WO2023236475A1 - 一种导电薄膜及其制备方法和应用 - Google Patents

一种导电薄膜及其制备方法和应用 Download PDF

Info

Publication number
WO2023236475A1
WO2023236475A1 PCT/CN2022/137733 CN2022137733W WO2023236475A1 WO 2023236475 A1 WO2023236475 A1 WO 2023236475A1 CN 2022137733 W CN2022137733 W CN 2022137733W WO 2023236475 A1 WO2023236475 A1 WO 2023236475A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive film
agent
film according
active agent
Prior art date
Application number
PCT/CN2022/137733
Other languages
English (en)
French (fr)
Inventor
杨良滔
谢佳珈
张翊
张志林
吴景龙
梁栋
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023236475A1 publication Critical patent/WO2023236475A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/266Bioelectric electrodes therefor characterised by the electrode materials containing electrolytes, conductive gels or pastes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the invention relates to the technical field of biomedical conductive materials, and in particular to a conductive film and its preparation method and application.
  • Physiological electrical signals are the most important signals for living organisms. It is caused by the difference in ion concentration inside and outside the cell membrane. When an organism is at rest, a resting potential is generated, and when an action occurs, an action potential is generated. The generation of each potential is related to physiological state and behavioral changes. Therefore, accurate, real-time and efficient detection of physiological electrical signals is very important.
  • ECG ECG
  • EMG ECG
  • EEG ECG
  • An electrocardiogram can help doctors understand how the heart is beating. Electromyography is caused by muscle contraction and can help people with disabilities regain some/all of their activities. EEG helps with brain activity and brain diseases, such as neurodegenerative diseases such as Alzheimer’s and Parkinson’s.
  • Common electrical signal acquisition systems include electrodes, signal amplifiers and converters, signal processors, and displays.
  • the electrode is the core component, and its main function is to collect electrical signals from the scalp, which plays a very important role.
  • Commonly used electrodes include wet electrodes and dry electrodes.
  • Wet electrodes require conductive glue to be applied between the electrode and the skin. It has the disadvantage of long electrode preparation time. After the conductive glue dries during the test process, the signal quality will be reduced; and the wet electrode is not easy to be portable, and the usage scenarios are greatly restricted.
  • Existing dry electrodes have high contact impedance with skin and are not easy to be flexible. Therefore, although the performance of wet electrodes is better than that of dry electrodes, the preparation process and use of wet electrodes are more cumbersome. Dry electrodes are more convenient in the preparation stage of experiments, but the signal quality is slightly worse than that of wet electrodes.
  • EEG electrospray elastomer
  • the biggest problem of EEG is the anti-interference ability, which determines the complexity of the environment.
  • the second is the nature of the electrodes, which can be selected according to the test environment. If the surrounding environment is noisy, such as outdoors or during exercise, you can choose an EEG with shielding technology, which can greatly improve the signal quality and reduce signal artifacts; if it is under special circumstances, such as nuclear magnetic resonance In the test environment, it is necessary to choose an EEG containing non-metallic electrodes; if you want to shorten the experimental preparation time, you can choose dry electrodes, which can greatly reduce the preparation time before the experiment, but the signal quality is slightly better than that collected by wet electrodes. Worse.
  • Common electrical signal acquisition systems include electrodes, signal amplifiers and converters, signal processors, and displays.
  • the electrode is the core component, and its main function is to collect electrical signals from the scalp, which plays a very important role.
  • Commonly used electrodes include wet electrodes and dry electrodes.
  • Wet electrodes require conductive glue to be applied between the electrode and the skin. It has the disadvantage of long electrode preparation time. After the conductive glue dries during the test process, the signal quality will be reduced; and the wet electrode is not easy to be portable, and the usage scenarios are greatly restricted.
