WO2023237020A1 - 一种重力液压压缩空气储能系统和方法 - Google Patents

一种重力液压压缩空气储能系统和方法 Download PDF

Info

Publication number
WO2023237020A1
WO2023237020A1 PCT/CN2023/098972 CN2023098972W WO2023237020A1 WO 2023237020 A1 WO2023237020 A1 WO 2023237020A1 CN 2023098972 W CN2023098972 W CN 2023098972W WO 2023237020 A1 WO2023237020 A1 WO 2023237020A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
gravity
pressure
liquid
compressed air
Prior art date
Application number
PCT/CN2023/098972
Other languages
English (en)
French (fr)
Inventor
文军
赵瀚辰
李阳
杨成龙
姬海民
宋晓辉
姚明宇
Original Assignee
西安热工研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023237020A1 publication Critical patent/WO2023237020A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure relates to the field of technical electrical energy storage, and in particular to a gravity hydraulic compressed air energy storage system and method.
  • the compressed air energy storage system is an energy storage system that converts electrical energy into air pressure potential energy storage during the low period of electricity consumption, and uses aerodynamic energy to drive the expander to generate electricity during the peak period of electricity consumption.
  • the compressed air energy storage system can build large-scale power stations with a single installed capacity of more than 100MW, second only to pumped storage power stations. It has the advantages of long energy storage cycle, small unit energy storage investment, long life and high efficiency.
  • Traditional compressed air energy storage systems use rock caves, abandoned salt caves and abandoned mines as gas storage devices, which are highly dependent on the geographical environment and require the consumption of fossil energy such as natural gas during the power generation process.
  • compressed air energy storage technology relies on large air storage chambers, with limited application sites.
  • the compressor expander is in sliding pressure operation for a long time.
  • Pumped hydro energy storage has high efficiency but also has limited application scenarios.
  • This disclosure proposes a gravity hydraulic compressed air energy storage system, including:
  • a gas storage tank filled with pressure liquid A gas storage tank filled with pressure liquid
  • Hydraulic shaft a gravity pressure block is movably inserted in the hydraulic shaft, a sealing film is sealingly connected between the outer wall of the gravity pressure block and the inner wall of the hydraulic shaft, the gravity pressure block, the sealing film and the hydraulic shaft
  • the space in the shaft below the gravity pressure block and the sealing film forms a liquid storage chamber
  • Hydraulic pipeline the liquid inlet end and the liquid outlet end of the hydraulic pipeline are connected to the gas storage tank and the liquid storage chamber respectively, and a high-pressure water pump is provided on the hydraulic pipeline to allow the energy to be stored.
  • the compressed air in the gas storage cooperates with the high-pressure water pump to press the pressure liquid into the hydraulic shaft to lift the gravity block;
  • Hydraulic bypass the liquid inlet end and the liquid outlet end of the hydraulic bypass are respectively connected to the liquid storage chamber and the gas storage chamber, and a hydraulic turbine is arranged on the hydraulic bypass so that the gravity pressure when releasing energy
  • the block presses the pressure liquid in the liquid storage chamber downward into the hydraulic bypass to drive the hydraulic turbine to do work and then flows into the gas storage to press the compressed air in the gas storage. Work externally.
  • the gravity hydraulic compressed air energy storage system further includes a compressor unit, the compressor unit is connected to the gas storage, and is used to pass compressed air into the gas storage;
  • the expansion unit is connected to the gas storage, so that the compressed air stored in the gas storage passes into the expansion unit to generate power.
  • the liquid inlet end and the liquid outlet end of the hydraulic bypass are respectively connected to the hydraulic pipeline through a three-way valve. superior.
  • the gravity pressure block includes a primary gravity block group and a secondary gravity block group arranged on the primary gravity block group;
  • the first-level gravity block group includes a pressure-bearing cylinder and a plurality of first-level gravity blocks filled in the pressure-bearing cylinder.
  • the sealing film is connected to the outer wall of the pressure-bearing cylinder.
  • the top outer wall of the pressure-bearing cylinder is provided with Limiting ring, the inner wall of the hydraulic shaft is provided with a locking platform, so that when the pressure-bearing cylinder moves downward to the lowest limit position, it is supported on the locking platform by the limiting ring, and the secondary gravity
  • the block group is arranged on the pressure-bearing cylinder.
  • the secondary gravity block group includes a plurality of secondary gravity blocks arranged in sequence and superimposed;
  • the outer diameter of the primary gravity block is smaller than the inner diameter of the pressure-bearing cylinder, and the outer diameter of the secondary gravity block is greater than the inner diameter of the pressure-bearing cylinder.
  • the inner wall of the pressure-bearing cylinder is provided with a plurality of positioning bars along the axial direction, and the side walls of the positioning bars are provided with positioning guide grooves along the axial direction.
  • the primary gravity block The outer wall is provided with positioning blocks that cooperate with the positioning guide grooves.
  • the inner wall of the hydraulic shaft is provided with multiple guide rails along the axial direction above the locking platform, and the secondary gravity block and the limiting ring are provided with guides that cooperate with the guide rails. assembly to limit the position of the secondary gravity block and the pressure-bearing cylinder through the guide rail.
