WO2023236895A1 - 主节点、从节点、供电方法和相关设备 - Google Patents

主节点、从节点、供电方法和相关设备 Download PDF

Info

Publication number
WO2023236895A1
WO2023236895A1 PCT/CN2023/098266 CN2023098266W WO2023236895A1 WO 2023236895 A1 WO2023236895 A1 WO 2023236895A1 CN 2023098266 W CN2023098266 W CN 2023098266W WO 2023236895 A1 WO2023236895 A1 WO 2023236895A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
slave
node
master node
slave node
Prior art date
Application number
PCT/CN2023/098266
Other languages
English (en)
French (fr)
Inventor
穆童
林立富
杨宇蒙
杨坚
庄艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023236895A1 publication Critical patent/WO2023236895A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies

Definitions

  • This application relates to the field of computers, and in particular to master nodes, slave nodes, power supply methods and related equipment.
  • PoE power over Ethernet
  • PoDL power over data line
  • This application provides a master node, a slave node, a power supply method and related equipment.
  • the master node and slave nodes are included in the point-to-multipoint topology.
  • the master node only communicates with one slave node at the same time, that is, the point-to-multipoint topology is converted into a time-sharing point-to-point topology, thereby obtaining each slave node one by one.
  • the power of the node is combined with the output power of the master node to power on the slave node, realizing online power supply in a point-to-multipoint topology.
  • a first aspect of this application provides a master node.
  • the master node and N first slave nodes are included in a point-to-multipoint topology, where N ⁇ 2, and N is an integer.
  • the master node can implement the following functions:
  • the link between the master node and each of the N first slave nodes is connected in a time-sharing manner, so that only one first slave node is connected to the master node in the same period of time. That is to say, the point-to-multipoint topology is converted into a time-segmented point-to-point topology, which includes a master node and a slave node.
  • time-divided conduction includes period-divided conduction, and a period refers to a period of time.
  • the master node can obtain the power of each of the N first slave nodes, and based on the relationship between the power of each of the N first slave nodes and the output power of the master node, calculate the power of each of the N first slave nodes.
  • the target slave node is powered on, and the target slave node includes all first slave nodes or part of the N first slave nodes. Among them, the master node can achieve the interaction required for powering on the target slave node by broadcasting messages.
  • this application has the following advantages: the master node and the slave node are included in a point-to-multipoint topology, and the master node only conducts a path with one slave node at the same time, that is, point-to-multipoint
  • the topology is converted to a time-sharing point-to-point topology, thereby obtaining the power of each slave node one by one, and combining the output power of the master node to power on the slave nodes, realizing online power supply in the point-to-multipoint topology.
  • the master node includes a control unit, and the control unit conducts a link between the master node and each of the N first slave nodes in a time-sharing manner.
  • the control unit in this application may be a microcontroller unit (MCU) or other devices capable of controlling link conduction, such as a central processing unit (CPU), a dedicated integrated circuit (application-specific integrated circuit, ASIC), the control unit can be selected according to the needs of the actual application, and there is no specific limit here.
  • MCU microcontroller unit
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the master node includes a power sourcing equipment (PSE) chip.
  • the master node obtains the power of each of the N first slave nodes one by one through the PSE chip.
  • the PSE chip performs power on each first slave node when the master node is connected to each first slave node. Detection includes sending a detection voltage to each first slave node to determine that the slave node includes a standard powered device (PD). Then, the grading voltage is sent to each first slave node, and a feedback current from each first slave node is received. The feedback current is determined by each first slave node according to the grading voltage sent by the PSE chip. According to the feedback current of each first slave node, the PSE chip determines the power level of each first slave node, which actually reflects the power of the first slave node.
  • PSE power sourcing equipment
  • the power of the first slave node is detected through the PSE chip, and only when it is determined that the powered device included in the first slave node is a standard powered device, the first slave node is powered on, thus avoiding non-standard Powering on the powered equipment may cause damage to the power supply system, thereby improving the safety and reliability of the technical solution.
  • the master node includes a control unit, and the control unit may also be used to obtain the power of each of the N first slave nodes one by one.
  • the control unit will conduct power negotiation with each first slave node, and determine the power of each first slave node according to the result of the power negotiation.
  • power negotiation can be realized based on the interaction of upper layer protocol messages, such as link layer discovery protocol (LLDP) messages; in addition, it can also be other upper layer protocol messages, such as serial communication classification Protocol (serial communication classification protocol, SCCP) messages, or manufacturer-defined protocol messages for power negotiation.
  • LLDP link layer discovery protocol
  • SCCP serial communication classification Protocol
  • SCCP serial communication classification protocol
  • manufacturer-defined protocol messages for power negotiation.
  • the specific type of upper-layer protocol messages is selected according to actual needs, and is not limited here.
  • the master node in the case where the master node includes a control unit and a PSE chip, the master node can also obtain the power of each of the N first slave nodes through other methods.
  • the master node can perform power detection with a first part of the N first slave nodes through the PSE chip, and obtain the power of each of the first part of the first slave nodes.
  • the control unit performs power negotiation with the second part of the N first slave nodes to obtain the power of each of the second part of the first slave nodes. That is, the functions of the control unit and the PSE chip are integrated to obtain the power of each of the N first slave nodes.
  • the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node in the case where the master node includes a control unit and a PSE chip, can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node can perform power detection with the first slave node of the first part among the N first slave nodes through the PSE chip, or perform power negotiation with the first slave node of the first part through the control unit to obtain the first part of the first slave node. The respective power of the first slave node. And the respective power reported by the second part of the N first slave nodes is directly obtained through the control unit. In this case, the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node in the case where the master node includes a control unit and a PSE chip, can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node can perform power detection with a first part of the N first slave nodes through the PSE chip, and obtain the power of each of the first part of the first slave nodes. The control unit performs power negotiation with the second part of the N first slave nodes to obtain the power of each of the second part of the first slave nodes. The respective powers reported by the first slave nodes of a third part of the N first slave nodes are directly obtained through the control unit. In this case, the first slave node of the first part, the first slave node of the second part and the first slave node of the third part constitute the N first slave nodes.
  • the master node there are many ways for the master node to obtain the power of each of the N first slave nodes. It can be obtained based on a single module (control unit or PSE chip) in the master node, or based on multiple modules in the master node. It can be applied to a variety of scenarios, which improves the flexibility and practicality of the technical solution of this application.
  • the control unit in the master node can also receive power from the target slave node.
  • the control unit will determine that the target slave node includes N first slave nodes. node. Then the links between the master node and the N first slave nodes are connected to provide power to the N first slave nodes. Since the first slave node includes a slave control device and a powered device, the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node. That is to say, the maximum output power of the master node minus the power of the N slave control devices The power after power is greater than or equal to the sum of the powers of N powered devices. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the control unit in the master node can also receive power from the target slave node.
  • the control unit will determine the output power of the N first slave nodes.
  • Part of the first slave nodes in a slave node supplies power, that is, it is determined that the target slave node includes M first slave nodes, 1 ⁇ M ⁇ N. And connect the links between the master node and the M first slave nodes to provide power to the M first slave nodes.
  • the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the power budget of the master node is actually the power reserved by the master node for N powered devices, that is, the maximum output power of the master node minus the power of the N slave control devices. Power after power.
  • the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the control unit determines the M first slave nodes, it can select some first slave nodes from the N first slave nodes as the M first slave nodes according to the power supply strategy.
  • the master node can also be connected to a second slave node, which is newly connected to the power supply when there is already a powered first slave node in the power supply system.
  • the slave node of the system The control unit included in the master node determines the remaining power of the master node and obtains the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, the control unit will control the link between the master node and the second slave node to be turned on to provide power to the second slave node.
  • the master node in addition to initially powering on the target slave node, can also provide power to the second slave node newly connected to the power supply system, which enriches the application scenarios of the technical solution of this application.
  • the way in which the master node obtains the power of the second slave node may be to conduct power negotiation with the second slave node through the control unit, or to obtain the third slave node's power reported by the second slave node.
  • the power of the second slave node is not specifically limited here.
  • the control unit may also send a target message to each first slave node, where the target message is used to indicate the conduction period between the master node and each first slave node, So that the master node and a first slave node are connected during the same period.
  • the target message includes different types of messages, which can be LLDP messages.
  • it can also be other types of messages, such as SCCP messages, or other manufacturer-defined messages for controlling the master node and
  • the protocol messages passed from the node are not limited here.
  • the master node can have different forms.
  • the main control device and the power supply device included in the master node can be either coupled or decoupled (i.e., the main control device and the power supply device).
  • the devices are all independent devices), and there are no specific limitations here.
  • the master node can have a variety of product forms and can be applied to different scenarios, further improving the flexibility of the technical solution of this application.
  • the second aspect of this application provides a power supply method, which is applied to a master node.
  • the master node and N first slave nodes are included in a point-to-multipoint topology, N ⁇ 2, and N is an integer.
  • the method includes:
  • the link between the master node and each of the first N slave nodes is connected in a time-divided manner, and the point-to-multipoint topology is converted into a time-divided point-to-point topology.
  • the master node When the master node is connected to a slave node, the power of the slave node is obtained. After the links between the master node and each first slave node are connected in sequence, the power of each of the N first slave nodes can be obtained. Then, according to the power of the N first slave nodes and the output power of the master node, power is supplied to the target slave node among the N first slave nodes.
  • the target slave node is all the first slave nodes among the N first slave nodes or Part of the first slave node. Among them, the master node can achieve the interaction required for powering on the target slave node by broadcasting messages.
  • the master node can obtain the power of each of the N first slave nodes through power detection. Specifically, the master node receives a feedback current from each first slave node, and the feedback current is determined by each first slave node based on the hierarchical voltage sent by the master node. The power of each first slave node is then determined based on the feedback current of each first slave node.
  • power detection actually includes the master node sending a detection voltage and a classification voltage to the first slave node. The detection voltage is used to determine whether the first slave node includes a standard powered device. If it is determined that a standard powered device is included, Only then will the hierarchical voltage be sent to the first slave node to determine the power of the first slave node.
  • the master node may also obtain the power of each of the N first slave nodes through power negotiation. Specifically, the master node will conduct power negotiation with each first slave node through the upper layer protocol, and determine the power of each first slave node based on the negotiation results of the power negotiation. Among them, power negotiation can be realized based on the interaction of upper-layer protocol messages, such as LLDP messages; in addition, it can also be other upper-layer protocol messages, such as SCCP messages, or a manufacturer-defined protocol for power negotiation. message, the specific type of upper layer protocol message depends on the actual It is actually necessary to choose, and there is no specific limit here.
  • upper-layer protocol messages such as LLDP messages
  • SCCP messages such as SCCP messages
  • the master node can also obtain the power of each of the N first slave nodes by combining power detection and power negotiation.
  • the master node can perform power detection with the first part of the N first slave nodes through the PSE chip, and obtain the respective power of the first part of the first slave nodes.
  • the control unit performs power negotiation with the second part of the obtained N first slave nodes to obtain the power of each of the second part of the first slave nodes.
  • the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node can perform power detection on the first part of the first slave nodes among the N first slave nodes, or perform power negotiation with the first part of the first slave nodes, and obtain the respective power of the first part of the first slave nodes. power. And directly obtain the respective powers reported by the second part of the first slave nodes among the N first slave nodes. In this case, the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node may perform power detection with a first part of the N first slave nodes, and obtain the power of each of the first part of the first slave nodes. By performing power negotiation with the second part of the N first slave nodes, the power of each of the second part of the first slave nodes is obtained. The master node can also directly obtain the respective powers reported by the third part of the first slave nodes among the N first slave nodes. In this case, the first slave node of the first part, the first slave node of the second part and the first slave node of the third part constitute the N first slave nodes.
  • the master node supplies power to the target slave node among the N first slave nodes based on the relationship between the power of the N first slave nodes and the output power of the master node. Specifically, if the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node, then the master node determines that the target slave node includes the N first slave nodes. And connect the links with the N first slave nodes to supply power to the N first slave nodes. Since the first slave node includes a slave control device and a powered device, the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node. That is to say, the maximum output power of the master node minus the power of the N slave control devices The power after power is greater than or equal to the sum of the powers of N powered devices. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the master node supplies power to the target slave node among the N first slave nodes based on the relationship between the power of the N first slave nodes and the output power of the master node. Specifically, if the sum of the power of the N first slave nodes is greater than the output power of the master node, which means that the sum of the powers of the N first slave nodes exceeds the power budget of the master node, then the master node will determine the target slave node Including M first slave nodes, 1 ⁇ M ⁇ N. And connect the links with the M first slave nodes to supply power to the M first slave nodes.
  • the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the power budget of the master node is actually the power reserved by the master node for N powered devices, that is, the maximum output power of the master node minus the power of the N slave control devices. Power after power. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the master node is also connected to a second slave node, and the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node.
  • the master node After powering the target slave node among the N first slave nodes, the master node determines the remaining power of the master node and obtains the power of the second slave node. When the power of the second slave node is less than or equal to the remaining power, power is supplied to the second slave node.
  • the master node obtains the power of the second slave node, which may be through power negotiation with the second slave node through the control unit, or by obtaining the third slave node's power reported by the second slave node.
  • the power of the second slave node is not specifically limited here.
  • the master node connects the master node and each of the first N slave nodes in a time-sharing manner by sending a target message to each first slave node.
  • the target message is used to indicate the conduction period between the master node and each first slave node, the link conduction period between each first slave node and the master node, and the period between the other first slave nodes and the master node.
  • the link up time period is different.
  • the target message includes different types of messages, which can be LLDP messages. In addition, it can also be other types of messages, such as SCCP messages, or other manufacturer-defined messages for controlling the master node and
  • the protocol messages passed from the node are not limited here.
  • the master node can have different forms.
  • the main control device and the power supply device included in the master node can be either coupled or decoupled (i.e., the main control device and the power supply device).
  • the devices are all independent devices), and there are no specific limitations here.
  • the master node of the second aspect of the present application can also realize the functions of the master node in the aforementioned first aspect and any possible implementation of the first aspect, and the beneficial effects shown in the second aspect are the same as those of the aforementioned first aspect. The effects are similar and will not be described again here.
  • a third aspect of the present application provides a slave node, which is characterized in that the slave node and the master node are included in a point-to-multipoint topology.
  • the point-to-multipoint topology also includes a master node, which can power multiple slave nodes in the point-to-multipoint.
  • the slave node is used to send the power of the slave node to the master node and receive the power-on command from the master node.
  • the link between the master node and the slave node is turned on to power on the slave node. Since the slave node includes a slave control device and a powered device, the power of the slave node includes the power of the slave control device and the power of the powered device. It can be understood that due to line loss, the power of the slave node also includes the power corresponding to the line loss, and this part of the power can be included in the power of the powered device.
  • the slave node can actively send its own power to the master node, so that the master node can obtain the power of each slave node in the point-to-multipoint topology, thereby providing online power supply to each slave node, realizing the point-to-multipoint topology. Online power supply in.
  • the slave node includes a control unit capable of acquiring the power of the slave node and sending the power of the slave node to the master node.
  • the control unit also receives the power-on instruction from the master node, and controls the link between the master node and the slave node to be turned on according to the power-on instruction, so that the slave node is powered on.
  • the control unit in this application can be a micro control unit or other devices that can control link conduction, such as a central processor or a dedicated integrated circuit.
  • the control unit can be selected according to the needs of the actual application. There are no specific limitations here.
  • the slave node in addition to the control unit, also includes a switch.
  • the control unit can control the switch to conduct the link between the master node and the slave node according to the power-on command. switch for root According to the control instructions of the control unit, the link between the master node and the slave node is connected.
  • the slave node includes a control unit and a switch
  • the slave control device included in the slave node is coupled to the powered device, then the powered device can be understood as the load of the slave node , the control unit can directly obtain the power of the powered device. If the slave control device included in the slave node is decoupled from the powered device, the control unit can use power negotiation to determine the power of the powered device. Among them, the control unit and switch are included in the slave control device.
  • the power of the slave node can be determined through the control unit, so that the technical solution of this application can adapt to different needs and improve the technical solution of this application. of practicality.
  • the slave node includes a slave control device and a powered device, and the slave control device is decoupled from the powered device.
  • the slave device includes the PSE chip and control unit.
  • the PSE chip can determine the power of the powered device through power detection. Specifically, the PSE chip will send a detection voltage to the powered device, and the detection voltage is used to determine whether the powered device is a standard powered device. In the case where the powered device is a standard powered device, the PSE chip sends a graded voltage to the powered device to determine the power of the powered device.
  • the PSE chip receives the feedback current from the powered device and determines the power of the powered device based on the feedback current.
  • the feedback current is determined by the powered device according to the classification voltage of the PSE chip.
  • the PSE chip also sends the power of the powered device to the control unit. Therefore, the control unit will receive the power of the powered device from the PSE chip, and determine the power of the slave node based on the power of the powered device.
  • the PSE chip is also used to conduct the link between the master node and the slave node according to the control instructions of the control unit.
  • the slave node when the slave control device included in the slave node is decoupled from the powered device, in addition to the control unit and switch, the slave node may also include a control unit and a PSE chip, so that the slave node has different product forms. , the power of the slave node can also be determined in different ways, which enriches the implementation of the technical solution of this application.
  • the fourth aspect of the present application provides a power supply method, which is applied to a slave node, and the slave node and the master node are included in a point-to-multipoint topology.
  • This power supply method includes:
  • the slave node before sending the power of the slave node to the master node, can also obtain the power of the slave node through power detection or power negotiation, which is not limited here.
  • the powered device when the slave control device included in the slave node is coupled to the powered device, the powered device can be understood as the load of the slave node, and the slave node can directly obtain the powered device of power.
  • the slave node in the fourth aspect of the present application can also implement the functions of the slave node in the aforementioned third aspect and any possible implementation of the third aspect, and the beneficial effects shown in the fourth aspect are the same as those in the aforementioned third aspect. The effects are similar and will not be described again here.
  • the fifth aspect of this application provides a power supply system.
  • the topology of the power supply system is a point-to-multipoint topology, including a master node and N first slave nodes, N ⁇ 2, and N is an integer.
  • the master node is used to connect the link between the master node and each of the first N slave nodes in a time-sharing manner, and obtain the power of each of the N first slave nodes. According to the power of the N first slave nodes and the output power of the master node, power is supplied to the target slave node among the N first slave nodes.
  • the master node can determine each th The power of a slave node. Specifically, the master node can receive feedback current from each first slave node, and the feedback current is determined by each first slave node according to the hierarchical voltage sent by the master node. And based on the feedback current of each first slave node, the power of each first slave node is determined.
  • the master node may also determine the power of each first slave node through power negotiation. Specifically, the master node performs power negotiation with each first slave node, and determines the power of each first slave node based on the negotiation result of the power negotiation.
  • the N first slave nodes in the power supply system include a first set and a second set.
  • the master node can obtain the power of each of the first slave nodes included in the first set through power negotiation and/or power detection. and receiving respective powers from the first slave nodes included in the second set. That is to say, the master node can obtain the power of each of the N first slave nodes in the power supply system through different methods.
  • each first slave node in the second set may also determine the power of each first slave node through power negotiation and/or power detection.
  • the master node when the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node, it means that the master node is able to perform uplink operation on the N first slave nodes. Electricity, that is, it is determined that the target slave node includes N first slave nodes. The one in the master node will connect the link between the master node and the N first slave nodes, and provide power to the N first slave nodes.
  • the sum of the powers of the N first slave nodes when the sum of the powers of the N first slave nodes is greater than the output power of the master node, it means that the sum of the powers of the N first slave nodes exceeds the output power of the master node.
  • the power budget that is, it is determined that the target slave node includes M first slave nodes among the N first slave nodes, 1 ⁇ M ⁇ N.
  • the master node will connect the links between the master node and the M first slave nodes to provide power to the M first slave nodes.
  • the power supply system further includes a second slave node, and the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node.
  • the master node is able to determine the remaining power of the master node and the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, the master node will power the second slave node.
