoración se realiza en la pieza en verde (que se cuece después) mediante impresión, por ejemplo, impresión digital o impresión ink-jet. A preferred procedure for incorporating the luminescent composition into the green ceramic piece consists of a digital decoration process using a digital ceramic ink or ink-jet ink, obtained in step f) of the procedure. This ink comprises at least one lanthanide oxide - which has been included in step a) of the procedure - and a solvent, which is included in step f), and, preferably the solvent is an organic chemical compound, or is base aqueous or a mixture of both. The ink also includes a dispersing agent that acts by increasing the stability of the ink and its solids content. The decoration process is carried out on the green piece (which is then fired) by printing, for example, digital printing or ink-jet printing.
La etapa h) del procedimiento comprende: Stage h) of the procedure includes:
- realizar un tratamiento térmico de la pieza resultante de la etapa g) anterior, mediante el cual se consolida la composición luminiscente y se convierte en una parte solidaria con la pieza cerámica, al quedar integrada en la misma. - carry out a heat treatment of the piece resulting from step g) above, through which the luminescent composition is consolidated and becomes a part integral with the ceramic piece, as it is integrated into it.
En la presente invención, el tratamiento térmico de la etapa h) se realiza a una temperatura de cocción entre 1100 y 1240°C, preferentemente entre 1120°C y 1230°C, y más preferentemente entre 1130°C y 1225°C. El tiempo de duración del tratamiento térmico requiere un ciclo térmico con una duración total de entre 45 minutos a 120 minutos con un tiempo de estancia a la temperatura máxima de tratamiento entre 6 minutos y 60 minutos. El tratamiento térmico se realiza en hornos estándar de tratamiento térmico para la industria de piezas cerámicas, como azulejos, como son los hornos túnel de gas u hornos eléctricos. La composición de la invención se puede usar también para la autenticación o lucha contra la falsificación de documentos de seguridad, artículos de seguridad y objetos de valor. In the present invention, the heat treatment of step h) is carried out at a cooking temperature between 1100 and 1240°C, preferably between 1120°C and 1230°C, and more preferably between 1130°C and 1225°C. The duration of the heat treatment requires a thermal cycle with a total duration of between 45 minutes to 120 minutes with a stay time at the maximum treatment temperature between 6 minutes and 60 minutes. The heat treatment is carried out in standard heat treatment ovens for the ceramic pieces industry, such as tiles, such as gas tunnel ovens or electric ovens. The composition of the invention can also be used for the authentication or anti-counterfeiting of security documents, security articles and valuables.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Micrografías obtenidas por microscopía electrónica de barrido de las mezclas precursoras de las composiciones luminiscentes tratadas térmicamente a distintas temperaturas en la etapa d) y de las mezclas precursoras tras la molturación de la etapa e). Micrografías correspondientes a: A) CL1 1100°C; B) CL1 1220°C; C) CL2 1100°C; y D) CL2 1220°C. La temperatura indicada hace mención a la temperatura de tratamiento en d) y la referencia a la composición luminiscente es la referencia de la composición de la mezcla precursora. Figure 1. Micrographs obtained by scanning electron microscopy of the precursor mixtures of the luminescent compositions thermally treated at different temperatures in step d) and of the precursor mixtures after grinding in step e). Micrographs corresponding to: A) CL1 1100°C; B) CL1 1220°C; C) CL2 1100°C; and D) CL2 1220°C. The indicated temperature refers to the treatment temperature in d) and the reference to the luminescent composition is the reference to the composition of the precursor mixture.
Figura 2. Micrografías obtenidas por microscopía electrónica de barrido de las composiciones luminiscentes CL6 tras la etapa h). Micrografías correspondientes a las composiciones luminiscentes pulidas y atacadas químicamente empleando una solución de HF al 5% durante 2 segundos. Las micrografías se corresponden con diferentes magnificaciones. En las micrografías las regiones más oscuras se corresponden con partículas cristalinas de fase feldespato, 1 , y las regiones más claras con partículas cristalinas que comprenden óxidos de lantánido, 2. La fase vitrea no se observa en la micrografía debido a que para resaltar la microestructura se realiza un ataque químico de la superficie pulida que elimina dicha fase vitrea. Así los huecos entre las partículas cristalinas constituyen las regiones donde se ubica la fase vitrea. Figure 2. Micrographs obtained by scanning electron microscopy of the CL6 luminescent compositions after step h). Micrographs corresponding to the luminescent compositions polished and chemically etched using a 5% HF solution for 2 seconds. The micrographs correspond to different magnifications. In the micrographs, the darker regions correspond to crystalline particles of the feldspar phase, 1, and the lighter regions to crystalline particles that comprise lanthanide oxides, 2. The glassy phase is not observed in the micrograph because to highlight the microstructure A chemical attack is carried out on the polished surface that eliminates said glassy phase. Thus the gaps between the crystalline particles constitute the regions where the glass phase is located.
Figura 3. Azulejo cerámico de gres porcelánico esmaltado que presenta dibujos en forma de rectángulo mediante la tinta T3 una vez cocido y bajo iluminación UV. Figure 3. Glazed porcelain stoneware ceramic tile that presents rectangle-shaped drawings using T3 ink once fired and under UV lighting.
Figura 4. Esquema de algunas opciones de integración de una composición luminiscente 5 en una pieza cerámica. La integración de una composición luminiscente 5 en un esmalte cerámico 4 sobre un soporte cerámico 3 se realiza depositando la composición luminiscente 5 bien sobre el soporte cerámico 3, o bien sobre una capa de esmalte 6 que está recubriendo el soporte cerámico 3, o bien sobre una capa de esmalte 6 que se encuentra recubriendo una capa de engobe 7 recubriendo el soporte cerámico 3. Figure 4. Scheme of some options for integrating a luminescent composition 5 into a ceramic piece. The integration of a luminescent composition 5 in a ceramic enamel 4 on a ceramic support 3 is carried out by depositing the luminescent composition 5 either on the ceramic support 3, or on a layer of enamel 6 that is covering the ceramic support 3, or on a layer of enamel 6 that is covering a layer of slip 7 covering the ceramic support 3.
Figura 5. Azulejo cerámico de gres porcelánico esmaltado e integrando una composición luminiscente CL1 formulada con la tinta T3 para impresión digital formando dibujos tipo código QR y logotipo de empresa tras la etapa h). Las fotografías se corresponden con el azulejo bajo A) iluminación en el visible y B) iluminación UV. Figura 6. Representación de la composición luminiscente según la invención, en la que se muestra esquemáticamente: partículas cristalinas micrométricas con estructura de feldespato, 1 ; partículas cristalinas que comprenden óxido de lantánido, 2; fase vitrea, 8; partículas cristalinas nanométricas con estructura de feldespato, 9. Figure 5. Glazed porcelain stoneware ceramic tile integrating a CL1 luminescent composition formulated with T3 ink for digital printing forming QR code type drawings and company logo after stage h). The photographs correspond to the tile under A) visible lighting and B) UV lighting. Figure 6. Representation of the luminescent composition according to the invention, showing schematically: micrometric crystalline particles with feldspar structure, 1; crystalline particles comprising lanthanide oxide, 2; glass phase, 8; nanometric crystalline particles with feldspar structure, 9.
EJEMPLOS: EXAMPLES:
En los ejemplos que siguen CL1 y CL2 designan composiciones precursoras de composiciones luminiscentes que se denominan con el mismo término. Simplemente según la etapa del procedimiento a la que se está haciendo alusión es la que determina si se trata de la composición precursora o de la composición luminiscente final. In the following examples CL1 and CL2 designate precursor compositions of luminescent compositions that are called by the same term. Simply depending on the stage of the procedure that is being referred to is what determines whether it is the precursor composition or the final luminescent composition.
En los ejemplos que se acompañan, los materiales empleados están descritos en WO2016155909 y los procedimientos son los seguidos en WO2016155909 para obtener las fritas empleadas. In the accompanying examples, the materials used are described in WO2016155909 and the procedures are those followed in WO2016155909 to obtain the frits used.
EJEMPLO 1. Preparación de una composición luminiscente de estructura plagioclasa incorporando partículas de EU2O3. EXAMPLE 1. Preparation of a luminescent composition with a plagioclase structure incorporating EU2O3 particles.
Las composiciones luminiscentes CL1 y CL2 se prepararon mediante un proceso que comprende las etapas a) a d) anteriormente descritas, seguidas de f) Formación de una tinta cerámica para decoración digital con el producto obtenido en la etapa e). The luminescent compositions CL1 and CL2 were prepared by a process that includes steps a) to d) described above, followed by f) Formation of a ceramic ink for digital decoration with the product obtained in step e).
Y a continuación, para obtener la pieza cerámica final se llevan a cabo las etapas g) y h): g) Decoración digital de una pieza cerámica en verde; h) Cocción de la pieza cerámica. And then, to obtain the final ceramic piece, steps g) and h are carried out: g) Digital decoration of a ceramic piece in green; h) Firing of the ceramic piece.
La mezcla precursora de la composición luminiscente CL1 se preparó mezclando en la etapa a) los siguientes componentes: The precursor mixture of the luminescent composition CL1 was prepared by mixing in step a) the following components:
180 gramos de una frita A (mostrada en la Tabla 1) 180 grams of a frit A (shown in Table 1)
19,67 gramos de un caolín, preferentemente que contenga al menos un 35% en peso equivalente de AI2O3 19.67 grams of a kaolin, preferably containing at least 35% by equivalent weight of AI2O3
2 gramos de EU2O3 2 grams of EU2O3
135 gramos de agua desionizada. La expresión “peso equivalente” es de uso habitual en la tecnología, y es la forma de expresar el contenido de un determinado catión en el material. Sirve para definir el estado de oxidación del catión. 135 grams of deionized water. The expression “equivalent weight” is commonly used in technology, and is the way of expressing the content of a certain cation in the material. It serves to define the oxidation state of the cation.
En la formulación de la mezcla precursora se consideró la pérdida de peso por calcinación del caolín empleado que fue del 14% en peso, para un tratamiento de 600°C y 6 minutos. La dosificación de caolín en la fórmula una vez considerada dicha pérdida correspondió a 17,25 gramos. La frita vitrea es un material fundido a 1500°C y enfriado súbitamente en agua y está caracterizada por ser de naturaleza vitrea y no presenta orden cristalino a corto alcance. In the formulation of the precursor mixture, the weight loss due to calcination of the kaolin used was considered, which was 14% by weight, for a treatment of 600°C and 6 minutes. The dosage of kaolin in the formula once this loss was considered corresponded to 17.25 grams. Glass frit is a material melted at 1500°C and suddenly cooled in water and is characterized by being glassy in nature and does not present short-range crystalline order.