  • Existing dry electrodes have high contact impedance with skin and are not easy to be flexible. Therefore, although the performance of wet electrodes is better than that of dry electrodes, the preparation process and use of wet electrodes are more cumbersome. Dry electrodes are more convenient in the preparation stage of experiments, but the signal quality is slightly worse than that of wet electrodes.
  • the object of the present invention is to provide a conductive film and its preparation method and application in view of the above-mentioned defects of the prior art.
  • the conductive film includes a flexible body in which active agents and conductive agents are dispersed. It is made of raw flexible materials, The active agent, conductive agent and solvent are prepared. Flexible materials can be used to achieve flexibility of the dry electrode.
  • the conductive agent uses organic conductive materials and inorganic conductive nanomaterials to build a conductive network, which greatly improves the conductivity and solves the high impedance problem of existing dry electrodes. And it is a technical problem that is not easy to be flexible.
  • the object of the present invention can be achieved through the following technical measures:
  • the invention provides a conductive film, including a flexible body, in which an active agent and a conductive agent are dispersed, wherein the mass ratio of the flexible body, the active agent and the conductive agent is 0.2 ⁇ 1.8:0.05 ⁇ 1.8:0.05 ⁇ 1.8.
  • the flexible body is made of PVA.
  • the active agent is at least one of Triton X-100, EG, DMSO, THF and glycine.
  • the conductive agent includes organic conductive materials and inorganic conductive nanomaterials
  • the organic conductive material is PEDOT: PSS or WPU;
  • the inorganic conductive nanomaterial is any one of AgNW, CNTs and graphene.
  • the conductive agent is composed of PEDOT:PSS and AgNW.
  • the present invention also provides a method for preparing the conductive film as described above, which includes the following steps:
  • step S1 is stirring and mixing, and the stirring and mixing is manual stirring or mechanical stirring and mixing.
  • the solvent described in step S2 is a volatile solvent, and the volatile solvent is water or ethanol, and the dosage is 10-500 mL;
  • the gel reaction time in step S2 is 0-48h.
  • the curing temperature of the curing process in step S3 is 30-150°C, and the curing time is 1-48h.
  • the present invention also provides an application of the conductive film as described above or the conductive film prepared by the method as described above in biomedical dry electrodes or dry batteries or electrical signal acquisition systems.
  • the conductive film of the present invention includes a flexible body in which an active agent and a conductive agent are dispersed. It is prepared from raw flexible materials, active agents, conductive agents and solvents.
  • the flexible material can be used to achieve flexibility of the dry electrode, and the conductive agent.
  • the use of organic conductive materials and inorganic conductive nanomaterials to construct a conductive network greatly improves the conductivity and solves the technical problem of high impedance in existing dry electrodes. It can be used to prepare flexible self-adhesive dry electrodes with flexibility and low resistance. The advantages are that it can be widely used in the field of biomedical engineering and has low raw material cost.
  • the preparation method of the conductive film of the present invention is simple and easy to operate.
  • Figure 1 is a sample photo of the conductive film according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the preparation process of the conductive film in Embodiment 1 of the present invention.
  • Figure 3 is a photo of the thickness and resistance test site of the conductive film sample prepared in Example 1 of the present invention.
  • the invention provides a conductive film, including a flexible body, in which an active agent and a conductive agent are dispersed, wherein the mass ratio of the flexible body, the active agent and the conductive agent is 0.2 ⁇ 1.8:0.05 ⁇ 1.8:0.05 ⁇ 1.8.
  • the material of the flexible body includes but is not limited to PVA, preferably PVA, which is low in price.
  • the active agent includes but is not limited to Triton X-100, EG, DMSO, THF and glycine (GLY), preferably EG, which is used to increase the dispersion of the conductive material and improve the conductivity of the film.
  • the conductive agent includes organic conductive materials and inorganic conductive nanomaterials; the organic conductive materials include but are not limited to PEDOT: PSS and WPU; the inorganic conductive nanomaterials include but are not limited to AgNW, CNTs and graphene. Conductive materials use organic conductive materials and inorganic conductive nanomaterials to build a conductive network, which greatly improves conductivity.
