WO2023236816A1 - 通信连接方法、电子设备、计算机可读存储介质 - Google Patents

通信连接方法、电子设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2023236816A1
WO2023236816A1 PCT/CN2023/097190 CN2023097190W WO2023236816A1 WO 2023236816 A1 WO2023236816 A1 WO 2023236816A1 CN 2023097190 W CN2023097190 W CN 2023097190W WO 2023236816 A1 WO2023236816 A1 WO 2023236816A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency unit
location information
baseband processing
processing unit
Prior art date
Application number
PCT/CN2023/097190
Other languages
English (en)
French (fr)
Inventor
成峰波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023236816A1 publication Critical patent/WO2023236816A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present application relates to but is not limited to the field of communication technology, and in particular, to a communication connection method, electronic equipment, and computer-readable storage media.
  • the radio frequency unit and the baseband processing unit are usually connected using a communication channel that complies with the fronthaul protocol.
  • a wireless fronthaul interface of the baseband processing unit uses network transmission equipment such as packet switches to connect multiple radio frequency unit links
  • the physical connection relationship between the first-level radio frequency units of each radio frequency unit link is blurred, resulting in baseband processing It is difficult for the unit and each first-level radio frequency unit to perceive each other's transmission paths and specific physical connection information of the transmission equipment, thus reducing the reliability of optical signal transmission between the baseband processing unit and the first-level radio frequency unit.
  • Embodiments of the present application provide a communication connection method, electronic equipment, and computer-readable storage media.
  • embodiments of the present application provide a communication connection method, which is applied to a baseband processing unit.
  • the baseband processing unit is connected to a radio frequency unit.
  • the communication connection method includes: obtaining the first location information sent by the radio frequency unit. , the first location information is the current location information of the radio frequency unit; when the second location information corresponding to the first location information is matched from the preset location information set to be matched, the radio frequency unit identification is obtained, and Send the radio frequency unit identification to the radio frequency unit, so that the radio frequency unit establishes a communication connection with the baseband processing unit according to the radio frequency unit identification, wherein the second location information is the pre-planned radio frequency unit.
  • Optional location information for the unit is optionally located for the unit.
  • embodiments of the present application provide a communication connection method, which is applied to a radio frequency unit, and the radio frequency unit is connected to a baseband processing unit.
  • the communication connection method includes: obtaining first location information, the first location information is the current location information of the radio frequency unit; sending the first location information to the baseband processing unit, so that the baseband processing unit matches the first location from the preset location information set to be matched.
  • the radio frequency unit identification is obtained, and the obtained radio frequency unit identification is sent to the radio frequency unit, wherein the second location information is the pre-planned available location of the radio frequency unit.
  • Select location information obtain the radio frequency unit identification sent by the baseband processing unit, and establish a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • embodiments of the present application provide a communication connection method, which is applied to information injection equipment.
  • the information injection equipment is connected to a radio frequency unit, and the radio frequency unit is connected to the baseband processing unit.
  • the communication connection method includes: obtaining first location information, which is the current location information of the radio frequency unit; sending the first location information to the baseband processing unit through the radio frequency unit, so that the baseband processing unit unit and the RF unit according to
  • the radio frequency unit identification establishes a communication connection, wherein the radio frequency unit identification is obtained by the baseband processing unit when the second location information corresponding to the first location information is matched from the preset location information set to be matched. and sent to the radio frequency unit, where the second location information is pre-planned optional location information of the radio frequency unit.
  • inventions of the present application provide a communication connection method, which is applied to a communication connection system.
  • the communication connection system includes a radio frequency unit and a baseband processing unit, and the radio frequency unit is connected to the baseband processing unit.
  • the method includes: sending first position information to the baseband processing unit through the radio frequency unit, where the first position information is the current position information of the radio frequency unit; the baseband processing unit is in a preset position to be matched.
  • a radio frequency unit identifier is obtained, and the radio frequency unit identifier is sent to the radio frequency unit, where the second position information is Optional location information of the radio frequency unit planned in advance; when the radio frequency unit obtains the radio frequency unit identification, it establishes a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • inventions of the present application provide a communication connection method, which is applied to a communication connection system.
  • the communication connection system includes an information injection device, a radio frequency unit and a baseband processing unit.
  • the information injection device is connected to the radio frequency unit
  • the radio frequency unit is connected to the baseband processing unit, and the method includes: sending first location information to the radio frequency unit through the information injection device, where the first location information is the current location of the radio frequency unit. information; the radio frequency unit sends the first location information to the baseband processing unit; the baseband processing unit matches the second location information corresponding to the first location information from the preset location information set to be matched.
  • the radio frequency unit identification obtains the radio frequency unit identification and send the radio frequency unit identification to the radio frequency unit, wherein the second location information is the pre-planned optional location information of the radio frequency unit; when the The radio frequency unit obtains the radio frequency unit identification and establishes a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • embodiments of the present application provide an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the following is implemented: The communication connection method described in one aspect, or implements the communication connection method described in the second aspect, or implements the communication connection method described in the third aspect.
  • embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions for executing the communication connection method as described in the first aspect, or for Perform the communication connection method as described in the second aspect, or be used to perform the communication connection method as described in the third aspect.
  • Figure 1 is a step flow chart of a communication connection method provided by an embodiment of the present application.
  • Figure 2 is a flow chart of steps for obtaining a radio frequency unit identity provided by another embodiment of the present application.
  • Figure 3 is a flow chart of steps for sending a radio frequency unit identification to a radio frequency unit according to another embodiment of the present application
  • Figure 4 is a flow chart of steps for sending target service configuration information to a radio frequency unit according to another embodiment of the present application
  • Figure 5 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 6 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 7 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 8 is a flow chart of steps for obtaining target service configuration information provided by another embodiment of the present application.
  • Figure 9 is a flow chart of steps for sending new first location information to a baseband processing unit provided by another embodiment of the present application.
  • Figure 10 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 11 is a flow chart of steps for obtaining the first position code provided by another embodiment of the present application.
  • Figure 12 is a flow chart of steps for obtaining new first location information provided by another embodiment of the present application.
  • Figure 13 is a flow chart of steps for sending a self-test signal to a radio frequency unit according to another embodiment of the present application.
  • Figure 14 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 15 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 16 is a schematic diagram of the connection between the BBU and the AAU provided by another embodiment of the present application.
  • Figure 17 is a schematic diagram of the connection between the BBU and the AAU provided by another embodiment of the present application.
  • Figure 18 is a schematic diagram of the network connection for establishing a communication connection between the BBU and the radio frequency unit provided by another embodiment of the present application;
  • Figure 19 is a module schematic diagram of an information injection device provided by another embodiment of the present application.
  • Figure 20 is a schematic diagram of the coding format of position coding provided by another embodiment of the present application.
  • Figure 21 is a schematic diagram of a DHCP message provided by another embodiment of the present application.
  • Figure 22 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • Figure 23 is a structural diagram of an electronic device provided by another embodiment of the present application.
  • the present application provides a communication connection method, an electronic device, and a computer-readable storage medium.
  • the communication connection method includes: obtaining the first location information sent by the radio frequency unit.
  • the first location information is the current location of the radio frequency unit. location information; when the second location information corresponding to the first location information is matched from the preset location information set to be matched, the radio frequency unit identification is obtained, and the radio frequency unit identification is sent to the radio frequency unit, So that the radio frequency unit establishes a communication connection with the baseband processing unit according to the radio frequency unit identification, wherein the second location information is pre-planned optional location information of the radio frequency unit.
  • the baseband processing unit performs matching processing on the first location information sent by the radio frequency unit and the second location information in the location information set to be matched.
  • the baseband processing unit sends the radio frequency unit identification to the radio frequency unit to establish a communication connection with the radio frequency unit according to the radio frequency unit identification, effectively solving the problem of physical connection between multiple radio frequency units when the communication port of the baseband processing unit is connected to multiple radio frequency units.
  • the technical problem is that the relationship is ambiguous and the baseband processing unit cannot perform reliable transmission with each radio frequency unit, thereby improving the reliability of optical signal transmission between the baseband processing unit and the radio frequency unit.
  • Figure 1 is a step flow chart of a communication connection method provided by an embodiment of the present application.
  • the communication connection method is applied to a baseband processing unit, and the baseband processing unit is connected to a radio frequency unit.
  • the communication connection method includes but does not It is limited to the following steps S110-S120.
  • Step S110 Obtain the first location information sent by the radio frequency unit.
  • the first location information is the current location information of the radio frequency unit. interest.
  • the baseband processing unit receives the first location information sent by the radio frequency unit that represents the current installation location information, and can provide subsequent information through the first location information and the second location information. Perform matching processing to obtain the radio frequency unit identification, and establish a communication connection between the radio frequency unit and the baseband processing unit to provide an effective data basis. Since the radio frequency unit is provided at the base station antenna, the first location information may be the geographical location information of the base station antenna. The embodiments of the present application do not limit the specific data content of the first location information.
  • the content of the first location information may include one of the following: Longitude and latitude information, elevation information, antenna horizontal center direction information, and pitch angle; due to the dispersion of geographical locations and the immutability of geographical locations between base stations, obtaining the first location information can effectively improve the radio frequency unit's acquisition of the radio frequency unit.
  • the degree of automation of identification enables the strengthening of criteria in the positioning process of radio frequency units.
  • the baseband processing unit may be a baseband unit (Base Band Unit, BBU) or a distributed unit (Distributed Unit, DU); the radio frequency unit may be The radio frequency remote unit (RRU, Radio Remote Unit) can also be a device that is integrated with the antenna and the RRU, that is, the active antenna unit (Active Antenna Unit, AAU); those skilled in the art can select it according to the actual application scenario.
  • BBU Base Band Unit
  • DU distributed Unit
  • the radio frequency remote unit RRU, Radio Remote Unit
  • RRU Radio Remote Unit
  • AAU Active Antenna Unit
  • Step S120 When the second position information corresponding to the first position information is matched from the preset position information set to be matched, the radio frequency unit identifier is obtained, and the radio frequency unit identifier is sent to the radio frequency unit, so that the radio frequency unit can The identifier establishes a communication connection with the baseband processing unit, where the second location information is optional location information of the pre-planned radio frequency unit.
  • the location information set to be matched includes multiple second location information, and the second location information is the optional location information of the pre-planned radio frequency unit.
  • multiple optional location information of the radio frequency unit need to be pre-planned.
  • the installation position that is, the position corresponding to each second position information
  • the radio frequency unit identification can uniquely identify the preset radio frequency unit in the base station. parameters; save the location information set to be matched including multiple second location information and the radio frequency unit identification associated with each second location information to the baseband processing unit.
  • the embodiment of the present application does not limit the baseband processing unit to obtain the location information to be matched.
  • the wireless communication network management system stores the second location information of the optional installation locations of each pre-planned radio frequency unit generated during the network planning or network optimization stage.
