WO2023236543A1 - 隧道定位方法、装置、系统及存储介质 - Google Patents

隧道定位方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2023236543A1
WO2023236543A1 PCT/CN2023/072675 CN2023072675W WO2023236543A1 WO 2023236543 A1 WO2023236543 A1 WO 2023236543A1 CN 2023072675 W CN2023072675 W CN 2023072675W WO 2023236543 A1 WO2023236543 A1 WO 2023236543A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
radio frequency
remote
delay information
delay
Prior art date
Application number
PCT/CN2023/072675
Other languages
English (en)
French (fr)
Inventor
张玉杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023236543A1 publication Critical patent/WO2023236543A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a tunnel positioning method, device, system and storage medium.
  • the present disclosure provides a tunnel positioning method, device, system and storage medium to solve the problems in the prior art that the hardware cost required to realize the tunnel positioning function is high and the construction is difficult.
  • the present disclosure provides a tunnel positioning method, including: when the target device moves between a first remote radio unit and a second remote radio unit, obtaining a third remote radio unit corresponding to the first remote radio unit. a delay information and a second delay information corresponding to the second remote radio frequency unit, wherein the first remote radio frequency unit and the second remote radio frequency unit are any two adjacent remote radio frequency units in the tunnel, and the first One delay information is used to represent the delay caused by the signal transmission from the target device to the first remote radio unit, and the second delay information is used to represent the delay caused by the signal being transmitted from the target device to the second remote radio unit. ; Determine the location of the target device in the tunnel based on the first delay information, the second delay information, and the pre-obtained distance between the first remote radio unit and the second remote radio unit and the frame header delay difference .
  • the present disclosure also provides a positioning device for equipment in a tunnel.
  • the device includes an acquisition module and a determination module.
  • An acquisition module configured to acquire the first delay information corresponding to the first remote radio unit and the second remote radio unit when the target device moves between the first remote radio unit and the second remote radio unit.
  • the corresponding second delay information where, The first remote radio frequency unit and the second remote radio frequency unit are any two adjacent radio frequency remote units in the tunnel.
  • the first delay information is used to represent the signal transmission from the target device to the first remote radio frequency unit.
  • the second delay information is used to characterize the delay caused by the signal being transmitted from the target device to the second remote radio unit.
  • the determination module is configured to determine the location of the target device based on the first delay information, the second delay information, and the pre-obtained distance between the first radio frequency remote unit and the second radio frequency remote unit and the frame header delay difference. location inside the tunnel.
  • the present disclosure also provides a tunnel positioning system, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus; the memory is used to store Computer program; processor, used to implement the steps of the tunnel positioning method according to any embodiment of the first aspect when executing the program stored in the memory.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the tunnel positioning method described in any embodiment of the first aspect are implemented. .
  • Figure 1 is a schematic flow chart of a tunnel positioning method provided by the present disclosure
  • Figure 2 is a schematic diagram of a tunnel positioning system provided by the present disclosure
  • Figure 3 is a partial structural schematic diagram of a tunnel positioning system provided by the present disclosure.
  • Figure 4 is a schematic structural diagram of a positioning device for equipment in a tunnel provided by the present disclosure
  • Figure 5 is a schematic structural diagram of a tunnel positioning system provided by the present disclosure.
  • Figure 1 is a schematic flow chart of a tunnel positioning method provided by the present disclosure. As shown in Figure 1, the tunnel positioning method includes the following steps 101 to 102.
  • Step 101 When the target device moves between the first remote radio unit and the second remote radio unit, obtain the first delay information corresponding to the first remote radio unit and the first delay information corresponding to the second remote radio unit.
  • the second delay information where the first remote radio unit and the second remote radio unit are any two adjacent remote radio units in the tunnel, and the first delay information is used to represent the signal transmitted from the target device to The second delay information is used to represent the delay generated by the signal transmission from the target device to the second remote radio unit.
  • the tunnel positioning system includes multiple serially connected indoor distribution systems (Distributed Antenna System, DAS).
  • DAS distributed Antenna System
  • Each DAS system may include a baseband processing unit (Building Baseband Unit, referred to as BBU) and multiple A radio remote unit (Radio Remote Unit, referred to as RRU).
  • BBU Building Baseband Unit
  • RRU Radio Remote Unit
  • Multiple radio remote units are mounted at different positions on the leaky cable.
  • the leaky cable port is used to transmit signals in the leaky cable to the surrounding environment, or to receive signals from the surrounding environment into the leaky cable to complete the communication function.
  • the first remote radio frequency unit and the second remote radio frequency unit are any two adjacent radio frequency remote units among the plurality of remote radio frequency units in the tunnel positioning system.
  • the target device moves in the tunnel, it can be understood that the target device moves between the first remote radio unit and the second remote radio unit. Therefore, when the target device moves between the first remote radio unit and the second remote radio unit, the first delay information corresponding to the first remote radio unit and the second delay information corresponding to the second remote radio unit can be obtained.
  • the delay information refers to the time delay generated when the signal is transmitted from the target device to the first remote radio unit and the time delay when the signal is transmitted from the target device to the second remote radio unit.
  • Step 102 Determine that the target device is in the tunnel based on the first delay information, the second delay information, and the pre-obtained distance between the first remote radio unit and the second remote radio unit and the frame header delay difference. s position.
  • the pre-acquired distance between the first radio frequency remote unit and the second radio frequency remote unit and the frame header delay difference can be combined. , calculate the position of the target device in the tunnel to achieve the tunnel positioning function.
  • the target device is located based on the first delay information generated by the first radio frequency remote unit near the location of the target device and the second delay information generated by the second radio frequency remote unit. location in the tunnel to achieve The tunnel positioning function does not require the deployment of Bluetooth systems and ultra-wideband systems in the tunnel, thereby reducing the hardware cost and construction difficulty of tunnel positioning.
  • the above step 102 is based on the first delay information, the second delay information, and the pre-acquired distance between the first remote radio unit and the second remote radio unit and the frame header time.
  • Delay difference determining the position of the target device in the tunnel, including: based on the first delay information, the second delay information, and the pre-obtained distance and frame between the first remote radio unit and the second remote radio unit.