  • the conductive agent is composed of PEDOT:PSS and AgNW.
  • PEDOT:PSS is an aqueous solution of high molecular polymer and has high conductivity.
  • the solvent is a volatile solvent, and the dosage is preferably 10-500 mL.
  • the volatile solvent includes but is not limited to water and ethanol, preferably water, which can further reduce the preparation cost.
  • the invention also provides a preparation method for the above-mentioned conductive film, which includes the following steps:
  • the mixing process in step S1 may be stirring and mixing, including but not limited to manual stirring and mechanical stirring and mixing.
  • the gel reaction time in step S2 is 0-48h.
  • the curing temperature of the curing process in step S3 is 30-150°C, the curing time is 1-48 hours, and the curing method includes but is not limited to using resistance wire heating.
  • the present invention also provides an application of the conductive film as described above or the conductive film prepared by the method as described above in biomedical dry electrodes or dry batteries or electrical signal acquisition systems, which can solve the problems of high impedance and high impedance existing in existing dry electrodes. Technical issues that are not easily flexible.
  • a conductive film uses PVC as the raw flexible material, EG as the active agent, the conductive material consists of PEDOT: PSS and AgNW, and the solvent is water.
  • the preparation process is as follows:
  • the conductive film sample prepared in this embodiment has a thickness of 0.187mm and a resistance of 43.0 ⁇ .
  • the resistance of common conductive films is as high as 150 ⁇ .
  • the resistance of the conductive film in this embodiment is much lower than that of common conductive films.
  • Membrane has obvious advantages.
  • the conductive film of the present invention includes a flexible body in which an active agent and a conductive agent are dispersed. It is prepared from raw flexible materials, active agents, conductive agents and solvents.
  • the flexible material can be used to achieve flexibility of the dry electrode, and the conductive agent.
  • the use of organic conductive materials and inorganic conductive nanomaterials to construct a conductive network greatly improves the conductivity and solves the technical problem of high impedance in existing dry electrodes. It can be used to prepare flexible self-adhesive dry electrodes with flexibility and low resistance. The advantages are that it can be widely used in the field of biomedical engineering and has low raw material cost.
