WO2023236103A1 - Method of metal integration for fabricating integrated device - Google Patents

Method of metal integration for fabricating integrated device Download PDF

Info

Publication number
WO2023236103A1
WO2023236103A1 PCT/CN2022/097621 CN2022097621W WO2023236103A1 WO 2023236103 A1 WO2023236103 A1 WO 2023236103A1 CN 2022097621 W CN2022097621 W CN 2022097621W WO 2023236103 A1 WO2023236103 A1 WO 2023236103A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
metal material
metal
trenches
substrate
Prior art date
Application number
PCT/CN2022/097621
Other languages
French (fr)
Inventor
Yijian Chen
Daniele Leonelli
Yanxiang Liu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2022/097621 priority Critical patent/WO2023236103A1/en
Publication of WO2023236103A1 publication Critical patent/WO2023236103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a permanent auxiliary member being left in the finished device, e.g. aids for protecting the bonding area during or after the bonding process

Definitions

  • the present disclosure relates to the fabrication of integrated devices, for example, of integrated semiconductor devices.
  • the disclosure presents a method for metal integration, which can be used in a process flow for fabricating such an integrated device.
  • Advanced back end of line (BEOL) patterning in a process flow for fabricating an integrated device may use a metal pitch of less than 21 nm.
  • the edge placement error (EPE) is critical, and full self-aligned vias are required to ensure robust connections between different metal levels.
  • EPE edge placement error
  • DUV deep ultraviolet
  • this disclosure aims to provide an improved solution for metal integration, which can be used in a process flow for fabricating integrated devices.
  • An objective is to provide a solution for various metal pitches, as an example, also for metal pitches below 21 nm.
  • An additional objective is to address situations where the EPE margin is below 5 nm.
  • This disclosure proposes a dual material hardmask process for metal integration, which allows a protecting for neighboring metal lines during the BEOL metallization process.
  • a first aspect of this disclosure provides a method of metal integration for fabricating an integrated device, the method comprising forming a first structure and a second structure from a common layer on a substrate, wherein the first structure and the second structure are separated from each other along a first direction and extend each into a second direction; forming a first spacer and a second spacer on the substrate, wherein the first spacer and the second spacer extend each into the second direction, the first spacer lining the first structure on two sides of the first structure, and the second spacer lining the second structure on two sides of the second structure; forming a third spacer and a fourth spacer on the substrate, wherein the third spacer and the fourth spacer extend each into the second direction, the third spacer lining the first spacer on two sides of the first spacer, and the fourth spacer lining the second spacer on two sides of the second spacer; forming a fifth spacer between the third spacer and the fourth spacer; forming a plurality of first gaps by selectively removing the third spacer,
  • the first structure and the second structure may be repeated at given pitch.
  • the first structure and the second structure may be part of a unit cell of the integrated device, wherein the unit cell may be repeated one or more times.
  • the first structure may be a first conductive structure, for instance, a first metal structure.
  • the second structure may be a second conductive structure, for instance, a second metal structure.
  • the first structure and the second structure may accordingly be made from the same conductive layer, for instance, a metal layer.
  • the first structure and the second structure may also be nitride-based structures, for example, silicon nitride structures, or may be carbon-based structures, for example, amorphous carbon (a-C) structures.
  • the method further comprises, after selectively removing the third spacer, the fourth spacer, the first structure, and the second structure: depositing a first filler material into the first gaps; and removing the first filler material to reopen the first gaps; wherein the first metal material is deposited into the reopened first gaps.
  • the method further comprises, before selectively removing the first spacer and the second spacer: selectively forming one or more openings in the third spacer, or in the fourth spacer, or in the first filler material, respectively; and extending the openings into the substrate; wherein the depositing of the first metal material into the first gaps includes depositing the first metal material into the openings that extend into the substrate, in order to form one or more first vias.
  • the first vias can accordingly be processed in a self-aligned manner.
  • the method further comprises, before depositing the second metal material into the trenches: extending one or more of the trenches through the first dielectric material and into the substrate; wherein the depositing of the second metal material into the trenches includes depositing the second metal material into the trenches that extend into the substrate, in order to form one or more second vias.
  • the second vias can accordingly be processed in a self-aligned manner.
  • the one or more openings are formed in the third spacer, or in the fourth spacer, or in the first filler material by: lithographic patterning; a first selective etch of the third spacer, or the fourth spacer, or the first filler material, to form the one or more openings; and a second selective etch of the substrate to extend the one or more openings into the substrate.
  • the method further comprises, before selectively removing the third spacer or the fourth spacer, or before removing the first filler material: covering a part of the third spacer, or of the fourth spacer, or of the first filler material with a protective layer, in order to prevent the removal of this part of the third spacer, or the fourth spacer, or the first filler material.
  • the method further comprises, before selectively removing the first spacer and the second spacer: recessing the first metal material in the first gaps; and depositing a first hard mask material into the first gaps onto the recessed first metal material.
  • the one or more trenches are extended into the substrate by: depositing a second filler material into the plurality of trenches; lithographic patterning; a first selective etch of the second filler material in the one or more trenches; a second selective etch of the dielectric material to extend the one or more trenches through the dielectric material and into the substrate; and removing the second filler material.
  • the method further comprises, after depositing the second metal material into the trenches: selectively removing a part of the second metal material; and depositing a second dielectric material to where the second metal material was selectively removed.