  • the master node can obtain the power of the second slave node in a variety of ways, which can be through power negotiation with the second slave node to determine the power of the second slave node; or it can It is to obtain the power of the second slave node actively reported by the second slave node, and there is no specific limit here.
  • the master node in the fifth aspect of the present application can also implement the functions of the master node in the aforementioned first aspect and any possible implementation of the first aspect, and the beneficial effects shown in the fifth aspect are the same as those shown in the aforementioned first aspect. The beneficial effects are similar and will not be repeated here.
  • the sixth aspect of this application provides a power supply system.
  • the topology of the power supply system is a point-to-multipoint topology, including a master node and N first slave nodes, N ⁇ 2, and N is an integer.
  • Each first slave node among the N first slave nodes can send the power of each first slave node to the master node. So that the master node obtains the power of each of the N first slave nodes.
  • the master node will provide power to the target slave node among the N first slave nodes based on the power of the N first slave nodes and the output power of the master node. Therefore, the target slave node can receive the power-on instruction from the master node, and according to the power-on instruction, connect the link between the master node and the target slave node to power on the target slave node.
  • each first slave node can pass power detection or power agreement In the way of quotient, the power of each first slave node is obtained.
  • the power supply system further includes a second slave node, and the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node.
  • the master node also determines the remaining power of the master node and obtains the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, the second slave node is powered.
  • the slave node in the sixth aspect of the present application can also implement the functions of the slave node in the aforementioned third aspect and any possible implementation of the third aspect, and the beneficial effects shown in the sixth aspect are the same as those shown in the aforementioned third aspect. The beneficial effects are similar and will not be repeated here.
  • the seventh aspect of this application provides a master node, including: a processor and a memory;
  • the memory is used to store computer instructions
  • the processor is configured to call the computer instructions so that the master node implements the functions of the master node in the foregoing first aspect and any possible implementation of the first aspect, and/or executes the foregoing second aspect.
  • the beneficial effects shown in the seventh aspect are similar to the beneficial effects shown in the aforementioned first aspect, and will not be described again here.
  • the eighth aspect of this application provides a slave node, which is characterized in that it includes: a processor and a memory;
  • the memory is used to store computer instructions
  • the processor is configured to call the computer instructions so that the slave node executes the power supply method described in the foregoing second aspect and any possible implementation of the second aspect, and/or implements the foregoing third aspect. and the function of the slave node in any possible implementation of the third aspect.
  • the beneficial effects shown in the eighth aspect are similar to the beneficial effects shown in the aforementioned third aspect, and will not be described again here.
  • a ninth aspect of the application provides a chip, including a processor and a memory.
  • the memory is used to store instructions.
  • the processor runs the instructions to execute the aforementioned second aspect and any possible implementation of the second aspect.
  • the power supply method or perform the power supply method described in the foregoing fourth aspect and any possible implementation of the fourth aspect.
  • a tenth aspect of the present application provides a chip system, including a master chip and a slave chip.
  • the master chip includes a first processor and a first memory
  • the slave chip includes a second processor and a second memory.
  • the first memory is used to store the first instruction
  • the first processor executes the first instruction to execute the power supply method described in the aforementioned second aspect and any possible implementation of the second aspect
  • the second memory is used to store the first instruction.
  • An eleventh aspect of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program.
  • the computer executes the program, the first aspect and any possible implementation of the first aspect are realized.
  • a twelfth aspect of the present application provides a computer program product, which is characterized in that when the computer program product is executed on a computer, the computer implements the foregoing first aspect and any of the possible implementations of the first aspect.
  • the described power supply method, and/or implements the function of the slave node in the aforementioned third aspect and any possible implementation manner of the third aspect.
  • Figure 1A is a schematic diagram of a power supply system with point-to-multipoint topology
  • Figure 1B is another schematic diagram of a power supply system with point-to-multipoint topology
  • Figure 2 is a schematic structural diagram of a master node provided by an embodiment of the present application.
  • Figure 3 is another schematic structural diagram of a master node provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of the power supply method provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a slave node provided by the embodiment of the present application.
  • Figure 6 is another schematic structural diagram of a slave node provided by an embodiment of the present application.
  • Figure 7 is another schematic flow chart of the power supply method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the power supply system provided by the embodiment of the present application.
  • FIG. 9 is another schematic diagram of the power supply system provided by the embodiment of the present application.
  • Figure 10 is another schematic structural diagram of a slave node provided by an embodiment of the present application.
  • FIG 11 is another schematic diagram of the power supply system provided by the embodiment of the present application.
  • Figure 12 is another schematic diagram of the power supply system provided by the embodiment of the present application.
  • Figure 13 is another schematic structural diagram of a master node provided by an embodiment of the present application.
  • Figure 14 is another schematic structural diagram of a slave node provided by an embodiment of the present application.
  • This application provides a master node, a slave node, a power supply method and related equipment.
  • the master node and slave nodes are included in the point-to-multipoint topology.
  • the master node only communicates with one slave node at the same time, that is, the point-to-multipoint topology is converted into a time-sharing point-to-point topology, thereby obtaining each slave node one by one.
  • the power of the node is combined with the output power of the master node to power on the slave node, realizing online power supply in a point-to-multipoint topology.
  • a and/or B describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • At least one of the following" or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items). For example, at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • Figure 1A and Figure 1B are both schematic diagrams of point-to-multipoint topology.
  • one master node in a point-to-multipoint topology, can connect multiple slave nodes in parallel, and both the master node and the slave node are connected to the bus.
  • the master node communicates with each slave node through the bus and provides online power supply to each slave node.
  • the master node includes a master control device and a power supply device
  • the slave node includes a slave control device and a powered device.
  • the master control device can control the power supply device to supply power to the powered device corresponding to the slave control device.
  • the main control device can be coupled with the power supply device and appear as one device to the outside world; the main control device can also be decoupled from the power supply device and act as an independent device.
  • the slave control device can be coupled to the powered device and appear as one device to the outside; the slave control device can also be decoupled from the powered device and act as an independent device.
  • the master node and N first slave nodes are included in the power supply system of point-to-multipoint topology, where N ⁇ 2, and N is an integer.
  • the master node will connect the link between the master node and each of the first N slave nodes in a time-sharing manner, so that in the same period of time, only one slave node in the power supply system is connected to the master node, so that Convert the power supply system of point-to-multipoint topology to time-segmented point-to-point topology.
  • the point-to-point topology includes a master node and a slave node, so that the master node can obtain the power of the first slave node.
  • the master node After the link between the master node and each slave node is opened in a time-sharing manner, the master node can obtain the power of each of the N first slave nodes.
  • time-divided conduction refers to conduction in time-divided periods, and period refers to a period of time.
  • the master node After obtaining the power of each of the N first slave nodes, the master node will power on the target slave node among the N first slave nodes based on the relationship between the power of each of the N first slave nodes and the output power of the master node.
  • the target slave nodes include all or part of the N first slave nodes.
  • the master node sends a target message to each first slave node.
  • the target message is used to indicate the conduction period between the master node and each first slave node, so that the master node can The node is connected to a first slave node.
  • the target message includes different types of messages, which can be LLDP messages. In addition, it can also be other types of messages, such as SCCP messages, or other manufacturer-defined messages for controlling the master node and The protocol for connecting slave nodes is not limited here.
  • the master node can implement the interaction required for powering on the target slave node by broadcasting messages.
  • the messages broadcast by the master node can be multiple types of messages, such as LLDP messages.
  • they can also be other types of messages, such as SCCP messages, or manufacturer-defined messages for control.
  • the power-on protocol message is not limited here.
  • the master node and the slave node are included in the point-to-multipoint topology.
  • the master node only connects the path with one slave node in the same period, that is, the point-to-multipoint topology is converted into a time-sharing point-to-point topology, so that The power of each slave node is obtained one by one, and combined with the output power of the master node, the slave node is powered on, realizing online power supply in a point-to-multipoint topology.
  • FIG. 2 is a schematic structural diagram of a master node provided by an embodiment of the present application.
  • the master node 200 includes a control unit 201, which is used to time-share the connection between the master node 200 and each of the N first slave nodes. links between nodes.
  • the control unit 201 may be a micro control unit or other devices capable of controlling link conduction, such as a central processing unit, an application specific integrated circuit, etc.
  • the control unit may be selected according to actual application needs, and is not limited here.
  • the master node 200 also includes a PSE chip 202.
  • the master node 200 can obtain the power of each of the N first slave nodes through the PSE chip 202.
  • the PSE chip 202 performs power detection on each first slave node, including sending a detection voltage to each first slave node to determine the first slave node.
  • the powered device (PD) included in the slave node is a standard powered device.
  • the grading voltage is sent to each first slave node, and a feedback current from each first slave node is received.
  • the feedback current is determined by each first slave node according to the grading voltage sent by the PSE chip 202 .
  • the PSE chip 202 determines the power level of the powered device included in each first slave node. The power level actually reflects the power of the powered device included in the first slave node. .
  • the PSE chip 202 may periodically send a grading voltage to the first slave node during the closed period between the master node and each first slave node.
  • the grading voltage is a pulse voltage, and the grading voltage is lower than the first slave node.
  • the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the PSE chip 202 also obtains the power of the slave control device, and combines the power of the powered devices included in the slave control device to obtain the power of each first slave node.
  • the point-to-multipoint topology may also include some slave nodes connected to non-standard powered devices. Since these powered devices are not standard powered devices, the master node does not These powered devices will be powered on.
  • the power of the first slave node is detected through the PSE chip, and only when it is determined that the powered device included in the first slave node is a standard powered device, the first slave node is powered on, thus avoiding non-standard Powering on the powered equipment may cause damage to the power supply system, thereby improving the safety and reliability of the technical solution.
  • the master node 200 can also perform power negotiation with each of the N first slave nodes through the control unit 201, so as to determine each first slave node according to the negotiation result of the power negotiation.
  • the power of the slave node can be realized based on the interaction of upper-layer protocol messages, such as LLDP messages; in addition, it can also be other upper-layer protocol messages, such as SCCP messages, or a manufacturer-defined protocol for power negotiation. Messages, the specific types of upper-layer protocol messages are selected according to actual needs, and are not limited here.
  • the power supply device included in the master node 200 outputs a low voltage, so that the powered device included in the first slave node operates in a low power consumption mode. Therefore, all powered devices take turns to negotiate power with the master node 200 with low power consumption.
  • the master node 200 when the master node 200 includes the control unit 201 and the PSE chip 202, the master node 200 can combine the functions of the control unit 201 and the PSE chip 202 to obtain the power of each of the N first slave nodes.
  • the PSE chip 202 performs power detection with a first part of the N first slave nodes to obtain the power of each of the first part of the first slave nodes.
  • the control unit 201 performs power negotiation with the second part of the N first slave nodes to obtain the power of each of the second part of the first slave nodes. In this case, part one of the A slave node and the first slave node of the second part constitute the N first slave nodes.
  • the master node 200 can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node 200 can perform power detection with a first part of the N first slave nodes through the PSE chip 202, or perform power negotiation with the first part of the first slave nodes through the control unit 201, and obtain The respective power of the first slave nodes in the first part. And the respective powers reported by the second part of the N first slave nodes are directly obtained through the control unit 201. In this case, the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node 200 can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node can perform power detection with a first part of the N first slave nodes through the PSE chip 202, and obtain the power of each of the first part of the first slave nodes.
  • the control unit 201 performs power negotiation with the second part of the N first slave nodes to obtain the power of each of the second part of the first slave nodes.
  • the control unit 201 directly obtains the respective powers reported by the third part of the N first slave nodes.
  • the first slave node of the first part, the first slave node of the second part and the first slave node of the third part constitute the N first slave nodes.
  • the master node there are many ways for the master node to obtain the power of each of the N first slave nodes. It can be obtained based on a single module (control unit or PSE chip) in the master node, or based on multiple modules in the master node. It can be applied to a variety of scenarios, which improves the flexibility and practicality of the technical solution of this application.
  • the control unit 201 included in the master node 200 is also capable of receiving power from the target slave node among the N first slave nodes.
  • the control unit 201 will determine that the target slave node includes N first slave nodes. slave node. Then the links between the master node and the N first slave nodes are connected to provide power to the N first slave nodes. Since the first slave node includes a slave control device and a powered device, the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node. That is to say, the maximum output power of the master node minus the power of the N slave control devices The power after power is greater than or equal to the sum of the powers of N powered devices. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the control unit 201 when the sum of the powers of the N first slave nodes is greater than the output power of the master node, it means that the sum of the powers of the N first slave nodes exceeds the power budget of the master node, Then the control unit 201 will determine to supply power to some of the N first slave nodes, that is, determine that the target slave node includes M first slave nodes among the N first slave nodes, 1 ⁇ M ⁇ N. And connect the links between the master node and the M first slave nodes to provide power to the M first slave nodes. Since the first slave node includes a slave control device and a powered device, the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the power budget of the master node is actually the power reserved by the master node for N powered devices, that is, the maximum output power of the master node minus the power of the N slave control devices. Power after power. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the control unit 201 may determine M first slave nodes from the N first slave nodes according to the power supply strategy.
  • power supply strategies There are many possibilities for power supply strategies. Here are some examples of possible power supply strategies.
  • the master node 200 can supply power to the powered device corresponding to the first slave node in order from low to high power, until the total power of each powered device exceeds the power of the master node after adding the next powered device. Budget. Based on this power supply strategy, the maximum number of powered devices can be supplied.
  • the master node 200 can supply power to the powered device corresponding to the first slave node in order from high to low power, until the total power of each powered device exceeds the power of the master node after adding the next powered device. Budget. Based on this power supply strategy, power supply to high-power powered devices can be guaranteed first.
  • the master node 200 can also obtain the power receiving priority of the powered device in each first slave node, and provide power to the powered device corresponding to each first slave node in the order of power receiving priority, until the next powered device is added. After powering the device, the total power of each powered device exceeds the power budget of the master node.
  • the powered device can directly report it to the power supply device included in the master node.
  • the powered device will be The power priority is reported to the slave device.
  • the master node obtains the power of the slave node through power negotiation, it can also obtain the power priority of the powered device fed back by the slave device.
  • the master node there are many ways for the master node to obtain the power receiving priority of the powered device, and the details are not limited here.
  • the master node 200 after the master node 200 supplies power to the first slave node, it can also obtain the power of the powered devices included in each first slave node that each first slave node periodically reports to the master node 200. Power supply parameters such as current and node return data.
  • the method used by the first slave node to return data to the master node depends on the communication mechanism between the master node 200 and each first slave node. For example, a time division communication mechanism may be used, fixed allocation time slots or competitive transmission may be used. Specifically, There are no restrictions anywhere.
  • the master node 200 is also connected to a second slave node, and the second slave node is a newly added slave node in a system that already has a powered first slave node.
  • the control unit 201 of the master node 200 determines the remaining power of the master node and obtains the power of the second slave node. According to the relationship between the power of the second slave node and the remaining power, it is determined whether to supply power to the second slave node. If the power of the second slave node is less than or equal to the remaining power, the control unit 201 supplies power to the second slave node. Otherwise, the second slave node will not be powered.
  • the remaining power of the master node 200 can be determined based on the following method:
  • the remaining power the output power of the master node - the total power consumption of the powered slave nodes in the power supply system.
  • the master node 200 obtains the power of the second slave node by performing power negotiation with the second slave node through the control unit 201, or by obtaining the power of the second slave node reported by the second slave node.
  • the power of the node is not specifically limited here.
  • the master node in addition to initially powering on the target slave node, the master node can also provide power to the second slave node newly connected to the power supply system, which enriches the application scenarios of the technical solution of this application.
  • the master node there are many ways for the master node to obtain the power of the second slave node, which can be selected according to the needs of actual applications, further improving the flexibility of the technical solution of the present application.
  • the master node 200 has a variety of product forms. Please refer to Figure 3.
  • Figure 3 is a diagram of this application. The embodiment provides a schematic structural diagram of the master node.
  • the master node 200 includes a main control device 210 and a power supply device 220 .
  • the main control device 210 includes a control unit 201 and a PSE chip 202 .
  • the main control device 210 and the power supply device 220 may be coupled or decoupled (that is, the main control device 210 and the power supply device 220 are both independent devices), which are not specifically limited here.
  • the master node can have a variety of product forms and can be applied to different scenarios, further improving the flexibility of the technical solution of this application.
  • FIG. 4 is a schematic flow chart of a power supply method provided by an embodiment of the present application, including the following steps:
  • the master node and N first slave nodes are included in a point-to-multipoint topology.
  • the link between the master node and each of the first N slave nodes is connected in a time-divided manner, and the point-to-multipoint topology is converted into a time-divided point-to-point topology.
  • the master node sends a target message to each first slave node.
  • the target message is used to indicate the conduction period between the master node and each first slave node, so that the master node and each first slave node can communicate with each other during the same period.
  • a first slave node is switched on.
  • the target message includes different types of messages, which can be LLDP messages.
  • it can also be other types of messages, such as SCCP messages, or other manufacturer-defined messages for controlling the master node and
  • the protocol messages passed from the node are not limited here.
  • the master node When the master node is connected to a slave node, the master node obtains the power of the slave node. After the links between the master node and each first slave node are connected in sequence, the power of each of the N first slave nodes can be obtained. There are many ways for the master node to obtain the power of the first slave node. It can obtain it through power detection or power negotiation. In addition, it can also directly obtain the power reported by the first slave node. There are no specific limitations here. The possible situations are explained below:
  • the master node may obtain the power of each of the N first slave nodes through power detection. Specifically, the master node receives a feedback current from each first slave node, and the feedback current is determined by each first slave node based on the hierarchical voltage sent by the master node. The power of each first slave node is then determined based on the feedback current of each first slave node. The power of each first slave node is determined based on the feedback current of each first slave node.
  • power detection actually includes the master node sending a detection voltage and a classification voltage to the first slave node. The detection voltage is used to determine whether the first slave node includes a standard powered device. If it is determined that a standard powered device is included, Only then will the hierarchical voltage be sent to the first slave node to determine the power of the first slave node.
  • the first slave node by performing power detection on the first slave node, the first slave node is powered on only after it is determined that the powered device included in the first slave node is a standard powered device, thus avoiding non-standard powered devices.
  • the power supply of electrical equipment may cause damage to the power supply system, thereby improving the safety and reliability of the technical solution.
  • the master node may also obtain the power of each of the N first slave nodes through power negotiation. Specifically, the master node will negotiate the power with each first slave node through the upper layer protocol. According to the power The negotiation result determines the power of each first slave node.
  • power negotiation can be realized based on the interaction of upper-layer protocol messages, such as LLDP messages; in addition, it can also be other upper-layer protocol messages, such as SCCP messages, or a manufacturer-defined protocol for power negotiation. Messages, the specific types of upper-layer protocol messages are selected according to actual needs, and are not limited here.
  • the master node can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node can perform power detection on the first part of the first slave nodes among the N first slave nodes, or perform power negotiation with the first part of the first slave nodes, and obtain the respective power of the first part of the first slave nodes. power. And directly obtain the respective powers reported by the second part of the first slave nodes among the N first slave nodes. In this case, the first slave nodes of the first part and the first slave nodes of the second part constitute the N first slave nodes.
  • the master node can also obtain the power of each of the N first slave nodes through other methods. Specifically, the master node may perform power detection with a first part of the N first slave nodes, and obtain the power of each of the first part of the first slave nodes. By performing power negotiation with the second part of the N first slave nodes, the power of each of the second part of the first slave nodes is obtained. The master node can also directly obtain the respective powers reported by the third part of the first slave nodes among the N first slave nodes. In this case, the first slave node of the first part, the first slave node of the second part and the first slave node of the third part constitute the N first slave nodes.
  • step 403. Determine whether the sum of the powers of the N first slave nodes is not greater than the output power of the master node. If so, perform step 404. If not, perform step 405.
  • the master node After obtaining the power of each of the N first slave nodes, the master node will compare the relationship between the sum of the powers of the N first slave nodes and the output power of the master node, and determine the target slave node among the N first slave nodes. powered by. Wherein, the target slave node is all or part of the N first slave nodes.
