WO2023236909A1 - 一种提高化合物与蛋白质相互作用实验通量的方法 - Google Patents

一种提高化合物与蛋白质相互作用实验通量的方法 Download PDF

Info

Publication number
WO2023236909A1
WO2023236909A1 PCT/CN2023/098376 CN2023098376W WO2023236909A1 WO 2023236909 A1 WO2023236909 A1 WO 2023236909A1 CN 2023098376 W CN2023098376 W CN 2023098376W WO 2023236909 A1 WO2023236909 A1 WO 2023236909A1
Authority
WO
WIPO (PCT)
Prior art keywords
tested
mixture
compound
compounds
target protein
Prior art date
Application number
PCT/CN2023/098376
Other languages
English (en)
French (fr)
Inventor
纪宏超
陈顺兴
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2023236909A1 publication Critical patent/WO2023236909A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Definitions

  • This application belongs to the technical field of computer-aided drug design, and specifically relates to a method for improving the experimental throughput of interaction between compounds and proteins.
  • Identifying the binding targets of compound molecules is usually solved through affinity-based or activity-based proteomics methods (e.g., ABPP, PAL, KinoBeads). These methods require chemical derivatization of compound molecules first, and the procedures are relatively complex. Derivatization-free mass spectrometry (MS) methods such as SPROX, TPP, DARTS, LiP-MS and CPP can be expanded to more compounds, but they still require longer sample preparation and instrument measurement times.
  • MS mass spectrometry
  • This application provides a method for improving the throughput of compound-protein interaction experiments to solve the technical problems of high time and economic costs and low detection throughput in existing compound-target protein interaction measurement experiments.
  • this application provides a method for improving the throughput of compound-protein interaction experiments.
  • the method of this application includes the following steps:
  • n kinds of compounds to be tested are composed of m mixture systems, each of the mixture systems includes at least 2 of the n kinds of compounds to be tested, and the types of the compounds to be tested are different in different mixture systems. , and the types of compounds to be tested contained in different mixture systems are different.
  • the value is within the first preset range, the same compound to be tested exists in at least two different mixture systems, and the difference in the number of the mixture systems in which each compound to be tested exists is within the second preset range. Within the preset range; the difference in the number of the compounds to be tested contained in each mixture system is within the third preset range;
  • Each of the mixture systems includes the interaction between any of the compounds to be tested and the target protein.
  • the interaction between any of the test compounds included in each mixture system and the target protein is determined based on the response value of the interaction ability of each mixture system with the target protein.
  • each mixture system determines the contribution of each test compound in each mixture system to the response value of the mixture system;
  • the contribution of the first compound to be tested in any of the mixture systems to the response value of any of the mixture systems is greater than or equal to the preset threshold, it is determined that the first compound to be tested interacts with the target protein , wherein the first compound to be tested is one of all the compounds to be tested included in any of the mixture systems.
  • n kinds of compounds to be tested are composed into m mixture systems, including:
  • n kinds of compounds to be tested are composed of m mixture systems, each row in the arrangement matrix S represents one of the mixture systems, and each column represents one of the compounds to be tested,
  • the arrangement matrix S includes m ⁇ n indicators, and the indicators are used to indicate whether the mixture system contains the compound to be tested corresponding to the column in which the indicator is located. The same compound to be tested exists in at least 2 of the mixture systems.
  • the permutation matrix S is obtained by the following method:
  • the first preset range, the second preset range and the third preset range are controlled by optimizing the initial arrangement matrix A of the compounds to be tested, and the optimization steps include:
  • RS is the sum of each row of the conversion matrix S, I is the identity matrix, and S T is the transposed matrix of S;
  • the initial arrangement matrix A of the compound to be tested is calculated through an optimization algorithm Optimize to minimize the objective function value L; perform the binary conversion on the initial arrangement matrix A of the compounds to be tested when the objective function value L is the minimum to obtain the arrangement matrix S.
  • the measurement of the response value of the interaction ability of each mixture system with the target protein in each portion of the target solution includes:
  • the response value of each mixture system's ability to interact with the target protein is measured using a measurement method based on binding energy or activity of the interaction between the compound to be tested and the target protein.
  • the target protein is derived from purified protein or cell lysis containing the target protein. liquid, and quantitatively measure the response value of each mixture system's ability to interact with the target protein through any method of ABPP, PAL, TPP, or LiP-MS.
  • Y i represents the response value of the interaction ability between the mixture system identified as i and the target protein among the m mixture systems
  • ⁇ j is the response value of all the mixture systems identified as j in the mixture system identified as i.
  • R is a residual vector of length n;
  • the first preset range, the second preset range and the third preset range are controlled by optimizing the initial arrangement matrix A of the compounds to be tested, and the optimization steps include:
  • the initial arrangement matrix A of the compounds to be tested is optimized through an optimization algorithm to minimize the objective function value L; the initial arrangement matrix A of the compounds to be tested is transformed when the objective function value L is the minimum. Exchange to obtain the optimized arrangement matrix S.
  • optimization algorithm includes genetic algorithm and ant colony algorithm.
  • the traditional statistical methods include least squares method, LASSO regression method; and/or
  • the machine learning methods include support vector machines and random forests.
  • a method of improving the throughput of compound-protein interaction experiments in this application uses multiple compounds to be tested to form multiple mixture systems according to certain mixing rules, and the interaction ability and mixture of each compound to be tested and the target protein are established. Correspondence between systems, and then high-throughput analysis of the target protein corresponding to the compound to be tested.
  • the method of this application can increase the experimental detection throughput of the existing test compound-target protein by more than 10 times, while saving more than 90% of the experimental cost and time, significantly reducing the cost of manpower, time and experimental consumables, and has significant economic significance. .
  • Figure 1 is an optimization flow chart for the initial arrangement matrix A provided by the embodiment of the present application.
  • Figure 2 is a schematic diagram of an arrangement matrix S in an intermediate state during the optimization process provided in Embodiment 1 of the present application;
  • Figure 3 is a schematic diagram of the optimized arrangement matrix S of the final state in the optimization process provided in Embodiment 1 of the present application;
  • Figure 4 is a schematic diagram showing that the objective function value L provided in Embodiment 1 of the present application decreases to a constant value as the number of iterations increases;
  • Figure 5 is a schematic diagram of the optimized arrangement matrix S in the final state provided in Embodiment 2 of the present application.
  • Figure 6 is a schematic diagram showing that the objective function value L provided in Embodiment 2 of the present application decreases to a constant value as the number of iterations increases.
  • the embodiments of this application provide a method for improving the throughput of compound-protein interaction experiments.
  • the method of this application includes the following steps:
  • n types of compounds to be tested are composed into m mixture systems, each mixture system includes at least 2 of the n types of compounds to be tested, the types of compounds to be tested are different in different mixture systems, and different mixture systems
  • the difference in the types of compounds to be tested contained in is within the first preset range, the same compound to be tested exists in at least 2 different mixture systems, and the difference in the number of mixture systems in which each compound to be tested is present is within the first preset range.
  • two preset ranges the difference in the number of compounds to be tested contained in each mixture system is within a third preset range;