  • the selectively removing of the part of the second metal material comprises: lithographic patterning to expose only the part of the second metal material; and a selective metal etch of the exposed second metal material.
  • the method comprises, before depositing the second metal material into the trenches: forming a third dielectric material in a part of the trenches, in order to prevent the deposition of the second metal material into this part of the trenches.
  • the method further comprises: recessing the exposed second metal material; and depositing a second hard mask material onto the recessed second metal material.
  • a material of the first spacer and the second spacer on the one hand, and a material of the third spacer and the fourth spacer on the other hand, are different materials; and/or the first metal material and the second metal material are different materials.
  • the first metal material and/or the second metal material comprises at least one of ruthenium, copper, molybdenum, cobalt, and tungsten.
  • the method further comprises, the substrate comprises at least one of a middle of line (MOL) and BEOL layer.
  • MOL middle of line
  • the first dielectric material comprises silicon nitride and/or a dielectric used in the MOL layer.
  • the substrate comprises one or more integrated electrical circuits; and the first structure and/or the second structure is a power rail of at least one of the integrated electrical circuits in the substrate.
  • a second aspect of this disclosure provides an integrated device obtainable by the method according to the first aspect or any implementation form of the first aspect.
  • the integrated device of the second aspect may have a metal pitch below 21 nm.
  • metal pitches for example, metal pitches below 32 nm are possible.
  • the solution of this disclosure proposes a new metal integration scheme, which allows to fabricate different metal structures (e.g., narrow metal lines) with a small metal pitch below 21 nm, even when using DUV technology not EUV technology.
  • This is, in particular, achieved by implementing the novel spacer-defined patterning scheme (using the first to fifths spacers) to define the metal structures in two separated steps.
  • the first metal material may be etched (or trench filled) and the second metal material may be defined by a metal fill process in a different step.
  • the metals may be recessed or an area selective deposition (ASD) can be implemented to define two separated materials for hard masks utilized for the FSAV process.
  • ASD area selective deposition
  • ⁇ Narrow metal structures can be integrated using DUV, which can be achieved by separating the integration of the first metal material and the second metal material in two separated process sequences.
  • the EPE margin can be improved for advanced BEOL metallization (e.g., for metal pitch below 21 nm) , which may be achieved by using a different material hard mask on top of neighboring metal structures, so that it is possible to achieve a real FSAV thanks to a high etch selectivity of the hard mask materials.
  • advanced BEOL metallization e.g., for metal pitch below 21 nm
  • the metal structure capacitances can be reduced, since the neighboring metal structures may be not on the same level, but may be slightly staggered or with marginal overlap at the side.
  • FIG. 1-9 show a method for fabricating an integrated device according to this disclosure.
  • FIG. 10-29 show a first exemplary method for fabricating an integrated device according to this disclosure.
  • FIG. 30-49 show a second exemplary method for fabricating an integrated device according to this disclosure
  • FIG. 1-9 shows a method for fabricating an integrated device according to this disclosure. In particular, consecutive processing steps of the method are shown. Each figure shows an intermediate state of the integrated device after the processing step, respectively, performed in this figure. All figures show a sectional view of the integrated device, wherein the integrated device is illustrated along the x-axis (x-direction) and z-axis (z-direction) as indicated by the coordinate system in the lower left corner of the figures. Some of the figures also show a top view of the integrated device, wherein the integrated devices is illustrated along the x-axis (x-direction) and y-axis (y-direction) of the coordinate system, as indicated in the upper left corner of the figures.
  • FIG. 1 shows that in a first step of the method, a first structure 11 and a second structure 11 are formed from a common layer on a substrate 13.
  • the first structure 11 and the second structure 12 may be made of metal, or silicon nitride, or amorphous carbon, and are separated from each other along a first direction, (the x-direction in the coordinate system indicated on the lower left) , and extend each into a second direction (the y-direction) .
  • the first structure 11 and the second structure 12 may define a core of the integrated device.
  • the substrate 13 may comprise an interlayer dielectric, which is arranged on a semiconductor substrate, for instance, a silicon-based substrate or an amorphous silicon substrate.
  • a minimum feature size of the method may be defined as F.
  • the first structure 11 and the second structure 12 may, respectively, have width (along the first direction) of 3F.
  • a pitch between the first structure 11 and the second structure 12 may be 14F, with an 11F distance between these metal structures.
  • more than two metal structures 11, 12 can be fabricated in this way, for example, a plurality of metal structures 11, 12 arranged with the pitch mentioned.
  • the method may show any two metals structures 11, 12 of this plurality of metal structures 11, 12.
  • the first structure 11 and the second structure 12 may be formed by resist deposition, then lithography (exposure) , then resist development, and then a pattern transfer to the underneath substrate 13.
  • FIG. 2 shows that in a further step of the method, a first spacer 21 and a second spacer 22 are formed on the substrate 13.
  • the first spacer 21 and the second spacer 22 each extend into the second direction.
  • the first spacer 21 lines the first structure 11 on two sides of the first structure 11, e.g., the first spacer 21 sandwiches the first structure 11 in the first direction.
  • the second spacer 22 lines the second structure 12 on two sides of the second structure 12, e.g., the second spacer 22 sandwiches the second structure 12 in the first direction.
  • the first and second spacer 21, 22 may be formed by deposition of a spacer material and subsequent etch of that spacer material.