  • a liner is provided on the inner wall of the hydraulic shaft below the locking platform, and the sealing film is sealingly connected to the inner wall of the liner.
  • the bottom of the pressure-bearing cylinder has a tapered structure.
  • This disclosure also proposes a gravity hydraulic compressed air energy storage method, which includes the following processes:
  • the motor drives the compressor unit to compress the air and send it to the gas storage.
  • the high-pressure water pump is turned on.
  • the high-pressure water pump and the compressed air in the gas storage discharge the pressure liquid into the sealed part of the hydraulic well.
  • the pressure liquid in the liquid storage chamber exerts an upward force on the gravity pressure block in the hydraulic shaft, causing the gravity pressure block to move upward to the highest limit;
  • the high-pressure air in the gas storage enters the expansion unit to push the expansion unit to do work and drive the generator to generate electricity.
  • the gas storage capacity inside the gas storage decreases, the gravity pressure block begins to fall, and the pressure liquid in the hydraulic shaft passes through the turbine through the hydraulic bypass. It enters the gas storage and drives the hydraulic turbine to do work to drive the generator to generate electricity.
  • Figure 1 is a schematic structural diagram of a gravity hydraulic compressed air energy storage system proposed by an embodiment of the present disclosure
  • Figure 2 is a partial structural schematic diagram of a hydraulic shaft proposed by another embodiment of the present disclosure.
  • Figure 3 is a partial structural schematic diagram of a hydraulic shaft proposed by another embodiment of the present disclosure.
  • Figure 4 is a partial structural schematic diagram of a hydraulic shaft proposed by another embodiment of the present disclosure.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • the purpose of the present disclosure is to propose a gravity hydraulic compressed air energy storage system.
  • the turbine and the expansion unit simultaneously drive the generator to generate electricity.
  • the power generation efficiency is improved, and due to The existence of the gravity pressure block increases the pressure in the liquid storage chamber in the hydraulic shaft, causing the liquid in the liquid storage chamber to be compressed, reducing the height of the traditional reservoir, increasing the energy density, increasing the applicability of the energy storage method, and making The compressor and expander are operating at constant pressure, which improves the efficiency and life of compressed air power generation.
  • Figure 1 is a schematic structural diagram of a gravity hydraulic compressed air energy storage system proposed by an embodiment of the present disclosure.
  • a gravity hydraulic compressed air energy storage system includes a gas storage 1, a hydraulic shaft 2, a hydraulic pipeline 3 and a hydraulic bypass 4.
  • the gas storage 1 is filled with pressure liquid 5.
  • the gas storage 1 It can be directly installed underground without occupying above-ground space.
  • a gravity pressure block 7 is movably plugged into the hydraulic shaft 2.
  • a sealing film 11 is sealingly connected between the outer wall of the gravity pressure block 7 and the inner wall of the hydraulic shaft 2.
  • the gravity pressure block 7, The sealing film 11 and the space below the gravity pressure block 7 and the sealing film 11 in the hydraulic shaft 2 form a liquid storage chamber 6, in which the sealing film 11 has a cylindrical structure, and the top end of the sealing film 11 is folded inward to form an inner connection between the top ends.
  • the hydraulic pipe 3 is provided with a high-pressure water pump 12 so that the compressed air flowing into the gas storage 1 during energy storage cooperates with the high-pressure water pump 12 to pump the pressure liquid Press into the hydraulic shaft 2 and lift up the gravity pressure block 7, so that the compressed air energy is partially converted into the gravity potential energy of the gravity pressure block 7 and the potential energy of the pressure liquid 5.
  • a hydraulic turbine 8 is provided on the hydraulic bypass 4, so that when the energy is released, the gravity pressure block 7 presses the pressure liquid 5 in the liquid storage chamber 6 downward into the hydraulic bypass 4. It drives the hydraulic turbine 8 to do work and then flows into the gas storage 1 to press the compressed air in the gas storage 1 to do external work. Through the work of the hydraulic turbine 8 and the compressed air, it drives the motor to generate electricity at the same time. On the basis of gravity compressed air energy storage, the power generation is improved.
  • the pressure in the liquid storage chamber 6 in the hydraulic shaft 2 is increased, causing the liquid in the liquid storage chamber 6 to be compressed, reducing the height of the traditional reservoir, improving the energy density, and increasing the storage capacity. applicability of the method.
  • the compressor unit 9 also includes a compressor unit 9 and an expansion unit 10.
  • the compressor unit 9 is connected to the gas storage 1 through an air inlet pipe for introducing compressed air into the gas storage 1.
  • the expansion unit 10 is connected through an air outlet pipe. Gas storage 1, so that the gas storage The compressed air stored in the gas reservoir 1 flows into the expansion unit 10 to generate power.
  • the compressor unit and the expansion unit are in a constant pressure operation state, which improves the efficiency and life of the compressed air power generation.
  • the air inlet pipe and the air outlet pipe are equipped with There is a heat storage device, and there are several heat exchange devices between the heat storage devices.