  • the head delay difference is used to calculate the first distance from the target device to the first remote radio unit and the second distance from the target device to the second remote radio unit; based on the first distance and the second distance, determine that the target device is in the tunnel. s position.
  • the distance between the first remote radio unit and the second remote radio unit and the frame header delay obtained in advance can be combined.
  • the difference is calculated to obtain the first distance from the target device to the first remote radio unit and the second distance from the target device to the second remote radio unit, and then based on the first distance, the second distance, and the position of the first remote radio unit and the position of the second remote radio unit to determine the position of the target device in the tunnel to achieve the tunnel positioning function.
  • the first distance and the second distance can be calculated using the following expressions:
  • L 1B represents the first distance
  • L 2B represents the second distance
  • L 12 represents the distance between the first radio frequency remote unit and the second radio frequency remote unit
  • C K represents the transmission speed of light in the dielectric cable
  • Dif 21 Represents the frame header delay difference between the first remote radio unit and the second remote radio unit
  • the transmission speed C K of light in the dielectric cable is generally relatively fixed and can be determined through experiments.
  • the distance L 12 between the first remote radio unit and the second remote radio unit and the frame header delay difference Dif 21 between the first remote radio unit and the second remote radio unit can be obtained in advance through testing. In this way, the first distance between the target device and the first radio frequency remote unit and the second distance between the target device and the second radio frequency remote unit can be calculated according to the above expression, thereby determining the location of the target device.
  • the method further includes: When the test equipment moves to the first position, the third delay information corresponding to the first radio frequency remote unit and the fourth delay information corresponding to the second radio frequency remote unit are obtained, wherein the first position is located at the first The position of the radio frequency remote unit away from the second radio frequency remote unit.
  • the third delay information is used to represent the delay generated by the signal transmission from the target device to the first radio frequency remote unit.
  • the fourth delay information is used to Characterizes the time delay generated by the signal transmission from the target device to the second radio frequency remote unit; when the test equipment moves to the second position, obtain the fifth delay information corresponding to the first radio frequency remote unit and the second radio frequency remote unit.
  • the delay generated by the first remote radio frequency unit and the sixth delay information are used to represent the delay generated by the signal transmission from the target device to the second remote radio frequency unit; according to the third delay information and the fourth delay information , the fifth delay information and the sixth delay information, calculate the distance between the first remote radio unit and the second remote radio unit and the frame header delay difference.
  • FIG. 3 is a partial structural diagram of a tunnel positioning system.
  • RRU1 and RRU2 are two adjacent radio frequency remote units in the tunnel positioning system. Among them, RRU1 can be used as the first radio frequency remote unit, and RRU2 can be used as the second radio frequency remote unit. Both RRU1 and RRU2 Hooked on the leaky cable.
  • the position PosA is recorded as the first position
  • the position PosC is recorded as the second position.
  • the test equipment sends the positioning signal at the position PosA, and the delay of the positioning signal measured by RRU1 is recorded as the third delay information.
  • the delay of the positioning signal measured by RRU2 is recorded as the fourth delay information.
  • the test equipment moves to the position PosC and sends a positioning signal.
  • the delay of the positioning signal measured by RRU1 is recorded as the fifth delay information.
  • the delay of the positioning signal measured by RRU2 is recorded as the sixth delay information. Because when the measuring equipment sends positioning signals at any location, the positioning signals connected from multiple leaky cable ports will reach the RRU. Therefore, the RRU shows multiple paths in the received signal. According to the fading characteristics, the strongest path can be selected.
  • the delay value is used as the delay from the measurement device to the RRU.
  • L 12 represents the distance between the first radio frequency remote unit and the second radio frequency remote unit
  • Dif 21 represents the frame header delay difference between the first radio frequency remote unit and the second radio frequency remote unit
  • Indicates the fourth delay information represents the fifth delay information and Represents the sixth delay information
  • C K represents the transmission speed of light in the dielectric cable.
  • the acquired multiple third delay information, multiple fourth delay information, multiple third delay information, etc. Five delay information and multiple sixth delay information.
  • the validity of the multiple delay information obtained can be judged, such as using the alpha mean filter function to remove the invalid delay information, etc., to further enhance the effectiveness of the public parameters. properties and improve calculation accuracy.
  • the distance and frame header delay difference between any two adjacent radio frequency remote units in the tunnel positioning system can be obtained by using the above method. In this way, when subsequently locating the position of the target device, based on the distance between any two adjacent radio frequency remote units in the tunnel positioning system and the frame header delay difference, the target position and the two radio frequency remote units can be calculated. distance to achieve tunnel positioning function.
  • the position PosB will show a monotonic change, and the following equation can be obtained:
  • the location of the target device in the tunnel can be determined based on the first distance and the second distance.
  • the following expression can be used to determine the location of the target device:
  • X PosB represents the abscissa coordinate of the target device in the preset coordinate system
  • Y PosB represents the ordinate coordinate of the target device in the preset coordinate system
  • Y RRU1 represents the ordinate of the first radio remote unit in the preset coordinate system
  • X RRU2 represents the abscissa of the second radio remote unit in the preset coordinate system
  • Y RRU2 represents the ordinate of the second radio frequency remote unit in the preset coordinate system
  • L 12 represents the distance between the first radio frequency remote unit and the second radio frequency remote unit
  • L 1B represents the first distance
  • L 2B represents Second distance.
  • the abscissa X RRU1 and ordinate Y RRU1 of the first remote radio frequency unit in the preset coordinate system, and the abscissa X RRU2 and ordinate Y of the second remote radio unit in the preset coordinate system are RRU2 can be measured. Therefore, after knowing the first distance L 1B and the second distance L 2B , the abscissa and ordinate of the target device in the preset coordinate system can be calculated based on the above expression, that is, the position of the target device. when As time changes, the target device is in the PosB position. By observing the direction of the slope of the change, the direction of movement can be determined. When After stabilization, combined with the previous movement direction, it can be determined whether the current position is PosA or PosC.