  • the first spacer 21 and the second spacer 22 may have a width in the first direction of 3F on each side of the first structure 11 and the second structure 12, respectively.
  • FIG. 3 shows that in a further step of the method, a third spacer 31 and a fourth spacer 32 are formed on the substrate 13.
  • the third spacer 31 and the fourth spacer 32 extend each into the second direction.
  • the third spacer 31 lines the first spacer 21 on two sides of the first spacer 21, e.g., the third spacer 31 sandwiches the first spacer 21 and the first structure 11 in the first direction.
  • the fourth spacer 32 lines the second spacer 22 on two sides of the second spacer 22, e.g., the fourth spacer 32 sandwiches the second spacer 22 and the second structure 12 in the first direction.
  • the third and fourth spacer 31, 32 may be formed by deposition of a second spacer material and subsequent etch of that second spacer material.
  • the third spacer 31 and the fourth spacer 32 may have a width in the first direction of 1F on each side of the first spacer 21 and the second spacer 22, respectively.
  • FIG. 4 shows that in a further step of the method, a fifth spacer 41 is formed between the third spacer 31 and the fourth spacer 32 –and thereby also between the first spacer 21 and the second spacer 22, and between the first structure 11 and the second structure 12, respectively.
  • the fifth spacer 41 can be formed by performing a gap fill, wherein all gaps on the substrate 13 are filled with, for instance, the same spacer material as used for the first spacer 21 and the second spacer 22.
  • a planarization step e.g., chemical mechanical polishing (CMP)
  • CMP chemical mechanical polishing
  • FIG. 5 shows that in a further step of the method, a plurality of first gaps 51 are formed by selectively removing the third spacer 31, the fourth spacer 32, the first structure 11, and the second structure 12. This step may be referred to as a spacer and core pull.
  • FIG. 5 shows both the top view and sectional view of the intermediate integrated device, and the dashed line illustrates the position of the cut for the sectional view. This is the same in all other figures which show both views.
  • FIG. 6 shows that in a further step of the method, a first metal material 61 is deposited into the first gaps 51.
  • the first metal material 61 may be referred to as metal A, and the step may comprise a metal A fill and subsequent CMP.
  • FIG. 7 shows that in a further step of the method, a plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22. This step may this be referred to as a spacer pull step.
  • the second gaps 71 are formed between the locations where the first metal material 61 has been deposited.
  • FIG. 8 shows that in a further step of the method, a first dielectric material 81 is deposited into the second gaps 71, and that a plurality of trenches 82 are formed in the first dielectric material 81 in the second gaps 71.
  • the trenches 82 may each extend into the second direction, and may be formed in between the locations (in the first direction) where the first material 61 has been deposited.
  • FIG. 9 shows that in a further step of the method, a second metal material 91 is deposited into the trenches 82.
  • the second metal material 91 may be referred to as metal B, and the step may comprise a metal B fill and subsequent CMP.
  • a pitch between all metal structures (formed by the metal A and the metal B, respectively) in the intermediate integrated device shown in FIG. 9 is much smaller than the initial pitch of 14F.
  • the pitch after the step of FIG. 9 may, for example, be 3F.
  • FIG. 10-29 show a first exemplary method for fabricating an integrated device according to this disclosure, in particular, show steps that happen after the steps of the method shown in FIG. 1-4. That, is the first exemplary method comprises the steps shown in FIG. 1-4 and the steps shown in FIG. 10-29. A repeated description of the former is omitted.
  • FIG. 10 shows that in a further step of the first exemplary method, a lithographic patterning is performed.
  • the lithographic patterning may be referred to as via patterning, since it may be used for patterning one or more first vias.
  • the intermediate integrated device is covered with a resist 101 or the like, which is then selectively developed and removed to open a certain area 102 of the underlying device for further processing. For instance, as shown, a part of the first spacer 21 and the third spacer 31 is exposed. It is also possible to expose a part of the second spacer 22 and the fourth spacer 32 in a similar manner (not shown) .
  • FIG. 11 shows that in a further step of the first exemplary method, one or more openings 121 in the third spacer 31 (as shown) and/or in the fourth spacer 32 (not shown) are formed.
  • a first selective etch of the third spacer 31 and/or of the fourth spacer 32 may be performed to form the one or more openings 121.
  • the one or more openings 121 may each expose the substrate 13.
  • the one or more openings 121 may be referred to as via openings, as their purpose may be to form one or more first vias as described in the following.
  • FIG. 12 shows that in a further step of the first exemplary method, the openings 121 are extended into the substrate 13.
  • a second selective etch of the substrate 13 may be carried out, in order to extend the one or more openings 121 into the substrate 13.
  • the purpose may be to form one or more first vias into the substrate 13.
  • FIG. 13 shows that in a further step of the first exemplary method, the resist 101 is removed, and then a part of the third spacer 31 and/or of the fourth spacer 32 (both shown) is covered with a protective layer 131, in order to prevent the removal of this part of the third spacer 31 and/or the fourth spacer 32, respectively, in a subsequent next step.
  • the current step may be referred to as block patterning.
  • FIG. 14 shows that in a further step of the first exemplary method, the plurality of first gaps 51 is formed by selectively removing the third spacer 31, the fourth spacer 32, the first structure 11, and the second structure 12.
  • This step may be referred to as a spacer and core pull.