  • a method of improving the throughput of compound-protein interaction experiments in this application uses multiple compounds to be tested to form multiple mixture systems according to certain mixing rules, and the interaction ability and mixture of each compound to be tested and the target protein are established. Correspondence between systems, and then high-throughput analysis of the target protein corresponding to the compound to be tested.
  • the method of this application can combine the existing compounds to be tested-target protein experiments The detection throughput is increased by more than 10 times, while saving more than 90% of experimental costs and time, significantly reducing manpower, time and experimental consumable costs, which has significant economic significance.
  • the "first preset range" in the above step (1) is controlled by controlling the types of compounds contained in each mixture system to be as different as possible; the “second preset range” is controlled by controlling the compounds to be tested contained in each mixture system. The number of the mixture system is controlled to be as consistent as possible; the "third preset range” is controlled by controlling the number of the mixture system in which each compound to be tested is to be as consistent as possible.
  • "combining n kinds of compounds to be tested into m mixture systems” specifically includes: forming n kinds of compounds to be tested into m mixture systems according to an m ⁇ n optimized arrangement matrix S.
  • the arrangement matrix Each row in S represents a mixture system, and each column represents a compound to be tested.
  • the arrangement matrix S includes m ⁇ n indicators. The indicators are used to indicate whether the mixture system contains the compound to be tested corresponding to the column where the indicator is located. The same compound to be tested is present in at least two mixture systems. For example, in Example 1 of the present application, in the 9 ⁇ 15 arrangement matrix S, the arrangement matrix S indicates that 15 compounds to be tested are composed of 9 mixture systems.
  • the ordinates 1 to 9 are respectively represents the 9 mixture systems formed by mixing, and the abscissas 1 to 15 respectively represent 15 compounds to be tested.
  • the black grid in Figure 2 and Figure 3 means that the mixture system represented by the row contains the compound to be tested corresponding to the column, while the white grid means that the mixture system represented by the row does not contain the compound to be tested corresponding to the column. Test compounds.
  • mixture system 1 represents that the mixture system contains test compound 4, test compound 5, test compound 7, test compound 12, and test compound 13.
  • first preset range can be controlled by optimizing the initial arrangement matrix A of the compounds to be tested. Specific optimization can be carried out through the following steps:
  • the initial arrangement matrix A of the compound to be tested can be optimized through an optimization algorithm to minimize the objective function value L; the optimization matrix A when the objective function value L is minimized is subjected to the above binary conversion to obtain the optimized arrangement matrix S.
  • optimization algorithms include but are not limited to genetic algorithms, ant colony algorithms, etc.
  • this application maps m mixture systems composed of n kinds of compounds to be tested into the m ⁇ n arrangement matrix S, and then establishes a corresponding relationship between the interaction ability of the compounds to be tested and the target protein and the arrangement matrix S, and then highly The analysis of flux identifies the target protein corresponding to the compound to be tested located at a specific arrangement position in the arrangement matrix S.
  • step (3) "based on the response value of each mixture system's ability to interact with the target protein, determine the interaction between any test compound included in each mixture system and the target protein" can be specifically performed by the following Method to determine:
  • the contribution of the first compound to be tested in any mixture system to the response value of any mixture system is greater than or equal to the preset threshold, it is determined that the first compound to be tested interacts with the target protein, where the first compound to be tested interacts with the target protein.
  • a compound is one of all test compounds included in any mixture system.
  • determining the contribution of each compound to be tested in each mixture system to the response value of the mixture system includes:
  • the response vector corresponding to each mixture system is determined; specifically, any existing technology based on binding energy or activity of the test compound and the target protein can be used.
  • the interaction measurement method measures the response value of each mixture system's ability to interact with the target protein. For example, it can be analyzed by any one of ABPP (activity-oriented protein profiling technology) or PAL (photo-affinity profiling technology) or TPP (thermal proteomic profiling technology) or LiP-MS (limited proteolysis mass spectrometry technology). This method quantitatively measures the response value of each mixture system's ability to interact with the target protein. In Specific Examples 1 and 2 of this application, the single temperature point TPP method was used to measure the interaction between each mixed system and the target protein.
  • Y i represents the response value of the interaction ability between the mixture system identified as i and the target protein in the m mixture system
  • ⁇ j is the response value of the test compound identified as j in the mixture system identified as i to the mixture identified as i.
  • the contribution of the response value of the system, R is the residual vector of length n;
  • is the penalty term, which is used to adjust the degree of compression of ⁇ .
  • the value of ⁇ is 0.1
  • the threshold value is 0.1. If the calculated ⁇ i corresponding to a certain compound to be tested is higher than 0.1, it can be considered that the corresponding compound to be tested is equal to The target protein interacts.
  • This Example 1 provides a method for improving the throughput of compound-protein interaction experiments, including the following steps:
  • the initial arrangement matrix A of the test compound is iteratively optimized through a genetic algorithm to minimize the objective function value L; the arrangement matrix A when the objective function value L is the minimum is subjected to binary conversion in the S02 step to obtain the optimized arrangement matrix S (such as As shown in Figure 3), the optimized arrangement matrix S is the final arrangement matrix.
  • Figure 2 shows a schematic diagram of the arrangement matrix S of a certain intermediate state during the optimization process. In Figures 2 and 3, the black grid represents the value 1, and the white grid represents the value 0.
  • the objective function value L decreases to a constant value as the number of iterations increases, as shown in Figure 4.
  • the 15 compounds to be tested were mixed according to the finally obtained 9 ⁇ 15 optimized arrangement matrix S shown in Figure 3, to obtain 9 mixture systems.
  • step S04 Add DMSO as a solvent to each mixture system in step S03 to make the concentration of each drug reach 40 ⁇ M, and then use the single temperature point TPP method to measure the interaction between each mixture system and the protein.
  • the specific experimental steps are: Mix equal amounts of K562 cell lysate and drug mixture system, incubate at room temperature for 10 minutes, then heat at 52°C for 3 minutes, and then quickly cool to 4°C on a PCR machine. The samples were centrifuged at 21,000 rcf for 20 minutes at 4°C, and the supernatant was collected.
  • is the penalty term, which is used to adjust the degree of compression of ⁇ .
  • the ⁇ value is 0.1 and the threshold is 0.1. If the calculated ⁇ i corresponding to a certain drug to be tested is higher than 0.1, it can be considered that the corresponding drug compound to be tested interacts with the target protein.
  • the genetic algorithm is used to optimize the alignment matrix S, and the resulting optimized alignment matrix S is shown in Figure 5.
  • the black grid represents the value 1
  • the white grid represents the value 0.
  • the objective function value L decreases to a constant value as the number of iterations increases, as shown in Figure 6.
  • the 25 compounds to be tested were mixed according to the finally obtained 14 ⁇ 25 optimized arrangement matrix S shown in Figure 5, to obtain 14 mixture systems. The remaining operating steps are consistent with Example 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Public Health (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Databases & Information Systems (AREA)
  • Cell Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Bioethics (AREA)
  • Artificial Intelligence (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本申请公开了一种提高化合物与蛋白质相互作用实验通量的方法,本申请的方法采用将多个待测化合物按一定混合规则组成多个混合物体系,并建立起每个待测化合物与靶点蛋白的作用能力与混合物体系之间的对应关系,进而高通量的解析出待测化合物相对应的靶点蛋白。本申请的解析方法可将现有待测化合物-靶点蛋白实验检测通量提高10倍以上,同时节约90%以上的实验成本和时间,大幅减少人力、时间和实验耗材成本,具有显著的经济意义。