  • the baseband processing unit can obtain the information from the wireless communication network management system. Obtain the location information set to be matched and the radio frequency unit identification; during the working phase of the radio frequency unit, the radio frequency unit sends the first location information to the baseband processing unit to request the baseband processing unit to allocate the radio frequency unit identification, and establishes a relationship with the baseband processing unit based on the radio frequency unit identification.
  • the radio frequency unit since the first location information represents the current installation location of the radio frequency unit, when the first location information matches any second location information in the set of location information to be matched, it is determined that the radio frequency unit is installed in the pre-planned location in the network planning stage. Optional installation location, the radio frequency unit is positioned successfully, the radio frequency unit identification corresponding to the second location information is obtained, and the radio frequency unit information is fed back to the radio frequency unit, so that the radio frequency unit can establish a communication connection with the baseband processing unit based on the radio frequency unit identification .
  • radio frequency unit identification which may be the radio frequency unit device name, radio frequency unit location information, etc.
  • the first location information includes a first location code; step S120 in the embodiment shown in Figure 1 also includes but is not limited to the following steps S210 and S220.
  • Step S210 Determine the second position coding of the radio frequency unit according to each second position information and the preset first coding rule.
  • Step S220 When the coincidence degree between the first position code and the second position code is less than the preset threshold value, obtain the radio frequency unit logo.
  • the second location information may be original location data including latitude and longitude, elevation information, and pitch angle information.
  • the first location information to be matched includes a first location code
  • the second location information needs to be coded and calculated. , to obtain the coding information in the same format as the first position coding, that is, the second position coding, which provides an effective data basis for fast retrieval and matching of the first position information and the second position information.
  • the preset threshold value represents the maximum allowable error in the degree of coincidence between the first position code and the second position code.
  • the radio frequency unit corresponding to the first position code is installed at the optional installation location pre-planned in the network planning stage.
  • the radio frequency unit is successfully positioned, and the radio frequency unit identification corresponding to the second position code is obtained, which is the radio frequency unit.
  • Establishing a communication connection with the baseband processing unit based on the radio frequency unit identification provides an effective data basis.
  • the embodiments of the present application do not limit the data format when the first position information and the second position information are matched.
  • the data form of the first position information is original position data including longitude and latitude, elevation information, and pitch angle information
  • the first The position information and the second position information can be directly matched, without data format conversion.
  • the encoding rule of the embodiment of the present application may be to format the second location information into various rectangular identification areas with the preset radio frequency unit as the center and the identification threshold distance as the radius. Each rectangular identification area corresponds to a preset radio frequency unit. According to Under general engineering conditions, the identification threshold distance is 30 to 50 meters to meet the site identification needs; the embodiment of the present application does not limit the specific data format of the first position code and the second position code, which can be the data as shown in Figure 20 Encoding format, including 8-bit longitude area code, longitude seconds, longitude minutes, longitude, latitude area code, latitude seconds, latitude minutes, latitude, pitch angle, horizontal azimuth angle, and 16-bit altitude Highly informative, those skilled in the art can determine based on actual needs.
  • the radio frequency unit identification includes a device identification and a network communication address.
  • Step S120 in the embodiment shown in Figure 1 also includes but is not limited to the following step S310.
  • Step S310 Send the device identification and network communication address to the radio frequency unit, so that the radio frequency unit establishes a communication connection with the baseband processing unit according to the network communication address.
  • the communication connection method also includes but is not limited to the following steps S410 and S420.
  • Step S410 Obtain the service configuration request sent by the radio frequency unit.
  • the service configuration request carries the device identification;
  • Step S420 Obtain the target service configuration information according to the device identification, and send the target service configuration information to the radio frequency unit according to the network communication address.
  • the embodiments of this application do not limit the specific acquisition method of the device identification and network communication address in the radio frequency unit identification.
  • the baseband processing unit can communicate with the Dynamic Host Configuration Protocol (DHCP) server.
  • DHCP Dynamic Host Configuration Protocol
  • the DHCP server stores the network communication address corresponding to each device identification.
  • the baseband processing unit obtains the network communication address corresponding to the device identification from the DHCP server, thereby sending the device identification and network communication address to the radio frequency unit so that The radio frequency unit establishes a communication connection with the baseband processing unit according to the network communication address, and the baseband processing unit and the radio frequency unit can communicate with each other through DHCP messages.
  • the baseband processing unit can also communicate with the network management server. After the radio frequency unit establishes a communication connection with the baseband processing unit, the radio frequency unit can send a service configuration request to the baseband processing unit through the network communication address.
  • the service configuration request carries the device identification, that is, the radio frequency
  • the unit sends a DHCP message carrying the device identification to the baseband processing unit, and the baseband processing unit decapsulates the DHCP
  • the message obtains the device identifier, and obtains the target service configuration information corresponding to the device identifier from the network management server.
  • the DHCP message carrying the target service configuration information is fed back to the radio frequency unit according to the network communication address, thereby ensuring the service configuration of the radio frequency unit. Comply with network management configuration.
  • the embodiments of this application do not limit the specific content of the target service configuration information, which may be radio frequency unit operation data, baseband data, etc. that conform to the gateway configuration.
  • the communication connection method also includes but is not limited to the following steps S510 and S520 .
  • Step S510 obtain the new first location information sent by the radio frequency unit
  • Step S520 When the new second location information corresponding to the new first location information is matched from the set of location information to be matched, obtain the new radio frequency unit identification, and resend the new radio frequency unit identification to the radio frequency unit to The radio frequency unit is caused to establish a communication connection with the baseband processing unit according to the new radio frequency unit identification.
  • the radio frequency unit is installed at the base station antenna end. Natural factors, such as wind and rain, may cause the base station antenna's geographical location information, such as pitch angle and horizontal azimuth angle, to change.
  • the base station antenna and radio frequency unit Changes in location information will affect the coverage of the base station signal, thereby affecting the communication between the terminal and the base station. Therefore, it is necessary to obtain the new first location information in real time to determine whether the radio frequency unit is in a pre-planned geographical location.
  • the new first location information matches any second location information in the set of location information to be matched, it means that the radio frequency unit is still located in the pre-planned optional Installation position, re-obtain the new radio frequency unit identification, and resend the new radio frequency unit identification to the radio frequency unit, so that the radio frequency unit can re-establish a communication connection with the baseband processing unit based on the new radio frequency unit identification; when the location information to be matched cannot be concentrated Matching the second location information corresponding to the new first location information indicates that the current radio frequency unit is not located in the pre-planned optional installation location, and the radio frequency unit and the baseband processing unit cannot establish a communication connection.
  • the baseband processing unit is connected to at least two radio frequency units, and the at least two radio frequency units are connected to the same communication port of the baseband processing unit, and the radio frequency unit is the first in the radio frequency unit link.
  • the communication connection method in this embodiment also includes but is not limited to the following steps S610 and S620.
  • Step S610 Obtain the first location information sent by each radio frequency unit.
  • Step S620 When the second location information corresponding to the first location information is matched from the set of location information to be matched, the radio frequency unit identifier is obtained, and the radio frequency unit identifier is sent to the radio frequency unit, so that the radio frequency unit matches the baseband
  • the processing unit establishes a communication connection.
  • a communication port of the baseband processing unit BBU1610 transmits data through packet forwarding.
  • AAU10, AAU20 and AAU30 are respectively the first radio frequency unit link, the second radio frequency unit link and the third radio frequency unit link.
  • the first radio frequency unit of the three radio frequency unit link is the first radio frequency unit of the three radio frequency unit link.
  • the first radio frequency unit link has only one radio frequency unit AAU10; the second radio frequency unit link includes AAU20 and its cascaded radio frequency units AAU21 and AAU22; the third radio frequency unit link includes AAU30 and its cascaded radio frequency unit AAU31; it can also be shown in Figure 17 that a communication port of the baseband processing unit BBU1710 communicates with multiple radio frequency units 1730 (AAU30, AAU40 and AAU50) through a network connection device 1720 (such as a switch, etc.) connect.
  • a network connection device 1720 such as a switch, etc.
  • each radio frequency unit connected to the same communication interface of the baseband processing unit sends first location information to the baseband processing unit to request the baseband processing unit to allocate a radio frequency unit identity.
  • the radio frequency unit identification establishes a communication connection with the baseband processing unit, which no longer relies on the physical connection relationship between devices.
  • the radio frequency unit topology is ambiguous in the Ethernet transmission network, it can identify multiple radio frequency units of the same model in the same area. ability.
  • the radio frequency unit can also request the radio frequency unit identification from the baseband processing unit through identification data such as radio frequency unit model and asset barcode number.
  • identification data such as radio frequency unit model and asset barcode number.
  • these identification data have the defect of low discrimination.
  • the positioning of the radio frequency unit is achieved by matching the information with the pre-planned second location information. Construction and maintenance personnel do not need to record complex asset serial codes, nor do they need to check the asset serial code and configuration of each device in the system. The correctness of the correspondence relationship can greatly plan the construction cost of the network construction phase and the maintenance cost of network maintenance.
  • FIG 7 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • the communication connection method is applied to a radio frequency unit, and the radio frequency unit is connected to a baseband processing unit.
  • the communication connection method includes but does not It is limited to the following steps S710-S730.
  • Step S710 Obtain first location information, which is the current location information of the radio frequency unit.
  • Step S720 Send the first location information to the baseband processing unit, so that the baseband processing unit acquires the radio frequency unit when matching the second location information corresponding to the first location information from the preset location information set to be matched. identification, and sends the radio frequency unit identification to the radio frequency unit, where the second location information is pre-planned optional location information of the radio frequency unit.
  • Step S730 Obtain the radio frequency unit identification sent by the baseband processing unit, and establish a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • the radio frequency unit 1830 may be connected to the network transmission device 1820, the packet fronthaul network and the baseband processing unit BBU 1810 in sequence through optical fibers.
  • the radio frequency unit 1830 connects the information injection device 1900 through an optical fiber, and obtains and obtains the first location information from the information injection device 1900. Save the current location information of the radio frequency unit 1830, that is, the first location information.
  • the radio frequency unit 1830 When the radio frequency unit 1830 obtains the first location information and disconnects from the information injection device 1900, the radio frequency unit 1830 starts to work and is connected to the BBU 1810 through optical fiber, and Send the first location information to the BBU 1810, so that the BBU 1810 sends the radio frequency unit 1830 identification to the radio frequency unit 1830 when matching the second location information corresponding to the first location information from the preset location information set to be matched, Thus, the radio frequency unit 1830 can establish a communication connection with the BBU 1810 according to the radio frequency unit 1830 identification.
  • the embodiment of this application does not limit the specific data format of the first location information.
  • the first location information may include as shown in Figure 20
  • the first position code in the position coding format when the first position information includes the first position code, the technical solution and principle of the matching process between the first position information and the second position information can refer to the implementation shown in Figure 2 For example, I won’t go into details here.
  • the technical solution and principle of this embodiment can be referred to the embodiment shown in Figure 1.