  • the master node determines that the target slave node includes the N first slave nodes. If the sum of the powers of the N first slave nodes is greater than the output power of the master node, which means that the sum of the powers of the N first slave nodes exceeds the power budget of the master node, then the master node will determine that the target slave node includes the Mth slave node. A slave node, 1 ⁇ M ⁇ N. The master node can select the M first slave nodes from the N first slave nodes according to different power supply strategies. The relevant content of the power supply strategy has been explained when the master node was introduced above, and will not be repeated here.
  • the power of the first slave node includes the power of the slave control device and the power of the powered device.
  • the slave control device is always powered on, and the power budget of the master node is actually the power reserved by the master node for N powered devices, that is, the maximum output power of the master node minus the power of the N slave control devices. Power after power. It can be understood that due to line loss, the power of the first slave node also includes the power corresponding to the line loss, and this part of the power may be included in the power of the powered device.
  • the master node can implement the interaction required for powering on the target slave node by broadcasting messages.
  • the messages broadcast by the master node can be multiple types of messages, such as LLDP messages.
  • they can also be other types of messages, such as SCCP messages, or manufacturer-defined messages for control.
  • the power-on protocol message is not limited here.
  • the master node When the sum of the powers of the N first slave nodes is less than or equal to the output power of the master node, the master node will determine that the target slave node includes N first slave nodes, and connect the master node to the N first slave nodes. The link of the node supplies power to the N first slave nodes.
  • the master node When the sum of the powers of the N first slave nodes is greater than the output power of the master node, the master node will determine that the target slave node includes M first slave nodes, and connect the master node to the M first slave nodes. The link supplies power to the M first slave nodes.
  • this application has the following advantages: the master node and the slave node are included in a point-to-multipoint topology, and the master node only conducts a path with one slave node at the same time, that is, point-to-multipoint
  • the topology is converted to a time-sharing point-to-point topology, thereby obtaining the power of each slave node one by one, and combining the output power of the master node to power on the slave nodes, realizing online power supply in the point-to-multipoint topology.
  • the master node may also perform the following steps:
  • the master node can also obtain the power supply parameters such as power and current of the powered equipment included in each first slave node and the node return data that each first slave node periodically reports to the master node.
  • the method used by the first slave node to return data to the master node depends on the communication mechanism between the master node and each first slave node. For example, a time-division communication mechanism can be used, using fixed allocation time slots or competitive transmission, as detailed here No restrictions.
  • the master node can also be connected to a second slave node, and the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node. That is to say, before the second slave node is connected to the power supply system, the power supply system includes the first slave node that has been powered on.
  • the master node can obtain the power of the second slave node based on different methods. For example, the master node may conduct power negotiation with the second slave node to determine the power of the second slave node. Alternatively, the master node can obtain the power of the second slave node directly reported by the second slave node. This application does not limit this.
  • step 408. Determine whether the power of the second slave node is not greater than the remaining power of the master node. If so, perform step 409. If not, perform step 410.
  • the master node will compare the power of the second slave node with its own remaining power to determine whether it can power on the second slave node.
  • the power of the second slave node is less than or equal to the remaining power, it means that the master node still has sufficient power to power the second slave node.
  • the second slave node is not powered.
  • the master node In the case where the power of the second slave node is greater than the remaining power, the master node cannot supply power to the second slave node.
  • the master node can have different forms.
  • the main control device and the power supply device included in the master node can be either coupled or decoupled (that is, the main control device and the power supply device are independent equipment), the details are not limited here.
  • the master node in addition to initially powering on the target slave node, can also provide power to the second slave node newly connected to the power supply system, which enriches the application scenarios of the technical solution of this application.
  • the slave node and the master node are included in the power supply system of point-to-multipoint topology, and the master node can provide online power supply to multiple slave nodes in the point-to-multipoint.
  • the slave node will send the power of the slave node to the master node and receive the power-on command from the master node.
  • the link between the master node and the slave node is turned on to power on the slave node. Since the slave node includes a slave control device and a powered device, the power of the slave node includes the power of the slave control device and the power of the powered device. It can be understood that due to line loss, the power of the slave node also includes the power corresponding to the line loss, and this part of the power can be included in the power of the powered device.
  • the slave node can actively send its own power to the master node, so that the master node can obtain the power of each slave node in the point-to-multipoint topology, thereby providing online power supply to each slave node, realizing the point-to-multipoint topology. Online power supply in.
  • Figure 5 is a schematic structural diagram of the slave node provided by this application.
  • the slave node 500 includes a control unit 501.
  • the control unit 501 can obtain the power of the slave node and send the power of the slave node to the master node. It also receives a power-on instruction from the master node, and controls the link between the master node and the slave node 500 to be turned on according to the power-on instruction, so that the slave node 500 is powered on.
  • control unit 501 in this application can be a micro control unit or other devices capable of controlling link conduction, such as a central processor or an application specific integrated circuit.
  • the control unit can be selected according to the needs of the actual application. , there is no specific limit here.
  • control unit 501 can obtain the power of the slave node in different ways. Possible situations are described below.
  • the slave node 500 includes a control unit 501 and a switch 502.
  • the control unit 501 is configured to control the switch 502 to conduct the link between the master node and the slave node according to the power-on instruction.
  • the switch 502 is used to conduct the link between the master node and the slave node 500 according to the control instruction of the control unit 501.
  • the slave control device included in the slave node 500 is coupled to the powered device, then the powered device can be understood as the load of the slave node 500, and the control unit 501 can directly obtain the power of the powered device. If the slave control device included in the slave node 500 is decoupled from the powered device, the control unit 501 may determine the power of the powered device through power negotiation. The specific method of power negotiation has been explained above and will not be described again here.
  • the power of the slave node can be determined through the control unit, so that the technical solution of this application can adapt to different needs and improve the technical solution of this application. practicality of the case.
  • the slave node may also have different structures. Please refer to FIG. 6 , which is a schematic structural diagram of the slave node provided by the embodiment of the present application.
  • the slave control device 510 included in the slave node 500 is decoupled from the powered device 520 , then the slave control device 510 includes the control unit 501 and the PSE chip 503 .
  • the PSE chip 503 can determine the power of the powered device 520 through power detection. Specifically, the PSE chip 503 will send a detection voltage to the powered device 520, and the detection voltage is used to determine whether the powered device 520 is a standard powered device. When the powered device 520 is a standard powered device, the PSE chip 503 will send the graded voltage to the powered device 520 to determine the power of the powered device 520 . The powered device 520 obtains the feedback current according to the classification voltage of the PSE chip, and transmits the feedback current to the PSE chip 503 . The PSE chip 503 determines the power of the powered device 520 based on the feedback current.
  • the PSE chip 503 sends the power of the powered device 520 to the control unit 501. Therefore, the control unit 501 receives the power of the powered device 520 from the PSE chip 503, determines the power of the slave node 500 based on the power of the powered device 520, and reports the power of the slave node 500 to the master node. After receiving the power-on command from the master node, the control unit 501 sends a control command to the PSE chip 503, so that the PSE chip conducts the link between the master node and the slave node according to the control command.
  • the slave control device 510 may also include a switch (not shown in FIG. 6 ). In this case, after receiving the power-on command from the master node, the control unit 501 controls the switch to conduct the link between the master node and the slave node.
  • the slave node when the slave control device included in the slave node is decoupled from the powered device, in addition to the control unit and switch, the slave node may also include a control unit and a PSE chip, so that the slave node has different product forms. , the power of the slave node can also be determined in different ways, which enriches the implementation of the technical solution of this application.
  • embodiments of the present application also provide a power supply method.
  • the execution subject of the power supply method is a slave node.
  • the slave node and the master node are included in a point-to-multipoint topology.
  • Figure 7 is a schematic flowchart of a power supply method provided by an embodiment of the present application, including the following steps:
  • the slave node Before the slave node is powered on, the slave node needs to report its own power to the master node, so that the master node comprehensively considers the power of each slave node and determines the slave node that can provide online power supply.
  • the master node When the master node determines to provide online power supply to the slave node, it will send a power-on instruction to the slave node so that the slave node receives the power-on instruction.
  • the slave node turns on the link between the master node and the slave node.
  • It can be to control the switch to turn on, or it can be controlled by the PSE chip to turn on.
  • the switch can be controlled by the PSE chip to turn on.
  • the slave node may also perform step: 700. Obtain the slave node point power.
  • the slave node can obtain the power of the slave node through power detection or power negotiation.
  • the powered device can be understood as the load of the slave node, and the slave node can directly obtain its own power.
  • the relevant content please refer to the relevant content in the embodiment shown in FIG. 5 and FIG. 6 , and will not be described again here.
  • the power of the slave node can be obtained based on multiple methods, which further improves the flexibility of the technical solution of this application.
  • This application also provides a power supply system, which includes a master node and N first slave nodes, N ⁇ 2, and N is an integer.
  • the master node is used to connect the link between the master node and each of the first N slave nodes in a time-sharing manner, and obtain the power of each of the N first slave nodes. According to the power of the N first slave nodes and the output power of the master node, power is supplied to the target slave node among the N first slave nodes.
  • the target node includes the target slave node, including all or part of the N first slave nodes.
  • the master node can power on the N first slave nodes, that is, it is determined that the target slave node includes N first slave nodes. slave node.
  • the control unit 0 in the master node will connect the link between the master node and the N first slave nodes, and provide power to the N first slave nodes.
  • the control unit 0 in the master node will connect the links between the master node and the M first slave nodes, and provide power to the M first slave nodes.
  • the master node can obtain the power of each of the N first slave nodes through various methods. The possible situations are described below.
  • the master node may determine the power of each first slave node through power detection. Specifically, the master node can receive feedback current from each first slave node, and the feedback current is determined by each first slave node according to the hierarchical voltage sent by the master node. And based on the feedback current of each first slave node, the power of each first slave node is determined.
  • the specific content of power detection is introduced in detail in the aforementioned embodiments shown in Figures 2 to 4, and will not be described again here.
  • the master node may also determine the power of each first slave node through power negotiation. Specifically, the master node performs power negotiation with each first slave node, and determines the power of each first slave node based on the negotiation result of the power negotiation.
  • the specific content of power negotiation is introduced in detail in the aforementioned embodiments shown in Figures 2 to 4, and will not be described again here.
  • the N first slave nodes in the power supply system include a first set and a second set.
  • the master node can obtain the power of each of the first slave nodes included in the first set through power negotiation and/or power detection. and receiving respective powers from the first slave nodes included in the second set. That is to say, the master node can obtain the power of each of the N first slave nodes in the power supply system through different methods.
  • each first slave node in the second set may also determine the power of each first slave node through power negotiation and/or power detection. And report the power of the first slave node to the master node.
  • FIG. 8 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • Figure 8 takes the bus as a single pair of lines as an example.
  • the master node and each first slave node are connected to the bus through the Phoenix terminal.
  • the master node and each first slave node can also access the bus through other methods, for example, through T-shaped connectors, or welding on the bus.
  • Each node can access the bus in the same way, or Different, there is no specific limit here.
  • the master node can obtain the power of these three first sub-nodes through power negotiation or power detection; it can also obtain some of the first sub-nodes (for example, first sub-node 1 and The power of the second sub-node 2) is obtained through power negotiation to obtain the power of the remaining first sub-node (for example, the first sub-node 3).
  • the master node may obtain the power of the first slave node 3 by directly receiving the power reported from the first slave node 3 .
  • the master node can obtain the power of the two first slave nodes through power detection and/or power negotiation.
  • the power supply system also includes a second slave node.
  • the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node.
  • the master node is able to determine the remaining power of the master node and the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, the master node will power the second slave node.
  • the master node obtains the power of the second slave node by conducting power negotiation with the second slave node through the control unit 0, or by obtaining the second slave node reported by the second slave node.
  • the power is not limited here.
  • the second slave node includes a slave control device and a powered device.
  • the slave control device and the powered device may be decoupled or coupled, and the details are not limited here.
  • FIG. 9 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • the first slave node 1 is a slave node that has received power, that is, the powered device 1 is already in a powered-on state. If the slave control device 4 and the powered device 4 of the second slave node are decoupled, the slave control device 4 can access the bus at the beginning, and the control unit 4 takes power from the bus. As the powered device 4 is newly connected to the power supply system, the master node must determine whether to provide power to the powered device 4.
  • the master control device can receive power supply parameters such as power and current of the powered equipment included in each first slave node and node return data periodically reported to each first slave node.
  • the master control device calculates the remaining power of the master node based on this information, and then compares the remaining power with the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, then the master node will power the second slave node.
  • the remaining power of the master node includes the power used to maintain access to the slave control device 4 and other power, and the power of the second slave node includes the power of the slave control device 4 and the power of the powered device 4 . It can also be considered that the remaining power of the master node includes the maximum output power of the master node, minus the power of all powered devices on the bus. The power of all powered devices includes the power of each first slave node and the power of slave devices connected to the bus but not connected to the powered device. power.
  • the structure of the slave node may also be as shown in Figure 10. Please refer to Figure 10.
  • Figure 10 is a schematic structural diagram of the slave node provided by the embodiment of the present application.
  • the slave node 1000 includes a slave control device 1010 and a powered device 1020.
  • the slave control device 1010 includes a control unit 1001 and an adjustable current limiting module 1002.
  • the control unit 1001 can set the current value of the adjustable current limiting module 1002 to the maximum output current of the master node to induce The link between the master node and the first slave node supplies power to the powered device 1020 . If the master node does not supply power to the first slave node, the control unit 1001 can set the current value of the adjustable current limiting module 1002 to 0 to disconnect the link between the master node and the first slave node, and will not The powered device 1020 supplies power.
  • the control unit 1001 can set the current value of the adjustable current limiting module 1002 to the residual current of the master node (also called the baseline current). , to connect the link between the master node and the second slave node to power on the powered device 1020 . If the master node does not supply power to the second slave node, the control unit 1001 can set the current value of the adjustable current limiting module 1002 to 0 to disconnect the link between the master node and the second slave node, and will not The powered device 1020 supplies power.
  • the baseline current the maximum output power of the master node/supply voltage - the total operating current of the powered nodes.
  • the slave control device may also include a control unit, a power receiving switch and an adjustable current limiting module.
  • a control unit if you want to supply power to the powered device, you need to ensure that the switch is closed and the current value of the adjustable current limiting module is a current value that can conduct conduction.
  • the topology type of the power supply system is point-to-multipoint topology, and includes a master node and N first slave nodes, N ⁇ 2, and N is an integer.
  • Figure 11 is a schematic diagram of the power supply system provided by this application.
  • the master node does not include a PSE chip, and the master node obtains the power of each slave node by directly reporting it through each slave node. . Similarly, the master node will provide power to the target slave node among the N first slave nodes based on the power of the N first slave nodes and the output power of the master node.
  • the target node includes the target slave node, including all or part of the N first slave nodes.
  • the master node can power on the N first slave nodes, that is, it is determined that the target slave node includes N first slave nodes. slave node.
  • the control unit 0 in the master node will connect the link between the master node and the N first slave nodes, and provide power to the N first slave nodes.
  • the control unit 0 in the master node will connect the links between the master node and the M first slave nodes, and provide power to the M first slave nodes.
  • each first slave node among the N first slave nodes can send each first slave node to the master node.
  • the power of a slave node So that the master node obtains the power of each of the N first slave nodes.
  • the master node will provide power to the target slave node among the N first slave nodes based on the power of the N first slave nodes and the output power of the master node. Therefore, the target slave node can receive the power-on instruction from the master node, and according to the power-on instruction, connect the link between the master node and the target slave node to power on the target slave node.
  • each first slave node can obtain the power of each first slave node through power detection or power negotiation.
  • the first slave node 1 includes a control unit 1 and a power receiving switch 1. If the slave control device 1 included in the first slave node 1 is coupled to the power receiving device 1, then the power receiving device 1 Device 1 can be understood as the load of the first slave node 1, and the control unit 1 can directly obtain the power of the powered device 1. If the slave control device 1 and the powered device 1 are decoupled, the control unit 1 can determine the power of the powered device 1 through power negotiation. The control unit 1 can control the power receiving switch 1 to conduct the link between the master node and the first slave node 1 according to the power-on command. The power receiving switch 1 is used to conduct the link between the master node and the first slave node 1 according to the control instruction of the control unit 1 .
  • the slave control device 2 and the powered device 2 in the first slave node 2 are decoupled.
  • the slave control device 2 includes a control unit 2 and a PSE chip.
  • the PSE chip can determine the power of the powered device through power detection. Specifically, the PSE chip will send a detection voltage to the powered device 2, and the detection voltage is used to determine whether the powered device 2 is a standard powered device. When the powered device 2 is a standard powered device, the PSE chip will send the graded voltage to the powered device 2 to determine the power of the powered device 2 .
  • the PSE chip receives the feedback current from the powered device 2 and determines the power of the powered device 2 based on the feedback current.
  • the feedback current is determined by the powered device 2 according to the classification voltage of the PSE chip.
  • the PSE chip also sends the power of the powered device 2 to the control unit 2. Therefore, the control unit 2 will receive the power of the powered device 2 from the PSE chip, and determine the power of the first slave node 2 based on the power of the powered device 2 .
  • the PSE chip is also used to conduct the link between the master node and the first slave node 2 according to the control instruction of the control unit 2 .
  • the power supply system also includes a second slave node.
  • the second slave node is a newly added slave node in the power supply system that already receives power from the first slave node.
  • the master node is able to determine the remaining power of the master node and the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, the master node will power the second slave node.
  • the second slave node includes a slave control device and a powered device.
  • the slave control device and the powered device may be decoupled or coupled, and the details are not limited here.
  • FIG. 12 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • the first slave node 2 is a slave node that has received power, that is, the powered device 2 is already in a powered-on state. If the slave control device 3 and the powered device 3 of the second slave node are decoupled, the slave control device 3 can access the bus at the beginning, and the control unit 3 takes power from the bus. As the powered device 3 is newly connected to the power supply system, the master node must determine whether to provide power to the powered device 3.
  • the master control device can receive power supply parameters such as power and current of the powered equipment included in each first slave node and node return data periodically reported to each first slave node.
  • the master control device calculates the remaining power of the master node based on this information, and then compares the remaining power with the power of the second slave node. If the power of the second slave node is less than or equal to the remaining power, then the master node will power the second slave node.
  • the remaining power of the master node includes the power used to maintain access to the slave control device 3 and other power, and the power of the second slave node includes the power of the slave control device 3 and the power of the powered device 3 . It can also be considered that the remaining power of the master node includes the maximum output power of the master node, minus the power of all powered devices on the bus. The power of all powered devices includes the power of each first slave node and the power of slave control devices that are connected to the bus but are not connected to powered devices.
  • Figure 13 is a schematic structural diagram of a master node provided by an embodiment of the present application.
  • the network device 1300 includes a memory 1301 and a processor 1302.
  • the memory 1301 and the processor 1302 are connected through a bus 1303.
  • the memory 1301 is used to store computer instructions.
  • the processor 1302 can communicate with the memory 1301, so that the processor 1301 calls the computer instructions of the memory 1301 to execute a series of instruction operations among the operations performed by the master node in the embodiments shown in FIGS. 1A to 12 .
  • the memory 1301 can be volatile storage or persistent storage.
  • the processor 1301 may be a central processing unit or a single-core processor. In addition, it may also be other types of processors, such as a dual-core processor, which is not specifically limited here.
  • Figure 14 is a schematic structural diagram of a slave node provided by an embodiment of the present application.
  • the network device 1400 includes a memory 1401 and a processor 1402.
  • the memory 1401 and the processor 1402 are connected through a bus 1403.
  • the memory 1401 is used to store computer instructions.
  • the processor 1402 can communicate with the memory 1401, so that the processor 1401 calls the computer instructions of the memory 1401 to execute a series of instructions in the operations performed by the slave nodes in the embodiments shown in FIGS. 1A to 1B and FIGS. 5 to 12 operate.
  • the memory 1401 can be volatile storage or persistent storage.
  • the processor 1401 may be a central processing unit or a single-core processor. In addition, it may also be other types of processors, such as a dual-core processor. The details are not limited here.
  • the transmission mechanism can be single-carrier pulse amplitude modulation (PAM), or other mechanisms, such as discrete multi-tone modulation (DMT), orthogonal frequency division multiplexing (OFDM) ), etc. There are no specific restrictions here.
  • PAM single-carrier pulse amplitude modulation
  • DMT discrete multi-tone modulation
  • OFDM orthogonal frequency division multiplexing
  • the propagation medium used by the bus can be a twisted pair, or other media, such as parallel lines, power lines, etc. There is no specific limit here.
  • the usage scenario can be a campus or other scenarios where a point-to-multipoint topology type power supply system can be deployed, such as industry, vehicle, etc. There are no specific limitations here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or groups.
  • the software can be combined or integrated into another system, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本申请实施例公开了主节点、从节点、供电方法和相关设备,用于实现点对多点拓扑中,对多个从节点的线上供电。其中,主节点与多个第一从节点包含于点对点拓扑中,主节点用于分时导通主节点与N个第一从节点中的每个第一从节点之间的链路;获取N个第一从节点各自的功率;根据N个第一从节点各自的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。