  • the heat storage device can be a heat storage tank, and the heat exchange device can be a heat exchanger.
  • the setting of the heat storage device and the heat exchange device can ensure that the compressor unit 9
  • the heat in the high-temperature and high-pressure gas obtained by medium compression is stored in the heat storage device, and the normal-temperature and high-pressure gas is stored in the gas storage 1.
  • the normal-temperature compressed air absorbs the energy in the heat storage device to improve the efficiency of power generation.
  • liquid inlet end and liquid outlet end of the hydraulic bypass 4 are connected to the hydraulic pipeline 3 through a three-way valve, so that during energy storage, the pressure liquid 5 controlled through the three-way valve can only pass through the hydraulic The pipeline 3 enters the liquid storage chamber 6. When the energy is released, the pressure liquid 5 is controlled by the three-way valve and can only enter the gas storage chamber 1 through the hydraulic bypass 4.
  • the gravity pressure block 7 includes a primary gravity block group 71 and a secondary gravity block group 72 arranged on the primary gravity block group 71;
  • the first-level gravity block group 71 includes a pressure-bearing cylinder 711 and a plurality of first-level gravity blocks 712 filled in the pressure-bearing cylinder 711.
  • the multiple first-level gravity blocks 712 are stacked and the sealing film 11 is connected to the outer wall of the pressure-bearing cylinder 711.
  • the pressure-bearing cylinder 711 is a cylindrical structure surrounded by steel plates, so the outer surface is smooth.
  • the sealing membrane 11 is directly connected to the first-level gravity block 712, and in the liquid storage chamber
  • the pressure-bearing cylinder 711 can ensure the sealing properties of the liquid storage chamber 6 and can withstand higher pressure, thereby increasing the energy density of the system energy storage. Since the gravity of the gravity block 7 required in the energy storage process is relatively large, direct hoisting will increase the difficulty of construction.
  • the pressure-bearing cylinder 711 is set into a hollow cylindrical structure, and then multiple first-level gravity blocks 712 are stacked and filled layer by layer.
  • the pressure-bearing cylinder 711 and the first-level gravity block 712 can be hoisted separately during the hoisting process. Since the weight of the hollow structure of the pressure-bearing cylinder 711 is reduced, the construction difficulty during the hoisting process is reduced. .
  • the top outer wall of the pressure-bearing cylinder 711 is provided with a limiting ring 713, and the inner wall of the hydraulic shaft 2 is provided with a locking platform 21, so that when the pressure-bearing cylinder 711 moves downward to the lowest limit position, it is supported by the limiting ring 713 on the locking platform. 21, the secondary gravity block group 72 is arranged on the pressure-bearing cylinder 711.
  • the locking platform 21 is arranged so that when the pressure-bearing cylinder 711 moves downward to the lowest limit, a certain space is still retained in the liquid storage chamber 6.
  • the pressure-bearing cylinder 711 can be pushed under the action of the pressure liquid 5 to drive the primary gravity block group 71 and the secondary gravity block group 72 to move upward until they stop at the highest limit. .
  • the secondary gravity block group 72 includes a plurality of secondary gravity blocks 721 arranged one after another, so that the hoisting can be carried out in blocks during the hoisting construction process, thereby reducing the difficulty of construction.
  • the outer diameter of the primary gravity block 712 is smaller than the inner diameter of the pressure-bearing cylinder 711, so that the primary gravity block 712 can pass through the port of the pressure-bearing cylinder 711 and enter the pressure-bearing cylinder 711 for storage.
  • the secondary gravity block 721 The outer diameter is larger than the inner diameter of the pressure-bearing cylinder 711 so that the secondary gravity block 721 will not fall into the pressure-bearing cylinder 711 after being placed on the top of the pressure-bearing cylinder 711 .
  • a plurality of positioning bars 714 are provided on the inner wall of the pressure-bearing cylinder 711 along the axial direction, and the side walls of the positioning bars 714 are provided with There is a positioning guide groove along the axial direction.
  • the outer wall of the primary gravity block 712 is provided with a positioning block that matches the positioning guide groove. The positioning block can move up and down along the positioning guide groove.
  • the inner wall of the hydraulic shaft 2 is located above the locking platform 21 and is provided with a plurality of guide rails 22 along the axial direction.
  • the secondary gravity block 721 and the limiting ring 713 are both provided with guide components that cooperate with the guide rail 22 to limit the secondary gravity block 721 and the pressure-bearing cylinder 711 through the guide rail 22.
  • the guide components can be in cooperation with the guide rail 22.
  • the needle roller cam guide uses the limiting effect of the guide rail 22 so that the center of gravity of the gravity pressure block 7 will not shift during the up and down movement.