  • the protective layer 131 prevents the part of the third spacer 31 and/or the second spacer 32 from being removed.
  • FIG. 15 shows that in a further step of the first exemplary method, the first metal material 61 is deposited into the first gaps 51.
  • the depositing of the first metal material 61 into the first gaps 51 includes depositing the first metal material 61 into the openings 121 that extend into the substrate 13. This may form one or more first vias.
  • FIG. 16 shows that in a further step of the first exemplary method, the first metal material 61 (which has been deposited into the first gaps 51) may be recessed (in direction towards the substrate 13) . This step may thus be referred to as metal A recess.
  • FIG. 17 shows that in a further step of the first exemplary method 10, a first hard mask material 171 is deposited onto the recessed first metal material 61.
  • This step may be referred to as hard mask A formation or hardmask A selective area deposition.
  • the first hard mask material 171 may not be formed on, or may be removed from, the remaining part of the third spacer 31 or the fourth spacer 32.
  • FIG. 18 shows that in a further step of the first exemplary method, a plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22, which is arranged between the first metal material 61 and hard mask material 171.
  • This step may be referred to as a spacer pull step.
  • the remaining part of the third spacer 31 and fourth spacer 32 may be removed in this step. The selective removal may be carried out by selective etching of the respective materials.
  • FIG. 19 shows that in a further step of the first exemplary method, the first dielectric material 81 is deposited into the second gaps 71. Further, the plurality of trenches 82 are formed in the first dielectric material 81 (which has been deposited into the second gaps 71) , for instance, by etching the first dielectric material 81.
  • FIG. 20 shows that in a further step of the first exemplary method, a filler material 201 is deposited into the plurality of trenches 82.
  • This step may be referred to as filler and via B patterning.
  • the patterning may comprise providing a mask material 202 onto one or more areas each above one of the trenches 82 (one is shown) . This may be used for patterning one or second vias as described in the following.
  • FIG. 21 shows that in a further step of the first exemplary method, lithographic patterning is performed.
  • This lithographic patterning may include applying a resist 101 over the surface of the intermediate integrated device (which is not formed where the mask material 202 was arranged) , and removing the mask material 202 to expose the previously covered area via a mask opening, which particularly exposes one or more trenches 82. Further, a first selective etch of the filler material 201 may be performed in the exposed one or more trenches 82, in order to remove the filler material 201 from these one or more trenches 82.
  • FIG. 22 shows that in a further step of the first exemplary method, a second selective etch of the exposed and etched dielectric material 81 may be performed to extend the one or more trenches 82 through the dielectric material 81 and into the substrate 13. This may be referred to as via B etch.
  • FIG. 23 shows that in a further step of the first exemplary method, the resist 101 is removed and the filler material 201 is removed.
  • FIG. 24 shows that in a further step of the first exemplary method, the second metal material 91 is deposited into the trenches 82. Afterwards a planarization step may be performed. This may be referred to as metal B Fill followed by CMP.
  • the second material 91 in the one or more trenches 82, which have been extended into the substrate 13, may form one or more second vias.
  • FIG. 25 shows that in a further step of the first exemplary method, lithographic patterning is performed to expose only a part 251 of the second metal material 91.
  • FIG. 26 shows that in a further step of the first exemplary method, the part 251 of the second metal material 91 that was exposed is selectively removed. This may be referred to as a self-aligned cut of metal B by direct metal etch (DME) .
  • DME direct metal etch
  • FIG. 27 shows that in a further step of the first exemplary method, a second dielectric material 271 is deposited to where the second metal material 91 was selectively removed.
  • FIG. 28 shows that in a further step of the first exemplary method, the exposed second metal material 91 may be recessed in direction of the substrate 13. This may be referred to as metal B recess.
  • FIG. 29 shows that in a further step of the first exemplary method, a second hard mask material 291 is deposited onto the recessed second metal material 91. This may be referred to as hard mask B formation or hard mask B selective area deposition.
  • FIG. 30-49 show a second exemplary method for fabricating an integrated device according to this disclosure, in particular, show steps that happen after the steps of the method shown in FIG. 1-4. That, is the second exemplary method comprises the steps shown in FIG. 1-4 and the steps shown in FIG. 30-49. A repeated description of the former is omitted.
  • FIG. 30 shows that in a further step of the second exemplary method, the third spacer 31 and the fourth spacer 32, and the first structure 11 and the second structure 12 are selectively removed, respectively, wherein a plurality of first gaps 51 are formed above the substrate 13.
  • FIG. 31 shows that in a further step of the second exemplary method, a filler material 311 is deposited into the first gaps 51, particularly, between the first and second spacer 21, 22. This may be followed by CMP.
  • FIG. 32 shows that in a further step of the second exemplary method, lithographic patterning is performed.
  • the lithographic patterning may be referred to as via patterning, since it may be used for patterning one or more first vias.
  • the intermediate integrated device is covered with a resist 101 or the like, which is then selectively developed and removed to open a certain area 321 of the underlying device for further processing. For instance, as shown, a part of the first spacer 21 and the filler material 311 (where the third spacer 31 was before) is exposed. It is also possible to expose another part of the filler material 311 (where the fourth spacer 32 may before) in a similar manner.
  • FIG. 33 shows that in a further step of the second exemplary method, one or more openings 121 are selectively formed in the filler material 311. For instance, a first selective etch of the filler material 311 may be performed, in order to form the one or more openings 121. These may be referred to as via openings, as their purpose may be fabricating the first vias.