  • the above step 101, obtaining the first delay information corresponding to the first remote radio unit and the second delay information corresponding to the second remote radio unit includes: obtaining the first remote radio unit and the positioning signal sent by the target device at the same time received by the second remote radio frequency unit, where at least one cable leakage port is provided between the first remote radio frequency unit and the second remote radio frequency unit, and the positioning signal passes through different
  • the time delays from the leaky cable port to the first radio frequency remote unit are different, and the time delays of the positioning signal to the second radio frequency remote unit through different leaky cable ports are different; according to the signal strength of the positioning signal, the first radio frequency remote unit is selected
  • the delay corresponding to the received positioning signal with the highest signal strength is used as the first delay information, and the delay corresponding to the positioning signal with the highest signal strength received by the second radio frequency remote unit is selected as the second delay information.
  • the positioning signal of the target device since the propagation loss of the positioning signal in the leaky cable is significantly lower than that in the air, the positioning signal of the target device will enter the leaky cable at the closest leaky cable port, and the other leaky cable ports will receive it. The signal will gradually attenuate due to exposure in the air. In this way, based on the maximum signal strength of the positioning signal received by the radio frequency remote unit, a leaky cable outlet closest to the target device can be determined, thereby deriving the coordinates of the target device.
  • the target device when it is at position PosB, it can send a positioning signal at position PosB. Since the target device sends a positioning signal at position PosB, the signals from multiple leaky cable ports will reach RRU1 and RRU2, so RRU1 and RRU2 are at Multiple paths will appear when receiving positioning signals. According to the fading characteristics, the delay corresponding to the positioning signal of the strongest path (that is, the largest signal strength) received by RRU1 is taken as the first delay information from the target device to RRU1 And take the delay corresponding to the positioning signal of the strongest path (that is, the largest signal strength) received by RRU2 as the second delay information from the target device to RRU2
  • the above method can be used to obtain the delay information from the target device to any two adjacent radio frequency remote units in the tunnel positioning system, so as to calculate the position of the target device based on the delay information to realize the tunnel positioning function. .
  • the present disclosure provides a method for tunnel positioning using a communication base station system, which mainly uses the delay information of positioning signals sent by target devices received by different RRUs to estimate the location and speed of the target device.
  • the changes in the delay of different RRUs receiving the positioning signal sent by the target device will reflect the position of the target device and the position relationship of each RRU. These position relationships can be used to timely Comparing the size of the delay information can further lock the location of the target device, thereby achieving the positioning effect.
  • This disclosure can realize the positioning and tracking of vehicles and personnel's mobile phones in the tunnel, with an expected accuracy of about 10 meters, and can provide early warning when a vehicle or personnel's mobile phone is found to stay at a certain location for a long time.
  • the present disclosure also provides a positioning device for equipment in a tunnel.
  • Figure 4 is a schematic structural diagram of a positioning device for equipment in a tunnel provided by the present disclosure.
  • the positioning device of the equipment in the tunnel includes an acquisition module and a determination module.
  • An acquisition module configured to acquire the first delay information corresponding to the first remote radio unit and the second remote radio unit when the target device moves between the first remote radio unit and the second remote radio unit.
  • Corresponding second delay information where the first remote radio unit and the second remote radio unit are any two adjacent radio remote units in the tunnel, and the first delay information is used to characterize the signal from the target device.
  • the second delay information is used to represent the delay caused by the signal being transmitted from the target device to the second remote radio unit.
  • the determination module is configured to determine the location of the target device based on the first delay information, the second delay information, and the pre-obtained distance between the first radio frequency remote unit and the second radio frequency remote unit and the frame header delay difference. location inside the tunnel.
  • the determining module includes: a first calculation sub-module configured to calculate the first delay information, the second delay information, and the pre-obtained first radio frequency remote unit and second radio frequency remote unit. distance and frame header delay difference, respectively calculate the first distance from the target device to the first radio frequency remote unit and the second distance from the target device to the second radio frequency remote unit; the determination sub-module is configured to calculate according to the first distance and a second distance to determine the location of the target device within the tunnel.
  • the first distance and the second distance are calculated using the following expressions:
  • L 1B represents the first distance
  • L 2B represents the second distance
  • L 12 represents the distance between the first radio frequency remote unit and the second radio frequency remote unit
  • C K represents the transmission speed of light in the dielectric cable
  • Dif 21 Represents the frame header delay difference between the first remote radio unit and the second remote radio unit
  • the determining module further includes a first acquisition sub-module, a second acquisition sub-module, and a second calculation sub-module.
  • the first acquisition submodule is configured to acquire the third delay information corresponding to the first radio frequency remote unit and the fourth delay information corresponding to the second radio frequency remote unit when the test equipment moves to the first position, wherein , the first position is a position on the side of the first remote radio unit away from the second remote radio unit, and the third delay information is used to represent the delay generated by the signal transmission from the target device to the first remote radio unit. , the fourth delay information is used to characterize the delay generated by the signal transmission from the target device to the second radio frequency remote unit.
  • the second acquisition submodule is configured to acquire the fifth delay information corresponding to the first radio frequency remote unit and the sixth delay information corresponding to the second radio frequency remote unit when the test equipment moves to the second position, wherein , the second position is a position on the side of the second remote radio unit away from the first remote radio unit, and the fifth delay information is used to represent the delay generated by the signal transmission from the target device to the first remote radio unit. , the sixth delay information is used to characterize the delay generated by the signal transmission from the target device to the second radio frequency remote unit.
  • the second calculation submodule is configured to calculate the distance between the first remote radio unit and the second remote radio unit based on the third delay information, the fourth delay information, the fifth delay information and the sixth delay information. distance and frame header delay difference.
  • the distance between the first remote radio unit and the second remote radio unit and the frame header delay difference are calculated using the following expression:
  • L 12 represents the distance between the first radio frequency remote unit and the second radio frequency remote unit
  • Dif 21 represents the frame header delay difference between the first radio frequency remote unit and the second radio frequency remote unit
  • Indicates the fourth delay information represents the fifth delay information and Represents the sixth delay information
  • C K represents the transmission speed of light in the dielectric cable.
  • the following expression is used to determine the location of the target device:
  • X PosB represents the abscissa coordinate of the target device in the preset coordinate system
  • Y PosB represents the ordinate coordinate of the target device in the preset coordinate system
  • Y RRU1 represents the ordinate of the first radio frequency remote unit in the preset coordinate system
  • X RRU2 represents the abscissa of the second radio frequency remote unit in the preset coordinate system
  • Y RRU2 represents the second radio frequency remote unit in the preset coordinate system.