  • the preparation method of the conductive film of the present invention is simple and easy to operate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种导电薄膜,涉及生物医用导电材料技术领域,包括柔性本体,在柔性本体中分散有活性剂和导电剂,其中,柔性本体、活性剂和导电剂的质量比为0.2~1.8:0.05~1.8:0.05~1.8。还提供了导电薄膜的制备方法和应用。导电薄膜由原料柔性材料、活性剂、导电剂和溶剂制备,采用柔性材料可以实现干电极柔性化,导电材料采用有机导电材料和导电纳米材料构建导电网络,大大提高了导电性,解决了现有干电极存在的阻抗高且不易柔化的技术问题。

Description

一种导电薄膜及其制备方法和应用 技术领域
本发明涉及生物医用导电材料技术领域,具体涉及一种导电薄膜及其制备方法和应用。
背景技术
通过获取和解析生理信号能够帮组了解人的生理状态,同时还能够应用于疾病诊断和治疗。生理电信号是生物体最重要的一种信号。它是由细胞膜内外的离子浓度差造成的。在生物体静止状态下,会产生静止电位,在有动作发生的时候,会产生动作电位。每一个电位的产生都关系到生理状态和行为变化。因此,精确、实时、高效的探测生理电信号十分重要。
常用的技术包括心电、肌电以及脑电等。心电图能够帮组医生了解心脏的跳动情况。肌电图是由于肌肉收缩导致的,能帮组残障人士恢复部分/全部活动行为。脑电图有助于脑活动和脑疾病,例如阿尔兹海默症、帕金森等神经退行性疾病等。
常见的电信号采集系统包括,电极、信号放大器和转换器、信号处理器和显示器等部分。其中电极是核心部件,主要功能是采集头皮的电信号,具有十分重要的地位。常用的电极有湿电极和干电极。湿电极需要将导电胶涂抹在电极跟皮肤之间,它具有电极准备时间长的缺点,测试过程导电胶干燥后会导致信号质量降低;并且湿电极不易便携化,使用场景受到很大的限制。现有干电极与皮肤接触阻抗高,并且不易柔性化。因此,湿电极虽相较于干电极性能更加优异,但湿电极的准备过程以及使用方法都较为繁琐;而干电极在实验的准备阶段比较方便,但是信号质量稍差于湿电极信号。
脑电最大问题是抗干扰能力,它决定环境的复杂程度,其次是电极的性质,可以根据测试环境进行选择。如果是在周围环境比较嘈杂的情况下,如户外或运动下,可以选择带有屏蔽技术的脑电,可以极大的提高信号质量,降低信号伪迹;如果是在特殊情况,如核磁共振的测试环境下,就要选择含有非金属电极的脑电;若想要缩短实验准备时间,可选择干电极,它可以大大减少实验前的准备时间,但是信号质量稍微比湿电极采集的信号质量略差一些。
鉴于此,亟待研究一种导电薄膜及其制备方法,将其应用于制备生物医用干电池,以解决现有干电极存在的阻抗高且不易柔性化的技术问题。
技术问题
常见的电信号采集系统包括,电极、信号放大器和转换器、信号处理器和显示器等部分。其中电极是核心部件,主要功能是采集头皮的电信号,具有十分重要的地位。常用的电极有湿电极和干电极。湿电极需要将导电胶涂抹在电极跟皮肤之间,它具有电极准备时间长的缺点,测试过程导电胶干燥后会导致信号质量降低;并且湿电极不易便携化,使用场景受到很大的限制。现有干电极与皮肤接触阻抗高,并且不易柔性化。因此,湿电极虽相较于干电极性能更加优异,但湿电极的准备过程以及使用方法都较为繁琐;而干电极在实验的准备阶段比较方便,但是信号质量稍差于湿电极信号。
技术解决方案
本发明的目的在于针对现有技术的上述缺陷,提供一种导电薄膜及其制备方法和应用,导电薄膜包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,由原料柔性材料、活性剂、导电剂和溶剂制备,采用柔性材料可以实现干电极柔性化,导电剂采用有机导电材料和无机导电纳米材料构建导电网络,大大提高了导电性,解决了现有干电极存在的阻抗高且不易柔性化的技术问题。
本发明的目的可通过以下的技术措施来实现:
本发明提供了一种导电薄膜,包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,其中,柔性本体、活性剂和导电剂的质量比为0.2~1.8∶0.05~1.8∶0.05~1.8。
进一步地,所述柔性本体的材质为PVA。
进一步地,所述活性剂为Triton X-100、EG、 DMSO、THF和甘氨酸中的至少一种。
进一步地,所述导电剂包括有机导电材料和无机导电纳米材料;
所述有机导电材料为PEDOT:PSS或WPU;
所述无机导电纳米材料为AgNW、CNTs和石墨烯中的任意一种。
进一步地,所述导电剂由PEDOT:PSS和AgNW组成。
本发明还提供一种如上所述的导电薄膜的制备方法,包括以下步骤:
S1:将所述柔性本体、活性剂和导电剂按比例充分混合处理;
S2:加入一定量的溶剂,搅拌处理,形成凝胶;
S3:固化所述凝胶,得到所述导电薄膜。
进一步地,所述步骤S1中混合处理为搅拌混合,所述搅拌混合为手动搅拌或机械搅拌混合。
进一步地,所述步骤S2中所述溶剂为易挥发性溶剂,所述易挥发性溶剂为水或乙醇,用量为10-500mL;
所述步骤S2中凝胶反应的时间为0-48h。