Description

主节点、从节点、供电方法和相关设备
本申请要求于2022年06月08日提交中国国家知识产权局、申请号为CN202210644562.4、发明名称为“以太网线的点对多点供电方法、装置和系统”的中国专利申请的优先权,以及于2022年06月30日提交中国国家知识产权局、申请号为CN202210759600.0、发明名称为“主节点、从节点、供电方法和相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机领域,尤其涉及主节点、从节点、供电方法和相关设备。
背景技术
随着物联技术的飞速发展,统一的总线接入将成为发展趋势。在不改变布线架构的情况下,通过总线传输数据和直流电,能够摆脱环境限制,减少施工、布线和运维成本。这种为设备提供线上供电的方式逐渐得到推广应用。
在传统的线上供电方法中,不论是以太网供电(power over Ethernet,PoE)技术,还是数据线供电(power over data line,PoDL)技术,虽然能够同时传输数据和直流电,但是仅能工作在点对点拓扑中,无法实现点对多点场景的线上供电。
发明内容
本申请提供了一种主节点、从节点、供电方法和相关设备。主节点和从节点包含于点对多点拓扑中,主节点在同一时段只导通与一个从节点之间的通路,即将点对多点拓扑转换为分时的点对点拓扑,从而逐个获取各个从节点的功率,并结合主节点的输出功率,对从节点进行上电,实现了点对多点拓扑中的线上供电。
本申请第一方面提供了一种主节点,主节点与N个第一从节点包含于点对多点拓扑中,其中,N≥2,且N为整数。主节点能够实现以下功能:
分时导通主节点与N个第一从节点中每个第一从节点之间的链路,使得在同一时段内,只有一个第一从节点与主节点连接。也就是说,将点对多点拓扑转换为了分时段的点对点拓扑,在点对点拓扑中包括主节点和一个从节点。其中,分时导通包括分时段导通,时段是指一段时间。主节点能够获取这个N个第一从节点中每个第一从节点的功率,并根据N个第一从节点各自的功率与主节点的输出功率的关系,为N个第一从节点中的目标从节点上电,目标从节点包括N个第一从节点中的所有第一从节点或者部分第一从节点。其中,主节点可以通过广播报文的方式,实现目标从节点上电所需要的交互。
从以上技术方案可以看出,本申请具有以下优点:主节点和从节点包含于点对多点拓扑中,主节点在同一时段只导通与一个从节点之间的通路,即将点对多点拓扑转换为分时的点对点拓扑,从而逐个获取各个从节点的功率,并结合主节点的输出功率,对从节点进行上电,实现了点对多点拓扑中的线上供电。
在第一方面的一种可能的实现方式中,主节点包括控制单元,由控制单元分时导通主节点与N个第一从节点中的每个第一从节点之间的链路。需要注意的是,本申请中的控制单元可以是微控制单元(microcontroller unit,MCU),也可以是其他能够控制链路导通的器件,例如,中央处理器(central processing unit,CPU)、专用集成电路 (application-specific integrated circuit,ASIC),控制单元可以根据实际应用的需要选择,具体此处不做限定。
在第一方面的一种可能的实现方式中,主节点包括供电设备(power sourcing equipment,PSE)芯片。主节点逐个获取N个第一从节点各自的功率可以通过PSE芯片实现,具体来说,PSE芯片在主节点与每个第一从节点导通的情况下,对每个第一从节点进行功率检测,包括向每个第一从节点发送探测电压,以确定从节点包括标准的受电设备(powered device,PD)。然后向每一个第一从节点发送分级电压,并接收来自于每个第一从节点的反馈电流,该反馈电流是每个第一从节点根据PSE芯片发送的分级电压确定的。根据每个第一从节点的反馈电流,PSE芯片会确定每个第一从节点的功率等级,该功率等级实际上反映的就是第一从节点的功率。
本申请中,通过PSE芯片对第一从节点进行功率检测,在确定第一从节点包括的受电设备为标准的受电设备的情况下,才对第一从节点上电,避免了非标准的受电设备上电可能会对供电系统造成损害的情况,从而提升了技术方案的安全性和可靠性。
在第一方面的一种可能的实现方式中,主节点包括控制单元,控制单元也可以用于逐个获取N个第一从节点各自的功率。具体来说,控制单元在主节点与每个第一从节点导通的情况下,会与每个第一从节点进行功率协商,根据功率协商的结果确定每个第一从节点的功率。其中,功率协商可以基于上层协议报文的交互实现,例如链路发现层协议(link layer discovery protocol,LLDP)报文;除此之外,还可以是其他上层协议报文,例如串行通信分类协议(serial communication classification protocol,SCCP)报文,或者厂商自定义的用于进行功率协商的协议报文,上层协议报文的具体类型根据实际需要选择,具体此处不做限定。
本申请中,同时,主节点获取每个第一从节点的功率的方式有多种可能,可以适用于多种场景,提升了本申请技术方案的灵活性。
在第一方面的一种可能的实现方式中,在主节点包括控制单元和PSE芯片的情况下,主节点还可以通过其他方式获取N个第一从节点各自的功率。主节点可以通过PSE芯片与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过控制单元与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。即综合控制单元和PSE芯片的功能,获取N个第一从节点各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在第一方面的一种可能的实现方式中,在主节点包括控制单元和PSE芯片的情况下,主节点还可以通过其他方式获取N个第一从节点各自的功率。具体来说,主节点可以通过PSE芯片与N个第一从节点中第一部分的第一从节点进行功率检测,或者通过控制单元与这第一部分的第一从节点进行功率协商,获取第一部分的第一从节点各自的功率。并通过控制单元直接获取这N个第一从节点中第二部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在第一方面的一种可能的实现方式中,在主节点包括控制单元和PSE芯片的情况下, 主节点还可以通过其他方式获取N个第一从节点各自的功率。具体来说,主节点可以通过PSE芯片与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过控制单元与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。通过控制单元直接获取这N个第一从节点中第三部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点、第二部分的第一从节点和第三部分的第一从节点组成这N个第一从节点。
本申请中,主节点获取N个第一从节点各自的功率的方式有多种,既可以基于主节点中的单一模块(控制单元或者PSE芯片)获取,也可以基于主节点中的多个模块获取,能够适用于多种场景,提升了本申请技术方案的灵活性和实用性。
在第一方面的一种可能的实现方式中,主节点中的控制单元还可以实现目标从节点的受电。在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,意味着能够对N个第一从节点进行上电,控制单元会确定目标从节点包括N个第一从节点。然后导通主节点与这N个第一从节点的链路,为这N个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,N个第一从节点的功率之和小于或等于主节点的输出功率,也就是说,主节点的最大输出功率减去N个从控设备的功率之后的功率,大于或等于N个受电设备的功率之和。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
在第一方面的一种可能的实现方式中,主节点中的控制单元还可以实现目标从节点的受电。在N个第一从节点的功率之和大于主节点的输出功率的情况下,意味着N个第一从节点的功率之和超出了主节点的功率预算,那么控制单元会确定为N个第一从节点中的部分第一从节点供电,也即确定目标从节点包括M个第一从节点,1≤M<N。并导通主节点与M个第一从节点的链路,为这M个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,主节点的功率预算实际上是主节点为N个受电设备预留的功率,也即主节点的最大输出功率减去N个从控设备的功率之后的功率。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。另外,控制单元确定M个第一从节点的时候,可以根据供电策略,从N个第一从节点中选择部分第一从节点作为这M个第一从节点。
本申请中,根据N个第一从节点的功率之和与主节点的输出功率之间的关系,确定为N个第一从节点中的部分或者全部第一从节点供电,使得本申请技术方案适用于不同的场景,进一步提升了技术方案的实用性。
在第一方面的一种可能的实现方式中,主节点还可以连接第二从节点,该第二从节点是在供电系统中已经有受电的第一从节点的情况下,新接入供电系统的从节点。主节点包括的控制单元会确定主节点的剩余功率,获取第二从节点的功率。如果第二从节点的功率小于或等于剩余功率,那么控制单元会控制主节点与第二从节点的链路导通,为第二从节点供电。
本申请中,主节点除了可以对目标从节点进行初始上电之外,还可以为新接入供电系统的第二从节点供电,丰富了本申请技术方案的应用场景。
在第一方面的一种可能的实现方式中,主节点获取第二从节点的功率的方式,可以是通过控制单元与第二从节点进行功率协商,也可以是获取第二从节点上报的第二从节点的功率,具体此处不做限定。
本申请中,主节点获取第二从节点的功率的方式有多种,可以根据实际应用的需要选择,进一步提升了本申请技术方案的灵活性。
在第一方面的一种可能的实现方式中,控制单元还可以向每个第一从节点发送目标报文,该目标报文用于指示主节点与每个第一从节点的导通时段,以使同一时段主节点与一个第一从节点导通。其中,目标报文包括不同类型的报文,可以是LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的其他用于控制主节点和从节点导通的协议报文,具体此处不做限定。
在第一方面的一种可能的实现方式中,主节点可以有不同的形态,主节点包括的主控设备和供电设备既可以是耦合的,也可以是解耦的(即主控设备和供电设备均是独立的设备),具体此处不做限定。
本申请中,主节点可以有多种产品形态,能够适用不同的场景,进一步提升了本申请技术方案的灵活性。
本申请第二方面提供了一种供电方法,该方法应用于主节点,主节点与N个第一从节点包含于点对多点拓扑中,N≥2,且N为整数,该方法包括:
分时导通主节点与第一N个从节点中的每个第一从节点之间的链路,将点对多点拓扑转换为了分时段的点对点拓扑。在主节点与一个从节点导通时,获取这一个从节点的功率。依次导通主节点与每个第一从节点之间的链路之后,能够获取到这N个第一从节点各自的功率。然后根据这N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电,目标从节点为N个第一从节点中的所有第一从节点或者部分第一从节点。其中,主节点可以通过广播报文的方式,实现目标从节点上电所需要的交互。
在第二方面的一种可能的实现方式中,主节点可以通过功率检测的方式,获取N个第一从节点各自的功率。具体来说,主节点会接收来自于每个第一从节点的反馈电流,该反馈电流是每个第一从节点根据主节点发送的分级电压确定的。然后根据每个第一从节点的反馈电流,确定每个第一从节点的功率。其中,功率检测实际上包括主节点向第一从节点发送探测电压和分级电压,探测电压用于确定第一从节点是否包括标准的受电设备,在确定包括标准的受电设备的情况下,才会向该第一从节点发送分级电压,以确定该第一从节点的功率。
在第二方面的一种可能的实现方式中,主节点也可以通过功率协商的方式获取N个第一从节点各自的功率。具体来说,主节点会通过上层协议与每个第一从节点进行功率协商,根据功率协商的协商结果,确定每个第一从节点的功率。其中,功率协商可以基于上层协议报文的交互实现,例如LLDP报文;除此之外,还可以是其他上层协议报文,例如SCCP报文,或者厂商自定义的用于进行功率协商的协议报文,上层协议报文的具体类型根据实 际需要选择,具体此处不做限定。
在第二方面的一种可能的实现方式中,主节点还可以结合功率检测和功率协商的方式,获取N个第一从节点各自的功率。例如:主节点可以通过PSE芯片与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过控制单元与获取这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在第二方面的一种可能的实现方式中,主节点还可以通过其他方式,获取N个第一从节点各自的功率。具体来说,主节点可以对N个第一从节点中第一部分的第一从节点进行功率检测,或者与这第一部分的第一从节点进行功率协商,获取第一部分的第一从节点各自的功率。并直接获取这N个第一从节点中第二部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在第二方面的一种可能的实现方式中,主节点还可以通过其他方式,获取N个第一从节点各自的功率。具体来说,主节点可以与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。主节点还可以直接获取这N个第一从节点中第三部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点、第二部分的第一从节点和第三部分的第一从节点组成这N个第一从节点。
在第二方面的一种可能的实现方式中,主节点会根据N个第一从节点的功率和主节点的输出功率之间的关系,为N个第一从节点中的目标从节点供电。具体来说,如果N个第一从节点的功率之和小于或等于主节点的输出功率,那么主节点会确定目标从节点包括N个第一从节点。并导通与N个第一从节点的链路,为N个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,N个第一从节点的功率之和小于或等于主节点的输出功率,也就是说,主节点的最大输出功率减去N个从控设备的功率之后的功率,大于或等于N个受电设备的功率之和。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
在第二方面的一种可能的实现方式中,主节点会根据N个第一从节点的功率和主节点的输出功率之间的关系,为N个第一从节点中的目标从节点供电。具体来说,如果N个第一从节点的功率之和大于主节点的输出功率,意味着N个第一从节点的功率之和超出了主节点的功率预算,那么主节点会确定目标从节点包括M个第一从节点,1≤M<N。并导通与M个第一从节点的链路,为M个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,主节点的功率预算实际上是主节点为N个受电设备预留的功率,也即主节点的最大输出功率减去N个从控设备的功率之后的功率。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
在第二方面的一种可能的实现方式中,主节点还连接第二从节点,第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。在为N个第一从节点中的目标从节点供电之后,主节点会确定主节点的剩余功率,并获取第二从节点的功率。在第二从节点的功率小于或等于剩余功率的情况下,为第二从节点供电。
在第二方面的一种可能的实现方式中,主节点获取第二从节点的功率的方式,可以是通过控制单元与第二从节点进行功率协商,也可以是获取第二从节点上报的第二从节点的功率,具体此处不做限定。
在第二方面的一种可能的实现方式中,主节点通过向每个第一从节点发送目标报文的方式分时导通主节点与第一N个从节点中的每个第一从节点之间的链路。其中,目标报文用于指示主节点与每个第一从节点的导通时段,每个第一从节点与主节点之间链路导通的时段与其他第一从节点与主节点之间链路导通的时段不同。其中,目标报文包括不同类型的报文,可以是LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的其他用于控制主节点和从节点导通的协议报文,具体此处不做限定。
在第二方面的一种可能的实现方式中,主节点可以有不同的形态,主节点包括的主控设备和供电设备既可以是耦合的,也可以是解耦的(即主控设备和供电设备均是独立的设备),具体此处不做限定。
本申请第二方面的主节点还可以实现前述第一方面以及第一方面的任一种可能的实现方式中的主节点的功能,且第二方面所示的有益效果与前述第一方面的有益效果类似,此处不再赘述。
本申请第三方面提供了一种从节点,其特征在于,从节点与主节点包含于点对多点拓扑中。点对多点拓扑中还包括主节点,主节点能够对点到多点中的多个从节点供电。从节点,用于向主节点发送从节点的功率,并接收来自于主节点的上电指令。根据该上电指令,导通主节点和从节点的链路,以使从节点上电。其中,由于从节点包括从控设备和受电设备,因此,从节点的功率包括从控设备的功率和受电设备的功率。可以理解的是,由于线路损耗,从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
本申请中,从节点能够主动向主节点发送自身的功率,使得主节点获取到点对多点拓扑中各个从节点的功率,从而为各个从节点进行线上供电,实现了点对多点拓扑中的线上供电。
在第三方面的一种可能的实现方式中,从节点包括控制单元,该控制单元,能够获取从节点的功率,并向主节点发送从节点的功率。控制单元,还接收来自于主节点的上电指令,并根据上电指令,控制主节点和从节点之间的链路导通,以使从节点上电。需要注意的是,本申请中的控制单元可以是微控制单元,也可以是其他能够控制链路导通的器件,例如,中央处理器、专用集成电路,控制单元可以根据实际应用的需要选择,具体此处不做限定。
在第三方面的一种可能的实现方式中,从节点除了包括控制单元之外,还包括开关。控制单元,能够根据上电指令,控制开关导通主节点与从节点之间的链路。开关,用于根 据控制单元的控制指令,导通主节点和从节点之间的链路。
在第三方面的一种可能的实现方式中,在从节点包括控制单元和开关的情况下,如果从节点包括的从控设备和受电设备耦合,那么受电设备可以理解为从节点的负载,控制单元可以直接获取到受电设备的功率。如果从节点包括的从控设备和受电设备解耦,那么控制单元可以采用功率协商的方式确定受电设备的功率。其中,控制单元和开关包含于从控设备。
本申请中,无论从节点包括的从控设备和受电设备是耦合还是解耦,都可以通过控制单元确定从节点的功率,使得本申请技术方案能够适应不同的需求,提升了本申请技术方案的实用性。
在第三方面的一种可能的实现方式中,从节点包括从控设备和受电设备,从控设备与受电设备解耦。在这种情况下,从控设备包括PSE芯片和控制单元。PSE芯片可以通过功率检测的方式,确定受电设备的功率。具体来说,PSE芯片会向受电设备发送探测电压,探测电压用于确定受电设备是否为标准的受电设备。在受电设备为标准的受电设备的情况下,PSE芯片会向受电设备发送分级电压,以确定受电设备的功率。PSE芯片接收来自于受电设备的反馈电流,并根据该反馈电流,确定受电设备的功率。其中,反馈电流是受电设备根据PSE芯片的分级电压确定的。PSE芯片还会向控制单元发送受电设备的功率。因此,控制单元,会接收来自于PSE芯片的受电设备的功率,并根据受电设备的功率,确定从节点的功率。PSE芯片,还用于根据控制单元的控制指令,导通主节点和从节点之间的链路。
本申请中,在从节点包括的从控设备与受电设备解耦的情况下,从节点除了包括控制单元和开关之外,还可以包括控制单元和PSE芯片,使得从节点具备不同的产品形态,也能采用不同的方式确定从节点的功率,丰富了本申请技术方案的实现方式。
本申请第四方面提供了一种供电方法,该供电方法应用于从节点,从节点与主节点包含于点对多点拓扑中。该供电方法包括:
向主节点发送从节点的功率,并接收来自于主节点的上电指令。根据该上电指令,导通主节点和从节点的链路,以使从节点上电。
在第四方面的一种可能的实现方式中,在向主节点发送从节点的功率之前,从节点还可以通过功率检测或者功率协商的方式,获取从节点的功率,具体此处不做限定。
在第四方面的一种可能的实现方式中,在从节点包括的从控设备和受电设备耦合的情况下,受电设备可以理解为从节点的负载,从节点可以直接获取到受电设备的功率。
本申请第四方面的从节点还可以实现前述第三方面以及第三方面的任一种可能的实现方式中的从节点的功能,且第四方面所示的有益效果与前述第三方面的有益效果类似,此处不再赘述。
本申请第五方面提供了一种供电系统,该供电系统的拓扑为点到多点拓扑,包括主节点、N个第一从节点,N≥2,且N为整数。主节点,用于分时导通主节点与第一N个从节点中的每个第一从节点之间的链路,并获取N个第一从节点各自的功率。根据N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。
在第五方面的一种可能的实现方式中,主节点可以通过功率检测的方式,确定每个第 一从节点的功率。具体来说,主节点能够接收来自于每个第一从节点的反馈电流,反馈电流是每个第一从节点根据主节点发送的分级电压确定的。并根据每个第一从节点的反馈电流,确定每个第一从节点的功率。
在第五方面的一种可能的实现方式中,主节点还可以通过功率协商的方式,确定每个第一从节点的功率。具体来说,主节点与每个第一从节点进行功率协商,并根据功率协商的协商结果,确定每个第一从节点的功率。
在第五方面的一种可能的实现方式中,供电系统中的N个第一从节点包括第一集合和第二集合。主节点,能够通过功率协商和/或功率检测的方式,获取第一集合包括的第一从节点各自的功率。并接收来自于第二集合的第二集合包括的第一从节点各自的功率。也就是说,主节点能够通过不同的方式,获取到供电系统中的N个第一从节点各自的功率。
在第五方面的一种可能的实现方式中,第二集合中的每个第一从节点,也可以通过功率协商和/或功率检测的方式,确定每个第一从节点的功率。
在第五方面的一种可能的实现方式中,在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,意味着主节点能够对N个第一从节点进行上电,也即确定目标从节点包括N个第一从节点。主节点中的会导通主节点与这N个第一从节点的链路,为这N个第一从节点供电。
在第五方面的一种可能的实现方式中,在N个第一从节点的功率之和大于主节点的输出功率的情况下,意味着N个第一从节点的功率之和超出了主节点的功率预算,也即确定目标从节点包括N个第一从节点中的M个第一从节点,1≤M<N。主节点中会导通主节点与这M个第一从节点的链路,为M个第一从节点供电。
在第五方面的一种可能的实现方式中,供电系统还包括第二从节点,第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。在这种情况下,主节点能够确定主节点的剩余功率和第二从节点的功率。如果第二从节点的功率小于或等于剩余功率,那么主节点会为第二从节点供电。