  • FIG. 34 shows that in a further step of the second exemplary method, the openings 121 are extended into the substrate 13.
  • a second selective etch of the substrate 13 may be performed to extend the one or more openings 121 into the substrate 13. This may be referred to as via etch for the first vias.
  • FIG. 35 shows that in a further step of the second exemplary method, the resist 101 is removed and a part of the filler material 311 may be covered with a protective layer 131, in order to prevent the removal of this part of the filler material 311 in a subsequent step.
  • the current step may be referred to as block patterning.
  • FIG. 36 shows that in a further step of the second exemplary method, the filler material 311 is removed to reopen the first gaps 51.
  • the filler material 311 may be selectively etched.
  • the protective layer 131 is then removed, and the previously covered filler material 311 remains.
  • FIG. 37 shows that in a further step of the second exemplary method, the first metal material 61 is deposited into the reopened first gaps 51.
  • the depositing of the first metal material 61 into the reopened first gaps 51 includes depositing the first metal material 61 into the openings 121 that extend into the substrate 13, in order to form one or more first vias. Then, a planarization like CMP may be performed.
  • FIG. 38 shows that in a further step of the second exemplary method, the first metal material 61 in the first gaps 51 is recessed in direction of the substrate 13.
  • FIG. 39 shows that in a further step of the second exemplary method, the first hard mask material 171 is deposited onto the recessed first metal material 61.
  • FIG. 40 shows that in a further step of the second exemplary method, the plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22. This may be referred to as spacer pull.
  • FIG. 41 shows that in a further step of the second exemplary method, the first dielectric material 81 is deposited into the second gaps 71. Further, the plurality of trenches 82 are formed in the first dielectric material 81 deposited into the second gaps 71. For instance, a selective etch of the dielectric material 81 may form the one or more trenches 82.
  • FIG. 42 shows that in a further step of the second exemplary method, a filler material 201 is deposited into the plurality of trenches 82. Further lithographic patterning is performed. This lithographic patterning may include applying a resist 101 over the surface of the intermediate integrated device and exposing, by forming a mask opening 42 in the resist 101, one or more of the trenches 82 that are filled with the filler material 201.
  • FIG. 43 shows that in a further step of the second exemplary method, a first selective etch of the filler material 201 in the one or more exposed trenches 82 may be performed, in order to remove the filler material 202 from these one or more trenches 82.
  • FIG. 44 shows that in a further step of the second exemplary method, a second selective etch of the dielectric material 81 in the exposed one or more trenches 82 may be performed to extend the one or more trenches 82 through the dielectric material 81 and into the substrate 13. This may be referred to as a via etch for the second vias.
  • FIG. 45 shows that in a further step of the second exemplary method, the resist 101 is removed and a third dielectric material 451 may be provided over a part of one or more the trenches 82 filled with filler material 201.
  • FIG. 46 shows that in a further step of the second exemplary method, the filler material 201 is removed. However, in the a part of one or more the trenches 82 filled with filler material 201 covered with the third dielectric material 451, the removal of the filler material 201 is prevented, and the filler material 201 remains after the third dielectric material 451 is removed.
  • FIG. 47 shows that in a further step of the second exemplary method, the second metal material 91 is deposited into the trenches 82.
  • the deposition of the second metal material 91 into the part of the trenches 82 where the filler material 201 remains is prevented.
  • the deposition of the second metal material 91 into the trenches 82 that are extended into the substrate 13 forms the second vias.
  • a CMP may be performed.
  • FIG. 48 shows that in a further step of the second exemplary method, the exposed second metal material 91 may be recessed in direction of the substrate 13.
  • FIG. 49 shows that in a further step of the second exemplary method, a second hard mask material 291 is deposited onto the recessed second metal material 91.
  • a material of the first spacer 21 and the second spacer 22 on the one hand, and a material of the third spacer 31 and the fourth spacer 33 on the other hand, may be different materials.
  • the first spacer 21 and the second spacer 22 are made of the same material.
  • the third spacer 31 and the fourth spacer 32 may be made of the same material.
  • the spacers 21, 22, 31, 32 may, respectively, be made of an oxide (e.g., silicon oxide or titanium oxide) , or a nitride (e.g., silicon nitride) , or silicon germanium, or other suitable spacer material.
  • the first metal material and the second metal material are different materials.
  • the first metal may comprise at least one of ruthenium, copper, molybdenum, cobalt, and tungsten.
  • the second metal material may comprise at least one of ruthenium, copper, molybdenum, cobalt, and tungsten
  • the substrate 13 may comprise at least one of a MOL and a BEOL layer.
  • the first dielectric material 81 may comprise silicon nitride and/or may comprise a dielectric used in the MOL layer.
  • the substrate 13 may comprise one or more integrated electrical circuits.
  • the first structure 11 and/or the second structure 12 may be a power rail of at least one of the integrated electrical circuits in the substrate 13.

Abstract

The fabrication of integrated devices, for example, integrated semiconductor devices is disclosed. The method for metal integration can be used in a process flow for fabricating such an integrated device. The method is based on patterning different spacers and defining different metal structures using the spacers in two separated steps. In particular, metal structures of a first metal material (61) are processed in a different step than metal structure of a second metal material (91).