  • a gravity hydraulic compressed air energy storage method includes the following processes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种重力液压压缩空气储能系统和方法,其中储能系统包括储气库(1)、液压竖井(2)、液压管路(3)、液压旁路(4),储气库(1)中填充有压力液体(5);液压竖井(2)中活动插接有重力压块(7),重力压块(7)外壁与液压竖井(2)内壁之间密封连接有密封膜(11),重力压块(7)、密封膜(11)以及液压竖井(2)中位于重力压块(7)和密封膜(11)下方的空间围成储液腔(6),液压管路(3)的进液端和出液端分别与储气库(1)和储液腔(6)相连,液压管路(4)设置高压水泵(12),液压旁路(4)的进液端和出液端分别与储液腔(6)和储气库(1)相连。在储能阶段,由压缩机(9)向储气库(1)内充入高压气体,由高压气体和高压水泵(12)一起将液压液体排入液压竖井(2)内抬升重力压块(7),在释能时由水轮机(8)和膨胀机(10)组同时带动发电机发电,在重力压缩空气储能的基础上提高了发电效率。

Description

一种重力液压压缩空气储能系统和方法
相关申请的交叉引用
本申请基于申请号为202210641679.7、申请日为2022年06月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及技术电能存储领域,尤其涉及一种重力液压压缩空气储能系统和方法。
背景技术
压缩空气储能系统是一种在用电低谷期将电能转化为空气压力势能存储,在用电高峰期用空气动力能推动膨胀机发电的储能系统。压缩空气储能系统可建造单机装机100MW以上的大型电站,仅次于抽水蓄能电站,具有储能周期长、单位储能投资小、寿命长和效率高的优点。传统的压缩空气储能系统利用岩石洞穴、废弃盐穴和废弃矿井等作为储气装置,对地理环境依赖性较大,且在发电过程中需要消耗天然气等化石能源。
目前压缩空气储能技术依赖大型储气室、应用场址有限、压缩机膨胀机长期处于滑压运行,抽水蓄能效率高但同样应用场景有限。
发明内容
本公开提出了一种重力液压压缩空气储能系统,包括:
储气库,所述储气库中填充有压力液体;
液压竖井,所述液压竖井中活动插接有重力压块,所述重力压块外壁与所述液压竖井内壁之间密封连接有密封膜,所述重力压块、所述密封膜以及所述液压竖井中位于所述重力压块和所述密封膜下方的空间围成储液腔;
液压管路,所述液压管路的进液端和出液端分别与所述储气库和所述储液腔相连,所述液压管路上设置有高压水泵,以使储能时通入所述储气库中的压缩空气协同所述高压水泵将所述压力液体压入所述液压竖井中将所述重力压块顶起;
液压旁路,所述液压旁路的进液端和出液端分别与所述储液腔和所述储气库相连,所述液压旁路上设置有水轮机,以使释能时所述重力压块向下将所述储液腔中的所述压力液体压入所述液压旁路中带动所述水轮机做功后通入所述储气库中压动所述储气库中的所述压缩空气对外做功。
在一些实施例中,重力液压压缩空气储能系统还包括压缩机组,所述压缩机组连接所述储气库,用于向所述储气库中通入压缩空气;
膨胀机组,所述膨胀机组连接所述储气库,以使所述储气库中储存的压缩空气通入所述膨胀机组中做功发电。
在一些实施例中,所述液压旁路的进液端和出液端分别通过三通阀连接在所述液压管路 上。
在一些实施例中,所述重力压块包括一级重力块组和设置在所述一级重力块组上的二级重力块组;
所述一级重力块组包括承压筒和填充在所述承压筒中的多个一级重力块,所述密封膜连接在所述承压筒外壁上,所述承压筒的顶端外壁设置有限位圈,所述液压竖井的内壁设置有锁定平台,以使所述承压筒向下移动至最低限位处时通过所述限位圈支撑在所述锁定平台上,所述二级重力块组设置在所述承压筒上。
在一些实施例中,所述二级重力块组包括多个依次叠加设置的二级重力块;
所述一级重力块的外径小于所述承压筒的内径,所述二级重力块的外径大于所述承压筒的内径。
在一些实施例中,所述承压筒的内壁上沿轴向方向设置有多个定位条,所述定位条的侧壁上设置有沿轴向方向的定位导槽,所述一级重力块的外壁上设置有与所述定位导槽配合的定位块。
在一些实施例中,所述液压竖井内壁位于所述锁定平台上方沿轴线方向设置有多个导轨,所述二级重力块上和所述限位圈上均设置有与所述导轨配合的导向组件,以通过所述导轨对所述二级重力块和所述承压筒进行限位。
在一些实施例中,所述液压竖井内壁位于所述锁定平台的下方设置有衬管,所述密封膜密封连接在所述衬管内壁上。
在一些实施例中,所述承压筒的底部为锥形结构。
本公开还提出了一种重力液压压缩空气储能方法,包括如下过程:
储能时,由电动机带动压缩机组将空气压缩后送入储气库,在储气库气量增加的同时开启高压水泵,高压水泵和储气库中的压缩空气将压力液体排入液压井内密封的储液腔内,通过储液腔中的压力液体对液压竖井中的重力压块施加向上的作用力,使得重力压块向上移动至最高限位;