  • the main difference is that the execution direction of the communication connection method implemented in this embodiment is different from the communication connection method in the embodiment shown in Figure 1.
  • This embodiment is as the third A sending end of location information sends the first location information to the baseband processing unit, so that the baseband processing unit matches the second location information corresponding to the first location information from the preset location information set to be matched,
  • the radio frequency unit identification is sent to the radio frequency unit, so that the radio frequency unit can establish a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • it is similar to the embodiment shown in Figure 1. For the sake of simplicity, no further details will be described here. .
  • the radio frequency unit identification includes a device identification and a network communication address.
  • the communication connection method also includes but is not limited to the following steps S810: S820.
  • Step S810 Send a service configuration request to the baseband processing unit according to the network communication address.
  • the service configuration request carries the device identification, so that the baseband processing unit obtains the target service configuration information according to the device identification, and sends the target service configuration information to the baseband processing unit according to the network communication address.
  • RF unit Send a service configuration request to the baseband processing unit according to the network communication address.
  • Step S820 Obtain the target service configuration information sent by the baseband processing unit.
  • the technical solution and principle of this embodiment can be referred to the embodiment shown in Figure 4.
  • the main difference is that the execution direction of the communication connection method implemented in this embodiment is different from the communication connection method in the embodiment shown in Figure 4.
  • This embodiment is used as a business
  • the sender of the configuration request sends a service configuration request to the baseband processing unit, so that the baseband processing unit obtains the target service configuration information according to the device identification in the service configuration request, and feeds back the target service configuration information to the radio frequency unit.
  • the same as in Figure The embodiment shown in 1 is similar, and for simplicity of description, no further details are given here.
  • the communication connection method includes but is not limited to the following steps S910 and S920.
  • Step S910 when new first location information is received.
  • Step S920 Send the new first location information to the baseband processing unit, so that when the baseband processing unit matches the new second location information corresponding to the new first location information from the set of location information to be matched, Re-obtain the new radio frequency unit identification and resend the new radio frequency unit identification to the radio frequency unit.
  • the information injection device obtains the new first location information in real time or periodically.
  • Location information when the information injection device detects that the new first location information is different from the initial first location information (that is, the initial location information of the radio frequency unit saved during the network construction phase), the communication connection between the radio frequency unit and the baseband processing unit is disconnected, The information injection device accesses the radio frequency unit through the optical fiber, and sends the data update information containing the new first location information to the radio frequency unit, so that the radio frequency unit determines the updated data as the new first location information according to the data update information, and the radio frequency unit After saving the new first location information, disconnect the information injection device and reconnect the baseband processing unit, thereby sending the new first location information to the baseband processing unit.
  • Figure 10 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • the communication connection method is applied to the information injection device, the information injection device is connected to the radio frequency unit, and the radio frequency unit is connected to the baseband processing unit.
  • the communication connection method includes but is not limited to the following steps S1010 and S1020.
  • Step S1010 Obtain first location information, where the first location information is the current location information of the radio frequency unit.
  • Step S1020 Send the first location information to the baseband processing unit through the radio frequency unit, so that the baseband processing unit and the radio frequency unit establish a communication connection according to the radio frequency unit identification, where the radio frequency unit identification is obtained by the baseband processing unit from the preset location information to be matched.
  • the radio frequency unit identification is obtained by the baseband processing unit from the preset location information to be matched.
  • the second position information corresponding to the first position information is centrally matched, it is obtained and sent to the radio frequency unit.
  • the second position information is the pre-planned optional position information of the radio frequency unit.
  • the embodiment of the present application does not limit the connection method between the radio frequency unit and the information injection device.
  • the radio frequency unit 1830 can be connected to the information injection device 1900 through optical fiber; the technical solution and principle of this embodiment can be referred to Figure 7
  • the main difference between the embodiments is that the execution direction of the communication connection method in this embodiment is different from the communication connection method in the embodiment shown in Figure 7.
  • This embodiment serves as the initial sending end of the first location information and processes it to the baseband through the radio frequency unit.
  • the unit sends the first location information, so that the baseband processing unit sends the radio frequency unit identification to the radio frequency unit when matching the second location information corresponding to the first location information from the preset location information set to be matched, so that The radio frequency unit is able to establish a communication connection with the baseband processing unit according to the radio frequency unit identification. Otherwise, it is similar to the embodiment shown in Figure 7. For simplicity of description, no further details will be given here.
  • step 1020 in the embodiment of Figure 10 includes but is not limited to the following steps S1110 and S1120.
  • Step S1110 Encode the first position information according to the preset second encoding rule to obtain the first position code.
  • Step S1120 Send the first position code to the baseband processing unit through the radio frequency unit.
  • the technical solution and principle of this embodiment can be referred to the embodiment shown in Figure 2.
  • the main difference is that the execution direction of the communication connection method implemented in this embodiment is different from the communication connection method in the embodiment shown in Figure 2.
  • This embodiment serves as the third An initial transmitting end of the position code sends the first position information including the first position code to the baseband processing unit through the radio frequency unit, so that the baseband processing unit matches the first position code from the preset position information set to be matched.
  • the radio frequency unit identification is sent to the radio frequency unit, so that the radio frequency unit can establish a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • it is similar to the embodiment shown in Figure 7. For the sake of simplicity, no further details will be given here.
  • the embodiments of this application do not limit the second encoding rule.
  • the second encoding rule can be the same as the first encoding rule, as long as it can ensure that the encoding format of the first position encoding and the encoding format of the second position encoding are the same.
  • the encoding rules are based on It is common knowledge in the field and will not be elaborated here.
  • the communication connection method includes but is not limited to the following step S1210.
  • Step S1210 when a change in the first location information is detected, the changed new first location information is sent to the baseband processing unit through the radio frequency unit, so that the baseband processing unit and the radio frequency unit establish a communication connection based on the new radio frequency unit identification, wherein, the new radio frequency unit identification is obtained and sent to the radio frequency unit when the baseband processing unit matches the new second location information corresponding to the new first location information from the preset location information set to be matched.
  • the technical solution and principle of this embodiment can be referred to the embodiment shown in Figure 9.
  • the main difference is that the execution direction of the communication connection method in this embodiment is different from the communication connection method in the embodiment shown in Figure 9.
  • This embodiment is a new
  • the initial sending end of the first location information is the way to obtain new first location information in the embodiment shown in Figure 9. Otherwise, it is similar to the embodiment shown in Figure 9. For the sake of simplicity, it will not be described here. More details.
  • the communication connection method includes but is not limited to the following steps S1310 and S1320.
  • Step S1310 Send a self-test signal to the radio frequency unit, so that the radio frequency unit obtains a self-test result based on the self-test signal, and sends the self-test result to the information injection device.
  • Step S1320 Receive the self-test result sent by the radio frequency unit.
  • the information injection device can send a self-test signal to the radio frequency unit.
  • the self-test signal can include a self-test command for each output channel of the radio frequency unit, so that the radio frequency unit obtains the self-test result according to the self-test signal and sends the self-test signal to the radio frequency unit.
  • the results are sent to the information injection device so that the information injection device can monitor the equipment quality of the radio frequency unit and ensure the operation safety of the radio frequency unit.
  • the communication connection system includes a radio frequency unit and a baseband processing unit.
  • the radio frequency unit is connected to the baseband processing unit.
  • the communication connection method Including but not limited to the following steps S1410-S1430.
  • Step S1410 Send the first location information to the baseband processing unit through the radio frequency unit, where the first location information is the current location information of the radio frequency unit.
  • Step S1420 when the baseband processing unit matches the second position information corresponding to the first position information from the preset position information set to be matched, obtains the radio frequency unit identification and sends the radio frequency unit identification to the radio frequency unit, where , the second location information is the optional location information of the pre-planned radio frequency unit.
  • Step S1430 When the radio frequency unit obtains the radio frequency unit identification, it establishes a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • Figure 15 is a step flow chart of a communication connection method provided by another embodiment of the present application.
  • the communication connection method is applied to a communication connection system.
  • the communication connection system includes an information injection device, a radio frequency unit and a baseband processing unit.
  • the information injection device is connected to the radio frequency unit, and the radio frequency unit is connected to the baseband processing unit.
  • the communication connection method includes but is not limited to the following steps S1510-S1540.
  • Step S1510 Send the first location information to the radio frequency unit through the information injection device, where the first location information is the current location information of the radio frequency unit.
  • Step S1520 The radio frequency unit sends the first location information to the baseband processing unit.
  • Step S1530 when the baseband processing unit matches the second location information corresponding to the first location information from the preset location information set to be matched, obtains the radio frequency unit identification and sends the radio frequency unit identification to the radio frequency unit, where , the second location information is the optional location information of the pre-planned radio frequency unit.
  • Step S1540 When the radio frequency unit obtains the radio frequency unit identification, it establishes a communication connection with the baseband processing unit according to the radio frequency unit identification.
  • Figure 18 is a network connection schematic diagram for establishing a communication connection between the BBU and the radio frequency unit provided by another embodiment of the present application.
  • the radio frequency unit 1830 is connected to the information injection device 1900 through an optical fiber, and the radio frequency unit 1830 is connected to the information injection device 1900 through an optical fiber in turn.
  • the network transmission equipment 1820, the packet fronthaul network and the baseband processing unit BBU1810 are connected;
  • Figure 19 is the Apply for a module schematic diagram of the information injection device provided by another embodiment.
  • the information injection device 1900 includes an operation and maintenance display screen 1910, an embedded operation module 1920, a location information acquisition module 1930 and an optical communication module 1940; the information injection device 1900 of each module
  • the functions are as follows: the embedded operation module 1920 communicates with the radio frequency unit through the optical communication module 1940, and presents the information reported by the radio frequency unit on the operation and maintenance display screen 1910, so that the operator can monitor the data information of the radio frequency unit in real time; the embedded operation module 1920 The geographical information of the current base station, including longitude, latitude, and elevation information, is obtained through the location information acquisition module 1930, and the first location code is output after encoding processing, and the first location code can be sent to the radio frequency unit and saved by the radio frequency unit; embedded The operation module 1920 can also send a self-check signal to the radio frequency unit, so that the radio frequency unit completes maintenance functions such as equipment health self-check based on the self-check signal.
  • the embodiment of the present application does not limit the specific structure of the location information acquisition module 1930, which may be a replaceable GPS Beidou
  • Example 1 of the embodiments of the present application is executed based on the network connection scenarios shown in Figures 18 and 19; in Example 1, refer to Figure 22, which is the steps of the communication connection method provided by another embodiment of the present application. As shown in the flow chart, the communication connection method includes but is not limited to the following steps S2201-S2212.
  • Step S2201 during the network construction phase or network maintenance phase, the information injection device is connected to the radio frequency unit through optical fiber.
  • the information injection device simulates the BBU and sends a special radio frequency unit ID to the radio frequency unit.
  • the radio frequency unit can detect the relationship between the radio frequency unit and the radio frequency unit based on the special radio frequency unit ID.
  • the BBU is connected to the information injection device.