进一步地,所述步骤S3中固化过程的固化温度为30-150°C,固化时间为1-48h。
本发明还提供一种如上所述的导电薄膜或如上所述的方法制备得到的导电薄膜在生物医用干电极或干电池或电信号采集系统中的应用。
有益效果
本发明的导电薄膜包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,是由原料柔性材料、活性剂、导电剂和溶剂制备,采用柔性材料可以实现干电极柔性化,导电剂采用有机导电材料和无机导电纳米材料构建导电网络,大大提高了导电性,解决了现有干电极存在的阻抗高的技术问题,可用于制备成柔性自粘的干电极,具有柔性化、电阻低的优点,可广泛应用于生物医学工程领域,且原料成本低。本发明的导电薄膜的制备方法简单、易操作。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例1的导电薄膜的样品照片;
图2是本发明实施例1的导电薄膜的制备过程示意图;
图3是本发明实施例1制备的导电薄膜样品的厚度及电阻测试现场照片。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
为了使本揭示内容的叙述更加详尽与完备,下文针对本发明的实施方式与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其它具体实施例来达成相同或均等的功能与步骤顺序。
本发明提供了一种导电薄膜,包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,其中,柔性本体、活性剂和导电剂的质量比为0.2~1.8∶0.05~1.8∶0.05~1.8。
所述柔性本体的材质包括但不限于PVA,优选为PVA,价格低廉。
所述活性剂包括但不限于Triton X-100、EG、 DMSO、THF和甘氨酸(GLY),优选为EG,用于增加导电材料的分散性,提高薄膜导电性。
所述导电剂包括有机导电材料和无机导电纳米材料;所述有机导电材料包括但不限于PEDOT:PSS和WPU;所述无机导电纳米材料包括但不限于AgNW、CNTs和石墨烯。导电材料采用有机导电材料和无机导电纳米材料构建导电网络,大大提高了导电性。优选地,所述导电剂由PEDOT:PSS和AgNW组成,PEDOT: PSS是一种高分子聚合物的水溶液,具有较高的导电率。
所述溶剂为易挥发性溶剂,用量优选为10-500mL。所述易挥发性溶剂包括但不限于水和乙醇,优选为水,能够进一步降低制备成本。
本发明还提供了上述导电薄膜的制备方法,包括以下步骤:
S1:将所述柔性本体、活性剂和导电剂按比例充分混合处理;
S2:加入一定量的溶剂,搅拌处理,形成凝胶;
S3:固化所述凝胶,得到所述导电薄膜。
其中,所述步骤S1中混合处理可以为搅拌混合,包括但不限于手动搅拌和机械搅拌混合。所述步骤S2中凝胶反应的时间为0-48h。所述步骤S3中固化过程的固化温度为30-150°C,固化时间为1-48h,固化方式包括但不限于采用电阻丝加热。
本发明还提供一种如上所述的导电薄膜或如上所述的方法制备得到的导电薄膜在生物医用干电极或干电池或电信号采集系统中的应用,可以解决现有干电极存在的阻抗高且不易柔性化的技术问题。
实施例1
如图1-3所示,一种导电薄膜,原料柔性材料采用PVC,活性剂采用EG,导电材料由PEDOT:PSS和AgNW组成,溶剂为水,制备过程如下:
S1:量取1.2gPEDOT:PSS,加入0.3gEG,先搅拌混合均匀后再加入1.5g PVC、2.1g AgNW和0.0525g Triton X-100,再充分搅拌30min混合均匀;
S2:加入5mL的水,搅拌60min,形成凝胶;
S3:45℃下固化18h所述凝胶,揭下薄膜得到导电薄膜样品。
如图3所示,本实施例制备得到的导电薄膜样品的厚度为0.187mm,电阻为43.0Ω,但是常见导电膜的电阻高到150Ω,本实施例的导电薄膜的电阻远远低于常见导电膜,具有很明显的优势。
本发明的导电薄膜包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,是由原料柔性材料、活性剂、导电剂和溶剂制备,采用柔性材料可以实现干电极柔性化,导电剂采用有机导电材料和无机导电纳米材料构建导电网络,大大提高了导电性,解决了现有干电极存在的阻抗高的技术问题,可用于制备成柔性自粘的干电极,具有柔性化、电阻低的优点,可广泛应用于生物医学工程领域,且原料成本低。本发明的导电薄膜的制备方法简单、易操作。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种导电薄膜,其特征在于,包括柔性本体,在所述柔性本体中分散有活性剂和导电剂,其中,柔性本体、活性剂和导电剂的质量比为0.2~1.8∶0.05~1.8∶0.05~1.8。
  2. 根据权利要求1所述的导电薄膜,其特征在于,所述柔性本体的材质为PVA。
  3. 根据权利要求1所述的导电薄膜,其特征在于,所述活性剂为Triton X-100、EG、 DMSO、THF和甘氨酸中的至少一种。
  4. 根据权利要求1所述的导电薄膜,其特征在于,所述导电剂包括有机导电材料和无机导电纳米材料;
    所述有机导电材料为PEDOT:PSS或WPU;
    所述无机导电纳米材料为AgNW、CNTs和石墨烯中的任意一种。
  5. 根据权利要求4所述的导电薄膜,其特征在于,所述导电剂由PEDOT:PSS和AgNW组成。
  6. 一种权利要求1所述的导电薄膜的制备方法,其特征在于,包括以下步骤:
    S1:将所述柔性本体、活性剂和导电剂按比例充分混合处理;
    S2:加入一定量的溶剂,搅拌处理,形成凝胶;