El tamaño de las partículas de partida de EU2O3 empleadas presenta un valor de dso de 4±1 pm. The size of the EU2O3 starting particles used has a dso value of 4±1 pm.
La frita A tiene la composición que se muestra en la tabla 1 Frit A has the composition shown in table 1
La composición luminiscente CL2 se preparó de forma similar empleando la frita B cuya composición se recoge en la tabla 1 . The luminescent composition CL2 was prepared in a similar way using frit B, the composition of which is shown in Table 1.
La composición de la frita A, frita B y del caolín expresada en términos de óxidos equivalentes es la que se muestra en la Tabla 1. The composition of frit A, frit B and kaolin expressed in terms of equivalent oxides is shown in Table 1.
Tabla 1. Composición química expresada en térmicos de óxidos equivalentes (% en peso respecto del total de cada material, es decir, en cada fila de la tabla será respecto a la Frita A; la Frita B o el caolín).
Figure imgf000025_0001
Table 1. Chemical composition expressed in terms of equivalent oxides (% by weight with respect to the total of each material, that is, in each row of the table it will be with respect to Frit A; Frit B or kaolin).
Figure imgf000025_0001
(*) en otros compuestos se consideran óxidos minoritarios como B2O3, P2O5, TÍO2, Fe2Ü3, MgO, entre otros óxidos minoritarios, donde el porcentaje en peso de cada uno de ellos es inferior al 1% en peso respecto del total. (**) la pérdida de peso del caolín por calcinación a 540°C es del 14% en peso correspondiente a la pérdida de hidroxilos de la red. El análisis químico se realizó sobre la muestra calcinada a 600°C 6 minutos. (*) In other compounds, minor oxides are considered such as B2O3, P2O5, TÍO2, Fe2Ü3, MgO, among other minor oxides, where the percentage by weight of each of them is less than 1% by weight with respect to the total. (**) the weight loss of kaolin by calcination at 540°C is 14% by weight corresponding to the loss of hydroxyls from the network. The chemical analysis was carried out on the sample calcined at 600°C for 6 minutes.
En la etapa a) se empleó un proceso de pesada y dosificación manual de los componentes en un molino de jarras de porcelana que contiene bolas de alúmina de 10 mm de diámetro. El peso de las bolas de cerámica empleado es de 500 gramos. El molino de bolas empleado es de la casa Heramika S.A. La duración de la molienda fue de 20 minutos. Tras la etapa a) se obtiene una suspensión homogénea que se extrajo de la jarra de porcelana de molienda empleando un tamiz de 100 pm. La suspensión homogénea o barbotina se deposita en una bandeja de vidrio y se seca en estufa de aire forzado hasta que la humedad es inferior al 1% en peso. En la etapa b) se empleó una estufa a 60°C con un tiempo de 24 horas. In stage a) a process of manual weighing and dosing of the components was used in a porcelain jar mill containing 10 mm diameter alumina balls. The weight of the ceramic balls used is 500 grams. The ball mill used is from Heramika S.A. The grinding duration was 20 minutes. After step a), a homogeneous suspension is obtained that was extracted from the porcelain grinding jar using a 100 pm sieve. The homogeneous suspension or slip is deposited in a glass tray and dried in a forced air oven until the humidity is less than 1% by weight. In stage b) an oven at 60°C was used for a time of 24 hours.
El producto seco obtenido en la etapa b) se tamizó en seco empleando un tamiz de 100 pm en la etapa c), logrando un tamaño de partícula (D50) de este material con una distribución monomodal de 6±3 pm. La determinación de la distribución de tamaño de partícula se realizó mediante un analizador de partícula por sistema láser (Mastersizer S, Malvern). El producto seco y tamizado se depositó en un crisol de alúmina para su tratamiento térmico en la etapa d). The dry product obtained in stage b) was dry sieved using a 100 pm sieve in stage c), achieving a particle size (D50) of this material with a monomodal distribution of 6±3 pm. The determination of the particle size distribution was carried out using a laser system particle analyzer (Mastersizer S, Malvern). The dried and sieved product was placed in an alumina crucible for thermal treatment in step d).
En la etapa d) se empleó un horno eléctrico en atmósfera de aire a temperaturas de 600, 700, 800, 900, 1000, 1100 y 1220°C durante 6 minutos con una velocidad de calentamiento de 15 °C/min y enfriamiento según horno, de modo que se obtuvieron así distintas muestras, según el tratamiento térmico recibido. In stage d) an electric oven was used in an air atmosphere at temperatures of 600, 700, 800, 900, 1000, 1100 and 1220°C for 6 minutes with a heating speed of 15°C/min and cooling according to the oven. , so that different samples were obtained, depending on the heat treatment received.
El material resultante de la etapa d) se acondicionó en una etapa e) para obtener un tamaño de partícula adecuado para la formulación de una tinta de decoración digital (tamaños habituales en la tecnología de impresión digital), se molturó primero en un molino de bolas de alúmina en medio acuoso similar a la etapa a) y posteriormente se molturó en un molino de atricción de laboratorio que reproduce las condiciones del molino de atricción Miniserie con cámara Minipur de la casa NETZSCH, durante 1 hora empleando microbolas de circona estabilizada con ytrio de 1 mm de diámetro. Este proceso de molienda en microbolas (en un molino análogo al molino de atricción Miniserie con cámara Minipur de la casa NETZSCH) es una simplificación del proceso estándar de preparación de una tinta cerámica para decoración digital que habitualmente requiere 6 horas de molienda en diferentes tipos de microbolas para obtener un tamaño de partícula inferior a 2 pm. Todas las precursoras de las composiciones luminiscentes preparadas, esto es, CL1 y CL2, tratadas térmicamente en la etapa d) a diferentes temperaturas y acondicionadas en la etapa e) fueron prensadas en probetas de tipo disco de 2 cm de diámetro y 2 mm de espesor. A efectos de evaluar las propiedades del material, estas probetas prensadas sustituyen los procesos f) y g) para obtener un material patrón y evaluar la luminiscencia de la composición tras la etapa h). Las probetas fueron tratadas en una etapa h) con ciclo térmico con una temperatura máxima de 1220°C mantenida durante 6 minutos y con un ciclo de 50 minutos de duración total en un horno eléctrico de laboratorio de la casa PIROMETROL que simula un ciclo de sinterización de azulejo cerámico industrial para un material de gres porcelánico. De forma comparativa se prepararon muestras en discos prensados de las composiciones luminiscentes precursoras después del tratamiento térmico en la etapa d) y, a efectos comparativos, de las composiciones luminiscentes precursoras tras la etapa d). The material resulting from step d) was conditioned in a step e) to obtain a particle size suitable for the formulation of a digital decoration ink (common sizes in digital printing technology), it was first ground in a ball mill. of alumina in an aqueous medium similar to step a) and was subsequently ground in a laboratory attrition mill that reproduces the conditions of the Miniseries attrition mill with Minipur chamber from NETZSCH, for 1 hour using zirconia microballs stabilized with yttrium of 1mm diameter. This microball grinding process (in a mill analogous to the Miniseries attrition mill with Minipur chamber from NETZSCH) is a simplification of the standard process for preparing a ceramic ink for digital decoration that usually requires 6 hours of grinding in different types of microbeads to obtain a particle size less than 2 pm. All the precursors of the prepared luminescent compositions, that is, CL1 and CL2, thermally treated in stage d) at different temperatures and conditioned in stage e) were pressed into disc-type specimens of 2 cm in diameter and 2 mm thick. . In order to evaluate the properties of the material, these pressed specimens replace processes f) and g) to obtain a standard material and evaluate the luminescence of the composition after step h). The specimens were treated in stage h) with a thermal cycle with a maximum temperature of 1220°C maintained for 6 minutes and with a total cycle duration of 50 minutes in an electric laboratory oven from PIROMETROL that simulates a sintering cycle. of industrial ceramic tile for a porcelain stoneware material. Comparatively, pressed disk samples of the precursor luminescent compositions after heat treatment in step d) and, for comparative purposes, of the precursor luminescent compositions after step d) were prepared.
Las composiciones luminiscentes CL1 y CL2 tras la etapa h) presentan una estructura cristalina determinada por Difracción de Rayos X en polvo (DRX D8 Advance, Bruker) que se corresponde con una plagioclasa tipo albita para la composición CL1 y tipo anortita para la composición CL2. El porcentaje de fase cristalina de las composiciones determinado a partir de los diagramas de difracción de Rayos X se corresponde con valores superiores al 92% en ambas composiciones luminiscentes. Mediante DRX no se detecta la presencia de fases cristalinas de óxido de europio, debido a que su porcentaje está por debajo del límite de detección de la técnica. The luminescent compositions CL1 and CL2 after step h) present a crystalline structure determined by X-ray powder diffraction (XRD D8 Advance, Bruker) that corresponds to an albite-type plagioclase for composition CL1 and anorthite-type for composition CL2. The percentage of crystalline phase of the compositions determined from the X-ray diffraction diagrams corresponds to values greater than 92% in both luminescent compositions. Using XRD, the presence of crystalline phases of europium oxide is not detected, because its percentage is below the detection limit of the technique.
El tamaño de partícula promedio (dso) de las composiciones luminiscentes determinado por difracción láser (Mastersizer S, Malvern) tras la etapa e) de acondicionado del tamaño de partícula mostró un valor <2 pm para las composiciones CL1 y CL2 tratadas en un ciclo térmico de hasta 1000°C 6 minutos en la etapa d). Los tratamientos a temperaturas superiores generan unos tamaños de partícula promedios >10 pm. Resulta por tanto más ventajoso utilizar temperaturas menores a 1000 °C 6 minutos y obtener tamaños de partícula menores de 10 pm que resultan en una mayor eficiencia de la posterior etapa e). Adicionalmente, se examinó mediante microscopía electrónica de barrido (FE-SEM S- 4700, Hitachi) para analizar con más detalle el tamaño y la distribución de las partículas. En la Figura 1 se muestran las micrografías de las muestras basadas en las composiciones luminiscentes CL1 y tras el pretratamiento de la etapa d) a temperaturas a 1100°C y 1220°C durante 6 minutos y tras la etapa e). En la caracterización microestructural se observaron partículas con morfologías irregulares caracterizadas por la presencia de múltiples aristas de fractura con tamaños de cristales preferentemente inferiores a 2 pm y partículas más redondeadas con tamaños inferiores a 1 pm y con abundante presencia de partículas de tamaños inferiores a 0,5 pm. Las partículas presentan una tendencia a formar aglomerados donde las partículas irregulares se rodean de las partículas más redondeadas. Los tamaños de partícula observados mediante microscopía electrónica de barrido fueron más pequeños que los presentados anteriormente por el método de difracción laser, indicando que la técnica de difracción láser está midiendo el tamaño de los agregados en lugar de las partículas. The average particle size (dso) of the luminescent compositions determined by laser diffraction (Mastersizer S, Malvern) after step e) of particle size conditioning showed a value <2 pm for compositions CL1 and CL2 treated in a thermal cycle up to 1000°C 6 minutes in step d). Treatments at higher temperatures generate average particle sizes >10 pm. It is therefore more advantageous to use temperatures lower than 1000 °C for 6 minutes and obtain particle sizes smaller than 10 pm, which result in greater efficiency of the subsequent stage e). Additionally, it was examined by scanning electron microscopy (FE-SEM S- 4700, Hitachi) to analyze the size and distribution of the particles in more detail. Figure 1 shows the micrographs of the samples based on the luminescent compositions CL1 and after the pretreatment of step d) at temperatures at 1100°C and 1220°C for 6 minutes and after step e). In the microstructural characterization, particles with irregular morphologies were observed characterized by the presence of multiple fracture edges with crystal sizes preferably less than 2 pm and more rounded particles with sizes less than 1 pm and with abundant presence of particles of sizes less than 0.5 pm. The particles have a tendency to form agglomerates where irregular particles are surrounded by more rounded particles. The particle sizes observed by scanning electron microscopy were smaller than those previously reported by the laser diffraction method, indicating that the laser diffraction technique is measuring the size of aggregates rather than particles.