  • Step S2202 When the radio frequency unit identifies that the current radio frequency unit is connected to the information injection device based on the special radio frequency unit ID, the radio frequency unit reports the currently stored initial first position code (sent by the information injection device) to the information injection device,
  • the specific format of the initial position information encoding can refer to the data encoding format in Figure 20, including the longitude area code with a byte length of 8 bits, longitude seconds, longitude minutes, longitude, latitude area code, latitude seconds, latitude minutes, latitude, and pitch angle , horizontal azimuth angle, and altitude information with a byte length of 16 bits.
  • Those skilled in the art can determine the specific format of position information encoding according to actual needs, and there are no restrictions here.
  • Step S2203 The information injection device inputs the received initial first position code into the embedded operation module for calculation, and then displays it on the operation and maintenance display in the form of original longitude and latitude, elevation, antenna horizontal center direction, pitch angle and other data. .
  • Step S2204 the information injection device obtains the longitude, latitude, and elevation information of the current actual location of the radio frequency unit according to the position information acquisition module, and the operator inputs the observed horizontal center direction and pitch angle of the antenna feed of the radio frequency unit, that is, the information including the longitude, latitude, and elevation is obtained. , the first position information of the antenna feeder horizontal center direction and pitch angle; the embedded operation module displays the first position information on the operation and maintenance display screen, and the original first position code corresponding to the initial first position code reported by the radio frequency unit to the information injection device Data are displayed for comparison.
  • Step S2205 When the new first position information is different from the original data corresponding to the initial first position code, the new first position information is encoded and calculated through the embedded operation module to obtain a new first position code, and the new first position code is obtained. The first position code is sent to the radio frequency unit for update and storage.
  • Step S2206 the information injection device sends a self-test signal to the radio frequency unit, so that the radio frequency unit completes the self-test according to the self-test signal, obtains the self-test result, and sends the self-test result to the information injection device, and presents it to the operator through the operation and maintenance display screen. member.
  • Step S2207 When the radio frequency unit identifies that the current radio frequency unit is connected to the baseband processing unit based on the special radio frequency unit ID, the radio frequency unit sends the DHCP message carrying the first position code to the baseband processing unit; the DHCP message
  • the specific format can be shown in Figure 21.
  • the first position code is stored in the identifier field.
  • Step S2208 In the network planning stage, the baseband processing unit obtains the second location information from the network management system.
  • the information represents the optional installation position of the preset radio frequency unit.
  • the baseband processing unit formats the second position information into a second position code according to the preset coding rules.
  • the specific encoding method can be: format the second position information into a preset code. Assume that the radio frequency unit is the center and the identification threshold distance is each rectangular identification area with a radius of 30 to 50 meters. Each rectangular identification area corresponds to a preset radio frequency unit.
  • the format of the second position encoding can be shown in Figure 20.
  • Step S2209 the baseband processing unit predetermines a unique device identification for each preset radio frequency unit. This device identification will be used as the unique identification information of the radio frequency unit in the base station; the baseband processing unit determines in the DHCP server according to the equipment identification of each radio frequency unit. Plan the network communication address of the unique corresponding radio frequency unit for dynamic application of the radio frequency unit.
  • Step S2210 After the baseband processing unit receives the DHCP message carrying the first position code sent by the radio frequency unit, the baseband radio frequency unit decapsulates the DHCP message to obtain the first position code, and combines the first position code with all the second position codes. The codes are compared one by one until the first position code is calculated that coincides with the identification area corresponding to any second position code and matches the azimuth angle, pitch angle and elevation information of the radio frequency unit antenna corresponding to any second position code.
  • the radio frequency unit corresponding to the first position code is installed at the pre-planned optional installation location, thereby obtaining the device identification corresponding to the identification area as the radio frequency unit identification of the radio frequency unit, and the baseband processing unit obtains the corresponding information from the DHCP server.
  • the network communication address corresponding to the device identification and sends the DHCP message carrying the device identification and network communication address to the radio frequency unit; the matching of the first position code and the second position code can be achieved through the fuzzy comparison method. Fuzzy comparison The method is well known to those skilled in the art and is not limited here.
  • Step S2211 the radio frequency unit obtains the DHCP message carrying the device identification and network communication address, and establishes a communication connection with the baseband processing unit through the network communication address; after the radio frequency unit establishes a communication connection with the baseband processing unit, the radio frequency unit communicates with the baseband processing unit through the network communication address.
  • the baseband processing unit sends a service configuration request, and the service configuration request carries the device identification;