Description

一种提高化合物与蛋白质相互作用实验通量的方法
本申请要求于2022年6月7日在中国国家知识产权局提交的、申请号为202210638301.1、发明名称为“一种提高化合物与蛋白质相互作用实验通量的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于计算机辅助药物设计技术领域,具体涉及一种提高化合物与蛋白质相互作用实验通量的方法。
背景技术
化合物分子通常通过与生物体内蛋白质的物理相互作用来调节细胞过程,从而产生毒性和治疗效果。识别化合物分子的结合靶点通常通过基于亲和力或基于活性的蛋白质组学方法(例如,ABPP、PAL、KinoBeads)来解决,这些方法需要先对化合物分子进行化学衍生,程序相对复杂。而通过SPROX、TPP、DARTS、LiP-MS和CPP等无衍生化质谱(MS)方法可以扩展到更多化合物,但仍然需要较长的样本制备、仪器测量时间。
申请内容
本申请提供一种提高化合物与蛋白质相互作用实验通量的方法,以解决现有化合物-靶点蛋白相互作用测量实验中,时间和经济成本高昂,检测通量较低的技术问题。
为了实现上述申请目的,本申请提供了一种提高化合物与蛋白质相互作用实验通量的方法,本申请的方法包括以下步骤:
将n种待测化合物组成m个混合物体系,每个所述混合物体系中包括n种所述待测化合物中的至少2种,不同所述混合物体系中所含有的所述待测化合物的种类不同,且不同所述混合物体系中所含有的所述待测化合物的种类差 值在第一预设范围内,同一个所述待测化合物存在于至少2个不同的所述混合物体系中,每个所述待测化合物所存在的所述混合物体系的数目差在第二预设范围内;每个所述混合物体系含有的所述待测化合物的数目差在第三预设范围内;
根据每个所述混合物体系制备m份目标溶液,所述目标溶液中包括所述混合物体系包括的全部所述待测化合物以及靶点蛋白;
测量每份所述目标溶液中的每个所述混合物体系与所述靶点蛋白相互作用能力的响应值;根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系包括的任一个所述待测化合物与所述靶点蛋白的相互作用。
进一步地,所述根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系包括的任一个所述待测化合物与所述靶点蛋白的相互作用,包括:
根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系中的每个所述待测化合物对所述混合物体系的响应值的贡献度;
任一个所述混合物体系中的第一待测化合物对任一个所述混合物体系的响应值的贡献度大于或等于预设阈值,则确定所述第一待测化合物与所述靶点蛋白相互作用,其中,所述第一待测化合物为任一个所述混合物体系包括的全部所述待测化合物中的一个。
进一步地,所述将n种待测化合物组成m个混合物体系,包括:
按照m×n的排列矩阵S将n种待测化合物组成m个混合物体系,所述排列矩阵S中每行代表一个所述混合物体系,每列代表一种所述待测化合物, 所述排列矩阵S包括m×n个指示符,所述指示符用于指示所述混合物体系中是否含有所述指示符所在列对应的所述待测化合物,同一所述待测化合物存在于至少2个所述混合物体系中。
进一步地,排列矩阵S通过以下方法获得:
将n种所述待测化合物混合成m个所述混合物体系,每个所述待测化合物都存在于a个不同的所述混合物体系中,其中,m≥3,n≥4,a≥2,且m、n、a均为整数;将m个所述混合物体系记为m×n的待测化合物初始排列矩阵A,所述待测化合物初始排列矩阵A中各元素数值均为0~1之间的随机数;
对所述待测化合物初始排列矩阵A进行二进制转换:找到其每列数值中的a个数值:X1、X2、Xi、……、Xa,所述a个数值中的任一个数值Xi均大于该列中的其他数值,其中,1≤i≤a,且a为整数;将每列数值中的所述a个数值转换为二进制数1,其他数值转换为二进制数0,得到转换矩阵S;
所述第一预设范围、所述第二预设范围和所述第三预设范围通过对所述待测化合物初始排列矩阵A进行优化来控制,所述优化步骤包括:
通过如下目标函数:
L=Sum(S·ST-I)+Sum(RS-Mean(RS))2
求取目标函数值L;其中,RS是所述转换矩阵S的每行的加和,I是单位矩阵,ST是S的转置矩阵;通过优化算法对所述待测化合物初始排列矩阵A进行优化,以使目标函数值L最小;将目标函数值L最小时的所述待测化合物初始排列矩阵A进行所述二进制转换获得所述排列矩阵S。
进一步地,所述测量每份所述目标溶液中的每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,包括:
采用基于结合能或活性的所述待测化合物与所述靶点蛋白相互作用的测量方法,测量每个所述混合物体系与所述靶点蛋白相互作用能力的响应值。
进一步地,所述靶点蛋白来自于含所述靶点蛋白的纯化蛋白或细胞裂解 液,通过ABPP或PAL或TPP或LiP-MS中的任意一种方法定量测量每个所述混合物体系与所述靶点蛋白相互作用能力的响应值。
进一步地,所述根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系中的每个所述待测化合物对所述混合物体系的响应值的贡献度,包括:
根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系对应的响应向量;
将每个所述响应向量归一化,使其数值在0~1之间;所述响应向量Yi与所述排列矩阵S间存在如下关系:Yi=S×βj+R,
其中,Yi表示m个所述混合物体系中标识为i的所述混合物体系与所述靶点蛋白相互作用能力的响应值,βj为标识为i的所述混合物体系中标识为j的所述待测化合物对标识为i的所述混合物体系的响应值的贡献度,R为长度为n的残差向量;
使用传统统计方法或机器学习方法建立回归模型,优化求解βj的数值并使残差R最小化。
进一步地,所述第一预设范围、所述第二预设范围和所述第三预设范围通过对所述待测化合物初始排列矩阵A进行优化来控制,所述优化步骤包括:
通过如下目标函数:
L=Sum(S·ST-I)+Sum(RS-Mean(RS))2
求取目标函数值L;其中,RS是所述排列矩阵S的每行的加和,I是单位矩阵;
通过优化算法对所述待测化合物初始排列矩阵A进行优化,以使目标函数值L最小;将目标函数值L最小时的所述待测化合物初始排列矩阵A进行转 换获得优化排列矩阵S。
进一步地,所述优化算法包括遗传算法、蚁群算法。
进一步地,所述传统统计方法包括最小二乘法、LASSO回归法;和/或
所述机器学习方法包括支持向量机、随机森林。
与现有技术相比,本申请具有以下的技术效果:
本申请的一种提高化合物与蛋白质相互作用实验通量的方法采用将多个待测化合物按一定混合规则组成多个混合物体系,并建立起每个待测化合物与靶点蛋白的作用能力与混合物体系之间的对应关系,进而高通量的解析出待测化合物相对应的靶点蛋白。本申请的方法可将现有待测化合物-靶点蛋白实验检测通量提高10倍以上,同时节约90%以上的实验成本和时间,大幅减少人力、时间和实验耗材成本,具有显著的经济意义。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的对初始排列矩阵A的优化流程图;
图2为本申请实施例1提供的优化过程中某一中间状态的排列矩阵S的示意图;
图3为本申请实施例1提供的优化过程中最终状态的优化排列矩阵S的示意图;
图4为本申请实施例1提供的目标函数值L随迭代次数增加而减小到恒定的示意图;
图5为本申请实施例2提供的最终状态的优化排列矩阵S的示意图;
图6为本申请实施例2提供的目标函数值L随迭代次数增加而减小到恒定的示意图。
具体实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供了一种提高化合物与蛋白质相互作用实验通量的方法,本申请的方法包括以下步骤:
(1)将n种待测化合物组成m个混合物体系,每个混合物体系中包括n种待测化合物中的至少2种,不同混合物体系中所含有的待测化合物的种类不同,且不同混合物体系中所含有的待测化合物的种类差值在第一预设范围内,同一个待测化合物存在于至少2个不同的混合物体系中,每个待测化合物所存在的混合物体系的数目差在第二预设范围内;每个混合物体系含有的待测化合物的数目差在第三预设范围内;
(2)根据每个混合物体系制备m份目标溶液,目标溶液中包括混合物体系包括的全部待测化合物以及靶点蛋白;
(3)测量每份目标溶液中的每个混合物体系与靶点蛋白相互作用能力的响应值;根据每个混合物体系与靶点蛋白相互作用能力的响应值,确定每个混合物体系包括的任一个待测化合物与靶点蛋白的相互作用。
本申请的一种提高化合物与蛋白质相互作用实验通量的方法采用将多个待测化合物按一定混合规则组成多个混合物体系,并建立起每个待测化合物与靶点蛋白的作用能力与混合物体系之间的对应关系,进而高通量的解析出待测化合物相对应的靶点蛋白。本申请的方法可将现有待测化合物-靶点蛋白实验 检测通量提高10倍以上,同时节约90%以上的实验成本和时间,大幅减少人力、时间和实验耗材成本,具有显著的经济意义。
其中,上述步骤(1)中“第一预设范围”通过控制每个混合物体系中含有的化合物种类尽可能不同来控制;“第二预设范围”通过控制每个混合物体系所含有待测化合物的数量尽可能一致来控制;“第三预设范围”通过控制每个待测化合物所存在的混合物体系的数目尽可能一致来控制。
进一步地,上述步骤(1)中“将n种待测化合物组成m个混合物体系”具体包括:按照m×n的优化排列矩阵S将n种待测化合物组成m个混合物体系,所述排列矩阵S中每行代表一个混合物体系,每列代表一种待测化合物,该排列矩阵S包括m×n个指示符,指示符用于指示混合物体系中是否含有指示符所在列对应的待测化合物,同一待测化合物存在于至少两个混合物体系中。例如,在本申请实施例1中,9×15的排列矩阵S中,该排列矩阵S表示将15种待测化合物组成9个混合物体系,在图2、图3种,纵坐标1~9分别代表混合形成的9个混合物体系,横坐标1~15分别依次代表15种待测化合物。此外,图2、图3中黑色格代表该行所代表的混合物体系中含有该列所对应的待测化合物,而白色格则代表该行所代表的混合物体系中不含有该列所对应的待测化合物。
例如,在图3中,混合物体系1代表该混合物体系中含有待测化合物4、待测化合物5、待测化合物7、待测化合物12和待测化合物13。
进一步地,上述排列矩阵S可以通过以下方法获得:
将n种所述待测化合物混合成m个所述混合物体系,每个所述待测化合物都存在于a个不同的所述混合物体系中,其中,m≥3,n≥4,a≥2,且m、n、a均为整数;将m个所述混合物体系记为m×n的待测化合物初始排列矩阵A,所述待测化合物初始排列矩阵A中各元素数值均为0~1之间的随机数;
对所述待测化合物初始排列矩阵A进行二进制转换:找到其每列数值中的a个数值:X1、X2、Xi、……、Xa,所述a个数值中的任一个数值Xi均大于该列中的其他数值,其中,1≤i≤a,且a为整数;将每列数值中的所述a个数值转换为二进制数1,其他数值转换为二进制数0,得到转换矩阵S。则经过转换后的转换矩阵S中含有的数字0、1即为上文所述的指示符。在转换矩阵S中,数值1代表对应的混合物体系中含有该待测化合物,数值0代表对应的混合物体系中不含该待测化合物。
上述“第一预设范围”、“第二预设范围”和“第三预设范围”可通过对待测化合物初始排列矩阵A进行优化来控制,具体优化可通过以下步骤进行:
通过如下目标函数:
L=Sum(S·ST-I)+Sum(RS-Mean(RS))2
求取目标函数值L;其中,RS是排列矩阵S的每行的加和,I是单位矩阵。排列矩阵S中列与列的相关性,可以通过(S·ST-I)得到,记为相关矩阵。该目标函数L中的第一项Sum(S·ST-I),用于保证矩阵列与列的相关性最小,第二项Sum(RS-Mean(RS))2,用于保证每个混合物体系所含有的待测化合物的数目接近。
然后,可以通过优化算法对待测化合物初始排列矩阵A进行优化,以使目标函数值L最小;将目标函数值L最小时的优化矩阵A进行上述二进制转换,获得优化后的排列矩阵S。其中,优化算法包括但不限于遗传算法、蚁群算法等。
本申请实施例对初始排列矩阵A的优化流程如图1所示。
这样,本申请就将n种待测化合物组成m个混合物体系对应到m×n的排列矩阵S中,然后将待测化合物与靶点蛋白的作用能力与排列矩阵S建立起对应关系,进而高通量的解析出位于排列矩阵S中特定排列位置处的待测化合物相对应的靶点蛋白。
此外,上述步骤(3)中的“根据每个混合物体系与靶点蛋白相互作用能力的响应值,确定每个混合物体系包括的任一个待测化合物与靶点蛋白的相互作用”具体可通过以下方法确定:
根据每个混合物体系与靶点蛋白相互作用能力的响应值,确定每个混合物体系中的每个待测化合物对混合物体系的响应值的贡献度;
任一个混合物体系中的第一待测化合物对任一个混合物体系的响应值的贡献度大于或等于预设阈值,则确定该第一待测化合物与靶点蛋白相互作用,其中,第一待测化合物为任一个混合物体系包括的全部待测化合物中的一个。
进一步地,“确定每个所述混合物体系中的每个所述待测化合物对所述混合物体系的响应值的贡献度”包括:
根据每个混合物体系与靶点蛋白相互作用能力的响应值,确定每个混合物体系对应的响应向量;具体地,可采用任何现有技术中的基于结合能或活性的待测化合物与靶点蛋白相互作用的测量方法,测量每个混合物体系与靶点蛋白相互作用能力的响应值。例如,可通过ABPP(活性导向的蛋白谱学分析技术)或PAL(光交联亲和技术)或TPP(热蛋白组学分析技术)或LiP-MS(有限蛋白水解质谱技术)中的任意一种方法定量测量每个混合物体系与靶点蛋白相互作用能力的响应值。在本申请具体实施例1、实施例2中,采用单温度点TPP方法测量每个混合体系与靶点蛋白间的相互作用。
将每个响应向量归一化,使其数值在0~1之间;响应向量Yi与排列矩阵S间存在如下关系:Yi=S×βj+R,
其中,Yi表示m个混合物体系中标识为i的混合物体系与靶点蛋白相互作用能力的响应值,βj为标识为i的混合物体系中标识为j的待测化合物对标识为i的混合物体系的响应值的贡献度,R为长度为n的残差向量;
使用传统统计方法或机器学习方法建立回归模型,优化求解βj的数值并使残差R最小化。传统统计方法包括但不限于最小二乘法、LASSO回归法等,机器学习方法包括但不限于支持向量机、随机森林回归等。
在本申请具体实施例中,可采用LASSO回归法按下式求解β的最优解:
其中,λ是惩罚项,用于调节对β的压缩程度。在本申请具体实施例1、实施例2中,λ取值为0.1,阈值取为0.1,若计算获得的某个待测化合物对应的βi高于0.1,则可认为相应的待测化合物与该靶点蛋白具有相互作用。
以下通过具体实施例来举例说明本申请实施例的一种化合物与蛋白质相互作用的解析方法。
实施例1
本实施例1提供一种提高化合物与蛋白质相互作用实验通量的方法,包括以下步骤:
S01:给定15个待检测药物,即待测化合物:Palbociclib,Panobinostat,Raltitrexed,Methotrexate,Vemurafenib,Fimepinostat,SCIO-469,SL-327,5-Fluorouracil,Olaparib,Belumosudil,OTS964,Parthenolide,CCT137690,Belumosudil,依次编号为待测化合物1、待测化合物2、待测化合物3、……、待测化合物15。假设将上述15种待测化合物混合成9个混合物体系:混合物体系1、混合物体系2、混合物体系3、……、混合物体系9,每个待测化合物都存在于3个不同的混合物体系中,即m=9,n=15,a=3。将9个混合物体系记为9×15的待测化合物初始排列矩阵A,对其随机初始化,使其数值均为0~1之间的随机浮点数;