Los autores de la presente invención han encontrado que en las composiciones luminiscentes no existen diferencias relevantes en cuanto a tamaños de partícula o respuesta luminiscente para tratamientos térmicos en la etapa d) cuya duración sea de 1 hora o incluso 2 o 4 horas en comparación con los tratamientos de 6 minutos de duración. Por tanto, son preferibles los tratamientos de 6 minutos ya que suponen una ventaja frente a tratamientos térmicos de síntesis convencionales más prolongados. The authors of the present invention have found that in the luminescent compositions there are no relevant differences in terms of particle sizes or luminescent response for thermal treatments in step d) whose duration is 1 hour or even 2 or 4 hours compared to the 6 minute long treatments. Therefore, 6-minute treatments are preferable as they represent an advantage over longer conventional synthesis heat treatments.
Para la formación de tintas en la etapa f) según el estado de la técnica se precisa un tamaño de partícula inferior a 2 pm. Este tamaño de obtiene mediante micromolienda intensiva. El tamaño de partícula obtenido en la presente invención presenta una ventaja desde el punto de vista de procesamiento de una tinta cerámica para decoración mediante impresión, por ejemplo digital, pues la etapa e) del procedimiento permite obtener un tamaño de partícula adecuado, esto es <2 pm, para la etapa f) a partir de un proceso de micromolienda que supone un coste energético inferior con una reducción en tiempos de molienda de al menos el 80%. For the formation of inks in step f), according to the state of the art, a particle size of less than 2 pm is required. This size is obtained through intensive microgrinding. The particle size obtained in the present invention presents an advantage from the point of view of processing a ceramic ink for decoration by printing, for example digital, since step e) of the procedure allows obtaining a suitable particle size, that is < 2 pm, for stage f) from a microgrinding process that involves a lower energy cost with a reduction in grinding times of at least 80%.
La respuesta luminiscente de las composiciones luminiscentes se determinó empleando un fluorímetro (FluoroLog-3 Modular Spectrofluorometer, HORIBA Scientific). El fluorímetro está equipado con un detector de IR (IGA1.9010L) que cubre un amplio rango de longitud de onda desde 800 a 2100 nm, y un detector PMT (R2658) de baja corriente en oscuridad (1 nA a 1250 V) para las medidas en el rango de 185 a 1010 nm. Las medidas experimentales se realizaron empleando diferentes métodos dependiendo del formato de la muestra: pastilla en el caso de la etapa d) y h) y polvo en la etapa e). Ambos métodos comprenden una longitud de onda de excitación de 393 nm, vahando las aberturas (slits) de entrada y salida. Éstas fueron respectivamente 0.5nm y 10 nm en el caso de las medidas realizadas en polvo, con tiempo de integración de 1 s, empleando una cubeta de vidrio y 1 nm y 5 nm para el caso de las muestras en formato pellet, con tiempo de integración de 0.1 s. Los valores de intensidad luminiscente registrados para el máximo de la banda de emisión centrada 610-625 nm de las diferentes composiciones en las diferentes etapas de tratamiento se recogen de forma comparativa con la muestra de referencia: el óxido de europio, EU2O3, medido bajo las mismas condiciones experimentales y tratamiento térmico correspondiente de cada etapa. Todas las composiciones luminiscentes presentaron las dos bandas características del Eu3+ alrededor de 590-592 nm y 610-625 nm, respectivamente, empleando una longitud de onda de excitación de 393 nm. Estas bandas de emisión corresponden al rango espectral naranja y se atribuyen a las transiciones f-f características del Eu3+, 5D0^7Fi (590-592 nm) y 5D0^7F2 (610-612nm), respectivamente. The luminescent response of the luminescent compositions was determined using a fluorimeter (FluoroLog-3 Modular Spectrofluorometer, HORIBA Scientific). The fluorometer is equipped with an IR detector (IGA1.9010L) covering a wide wavelength range from 800 to 2100 nm, and a low dark current PMT detector (R2658) (1 nA at 1250 V) for measurements in the range of 185 to 1010 nm. The experimental measurements were carried out using different methods depending on the format of the sample: tablet in the case of stage d) and h) and powder in stage e). Both methods comprise an excitation wavelength of 393 nm, vaing the entrance and exit slits. These were respectively 0.5nm and 10 nm in the case of measurements carried out in powder, with an integration time of 1 s, using a glass cuvette and 1 nm and 5 nm in the case of samples in pellet format, with 0.1 s integration. The luminescent intensity values recorded for the maximum of the emission band centered 610-625 nm of the different compositions in the different treatment stages are collected in a comparative way with the reference sample: the oxide of europium, EU2O3, measured under the same experimental conditions and corresponding thermal treatment of each stage. All luminescent compositions presented the two characteristic bands of Eu 3+ around 590-592 nm and 610-625 nm, respectively, using an excitation wavelength of 393 nm. These emission bands correspond to the orange spectral range and are attributed to the ff transitions characteristic of Eu 3+ , 5 D 0 ^ 7 Fi (590-592 nm) and 5 D 0 ^ 7 F 2 (610-612 nm), respectively.
Tabla 2. Valores máximos de la banda de emisión luminiscente centrada entre 610-612 nm para una longitud de onda de excitación de 393 nm de las diferentes composiciones luminiscentes, en diferentes etapas de proceso. La emisión luminiscente se caracterizó de forma comparativa empleando muestras de las mismas superficie y espesor bajo las mismas condiciones experimentales, en concreto, para discos de 2 cm de diámetro y 2 mm de espesor en el caso de la etapa d y e)+ h) y en polvo medido en cubeta para el caso de la etapa e).
Figure imgf000029_0001
Figure imgf000030_0001
Table 2. Maximum values of the luminescent emission band centered between 610-612 nm for an excitation wavelength of 393 nm of the different luminescent compositions, in different process stages. The luminescent emission was characterized comparatively using samples of the same surface area and thickness under the same experimental conditions, specifically, for discs of 2 cm in diameter and 2 mm thick in the case of the stage d)+ h) and in powder measured in bucket for the case of step e).
Figure imgf000029_0001
Figure imgf000030_0001
Las composiciones luminiscentes de la presente invención presentan una ventaja sobre el material de EU2O3 puro de referencia en la etapa d) ya que los valores de intensidad luminiscente son superiores por unidad de porcentaje en peso de EU2O3 en la composición de tan solo el 1 % en peso de EU2O3. La composición de EU2O3 puro de referencia presentaría una señal luminiscente de 5,0x107 que por unidad porcentual de EU2O3 se corresponde con un valor de 5,0x105, siendo ese valor para CL1 >5,0x108 en todos los tratamientos térmicos de la etapa d). Así, se consigue una mayor eficiencia en el uso del óxido lantánido en términos de emisión luminiscente que es al menos de 102 por unidad porcentual de óxido de lantánido. The luminescent compositions of the present invention have an advantage over the reference pure EU2O3 material in step d) since the luminescent intensity values are higher per unit of weight percentage of EU2O3 in the composition of only 1% in weight of EU2O3. The reference pure EU2O3 composition would present a luminescent signal of 5.0x10 7 which per percentage unit of EU2O3 corresponds to a value of 5.0x10 5 , this value for CL1 being >5.0x10 8 in all thermal treatments of the stage d). Thus, greater efficiency is achieved in the use of lanthanide oxide in terms of luminescent emission, which is at least 10 2 per percentage unit of lanthanide oxide.