在第五方面的一种可能的实现方式中,主节点可以通过多种方式获取第二从节点的功率,可以是与第二从节点进行功率协商,以确定第二从节点的功率;也可以是获取第二从节点主动上报的第二从节点的功率,具体此处不做限定。
本申请第五方面的主节点还可以实现前述第一方面以及第一方面的任一种可能的实现方式中的主节点的功能,且第五方面所示的有益效果与前述第一方面所示的有益效果类似,此处不再赘述。
本申请第六方面提供了一种供电系统,该供电系统的拓扑为点到多点拓扑,包括主节点、N个第一从节点,N≥2,且N为整数。N个第一从节点中的每个第一从节点,能够向主节点发送每个第一从节点的功率。使得主节点获取N个第一从节点各自的功率。主节点会根据N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。因此,目标从节点能够接收来自于主节点的上电指令,并根据上电指令,导通主节点和目标从节点的链路,以使目标从节点上电。
在第六方面的一种可能的实现方式中,每个第一从节点可以通过功率检测或者功率协 商的方式,获取每个第一从节点的功率。
在第六方面的一种可能的实现方式中,供电系统还包括第二从节点,第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。在这种情况下,主节点还会确定主节点的剩余功率,并获取第二从节点的功率。如果第二从节点的功率小于或等于剩余功率,则为第二从节点供电。
本申请第六方面的从节点还可以实现前述第三方面以及第三方面的任一种可能的实现方式中的从节点的功能,且第六方面所示的有益效果与前述第三方面所示的有益效果类似,此处不再赘述。
本申请第七方面提供了一种主节点,包括:处理器和存储器;
存储器用于存储计算机指令,处理器被配置为调用计算机指令以使得主节点实现前述第一方面以及第一方面的任一种可能的实现方式中的主节点的功能,和/或执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法。第七方面所示的有益效果与前述第一方面所示的有益效果类似,此处不再赘述。
本申请第八方面提供了一种从节点,其特征在于,包括:处理器和存储器;
存储器用于存储计算机指令,处理器被配置为调用计算机指令以使得从节点执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法,和/或实现前述第三方面以及第三方面的任一种可能的实现方式中的从节点的功能。第八方面所示的有益效果与前述第三方面所示的有益效果类似,此处不再赘述。
本申请第九方面提供了一种芯片,包括处理器和存储器,存储器用于存储指令,处理器运行该指令,以执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法,或者执行前述第四方面以及第四方面的任一种可能的实现方式所描述的供电方法。
本申请第十方面提供了一种芯片系统,包括主芯片和从芯片,主芯片包括第一处理器和第一存储器,从芯片包括第二处理器和第二存储器。
第一存储器用于存储第一指令,第一处理器运行第一指令,以执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法;第二存储器用于存储第二指令,第二处理器运行第二指令,以执行前述第四方面以及第四方面的任一种可能的实现方式所描述的供电方法。
本申请第十一方面提供了一种计算机可读存储介质,计算机可读存储介质中保存有程序,当计算机执行该程序时,以实现前述第一方面以及第一方面的任一种可能的实现方式中的主节点的功能,和/或执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法;或者,执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法,和/或实现前述第三方面以及第三方面的任一种可能的实现方式中的从节点的功能。
本申请第十二方面提供了一种计算机程序产品,其特征在于,当计算机程序产品在计算机上执行时,该计算机以实现前述第一方面以及第一方面的任一种可能的实现方式中的主节点的功能,和/或执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法;或者,执行前述第二方面以及第二方面的任一种可能的实现方式所描述的供电方法,和/或实现前述第三方面以及第三方面的任一种可能的实现方式中的从节点的功能。
本申请第九方面至第十二方面所示的有益效果与前述第一方面或第三方面所示的有益效果类似,此处不再赘述。
附图说明
图1A为点对多点拓扑的供电系统的一个示意图;
图1B为点对多点拓扑的供电系统的另一个示意图;
图2为本申请实施例提供的主节点的一个结构示意图;
图3为本申请实施例提供的主节点的另一个结构示意图;
图4为本申请实施例提供的供电方法的一个流程示意图;
图5为本申请实施例提供的从节点的一个结构示意图;
图6为本申请实施例提供的从节点的另一个结构示意图;
图7为本申请实施例提供的供电方法的另一个流程示意图;
图8为本申请实施例提供的供电系统的一个示意图;
图9为本申请实施例提供的供电系统的另一个示意图;
图10为本申请实施例提供的从节点的另一个结构示意图;
图11为本申请实施例提供的供电系统的另一个示意图;
图12为本申请实施例提供的供电系统的另一个示意图;
图13为本申请实施例提供的主节点的另一个结构示意图;
图14为本申请实施例提供的从节点的另一个结构示意图。
具体实施方式
本申请提供了一种主节点、从节点、供电方法和相关设备。主节点和从节点包含于点对多点拓扑中,主节点在同一时段只导通与一个从节点之间的通路,即将点对多点拓扑转换为分时的点对点拓扑,从而逐个获取各个从节点的功率,并结合主节点的输出功率,对从节点进行上电,实现了点对多点拓扑中的线上供电。
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,其目的在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。另外,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
首先,对本申请中的主节点、从节点所应用的对点对多点拓扑进行说明,请参阅图1A和图1B,图1A和图1B均为点对多点拓扑的示意图。
如图1A所示,在点对多点拓扑中,一个主节点能够并联多个从节点,主节点和从节点均连接总线。在本申请中,主节点通过总线与各个从节点进行通信,并为各个从节点提供线上供电。
如图1B所示,主节点包括主控设备和供电设备,从节点包括从控设备和受电设备。主控设备能够控制供电设备为从控设备对应的受电设备供电。主控设备可以和供电设备耦合,对外表现为一个设备;主控设备也可以和供电设备解耦,作为独立的设备。类似的,从控设备可以和受电设备耦合,对外表现为一个设备;从控设备也可以和受电设备解耦,作为独立的设备。
接下来,对本申请提供的主节点进行说明。
本申请中,主节点与N个第一从节点包含于点对多点拓扑的供电系统中,其中,N≥2,且N为整数。主节点会分时导通主节点与第一N个从节点中的每个第一从节点之间的链路,使得在同一个时段内,供电系统中只有一个从节点与主节点连接,从而将点对多点拓扑的供电系统转换为分时段的点对点拓扑。在点对点拓扑中包括主节点和一个从节点,从而使得主节点能够获取这个第一从节点的功率。分时导通主节点与每一个从节点之间的链路之后,主节点就能获取到这N个第一从节点各自的功率。其中,分时导通是指分时段导通,时段是指一段时间。获取到N个第一从节点各自的功率后,主节点会根据N个第一从节点各自的功率与主节点的输出功率的关系,为N个第一从节点中的目标从节点上电,目标从节点包括N个第一从节点中的所有或者部分第一从节点。
在一些可选的实施方式中,主节点会向每个第一从节点发送目标报文,该目标报文用于指示主节点与每个第一从节点的导通时段,以使同一时段主节点与一个第一从节点导通。其中,目标报文包括不同类型的报文,可以是LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的其他用于控制主节点和从节点导通的协议,具体此处不做限定。
在一些可选的实施方式中,主节点可以通过广播报文的方式,实现目标从节点上电所需要的交互。主节点所广播的报文可以是多种类型的报文,例如,LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的用于控制上电的协议报文,具体此处不做限定。
本申请中,主节点和从节点包含于点对多点拓扑中,主节点在同一时段只导通与一个从节点之间的通路,即将点对多点拓扑转换为分时的点对点拓扑,从而逐个获取各个从节点的功率,并结合主节点的输出功率,对从节点进行上电,实现了点对多点拓扑中的线上供电。
接下来,对主节点的结构进行详细的说明。请参阅图2,图2为本申请实施例提供的主节点的结构示意图。
如图2所示,在一些可选的实施方式中,主节点200包括控制单元201,该控制单元201用于分时导通主节点200与N个第一从节点中的每个第一从节点之间的链路。其中, 控制单元201可以是微控制单元,也可以是其他能够控制链路导通的器件,例如,中央处理器、专用集成电路等,控制单元可以根据实际应用的需要选择,具体此处不做限定。
如图2所示,在一些可选的实施方式中,主节点200还包括PSE芯片202。主节点200可以通过PSE芯片202获取N个第一从节点各自的功率。具体来说,PSE芯片202在主节点与每个第一从节点导通的情况下,对每个第一从节点进行功率检测,包括向每个第一从节点发送探测电压,以确定第一从节点包括的受电设备(powered device,PD)是标准的受电设备。然后向每一个第一从节点发送分级电压,并接收来自于每个第一从节点的反馈电流,该反馈电流是每个第一从节点根据PSE芯片202发送的分级电压确定的。根据每个第一从节点的反馈电流,PSE芯片202会确定每个第一从节点包括的受电设备的功率等级,该功率等级实际上反映的就是第一从节点包括的受电设备的功率。
其中,PSE芯片202可以是在主节点与每个第一从节点的闭合时间段内,向该第一从节点周期性地发送分级电压,该分级电压是脉冲电压,且分级电压低于第一从节点包括的受电设备的正常供电电压。
需要注意的是,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。PSE芯片202还会获取从控设备的功率,结合从控设备包括的受电设备的功率,获取到每个第一从节点的功率。
在一些可选的实施方式中,点对多点拓扑中,还可能包括一些连接了非标准受电设备的从节点,由于这些受电设备并不是标准的受电设备,因此,主节点并不会对这些受电设备上电。
本申请中,通过PSE芯片对第一从节点进行功率检测,在确定第一从节点包括的受电设备为标准的受电设备的情况下,才对第一从节点上电,避免了非标准的受电设备上电可能会对供电系统造成损害的情况,从而提升了技术方案的安全性和可靠性。
在一些可选的实施方式中,主节点200还可以通过控制单元201与N个第一从节点中的每个第一从节点进行功率协商,从而根据功率协商的协商结果,确定每个第一从节点的功率。其中,功率协商可以基于上层协议报文的交互实现,例如LLDP报文;除此之外,还可以是其他上层协议报文,例如SCCP报文,或者厂商自定义的用于进行功率协商的协议报文,上层协议报文的具体类型根据实际需要选择,具体此处不做限定。
需要注意的是,在进行功率协商的时候,主节点200包括的供电设备输出低电压,使得第一从节点包括的受电设备工作在低功耗模式。因此,所有的受电设备以低功耗轮流与主节点200进行功率协商。
本申请中,同时,主节点获取每个第一从节点的功率的方式有多种可能,可以适用于多种场景,提升了本申请技术方案的灵活性。
在一些可选的实施方式中,在主节点200包括控制单元201和PSE芯片202的情况下,主节点200可以结合控制单元201和PSE芯片202的功能,获取N个第一从节点各自的功率。例如,通过PSE芯片202与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过控制单元201与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。在这种情况下,第一部分的第 一从节点和第二部分的第一从节点组成这N个第一从节点。
在一些可选的实施方式中,在主节点200包括控制单元201和PSE芯片202的情况下,主节点200还可以通过其他方式获取N个第一从节点各自的功率。具体来说,主节点200可以通过PSE芯片202与N个第一从节点中第一部分的第一从节点进行功率检测,或者通过控制单元201与这第一部分的第一从节点进行功率协商,获取第一部分的第一从节点各自的功率。并通过控制单元201直接获取这N个第一从节点中第二部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在一些可选的实施方式中,在主节点200包括控制单元201和PSE芯片202的情况下,主节点200还可以通过其他方式获取N个第一从节点各自的功率。具体来说,具体来说,主节点可以通过PSE芯片202与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过控制单元201与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。通过控制单元201直接获取这N个第一从节点中第三部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点、第二部分的第一从节点和第三部分的第一从节点组成这N个第一从节点。
本申请中,主节点获取N个第一从节点各自的功率的方式有多种,既可以基于主节点中的单一模块(控制单元或者PSE芯片)获取,也可以基于主节点中的多个模块获取,能够适用于多种场景,提升了本申请技术方案的灵活性和实用性。
在一些可选的实施方式中,主节点200包括的控制单元201,还能够实现N个第一从节点中的目标从节点的受电。在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,意味着能够对N个第一从节点进行上电,控制单元201会确定目标从节点包括N个第一从节点。然后导通主节点与这N个第一从节点的链路,为这N个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,N个第一从节点的功率之和小于或等于主节点的输出功率,也就是说,主节点的最大输出功率减去N个从控设备的功率之后的功率,大于或等于N个受电设备的功率之和。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
在一些可选的实施方式中,在N个第一从节点的功率之和大于主节点的输出功率的情况下,意味着N个第一从节点的功率之和超出了主节点的功率预算,那么控制单元201会确定为N个第一从节点中的部分第一从节点供电,也即确定目标从节点包括N个第一从节点中的M个第一从节点,1≤M<N。并导通主节点与M个第一从节点的链路,为这M个第一从节点供电。其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,主节点的功率预算实际上是主节点为N个受电设备预留的功率,也即主节点的最大输出功率减去N个从控设备的功率之后的功率。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
其中,控制单元201可以根据供电策略,从N个第一从节点中确定M个第一从节点。 供电策略有多种可能,下面举例说明一些可能的供电策略。
示例性的,主节点200可以按照功率从低到高的顺序,给第一从节点对应的受电设备供电,直至加上下一个受电设备后,各个受电设备的总功率超过主节点的功率预算。基于这种供电策略,能够给最多数量的受电设备供电。
示例性的,主节点200可以按照功率从高到低的顺序,给第一从节点对应的受电设备供电,直至加上下一个受电设备后,各个受电设备的总功率超过主节点的功率预算。基于这种供电策略,能够优先保证大功率的受电设备的供电。
示例性的,主节点200还能够获取各个第一从节点中受电设备的受电优先级,并按照受电优先级顺序给各个第一从节点对应的受电设备供电,直至加上下一个受电设备后,各个受电设备的总功率超过主节点的功率预算。其中,主节点200获取受电优先级的方式有多种,可以是受电设备直接上报给主节点包括的供电设备,除此之外,还可以有其他的方式,例如,受电设备将受电优先级上报给从控设备,在主节点通过功率协商的方式获取从节点的功率时,也能获取到从控设备反馈的受电设备的受电优先级。本申请中,主节点获取受电设备的受电优先级的方式有多种,具体此处不做限定。
本申请中,根据N个第一从节点的功率之和与主节点的输出功率之间的关系,确定为N个第一从节点中的部分或者全部第一从节点供电,使得本申请技术方案适用于不同的场景,进一步提升了技术方案的实用性。
在一些可选的实施方式中,主节点200对第一从节点供电之后,还能够获取到各个第一从节点周期性上报给主节点200的各个第一从节点包括的受电设备的功率、电流等供电参数和节点回传数据。第一从节点向主节点回传数据所采用的方式取决于主节点200与各个第一从节点的通信机制,例如,可以采用时分方式的通信机制,采用固定分配时隙或者竞争传输,具体此处不做限定。
在一些可选的实施方式中,主节点200还连接第二从节点,第二从节点是在已有受电的第一从节点的系统中新加的从节点。主节点200的控制单元201会确定主节点的剩余功率,并获取第二从节点的功率。根据第二从节点的功率与剩余功率的关系,确定是否为第二从节点供电。如果第二从节点的功率小于或等于剩余功率,控制单元201会为第二从节点供电。反之,则不会为第二从节点供电。其中,主节点200的剩余功率可以基于如下方式确定:
剩余功率=主节点的输出功率-供电系统中已受电的从节点的总功耗。
在一些可选的实施方式中,主节点200获取第二从节点的功率的方式,可以是通过控制单元201与第二从节点进行功率协商,也可以是获取第二从节点上报的第二从节点的功率,具体此处不做限定。
本申请中,主节点除了可以对目标从节点进行初始上电之外,还可以为新接入供电系统的第二从节点供电,丰富了本申请技术方案的应用场景。另外,主节点获取第二从节点的功率的方式有多种,可以根据实际应用的需要选择,进一步提升了本申请技术方案的灵活性。
在一些可选的实施方式中,主节点200有多种产品形态,请参阅图3,图3为本申请 实施例提供的主节点的结构示意图。
如图3所示,主节点200包括主控设备210和供电设备220,主控设备210包括控制单元201和PSE芯片202。在实际应用中,主控设备210和供电设备220既可以是耦合的,也可以是解耦的(即主控设备210和供电设备220均是独立的设备),具体此处不做限定。
本申请中,主节点可以有多种产品形态,能够适用不同的场景,进一步提升了本申请技术方案的灵活性。
基于上文介绍的主节点,对本申请还提供了一种供电方法,该供电方法的执行主体为主节点。下面,请参阅图4,图4为本申请实施例提供的供电方法的一个流程示意图,包括以下步骤:
401.分时导通主节点与第一N个从节点中的每个第一从节点之间的链路。
本申请中,主节点与N个第一从节点包含于点对多点拓扑中。分时导通主节点与第一N个从节点中的每个第一从节点之间的链路,将点对多点拓扑转换为了分时段的点对点拓扑。
在一些可选的实施方式中,主节点向每个第一从节点发送目标报文,目标报文用于指示主节点与每个第一从节点的导通时段,以使同一时段主节点与一个第一从节点导通。其中,目标报文包括不同类型的报文,可以是LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的其他用于控制主节点和从节点导通的协议报文,具体此处不做限定。
402.获取N个第一从节点各自的功率。
在主节点与一个从节点导通时,主节点获取这一个从节点的功率。依次导通主节点与每个第一从节点之间的链路之后,能够获取到这N个第一从节点各自的功率。主节点获取第一从节点的功率的方式有多种,既可以通过功率检测的方式获取,也可以通过功率协商的方式获取,除此之外,还可以直接获取第一从节点上报的功率,具体此处不做限定。下面分别对可能的情况进行说明:
在一些可选的实施方式中,主节点可以通过功率检测的方式,获取N个第一从节点各自的功率。具体来说,主节点会接收来自于每个第一从节点的反馈电流,该反馈电流是每个第一从节点根据主节点发送的分级电压确定的。然后根据每个第一从节点的反馈电流,确定每个第一从节点的功率。根据每个第一从节点的反馈电流,确定每个第一从节点的功率。其中,功率检测实际上包括主节点向第一从节点发送探测电压和分级电压,探测电压用于确定第一从节点是否包括标准的受电设备,在确定包括标准的受电设备的情况下,才会向该第一从节点发送分级电压,以确定该第一从节点的功率。
本申请中,通过对第一从节点进行功率检测,在确定第一从节点包括的受电设备为标准的受电设备的情况下,才对第一从节点上电,避免了非标准的受电设备上电可能会对供电系统造成损害的情况,从而提升了技术方案的安全性和可靠性。
在一些可选的实施方式中,主节点也可以通过功率协商的方式获取N个第一从节点各自的功率。具体来说,主节点会通过上层协议与每个第一从节点进行功率协商,根据功率 协商的协商结果,确定每个第一从节点的功率。其中,功率协商可以基于上层协议报文的交互实现,例如LLDP报文;除此之外,还可以是其他上层协议报文,例如SCCP报文,或者厂商自定义的用于进行功率协商的协议报文,上层协议报文的具体类型根据实际需要选择,具体此处不做限定。
在一些可选的实施方式中,主节点还可以通过其他方式,获取N个第一从节点各自的功率。具体来说,主节点可以对N个第一从节点中第一部分的第一从节点进行功率检测,或者与这第一部分的第一从节点进行功率协商,获取第一部分的第一从节点各自的功率。并直接获取这N个第一从节点中第二部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点和第二部分的第一从节点组成这N个第一从节点。
在一些可选的实施方式中,主节点还可以通过其他方式,获取N个第一从节点各自的功率。具体来说,主节点可以与N个第一从节点中第一部分的第一从节点进行功率检测,获取第一部分的第一从节点各自的功率。通过与这N个第一从节点中第二部分进行功率协商,获取第二部分的第一从节点各自的功率。主节点还可以直接获取这N个第一从节点中第三部分的第一从节点上报的各自的功率。在这种情况下,第一部分的第一从节点、第二部分的第一从节点和第三部分的第一从节点组成这N个第一从节点。
本申请中,同时,主节点获取每个第一从节点的功率的方式有多种可能,可以适用于多种场景,提升了本申请技术方案的灵活性。
403.确定N个第一从节点的功率之和是否不大于主节点的输出功率,若是,则执行步骤404,若否,则执行步骤405。
在获取N个第一从节点各自的功率之后,主节点会比较这N个第一从节点的功率之和与主节点的输出功率的关系,确定为N个第一从节点中的目标从节点供电。其中,目标从节点为N个第一从节点中的全部或者部分第一从节点。