释能时,储气库中的高压空气进入膨胀机组推动膨胀机组做功带动发电机发电,储气库内部储气量减小,重力压块开始下降,液压竖井内的压力液体由液压旁路经过水轮机进入储气库并带动水轮机做功带动发电机发电。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的一种重力液压压缩空气储能系统的结构示意图;
图2是本公开另一实施例提出的液压竖井的局部结构示意图;
图3是本公开另一实施例提出的液压竖井的局部结构示意图;
图4是本公开另一实施例提出的液压竖井的局部结构示意图;
图中:1、储气库;2、液压竖井;21、锁定平台;22、导轨;23、衬管;3、液压管路;4、液压旁路;5、压力液体;6、储液腔;7、重力压块;71、一级重力块组;711、承压筒;712、一级重力块;713、限位圈;714、定位条;72、二级重力块组;721、二级重力块;8、水轮机;9、压缩机组;10、膨胀机组;11、密封膜;12、高压水泵。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的目的在于提出一种重力液压压缩空气储能系统,在释能时由水轮机和膨胀机组同时带动发电机发电,在重力压缩空气储能的基础上提高了发电效率,并且由于重力压块的存在提高液压竖井内储液腔中的压力,使得储液腔中的液体压缩,降低了传统蓄水池的高度,提升了能量密度,增加了储能方法的适用性,并使得压缩机与膨胀机处于恒压运行的状态,提高了压缩空气发电的效率和寿命。
图1是本公开一实施例提出的一种重力液压压缩空气储能系统的结构示意图。
参见图1,一种重力液压压缩空气储能系统,包括储气库1、液压竖井2、液压管路3和液压旁路4,其中储气库1中填充有压力液体5,储气库1可以直接设置在地下,不占用地上空间,另外,液压竖井2中活动插接有重力压块7,重力压块7外壁与液压竖井2内壁之间密封连接有密封膜11,重力压块7、密封膜11以及液压竖井2中位于重力压块7和密封膜11下方的空间围成储液腔6,其中密封膜11为筒状结构,密封膜11顶端向内翻折后形成顶端连接的内环和外环结构,内环底端与重力压块7外壁密封连接,外环底端与液压竖井2内壁密封连接,使得储液腔6中形成密封的结构,液压管路3的进液端和出液端分别与储气库1和储液腔6相连,液压管路3上设置有高压水泵12,以使储能时通入储气库1中的压缩空气协同高压水泵12将压力液体压入液压竖井2中将重力压块7顶起,使得压缩空气能部分转化为重力压块7的重力势能和压力液体5的势能,另外,液压旁路4的进液端和出液端分别与储液腔6和储气库1相连,液压旁路4上设置有水轮机8,以使释能时重力压块7向下将储液腔6中的压力液体5压入液压旁路4中带动水轮机8做功后通入储气库1中压动储气库1中的压缩空气对外做功,通过水轮机8和压缩空气的做功同时带动电动机发电,在重力压缩空气储能的基础上提高了发电效率,并且由于重力压块7的存在提高液压竖井2内储液腔6中的压力,使得储液腔6中的液体压缩,降低了传统蓄水池的高度,提升了能量密度,增加了储能方法的适用性。
在一些实施例中,还包括压缩机组9和膨胀机组10,压缩机组9通过进气管道连接储气库1,用于向储气库1中通入压缩空气,膨胀机组10通过出气管路连接储气库1,以使储 气库1中储存的压缩空气通入膨胀机组10中做功发电,压缩机组与膨胀机组处于恒压运行的状态,提高了压缩空气发电的效率和寿命,另外,进气管道和出气管道上均设有储热装置,储热装置之间设有若干换热装置,储热装置可以采用储热罐,换热装置可以采用换热器,通过储热装置和换热装置的设置能够保障压缩机组9中压缩得到的高温高压气体中的热量保存在储热装置中,形成常温高压气体在储气库1中存储,当发电时,常温的压缩空气吸收储热装置中的能量,提高发电的效率。
另外,需要说明的是,液压旁路4的进液端和出液端分别通过三通阀连接在液压管路3上,使得在储能时,通过三通阀控制压力液体5只能通过液压管路3进入储液腔6中,当释能时,通过三通阀控制压力液体5只能通过液压旁路4进入储气库1中。
如图2所示,在一些实施例中,重力压块7包括一级重力块组71和设置在一级重力块组71上的二级重力块组72;
其中一级重力块组71包括承压筒711和填充在承压筒711中的多个一级重力块712,多个一级重力块712叠加设置,密封膜11连接在承压筒711外壁上,承压筒711是由钢板围成的筒状结构,因此外表面光滑,相比一级重力块712一般是由混凝土浇筑,直接将密封膜11与一级重力块712连接,在储液腔6中液体压力较大的情况下,可能会出现漏液的情况,而设置承压筒711能够保证储液腔6的密封特性,可以承受较高的压力,提升系统储能的能量密度。由于储能过程中所需重力压块7的重力较大,直接吊装会增大施工难度,将承压筒711设置成空心筒状结构,然后将多个一级重力块712层层叠加填充在承压筒711中,在满足足够的重量的同时,使得吊装过程中单独吊装承压筒711和以及一级重力块712,由于承压筒711空心结构重量降低,进而降低吊装过程中的施工难度。另外,承压筒711的顶端外壁设置有限位圈713,液压竖井2的内壁设置有锁定平台21,以使承压筒711向下移动至最低限位处时通过限位圈713支撑在锁定平台21上,二级重力块组72设置在承压筒711上,锁定平台21的设置使得承压筒711向下移动至最低限位处时,储液腔6中仍保留一定空间,当储液腔6中通入足够量的压力液体5后在压力液体5的作用下能够推动承压筒711带动一级重力块组71和二级重力块组72向上移动,直到移动至最高限位处停止。