S02:对待测化合物初始排列矩阵A进行二进制转换:找到其每列数值中的3个数值:X1、X2、X3,这3个数值中的任一个数值均大于该列中的其他6个数值;将每列数值中的这3个数值转换为二进制数1,其他数值转换为二进制数0,得到转换矩阵S;
S03:通过如下目标函数:
L=Sum(S·ST-I)+Sum(RS-Mean(RS))2
求取目标函数值L;其中,RS是上述转换矩阵S的每行的加和,I是单位矩阵,ST是S的转置矩阵。
通过遗传算法对待测化合物初始排列矩阵A进行迭代优化,以使目标函数值L最小;将目标函数值L最小时的排列矩阵A进行S02步骤中的二进制转换,获得优化后的排列矩阵S(如图3所示),优化后的排列矩阵S即为最终得到的排列矩阵。图2示出了优化过程中某一中间状态的排列矩阵S的示意图。图2、图3中黑色格代表数值1,白色格代表数值0。迭代过程中,目标函数值L随迭代次数增加而减小到恒定,如图4所示。将15种待测化合物按照最终获得的图3所示的9×15优化后的排列矩阵S进行混合,得到9个混合物体系。
S04:向步骤S03中的每个混合物体系中加入DMSO作为溶剂,使每种药物的浓度达到40μM,然后使用单温度点TPP方法测量每个混合物体系与蛋白间的相互作用,其具体实验步骤是:将等量的K562细胞裂解液和药物混合物体系混合,在室温下培养10分钟,然后在52℃下加热3分钟,然后在PCR机上快速冷却至4℃。样品在4℃下以21000rcf离心20分钟,并收集上清液,根据基于质谱的全蛋白质组学定量方法,对每个样品酶解和TMT标记后,使用LC-MS质谱测量,获得每个蛋白的含量。根据TPP方法原理,与化合物结合可以提高蛋白质的热稳定性,因此,如果某个蛋白质能够与混合体系产生 相互作用,那么此时质谱测得的蛋白质含量更高,反之则更低。
S05:将9个混合物体系与靶点蛋白相互作用获得的9个测量值Yi记为响应向量Y;将响应向量Y归一化,使其数值在0~1之间;响应向量Y与排列矩阵S间存在如下关系:
Yi=S×βj+R,
其中,Yi表示9个混合物体系中标识为i的混合物体系与靶点蛋白相互作用能力的响应值,βj为标识为i的混合物体系中标识为j的待测化合物对标识为i的混合物体系的响应值的贡献度,βj为长度为n的系数向量,R为长度为n的残差向量;
使用LASSO回归法按下式求解β的最优解:
其中,λ是惩罚项,用于调节对β的压缩程度。本实施例中,λ值取0.1,阈值为0.1,若计算获得的某个待测药物对应的βi高于0.1,即可认为相应的待测药物化合物与该靶点蛋白具有相互作用。
最终,通过制备9个混合物体系,对15个待测化合物的靶点进行了鉴定,其中11个鉴定成功(见下表1),成功率为73.3%。平均每个待测化合物只需要制备0.6个样本。
作为对比,采用常规单温度TPP方法(Ball et al,Commun.Biol.2020(3).75),则对于每一个待测药物化合物的靶点鉴定,都需要设置4个给药组样本和4个对照组样本,鉴定1个药物的靶点需要制备8个样本。因此,本申请实施例的方法相对于常规方法提高了8/0.6=13.3倍的检测通量,且降低了(8- 0.6)/8=92.5%的实验成本。
表1. 15个待测药物化合物的靶点鉴定结果
本申请实施例1的方法是提高药物化合物靶点鉴别通量的有效方法,首先通过优化算法构建优化排列矩阵S,并将多种待测化合物按照优化排列矩阵S组成混合物体系,然后结合已有的化合物-靶点相互作用的测量方法,最后使用统计方法解析化合物-靶点相互作用的对应关系,可以将相同实验成本下能够进行靶点解析的化合物数量提高10倍以上,大幅减少人力、时间和实验耗材成本,具有显著的经济效益。
实施例2
本实施例2提供一种提高化合物与蛋白质相互作用实验通量的方法,包括以下步骤:
在实施例1给定的15个待测化合物的基础上,增加Tioxolone,Parthenolide,Abemaciclib,Caffeic acid phenethyl ester,RG2833,Encorafenib,TAK-285, CNX-774,Dienogest,ZM241385,共计25种待测化合物,依次编号为待测化合物1、待测化合物2、待测化合物3、……、待测化合物25。假设将上述25种待测化合物混合成14个混合物体系:混合物体系1、混合物体系2、混合物体系3、……、混合物体系14,每个待测化合物都存在于4个不同的混合物体系中,即m=14,n=25,a=4。按照实施例1中的步骤,使用遗传算法优化后的排列矩阵S,得到的优化后的排列矩阵S如图5所示。图5中黑色格代表数值1,白色格代表数值0。迭代过程中,目标函数值L随迭代次数增加而减小到恒定,如图6所示。将25种待测化合物按照最终获得的图5所示的14×25优化后的排列矩阵S进行混合,得到14个混合物体系。其余操作步骤与实施例1一致。
最终,通过制备14个混合物体系,对25个待测化合物的靶点进行了鉴定,其中14个鉴定成功(见下表2),鉴定成功率为56%。平均每个待测化合物只需要制备0.56个样本。
作为对比,采用常规单温度TPP方法(Ball et al,Commun.Biol.2020(3).75),则对于每一个药物的靶点鉴定,都需要设置4个给药组样本和4个对照组样本,鉴定1个药物的靶点需要制备8个样本。因此,本申请实施例的方法相对于常规方法提高了8/0.56=14.3倍的检测通量,且降低了(8-0.56)/8=93.0%的实验成本。
表2. 25个待检测药物化合物的靶点鉴定结果