如果N个第一从节点的功率之和小于或等于主节点的输出功率,那么主节点会确定目标从节点包括N个第一从节点。如果N个第一从节点的功率之和大于主节点的输出功率,意味着N个第一从节点的功率之和超出了主节点的功率预算,那么主节点会确定目标从节点包括M个第一从节点,1≤M<N。主节点可以根据不同的供电策略,从N个第一从节点中选出这M个第一从节点,供电策略的相关内容在上文介绍主节点时,已经进行说明,此处不再赘述。
其中,由于第一从节点包括从控设备和受电设备,因此,第一从节点的功率包括从控设备的功率和受电设备的功率。本申请中,从控设备是始终上电的,主节点的功率预算实际上是主节点为N个受电设备预留的功率,也即主节点的最大输出功率减去N个从控设备的功率之后的功率。可以理解的是,由于线路损耗,第一从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
在一些可选的实施方式中,主节点可以通过广播报文的方式,实现目标从节点上电所需要的交互。主节点所广播的报文可以是多种类型的报文,例如,LLDP报文,除此之外,还可以是其他的类型的报文,例如SCCP报文,或者厂商自定义的用于控制上电的协议报文,具体此处不做限定。
404.为N个第一从节点供电。
在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,主节点会确定目标从节点包括N个第一从节点,并导通主节点与这N个第一从节点的链路,为N个第一从节点供电。
405.为M个第一从节点供电,1≤M<N。
在N个第一从节点的功率之和大于主节点的输出功率的情况下,主节点会确定目标从节点包括M个第一从节点,并导通主节点与这M个第一从节点的链路,为M个第一从节点供电。
从以上技术方案可以看出,本申请具有以下优点:主节点和从节点包含于点对多点拓扑中,主节点在同一时段只导通与一个从节点之间的通路,即将点对多点拓扑转换为分时的点对点拓扑,从而逐个获取各个从节点的功率,并结合主节点的输出功率,对从节点进行上电,实现了点对多点拓扑中的线上供电。另外,根据N个第一从节点的功率之和与主节点的输出功率之间的关系,确定为N个第一从节点中的部分或者全部第一从节点供电,使得本申请技术方案适用于不同的场景,进一步提升了技术方案的实用性。
在一些可选的实施例中,在步骤404或者步骤405之后,主节点还可以执行如下步骤:
406.确定主节点的剩余功率。
主节点还能够获取到各个第一从节点周期性上报给主节点的各个第一从节点包括的受电设备的功率、电流等供电参数和节点回传数据。第一从节点向主节点回传数据所采用的方式取决于主节点与各个第一从节点的通信机制,例如,可以采用时分方式的通信机制,采用固定分配时隙或者竞争传输,具体此处不做限定。
根据各个第一从节点回传的数据,主节点能够确定剩余功率,剩余功率=主节点的输出功率-供电系统中已受电的从节点的总功耗。
407.获取第二从节点的功率。
主节点还可以连接第二从节点,第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。也就是说,在第二从节点接入供电系统之前,供电系统中包括了已经上电的第一从节点。
主节点可以基于不同的方式,获取第二从节点的功率。示例性,主节点会与第二从节点进行功率协商,以确定第二从节点的功率。或者,主节点能够获取第二从节点直接上报的第二从节点的功率。本申请对此不作限制。
本申请中,主节点获取第二从节点的功率的方式有多种,可以根据实际应用的需要选择,进一步提升了本申请技术方案的灵活性。
408.确定第二从节点的功率是否不大于主节点的剩余功率,若是,则执行步骤409,若否,则执行步骤410。
主节点会比较第二从节点的功率与自身的剩余功率,从而确定能否为第二从节点上电。
409.为第二从节点供电。
在第二从节点的功率小于或等于剩余功率的情况下,意味着主节点还有富裕的功率,能够为第二从节点供电。
410.不为第二从节点供电。
在第二从节点的功率大于剩余功率的情况下,主节点不能为第二从节点供电。
在一些可选的实施例中,主节点可以有不同的形态,主节点包括的主控设备和供电设备既可以是耦合的,也可以是解耦的(即主控设备和供电设备均是独立的设备),具体此处不做限定。
本申请中,主节点除了可以对目标从节点进行初始上电之外,还可以为新接入供电系统的第二从节点供电,丰富了本申请技术方案的应用场景。
接下来,对本申请提供的从节点进行说明。
本申请中,从节点与主节点包含于点对多点拓扑的供电系统中,主节点能够对点到多点中的多个从节点进行线上供电。从节点会向主节点发送从节点的功率,并接收来自于主节点的上电指令。根据该上电指令,导通主节点和从节点的链路,以使从节点上电。其中,由于从节点包括从控设备和受电设备,因此,从节点的功率包括从控设备的功率和受电设备的功率。可以理解的是,由于线路损耗,从节点的功率还包括了线损对应的功率,这部分功率可以包含于受电设备的功率中。
本申请中,从节点能够主动向主节点发送自身的功率,使得主节点获取到点对多点拓扑中各个从节点的功率,从而为各个从节点进行线上供电,实现了点对多点拓扑中的线上供电。
下面,对从节点的结构进行进一步的说明,请参阅图5,图5为本申请提供的从节点的结构示意图。
如图5所示,从节点500包括控制单元501。控制单元501,能够获取从节点的功率,并向主节点发送从节点的功率。还接收来自于主节点的上电指令,并根据上电指令,控制主节点和从节点500之间的链路导通,以使从节点500上电。
需要注意的是,本申请中的控制单元501可以是微控制单元,也可以是其他能够控制链路导通的器件,例如,中央处理器、专用集成电路,控制单元可以根据实际应用的需要选择,具体此处不做限定。
本申请中,控制单元501可以通过不同的方式获取从节点的功率,下面对可能的情况进行说明。
在一些可选的实施方式中,如图5所示,从节点500包括控制单元501和开关502。控制单元501,用于根据上电指令,控制开关502导通主节点与从节点之间的链路。开关502,用于根据控制单元501的控制指令,导通主节点和从节点500之间的链路。
在这种情况下,如果从节点500包括的从控设备和受电设备耦合,那么受电设备可以理解为从节点500的负载,控制单元501可以直接获取到受电设备的功率。如果从节点500包括的从控设备和受电设备解耦,那么控制单元501可以采用功率协商的方式确定受电设备的功率。功率协商的具体方式,在上文已经进行了说明,此处不再赘述。
本申请中,无论从节点包括的从控设备和受电设备是耦合还是解耦,都可以通过控制单元确定从节点的功率,使得本申请技术方案能够适应不同的需求,提升了本申请技术方 案的实用性。
在一些可选的实施方式中,从节点还可以具有不同的结构,请参阅图6,图6为本申请实施例提供的从节点的结构示意图。
假设图6所示实施例中,从节点500包括的从控设备510和受电设备520解耦,那么从控设备510包括控制单元501和PSE芯片503。
PSE芯片503可以通过功率检测的方式,确定受电设备520的功率。具体来说,PSE芯片503会向受电设备520发送探测电压,探测电压用于确定受电设备520是否为标准的受电设备。在受电设备520为标准的受电设备的情况下,PSE芯片503会向受电设备520发送分级电压,以确定受电设备520的功率。受电设备520根据PSE芯片的分级电压得到反馈电流,并将该反馈电流传输至PSE芯片503。PSE芯片503根据该反馈电流,确定受电设备520的功率。
PSE芯片503向控制单元501发送受电设备520的功率。因此,控制单元501,会接收来自于PSE芯片503的受电设备520的功率,并根据受电设备520的功率,确定从节点500的功率,并向主节点上报从节点500的功率。在接收到来自于主节点的上电指令后,控制单元501向PSE芯片503发送控制指令,使得PSE芯片根据该控制指令,导通主节点和从节点之间的链路。
在一些可选的实施方式中,在图6所示实施例中,从控设备510中还可以包括开关(图6中未示出)。在这种情况下,控制单元501在接收到来自于主节点的上电指令后,会控制开关导通主节点和从节点之间的链路。
本申请中,在从节点包括的从控设备与受电设备解耦的情况下,从节点除了包括控制单元和开关之外,还可以包括控制单元和PSE芯片,使得从节点具备不同的产品形态,也能采用不同的方式确定从节点的功率,丰富了本申请技术方案的实现方式。
基于上文介绍的从节点,本申请实施例还提供了一种供电方法,该供电方法的执行主体为从节点,该从节点与主节点包含于点对多点拓扑中。
请参阅图7,图7为本申请实施例提供的供电方法的流程示意图,包括以下步骤:
701.向主节点发送从节点的功率。
在从节点上电之前,从节点需要将自身的功率上报给主节点,使得主节点综合考虑各个从节点的功率,确定能够进行线上供电的从节点。
702.接收来自于主节点的上电指令。
主节点确定对从节点进行线上供电的情况下,会向从节点发送上电指令,使得从节点接收该上电指令。
703.根据上电指令,导通主节点和从节点的链路,以使从节点上电。
从节点根据上电指令,导通主节点与从节点之间的链路的方式随着从节点的结构不同,有多种可能,可以是控制开关导通,也可以由PSE芯片控制导通,具体的内容,参见前述图5和图6所示实施例中的相关说明,此处不再赘述。
在一些可选的实施方式中,在步骤701之前,从节点还可以执行步骤:700.获取从节 点的功率。
如前述图5和图6所示实施例中的说明,从节点可以通过功率检测或者功率协商的方式,获取从节点的功率。可选的,在从节点包括的从控设备和受电设备耦合的情况下,受电设备可以理解为从节点的负载,从节点能够直接获取到自身的功率。具体的内容,参见前述图5和图6所示实施例中的相关内容,此处不再赘述。
本申请中,可以基于多种方式获取从节点的功率,进一步提升了本申请技术方案的灵活性。
本申请还提供了一种供电系统,该供电系统包括主节点和N个第一从节点,N≥2,且N为整数。主节点,用于分时导通主节点与第一N个从节点中的每个第一从节点之间的链路,并获取N个第一从节点各自的功率。根据N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。其中,目标节点包括目标从节点包括N个第一从节点中的所有或者部分第一从节点。
在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,意味着主节点能够对N个第一从节点进行上电,也即确定目标从节点包括N个第一从节点。主节点中的控制单元0会导通主节点与这N个第一从节点的链路,为这N个第一从节点供电。
在N个第一从节点的功率之和大于主节点的输出功率的情况下,意味着N个第一从节点的功率之和超出了主节点的功率预算,也即确定目标从节点包括N个第一从节点中的M个第一从节点,1≤M<N。主节点中的控制单元0会导通主节点与这M个第一从节点的链路,为M个第一从节点供电。
本申请中,主节点可以通过多种方式获取N个第一从节点各自的功率,下面分别对可能的情况进行说明。
在一些可选的实施方式中,主节点可以通过功率检测的方式,确定每个第一从节点的功率。具体来说,主节点能够接收来自于每个第一从节点的反馈电流,反馈电流是每个第一从节点根据主节点发送的分级电压确定的。并根据每个第一从节点的反馈电流,确定每个第一从节点的功率。功率检测的具体内容,在前述图2至图4所示实施例中进行了详细介绍,此处不再赘述。
在一些可选的实施方式中,主节点还可以通过功率协商的方式,确定每个第一从节点的功率。具体来说,主节点与每个第一从节点进行功率协商,并根据功率协商的协商结果,确定每个第一从节点的功率。功率协商的具体内容,在前述图2至图4所示实施例中进行了详细介绍,此处不再赘述。
在一些可选的实施方式中,供电系统中的N个第一从节点包括第一集合和第二集合。主节点,能够通过功率协商和/或功率检测的方式,获取第一集合包括的第一从节点各自的功率。并接收来自于第二集合的第二集合包括的第一从节点各自的功率。也就是说,主节点能够通过不同的方式,获取到供电系统中的N个第一从节点各自的功率。
在一些可选的实施方式中,第二集合中的每个第一从节点,也可以通过功率协商和/或功率检测的方式,确定每个第一从节点的功率。并将第一从节点的功率,上报给主节点。
下面,以N=3为例,对供电系统进行说明。请参阅图8,图8为本申请实施例提供的供电系统的一个示意图。
图8以总线是单对线为例,在图8所示实施例中,主节点和各个第一从节点通过在凤凰端子接入总线。在实际应用中,主节点和各个第一从节点还可以通过其他方式接入总线,例如,通过T型连接器接入,或者焊接在总线上,各个节点接入总线的方式可以相同,也可以不同,具体此处不做限定。
在图8所示实施例中,主节点获取这3个第一子节点各自的功率有多种方式:
示例性的,主节点可以通过功率协商或者功率检测的方式,获取这3个第一子节点的功率;也可以通过功率检测的方式,获取其中部分第一子节点(例如第一子节点1和第二子节点2)的功率,通过功率协商的方式,获取剩余第一子节点(例如第一子节点3)的功率。
示例性的,如果第一从节点3的控制单元3,能够通过功率协商的方式获取到受电设备3的功率。那么主节点获取第一从节点3的功率方式,可以是直接接收来自于第一从节点3上报的功率。对于其余两个第一从节点,主节点可以通过功率检测和/或功率协商的方式,获取这两个第一从节点的功率。
在一些可选的实施方式中,供电系统中还包括第二从节点。第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。在这种情况下,主节点能够确定主节点的剩余功率和第二从节点的功率。如果第二从节点的功率小于或等于剩余功率,那么主节点会为第二从节点供电。
在一些可选的实施方式中,主节点获取第二从节点的功率的方式,可以是通过控制单元0与第二从节点进行功率协商,也可以是获取第二从节点上报的第二从节点的功率,具体此处不做限定。
其中,第二从节点包括从控设备和受电设备,从控设备和受电设备可以是解耦的,也可以是耦合的,具体此处不做限定。
示例性的,请参阅图9,图9为本申请实施例提供的供电系统的一个示意图。
如图9所示,第一从节点1是已经受电的从节点,也就是说,受电设备1已经处于上电状态。如果第二从节点的从控设备4和受电设备4是解耦的,从控设备4在最开始就可以接入总线,控制单元4从总线上取电。受电设备4作为新接入供电系统的受电设备,那么主节点就要确定是否为受电设备4供电。
主控设备能够接收到各个第一从节点周期性上报给的各个第一从节点包括的受电设备的功率、电流等供电参数和节点回传数据。主控设备根据这些信息计算主节点的剩余功率,然后比较剩余功率和第二从节点的功率,在第二从节点的功率小于或等于剩余功率,那么主节点会为第二从节点供电。
其中,主节点的剩余功率包括用于维持从控设备4接入的功率和其他功率,第二从节点的功率包括从控设备4的功率和受电设备4的功率。也可以认为主节点的剩余功率包括主节点的最大输出功率,减去总线上所有已经受电的设备的功率后得到的功率。所有已经受电的设备的功率包括各个第一从节点的功率和接入总线但未挂接受电设备的从控设备的 功率。
在一些可选的实施方式中,从节点的结构还可以如图10所示,请参阅图10,图10为本申请实施例提供的从节点的一个结构示意图。
如图10所示,从节点1000包括从控设备1010和受电设备1020,从控设备1010包括控制单元1001和可调限流模块1002。
在从节点1000为第一从节点的情况下,如果主节点为该第一从节点供电,那么控制单元1001可以将可调限流模块1002的电流数值设置为主节点的最大输出电流,以导通主节点与该第一从节点的链路,为受电设备1020供电。如果主节点不为该第一从节点供电,那么控制单元1001可以将可调限流模块1002的电流数值设置为0,以断开主节点与该第一从节点的链路,并不会为受电设备1020供电。
如果从节点1000为第二从节点,如果主节点为该第二从节点供电,那么控制单元1001可以将可调限流模块1002的电流数值设置为主节点的剩余电流(也称为基线电流),以导通主节点与该第二从节点的链路,实现受电设备1020的上电。如果主节点不为该第二从节点供电,那么控制单元1001可以将可调限流模块1002的电流数值设置为0,以断开主节点与该第二从节点的链路,并不会为受电设备1020供电。其中,基线电流=主节点的最大输出功率/供电电压-已受电节点总工作电流。
在一些可选的实施例中,从控设备中还可以同时包括控制单元、受电开关和可调限流模块。在这种情况下,如果要为受电设备供电,则需要保证开关闭合,且可调限流模块的电流值为能够导通的电流值。
本申请还提供了一种供电系统,供电系统的拓扑类型为点对多点拓扑,且包括主节点和N个第一从节点,N≥2,且N为整数。
以N=3为例,对供电系统进行说明,请参阅图11,图11为本申请提供的供电系统的一个示意图。
与图8和图9所示的实施例不同的是,在图11所示实施例中,主节点并不包括PSE芯片,主节点获取各个从节点的功率方式均是通过各个从节点直接上报的。类似的是,主节点会根据N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。
其中,目标节点包括目标从节点包括N个第一从节点中的所有或者部分第一从节点。
在N个第一从节点的功率之和小于或等于主节点的输出功率的情况下,意味着主节点能够对N个第一从节点进行上电,也即确定目标从节点包括N个第一从节点。主节点中的控制单元0会导通主节点与这N个第一从节点的链路,为这N个第一从节点供电。
在N个第一从节点的功率之和大于主节点的输出功率的情况下,意味着N个第一从节点的功率之和超出了主节点的功率预算,也即确定目标从节点包括N个第一从节点中的M个第一从节点,1≤M<N。主节点中的控制单元0会导通主节点与这M个第一从节点的链路,为M个第一从节点供电。
图11所示实施例中,N个第一从节点中的每个第一从节点,能够向主节点发送每个第 一从节点的功率。使得主节点获取N个第一从节点各自的功率。主节点会根据N个第一从节点的功率和主节点的输出功率,为N个第一从节点中的目标从节点供电。因此,目标从节点能够接收来自于主节点的上电指令,并根据上电指令,导通主节点和目标从节点的链路,以使目标从节点上电。
在一些可选的实施例中,每个第一从节点可以通过功率检测或者功率协商的方式,获取每个第一从节点的功率。
示例性的,在图11所示实施例中,第一从节点1包括控制单元1和受电开关1,如果第一从节点1包括的从控设备1和受电设备1耦合,那么受电设备1可以理解为第一从节点1的负载,控制单元1可以直接获取到受电设备1的功率。如果从控设备1和受电设备1解耦,那么控制单元1可以采用功率协商的方式确定受电设备1的功率。控制单元1,能够根据上电指令,控制受电开关1导通主节点与第一从节点1之间的链路。受电开关1,用于根据控制单元1的控制指令,导通主节点和第一从节点1之间的链路。
示例性的,在图11所示实施例中,第一从节点2中的从控设备2和受电设备2是解耦的。从控设备2包括控制单元2和PSE芯片,PSE芯片可以通过功率检测的方式,确定受电设备的功率。具体来说,PSE芯片会向受电设备2发送探测电压,探测电压用于确定受电设备2是否为标准的受电设备。在受电设备2为标准的受电设备的情况下,PSE芯片会向受电设备2发送分级电压,以确定受电设备2的功率。PSE芯片接收来自于受电设备2的反馈电流,并根据该反馈电流,确定受电设备2的功率。其中,反馈电流是受电设备2根据PSE芯片的分级电压确定的。PSE芯片还会向控制单元2发送受电设备2的功率。因此,控制单元2,会接收来自于PSE芯片的受电设备2的功率,并根据受电设备2的功率,确定第一从节点2的功率。PSE芯片,还用于根据控制单元2的控制指令,导通主节点和第一从节点2之间的链路。
在一些可选的实施方式中,供电系统中还包括第二从节点。第二从节点是在已有受电的第一从节点的供电系统中新加的从节点。在这种情况下,主节点能够确定主节点的剩余功率和第二从节点的功率。如果第二从节点的功率小于或等于剩余功率,那么主节点会为第二从节点供电。
其中,第二从节点包括从控设备和受电设备,从控设备和受电设备可以是解耦的,也可以是耦合的,具体此处不做限定。
示例性的,请参阅图12,图12为本申请实施例提供的供电系统的一个示意图。
如图12所示,第一从节点2是已经受电的从节点,也就是说,受电设备2已经处于上电状态。如果第二从节点的从控设备3和受电设备3是解耦的,从控设备3在最开始就可以接入总线,控制单元3从总线上取电。受电设备3作为新接入供电系统的受电设备,那么主节点就要确定是否为受电设备3供电。
主控设备能够接收到各个第一从节点周期性上报给的各个第一从节点包括的受电设备的功率、电流等供电参数和节点回传数据。主控设备根据这些信息计算主节点的剩余功率,然后比较剩余功率和第二从节点的功率,在第二从节点的功率小于或等于剩余功率,那么主节点会为第二从节点供电。
其中,主节点的剩余功率包括用于维持从控设备3接入的功率和其他功率,第二从节点的功率包括从控设备3的功率和受电设备3的功率。也可以认为主节点的剩余功率包括主节点的最大输出功率,减去总线上所有已经受电的设备的功率后得到的功率。所有已经受电的设备的功率包括各个第一从节点的功率和接入总线但未挂接受电设备的从控设备的功率。
下面,请参阅图13,图13为本申请实施例提供的主节点的结构示意图。
如图13所示,网络设备1300包括存储器1301和处理器1302,存储器1301和处理器1302通过总线1303连接,存储器1301用于存储计算机指令。
处理器1302可以与存储器1301通信,使得处理器1301调用存储器1301的计算机指令,以执行前述图1A至图12所示实施例中主节点所执行的操作中的一系列指令操作。
其中,存储器1301可以是易失性存储或持久存储。处理器1301可以是中央处理器,也可以是单核处理器,除此之外,还可以是其他类型的处理器,例如双核处理器,具体此处不做限定。
下面,请参阅图14,图14为本申请实施例提供的从节点的结构示意图。
如图14所示,网络设备1400包括存储器1401和处理器1402,存储器1401和处理器1402通过总线1403连接,存储器1401用于存储计算机指令。
处理器1402可以与存储器1401通信,使得处理器1401调用存储器1401的计算机指令,执行前述图1A至图1B,以及图5至图12所示实施例中从节点所执行的操作中的一系列指令操作。
其中,存储器1401可以是易失性存储或持久存储。处理器1401可以是中央处理器,也可以是单核处理器,除此之外,还可以是其他类型的处理器,例如双核处理器,具体此处不做限定。
需要注意的是,本申请的技术方案,不受传输机制、传播介质和使用场景的限制,也不局限在以太网中。
传输机制可以单载波脉冲振幅调制(pulse amplitude modulation,PAM)、也可以是其他的机制,例如离散多音调制(discrete multi-tone,DMT)、正交频分复用(orthogonal frequency division multiplexing,OFDM)等,具体此处不做限定。
总线所使用的传播介质可以是双绞线,也可以是其他的介质,例如平行线、电力线等,具体此处不做限定。
使用场景可以是园区,也可以是其他能够部署点到多点拓扑类型的供电系统的场景,例如工业、车载等,具体此处不做限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (39)