  • L 12 represents the first radio frequency remote unit and the second radio frequency unit.
  • the distance between remote frequency units, L 1B represents the first distance
  • L 2B represents the second distance.
  • the acquisition module includes a third acquisition sub-module and a selection sub-module.
  • the third acquisition submodule is configured to acquire the positioning signal sent by the target device at the same time and received by the first radio frequency remote unit and the second radio frequency remote unit, wherein the first radio frequency remote unit and the second radio frequency remote unit At least one leaky cable port is provided between the units.
  • the time delays of the positioning signal to the first radio frequency remote unit through different leakage cable ports are different, and the time delays of the positioning signal to the second radio frequency remote unit through different leakage cable ports are different.
  • the selection sub-module is configured to select, according to the signal strength of the positioning signal, the delay corresponding to the positioning signal with the highest signal strength received by the first remote radio unit as the first delay information, and select the second remote radio unit.
  • the delay corresponding to the received positioning signal with the highest signal strength is used as the second delay information.
  • the positioning device of the equipment in the tunnel can implement the steps of the tunnel positioning method provided in any of the foregoing method embodiments, and can achieve the same technical effect, which will not be described again here.
  • the present disclosure provides a tunnel positioning system, including a processor 511, a communication interface 512, a memory 513, and a communication bus 514.
  • the processor 511, the communication interface 512, and the memory 513 complete each other through the communication bus 514. Communication between computers, memory 513, used to store computer programs.
  • the processor 511 is used to implement the method provided in any of the foregoing method embodiments when executing the program stored on the memory 513, including: when the target device moves to the first remote radio unit and the third In the case of two remote radio frequency units, the first delay information corresponding to the first remote radio frequency unit and the second delay information corresponding to the second remote radio frequency unit are obtained, wherein the first remote radio frequency unit and the second remote radio frequency unit are The two remote radio units are any two adjacent radio remote units in the tunnel.
  • the first delay information is used to represent the delay caused by the signal transmission from the target device to the first remote radio unit.
  • the second delay information The information is used to represent the delay generated by the signal transmission from the target device to the second remote radio unit; according to the first delay information, the second delay information, and the pre-obtained first radio frequency unit and second radio remote unit The distance between remote units and the frame header delay difference determine the location of the target device within the tunnel.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the tunnel positioning method provided by any of the foregoing method embodiments are implemented.
  • the first delay information and the second remote radio unit corresponding to the first remote radio unit are obtained.
  • the delay generated to the first remote radio unit is represented by the second delay information.
  • the delay generated by the signal transmission from the target device to the second remote radio unit; according to the first delay information, the second delay information, and the pre-obtained relationship between the first remote radio unit and the second remote radio unit The distance and frame header delay difference are used to determine the location of the target device in the tunnel.