    S3:固化所述凝胶,得到所述导电薄膜。
  7. 根据权利要求6所述的导电薄膜的制备方法,其特征在于,所述步骤S1中混合处理为搅拌混合,所述搅拌混合为手动搅拌或机械搅拌混合。
  8. 根据权利要求6所述的导电薄膜,其特征在于,所述步骤S2中所述溶剂为易挥发性溶剂,所述易挥发性溶剂为水或乙醇,用量为10-500mL;
    所述步骤S2中凝胶反应的时间为0-48h。
  9. 根据权利要求6所述的导电薄膜的制备方法,其特征在于,所述步骤S3中固化过程的固化温度为30-150°C,固化时间为1-48h。
  10. 一种如权利要求1-5任意一项所述的导电薄膜或权利要求6-9任意一项所述的方法制备得到的导电薄膜在生物医用干电极或干电池或电信号采集系统中的应用。
PCT/CN2022/137733 2022-06-08 2022-12-08 一种导电薄膜及其制备方法和应用 WO2023236475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210641727.2A CN117224127A (zh) 2022-06-08 2022-06-08 一种导电薄膜及其制备方法和应用
CN202210641727.2 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023236475A1 true WO2023236475A1 (zh) 2023-12-14

Family

ID=89097273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137733 WO2023236475A1 (zh) 2022-06-08 2022-12-08 一种导电薄膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117224127A (zh)
WO (1) WO2023236475A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070403A1 (en) * 2009-12-11 2011-06-16 Universidade De Aveiro A dry active bio signal electrode with an hybrid organic-inorganic interface material
CN110240714A (zh) * 2019-06-26 2019-09-17 武汉工程大学 一种聚乙烯醇基导电水凝胶及其制备方法和应用
CN110338781A (zh) * 2019-07-23 2019-10-18 广西师范大学 一种非金属柔性干电极及其制备方法
CN112679753A (zh) * 2020-12-04 2021-04-20 中国科学院深圳先进技术研究院 一种超柔软的导电自愈合水凝胶及其制备方法和应用
CN113100773A (zh) * 2021-04-12 2021-07-13 中国科学院深圳先进技术研究院 一种直接在皮肤上纺丝制备纤维膜干电极的方法
CN114392362A (zh) * 2022-01-28 2022-04-26 电子科技大学 一种涂抹式低阻抗心电电极材料及其制备、使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070403A1 (en) * 2009-12-11 2011-06-16 Universidade De Aveiro A dry active bio signal electrode with an hybrid organic-inorganic interface material
CN110240714A (zh) * 2019-06-26 2019-09-17 武汉工程大学 一种聚乙烯醇基导电水凝胶及其制备方法和应用
CN110338781A (zh) * 2019-07-23 2019-10-18 广西师范大学 一种非金属柔性干电极及其制备方法
CN112679753A (zh) * 2020-12-04 2021-04-20 中国科学院深圳先进技术研究院 一种超柔软的导电自愈合水凝胶及其制备方法和应用
CN113100773A (zh) * 2021-04-12 2021-07-13 中国科学院深圳先进技术研究院 一种直接在皮肤上纺丝制备纤维膜干电极的方法
CN114392362A (zh) * 2022-01-28 2022-04-26 电子科技大学 一种涂抹式低阻抗心电电极材料及其制备、使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINFENG RONG; WENWEI LEI; LIE CHEN; YONGAI YIN; JIAJIA ZHOU; MINGJIE LIU: "Anti‐freezing, Conductive Self‐healing Organohydrogels with Stable Strain‐Sensitivity at Subzero Temperatures", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 56, no. 45, 4 October 2017 (2017-10-04), Hoboken, USA, pages 14159 - 14163, XP072090946, ISSN: 1433-7851, DOI: 10.1002/anie.201708614 *