A efectos comparativos se preparó una frita C con una composición química similar a la composición química de la Frita A donde se incorporó previo a la etapa de fusión o fritado a 1500°C una proporción de EU2O3 en una relación componentes de la fñta/óxido de europio de 180/2. La frita C presentó una composición química tal que al formular en la etapa a) se añadieron 182 gramos de frita C, 19,67 gramos de caolín y 135 gramos de agua. Esta formulación es químicamente análoga a la de la composición CL1 , esto es, contiene 1 % en peso de EU2O3. A partir de la mezcla precursora de la composición luminiscente CL3 siguiendo el mismo proceso de preparación de la composición luminiscente CL1 en las etapas b) a la h) y como resultado se obtuvo un material con una banda luminiscente centrada entre 610-625 nm (determinada en las mismas condiciones experimentales descritas para la composición luminiscente CL1) cuya intensidad es inferior a 103. De esta forma se constató que la incorporación de los cationes Eu3+ en la red cristalina de feldespato o en la red vitrea inhibe las transiciones f-f características del Eu3+. La diferencia fundamental entre la composición CL1 y la composición luminiscente CL3 consiste en que el óxido de lantánido en la composición CL3 se incorpora durante el proceso de fritado del material, que alcanza temperaturas más elevadas (1500°C) favoreciendo la descomposición del óxido, y haciendo que el catión de Eu3+ quede embebido en la fase vitrea de la frita C, esto es, como dopante de dicha red vitrea. Por tanto, no se añaden partículas cristalinas que comprenden oxido de europio en la mezcla precursora de la composición luminiscente en la etapa a). Tras la etapa h), en la composición luminiscente CL3 los cationes de Eu3+ se encuentran como dopante distribuidos bien en la red cristalina de los cristales de feldespato o bien en la fase vitrea. No se ha podido determinar la ubicación del preferente como dopante, si bien, el efecto como dopante de dichos cationes es un valor de luminiscencia solo detectable por un fluorímetro y no detectable por el ojo. De esta forma no se obtiene la presencia de partículas cristalinas que comprenden óxido de europio en la composición luminiscente CL3. la composición luminiscente CL1 presenta una luminiscencia que es superior en >5 órdenes de magnitud a la luminiscencia de CL3. For comparative purposes, a frit C was prepared with a chemical composition similar to the chemical composition of Frit A where a proportion of EU2O3 was incorporated prior to the melting or frying stage at 1500°C in a ratio of components of the fñta/oxide of europium of 180/2. Frit C had a chemical composition such that when formulating in step a), 182 grams of frit C, 19.67 grams of kaolin and 135 grams of water were added. This formulation is chemically analogous to that of composition CL1, that is, it contains 1% by weight of EU2O3. From the precursor mixture of the luminescent composition CL3, following the same preparation process of the luminescent composition CL1 in steps b) to h) and as a result, a material with a luminescent band centered between 610-625 nm (determined in the same experimental conditions described for the luminescent composition CL1) whose intensity is less than 10 3 . In this way, it was found that the incorporation of the Eu 3+ cations in the feldspar crystalline network or in the glass network inhibits the ff transitions characteristic of Eu 3+ . The fundamental difference between composition CL1 and luminescent composition CL3 is that the lanthanide oxide in composition CL3 is incorporated during the fritting process of the material, which reaches higher temperatures (1500°C) favoring the decomposition of the oxide, and causing the Eu 3+ cation to become embedded in the glass phase of frit C, that is, as a dopant of said glass network. Therefore, crystalline particles comprising europium oxide are not added to the precursor mixture of the luminescent composition in step a). After step h), in the luminescent composition CL3, the Eu 3+ cations are found as a dopant distributed either in the crystal lattice of the feldspar crystals or in the glass phase. It has not been possible to determine the location of the preferred one as a dopant, although the effect as a dopant of said cations is a luminescence value only detectable by a fluorometer and not detectable by the eye. In this way, the presence of crystalline particles comprising europium oxide in the luminescent composition CL3 is not obtained. The luminescent composition CL1 exhibits a luminescence that is >5 orders of magnitude higher than the luminescence of CL3.
EJEMPLO 2. Preparación de una composición luminiscente de estructura plagioclasa incorporando diferentes porcentajes de EU2O3. EXAMPLE 2. Preparation of a luminescent composition with a plagioclase structure incorporating different percentages of EU2O3.
En un estudio adicional se siguió el mismo procedimiento de tratamiento de las composiciones CL1 , pero en lugar de añadir 1% en peso de EU2O3 en la etapa a) del proceso se añadieron cantidades del 2%, 5% y 10%% en peso de EU2O3 a la frita A para generar las composiciones CL4, CL5 y CL6, respectivamente. In an additional study, the same treatment procedure for the CL1 compositions was followed, but instead of adding 1% by weight of EU2O3 in step a) of the process, amounts of 2%, 5% and 10% by weight of EU2O3 to frit A to generate the compositions CL4, CL5 and CL6, respectively.
La respuesta luminiscente de las composiciones luminiscentes se determinó el mismo fluorímetro que en el caso anterior. Las medidas experimentales se realizaron empleando el método desarrollado para muestras en formato pellet de 2 cm de diámetro y 2 mm de espesor. Se empleó una máscara rectangular de 17,4 mm x 6,2 mm. Los valores de intensidad luminiscente registrados para el máximo de la banda de emisión centrada 610- 625 nm de las diferentes composiciones en las diferentes etapas de tratamiento se recogen de forma comparativa con la muestra de referencia: el óxido de europio, medido bajo las mismas condiciones experimentales y tratamiento térmico correspondiente de cada etapa. Todas las composiciones luminiscentes presentaron las dos bandas características del Eu3+ alrededor de 590-592 nm y 610-625 nm, respectivamente, empleando una longitud de onda de excitación de 395 nm. Estas bandas de emisión corresponden al rango espectral naranja y se atribuyen a las transiciones f-f características del Eu3+, 5D0^7Fi (590-592 nm) y 5D0^7F2 (610-612nm), respectivamente. Todas las composiciones luminiscentes preparadas presentaron valores de tamaños de partícula y propiedades luminiscentes similares a las de las composiciones CL1. Las diferencias más relevantes observadas consistieron en que la composición luminiscente CL4 presentaba un valor del máximo de la banda de luminiscencia centrada en 610-625 nm que es hasta un 30% mayor en intensidad respecto a las composiciones luminiscentes CL1. Las composiciones luminiscentes CL5 y CL6 presentaban un valor del máximo de la banda de luminiscencia centrada en 610-625 nm que es hasta un 15% y un 50% menor en intensidad respecto a la composición luminiscente CL1 , respectivamente. De esta forma, las composiciones con proporciones entre 1 % y 2% de EU2O3 poseen una adecuada respuesta luminiscente. The luminescent response of the luminescent compositions was determined using the same fluorimeter as in the previous case. The experimental measurements were carried out using the method developed for samples in pellet format of 2 cm in diameter and 2 mm in thickness. A 17.4 mm x 6.2 mm rectangular mask was used. The luminescent intensity values recorded for the maximum of the emission band centered 610-625 nm of the different compositions in the different treatment stages are collected in a comparative way with the reference sample: europium oxide, measured under the same conditions. experimental and corresponding thermal treatment of each stage. All luminescent compositions presented the two characteristic bands of Eu 3+ around 590-592 nm and 610-625 nm, respectively, using an excitation wavelength of 395 nm. These emission bands correspond to the orange spectral range and are attributed to the ff transitions characteristic of Eu 3+ , 5 D 0 ^ 7 Fi (590-592 nm) and 5 D 0 ^ 7 F 2 (610-612 nm), respectively. All the prepared luminescent compositions presented values of particle sizes and luminescent properties similar to those of the CL1 compositions. The most relevant differences observed were that the CL4 luminescent composition presented a value of the maximum of the luminescence band centered at 610-625 nm that is up to 30% greater in intensity compared to the CL1 luminescent compositions. The luminescent compositions CL5 and CL6 had a value of the maximum of the luminescence band centered at 610-625 nm that is up to 15% and 50% lower in intensity compared to the luminescent composition CL1, respectively. In this way, compositions with proportions between 1% and 2% of EU2O3 have an adequate luminescent response.
Tabla 3. Valores máximos de la banda de emisión luminiscente centrada entre 610-612 nm para una longitud de onda de excitación de 395 nm de las diferentes composiciones luminiscentes, en diferentes etapas de proceso (etapas e) y h)). La emisión luminiscente se caracterizó de forma comparativa empleando muestras de las mismas superficie y espesor bajo las mismas condiciones experimentales, en concreto discos de 2 cm de diámetro y 2 mm de espesor)
Figure imgf000032_0001
La microestructura de la composición luminiscente CL6 Figura 2, mostró la presencia de partículas cristalinas que comprenden óxido de europio en coexistencia con micropartículas de feldespatos. Las partículas cristalinas que comprenden óxido de europio de la figura 2 se corresponden con las regiones más claras en la imagen que se encuentran agrupadas en racimos de granos. Los tamaños de las partículas cristalinas que comprenden óxido de europio presentan tamaños de grano comprendidos entre 100 y 500 nm. La microestructura muestra una abundancia de microcñstales de feldespato tipo plagioclasa. Entre los microcñstales de plagioclasa y las regiones con partículas cristalinas que comprenden óxido de europio se observan huecos correspondientes a la fase vitrea que ha sido eliminada por la inmersión de la superficie en la solución ácida para el ataque químico.
Table 3. Maximum values of the luminescent emission band centered between 610-612 nm for an excitation wavelength of 395 nm of the different luminescent compositions, in different process stages (steps e) and h)). The luminescent emission was characterized comparatively using samples of the same surface and thickness under the same experimental conditions, specifically discs of 2 cm in diameter and 2 mm in thickness)
Figure imgf000032_0001
The microstructure of the luminescent composition CL6 Figure 2, showed the presence of crystalline particles comprising europium oxide in coexistence with feldspar microparticles. The crystalline particles comprising europium oxide in Figure 2 correspond to the lighter regions in the image that are grouped in clusters of grains. The sizes of the crystalline particles comprising europium oxide have grain sizes between 100 and 500 nm. The microstructure shows an abundance of plagioclase-type feldspar microcstals. Between the plagioclase microcrystals and the regions with crystalline particles that comprise europium oxide, voids are observed corresponding to the glassy phase that has been eliminated by immersion of the surface in the acid solution for chemical attack.
EJEMPLO 3. Preparación de composiciones luminiscentes de plagioclasa de diferentes longitudes de onda de emisión. EXAMPLE 3. Preparation of luminescent plagioclase compositions of different emission wavelengths.
Se siguió el proceso descrito en el Ejemplo 1 para la composición luminiscente CL1. Se procedió a añadir un 1 % en peso de óxidos de óxidos de lantánido. Los óxidos de lantánidos utilizados fueron óxidos cristalinos de los siguientes elementos: Er, Eu, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La y Tm. tras las etapas a), b) y c), en la etapa d) se procedió a prensar directamente un disco cerámico de cada composición que fue tratado térmicamente a una única temperatura de 1220°C 6 min siguiendo un ciclo industrial estándar para un azulejo cerámico. The process described in Example 1 for the luminescent composition CL1 was followed. 1% by weight of lanthanide oxides was added. The lanthanide oxides used were crystalline oxides of the following elements: Er, Eu, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La and Tm. After stages a), b) and c), in stage d), a ceramic disc of each composition was directly pressed, which was thermally treated at a single temperature of 1220°C for 6 min following a standard industrial cycle for a ceramic tile. .
En la tabla 3 se muestran las diferentes longitudes de onda de excitación junto con las longitudes de onda de emisión para cada una de las tierras raras en las composiciones luminiscentes CL7 a CL17. Table 3 shows the different excitation wavelengths along with the emission wavelengths for each of the rare earths in the luminescent compositions CL7 to CL17.
Tabla 3. Valores de longitud de onda para las emisiones luminiscentes de composiciones luminiscentes CL7 a CL17 con diferentes tierras raras en 1% en peso de dosificación del óxido de tierra rara y las correspondientes longitudes de onda de excitación asociadas con dichas emisiones luminiscentes. La emisión luminiscente se caracterizó de forma comparativa empleando muestras de las mismas superficie y espesor bajo las mismas condiciones experimentales que las realizadas para la composición CL1.
Figure imgf000033_0001
Figure imgf000034_0001
Table 3. Wavelength values for the luminescent emissions of luminescent compositions CL7 to CL17 with different rare earths in 1% by weight dosage of the rare earth oxide and the corresponding excitation wavelengths associated with said luminescent emissions. The luminescent emission was characterized comparatively using samples of the same surface area and thickness under the same experimental conditions as those carried out for the CL1 composition.