  • the target device is in the tunnel based on the first delay information generated by the first remote radio unit near the location of the target device and the second delay information generated by the second remote radio unit.
  • the tunnel positioning function there is no need to deploy a Bluetooth system and an ultra-wideband system in the tunnel, thereby reducing the hardware cost and construction difficulty of tunnel positioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开涉及一种隧道定位方法、装置、系统及存储介质,该方法包括:在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元;根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。

Description

隧道定位方法、装置、系统及存储介质
相关申请的交叉引用
本公开要求享有2022年06月10日提交的名称为“隧道定位方法、装置、系统及存储介质”的中国专利申请CN202210657926.2的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及无线通讯技术领域,尤其涉及一种隧道定位方法、装置、系统及存储介质。
背景技术
随着交通运输业的飞速发展,隧道在人们的日常生活中越来越常见,如地铁、高铁、火车等交通工具在行驶过程中常常需要经过隧道。目前隧道内部署的通讯基站系统能够为隧道提供无线通讯信号的覆盖,但不能够提供隧道定位功能。一些情形中虽然可以采用蓝牙系统和超宽带(UltraWide Band,UWB)系统来实现隧道内设备的定位功能,但采用该方式实现的硬件成本较高,且施工难度较大。因此,如何提供一种硬件成本较低,且施工难度较小的隧道定位方法,成为亟待解决的技术问题。
发明内容
本公开提供了一种隧道定位方法、装置、系统及存储介质,以解决现有技术中实现隧道定位功能所需的硬件成本较高,且施工难度较大的问题。
第一方面,本公开提供了一种隧道定位方法,包括:在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延;根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。
第二方面,本公开还提供了一种隧道内设备的定位装置,装置包括获取模块、确定模块。获取模块,配置为在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中, 第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延。确定模块,配置为根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。
第三方面,本公开还提供了一种隧道定位系统,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现第一方面任一项实施例隧道定位方法的步骤。
第四方面,本公开还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面任一项实施例所述的隧道定位方法的步骤。
附图说明
此处的附图被并入说明书中并构成本公开的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的一种隧道定位方法的流程示意图;
图2为本公开提供的一种隧道定位系统的示意图;
图3为本公开提供的一种隧道定位系统的局部结构示意图;
图4为本公开提供的一种隧道内设备的定位装置的结构示意图;
图5为本公开提供的一种隧道定位系统的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1为本公开提供的一种隧道定位方法的流程示意图。如图1所示,该隧道定位方法包括如下步骤101至步骤102。
步骤101、在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延。
需要说明的是,该隧道定位方法应用于如图2所示的隧道定位系统,该隧道定位系统是基于通讯基站系统来实现的。在一示例性实施例中,该隧道定位系统包括多个串接的室内分布系统(Distributed Antenna System,DAS),每个DAS系统可以包括一个基带处理单元(Building Baseband Unit,简称为BBU)和多个射频拉远单元(Radio Remote Unit,简称为RRU),多个射频拉远单元挂接在漏缆上的不同位置,任意相邻两个射频拉远单元之间设置有至少一个漏缆口,该漏缆口用于将漏缆中的信号发射至周围环境,或者将周围环境的信号接收至漏缆中,完成通讯功能。本公开是此系统完成通讯功能的同时,附加完成隧道定位功能。
在一示例性实施例中,上述第一射频拉远单元与第二射频拉远单元即为上述隧道定位系统中多个射频拉远单元中的任意相邻两个射频拉远单元。当目标设备在隧道内移动时,可以理解为目标设备在上述第一射频拉远单元与第二射频拉远单元之间移动。因而,可以在目标设备移动至第一射频拉远单元与第二射频拉远单元之间时,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,即获取信号从目标设备传输至第一射频拉远单元所产生的时和信号从目标设备传输至第二射频拉远单元所产生的时延。
步骤102、根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。
在该步骤中,可以在获取到第一时延信息和第二时延信息之后,结合预先获取到的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,计算得到目标设备在隧道中的位置,以实现隧道定位功能。
在本实施例中,可以根据目标设备所处位置附近的第一射频拉远单元所产生的第一时延信息和第二射频拉远单元所产生的第二时延信息,确定出目标设备在隧道中的位置,以实现 隧道定位功能,而无需在隧道内部署蓝牙系统和超宽带系统来实现,从而降低了隧道定位的硬件成本和施工难度。
在一示例性实施例中,上述步骤102、根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置,包括:根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,分别计算目标设备至第一射频拉远单元的第一距离和目标设备至第二射频拉远单元的第二距离;根据第一距离和第二距离,确定目标设备在隧道内的位置。
在一实施例中,可以在获取到第一时延信息和第二时延信息之后,结合预先获取到的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,计算得到目标设备至第一射频拉远单元的第一距离和目标设备至第二射频拉远单元的第二距离,再根据第一距离、第二距离、第一射频拉远单元的位置和第二射频拉远单元的位置,确定该目标设备在隧道中的位置,以实现隧道定位功能。
在一示例性实施例中,可以采用如下表达式计算第一距离和第二距离:
其中,L1B表示第一距离,L2B表示第二距离,L12表示第一射频拉远单元与第二射频拉远单元之间的距离,CK表示光在介质电缆的传输速度,Dif21表示第一射频拉远单元与第二射频拉远单元之间的帧头时延差,表示第一时延信息,表示第二时延信息。
在本实施例中,光在介质电缆的传输速度CK一般较为固定,可以通过实验确定得到。第一射频拉远单元与第二射频拉远单元之间的距离L12和第一射频拉远单元与第二射频拉远单元之间的帧头时延差Dif21可以通过测试预先获取得到。这样,就可以根据上述表达式计算得到目标设备距离第一射频拉远单元的第一距离和目标设备距离第二射频拉远单元的第二距离,从而确定出目标设备的位置。
在一示例性实施例中,在上述步骤、根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,分别计算目标设备至第一射频拉远单元的第一距离和目标设备至第二射频拉远单元的第二距离之前,该方法还包括: 在测试设备移动至第一位置的情况下,获取第一射频拉远单元对应的第三时延信息和第二射频拉远单元对应的第四时延信息,其中,第一位置为位于第一射频拉远单元的远离第二射频拉远单元一侧的位置,第三时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第四时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延;在测试设备移动至第二位置的情况下,获取第一射频拉远单元对应的第五时延信息和第二射频拉远单元对应的第六时延信息,其中,第二位置为位于第二射频拉远单元的远离第一射频拉远单元一侧的位置,第五时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第六时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延;根据第三时延信息、第四时延信息、第五时延信息和第六时延信息,计算得到第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差。