  • Step S2212 The baseband processing unit obtains the device identification from the service configuration request, retrieves the target service configuration information corresponding to the device identification in the network management system, and sends the target service configuration information to the radio frequency unit through the network communication address.
  • one embodiment of the present application also provides an electronic device 2300.
  • the electronic device 2300 includes: a memory 2310, a processor 2320, and a computer program stored on the memory 2310 and executable on the processor 2320. .
  • the processor 2320 and the memory 2310 may be connected through a bus or other means.
  • the non-transient software programs and instructions required to implement the communication connection method of the above embodiment are stored in the memory 2310.
  • the communication connection method applied to the baseband processing unit 2300 in the above embodiment is executed, for example , execute the above-described method steps S110 to S120 in Fig. 1, method steps S210 to S230 in Fig. 2, method step S310 in Fig. 3, method steps S410 to S420 in Fig.
  • Method steps S410 to S420 in Fig. 5 Method steps S510 to step S520 and method steps S610 to step S620 in Figure 6, or perform the above-described method steps S710 to step S730 in Figure 7, method steps S810 to step S820 in Figure 8, and method steps S820 in Figure 9.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Execution by a processor 2320 in the embodiment of the electronic device 2300 can cause the above-mentioned processor 2320 to perform the communication connection method applied to the electronic device 2300 in the above embodiment, for example, perform the method steps S110 to S110 in Figure 1 described above.
  • Step S120 method steps S210 to step S230 in Figure 2, method step S310 in Figure 3, method steps S410 to step S420 in Figure 4, method steps S510 to step S520 in Figure 5, and method steps in Figure 6 S610 to step S620, or perform the above-described method steps S710 to step S730 in FIG. 7, method steps S810 to step S820 in FIG. 8, and method steps S910 to step S920 in FIG. 9, or perform the above-described method.
  • Method steps S1010 to S1020 in FIG. 10 method steps S1110 to S1120 in FIG. 11 , method step S1210 in FIG. 12 , and method steps S1310 to S1320 in FIG. 13 .
  • Embodiments of the present application include: obtaining the first location information sent by the radio frequency unit, where the first location information is the current location information of the radio frequency unit; when matching the first location information from the preset location information set to be matched. Second position information corresponding to the first position information, obtain the radio frequency unit identification, and send the radio frequency unit identification to the radio frequency unit, so that the radio frequency unit establishes communication with the baseband processing unit according to the radio frequency unit identification Connection, wherein the second location information is pre-planned optional location information of the radio frequency unit.
  • the baseband processing unit performs matching processing on the first location information sent by the radio frequency unit and the second location information in the location information set to be matched.
  • the baseband processing unit sends the radio frequency unit identification to the radio frequency unit to establish a communication connection with the radio frequency unit according to the radio frequency unit identification, effectively solving the problem of physical connection between multiple radio frequency units when the communication port of the baseband processing unit is connected to multiple radio frequency units.
  • the technical problem is that the relationship is ambiguous and the baseband processing unit cannot perform reliable transmission with each radio frequency unit, thereby improving the reliability of optical signal transmission between the baseband processing unit and the radio frequency unit.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信连接方法、电子设备、计算机可读存储介质,方法包括:获取射频单元发送的表征射频单元的当前位置的第一位置信息(S110);当从预设的待匹配位置信息集中匹配出与第一位置信息相对应的表征预先规划的射频单元的可选位置的第二位置信息,将射频单元标识发送至射频单元,以使射频单元根据射频单元标识与基带处理单元建立通信连接(S120)。

Description

通信连接方法、电子设备、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202210636001.X、申请日为2022年6月7日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种通信连接方法、电子设备、计算机可读存储介质。
背景技术
在第五代通信(5th Generation,5G)系统中,射频单元与基带处理单元之间通常采用符合前传协议的通信通道进行连接。在基带处理单元的一个无线前传接口采用分组交换机等网络传输设备连接多个射频单元链路的情况下,各个射频单元链路的首级射频单元之间的物理连接关系的模糊化,导致基带处理单元和各个首级射频单元之间难以相互感知彼此的传输路径及传输设备的具体物理连接信息,从而使得基带处理单元与首级射频单元之间的光信号传输的可靠性降低。
发明内容
本申请实施例提供了一种通信连接方法、电子设备、计算机可读存储介质。
第一方面,本申请实施例提供了一种通信连接方法,应用于基带处理单元,所述基带处理单元与射频单元相连接,该通信连接方法包括:获取所述射频单元发送的第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;当从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息。
第二方面,本申请实施例提供了一种通信连接方法,应用于射频单元,所述射频单元与基带处理单元相连接,该通信连接方法包括:获取第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;将所述第一位置信息发送至所述基带处理单元,以使所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述获取射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;获取所述基带处理单元发送的所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
第三方面,本申请实施例提供了一种通信连接方法,应用于信息注入设备,所述信息注入设备与射频单元相连接,所述射频单元与所述基带处理单元相连接,该通信连接方法包括:获取第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;将所述第一位置信息通过所述射频单元发送至所述基带处理单元,以使所述基带处理单元和所述射频单元根据 射频单元标识建立通信连接,其中,所述射频单元标识由所述基带处理单元从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取并发送至所述射频单元,所述第二位置信息为预先规划的所述射频单元的可选位置信息。
第四方面,本申请实施例提供了一种通信连接方法,应用于通信连接系统,所述通信连接系统包括射频单元和基带处理单元,所述射频单元与所述基带处理单元相连接,所述方法包括:通过所述射频单元将第一位置信息发送至所述基带处理单元,所述第一位置信息为所述射频单元当前的位置信息;所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;当所述射频单元获取到所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
第五方面,本申请实施例提供了一种通信连接方法,应用于通信连接系统,所述通信连接系统包括信息注入设备、射频单元和基带处理单元,所述信息注入设备与射频单元相连接,所述射频单元与所述基带处理单元相连接,所述方法包括:通过所述信息注入设备将第一位置信息发送至所述射频单元,所述第一位置信息为所述射频单元当前的位置信息;所述射频单元将所述第一位置信息发送至所述基带处理单元;所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;当所述射频单元获取到所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
第六方面,本申请实施例提供了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的通信连接方法,或者,实现如第二方面所述的通信连接方法,或者,实现如第三方面所述的通信连接方法。
第七方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如第一方面所述的通信连接方法,或者,用于执行如第二方面所述的通信连接方法,或者,用于执行如第三方面所述的通信连接方法。
附图说明
图1是本申请一个实施例提供的通信连接方法的步骤流程图;
图2是本申请另一个实施例提供的获取射频单元标识的步骤流程图;
图3是本申请另一个实施例提供的将射频单元标识发送至射频单元的步骤流程图;
图4是本申请另一个实施例提供的将目标业务配置信息发送至射频单元的步骤流程图;
图5是本申请另一个实施例提供的通信连接方法的步骤流程图;
图6是本申请另一个实施例提供的通信连接方法的步骤流程图;
图7是本申请另一个实施例提供的通信连接方法的步骤流程图;
图8是本申请另一个实施例提供的获取目标业务配置信息的步骤流程图;
图9是本申请另一个实施例提供的将新的第一位置信息发送至基带处理单元的步骤流程图;
图10是本申请另一个实施例提供的通信连接方法的步骤流程图;
图11是本申请另一个实施例提供的获取第一位置编码的步骤流程图;
图12是本申请另一个实施例提供的获取新的第一位置信息的步骤流程图;
图13是本申请另一个实施例提供的向射频单元发送自检信号的步骤流程图;
图14是本申请另一个实施例提供的通信连接方法的步骤流程图;
图15是本申请另一个实施例提供的通信连接方法的步骤流程图;
图16是本申请另一个实施例提供的BBU与AAU相连接的示意图;