Figure imgf000033_0001
Figure imgf000034_0001
Las composiciones luminiscentes CL7 a CL17 presentan la ventaja de emitir en diferentes longitudes de onda bajo excitación UV, esto es, permiten emitir en diferentes coloraciones. Las composiciones luminiscentes CL7, CL11 , CL13 y CL15 presentan una ventaja adicional al emitir en el infrarrojo cercano para una excitación en la zona del visible. Dado que las emisiones en el infrarrojo no son detectadles por el ojo humano, la presencia de estas composiciones permite obtener una composición luminiscente detectable solo por equipos con detectores optoelectrónicos. EJEMPLO 4. Integración de una composición luminiscente en un azulejo cerámico esmaltado. Luminescent compositions CL7 to CL17 have the advantage of emitting at different wavelengths under UV excitation, that is, they allow emitting in different colors. The luminescent compositions CL7, CL11, CL13 and CL15 have an additional advantage by emitting in the near infrared for excitation in the visible area. Since infrared emissions are not detectable by the human eye, the presence of these compositions allows obtaining a luminescent composition detectable only by equipment with optoelectronic detectors. EXAMPLE 4. Integration of a luminescent composition in a glazed ceramic tile.
El proceso de integración de una composición luminiscente precisa de la preparación de la tinta para decoración en la etapa f). Las características de las composiciones luminiscentes obtenidas en los ejemplos 1 a 3 fueron adecuadas respecto a su tamaño de partícula para formulación de una tinta digital cerámica o tinta ink-jet. Esta tinta se formuló en la etapa f) mediante un proceso de dispersión en medio líquido por agitación mecánica de una composición que comprende: The process of integrating a luminescent composition requires the preparation of the decoration ink in step f). The characteristics of luminescent compositions obtained in examples 1 to 3 were suitable with respect to their particle size for the formulation of a ceramic digital ink or ink-jet ink. This ink was formulated in step f) through a dispersion process in a liquid medium by mechanical stirring of a composition that comprises:
- Una mezcla precursora de la composición luminiscente resultado de la etapa e);- A precursor mixture of the luminescent composition resulting from step e);
- Un solvente; y - A solvent; and
- Un dispersante. - A dispersant.
El proceso de obtención de tintas es conocido. The process of obtaining inks is known.
Se describe a continuación un ejemplo concreto de la preparación de una tinta con una de las composiciones luminiscentes obtenidas, CL1. A specific example of the preparation of an ink with one of the luminescent compositions obtained, CL1, is described below.
Se preparó en el laboratorio una tinta, T1 , de base solvente, mediante la adición de 40 gramos de CL1 tratado a 600°C en la etapa e) de la composición luminiscente, en 100 gramos de una mezcla de tri(propilen glicol) butil éter y poli(propilen glicol) monobutil éter en una proporción de 50/50 como solventes. En la homogenización de la tinta se empleó un agitador de alta cizalla T25 de la casa IKA trabajando a 10.000 rpm durante 10 minutos. De forma similar, se preparó una tinta, T2, de base acuosa, en el laboratorio mediante la adición de 33 gramos de CL1 tratado a 600°C en la etapa e) de la composición luminiscente, en 45 gramos de agua desionizada y 20 gramos de etilenglicol como solventes y la adición de 0,6 gramos de sal sódica de ácido policarboxílico como dispersante. A solvent-based ink, T1, was prepared in the laboratory by adding 40 grams of CL1 treated at 600°C in step e) of the luminescent composition, in 100 grams of a mixture of tri(propylene glycol) butyl. ether and poly(propylene glycol) monobutyl ether in a 50/50 ratio as solvents. To homogenize the ink, a T25 high shear agitator from IKA was used, working at 10,000 rpm for 10 minutes. Similarly, an aqueous-based ink, T2, was prepared in the laboratory by adding 33 grams of CL1 treated at 600°C in step e) of the luminescent composition, in 45 grams of deionized water and 20 grams of ethylene glycol as solvents and the addition of 0.6 grams of sodium salt of polycarboxylic acid as dispersant.
Las tintas de laboratorio T1 y T2 presentaban unos parámetros adecuados para su uso como tintas de decoración digital en cerámica con valores de potencial zeta <-45 mV (determinados con un equipo Nanolab, Micromeñtics) y viscosidades a 200 s-1 de 25 mPa.s (determinados por un viscosímetro rotacional de la casa HAAKE). The laboratory inks T1 and T2 had parameters suitable for use as digital decoration inks on ceramics with zeta potential values <-45 mV (determined with a Nanolab, Micromeñtics equipment) and viscosities at 200 s -1 of 25 mPa. s (determined by a rotational viscometer from HAAKE).
A partir de estos resultados se prepararon 1500 gramos de la composición luminiscente CL1 tratados térmicamente a 600°C en la etapa d) de la preparación de dicha composición luminiscente. Dicha composición CL1 se empleó para la preparación de una tinta cerámica industrial T3 en la empresa VIDRES S.A. (Villareal, Castellón). La formulación de la tinta T3 fue similar a las formulaciones de las tintas T1 y T2, pero para su formulación se empleó un molino de microbolas industrial con cámara cerámica donde la etapa e) y f) se realizaron de forma simultánea. Empleando dicha tinta T3, la empresa Vidres imprimió mediante tecnología inkjet en un impresora digital Cretaprint® diferentes dibujos sobre dos tipos de soportes cerámicos: gres porcelánico y pasta blanca. Estos soportes cerámicos conforman las dos tipologías de producto más común en la industria de azulejos cerámicos. El gres porcelánico requiere una temperatura de cocción entre 1200-1220°C y genera un producto con una absorción de agua inferiora 0,5% en peso. El azulejo cerámico de gres porcelánico se emplea preferentemente como pavimento cerámico tanto en interiores como en exteriores. El soporte de pasta blanca requiere una menor temperatura de cocción, 1135 °C, y posee una mayor capacidad de absorción de agua, entre el 6 al 10%. El azulejo cerámico de pasta blanca se emplea como revestimiento para paredes. Sobre las capas soportes en verde de gres porcelánico se depositó una capa de esmalte mate para gres porcelánico obtenido a partir de la frita B mediante su combinación con caolín siguiendo lo descrito en WO2016155909. Sobre la capa soporte en verde de pasta blanca se depositó una capa de engobe adecuado para pasta blanca. Sobre dichas capas soportes en verde, porcelánico con esmalte y pasta blanca con engobe se depositaron áreas definidas de la mezcla precursora de la composición luminiscente en forma de tinta digital obtenida en la etapa f). La deposición de dichas áreas definidas de la tinta digital se realizó mediante impresión digital con diferentes gramajes correspondientes a 20, 40, 60 y 80 g/m2, obteniendo diferentes piezas cerámicas con espesores de composiciones luminiscentes distintas. Los esmaltes y engobe empleados en estas aplicaciones son esmaltes y engobes de uso estándar en la industria de azulejos cerámicos. From these results, 1500 grams of the luminescent composition CL1 were prepared, thermally treated at 600°C in step d) of the preparation of said luminescent composition. Said CL1 composition was used for the preparation of an industrial ceramic ink T3 in the company VIDRES SA (Villareal, Castellón). The formulation of ink T3 was similar to the formulations of inks T1 and T2, but for its formulation an industrial microball mill with a ceramic chamber was used where steps e) and f) were carried out simultaneously. Using this T3 ink, the Vidres company printed different drawings on two types of inkjet technology on a Cretaprint® digital printer. ceramic supports: porcelain stoneware and white body. These ceramic supports make up the two most common product types in the ceramic tile industry. Porcelain stoneware requires a firing temperature between 1200-1220°C and generates a product with a water absorption of less than 0.5% by weight. Porcelain stoneware ceramic tiles are preferably used as ceramic flooring both indoors and outdoors. The white paste support requires a lower firing temperature, 1135 °C, and has a greater water absorption capacity, between 6 to 10%. White-body ceramic tile is used as wall covering. A layer of matte glaze for porcelain stoneware obtained from frit B by combining it with kaolin was deposited on the green support layers of porcelain stoneware following what is described in WO2016155909. A layer of slip suitable for white body was deposited on the green support layer of white body. On said support layers in green, porcelain with enamel and white paste with slip, defined areas of the precursor mixture of the luminescent composition were deposited in the form of digital ink obtained in step f). The deposition of said defined areas of the digital ink was carried out by digital printing with different grammages corresponding to 20, 40, 60 and 80 g/m 2 , obtaining different ceramic pieces with thicknesses of different luminescent compositions. The glazes and slips used in these applications are standard glazes and slips used in the ceramic tile industry.
Se prepararon piezas con diferentes soportes cerámicos, con diferentes esmaltes y con diferentes engobes, y para los diferentes esmaltes y/o engobes ensayados se observó una linealidad en la intensidad de la señal luminiscente con el valor de gramaje. En concreto se obtuvieron valores de espesor del área de la composición luminiscente inferiores a 20 pm para todos los gramajes empleados. El incremento en el gramaje se correspondió con un aumento del espesor del área o dibujo de la composición luminiscente en el azulejo cerámico. Debido a que los espesores estándar de esmaltes en azulejos cerámicos están comprendidos entre 50 y 200 pm, los valores de gramajes para la composición luminiscente están comprendidos entre el 40 y el 10% del espesor de los esmaltes estándar. El rango de gramajes correspondiente al esmalte estándar está comprendido entre 5 y 500 gramos/m2 que equivale a espesores de 4 a 400 pm. La figura 2 se corresponde con una pieza cerámica cocida representativa del empleo de la tinta T3 depositada sobre un azulejo de gres porcelánico recubierto con un esmalte mate, y observada bajo iluminación de UV. La tabla 5 recoge los valores de luminiscencia para los diferentes gramajes de tinta aplicados y los espesores del dibujo de la composición luminiscente obtenidos con la tinta T3 tras su cocción. Los valores obtenidos de intensidad de la emisión luminiscente son inferiores a los del material en volumen obtenidos para discos de 2 mm de espesor. No obstante, estos valores son suficientes para ser apreciados por el ojo humano al exceder notablemente los límites fototópicos y escotópicos. Este aspecto, supone una ventaja de las composiciones luminiscentes dado que permite obtener un valor de espesor tal que se puede integrar en el interior de una capa de esmalte estándar en la industria de azulejos cerámicos manteniendo valores de luminiscencia adecuados para su observación. Pieces were prepared with different ceramic supports, with different glazes and with different slips, and for the different glazes and/or slips tested, a linearity was observed in the intensity of the luminescent signal with the grammage value. Specifically, thickness values of the area of the luminescent composition lower than 20 pm were obtained for all the weights used. The increase in weight corresponded to an increase in the thickness of the area or pattern of the luminescent composition on the ceramic tile. Because the standard thicknesses of glazes on ceramic tiles are between 50 and 200 pm, the grammage values for the luminescent composition are between 40 and 10% of the thickness of the standard glazes. The range of weights corresponding to standard enamel is between 5 and 500 grams/m 2 , which is equivalent to thicknesses of 4 to 400 pm. Figure 2 corresponds to a fired ceramic piece representative of the use of T3 ink deposited on a porcelain stoneware tile coated with a matte glaze, and observed under UV lighting. Table 5 shows the luminescence values for the different weights of ink applied and the thicknesses of the drawing of the luminescent composition obtained with the T3 ink after firing. The values obtained for the intensity of the luminescent emission are lower than those of the bulk material obtained for 2 mm thick discs. No However, these values are sufficient to be appreciated by the human eye as they notably exceed the phototopic and scotopic limits. This aspect represents an advantage of luminescent compositions since it allows obtaining a thickness value such that it can be integrated into the interior of a standard enamel layer in the ceramic tile industry while maintaining luminescence values suitable for observation.