如图3所示,在一些实施例中,二级重力块组72包括多个依次叠加设置的二级重力块721,使得吊装施工过程中可以分块吊装,降低施工难度。另外,一级重力块712的外径小于承压筒711的内径,使得一级重力块712能够穿过承压筒711端口处进入承压筒711中进行存储,另外,二级重力块721的外径大于承压筒711的内径,使得二级重力块721放置在承压筒711顶端后不会掉入承压筒711中。
需要说明的是,为了保障承压筒711在填充一级重力块712后重心稳定,在承压筒711的内壁上沿轴向方向设置有多个定位条714,定位条714的侧壁上设置有沿轴向方向的定位导槽,一级重力块712的外壁上设置有与定位导槽配合的定位块,通过定位块能够沿着定位导槽上下移动,通过定位导槽的限位作用,能够保障多个一级重力块712的重心都在承压筒711的轴线上,使得整个承压筒711上下移动过程中重心不会偏移。
在一些实施例中,液压竖井2内壁位于锁定平台21上方沿轴线方向设置有多个导轨22, 二级重力块721上和限位圈713上均设置有与导轨22配合的导向组件,以通过导轨22对二级重力块721和承压筒711进行限位,导向组件可以为与导轨22配合的滚针凸轮导向器,通过导轨22的限位作用使得重力压块7在上下移动过程中不会发生重心偏移。
另外,如图4所示,液压竖井2内壁位于锁定平台21的下方设置有衬管23,密封膜11密封连接在衬管23内壁上,由于衬管23的内壁光滑,设置衬管23与密封膜11连接能够提高衬管23与密封膜11之间的密封性能。
还需要说明的是,承压筒711的底部为锥形结构,使承压筒711底部在高压力的压力液体5的作用下受力更均匀,不产生变形。
一种重力液压压缩空气储能方法,包括如下过程:
储能时,由电动机带动压缩机组9将空气压缩后通过换热装置和储热装置的作用将得到的高温高压气体中的能量存储后得到常温高压气体送入储气库1中,在储气库1气量增加的同时开启高压水泵12,高压水泵12和储气库1中的压缩空气将压力液体排入液压竖井2内密封的储液腔6内,当储液腔6中压力液体5的压力达到一定值时,通过储液腔6中的压力液体5对液压竖井2中的重力压块7施加向上的作用力,使得重力压块7向上移动至最高限位,进而使得电能部分转化为重力压块7的重力势能;
释能时,储气库1中的高压空气进入膨胀机组10推动膨胀机组10做功带动发电机发电,储气库1内部储气量减小,重力压块7开始下降,液压竖井2内的压力液体由液压旁路4经过水轮机8进入储气库1并带动水轮机8做功带动发电机发电,实现膨胀机组10和水轮机8同时进行做功发电的效果。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种重力液压压缩空气储能系统,包括:
    储气库,所述储气库中填充有压力液体;
    液压竖井,所述液压竖井中活动插接有重力压块,所述重力压块外壁与所述液压竖井内壁之间密封连接有密封膜,所述重力压块、所述密封膜以及所述液压竖井中位于所述重力压块和所述密封膜下方的空间围成储液腔;
    液压管路,所述液压管路的进液端和出液端分别与所述储气库和所述储液腔相连,所述液压管路上设置有高压水泵,以使储能时通入所述储气库中的压缩空气协同所述高压水泵将所述压力液体压入所述液压竖井中将所述重力压块顶起;
    液压旁路,所述液压旁路的进液端和出液端分别与所述储液腔和所述储气库相连,所述液压旁路上设置有水轮机,以使释能时所述重力压块向下将所述储液腔中的所述压力液体压入所述液压旁路中带动所述水轮机做功后通入所述储气库中压动所述储气库中的所述压缩空气对外做功。
  2. 如权利要求1所述的重力液压压缩空气储能系统,还包括:
    压缩机组,所述压缩机组连接所述储气库,用于向所述储气库中通入压缩空气;
    膨胀机组,所述膨胀机组连接所述储气库,以使所述储气库中储存的压缩空气通入所述膨胀机组中做功发电。
  3. 如权利要求1所述的重力液压压缩空气储能系统,其中,所述液压旁路的进液端和出液端分别通过三通阀连接在所述液压管路上。
  4. 如权利要求1所述的重力液压压缩空气储能系统,其中,所述重力压块包括一级重力块组和设置在所述一级重力块组上的二级重力块组;
    所述一级重力块组包括承压筒和填充在所述承压筒中的多个一级重力块,所述密封膜连接在所述承压筒外壁上,所述承压筒的顶端外壁设置有限位圈,所述液压竖井的内壁设置有锁定平台,以使所述承压筒向下移动至最低限位处时通过所述限位圈支撑在所述锁定平台上,所述二级重力块组设置在所述承压筒上。