Description

A METHOD OF METAL INTEGRATION FOR FABRICATING AN INTEGRATED DEVICE TECHNICAL FIELD
The present disclosure relates to the fabrication of integrated devices, for example, of integrated semiconductor devices. The disclosure presents a method for metal integration, which can be used in a process flow for fabricating such an integrated device.
BACKGROUND
Advanced back end of line (BEOL) patterning in a process flow for fabricating an integrated device may use a metal pitch of less than 21 nm. For such advanced patterning, the edge placement error (EPE) is critical, and full self-aligned vias are required to ensure robust connections between different metal levels. However, it may be observed that there is no sufficient EPE margin for such advanced patterning when deep ultraviolet (DUV) patterning technologies are used, because it is not possible to scale the EPE margin below 5 nm due to intrinsic technology limitations.
Besides the metal lines scaling, one of the major bottlenecks in BEOL functionality is the via patterning and its alignment. Several examples of self-aligned via and fully self-aligned-via (FSAV) schemes have been implemented by major foundries, in order to mitigate the EPE limit. All implemented solutions use a single hard mask material. The solutions may achieve good results down to the 5 nm node (with a metal pitch of 28 nm) , but only if extreme ultraviolet (EUV) technology is implemented. This is, because of the single hard mask material used for protecting neighboring metal lines and relaxing the EPE requirements. However, there is no solution for metal pitches smaller than 21 nm, because it is hard to achieve the EPE below 5 nm.
SUMMARY
In view of the above, this disclosure aims to provide an improved solution for metal integration, which can be used in a process flow for fabricating integrated devices. An objective is to provide a solution for various metal pitches, as an example, also for metal pitches below 21 nm. An additional objective is to address situations where the EPE margin is below 5 nm.
These and other objectives are achieved by the solution of this disclosure as described in the independent claims. Advantageous implementations are further defined in the dependent claims.
This disclosure proposes a dual material hardmask process for metal integration, which allows a protecting for neighboring metal lines during the BEOL metallization process.
A first aspect of this disclosure provides a method of metal integration for fabricating an integrated device, the method comprising forming a first structure and a second structure from a common layer on a substrate, wherein the first structure and the second structure are separated from each other along a first direction and extend each into a second direction; forming a first spacer and a second spacer on the substrate, wherein the first spacer and the second spacer extend each into the second direction, the first spacer lining the first structure on two sides of the first structure, and the second spacer lining the second structure on two sides of the second structure; forming a third spacer and a fourth spacer on the substrate, wherein the third spacer and the fourth spacer extend each into the second direction, the third spacer lining the first spacer on two sides of the first spacer, and the fourth spacer lining the second spacer on two sides of the second spacer; forming a fifth spacer between the third spacer and the fourth spacer; forming a plurality of first gaps by selectively removing the third spacer, the fourth spacer, the first structure, and the second structure; depositing a first metal material into the first gaps; forming a plurality of second gaps by selectively removing the first spacer and the second spacer; depositing a first dielectric material into the second gaps; forming a plurality of trenches in the first dielectric material in the second gaps; and depositing a second metal material into the trenches.
The first structure and the second structure may be repeated at given pitch. The first structure and the second structure may be part of a unit cell of the integrated device,  wherein the unit cell may be repeated one or more times. The first structure may be a first conductive structure, for instance, a first metal structure. The second structure may be a second conductive structure, for instance, a second metal structure. The first structure and the second structure may accordingly be made from the same conductive layer, for instance, a metal layer. The first structure and the second structure may also be nitride-based structures, for example, silicon nitride structures, or may be carbon-based structures, for example, amorphous carbon (a-C) structures.
By forming the various spaces, and by using these spacers to process structures from the first metal material and the second metal material, respectively, a solution for various metal pitches is enabled, also for metal pitches below 21 nm. DUV technology may be used, EUV technology being possible but not required.
In an implementation form of the first aspect, the method further comprises, after selectively removing the third spacer, the fourth spacer, the first structure, and the second structure: depositing a first filler material into the first gaps; and removing the first filler material to reopen the first gaps; wherein the first metal material is deposited into the reopened first gaps.
In an implementation form of the first aspect, the method further comprises, before selectively removing the first spacer and the second spacer: selectively forming one or more openings in the third spacer, or in the fourth spacer, or in the first filler material, respectively; and extending the openings into the substrate; wherein the depositing of the first metal material into the first gaps includes depositing the first metal material into the openings that extend into the substrate, in order to form one or more first vias.
The first vias can accordingly be processed in a self-aligned manner.
In an implementation form of the first aspect, the method further comprises, before depositing the second metal material into the trenches: extending one or more of the trenches through the first dielectric material and into the substrate; wherein the depositing of the second metal material into the trenches includes depositing the second metal material into the trenches that extend into the substrate, in order to form one or more second vias.
The second vias can accordingly be processed in a self-aligned manner.
In an implementation form of the first aspect, the one or more openings are formed in the third spacer, or in the fourth spacer, or in the first filler material by: lithographic patterning; a first selective etch of the third spacer, or the fourth spacer, or the first filler material, to form the one or more openings; and a second selective etch of the substrate to extend the one or more openings into the substrate.
In an implementation form of the first aspect, the method further comprises, before selectively removing the third spacer or the fourth spacer, or before removing the first filler material: covering a part of the third spacer, or of the fourth spacer, or of the first filler material with a protective layer, in order to prevent the removal of this part of the third spacer, or the fourth spacer, or the first filler material.