图17是本申请另一个实施例提供的BBU与AAU相连接的示意图;
图18是本申请另一个实施例提供的BBU与射频单元建立通信连接的网络连接示意图;
图19是本申请另一个实施例提供的信息注入设备的模块示意图;
图20是本申请另一个实施例提供的位置编码的编码格式示意图;
图21是本申请另一个实施例提供的DHCP报文的示意图;
图22是本申请另一个实施例提供的通信连接方法的步骤流程图;
图23是本申请另一个实施例提供的电子设备的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
可以理解的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种通信连接方法、电子设备、计算机可读存储介质,其中,通信连接方法包括:获取所述射频单元发送的第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;当从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息。根据本申请实施例提供的方案,基带处理单元通过将射频单元发送的第一位置信息与待匹配位置信息集中的第二位置信息进行匹配处理,当第一位置信息与第二位置信息相匹配,基带处理单元将射频单元标识发送至射频单元,以根据射频单元标识与射频单元建立通信连接,有效解决在基带处理单元的通信端口连接多个射频单元的情况下,多个射频单元之间物理连接关系模糊,基带处理单元无法与各个射频单元之间进行可靠传输的技术问题,进而提高基带处理单元与射频单元之间的光信号传输的可靠性。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的通信连接方法的步骤流程图,该通信连接方法应用于基带处理单元,基带处理单元与射频单元相连接,该通信连接方法包括但不限于有以下步骤S110-S120。
步骤S110,获取射频单元发送的第一位置信息,第一位置信息为射频单元当前的位置信 息。
可以理解的是,在射频单元安装完成后,射频单元处于工作阶段,基带处理单元接收射频单元发送的表征当前安装位置信息的第一位置信息,能够为后续通过第一位置信息与第二位置信息进行匹配处理,进而获取射频单元标识,建立射频单元与基带处理单元之间的通信连接提供有效的数据基础。由于射频单元设置在基站天线端,第一位置信息可以为基站天线的地理位置信息,本申请实施例并不限制第一位置信息的具体数据内容,第一位置信息的内容可以包括如下之一:经纬度信息、高程信息、天馈水平中心方向信息、俯仰角;由于地理位置的分散性,以及基站与基站之间地理位置的不易变性,通过获取第一位置信息,能够有效提高射频单元获取射频单元标识的自动化程度,实现射频单元定位过程中的判据强化。
在本申请实施例中,并不限制基带处理单元以及射频单元的具体结构,基带处理单元可以是基带单元(Base Band Unit,BBU),或者分布式单元(Distributed Unit,DU);射频单元可以是射频拉远单元(RRU,Radio Remote Unit),还可以是由天线与RRU融合在一起的设备,即有源天线单元(Active Antenna Unit,AAU);本领域技术人员可以根据实际应用场景进行选用。
步骤S120,当从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息,获取射频单元标识,并将射频单元标识发送至射频单元,以使射频单元根据射频单元标识与基带处理单元建立通信连接,其中,第二位置信息为预先规划的射频单元的可选位置信息。
本申请实施例中,待匹配位置信息集包括多个第二位置信息,第二位置信息为预先规划的射频单元的可选位置信息,在网络规划阶段,需要预先规划射频单元的多个可选安装位置(即各个第二位置信息对应的位置),并为各个可选安装位置对应的预设射频单元确定唯一的射频单元标识,该射频单元标识为能够在基站中唯一标识该预设射频单元的参数;将包括多个第二位置信息的待匹配位置信息集、与各个第二位置信息相关联的射频单元标识保存至基带处理单元,本申请实施例不限制基带处理单元获取待匹配位置信息集、射频单元标识的方式,无线通信网管系统中存储了网络规划或网络优化阶段生成的各个预先规划的射频单元的可选安装位置的第二位置信息,基带处理单元可以从无线通信网管系统中获取待匹配位置信息集、射频单元标识;在射频单元工作阶段,射频单元通过向基带处理单元发送第一位置信息,以请求基带处理单元分配射频单元标识,并根据射频单元标识与基带处理单元建立通信连接;由于第一位置信息表征当前射频单元的安装位置,当第一位置信息与待匹配位置信息集中任意一个第二位置信息相匹配,确定该射频单元安装在网络规划阶段中预先规划好的可选安装位置,该射频单元定位成功,获取与第二位置信息对应的射频单元标识,并将该射频单元信息反馈至射频单元,以使射频单元能够根据射频单元标识与基带处理单元建立通信连接。
本申请实施例并不限制射频单元标识的具体数据内容,可以是射频单元设备名称、射频单元位置信息等等,本领域技术人员有动机根据实际情况确定。
另外,参照图2,在一实施例中,第一位置信息包括第一位置编码;图1所示实施例中的步骤S120还包括但不限于有以下步骤S210、S220。
步骤S210,根据各个第二位置信息和预设的第一编码规则确定射频单元的第二位置编码。
步骤S220,当第一位置编码与第二位置编码的重合度小于预设的门限值,获取射频单元 标识。
在本申请实施例中,第二位置信息可以是包括经纬度、高程信息、俯仰角信息的原始位置数据,当待匹配的第一位置信息包括第一位置编码,需要对第二位置信息进行编码计算,得到与第一位置编码格式相同的编码信息,即第二位置编码,为实现第一位置信息与第二位置信息进行快速检索匹配提供有效的数据基础。可以理解的是,预设的门限值表征可允许的第一位置编码与第二位置编码之间重合度的最大误差,当第一位置编码与第二位置编码的重合度小于预设的门限值,可以确定与第一位置编码对应的射频单元安装在网络规划阶段中预先规划好的可选安装位置,该射频单元定位成功,获取与第二位置编码对应的射频单元标识,为射频单元根据射频单元标识与基带处理单元建立通信连接提供有效的数据基础。
本申请实施例并不限制第一位置信息与第二位置信息的进行匹配处理时的数据格式,当第一位置信息的数据形式为包括经纬度、高程信息、俯仰角信息的原始位置数据,第一位置信息与第二位置信息直接进行匹配处理即可,不需进行数据格式转换。
本申请实施例的编码规则可以是将第二位置信息格式化为以预设射频单元为中心,以识别门限距离为半径的各个矩形识别区域,每个矩形识别区域对应一个预设射频单元,按照一般的工程情况,识别门限距离为30至50米即可满足站点识别需要;本申请实施例并不限制第一位置编码以及第二位置编码的具体数据格式,可以是如图20所示的数据编码格式,包括有字节长度为8bit的经度区域码、经度秒、经度分、经度、纬度区域码、纬度秒、纬度分、纬度、俯仰角、水平方位角,以及字节长度为16bit的海拔高度信息,本领域技术人员可以根据实际需求确定。
另外,参照图3,在一实施例中,射频单元标识包括设备标识和网络通信地址,图1所示实施例中的步骤S120还包括但不限于有以下步骤S310。
步骤S310,将设备标识和网络通信地址发送至射频单元,以使射频单元根据网络通信地址与基带处理单元建立通信连接。
另外,参照图4,在一实施例中,在图1所示实施例中的步骤S120之后,通信连接方法还包括但不限于有以下步骤S410、S420。
步骤S410,获取射频单元发送的业务配置请求,业务配置请求携带有设备标识;
步骤S420,根据设备标识获取目标业务配置信息,并根据网络通信地址将目标业务配置信息发送至射频单元。
本申请实施例并不限制射频单元标识中的设备标识和网络通信地址的具体获取方法,对于设备标识,可以参考图1实施例的描述,在基带处理单元中预先设置与第二位置信息关联的设备标识;对于网络通信地址,基带处理单元可以与动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)服务器通信连接,DHCP服务器中存储有与各个设备标识对应的网络通信地址,在第一位置信息与待匹配位置信息集中任意一个第二位置信息相匹配的情况下,基带处理单元从DHCP服务器中获取与设备标识相对应的网络通信地址,从而将设备标识和网络通信地址发送至射频单元,以使射频单元根据网络通信地址与基带处理单元建立通信连接,基带处理单元与射频单元从而可以通过DHCP报文进行相互通信。基带处理单元还可以与网管服务器通信连接,在射频单元与基带处理单元建立通信连接之后,射频单元可以通过网络通信地址向基带处理单元发送业务配置请求,该业务配置请求携带有设备标识,即射频单元发送携带有设备标识的DHCP报文至基带处理单元,基带处理单元通过解封装该DHCP 报文得到设备标识,并从网管服务器中获取与设备标识相对应的目标业务配置信息,根据网络通信地址将携带有目标业务配置信息的DHCP报文反馈至射频单元,从而保证射频单元的业务配置符合网管配置。
本申请实施例并不限制目标业务配置信息的具体内容,可以是符合网关配置的射频单元运行数据、基带数据等。
另外,参照图5,在一实施例中,在一实施例中,在图1所示实施例中的步骤S120之后,通信连接方法还包括但不限于有以下步骤S510、S520。
步骤S510,获取射频单元发送的新的第一位置信息;
步骤S520,当从待匹配位置信息集中匹配出与新的第一位置信息相对应的新的第二位置信息,获取新的射频单元标识,并将新的射频单元标识重新发送至射频单元,以使射频单元根据新的射频单元标识与基带处理单元建立通信连接。
可以理解的是,射频单元安装于基站天线端,可能会由于自然因素,如风吹雨打等情况,导致基站天线的地理位置信息,例如俯仰角,水平方位角发生变化,基站天线以及射频单元的位置信息变化会影响基站信号的覆盖范围,从而影响终端与基站之间的通信,因此需要实时获取新的第一位置信息,确定射频单元是否处于预先规划好的地理位置中,为保障终端与基站之间良好通信,维持基站信号的覆盖范围提供有效的数据基础;当新的第一位置信息与待匹配位置信息集中任意一个第二位置信息相匹配,说明射频单元仍然位于预先规划的可选安装位置,重新获取新的射频单元标识,并将新的射频单元标识重新发送至射频单元,以使射频单元根据新的射频单元标识与基带处理单元重新建立通信连接;当待匹配位置信息集中不能匹配出与新的第一位置信息相对应的第二位置信息,说明当前射频单元不位于预先规划的可选安装位置,该射频单元与基带处理单元不能建立通信连接。
另外,参照图6,在一实施例中,基带处理单元与至少两个射频单元相连接,至少两个射频单元连接于基带处理单元的同一个通信端口,射频单元为射频单元链路中的首级射频单元,本实施例的通信连接方法还包括但不限于有以下步骤S610、S620。
步骤S610,获取各个射频单元发送的第一位置信息。
步骤S620,当从待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息,获取射频单元标识,并将射频单元标识发送至射频单元,以使射频单元根据射频单元标识与基带处理单元建立通信连接。
可以理解的是,本申请实施例并不限制至少两个射频单元连接于基带处理单元的同一个通信端口的具体形式,可以是如图16所示,基带处理单元BBU1610的一个通信端口通过分组前传网络连接有多个射频单元1620,包括第一射频单元AAU10,第二射频单元AAU20和第三射频单元AAU30,AAU10、AAU20和AAU30分别为第一射频单元链路、第二射频单元链路和第三射频单元链路的首级射频单元,第一射频单元链路只有一个射频单元AAU10;第二射频单元链路包括AAU20及其级联的射频单元AAU21、AAU22;第三射频单元链路包括AAU30及其级联的射频单元AAU31;还可以是如图17所示,基带处理单元BBU1710的一个通信端口通过网络连接设备1720(如交换机等)与多个射频单元1730(AAU30、AAU40和AAU50)相连接。
由于至少两个射频单元连接于基带处理单元的同一个通信端口,导致连接于同一个通信端口的各个射频单元之间的拓扑关系是局部模糊的,而不是简单呈现为级联的拓扑关系,因此,通过类似控制字的方式下发并逐级传递射频单元标识的方式不再适用;本申请实施例中, 参考图1实施例的描述,在射频单元工作阶段,与基带处理单元的同一个通信接口相连接的各个射频单元通过向基带处理单元发送第一位置信息,以请求基带处理单元分配射频单元标识,并根据射频单元标识与基带处理单元建立通信连接;由于第一位置信息表征当前射频单元的安装位置,当第一位置信息与待匹配位置信息集中任意一个第二位置信息相匹配,确定该射频单元安装在网络规划阶段中预先规划好的可选安装位置,该射频单元定位成功,获取与第二位置信息对应的射频单元标识,并将该射频单元信息反馈至射频单元,以使射频单元能够根据射频单元标识与基带处理单元建立通信连接,能够不再依赖设备之间的物理连接关系,在以太网传输网络中射频单元拓扑模糊的情况下,对同一区域内多台同型号的射频单元具有识别能力。
并且,本实施例中射频单元还可以通过射频单元型号、资产条码编号等标识数据向基带处理单元请求射频单元标识,但是这些标识数据存在区分度低的缺陷,在射频单元通过该标识数据与基带处理单元中规划的预设射频单元进行匹配的过程中,需要严格地核对工勘信息,确保与网管配置信息的一致性,会带来较大的网络建设和维护成本;因此,通过第一位置信息与预先规划的第二位置信息进行匹配处理的方式实现射频单元的定位,不需要施工和维护人员记录复杂的资产序列码,也不需要在系统中核对每台设备的资产序列码与配置的对应关系正确性,可以大大计划网络建设阶段的施工成本和网络维护的维护成本。
另外,参照图7,图7是本申请另一个实施例提供的通信连接方法的步骤流程图,该通信连接方法应用于射频单元,射频单元与基带处理单元相连接,该通信连接方法包括但不限于有以下步骤S710-S730。
步骤S710,获取第一位置信息,第一位置信息为射频单元当前的位置信息。
步骤S720,将第一位置信息发送至基带处理单元,以使基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将射频单元标识发送至射频单元,其中,第二位置信息为预先规划的射频单元的可选位置信息。
步骤S730,获取基带处理单元发送的射频单元标识,根据射频单元标识与基带处理单元建立通信连接。
本申请实施例不限制射频单元与基带处理单元的连接方式,参考图18,可以是射频单元1830通过光纤依次与网络传输设备1820、分组前传网络和基带处理单元BBU1810相连接。
本申请实施例并不限制射频单元获取第一位置信息的具体方式,可以是通过连接外接设备,接收外接设备生成的第一位置信息;还可以是通过射频单元中设置的位置信息获取模块获取;以下以一个具体示例对射频单元通过外接设备获取第一位置信息的过程进行描述:参考图18,在网络施工阶段,射频单元1830通过光纤连接信息注入设备1900,并从信息注入设备1900中获取并保存当前射频单元1830的位置信息,即第一位置信息,当射频单元1830获取到第一位置信息,断开与信息注入设备1900的连接,射频单元1830开始工作,通过光纤与BBU1810相连接,并向BBU1810发送第一位置信息,以使BBU1810在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,将射频单元1830标识发送至射频单元1830,从而使射频单元1830能够根据射频单元1830标识与BBU1810建立通信连接。
本申请实施例不限制第一位置信息的具体数据格式,第一位置信息可以包括如图20所示 的位置编码格式的第一位置编码,在第一位置信息包括第一位置编码的情况下,第一位置信息与第二位置信息进行匹配处理的方式技术方案和原理可以参考图2所示的实施例,在此不多做赘述。