  1. 一种主节点,其特征在于,所述主节点与N个第一从节点包含于点对多点拓扑中,N≥2,且N为整数;
    所述主节点,用于:
    分时导通所述主节点与所述第一N个从节点中的每个第一从节点之间的链路;
    获取所述N个第一从节点各自的功率;
    根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电。
  2. 根据权利要求1所述的主节点,其特征在于,包括:
    控制单元,用于分时导通所述主节点与所述N个第一从节点中的每个第一从节点之间的链路。
  3. 根据权利要求1或2所述的主节点,其特征在于,包括供电设备PSE芯片,用于:
    接收来自于所述每个第一从节点的反馈电流,所述反馈电流是所述每个第一从节点根据所述PSE芯片的分级电压确定的;
    根据所述每个第一从节点的反馈电流,确定所述每个第一从节点的功率。
  4. 根据权利要求1或2所述的主节点,其特征在于,所述主节点还包括控制单元,用于:
    与所述每个第一从节点进行功率协商;
    根据所述功率协商的协商结果,确定所述每个第一从节点的功率。
  5. 根据权利要求2至4中任一项所述的主节点,其特征在于,所述控制单元,用于:
    若所述N个第一从节点的功率之和小于或等于所述主节点的输出功率,则确定所述目标从节点包括N个第一从节点;
    导通与所述N个第一从节点的链路,为所述N个第一从节点供电。
  6. 根据权利要求2至4中任一项所述的主节点,其特征在于,所述控制单元,用于:
    若所述N个第一从节点的功率之和大于所述主节点的输出功率,则确定所述目标从节点包括M个第一从节点,1≤M<N;
    导通与所述M个第一从节点的链路,为所述M个第一从节点供电。
  7. 根据权利要求1至6中任一项所述的主节点,其特征在于,所述主节点还连接第二从节点,所述第二从节点是在已有受电的第一从节点的系统中新加的从节点;
    所述主节点,包括控制单元,用于:
    确定所述主节点的剩余功率;
    获取所述第二从节点的功率;
    若所述第二从节点的功率小于或等于所述剩余功率,则为所述第二从节点供电。
  8. 根据权利7所述的主节点,其特征在于,所述控制单元,具体用于:
    与所述第二从节点进行功率协商,以确定所述第二从节点的功率;或者,
    获取来自于所述第二从节点的所述第二从节点的功率。
  9. 根据权利要求2至8中任一所述的主节点,其特征在于,所述控制单元,用于:
    向所述每个第一从节点发送目标报文,所述目标报文用于指示所述主节点与所述每个第一从节点的导通时段,以使同一时段所述主节点与一个第一从节点导通。
  10. 根据权利要求1至9中任一项所述的主节点,其特征在于,所述主节点包括主控设备和供电设备,所述主控设备与所述供电设备耦合或者解耦。
  11. 一种供电方法,其特征在于,所述方法应用于主节点,所述主节点与N个第一从节点包含于点对多点拓扑中,N≥2,且N为整数,所述方法包括:
    分时导通所述主节点与所述第一N个从节点中的每个第一从节点之间的链路;
    获取所述N个第一从节点各自的功率;
    根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电。
  12. 根据权利要求11所述的方法,其特征在于,所述获取所述N个第一从节点各自的功率,包括:
    接收来自于所述每个第一从节点的反馈电流,所述反馈电流是所述每个第一从节点根据所述主节点的分级电压确定的;
    根据所述每个第一从节点的反馈电流,确定所述每个第一从节点的功率。
  13. 根据权利要求11所述的方法,其特征在于,所述获取所述N个第一从节点各自的功率,包括:
    与所述每个第一从节点进行功率协商;
    根据所述功率协商的协商结果,确定所述每个第一从节点的功率。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电,包括:
    若所述N个第一从节点的功率之和小于或等于所述主节点的输出功率,则确定所述目标从节点包括N个第一从节点;
    导通与所述N个第一从节点的链路,为所述N个第一从节点供电。
  15. 根据权利要求11至13中任一项所述的方法,其特征在于,所述根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电,包括:
    若所述N个第一从节点的功率之和大于所述主节点的输出功率,则确定所述目标从节点包括M个第一从节点,1≤M<N;
    导通与所述M个第一从节点的链路,为所述M个第一从节点供电。
  16. 根据权利要求11至13中任一项所述的方法,其特征在于,所述主节点还连接第二从节点,所述第二从节点是在已有受电的第一从节点的系统中新加的从节点;
    在所述为所述N个第一从节点中的目标从节点供电之后,所述方法还包括:
    确定所述主节点的剩余功率;
    获取所述第二从节点的功率;
    若所述第二从节点的功率小于或等于所述剩余功率,则为所述第二从节点供电。
  17. 根据权利要求16所述的方法,其特征在于,所述获取所述第二从节点的功率,包括:
    与所述第二从节点进行功率协商,以确定所述第二从节点的功率;或者,
    获取来自于所述第二从节点的所述第二从节点的功率。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述分时导通所述主节点与所述第一N个从节点中的每个第一从节点之间的链路,包括:
    向所述每个第一从节点发送目标报文,所述目标报文用于指示所述主节点与所述每个第一从节点的导通时段,以使同一时段所述主节点与一个第一从节点导通。
  19. 一种从节点,其特征在于,所述从节点与主节点包含于点对多点拓扑中,所述从节点,用于:
    向所述主节点发送所述从节点的功率;
    接收来自于所述主节点的上电指令;
    根据所述上电指令,导通主节点和所述从节点的链路,以使所述从节点上电。
  20. 根据权利要求19所述的从节点,其特征在于,所述从节点包括控制单元,用于:
    获取所述从节点的功率;
    向所述主节点发送所述从节点的功率;
    接收来自于所述主节点的上电指令;
    根据所述上电指令,控制所述主节点和所述从节点之间的链路导通,以使所述从节点上电。
  21. 根据权利要求20所述的从节点,其特征在于,所述从节点还包括开关;
    所述控制单元,具体用于根据所述上电指令,控制所述开关导通所述主节点与所述从节点之间的链路;
    所述开关,用于根据所述控制单元的控制指令,导通所述主节点和所述从节点之间的链路。
  22. 根据权利要求20所述的从节点,其特征在于,所述从节点包括从控设备和受电设备,所述从控设备与所述受电设备解耦,所述从控设备包括PSE芯片和所述控制单元;
    所述PSE芯片,用于:
    根据来自于所述受电设备的反馈电流,确定所述受电设备的功率,所述反馈电流是所述受电设备根据所述PSE芯片的分级电压确定的;
    向所述控制单元发送所述受电设备的功率;
    所述控制单元,还用于:
    接收来自于所述PSE芯片的所述受电设备的功率;
    根据所述受电设备的功率,确定所述从节点的功率;
    所述PSE芯片,还用于根据所述控制单元的控制指令,导通所述主节点和所述从节点之间的链路。
  23. 一种供电方法,其特征在于,所述方法应用于从节点,从节点与主节点包含于点对多点拓扑中,所述方法包括:
    向所述主节点发送所述从节点的功率;
    接收来自于所述主节点的上电指令;
    根据所述上电指令,导通主节点和所述从节点的链路,以使所述从节点上电。
  24. 根据权利要求23所述的方法,其特征在于,在所述向所述主节点发送所述从节点的功率之前,所述方法还包括:
    通过功率检测或者功率协商,获取所述从节点的功率。
  25. 一种供电系统,其特征在于,所述供电系统的拓扑为点到多点拓扑,所述供电系统包括主节点、N个第一从节点,N≥2,且N为整数;所述主节点,用于:
    分时导通所述主节点与所述第一N个从节点中的每个第一从节点之间的链路;
    获取所述N个第一从节点各自的功率;
    根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电。
  26. 根据权利要求25所述的供电系统,其特征在于,所述主节点,具体用于:
    接收来自于所述每个第一从节点的反馈电流,所述反馈电流是所述每个第一从节点根据所述主节点的分级电压确定的;
    根据所述每个第一从节点的反馈电流,确定所述每个第一从节点的功率。
  27. 根据权利要求25所述的供电系统,其特征在于,所述主节点,具体用于:
    与所述每个第一从节点进行功率协商;
    根据所述功率协商的协商结果,确定所述每个第一从节点的功率。
  28. 根据权利要求25所述的供电系统,其特征在于,所述N个第一从节点包括第一集合和第二集合;
    所述主节点,用于:
    通过功率协商和/或功率检测,获取所述第一集合包括的第一从节点各自的功率;
    接收来自于所述第二集合的所述第二集合包括的第一从节点各自的功率。
  29. 根据权利要求28所述的供电系统,其特征在于,所述第二集合,用于通过功率协商和/或功率检测,确定所述第二集合包括的第一从节点各自的功率。
  30. 根据权利要求25至29中任一项所述的供电系统,其特征在于,所述主节点,具体用于:
    若所述N个第一从节点的功率之和小于或等于所述主节点的输出功率,则确定所述目标从节点包括N个第一从节点;
    导通与所述N个第一从节点的链路,为所述N个第一从节点供电。
  31. 根据权利要求25至29中任一项所述的供电系统,其特征在于,所述主节点,具体用于:
    若所述N个第一从节点的功率之和大于所述主节点的输出功率,则确定所述目标从节点包括M个第一从节点,1≤M<N;
    导通与所述M个第一从节点的链路,为所述M个第一从节点供电。
  32. 根据权利要求25至31中任一项所述的供电系统,其特征在于,所述供电系统还包 括第二从节点,所述第二从节点是在已有受电的第一从节点的系统中新加的从节点;
    所述主节点,具体用于:
    确定所述主节点的剩余功率;
    获取所述第二从节点的功率;
    若所述第二从节点的功率小于或等于所述剩余功率,则为所述第二从节点供电。
  33. 根据权利要求32所述的供电系统,其特征在于,所述主节点,具体用于:
    与所述第二从节点进行功率协商,以确定所述第二从节点的功率;或者,
    获取来自于所述第二从节点的所述第二从节点的功率。
  34. 一种供电系统,其特征在于,所述供电系统的拓扑为点到多点拓扑,所述供电系统包括主节点、N个第一从节点,N≥2,且N为整数;
    所述N个第一从节点中的每个第一从节点,用于:
    向所述主节点发送所述每个第一从节点的功率;
    所述主节点,用于:
    获取所述N个第一从节点各自的功率;
    根据所述N个第一从节点的功率和所述主节点的输出功率,为所述N个第一从节点中的目标从节点供电;
    所述目标从节点,用于
    接收来自于所述主节点的上电指令;
    根据所述上电指令,导通主节点和所述目标从节点的链路,以使所述目标从节点上电。
  35. 根据权利要求34所述的供电系统,其特征在于,所述每个第一从节点,具体用于:
    通过功率检测或者功率协商,获取所述每个第一从节点的功率。
  36. 根据权利要求34或35所述的供电系统,其特征在于,所述供电系统还包括第二从节点,所述第二从节点是在已有受电的第一从节点的系统中新加的从节点;
    所述主节点,具体用于:
    确定所述主节点的剩余功率;
    获取所述第二从节点的功率;
    若所述第二从节点的功率小于或等于所述剩余功率,则为所述第二从节点供电。
  37. 一种主节点,其特征在于,包括:处理器和存储器;
    所述存储器用于存储计算机指令,所述处理器被配置为调用所述计算机指令以使得所述主节点执行权利要求11至18中任一项所述的方法。
  38. 一种从节点,其特征在于,包括:处理器和存储器;
    所述存储器用于存储计算机指令,所述处理器被配置为调用所述计算机指令以使得所述从节点执行权利要求23或24所述的方法。
  39. 一种芯片,其特征在于,包括:处理器和存储器;
    所述存储器用于存储指令,所述处理器通过所述指令执行权利要求11至18或23至24中任一项所述的方法。
PCT/CN2023/098266 2022-06-08 2023-06-05 主节点、从节点、供电方法和相关设备 WO2023236895A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210644562 2022-06-08
CN202210644562.4 2022-06-08
CN202210759600.0 2022-06-30
CN202210759600.0A CN117240635A (zh) 2022-06-08 2022-06-30 主节点、从节点、供电方法和相关设备