Also Published As

Publication number Publication date
CN117224127A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
Wang et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording
Driscoll et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation
Choi et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics
Ershad et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment
Xu et al. Textile-structured electrodes for electrocardiogram
Huang et al. Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring
Yang et al. Facile fabrication of robust and reusable PDMS supported graphene dry electrodes for wearable electrocardiogram monitoring
Lee et al. ECG monitoring garment using conductive carbon paste for reduced motion artifacts
Cao et al. Stretchable and self-adhesive PEDOT: PSS blend with high sweat tolerance as conformal biopotential dry electrodes
Liu et al. Wearable carbon nanotubes-based polymer electrodes for ambulatory electrocardiographic measurements
Liu et al. Silver nanowire-composite electrodes for long-term electrocardiogram measurements
Alizadeh-Meghrazi et al. Evaluation of dry textile electrodes for long-term electrocardiographic monitoring
CN114728539A (zh) 用于柔软适形传感器和导体的吸收性基底的快速制造
Liu et al. A flexible semidry electrode for long-term, high-quality electrocardiogram monitoring
Tang et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise
Lee et al. Self-adherent biodegradable gelatin-based hydrogel electrodes for electrocardiography monitoring
Liu et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes
Liu et al. Breathable, self-adhesive dry electrodes for stable electrophysiological signal monitoring during exercise
CN106880355A (zh) 一种基于电容耦合的柔性生物电极阵列及其制备方法
KR102026850B1 (ko) 저온 용액 공정에 기반한 생체신호 측정 전극의 제조 방법, 생체신호 측정 전극, 및 이를 이용한 생체신호 측정 장치
Liu et al. A reversible gel-free electrode for continuous noninvasive electrophysiological signal monitoring
Shen et al. A gelatin-based hydrogel electrode with high moisturizing ability for wearable EEG recording
Rauf et al. Fully Screen-Printed and Gentle-to-Skin Wet ECG Electrodes with Compact Wireless Readout for Cardiac Diagnosis and Remote Monitoring
Hsieh et al. Design of an injectable, self-adhesive, and highly stable hydrogel electrode for sleep recording
WO2023236475A1 (zh) 一种导电薄膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945603

Country of ref document: EP

Kind code of ref document: A1