本实施例的技术方案和原理可以参考图1所示的实施例,主要区别在于本实施例实现通信连接方法与图1所示的实施例的通信连接方法的执行方向不同,本实施例作为第一位置信息的发送端,向基带处理单元发送第一位置信息,以使基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,将射频单元标识发送至射频单元,从而使射频单元能够根据射频单元标识与基带处理单元建立通信连接,除此以外与图1所示的实施例相近似,为了叙述简便,在此不多作赘述。
另外,参照图8,在一实施例中,射频单元标识包括设备标识和网络通信地址,在图7所示实施例中的步骤S730之后,该通信连接方法还包括但不限于有以下步骤S810、S820。
步骤S810,根据网络通信地址向基带处理单元发送业务配置请求,业务配置请求携带有设备标识,以使基带处理单元根据设备标识获取目标业务配置信息,并根据网络通信地址将目标业务配置信息发送至射频单元。
步骤S820,获取基带处理单元发送的目标业务配置信息。
本实施例的技术方案和原理可以参考图4所示的实施例,主要区别在于本实施例实现通信连接方法与图4所示的实施例的通信连接方法的执行方向不同,本实施例作为业务配置请求的发送端,向基带处理单元发送业务配置请求,以使基带处理单元根据业务配置请求中的设备标识获取目标业务配置信息,并将目标业务配置信息反馈至射频单元,除此以外与图1所示的实施例相近似,为了叙述简便,在此不多作赘述。
另外,参照图9,在一实施例中,在图7所示实施例中的步骤S730之后,该通信连接方法包括但不限于有以下步骤S910、S920。
步骤S910,当接收到新的第一位置信息。
步骤S920,将新的第一位置信息发送至基带处理单元,以使基带处理单元在从待匹配位置信息集中匹配出与新的第一位置信息相对应的新的第二位置信息的情况下,重新获取新的射频单元标识,并将新的射频单元标识重新发送至射频单元。
本申请实施例中,参考图7实施例的描述,在第一位置信息是通过外接设备(如图13的信息注入设备)获取的情况下,信息注入设备实时获取或周期性获取新的第一位置信息,当信息注入设备检测到新的第一位置信息与初始第一位置信息(即网络施工阶段保存的射频单元的初始位置信息)不相同,断开射频单元与基带处理单元的通信连接,信息注入设备通过光纤接入射频单元,将包含新的第一位置信息的数据更新信息发送至射频单元,以使射频单元根据数据更新信息更新后的数据确定为新的第一位置信息,射频单元在保存新的第一位置信息之后,与信息注入设备断连,重新连接基带处理单元,从而将新的第一位置信息发送至基带处理单元。
本实施例的技术方案和原理可以参考图4所示的实施例,主要区别在于本实施例实现通信连接方法与图4所示的实施例的通信连接方法的执行方向不同,本实施例作为新的第一位置信息的发送端,而图4所示的实施例为新的第一位置信息的接收端,除此以外与图4所示的实施例相近似,为了叙述简便,在此不多作赘述。
另外,参照图10,图10是本申请另一个实施例提供的通信连接方法的步骤流程图,该通 信连接方法应用于信息注入设备,信息注入设备与射频单元相连接,射频单元与基带处理单元相连接,该通信连接方法包括但不限于有以下步骤S1010、S1020。
步骤S1010,获取第一位置信息,第一位置信息为射频单元当前的位置信息。
步骤S1020,将第一位置信息通过射频单元发送至基带处理单元,以使基带处理单元和射频单元根据射频单元标识建立通信连接,其中,射频单元标识由基带处理单元从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,获取并发送至射频单元,第二位置信息为预先规划的射频单元的可选位置信息。
本申请实施例并不限制射频单元与信息注入设备的连接方式,参考图18,可以是射频单元1830通过光纤与信息注入设备1900相连接;本实施例的技术方案和原理可以参考图7所示的实施例,主要区别在于本实施例实现通信连接方法与图7所示的实施例的通信连接方法的执行方向不同,本实施例作为第一位置信息的初始发送端,通过射频单元向基带处理单元发送第一位置信息,以使基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,将射频单元标识发送至射频单元,从而使射频单元能够根据射频单元标识与基带处理单元建立通信连接,除此以外与图7所示的实施例相近似,为了叙述简便,在此不多作赘述。
另外,参照图11,在一实施例中,图10实施例中的步骤1020包括但不限于有以下步骤S1110、S1120。
步骤S1110,根据预设的第二编码规则对第一位置信息进行编码处理,得到第一位置编码。
步骤S1120,将第一位置编码通过射频单元发送至基带处理单元。
本实施例的技术方案和原理可以参考图2所示的实施例,主要区别在于本实施例实现通信连接方法与图2所示的实施例的通信连接方法的执行方向不同,本实施例作为第一位置编码的初始发送端,通过射频单元向基带处理单元发送包括第一位置编码的第一位置信息,以使基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置编码相对应的第二位置编码的情况下,将射频单元标识发送至射频单元,从而使射频单元能够根据射频单元标识与基带处理单元建立通信连接,除此以外与图7所示的实施例相近似,为了叙述简便,在此不多作赘述。
本申请实施例并不对第二编码规则做限制,第二编码规则可以与第一编码规则相同,能够保证第一位置编码的编码格式和第二位置编码的编码格式相同即可,编码规则为本领域的公知常识,在此不多做赘述。
另外,参照图12,在一实施例中,该通信连接方法包括但不限于有以下步骤S1210。
步骤S1210,当检测到第一位置信息发生变更,将变更后的新的第一位置信息通过射频单元发送至基带处理单元,以使基带处理单元和射频单元根据新的射频单元标识建立通信连接,其中,新的射频单元标识由基带处理单元从预设的待匹配位置信息集中匹配出与新的第一位置信息相对应的新的第二位置信息的情况下,获取并发送至射频单元。
本实施例的技术方案和原理可以参考图9所示的实施例,主要区别在于本实施例实现通信连接方法与图9所示的实施例的通信连接方法的执行方向不同,本实施例作为新的第一位置信息的初始发送端,为图9所示的实施例为获取新的第一位置信息的方式,除此以外与图9所示的实施例相近似,为了叙述简便,在此不多作赘述。
另外,参照图13,在一实施例中,该通信连接方法包括但不限于有以下步骤S1310、S1320。
步骤S1310,向射频单元发送自检信号,以使射频单元根据自检信号得到自检结果,并将自检结果发送至信息注入设备。
步骤S1320,接收射频单元发送的自检结果。
本申请实施例中,信息注入设备可以向射频单元发送自检信号,自检信号可以包括射频单元各个输出通道的自检命令,以使射频单元根据自检信号得到自检结果,并将自检结果发送至信息注入设备,以便信息注入设备能够监测射频单元的设备质量,保障射频单元的运行安全。
另外,参照图14,图14是本申请另一个实施例提供的通信连接方法的步骤流程图,该通信连接系统包括射频单元和基带处理单元,射频单元与基带处理单元相连接,该通信连接方法包括但不限于有以下步骤S1410-S1430。
步骤S1410,通过射频单元将第一位置信息发送至基带处理单元,第一位置信息为射频单元当前的位置信息。
步骤S1420,基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将射频单元标识发送至射频单元,其中,第二位置信息为预先规划的射频单元的可选位置信息。
步骤S1430,当射频单元获取到射频单元标识,根据射频单元标识与基带处理单元建立通信连接。
本实施例的技术方案和原理可以参考图1所示的实施例,为了叙述简便,在此不多作赘述。
另外,参照图15,图15是本申请另一个实施例提供的通信连接方法的步骤流程图,该通信连接方法应用于通信连接系统,通信连接系统包括信息注入设备、射频单元和基带处理单元,信息注入设备与射频单元相连接,射频单元与基带处理单元相连接,该通信连接方法包括但不限于有以下步骤S1510-S1540。
步骤S1510,通过信息注入设备将第一位置信息发送至射频单元,第一位置信息为射频单元当前的位置信息。
步骤S1520,射频单元将第一位置信息发送至基带处理单元。
步骤S1530,基带处理单元在从预设的待匹配位置信息集中匹配出与第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将射频单元标识发送至射频单元,其中,第二位置信息为预先规划的射频单元的可选位置信息。
步骤S1540,当射频单元获取到射频单元标识,根据射频单元标识与基带处理单元建立通信连接。
本实施例的技术方案和原理可以参考图10所示的实施例,为了叙述简便,在此不多作赘述。
另外,为了对本申请提供的通信连接方法进行更详细的说明,以下以一个具体示例对本申请的技术方案进行描述。
参考图18至图19,图18是本申请另一个实施例提供的BBU与射频单元建立通信连接的网络连接示意图,射频单元1830通过光纤与信息注入设备1900相连接,射频单元1830通过光纤依次与网络传输设备1820、分组前传网络和基带处理单元BBU1810相连接;图19是本 申请另一个实施例提供的信息注入设备的模块示意图,信息注入设备1900包括操作维护显示屏1910、嵌入式操作模块1920、位置信息获取模块1930和光通信模块1940;信息注入设备1900中的各个模块的功能如下:嵌入式操作模块1920通过光通信模块1940和射频单元进行通信,将射频单元上报的信息在操作维护显示屏1910中呈现,以便操作员实时监测射频单元的数据信息;嵌入式操作模块1920通过位置信息获取模块1930获取当前基站的地理信息,包括经纬度、高程信息,并经过编码处理后输出第一位置编码,并可以将第一位置编码发送至射频单元,由射频单元进行保存;嵌入式操作模块1920还可以通过发送自检信号至射频单元,使得射频单元根据自检信号完成设备健康自检等维护功能。本申请实施例不限制位置信息获取模块1930的具体结构,可以是可替换的GPS北斗模组。
本申请实施例中的示例一的通信连接方法是基于图18和图19所示的网络连接场景执行;示例一,参考图22,图22是本申请另一个实施例提供的通信连接方法的步骤流程图,该通信连接方法包括但不限于有以下步骤S2201-S2212。
步骤S2201,在网络施工阶段或者网络维护阶段,信息注入设备通过光纤连接至射频单元,信息注入设备模拟BBU向射频单元下发一个特殊射频单元ID,射频单元能够根据特殊射频单元ID检测射频单元与BBU相连接还是与信息注入设备相连接。
步骤S2202,在射频单元根据特殊射频单元ID识别出当前射频单元与信息注入设备相连的情况下,射频单元上报当前存储的初始的第一位置编码(由信息注入设备发送得到)至信息注入设备,初始位置信息编码的具体格式可以参考图20的数据编码格式,包括有字节长度为8bit的经度区域码、经度秒、经度分、经度、纬度区域码、纬度秒、纬度分、纬度、俯仰角、水平方位角,以及字节长度为16bit的海拔高度信息,本领域技术人员可以根据实际需求确定位置信息编码的具体格式,在此不多做限制。
步骤S2203,信息注入设备将接收到的初始的第一位置编码输入至嵌入式操作模块进行计算后,以原始经纬度、高程、天馈水平中心方向、俯仰角等数据形式显示在操作维护显示屏中。
步骤S2204,信息注入设备根据位置信息获取模块获取射频单元当前实际所在的经纬度、高程信息,并由操作员输入观察到的射频单元天馈水平中心方向、俯仰角,即获取到包含经纬度、高程信息、天馈水平中心方向和俯仰角的第一位置信息;嵌入式操作模块将第一位置信息显示在操作维护显示屏中,与射频单元上报至信息注入设备的初始的第一位置编码对应的原始数据进行对比显示。
步骤S2205,当新的第一位置信息与初始的第一位置编码对应的原始数据不相同,通过嵌入式操作模块对新的第一位置信息进行编码计算得到新的第一位置编码,将新的第一位置编码发送至给射频单元进行更新保存。
步骤S2206,信息注入设备向射频单元发送自检信号,以使射频单元根据自检信号完成自检,得到自检结果,并将自检结果发送至信息注入设备,通过操作维护显示屏呈现给操作员。
步骤S2207,在射频单元根据特殊射频单元ID识别出当前射频单元与基带处理单元相连接的情况下,射频单元将携带有第一位置编码的DHCP报文发送给基带处理单元;该DHCP报文的具体格式可以如图21所示,第一位置编码存储于identifier字段。
步骤S2208,在网络规划阶段,基带处理单元从网管系统中获取第二位置信息,第二位置 信息表征预设射频单元的可选安装位置,基带处理单元根据预设的编码规则将第二位置信息格式化为第二位置编码,具体编码方式可以为:将第二位置信息格式化为以预设射频单元为中心,以识别门限距离为半径30至50米的各个矩形识别区域,每个矩形识别区域对应一个预设射频单元,第二位置编码的格式可以如图20所示。
步骤S2209,基带处理单元为各个预设射频单元预先确定唯一的设备标识,这个设备标识将作为射频单元在基站中唯一的标识信息;基带处理单元根据每台射频单元的设备标识,在DHCP服务器中规划唯一对应的射频单元的网络通信地址,用于射频单元的动态申请。
步骤S2210,基带处理单元接收到射频单元发送的携带有第一位置编码的DHCP报文之后,基带射频单元解封装该DHCP报文得到第一位置编码,将第一位置编码与全部的第二位置编码逐个比对,直至计算出与任意一个第二位置编码对应的识别区域重合,且与任意一个第二位置编码对应的射频单元天线方位角、俯仰角和高程信息均契合的第一位置编码,从而确定该第一位置编码对应的射频单元安装在预先规划好的可选安装位置上,从而获得契合识别区域对应的设备标识作为该射频单元的射频单元标识,基带处理单元从DHCP服务器中获取与设备标识对应的网络通信地址,并将携带有设备标识和网络通信地址的DHCP报文发送至给射频单元;第一位置编码与第二位置编码的匹配可以通过模糊比对方法实现,模糊比对方法为本领域技术人员所熟知,在此不多做限制。
步骤S2211,射频单元获取携带有设备标识和网络通信地址的DHCP报文,通过该网络通信地址与基带处理单元建立通信连接;射频单元与基带处理单元建立通信连接之后,射频单元通过网络通信地址向基带处理单元发送业务配置请求,该业务配置请求携带有设备标识;
步骤S2212,基带处理单元从业务配置请求获得设备标识,通过检索网管系统中与该设备标识对应的目标业务配置信息,通过网络通信地址将目标业务配置信息发送至射频单元。
另外,参考图23,本申请的一个实施例还提供了一种电子设备2300,该电子设备2300包括:存储器2310、处理器2320及存储在存储器2310上并可在处理器2320上运行的计算机程序。其中,处理器2320和存储器2310可以通过总线或者其他方式连接。实现上述实施例的通信连接方法所需的非暂态软件程序以及指令存储在存储器2310中,当被处理器2320执行时,执行上述实施例中的应用于基带处理单元2300的通信连接方法,例如,执行以上描述的图1中的方法步骤S110至步骤S120、图2中的方法步骤S210至步骤S230、图3中的方法步骤S310、图4中的方法步骤S410至步骤S420、图5中的方法步骤S510至步骤S520和图6中的方法步骤S610至步骤S620,或者,执行以上描述的图7中的方法步骤S710至步骤S730、图8中的方法步骤S810至步骤S820、图9中的方法步骤S910至步骤S920,或者,执行以上描述的图10中的方法步骤S1010至步骤S1020、图11中的方法步骤S1110至步骤S1120、图12中的方法步骤S1210和图13中的方法步骤S1310至步骤S1320。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述电子设备2300实施例中的一个处理器2320执行,可使得上述处理器2320执行上述实施例中的应用于电子设备2300的通信连接方法,例如,执行以上描述的图1中的方法步骤S110至 步骤S120、图2中的方法步骤S210至步骤S230、图3中的方法步骤S310、图4中的方法步骤S410至步骤S420、图5中的方法步骤S510至步骤S520和图6中的方法步骤S610至步骤S620,或者,执行以上描述的图7中的方法步骤S710至步骤S730、图8中的方法步骤S810至步骤S820、图9中的方法步骤S910至步骤S920,或者,执行以上描述的图10中的方法步骤S1010至步骤S1020、图11中的方法步骤S1110至步骤S1120、图12中的方法步骤S1210和图13中的方法步骤S1310至步骤S1320。