以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种提高化合物与蛋白质相互作用实验通量的方法,其特征在于,包括以下步骤:
    将n种待测化合物组成m个混合物体系,每个所述混合物体系中包括n种所述待测化合物中的至少2种,不同所述混合物体系中所含有的所述待测化合物的种类不同,且不同所述混合物体系中所含有的所述待测化合物的种类差值在第一预设范围内,同一个所述待测化合物存在于至少2个不同的所述混合物体系中,每个所述待测化合物所存在的所述混合物体系的数目差在第二预设范围内;每个所述混合物体系含有的所述待测化合物的数目差在第三预设范围内;
    根据每个所述混合物体系制备m份目标溶液,所述目标溶液中包括所述混合物体系包括的全部所述待测化合物以及靶点蛋白;
    测量每份所述目标溶液中的每个所述混合物体系与所述靶点蛋白相互作用能力的响应值;
    根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系包括的任一个所述待测化合物与所述靶点蛋白的相互作用。
  2. 根据权利要求1所述的方法,其特征在于,所述根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系包括的任一个所述待测化合物与所述靶点蛋白的相互作用,包括:
    根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系中的每个所述待测化合物对所述混合物体系的响应值的贡献度;
    任一个所述混合物体系中的第一待测化合物对任一个所述混合物体系的响应值的贡献度大于或等于预设阈值,则确定所述第一待测化合物与所述靶点蛋白相互作用,其中,所述第一待测化合物为任一个所述混合物体系包括的全部所述待测化合物中的一个。
  3. 根据权利要求1所述的方法,其特征在于,所述将n种待测化合物组成m个混合物体系,包括:
    按照m×n的排列矩阵S将n种待测化合物组成m个混合物体系,所述排列矩阵S中每行代表一个所述混合物体系,每列代表一种所述待测化合物,所述排列矩阵S包括m×n个指示符,所述指示符用于指示所述混合物体系中是否含有所述指示符所在列对应的所述待测化合物,同一所述待测化合物存在于至少2个所述混合物体系中。
  4. 根据权利要求3所述的方法,其特征在于,所述排列矩阵S通过以下方法获得:
    将n种所述待测化合物混合成m个所述混合物体系,每个所述待测化合物都存在于a个不同的所述混合物体系中,其中,m≥3,n≥4,a≥2,且m、n、a均为整数;将m个所述混合物体系记为m×n的待测化合物初始排列矩阵A,所述待测化合物初始排列矩阵A中各元素数值均为0~1之间的随机数;
    对所述待测化合物初始排列矩阵A进行二进制转换:找到其每列数值中的a个数值:X1、X2、Xi、……、Xa,所述a个数值中的任一个数值Xi均大于该列中的其他数值,其中,1≤i≤a,且a为整数;将每列数值中的所述a个数值转换为二进制数1,其他数值转换为二进制数0,得到转换矩阵S;
    所述第一预设范围、所述第二预设范围和所述第三预设范围通过对所述待测化合物初始排列矩阵A进行优化来控制,所述优化步骤包括:
    通过如下目标函数:
    L=Sum(S·ST-I)+Sum(RS-Mean(RS))2
    求取目标函数值L;其中,RS是所述转换矩阵S的每行的加和,I是单位矩阵,ST是S的转置矩阵;通过优化算法对所述待测化合物初始排列矩阵A进行优化,以使目标函数值L最小;将目标函数值L最小时的所述待测化合物初始排列矩阵A进行所述二进制转换获得所述排列矩阵S。
  5. 根据权利要求1所述的方法,其特征在于,所述测量每份所述目标溶液 中的每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,包括:
    采用基于结合能或活性的所述待测化合物与所述靶点蛋白相互作用的测量方法,测量每个所述混合物体系与所述靶点蛋白相互作用能力的响应值。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述靶点蛋白来自于含所述靶点蛋白的纯化蛋白或细胞裂解液,通过ABPP或PAL或TPP或LiP-MS中的任意一种方法定量测量每个所述混合物体系与所述靶点蛋白相互作用能力的响应值。
  7. 根据权利要求3或4所述的方法,其特征在于,所述根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系中的每个所述待测化合物对所述混合物体系的响应值的贡献度,包括:
    根据每个所述混合物体系与所述靶点蛋白相互作用能力的响应值,确定每个所述混合物体系对应的响应向量;
    将每个所述响应向量归一化,使其数值在0~1之间;所述响应向量Yi与所述排列矩阵S间存在如下关系:Yi=S×βj+R,
    其中,Yi表示m个混合物体系中标识为i的混合物体系与靶点蛋白相互作用能力的响应值,βj为标识为i的混合物体系中标识为j的待测化合物对标识为i的混合物体系的响应值的贡献度,R为长度为n的残差向量;
    使用传统统计方法或机器学习方法建立回归模型,优化求解βj的数值并使残差R最小化。
  8. 根据权利要求4所述的方法,其特征在于,所述优化算法包括遗传算法、蚁群算法。
  9. 根据权利要求7所述的方法,其特征在于,所述传统统计方法包括最小二乘法、LASSO回归法。
  10. 根据权利要求7所述的方法,其特征在于,所述机器学习方法包括支持向量机、随机森林。
PCT/CN2023/098376 2022-06-07 2023-06-05 一种提高化合物与蛋白质相互作用实验通量的方法 WO2023236909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210638301.1 2022-06-07
CN202210638301.1A CN116819086A (zh) 2022-06-07 2022-06-07 一种提高化合物与蛋白质相互作用实验通量的方法