在一实施例中,可以参见图3,图3为隧道定位系统的局部结构示意图。如图3所示,RRU1和RRU2为隧道定位系统中相邻的两个射频拉远单元,其中,RRU1可作为第一射频拉远单元,RRU2可作为第二射频拉远单元,RRU1和RRU2均挂接在漏缆上。位置PosA记作第一位置,位置PosC记作第二位置,那么,测试设备在位置PosA发送定位信号,RRU1测量定位信号的时延记作第三时延信息RRU2测量定位信号的时延记作第四时延信息测试设备移动在位置PosC发送定位信号,RRU1测量定位信号的时延记作第五时延信息RRU2测量定位信号的时延记作第六时延信息由于测量设备在任一位置发送定位信号时,从多个漏缆口接入的定位信号都会到达RRU,因此RRU在接收信号上呈现出多个径现象,根据衰落特性,可以选取最强径的时延值作为测量设备到RRU的时延。
对于距离位置PosA最近的漏缆口,可以得到如下表达式:
对于位置PosC最近的漏缆口,可以得到如下表达式:
再结合上述两个表达式,可以得到:
其中,L12表示第一射频拉远单元与第二射频拉远单元之间的距离,Dif21表示第一射频拉远单元与第二射频拉远单元之间的帧头时延差,表示第三时延信息,表示第四时延信息、表示第五时延信息和表示第六时延信息,CK表示光在介质电缆的传输速度。
需要说明的是,当测试设备为多个,或者测试设备多次从位置PosA移动至位置PosC时,可以对获取到的多个第三时延信息、多个第四时延信息、多个第五时延信息和多个第六时延信息,此时可以对获取的多个时延信息进行有效性判断,如采用阿尔法均值滤波函数去除其中的无效时延信息等,以进一步增强公参有效性,提高计算准确度。
在本实施例中,可以通过采用上述方式,得到上述隧道定位系统中任意两个相邻的射频拉远单元之间的距离和帧头时延差。这样,就可以在后续定位目标设备的位置时,根据隧道定位系统中任意两个相邻的射频拉远单元之间的距离和帧头时延差,计算目标位置与该两个射频拉远单元的距离,以实现隧道定位功能。
在一示例性实施例中,当目标设备进入RRU1和RRU2的中间区域,并做线性运动时,位置PosB的会呈现单调变化,可以得到以下方程:
由此可以解方程得到:
在获取到目标设备至第一射频拉远单元的第一距离和目标设备至第二射频拉远单元的第二距离之后,可以根据第一距离和第二距离,确定目标设备在隧道内的位置。在一示例性实施例中,可以采用如下表达式确定目标设备的位置:
其中,XPosB表示目标设备在预设坐标系中的横坐标,YPosB表示目标设备在预设坐标系中的纵坐标,XRRU1表示第一射频拉远单元在预设坐标系中的横坐标,YRRU1表示第一射频拉远单元在预设坐标系中的纵坐标,XRRU2表示第二射频拉远单元在预设坐标系中的横坐标, YRRU2表示第二射频拉远单元在预设坐标系中的纵坐标,L12表示第一射频拉远单元与第二射频拉远单元之间的距离,L1B表示第一距离,L2B表示第二距离。
需要说明的是,第一射频拉远单元在预设坐标系中的横坐标XRRU1和纵坐标YRRU1,以及第二射频拉远单元在预设坐标系中的横坐标XRRU2和纵坐标YRRU2可以测量得到。因此,在知晓第一距离L1B和第二距离L2B之后,可以基于上述表达式计算得到目标设备在预设坐标系中的横坐标和纵坐标,即目标设备的位置。当随时间变化,则目标设备处于PosB位置。观测变化的斜率方向,即可确定运动方向。当稳定后,结合之前的运动方向,即可确定当前位置是位置PosA,还是位置PosC。
在一示例性实施例中,上述步骤101、获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,包括:获取第一射频拉远单元和第二射频拉远单元接收到的来自目标设备在同一时刻发送的定位信号,其中,第一射频拉远单元和第二射频拉远单元之间设置有至少一个漏缆口,定位信号通过不同漏缆口至第一射频拉远单元的时延不同,且定位信号通过不同漏缆口至第二射频拉远单元的时延不同;根据定位信号的信号强度,选取出第一射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为第一时延信息,并选取第二射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为第二时延信息。
在一实施例中,由于定位信号在漏缆的传播差损要明显低于在空气中传播,因此目标设备的定位信号会在最接近的一个漏缆口进入漏缆,其余漏缆口接收到的信号会因为暴漏在空中逐渐衰减掉。这样,可以根据射频拉远单元接收到的定位信号的信号强度的最大值,确定出距离目标设备最近的一个漏缆口,从而推算出目标设备的坐标。
继续参见图3,当目标设备位于位置PosB时,可以在位置PosB发送定位信号,由于目标设备在位置PosB发送定位信号时,多个漏缆口的信号都会到达RRU1和RRU2,因此RRU1和RRU2在接收定位信号上会呈现出多个径现象。根据衰落特性,取RRU1接收到的最强径(即信号强度最大)的定位信号对应的时延作为目标设备到RRU1的第一时延信息并取RRU2接收到的最强径(即信号强度最大)的定位信号对应的时延作为目标设备到RRU2的第二时延信息
在本实施例中,可以采用上述方式获取目标设备至隧道定位系统中任意相邻两个射频拉远单元的时延信息,从而根据该时延信息计算得到目标设备的位置,以实现隧道定位功能。
本公开提供一种利用通讯基站系统进行隧道定位的方法,主要是使用不同RRU接收到的目标设备发送的定位信号的时延信息来估计出目标设备的位置以及速度。当目标设备在多个RRU的覆盖隧道上进行移动时,不同RRU接收到目标设备发送的定位信号的时延变化,会反应出来目标设备的位置与各个RRU的位置关系,利用这些位置关系以及时延信息的大小对比可以进一步锁定目标设备的位置,从而达到定位的效果。本公开可以实现对隧道内的车辆、人员手机进行定位跟踪,期望精度在10米左右,并且当发现车辆、人员手机在某一位置长期停留可以进行预警。
除此之外,本公开还提供一种隧道内设备的定位装置。参见图4,图4为本公开提供的一种隧道内设备的定位装置的结构示意图。如图4所示,该隧道内设备的定位装置包括获取模块、确定模块。获取模块,配置为在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延。确定模块,配置为根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。
在一示例性实施例中,确定模块包括:第一计算子模块,配置为根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,分别计算目标设备至第一射频拉远单元的第一距离和目标设备至第二射频拉远单元的第二距离;确定子模块,配置为根据第一距离和第二距离,确定目标设备在隧道内的位置。
在一示例性实施例中,采用如下表达式计算第一距离和第二距离:
其中,L1B表示第一距离,L2B表示第二距离,L12表示第一射频拉远单元与第二射频拉远单元之间的距离,CK表示光在介质电缆的传输速度,Dif21表示第一射频拉远单元与第二射频拉远单元之间的帧头时延差,表示第一时延信息,表示第二时延信息。
在一示例性实施例中,确定模块还包括第一获取子模块、第二获取子模块、第二计算子模块。
第一获取子模块,配置为在测试设备移动至第一位置的情况下,获取第一射频拉远单元对应的第三时延信息和第二射频拉远单元对应的第四时延信息,其中,第一位置为位于第一射频拉远单元的远离第二射频拉远单元一侧的位置,第三时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第四时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延。
第二获取子模块,配置为在测试设备移动至第二位置的情况下,获取第一射频拉远单元对应的第五时延信息和第二射频拉远单元对应的第六时延信息,其中,第二位置为位于第二射频拉远单元的远离第一射频拉远单元一侧的位置,第五时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第六时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延。
第二计算子模块,配置为根据第三时延信息、第四时延信息、第五时延信息和第六时延信息,计算得到第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差。
在一示例性实施例中,采用如下表达式计算得到第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差:
其中,L12表示第一射频拉远单元与第二射频拉远单元之间的距离,Dif21表示第一射频拉远单元与第二射频拉远单元之间的帧头时延差,表示第三时延信息,表示第四时延信息、表示第五时延信息和表示第六时延信息,CK表示光在介质电缆的传输速度。
在一示例性实施例中,采用如下表达式确定目标设备的位置:
其中,XPosB表示目标设备在预设坐标系中的横坐标,YPosB表示目标设备在预设坐标系中的纵坐标,XRRU1表示第一射频拉远单元在预设坐标系中的横坐标,YRRU1表示第一射频拉远单元在预设坐标系中的纵坐标,XRRU2表示第二射频拉远单元在预设坐标系中的横坐标,YRRU2表示第二射频拉远单元在预设坐标系中的纵坐标,L12表示第一射频拉远单元与第二射 频拉远单元之间的距离,L1B表示第一距离,L2B表示第二距离。