Una ventaja de la presente invención consiste en que, dado el espesor reducido de la composición luminiscente integrada, la composición luminiscente presentó un gramaje de de entre 10 y 90 gramos/m2, más preferentemente entre 20 y 80 gramos/m2. De esta forma la proporción de óxido de europio requerida por m2 de azulejo cerámico resulta entre 0,2 y 8 g/m2. Dicha cantidad se verá reducida proporcionalmente al integrar la composición luminiscente con una forma determinada, esto es, sin abarcar la superficie total del azulejo cerámico. Un cálculo no limitativo indica que el coste repercutido por m2 de azulejo cerámico de la incorporación de una forma determinada de una composición luminiscente se corresponde con unidades de céntimo de euro. El coste repercutido de la incorporación de una zona luminiscente integrada de la presente invención resulta por tanto una ventaja para productos destinados como materiales de construcción cuyo coste de producción por m2 está en el entorno de unidades de euro. An advantage of the present invention is that, given the reduced thickness of the integrated luminescent composition, the luminescent composition had a grammage of between 10 and 90 grams/m 2 , more preferably between 20 and 80 grams/m 2 . In this way, the proportion of europium oxide required per m 2 of ceramic tile is between 0.2 and 8 g/m 2 . This amount will be reduced proportionally when integrating the luminescent composition with a certain shape, that is, without covering the total surface of the ceramic tile. A non-limiting calculation indicates that the cost incurred per m 2 of ceramic tile from the incorporation of a given form of a luminescent composition corresponds to units of euro cents. The passed-on cost of incorporating an integrated luminescent zone of the present invention is therefore an advantage for products intended as construction materials whose production cost per m 2 is in the region of euro units.
La Figura 3 muestra un azulejo cerámico de gres porcelánico esmaltado que presenta dibujos en forma de rectángulo mediante la tinta T3 una vez cocido y bajo iluminación UV. Figure 3 shows a glazed porcelain stoneware ceramic tile that presents rectangle-shaped drawings using T3 ink once fired and under UV lighting.
Tabla 5. Valor del máximo de la intensidad luminiscente para la emisión luminiscente en la región 610-625 nm de regiones donde se depositó tinta T3 en azulejo cerámico de gres porcelánico esmaltado una vez cocido. La emisión luminiscente se determinó para una región circular de 1 cm de diámetro bajo una longitud de onda de excitación de 393 nm, siendo las condiciones experimentales similares a las realizadas en los ejemplos 1, 2 y 3 salvo en lo referente al espesor de la composición luminiscente y, por tanto, las unidades de intensidad resultan comparables
Figure imgf000037_0001
Figure imgf000038_0001
Table 5. Value of the maximum luminescent intensity for luminescent emission in the 610-625 nm region of regions where T3 ink was deposited on glazed porcelain stoneware ceramic tile once fired. The luminescent emission was determined for a circular region of 1 cm in diameter under an excitation wavelength of 393 nm, the experimental conditions being similar to those carried out in examples 1, 2 and 3 except with regard to the thickness of the composition. luminescent and, therefore, the intensity units are comparable
Figure imgf000037_0001
Figure imgf000038_0001
Una ventaja relevante de las composiciones luminiscentes para su integración en una pieza cerámica esmaltada se corresponde con los valores de coordenadas cromáticas y coeficientes de dilatación. Las composiciones luminiscentes CL1 y CL2 presentan valores de coeficiente de dilatación térmica (determinados en el rango de temperatura de 30 a 500°C en un dilatómetro 801 L, Bahr) de 53±1x10-7 y 65±1x10-7 °C'1, que resultan adecuados para su ajuste con los componentes de azulejos cerámicos que poseen valores en el rango de 50. 10'7 a 75. 10'7 °C'1. El coeficiente de blancura (L*) determinado mediante colorimetría (colorímetro Konica Minolta, Spectra Magic NX, con Color Data Software CM- S100w) fueron de 91 ±1 y 92±1 para CL1 y CL2 respectivamente. Dichos valores resultan adecuados para los valores de esmalte blanco empleados en la industria que requieren valores de L* superiores a 87. A relevant advantage of luminescent compositions for their integration into a glazed ceramic piece corresponds to the values of chromatic coordinates and expansion coefficients. The luminescent compositions CL1 and CL2 present thermal expansion coefficient values (determined in the temperature range of 30 to 500°C in an 801 L dilatometer, Bahr) of 53±1x10 -7 and 65±1x10 -7 °C' 1 , which are suitable for adjustment with ceramic tile components that have values in the range of 50. 10' 7 to 75. 10' 7 °C' 1 . The whiteness coefficient (L*) determined by colorimetry (Konica Minolta colorimeter, Spectra Magic NX, with Color Data Software CM-S100w) were 91 ±1 and 92 ±1 for CL1 and CL2 respectively. These values are suitable for white enamel values used in industry that require L* values greater than 87.
Otra ventaja de las composiciones luminiscentes está relacionada con la presencia de cationes de Zr4* en su composición. Las composiciones luminiscentes comprenden dichos cationes que, expresados en términos de su óxido equivalente, ZrÜ2, se corresponden con 1 ,1% para la composición luminiscente CL1 y de 6,5% para la composición luminiscente CL2. La composición luminiscente CL1 presenta transparencia a la luz visible mientras que la composición luminiscente CL2 es opaca. Another advantage of luminescent compositions is related to the presence of Zr 4 * cations in their composition. The luminescent compositions comprise said cations which, expressed in terms of their equivalent oxide, ZrÜ2, correspond to 1.1% for the luminescent composition CL1 and 6.5% for the luminescent composition CL2. The luminescent composition CL1 is transparent to visible light while the luminescent composition CL2 is opaque.
La presencia de cationes Zr4* en las composiciones luminiscentes es ventajoso para regular la transparencia, pero lo que importa es que la composición luminiscente se vea con luz UV. Si es opaca o no es algo que tiene que ver con que en visible se pueda ver la región o se quede camuflada. The presence of Zr 4 * cations in luminescent compositions is advantageous for regulating transparency, but what matters is that the luminescent composition is visible under UV light. Whether it is opaque or not is something that has to do with whether the region can be seen in visibility or whether it remains camouflaged.
Las composiciones luminiscentes CL4 a CL17 presentaron valores en las propiedades referidas similares a las descritas y comprendidas en el rango de las determinadas entre los valores de CL1 y CL2 en términos de las propiedades físicas de coeficiente de expansión térmica, coeficiente de blancura y transparencia. The luminescent compositions CL4 to CL17 presented values in the referred properties similar to those described and included in the range of those determined between the values of CL1 and CL2 in terms of the physical properties of thermal expansion coefficient, whiteness coefficient and transparency.
En conjunto de propiedades físicas y las propiedades luminiscentes resultan una ventaja para la integración de las composiciones luminiscentes en las piezas cerámicas esmaltadas y decoradas mediante procesos de decoración digital, preferentemente en azulejos cerámicos. La figura 5 muestra un ejemplo de integración de una composición luminiscente CL1 en un azulejo de ges porcelánico para generar un código QR O un logotipo de empresa. Taken together, physical properties and luminescent properties are an advantage for the integration of luminescent compositions in glazed ceramic pieces decorated by digital decoration processes, preferably in ceramic tiles. Figure 5 shows an example of integrating a CL1 luminescent composition into a porcelain ges tile to generate a QR code or a company logo.
Los ejemplos demuestran que la incorporación en el proceso de fusión de la frita que posteriormente daría incorporación al feldespato, da una señal muy baja de 5 órdenes de magnitud menores, frente a I resultado que se obtiene con el procedimiento de la invención. The examples demonstrate that the incorporation in the fusion process of the frit that would later incorporate the feldspar, gives a very low signal of 5 orders of magnitude smaller, compared to the result obtained with the procedure of the invention.

Claims

REIVINDICACIONES
1. Una pieza cerámica esmaltada que comprende: a) un soporte cerámico b) una capa final de esmalte cerámico, c) una composición luminiscente integrada en una zona discreta, o vahas zonas discretas, de la capa final de esmalte, tal que dicha composición luminiscente comprende: 1. A glazed ceramic piece comprising: a) a ceramic support b) a final layer of ceramic glaze, c) a luminescent composition integrated into a discrete area, or several discrete areas, of the final layer of glaze, such that said composition luminescent includes:
- cristalizaciones con estructura de feldespato; - crystallizations with a feldspar structure;
- una fase vitrea; y - a glassy phase; and
- partículas cristalinas que comprenden uno o más óxidos de lantánido. - crystalline particles comprising one or more lanthanide oxides.
2. Una pieza cerámica esmaltada, según la reivindicación 1 , en la que las partículas cristalinas que comprenden óxido de lantánido están dispuestas en la composición luminiscente fuera de la red de cristalizaciones con estructura de feldespato, en una proporción de óxido de lantánido respecto al total de óxido de lantánido tal, que en exposición a luz UV la composición produce una señal de luminiscencia de una intensidad de al menos 106, preferentemente de al menos 107, y más preferentemente de al menos 108 para una superficie de 2 cm2, con respecto al 100% en peso del óxido del lantánido de referencia, que tiene una señal luminiscente de 107 -medido en unidades arbitrarias y con las mismas condiciones de medida. 2. A glazed ceramic piece, according to claim 1, in which the crystalline particles comprising lanthanide oxide are arranged in the luminescent composition outside the network of crystallizations with a feldspar structure, in a proportion of lanthanide oxide with respect to the total of lanthanide oxide such that on exposure to UV light the composition produces a luminescence signal of an intensity of at least 10 6 , preferably of at least 10 7 , and more preferably of at least 10 8 for a surface of 2 cm 2 , with respect to 100% by weight of the reference lanthanide oxide, which has a luminescent signal of 10 7 -measured in arbitrary units and with the same measurement conditions.