本申请实施例包括:获取所述射频单元发送的第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;当从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息。根据本申请实施例提供的方案,基带处理单元通过将射频单元发送的第一位置信息与待匹配位置信息集中的第二位置信息进行匹配处理,当第一位置信息与第二位置信息相匹配,基带处理单元将射频单元标识发送至射频单元,以根据射频单元标识与射频单元建立通信连接,有效解决在基带处理单元的通信端口连接多个射频单元的情况下,多个射频单元之间物理连接关系模糊,基带处理单元无法与各个射频单元之间进行可靠传输的技术问题,进而提高基带处理单元与射频单元之间的光信号传输的可靠性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (17)

  1. 一种通信连接方法,应用于基带处理单元,所述基带处理单元与射频单元相连接,所述方法包括:
    获取所述射频单元发送的第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;
    当从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息。
  2. 根据权利要求1所述的方法,其中,所述第一位置信息包括第一位置编码;所述当从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息,获取射频单元标识,包括:
    根据各个所述第二位置信息和预设的第一编码规则确定所述射频单元的第二位置编码;
    当所述第一位置编码与所述第二位置编码的重合度小于预设的门限值,获取所述射频单元标识。
  3. 根据权利要求1所述的方法,其中,所述射频单元标识包括设备标识和网络通信地址,所述将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接,包括:
    将所述设备标识和所述网络通信地址发送至所述射频单元,以使所述射频单元根据所述网络通信地址与所述基带处理单元建立通信连接。
  4. 根据权利要求3所述的方法,其中,在所述将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接之后,所述方法还包括:
    获取所述射频单元发送的业务配置请求,所述业务配置请求携带有所述设备标识;
    根据所述设备标识获取目标业务配置信息,并根据所述网络通信地址将所述目标业务配置信息发送至所述射频单元。
  5. 根据权利要求1所述的方法,其中,在所述将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接之后,所述方法还包括:
    获取所述射频单元发送的新的第一位置信息;
    当从所述待匹配位置信息集中匹配出与所述新的第一位置信息相对应的新的第二位置信息,获取新的射频单元标识,并将所述新的射频单元标识重新发送至所述射频单元,以使所述射频单元根据所述新的射频单元标识与所述基带处理单元建立通信连接。
  6. 根据权利要求1至5任意一项所述的方法,其中,所述基带处理单元与至少两个射频单元相连接,至少两个所述射频单元连接于所述基带处理单元的同一个通信端口,所述射频单元为射频单元链路中的首级射频单元,所述方法包括:
    获取各个所述射频单元发送的所述第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;
    当从所述待匹配位置信息集中匹配出与所述第一位置信息相对应的所述第二位置信息,获取所述射频单元标识,并将所述射频单元标识发送至所述射频单元,以使所述射频单元根据所述射频单元标识与所述基带处理单元建立通信连接。
  7. 一种通信连接方法,应用于射频单元,所述射频单元与基带处理单元相连接,所述方法包括:
    获取第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;
    将所述第一位置信息发送至所述基带处理单元,以使所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;
    获取所述基带处理单元发送的所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
  8. 根据权利要求7所述的方法,其中,所述射频单元标识包括设备标识和网络通信地址,在根据所述射频单元标识与所述基带处理单元建立通信连接之后,所述方法还包括:
    根据所述网络通信地址向所述基带处理单元发送业务配置请求,所述业务配置请求携带有所述设备标识,以使所述基带处理单元根据所述设备标识获取目标业务配置信息,并根据所述网络通信地址将所述目标业务配置信息发送至所述射频单元;
    获取所述基带处理单元发送的所述目标业务配置信息。
  9. 根据权利要求7所述的方法,其中,在所述根据所述射频单元标识与所述基带处理单元建立通信连接之后,所述方法还包括:
    当接收到新的第一位置信息;
    将所述新的第一位置信息发送至所述基带处理单元,以使所述基带处理单元在从所述待匹配位置信息集中匹配出与所述新的第一位置信息相对应的新的第二位置信息的情况下,重新获取新的射频单元标识,并将所述新的射频单元标识重新发送至所述射频单元。
  10. 一种通信连接方法,应用于信息注入设备,所述信息注入设备与射频单元相连接,所述射频单元与所述基带处理单元相连接,所述方法包括:
    获取第一位置信息,所述第一位置信息为所述射频单元当前的位置信息;
    将所述第一位置信息通过所述射频单元发送至所述基带处理单元,以使所述基带处理单元和所述射频单元根据射频单元标识建立通信连接,其中,所述射频单元标识由所述基带处理单元从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取并发送至所述射频单元,所述第二位置信息为预先规划的所述射频单元的可选位置信息。
  11. 根据权利要求10所述的方法,其中,所述将所述第一位置信息通过所述射频单元发送至所述基带处理单元,包括:
    根据预设的第二编码规则对所述第一位置信息进行编码处理,得到第一位置编码;
    将所述第一位置编码通过所述射频单元发送至所述基带处理单元。
  12. 根据权利要求10所述的方法,还包括:
    当检测到所述第一位置信息发生变更,将变更后的新的第一位置信息通过所述射频单元发送至所述基带处理单元,以使所述基带处理单元和所述射频单元根据新的射频单元标识建 立通信连接,其中,所述新的射频单元标识由所述基带处理单元从预设的待匹配位置信息集中匹配出与所述新的第一位置信息相对应的新的第二位置信息的情况下,获取并发送至所述射频单元。
  13. 根据权利要求10所述的方法,还包括:
    向所述射频单元发送自检信号,以使所述射频单元根据所述自检信号得到自检结果,并将所述自检结果发送至所述信息注入设备;
    接收所述射频单元发送的所述自检结果。
  14. 一种通信连接方法,应用于通信连接系统,所述通信连接系统包括射频单元和基带处理单元,所述射频单元与所述基带处理单元相连接,所述方法包括:
    通过所述射频单元将第一位置信息发送至所述基带处理单元,所述第一位置信息为所述射频单元当前的位置信息;
    所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;
    当所述射频单元获取到所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
  15. 一种通信连接方法,应用于通信连接系统,所述通信连接系统包括信息注入设备、射频单元和基带处理单元,所述信息注入设备与射频单元相连接,所述射频单元与所述基带处理单元相连接,所述方法包括:
    通过所述信息注入设备将第一位置信息发送至所述射频单元,所述第一位置信息为所述射频单元当前的位置信息;
    所述射频单元将所述第一位置信息发送至所述基带处理单元;
    所述基带处理单元在从预设的待匹配位置信息集中匹配出与所述第一位置信息相对应的第二位置信息的情况下,获取射频单元标识,并将所述射频单元标识发送至所述射频单元,其中,所述第二位置信息为预先规划的所述射频单元的可选位置信息;
    当所述射频单元获取到所述射频单元标识,根据所述射频单元标识与所述基带处理单元建立通信连接。
  16. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至6中任意一项所述的通信连接方法,或者,实现如权利要求7至9中任意一项所述的通信连接方法,或者,实现如权利要求10至13中任意一项所述的通信连接方法。
  17. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至6中任意一项所述的通信连接方法,或者,执行如权利要求7至9中任意一项所述的通信连接方法,或者,执行如权利要求10至13中任意一项所述的通信连接方法。
PCT/CN2023/097190 2022-06-07 2023-05-30 通信连接方法、电子设备、计算机可读存储介质 WO2023236816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210636001.XA CN117241288A (zh) 2022-06-07 2022-06-07 通信连接方法、电子设备、计算机可读存储介质
CN202210636001.X 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023236816A1 true WO2023236816A1 (zh) 2023-12-14

Family

ID=89083072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097190 WO2023236816A1 (zh) 2022-06-07 2023-05-30 通信连接方法、电子设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117241288A (zh)
WO (1) WO2023236816A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184280A (zh) * 2007-12-14 2008-05-21 中兴通讯股份有限公司 射频单元id获取方法
CN102612166A (zh) * 2011-01-21 2012-07-25 华为技术有限公司 一种数据处理方法、基站系统以及相关设备
CN105722124A (zh) * 2014-12-01 2016-06-29 中兴通讯股份有限公司 配置rru设备的方法以及rru设备、中间设备
CN112188482A (zh) * 2019-07-04 2021-01-05 中兴通讯股份有限公司 标识id配置方法及装置、标识id获取方法及装置
CN114501423A (zh) * 2021-12-28 2022-05-13 华为技术有限公司 时钟信息校验方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184280A (zh) * 2007-12-14 2008-05-21 中兴通讯股份有限公司 射频单元id获取方法
CN102612166A (zh) * 2011-01-21 2012-07-25 华为技术有限公司 一种数据处理方法、基站系统以及相关设备
CN105722124A (zh) * 2014-12-01 2016-06-29 中兴通讯股份有限公司 配置rru设备的方法以及rru设备、中间设备
CN112188482A (zh) * 2019-07-04 2021-01-05 中兴通讯股份有限公司 标识id配置方法及装置、标识id获取方法及装置
CN114501423A (zh) * 2021-12-28 2022-05-13 华为技术有限公司 时钟信息校验方法、装置及系统

Also Published As

Publication number Publication date
CN117241288A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN108306701B (zh) 应急广播系统及应急广播信息的适配方法
CN105263101A (zh) 智能手表实时接收手机通知消息的系统与方法
WO2023098375A1 (zh) 操作票处理方法、装置、存储介质及电子装置
US10469620B2 (en) Method for transferring a new software version to at least one electricity meter via a communication network
CN106454877A (zh) 一种基站开通方法及系统
CN205193889U (zh) 一种路侧单元及电子不停车收费系统
CN102970699B (zh) 一种故障处理方法及分布式基站
CN105376766A (zh) 一种物联网数据传输方法
EP4080824A1 (en) Communication parameter configuration method and apparatus, device and storage medium
CN110912805B (zh) 消息读取状态的同步方法、终端、服务端及系统
CN109039731B (zh) 一种网管北向接口告警自适配方法
WO2023236816A1 (zh) 通信连接方法、电子设备、计算机可读存储介质
CN111885151B (zh) 一种基于zigbee协议的智能设备通信方法和主智能设备
CN105635966A (zh) 一种基于北斗卫星通信的应急救援方法及系统
CN108112021B (zh) 一种射频通道检测数据的回传方法及设备
CN105959944B (zh) 分布式同频同播信号传输装置与系统
CN110505013B (zh) 无屏设备配网的控制方法、系统、电子设备和存储介质
CN103414252A (zh) 一种变电站通信服务配置信息实时同步系统及其方法
CN116107618A (zh) 一种流量计控制器升级方法、计算机设备及存储介质
CN115273473A (zh) 路侧设备感知信息的处理方法、装置及自动驾驶车辆
CN106921509B (zh) 一种全网时钟同步管理的方法及装置
CN114884805A (zh) 数据传输方法、装置、终端及存储介质
CN114157674A (zh) 无线通信方法、装置、系统、服务器以及介质
CN109640339B (zh) 管理多种蓝牙天线设备的方法、设备、系统及存储介质
CN110139228B (zh) 短信并行发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818981

Country of ref document: EP

Kind code of ref document: A1