In an implementation form of the first aspect, the method further comprises, before selectively removing the first spacer and the second spacer: recessing the first metal material in the first gaps; and depositing a first hard mask material into the first gaps onto the recessed first metal material.
In an implementation form of the first aspect, the one or more trenches are extended into the substrate by: depositing a second filler material into the plurality of trenches; lithographic patterning; a first selective etch of the second filler material in the one or more trenches; a second selective etch of the dielectric material to extend the one or more trenches through the dielectric material and into the substrate; and removing the second filler material.
In an implementation form of the first aspect, the method further comprises, after depositing the second metal material into the trenches: selectively removing a part of the second metal material; and depositing a second dielectric material to where the second metal material was selectively removed.
In an implementation form of the first aspect, the selectively removing of the part of the second metal material comprises: lithographic patterning to expose only the part of the second metal material; and a selective metal etch of the exposed second metal material.
In an implementation form of the first aspect, the method comprises, before depositing the second metal material into the trenches: forming a third dielectric material in a part of the trenches, in order to prevent the deposition of the second metal material into this part of the trenches.
In an implementation form of the first aspect, the method further comprises: recessing the exposed second metal material; and depositing a second hard mask material onto the recessed second metal material.
In an implementation form of the first aspect a material of the first spacer and the second spacer on the one hand, and a material of the third spacer and the fourth spacer on the other hand, are different materials; and/or the first metal material and the second metal material are different materials.
In an implementation form of the first aspect, the first metal material and/or the second metal material comprises at least one of ruthenium, copper, molybdenum, cobalt, and tungsten.
In an implementation form of the first aspect, the method further comprises, the substrate comprises at least one of a middle of line (MOL) and BEOL layer.
In an implementation form of the first aspect, the first dielectric material comprises silicon nitride and/or a dielectric used in the MOL layer.
In an implementation form of the first aspect, the substrate comprises one or more integrated electrical circuits; and the first structure and/or the second structure is a power rail of at least one of the integrated electrical circuits in the substrate.
A second aspect of this disclosure provides an integrated device obtainable by the method according to the first aspect or any implementation form of the first aspect.
The integrated device of the second aspect may have a metal pitch below 21 nm. However, also other metal pitches, for example, metal pitches below 32 nm are possible.
According to the above, the solution of this disclosure proposes a new metal integration scheme, which allows to fabricate different metal structures (e.g., narrow metal lines) with a small metal pitch below 21 nm, even when using DUV technology not EUV technology. This is, in particular, achieved by implementing the novel spacer-defined patterning scheme (using the first to fifths spacers) to define the metal structures in two separated steps. The first metal material may be etched (or trench filled) and the second metal material may be defined by a metal fill process in a different step. After the metal deposition, the metals may be recessed or an area selective deposition (ASD) can be implemented to define two separated materials for hard masks utilized for the FSAV process.
The solution of this disclosure provides at least the following advantages:
● Narrow metal structures can be integrated using DUV, which can be achieved by separating the integration of the first metal material and the second metal material in two separated process sequences.
● The EPE margin can be improved for advanced BEOL metallization (e.g., for metal pitch below 21 nm) , which may be achieved by using a different material hard mask on top of neighboring metal structures, so that it is possible to achieve a real FSAV thanks to a high etch selectivity of the hard mask materials.
● The metal structure capacitances can be reduced, since the neighboring metal structures may be not on the same level, but may be slightly staggered or with marginal overlap at the side.
BRIEF DESCRIPTION OF DRAWINGS
The above described aspects and implementation forms will be explained in the following description of embodiments in relation to the enclosed drawings, in which
FIG. 1-9 show a method for fabricating an integrated device according to this disclosure.
FIG. 10-29 show a first exemplary method for fabricating an integrated device according to this disclosure.
FIG. 30-49 show a second exemplary method for fabricating an integrated device according to this disclosure
DETAILED DESCRIPTION OF EMBODIMENTS
FIG. 1-9 shows a method for fabricating an integrated device according to this disclosure. In particular, consecutive processing steps of the method are shown. Each figure shows an intermediate state of the integrated device after the processing step, respectively, performed in this figure. All figures show a sectional view of the integrated device, wherein the integrated device is illustrated along the x-axis (x-direction) and z-axis (z-direction) as indicated by the coordinate system in the lower left corner of the figures. Some of the figures also show a top view of the integrated device, wherein the integrated devices is illustrated along the x-axis (x-direction) and y-axis (y-direction) of the coordinate system, as indicated in the upper left corner of the figures.
FIG. 1 shows that in a first step of the method, a first structure 11 and a second structure 11 are formed from a common layer on a substrate 13. The first structure 11 and the second structure 12 may be made of metal, or silicon nitride, or amorphous carbon, and are separated from each other along a first direction, (the x-direction in the coordinate system indicated on the lower left) , and extend each into a second direction (the y-direction) . The first structure 11 and the second structure 12 may define a core of the integrated device. The substrate 13 may comprise an interlayer dielectric, which is arranged on a semiconductor substrate, for instance, a silicon-based substrate or an amorphous silicon substrate.