3. Una pieza cerámica esmaltada, según la reivindicación 1 , en la que las partículas cristalinas que comprenden óxido de lantánido están dispuestas en la composición luminiscente de modo que dichas partículas no forman solución sólida con la fase cristalina de feldespato, ni forma solución sólida con la fase vitrea de la composición luminiscente. 3. A glazed ceramic piece, according to claim 1, wherein the crystalline particles comprising lanthanide oxide are arranged in the luminescent composition so that said particles do not form a solid solution with the feldspar crystalline phase, nor do they form a solid solution with the glass phase of the luminescent composition.
4. Una pieza cerámica esmaltada, según una de las reivindicaciones 1 a 3, en la que la fase vitrea está presente en la composición luminiscente en una proporción en peso igual o inferior al 30 %, y preferentemente igual o inferior al 20%, respecto al peso del conjunto de las fases cristalinas en la composición luminiscente. 4. A glazed ceramic piece, according to one of claims 1 to 3, in which the glass phase is present in the luminescent composition in a proportion by weight equal to or less than 30%, and preferably equal to or less than 20%, with respect to to the weight of all the crystalline phases in the luminescent composition.
5. Una pieza cerámica esmaltada, según una de las reivindicaciones 1 a 3, en la que la cantidad de óxidos de lantánido en la composición luminiscente está comprendida entre 0,1% y 10% en peso respecto al peso total de la composición luminiscente, preferentemente, entre 0,1 % y 5% en peso y más preferentemente entre 0,1 % y 2% en peso. 5. A glazed ceramic piece, according to one of claims 1 to 3, wherein the amount of lanthanide oxides in the luminescent composition is between 0.1% and 10% by weight with respect to the total weight of the luminescent composition, preferably between 0.1% and 5% by weight and more preferably between 0.1% and 2% by weight.
6. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que al menos el 80% del óxido de lantánido en forma de partículas cristalinas, presente en la composición, está en la región de la fase vitrea. 6. A glazed ceramic piece, according to any one of the preceding claims, in which at least 80% of the lanthanide oxide in the form of crystalline particles, present in the composition, is in the region of the glass phase.
7. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que las partículas que comprenden óxido de lantánido tienen un tamaño de <2 pm, preferentemente, <1 ,5 pm, y de forma preferente <1 pm. 7. A glazed ceramic piece according to any one of the preceding claims, wherein the particles comprising lanthanide oxide have a size of <2 pm, preferably <1.5 pm, and preferably <1 pm.
8. Una pieza cerámica esmaltada, según una de las reivindicaciones anteriores, que comprende: 8. A glazed ceramic piece, according to one of the previous claims, comprising:
- un soporte cerámico, - a ceramic support,
- una capa final de esmalte en la que está integrada la composición luminiscente. - a final layer of enamel in which the luminescent composition is integrated.
9. Una pieza cerámica esmaltada, según la reivindicación 8, que comprende entre el soporte cerámico y la capa final de esmalte: una capa de engobe cerámico como opacificante del soporte cerámico. 9. A glazed ceramic piece, according to claim 8, which comprises between the ceramic support and the final layer of glaze: a layer of ceramic slip as an opacifier of the ceramic support.
10. Una pieza cerámica esmaltada, según la reivindicación anterior, que comprende además de la capa de engobe, una primera capa de esmalte cerámico entre el soporte cerámico y la capa de engobe. 10. A glazed ceramic piece, according to the preceding claim, comprising, in addition to the slip layer, a first layer of ceramic glaze between the ceramic support and the slip layer.
11. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que la composición luminiscente comprende 11. A glazed ceramic piece, according to any one of the preceding claims, wherein the luminescent composition comprises
- una fase amorfa, - an amorphous phase,
- una fase cristalina en forma de partículas con estructura de feldespato, y- a crystalline phase in the form of particles with a feldspar structure, and
- una fase cristalina que comprende uno o más óxidos de los elementos: Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La, Tm y Eu, o combinaciones de los mismos. - a crystalline phase comprising one or more oxides of the elements: Er, Gd, Ho, Sm, Ce, Nd, Yb, Tb, Pr, La, Tm and Eu, or combinations thereof.
12. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que la composición luminiscente comprende partículas cristalinas que comprenden óxido de europio. 12. A glazed ceramic piece, according to any one of the preceding claims, wherein the luminescent composition comprises crystalline particles comprising europium oxide.
13. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que las cristalizaciones con estructura de feldespato tienen una morfología dual con partículas de tamaño entre 1 y 12 pm, preferentemente entre 2 y 8 pm, y de forma más preferente entre 3 y 6 pm y partículas de un tamaño del orden de nanómetros, con un límite de <500 nm, preferentemente <350 nm, y de forma más preferente <200 nm. 13. A glazed ceramic piece, according to any one of the preceding claims, wherein the crystallizations with a feldspar structure have a dual morphology with particles of size between 1 and 12 pm, preferably between 2 and 8 pm, and more preferably between 3 and 6 pm and particles of a size of the order of nanometers, with a limit of <500 nm, preferably <350 nm, and more preferably <200 nm.
14. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que las cristalizaciones con estructura de feldespato tienen estructura de plagioclasas, preferiblemente tienen estructura cristalina de albita, oligoclasa, andesina, labradorita, banalsita, bytownita, anortita o combinaciones de ellas. 14. A glazed ceramic piece, according to any one of the preceding claims, in which the crystallizations with a feldspar structure have a feldspar structure. plagioclases, preferably have a crystalline structure of albite, oligoclase, andesine, labradorite, banalsite, bytownite, anorthite or combinations of them.
15. Una pieza cerámica esmaltada, según una cualquiera de las reivindicaciones anteriores, en la que la composición luminiscente está dispuesta en la pieza cerámica de tal modo que tiene la forma de un patrón reconocible cuando se ilumina con luz ultravioleta. 15. A glazed ceramic piece, according to any one of the preceding claims, wherein the luminescent composition is arranged in the ceramic piece in such a way that it has the shape of a recognizable pattern when illuminated with ultraviolet light.
16. Una pieza cerámica esmaltada, según la reivindicación anterior, en la que el patrón reconocible está seleccionado entre códigos, textos, símbolos, nombres, logotipos, marcas, firmas números, enlace a una página web, una figura decorativa, un grafismo y una textura. 16. A glazed ceramic piece, according to the previous claim, in which the recognizable pattern is selected from codes, texts, symbols, names, logos, brands, signatures, numbers, link to a web page, a decorative figure, a graphic and a texture.
17. Una pieza cerámica esmaltada según una cualquiera de las reivindicaciones anteriores, en la que la composición luminiscente tiene un gramaje de entre 10 y 90 gramos/m2, preferentemente entre 20 y 80 gramos/m2, y más preferentemente, de 30 y 60 gramos/m2. 17. A glazed ceramic piece according to any one of the preceding claims, wherein the luminescent composition has a weight of between 10 and 90 grams/m 2 , preferably between 20 and 80 grams/m 2 , and more preferably, 30 and 60 grams/m 2 .
18. Una pieza cerámica esmaltada, según la reivindicación anterior, seleccionada entre un azulejo y una baldosa. 18. A glazed ceramic piece, according to the previous claim, selected between a tile and a tile.
19. Un procedimiento para obtener la pieza cerámica esmaltada, definida en una cualquiera de las reivindicaciones anteriores, que comprende: a) homogeneización de una mezcla precursora de la composición luminiscente mediante molienda húmeda; b) secado de la composición homogeneizada obtenida en la etapa a); c) tamizado del producto obtenido en la etapa b); d) tratamiento térmico en atmósfera de aire del producto obtenido en la etapa c); obteniendo una composición luminiscente precursora e) molturación para acondicionado del tamaño de partícula de la composición luminiscente precursora obtenida en la etapa d); f) formación de una tinta cerámica con la composición luminiscente precursora resultante de la etapa e), g) decoración de una pieza cerámica en verde con la tinta cerámica de la etapa f); y h) cocción de la pieza cerámica que comprende la composición luminiscente, dando lugar a la pieza esmaltada. 19. A procedure to obtain the enameled ceramic piece, defined in any one of the preceding claims, which comprises: a) homogenization of a precursor mixture of the luminescent composition by wet grinding; b) drying the homogenized composition obtained in step a); c) sieving of the product obtained in step b); d) thermal treatment in an air atmosphere of the product obtained in step c); obtaining a precursor luminescent composition e) grinding to condition the particle size of the precursor luminescent composition obtained in step d); f) formation of a ceramic ink with the precursor luminescent composition resulting from step e), g) decoration of a ceramic piece in green with the ceramic ink from step f); and h) firing the ceramic piece that comprises the luminescent composition, giving rise to the enameled piece.
20. Un procedimiento, según la reivindicación 19, en el que en la etapa a) se utilizan partículas de material de partida del óxido de lantánido con un tamaño tal que el valor de dsoestá comprendido entre 1±0,5 pm y 12±1 pm, preferentemente, entre 2±1 pm y 8±1 pm, y de forma más preferente aún de entre 3±1 y 6±1 pm. 20. A process according to claim 19, wherein in step a) particles of lanthanide oxide starting material with a size such that the dso value is between 1 ± 0.5 pm and 12 ± 1 are used. pm, preferably between 2±1 pm and 8±1 pm, and even more preferably between 3±1 and 6±1 pm.
21. Un procedimiento, según la reivindicación 19, en el que la etapa g) comprende: 21. A procedure according to claim 19, wherein step g) comprises:
- depositar en verde la tinta cerámica obtenida en la etapa f) del procedimiento: - deposit the ceramic ink obtained in step f) of the procedure in green:
- directamente sobre el soporte cerámico en verde de la pieza cerámica, o- directly on the green ceramic support of the ceramic piece, or
- sobre una primera capa de esmalte depositada sobre el soporte cerámico en verde o - on a first layer of enamel deposited on the ceramic support in green or
- sobre una capa de esmalte depositada sobre una capa de engobe depositada sobre el soporte cerámico en verde. - on a layer of enamel deposited on a layer of slip deposited on the green ceramic support.
22. Un procedimiento, según una cualquiera de las reivindicaciones 19 a 22, en el que la etapa g) se realiza mediante un método seleccionado entre impresión planográfica, impresión por huecograbado e impresión digital. 22. A method according to any one of claims 19 to 22, in which step g) is carried out by a method selected from planographic printing, gravure printing and digital printing.