Publications (1)

Publication Number Publication Date
WO2023236895A1 true WO2023236895A1 (zh) 2023-12-14

Family

ID=89086785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098266 WO2023236895A1 (zh) 2022-06-08 2023-06-05 主节点、从节点、供电方法和相关设备

Country Status (2)

Country Link
CN (3) CN117239688A (zh)
WO (1) WO2023236895A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147271A1 (en) * 2013-06-25 2016-05-26 Hewlett-Packard Development Company, L.P. Powering nodes
CN106851907A (zh) * 2017-02-08 2017-06-13 广西交通科学研究院有限公司 一种通过隧道车辆声音检测进行调光的控制方法
CN111679601A (zh) * 2020-05-28 2020-09-18 深圳市信锐网科技术有限公司 多板卡设备的控制方法、多板卡设备及介质
CN114363152A (zh) * 2020-09-30 2022-04-15 中车株洲电力机车研究所有限公司 一种防止节点地址异常的wtb节点初运行方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160147271A1 (en) * 2013-06-25 2016-05-26 Hewlett-Packard Development Company, L.P. Powering nodes
CN106851907A (zh) * 2017-02-08 2017-06-13 广西交通科学研究院有限公司 一种通过隧道车辆声音检测进行调光的控制方法
CN111679601A (zh) * 2020-05-28 2020-09-18 深圳市信锐网科技术有限公司 多板卡设备的控制方法、多板卡设备及介质
CN114363152A (zh) * 2020-09-30 2022-04-15 中车株洲电力机车研究所有限公司 一种防止节点地址异常的wtb节点初运行方法及系统

Also Published As

Publication number Publication date
CN117239688A (zh) 2023-12-15
CN117240635A (zh) 2023-12-15
CN117239687A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US8447995B2 (en) Bidirectional inline power port
US7966502B2 (en) System and method for enabling power over ethernet for legacy devices
CN101208903B (zh) 用于通过通信链路供电的系统中的分级引擎
US7921314B2 (en) Providing power over ethernet cables
US10437302B2 (en) Directing a power signal from a port power controller to one of multiple physical ports
KR101196024B1 (ko) 통신 케이블에서 네 쌍의 컨덕터들을 통한 전력 공급
US10666049B2 (en) Power-over-ethernet power method and system
US8479043B2 (en) Power over ethernet powered device with power fallback states
US20110107116A1 (en) System and Method for Power Over Ethernet Enabled Network Management
EP1981208B1 (en) Poe communication bus, interface, and protocol between poe subsystem and phy or switch subsystems
TW200814607A (en) Inband management for power over ethernet midspans using an embedded switch
JP2009100447A (ja) 電力線アダプタ及び省電力モードで動作する電力線アダプタの制御方法
TW201807979A (zh) 用於藉由轉遞受電裝置(pd)輸入電壓而傳輸電力至遠端乙太網路供電(poe)子系統之系統
US7756267B2 (en) System and method for mirroring power over ethernet registers in a physical layer device over a single isolation boundary
CN106330468A (zh) 一种以太网供电装置以及以太网供电方法
US8453012B2 (en) System and method for communicating information relating to powered device power interruption and associated power sourcing equipment fallback power
US8601299B2 (en) System and method for re-balancing power supply efficiency in a networking environment
CN107360005B (zh) 一种受电端设备及受电方法
WO2023236895A1 (zh) 主节点、从节点、供电方法和相关设备
US20240007313A1 (en) System for managing device power consumption and method, device and storage medium
US8806064B2 (en) Virtual interface to the PoE device through an expanded registered map in a networking device such as a PHY
JP2006191377A (ja) 交換装置の電源制御システム
US11936485B2 (en) Power status telemetry for powered devices in a system with power over ethernet
CN213693733U (zh) Pd设备、poe供电系统
CN114326914A (zh) 一种功率调节的方法、供电设备以及受电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819060

Country of ref document: EP

Kind code of ref document: A1