在一示例性实施例中,获取模块包括第三获取子模块、选取子模块。
第三获取子模块,配置为获取第一射频拉远单元和第二射频拉远单元接收到的来自目标设备在同一时刻发送的定位信号,其中,第一射频拉远单元和第二射频拉远单元之间设置有至少一个漏缆口,定位信号通过不同漏缆口至第一射频拉远单元的时延不同,且定位信号通过不同漏缆口至第二射频拉远单元的时延不同。
选取子模块,配置为根据定位信号的信号强度,选取出第一射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为第一时延信息,并选取第二射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为第二时延信息。
需要说明的是,该隧道内设备的定位装置可以实现如前述任意一个方法实施例提供的隧道定位方法的步骤,且能达到相同的技术效果,在此不再一一赘述。
如图5所示,本公开提供了一种隧道定位系统,包括处理器511、通信接口512、存储器513和通信总线514,其中,处理器511,通信接口512,存储器513通过通信总线514完成相互间的通信,存储器513,用于存放计算机程序。
在本公开一个实施例中,处理器511,用于执行存储器513上所存放的程序时,实现前述任意一个方法实施例提供的方法,包括:在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息用于表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息用于表征信号从目标设备传输至第二射频拉远单元所产生的时延;根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。
本公开还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如前述任意一个方法实施例提供的隧道定位方法的步骤。
在本公开中,通过在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取第一射频拉远单元对应的第一时延信息和第二射频拉远单元对应的第二时延信息,其中,第一射频拉远单元与第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,第一时延信息表征信号从目标设备传输至第一射频拉远单元所产生的时延,第二时延信息表征 信号从目标设备传输至第二射频拉远单元所产生的时延;根据第一时延信息、第二时延信息,以及预先获取的第一射频拉远单元与第二射频拉远单元之间的距离和帧头时延差,确定目标设备在隧道内的位置。通过这种方式,可以根据目标设备所处位置附近的第一射频拉远单元所产生的第一时延信息和第二射频拉远单元所产生的第二时延信息,确定出目标设备在隧道中的位置,以实现隧道定位功能,而无需在隧道内部署蓝牙系统和超宽带系统来实现,从而降低了隧道定位的硬件成本和施工难度。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种隧道定位方法,包括:
    在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取所述第一射频拉远单元对应的第一时延信息和所述第二射频拉远单元对应的第二时延信息,其中,所述第一射频拉远单元与所述第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,所述第一时延信息用于表征信号从所述目标设备传输至所述第一射频拉远单元所产生的时延,所述第二时延信息用于表征信号从所述目标设备传输至所述第二射频拉远单元所产生的时延;
    根据所述第一时延信息、所述第二时延信息,以及预先获取的所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差,确定所述目标设备在所述隧道内的位置。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一时延信息、所述第二时延信息,以及预先获取的所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差,确定所述目标设备在所述隧道内的位置,包括:
    根据所述第一时延信息、所述第二时延信息,以及预先获取的所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差,分别计算所述目标设备至所述第一射频拉远单元的第一距离和所述目标设备至所述第二射频拉远单元的第二距离;
    根据所述第一距离和所述第二距离,确定所述目标设备在所述隧道内的位置。
  3. 根据权利要求2所述的方法,其中,采用如下公式计算所述第一距离和所述第二距离:
    其中,L1B表示所述第一距离,L2B表示所述第二距离,L12表示所述第一射频拉远单元与所述第二射频拉远单元之间的距离,CK表示光在介质电缆的传输速度,Dif21表示所述第一射频拉远单元与所述第二射频拉远单元之间的帧头时延差,表示所述第一时延信息,表示所述第二时延信息。
  4. 根据权利要求2所述的方法,其中,在所述根据所述第一时延信息、所述第二时延信息,以及预先获取的所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延 差,分别计算所述目标设备至所述第一射频拉远单元的第一距离和所述目标设备至所述第二射频拉远单元的第二距离之前,所述方法还包括:
    在测试设备移动至第一位置的情况下,获取所述第一射频拉远单元对应的第三时延信息和所述第二射频拉远单元对应的第四时延信息,其中,所述第一位置为位于所述第一射频拉远单元的远离所述第二射频拉远单元一侧的位置,所述第三时延信息用于表征信号从所述目标设备传输至所述第一射频拉远单元所产生的时延,所述第四时延信息用于表征信号从所述目标设备传输至所述第二射频拉远单元所产生的时延;
    在所述测试设备移动至第二位置的情况下,获取所述第一射频拉远单元对应的第五时延信息和所述第二射频拉远单元对应的第六时延信息,其中,所述第二位置为位于所述第二射频拉远单元的远离所述第一射频拉远单元一侧的位置,所述第五时延信息用于表征信号从所述目标设备传输至所述第一射频拉远单元所产生的时延,所述第六时延信息用于表征信号从所述目标设备传输至所述第二射频拉远单元所产生的时延;
    根据所述第三时延信息、所述第四时延信息、所述第五时延信息和所述第六时延信息,计算得到所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差。
  5. 根据权利要求4所述的方法,其中,采用如下公式计算得到所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差:
    其中,L12表示所述第一射频拉远单元与所述第二射频拉远单元之间的距离,Dif21表示所述第一射频拉远单元与所述第二射频拉远单元之间的帧头时延差,表示所述第三时延信息,表示所述第四时延信息、表示所述第五时延信息和表示所述第六时延信息,CK表示光在介质电缆的传输速度。
  6. 根据权利要求3所述的方法,其中,采用如下公式确定所述目标设备的位置:
    其中,XPosB表示所述目标设备在预设坐标系中的横坐标,YPosB表示所述目标设备在预设坐标系中的纵坐标,XRRU1表示所述第一射频拉远单元在预设坐标系中的横坐标,YRRU1表示所述第一射频拉远单元在预设坐标系中的纵坐标,XRRU2表示所述第二射频拉远单元在预设坐标系中的横坐标,YRRU2表示所述第二射频拉远单元在预设坐标系中的纵坐标,L12表示所述第一射频拉远单元与所述第二射频拉远单元之间的距离,L1B表示所述第一距离,L2B表示所述第二距离。
  7. 根据权利要求1所述的方法,其中,所述获取所述第一射频拉远单元对应的第一时延信息和所述第二射频拉远单元对应的第二时延信息,包括:
    获取所述第一射频拉远单元和所述第二射频拉远单元接收到的来自所述目标设备在同一时刻发送的定位信号,其中,所述第一射频拉远单元和所述第二射频拉远单元之间设置有至少一个漏缆口,所述定位信号通过不同所述漏缆口至所述第一射频拉远单元的时延不同,且所述定位信号通过不同所述漏缆口至所述第二射频拉远单元的时延不同;
    根据所述定位信号的信号强度,选取出所述第一射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为所述第一时延信息,并选取所述第二射频拉远单元接收到的信号强度最大的定位信号所对应的时延作为所述第二时延信息。
  8. 一种隧道内设备的定位装置,包括:
    获取模块,配置为在目标设备移动至第一射频拉远单元与第二射频拉远单元之间的情况下,获取所述第一射频拉远单元对应的第一时延信息和所述第二射频拉远单元对应的第二时延信息,其中,所述第一射频拉远单元与所述第二射频拉远单元为隧道内的任意相邻的两个射频拉远单元,所述第一时延信息用于表征信号从所述目标设备传输至所述第一射频拉远单元所产生的时延,所述第二时延信息用于表征信号从所述目标设备传输至所述第二射频拉远单元所产生的时延;
    确定模块,配置为根据所述第一时延信息、所述第二时延信息,以及预先获取的所述第一射频拉远单元与所述第二射频拉远单元之间的距离和帧头时延差,确定所述目标设备在所述隧道内的位置。