23. Un procedimiento, según una cualquiera de las reivindicaciones anteriores 19 a 22, en el que la etapa h) comprende: 23. A procedure according to any one of the preceding claims 19 to 22, wherein step h) comprises:
- realizar un tratamiento térmico de la pieza resultante de la etapa g), a una temperatura de cocción entre 1100 y 1240 °C, preferentemente entre 1120°C y 1230°C, y más preferentemente entre 1130°C y 1225°C. - carry out a heat treatment of the piece resulting from step g), at a firing temperature between 1100 and 1240 °C, preferably between 1120 °C and 1230 °C, and more preferably between 1130 °C and 1225 °C.
24. Un procedimiento, según una cualquiera de las reivindicaciones anteriores 19 a 23, en el que la etapa h) comprende realizar un tratamiento térmico que comprende realizar un ciclo térmico con una duración total de entre 45 minutos a 120 minutos con un tiempo de estancia a la temperatura máxima de tratamiento entre 6 minutos y 6 minutos. 24. A procedure, according to any one of the preceding claims 19 to 23, in which step h) comprises performing a thermal treatment that comprises performing a thermal cycle with a total duration of between 45 minutes to 120 minutes with a residence time at the maximum treatment temperature between 6 minutes and 6 minutes.
25. Una composición luminiscente precursora obtenida mediante el procedimiento que comprende las etapas a) a d) del procedimiento definido en la reivindicación 19, que comprende: 25. A precursor luminescent composition obtained by the procedure comprising steps a) to d) of the procedure defined in claim 19, comprising:
- frita; - fried;
- caolina; y - kaolin; and
- partículas cristalinas de uno o más óxidos de lantánido. - crystalline particles of one or more lanthanide oxides.
26. Una composición luminiscente precursora según la reivindicación 25, en la que las partículas cristalinas de óxido de lantánido están dispuestas en la composición luminiscente fuera de la red de cristalizaciones con estructura de feldespato en una proporción de óxido de lantánido respecto al total de óxido de lantánido tal, que bajo exposición a luz UV la composición produce una señal de luminiscencia de una intensidad de al menos 104, preferentemente de al menos 105, y más preferentemente de al menos 107 para una superficie de 2 cm2, en comparación a la señal luminiscente del polvo de óxido de lantánido de partida -medido en unidades arbitrarias y con las mismas condiciones de medida- 26. A precursor luminescent composition according to claim 25, wherein the crystalline lanthanide oxide particles are arranged in the luminescent composition outside the network of crystallizations with a feldspar structure in a ratio of lanthanide oxide to total lanthanide oxide. lanthanide such that under exposure to UV light the composition produces a luminescence signal of an intensity of at least 10 4 , preferably at least 10 5 , and more preferably at least 10 7 for a surface area of 2 cm 2 , compared to the luminescent signal of the starting lanthanide oxide powder - measured in arbitrary units and with the same measurement conditions -
27. Una composición luminiscente precursora según la reivindicación 25 o 26, obtenida a través de las etapas a) a d) del procedimiento definido en la reivindicación 19. 27. A precursor luminescent composition according to claim 25 or 26, obtained through steps a) to d) of the procedure defined in claim 19.
28. Una tinta que comprende la composición luminiscente precursora definida en una de las reivindicaciones 25 a 27. 28. An ink comprising the precursor luminescent composition defined in one of claims 25 to 27.
29. Uso de la composición luminiscente obtenida en la etapa h) de la reivindicación 19, para la autenticación o lucha contra la falsificación de documentos de seguridad, artículos de seguridad y objetos de valor. 29. Use of the luminescent composition obtained in step h) of claim 19, for the authentication or fight against falsification of security documents, security articles and valuable objects.
30. Uso de la composición luminiscente para generar: efectos de doble decoración solo visible con luz UV para espacios públicos textos o símbolos, nombre, logotipos, marcas y/o identidad de empresas. códigos QR o códigos de barra, firma de artista, número de señe o marca de autor de una colección de piezas cerámicas. 30. Use of the luminescent composition to generate: double decoration effects only visible with UV light for public spaces, texts or symbols, names, logos, brands and/or company identity. QR codes or barcodes, artist signature, serial number or author's mark of a collection of ceramic pieces.
PCT/ES2023/070379 2022-06-10 2023-06-08 Glazed ceramic piece WO2023237801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202230513A ES2928896B2 (en) 2022-06-10 2022-06-10 ENAMELED CERAMIC PIECE
ESP202230513 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023237801A1 true WO2023237801A1 (en) 2023-12-14

Family

ID=84139542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070379 WO2023237801A1 (en) 2022-06-10 2023-06-08 Glazed ceramic piece

Country Status (4)

Country Link
BE (1) BE1030334B1 (en)
ES (1) ES2928896B2 (en)
GB (1) GB2618667A (en)
WO (1) WO2023237801A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396394A (en) * 2016-08-29 2017-02-15 佛山市高明区诚睿基科技有限公司 Ecological ceramic tile and preparation method thereof
CN107188419A (en) * 2017-07-07 2017-09-22 福建省德化县联达陶瓷有限公司 A kind of high heat-resistance antibacterial powdered frit and preparation method thereof
CN111423118A (en) * 2020-04-02 2020-07-17 福建省威尔陶瓷股份有限公司 Easy-to-clean household ceramic product and preparation method thereof
EP3685864A1 (en) * 2019-01-22 2020-07-29 Fabrica Nacional De Moneda Y Timbre - Real Casa De La Moneda Use of feldspar based particles as security-markers
CN111574055A (en) * 2020-05-20 2020-08-25 福建省德化县冠鸿陶瓷有限公司 Wear-resistant household ceramic product and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1402039A (en) * 1964-04-22 1965-06-11 Fils Et Petits Fils De J B Fontanille Process for the manufacture of tubular packaging and products obtained.
JPS50156418U (en) * 1974-06-12 1975-12-25
DE3612223A1 (en) * 1986-04-11 1987-10-15 Claas Ohg NETWORK
US4698276A (en) * 1986-05-23 1987-10-06 Guilford Mills, Inc. Differential density fabric
TR201010337A2 (en) * 2010-12-10 2011-06-21 Gülsan Senteti̇k Dokuma Sanayi̇ Ve Ti̇caret A.Ş. Mesh sack and production method.
NL2014442B1 (en) * 2015-03-12 2016-10-14 Lc Packaging Int B V Jute bag with airway.
EP4093917A1 (en) * 2020-01-21 2022-11-30 SWM Luxembourg Devices, systems and methods for erosion control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396394A (en) * 2016-08-29 2017-02-15 佛山市高明区诚睿基科技有限公司 Ecological ceramic tile and preparation method thereof
CN107188419A (en) * 2017-07-07 2017-09-22 福建省德化县联达陶瓷有限公司 A kind of high heat-resistance antibacterial powdered frit and preparation method thereof
EP3685864A1 (en) * 2019-01-22 2020-07-29 Fabrica Nacional De Moneda Y Timbre - Real Casa De La Moneda Use of feldspar based particles as security-markers
CN111423118A (en) * 2020-04-02 2020-07-17 福建省威尔陶瓷股份有限公司 Easy-to-clean household ceramic product and preparation method thereof
CN111574055A (en) * 2020-05-20 2020-08-25 福建省德化县冠鸿陶瓷有限公司 Wear-resistant household ceramic product and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Rare earths in high temperature glazes", CERAMICA WEB.COM, 12 April 2019 (2019-04-12), XP093116663, Retrieved from the Internet <URL:https://ceramicaweb.com/foro/tema/tierras-raras-en-esmaltes-de-alta-temperatura/> [retrieved on 20240108] *

Also Published As

Publication number Publication date
GB2618667A (en) 2023-11-15
ES2928896B2 (en) 2023-10-09
GB2618667A8 (en) 2024-05-15
ES2928896A1 (en) 2022-11-23
BE1030334B1 (en) 2024-02-22
BE1030334A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
Sandhyarani et al. Versatile core–shell SiO2@ SrTiO3: Eu3+, Li+ nanopowders as fluorescent label for the visualization of latent fingerprints and anti-counterfeiting applications
US20080274028A1 (en) Security pigments and the process of making thereof
Park et al. Versatile fluorescent Gd2MoO6: Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications
Park et al. Novel red-emitting Y4Zr3O12: Eu3+ nanophosphor for latent fingerprint technology
Venkataravanappa et al. Multifunctional Dy (III) doped di-calcium silicate array for boosting display and forensic applications
US20080087189A1 (en) Security pigments and the process of making thereof
Navami et al. Evolution of shapes and identification of level II and III features of fingerprints using CaZrO3: Sm3+ fluorescent markers prepared via solution combustion route
Latha et al. Green emanating BiOCl: Tb3+ phosphors for strategic development of dermatoglyphics and anti-counterfeiting applications
Yeshodamma et al. Monovalent ions co-doped SrTiO3: Pr3+ nanostructures for the visualization of latent fingerprints and can be red component for solid state devices
Darshan et al. Nucleation and self-assembly dynamics of hierarchical YAlO3: Ce3+ architectures: nano probe for in vitro dermatoglyphics and anti-mimetic applications
Swathi et al. Designing vivid green Sr9Al6O18: Er3+ phosphor for information encryption and nUV excitable cool-white LED applications
Mamatha et al. Designing orange-red emitting luminescent platform for data security and information encryption based Sm3+ doped BLAO phosphor
Komahal et al. Rational design of monovalent ions (Li, Na, K) co-doped ZnAl2O4: Eu3+ nanocrystals enabling versatile robust latent fingerprint visualization
CN110885682A (en) Gallate long afterglow fluorescent powder material and its preparation method
Sreedhara et al. A cost-effective intense blue colour cobalt doped gahnite pigment for latent finger print, cheiloscopy and anti-counterfeiting applications
Latha et al. Photochromic, down-conversion nano bismuth chloride layered material: Latent fingerprint visualization and data security applications
Hong et al. Sintering temperature effect of divalent europium ion doped tetra-calcium phosphate phosphors for latent fingerprint detection
Srinivasa et al. Blue light emitting Sr2MgSi2O7: Eu2+ nanophosphor for latent fingerprint, anti-counterfeiting and near UV-LED applications
ES2928896B2 (en) ENAMELED CERAMIC PIECE
ES2956983T3 (en) Use of feldspar-based particles as safety markers
ES2732102T3 (en) Nanostructured phosphorescent pigment and its uses
He et al. Enhancements of luminescent properties of CaZrO3: Eu3+ by A+ (A= Li, Na, K)
Li et al. Structural and optical properties of Cd2MgTeO6: Dy3+, Na+ phosphors for potential application in w-LEDs and personal identification
CN102911661A (en) Temperature-resistant anti-counterfeiting compound and method for producing same
Kumar et al. Annealing-assisted optimization for persistency of afterglow of SrAl 2 O 4: Eu 2+/Dy 3+ microparticles for forensic detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819311

Country of ref document: EP

Kind code of ref document: A1