Publications (1)

Publication Number Publication Date
WO2023236909A1 true WO2023236909A1 (zh) 2023-12-14

Family

ID=88111453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098376 WO2023236909A1 (zh) 2022-06-07 2023-06-05 一种提高化合物与蛋白质相互作用实验通量的方法

Country Status (2)

Country Link
CN (1) CN116819086A (zh)
WO (1) WO2023236909A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143422A (ja) * 2005-11-24 2007-06-14 Toyobo Co Ltd 放射性物質を用いたOn−chipリン酸化検出方法
CN103116713A (zh) * 2013-02-25 2013-05-22 浙江大学 基于随机森林的化合物和蛋白质相互作用预测方法
CN104215550A (zh) * 2014-09-18 2014-12-17 南京医科大学 基于压缩感知的蛋白批量测定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143422A (ja) * 2005-11-24 2007-06-14 Toyobo Co Ltd 放射性物質を用いたOn−chipリン酸化検出方法
CN103116713A (zh) * 2013-02-25 2013-05-22 浙江大学 基于随机森林的化合物和蛋白质相互作用预测方法
CN104215550A (zh) * 2014-09-18 2014-12-17 南京医科大学 基于压缩感知的蛋白批量测定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BALL ET AL., COMMUN. BIOL., vol. 3, no. 75, 2020
JI HONGCHAO, LU XUE, ZHAO SHIJI, WANG QIQI, BIN LIAO, HUBER KILIAN V. M., LUO RAY, TIAN RUIJUN, TAN CHRIS SOON HENG: "Matrix-Augmented Pooling Strategy for High-Throughput Target Deconvolution Reveals Cell Type Specific Off-targets and Responses", CELL CHEMICAL BIOLOGY, 21 November 2022 (2022-11-21), pages 2 - 27, XP009550933, ISSN: 2451-9448, DOI: 10.2139/ssrn.4281073 *
RAMY MOURAD ; ZAHER DAWY ; FARUCK MORCOS: "Designing Pooling Systems for Noisy High-Throughput Protein-Protein Interaction Experiments Using Boolean Compressed Sensing", IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, IEEE SERVICE CENTER, NEW YORK, NY., US, vol. 10, no. 6, 1 November 2013 (2013-11-01), US , pages 1478 - 1490, XP058045931, ISSN: 1545-5963, DOI: 10.1109/TCBB.2013.129 *
SABYASACHI GHOSH ET AL.: "A Compressed Sensing Approach to Pooled RT-PCR Testing for COVID-19 Detection", IEEE OPEN JOURNAL OF SIGNAL PROCESSING, vol. 2, 27 April 2021 (2021-04-27), XP011860918, ISSN: 2644-1322, DOI: 10.1109/OJSP.2021.3075913 *

Also Published As

Publication number Publication date
CN116819086A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
Ludwig et al. Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry
Lange et al. Selected reaction monitoring for quantitative proteomics: a tutorial
Coy et al. Radiation metabolomics and its potential in biodosimetry
Bodenmiller et al. Reproducible isolation of distinct, overlapping segments of the phosphoproteome
Sparbier et al. MALDI biotyper-based rapid resistance detection by stable-isotope labeling
Yang et al. Primer on agar-based microbial imaging mass spectrometry
Hu et al. Functional metabolomics decipher biochemical functions and associated mechanisms underlie small‐molecule metabolism
Schmidlin et al. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non‐small cell lung cancer
Judd et al. A recommended and verified procedure for in situ tryptic digestion of formalin‐fixed paraffin‐embedded tissues for analysis by matrix‐assisted laser desorption/ionization imaging mass spectrometry
Slebos et al. Proteomic analysis of oropharyngeal carcinomas reveals novel HPV‐associated biological pathways
Liu et al. Metabolomic analysis of thermally injured and/or septic rats
Wright Muelas et al. An untargeted metabolomics strategy to measure differences in metabolite uptake and excretion by mammalian cell lines
Hoffman et al. Current approaches for global post-translational modification discovery and mass spectrometric analysis
McGinnis et al. Clinical and research applications of multiplexed immunohistochemistry and in situ hybridization
Szóstak et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling
Alves et al. Identification of microorganisms by high resolution tandem mass spectrometry with accurate statistical significance
Tsai et al. Motif-centric phosphoproteomics to target kinase-mediated signaling pathways
Hendrickx MALDI-TOF MS and filamentous fungal identification: a success story?
Li et al. Computational methods in mass spectrometry-based proteomics
WO2023236909A1 (zh) 一种提高化合物与蛋白质相互作用实验通量的方法
Rautureau et al. Discrimination of Escherichia coli and Shigella spp. by nuclear magnetic resonance based metabolomic characterization of culture media
Franks et al. Activity‐Based Kinome Profiling Using Chemical Proteomics and ATP Acyl Phosphates
Zhu et al. Functional protein microarray as molecular decathlete: a versatile player in clinical proteomics
Holfeld et al. Limited proteolysis–mass spectrometry to identify metabolite–protein interactions
Tobe et al. Phosphoproteomic analysis: an emerging role in deciphering cellular signaling in human embryonic stem cells and their differentiated derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819074

Country of ref document: EP

Kind code of ref document: A1