  5. 如权利要求4所述的重力液压压缩空气储能系统,其中,所述二级重力块组包括多个依次叠加设置的二级重力块;
    所述一级重力块的外径小于所述承压筒的内径,所述二级重力块的外径大于所述承压筒的内径。
  6. 如权利要求4所述的重力液压压缩空气储能系统,其中,所述承压筒的内壁上沿轴向方向设置有多个定位条,所述定位条的侧壁上设置有沿轴向方向的定位导槽,所述一级重力块的外壁上设置有与所述定位导槽配合的定位块。
  7. 如权利要求5所述的重力液压压缩空气储能系统,其中,所述液压竖井内壁位于所述锁定平台上方沿轴线方向设置有多个导轨,所述二级重力块上和所述限位圈上均设置有与所述导轨配合的导向组件,以通过所述导轨对所述二级重力块和所述承压筒进行限位。
  8. 如权利要求4所述的重力液压压缩空气储能系统,其中,所述液压竖井内壁位于所述锁定平台的下方设置有衬管,所述密封膜密封连接在所述衬管内壁上。
  9. 如权利要求4所述的重力液压压缩空气储能系统,其中,所述承压筒的底部为锥形结构。
  10. 一种重力液压压缩空气储能方法,包括如下过程:
    储能时,由电动机带动压缩机组将空气压缩后送入储气库,在储气库气量增加的同时开启高压水泵,高压水泵和储气库中的压缩空气将压力液体排入液压竖井内密封的储液腔内,通过储液腔中的压力液体对液压竖井中的重力压块施加向上的作用力,使得重力压块向上移动至最高限位;
    释能时,储气库中的高压空气进入膨胀机组推动膨胀机组做功带动发电机发电,储气库内部储气量减小,重力压块开始下降,液压竖井内的压力液体由液压旁路经过水轮机进入储气库并带动水轮机做功带动发电机发电。
PCT/CN2023/098972 2022-06-08 2023-06-07 一种重力液压压缩空气储能系统和方法 WO2023237020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210641679.7A CN114718684B (zh) 2022-06-08 2022-06-08 一种重力液压压缩空气储能系统和方法
CN202210641679.7 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023237020A1 true WO2023237020A1 (zh) 2023-12-14

Family

ID=82232611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098972 WO2023237020A1 (zh) 2022-06-08 2023-06-07 一种重力液压压缩空气储能系统和方法

Country Status (2)

Country Link
CN (1) CN114718684B (zh)
WO (1) WO2023237020A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718684B (zh) * 2022-06-08 2022-09-20 西安热工研究院有限公司 一种重力液压压缩空气储能系统和方法
CN114718690B (zh) * 2022-06-08 2022-08-26 西安热工研究院有限公司 一种重力压缩空气储能系统
WO2023103677A1 (zh) * 2022-11-07 2023-06-15 张鲁国 活塞式气体动力井储能发电系统及储能发电方法
CN116044718B (zh) * 2023-03-06 2023-06-27 西安热工研究院有限公司 一种分布式压缩空气储能系统及储能方法
CN116906289B (zh) * 2023-09-12 2023-12-15 九州绿能科技股份有限公司 一种重力储能发电系统及工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260857A (zh) * 2008-04-23 2008-09-10 齐峰 浮力转换压力的发电装置
CN105569910A (zh) * 2016-03-01 2016-05-11 华北电力大学 基于重物增压技术的抽水蓄能发电系统
DE102014016640A1 (de) * 2014-11-11 2016-05-12 Ellinor Ueberall Vorrichtung zur Abdichtung des Ringspaltes zwischen einem mit Wasser gefüllten vertikalen Schacht beliebiger Größe und einem sich darin auf und ab bewegenden Kolben, vorzugsweise für einen unterirdischen Schwerkraft-Pumpspeicher (Gravity Power modul) zur Speicherung von elektrischer Energie.