  9. 一种隧道定位系统,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现如权利要求1-7任一项所述的隧道定位方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述的隧道定位方法的步骤。
PCT/CN2023/072675 2022-06-10 2023-01-17 隧道定位方法、装置、系统及存储介质 WO2023236543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210657926.2 2022-06-10
CN202210657926.2A CN117255404A (zh) 2022-06-10 2022-06-10 隧道定位方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2023236543A1 true WO2023236543A1 (zh) 2023-12-14

Family

ID=89117477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072675 WO2023236543A1 (zh) 2022-06-10 2023-01-17 隧道定位方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117255404A (zh)
WO (1) WO2023236543A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111196A (zh) * 2010-12-30 2011-06-29 中兴通讯股份有限公司 数据发送方法、装置及远程射频单元
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN110988799A (zh) * 2019-12-05 2020-04-10 上海无线通信研究中心 一种基于超声波的隧道内移动物体高精度定位系统及方法
CN113267798A (zh) * 2021-05-26 2021-08-17 常州大学 一种bds/tbs技术的高精度隧道内定位系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111196A (zh) * 2010-12-30 2011-06-29 中兴通讯股份有限公司 数据发送方法、装置及远程射频单元
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN110988799A (zh) * 2019-12-05 2020-04-10 上海无线通信研究中心 一种基于超声波的隧道内移动物体高精度定位系统及方法
CN113267798A (zh) * 2021-05-26 2021-08-17 常州大学 一种bds/tbs技术的高精度隧道内定位系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU JIAXUN, CHEN XUHONG, LIU SHANYUN, FAN PINGYI: "Location-Aware ICI Reduction in MIMO-OFDM Downlinks for High-Speed Railway Communication Systems", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE, USA, vol. 67, no. 4, 1 April 2018 (2018-04-01), USA, pages 2958 - 2972, XP093114579, ISSN: 0018-9545, DOI: 10.1109/TVT.2017.2702186 *
XIN YOU XIN YOU, XIN YOU DAXIN TIAN, DAXIN TIAN CHEN LIU, CHEN LIU XIAOFENG YU, XIAOFENG YU LIANGLIANG SONG: "Vehicles Positioning in Tunnel: A Real-Time Localization System Using DL-TDOA Technology", JOURNAL OF INTERNET TECHNOLOGY, NATIONAL DONG HWA UNIVERSITY, COMPUTER CENTER, HUALIEN TAIWAN, CN, vol. 22, no. 5, 1 September 2021 (2021-09-01), CN , pages 965 - 976, XP093114575, ISSN: 1607-9264, DOI: 10.53106/160792642021092205003 *

Also Published As

Publication number Publication date
CN117255404A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
CN110012536B (zh) 用于终端设备的定位方法、装置及系统
Han et al. Access point localization using local signal strength gradient
US8478292B2 (en) Wireless localization method based on an efficient multilateration algorithm over a wireless sensor network and a recording medium in which a program for the method is recorded
US9698963B2 (en) Method and apparatus for scheduling user equipment on full-duplex cellular network
US8233912B2 (en) Mobile station localization apparatus, systems, and methods
US9629116B2 (en) Apparatus, system and method of estimating a location of a mobile device
CN107105498B (zh) 定位方法和装置
JP5607213B2 (ja) モバイル局で往復遅延を測定する方法および装置
KR20180093491A (ko) 무선 통신 시스템에서 서비스 제공 장치 및 방법
US9247519B2 (en) Method and apparatus for obtaining information of user equipment
US11337028B2 (en) Combined fine timing measurement (FTM) and non-FTM messaging for position determination
US20100136999A1 (en) Apparatus and method for determining position of terminal
WO2023236543A1 (zh) 隧道定位方法、装置、系统及存储介质
US20100277362A1 (en) Radar detection method and apparatus using the same
KR100941760B1 (ko) 무선 네트워크에서의 이동단말 위치추정방법
CN110582058A (zh) 基于负幂次求和测距模型的无线定位方法
US20180041911A1 (en) Control apparatus, wireless communication system, and control method
Manap et al. Analysis of 4G mobile network coverage in UTeM technology campus
KR20210051558A (ko) 스마트 단말의 측위오차를 저감시키는 방법
EP3016458A1 (en) Apparatus, Mobile Device, Base Station Transceiver, Adaptation Server, Method and Computer Program for providing information related to a predicted channel state
CN106162615A (zh) 一种解决laa系统中pci混淆或冲突的方法、装置和设备
US20130288713A1 (en) Method and apparatus for wireless location tracking
CN114401482B (zh) 终端设备定位方法、装置及存储介质
Kryszkiewicz et al. Distance estimation for database-assisted autonomous platooning
CN103561411B (zh) 一种控制信号干扰的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023818711

Country of ref document: EP

Effective date: 20240422