WO2017174081A1 (de) * 2016-04-07 2017-10-12 Delta Energy Gmbh & Co. Kg 1 Vorrichtung zum speichern von energie
CN110259625A (zh) * 2019-05-31 2019-09-20 西安交通大学 一种利用地下含水层的抽水压缩空气蓄能系统及方法
CN111237144A (zh) * 2020-01-14 2020-06-05 中国华能集团有限公司 一种重力压缩空气储能系统及其工作方法
CN114109549A (zh) * 2022-01-26 2022-03-01 百穰新能源科技(深圳)有限公司 具有冷源的二氧化碳储能系统及其控制方法
CN114718684A (zh) * 2022-06-08 2022-07-08 西安热工研究院有限公司 一种重力液压压缩空气储能系统和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748236A (zh) * 2011-04-22 2012-10-24 郑重胜 保证并网稳定的新型流体传动风力发电机
US9243558B2 (en) * 2012-03-13 2016-01-26 Storwatts, Inc. Compressed air energy storage
CN102734092B (zh) * 2012-07-04 2016-01-13 隆力液压机械(北京)有限公司 重力蓄能发电装置
CN106523261A (zh) * 2016-11-08 2017-03-22 三集团有限公司 液气储能发电系统
CN107780989A (zh) * 2017-11-09 2018-03-09 浙江大学 一种压缩空气电力储能系统
US10837360B2 (en) * 2018-03-13 2020-11-17 Maxim Raskin System for energy storage and recovery
CN110578666A (zh) * 2018-06-08 2019-12-17 清华大学 一种水力恒压式双效压缩空气储能系统
RO133988A3 (ro) * 2019-11-20 2021-05-28 Rareş Alexandru Gărduş Sistemul de stocare a energiei electrice în ciclu combinat gravitaţional-hidraulic
CN112065634B (zh) * 2020-08-14 2022-10-25 西安交通大学 一种基于废弃矿井的地下抽水蓄能复合压缩空气储能系统及方法
CN114033636A (zh) * 2021-11-10 2022-02-11 西安西热锅炉环保工程有限公司 一种悬浮式重力储能系统及方法
CN114152128A (zh) * 2021-12-02 2022-03-08 西安热工研究院有限公司 一种双井液压式压缩空气储能系统及其运行方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260857A (zh) * 2008-04-23 2008-09-10 齐峰 浮力转换压力的发电装置
DE102014016640A1 (de) * 2014-11-11 2016-05-12 Ellinor Ueberall Vorrichtung zur Abdichtung des Ringspaltes zwischen einem mit Wasser gefüllten vertikalen Schacht beliebiger Größe und einem sich darin auf und ab bewegenden Kolben, vorzugsweise für einen unterirdischen Schwerkraft-Pumpspeicher (Gravity Power modul) zur Speicherung von elektrischer Energie.
CN105569910A (zh) * 2016-03-01 2016-05-11 华北电力大学 基于重物增压技术的抽水蓄能发电系统
WO2017174081A1 (de) * 2016-04-07 2017-10-12 Delta Energy Gmbh & Co. Kg 1 Vorrichtung zum speichern von energie
CN110259625A (zh) * 2019-05-31 2019-09-20 西安交通大学 一种利用地下含水层的抽水压缩空气蓄能系统及方法
CN111237144A (zh) * 2020-01-14 2020-06-05 中国华能集团有限公司 一种重力压缩空气储能系统及其工作方法
CN114109549A (zh) * 2022-01-26 2022-03-01 百穰新能源科技(深圳)有限公司 具有冷源的二氧化碳储能系统及其控制方法
CN114718684A (zh) * 2022-06-08 2022-07-08 西安热工研究院有限公司 一种重力液压压缩空气储能系统和方法

Also Published As

Publication number Publication date
CN114718684B (zh) 2022-09-20
CN114718684A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023237020A1 (zh) 一种重力液压压缩空气储能系统和方法
CN113550803A (zh) 一种重力压缩空气储能的储气装置及其方法
JP5032665B2 (ja) ピストン式ガス圧縮膨張ユニットを用いる電気エネルギ蓄積復帰システムおよび電気エネルギ蓄積復帰方法
US9249811B2 (en) Compressed air energy storage system and method
CN112065634B (zh) 一种基于废弃矿井的地下抽水蓄能复合压缩空气储能系统及方法
Li et al. Compressed air energy storage for offshore wind turbines
CN112065635B (zh) 一种基于废弃矿井的地下恒压压缩空气复合抽水储能系统及方法
US10612512B2 (en) Energy storage and power generation system and method
CN108895017B (zh) 一种多级恒压压缩空气储能装置
CN106499612A (zh) 无外加热源的压缩空气双储能系统
CN216043933U (zh) 一种重力压缩空气储能的储气装置
WO2023237021A1 (zh) 一种分级密封的重力压缩空气储能系统和储能方法
CN111396288A (zh) 一种基于压力恒定的发电系统
Fu et al. Design and operational strategy research for temperature control systems of isothermal compressed air energy storage power plants
CN111535886B (zh) 一种多能联合的压力恒定的发电系统
CN212003288U (zh) 一种基于高密度介质维持压力恒定的发电系统
CN114152128A (zh) 一种双井液压式压缩空气储能系统及其运行方法
CN111502893A (zh) 一种利用高密度介质维持压力恒定的发电系统
CN112696305B (zh) 流体复用储能系统
JP3246917U (ja) 圧縮空気連携貯蔵・熱交換装置共用システム及び電力システム
CN212690123U (zh) 一种多能联合发电系统
CN115163231B (zh) 矿用压缩空气储能系统及方法
JP3246849U (ja) コンパクトな圧縮空気エネルギー貯蔵システムおよび電力システム
CN117108433B (zh) 一种海上风电导管架基础的波浪能捕获及储能系统
CN218894746U (zh) 一种重力压缩空气储能系统储气库

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819185

Country of ref document: EP

Kind code of ref document: A1