A minimum feature size of the method may be defined as F. As shown in FIG. 1, the first structure 11 and the second structure 12 may, respectively, have width (along the first direction) of 3F. A pitch between the first structure 11 and the second structure 12 may be 14F, with an 11F distance between these metal structures. Notably, more than two  metal  structures  11, 12 can be fabricated in this way, for example, a plurality of  metal structures  11, 12 arranged with the pitch mentioned. The method may show any two  metals structures  11, 12 of this plurality of  metal structures  11, 12. Notably, the first structure 11 and the second structure 12 may be formed by resist deposition, then lithography (exposure) , then resist development, and then a pattern transfer to the underneath substrate 13.
FIG. 2 shows that in a further step of the method, a first spacer 21 and a second spacer 22 are formed on the substrate 13. The first spacer 21 and the second spacer 22 each extend into the second direction. The first spacer 21 lines the first structure 11 on two sides of the first structure 11, e.g., the first spacer 21 sandwiches the first structure 11 in the first direction. The second spacer 22 lines the second structure 12 on two sides of the second structure 12, e.g., the second spacer 22 sandwiches the second structure 12 in the first direction. The first and  second spacer  21, 22 may be formed by deposition of a spacer material and subsequent etch of that spacer material. The first spacer 21 and the second spacer 22 may have a width in the first direction of 3F on each side of the first structure 11 and the second structure 12, respectively.
FIG. 3 shows that in a further step of the method, a third spacer 31 and a fourth spacer 32 are formed on the substrate 13. The third spacer 31 and the fourth spacer 32 extend each into the second direction. The third spacer 31 lines the first spacer 21 on two sides of the first spacer 21, e.g., the third spacer 31 sandwiches the first spacer 21 and the first structure 11 in the first direction. The fourth spacer 32 lines the second spacer 22 on two sides of the second spacer 22, e.g., the fourth spacer 32 sandwiches the second spacer 22 and the second structure 12 in the first direction. The third and  fourth spacer  31, 32 may be formed by deposition of a second spacer material and subsequent etch of that second spacer material. The third spacer 31 and the fourth spacer 32 may have a width in the first direction of 1F on each side of the first spacer 21 and the second spacer 22, respectively.
FIG. 4 shows that in a further step of the method, a fifth spacer 41 is formed between the third spacer 31 and the fourth spacer 32 –and thereby also between the first spacer 21 and the second spacer 22, and between the first structure 11 and the second structure 12, respectively. In particular, the fifth spacer 41 can be formed by performing a gap fill, wherein all gaps on the substrate 13 are filled with, for instance, the same spacer material  as used for the first spacer 21 and the second spacer 22. Then a planarization step (e.g., chemical mechanical polishing (CMP) ) may be performed to planarize the surface of the intermediate integrated device.
FIG. 5 shows that in a further step of the method, a plurality of first gaps 51 are formed by selectively removing the third spacer 31, the fourth spacer 32, the first structure 11, and the second structure 12. This step may be referred to as a spacer and core pull. FIG. 5 shows both the top view and sectional view of the intermediate integrated device, and the dashed line illustrates the position of the cut for the sectional view. This is the same in all other figures which show both views.
FIG. 6 shows that in a further step of the method, a first metal material 61 is deposited into the first gaps 51. The first metal material 61 may be referred to as metal A, and the step may comprise a metal A fill and subsequent CMP.
FIG. 7 shows that in a further step of the method, a plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22. This step may this be referred to as a spacer pull step. The second gaps 71 are formed between the locations where the first metal material 61 has been deposited.
FIG. 8 shows that in a further step of the method, a first dielectric material 81 is deposited into the second gaps 71, and that a plurality of trenches 82 are formed in the first dielectric material 81 in the second gaps 71. The trenches 82 may each extend into the second direction, and may be formed in between the locations (in the first direction) where the first material 61 has been deposited.
FIG. 9 shows that in a further step of the method, a second metal material 91 is deposited into the trenches 82. The second metal material 91 may be referred to as metal B, and the step may comprise a metal B fill and subsequent CMP.
It can be seen from the figures illustrating the method, that a pitch between all metal structures (formed by the metal A and the metal B, respectively) in the intermediate integrated device shown in FIG. 9 is much smaller than the initial pitch of 14F. The pitch after the step of FIG. 9 may, for example, be 3F.
FIG. 10-29 show a first exemplary method for fabricating an integrated device according to this disclosure, in particular, show steps that happen after the steps of the method shown in FIG. 1-4. That, is the first exemplary method comprises the steps shown in FIG. 1-4 and the steps shown in FIG. 10-29. A repeated description of the former is omitted.
FIG. 10 shows that in a further step of the first exemplary method, a lithographic patterning is performed. The lithographic patterning may be referred to as via patterning, since it may be used for patterning one or more first vias. In particular, the intermediate integrated device is covered with a resist 101 or the like, which is then selectively developed and removed to open a certain area 102 of the underlying device for further processing. For instance, as shown, a part of the first spacer 21 and the third spacer 31 is exposed. It is also possible to expose a part of the second spacer 22 and the fourth spacer 32 in a similar manner (not shown) .
FIG. 11 shows that in a further step of the first exemplary method, one or more openings 121 in the third spacer 31 (as shown) and/or in the fourth spacer 32 (not shown) are formed. For instance, a first selective etch of the third spacer 31 and/or of the fourth spacer 32 may be performed to form the one or more openings 121. The one or more openings 121 may each expose the substrate 13. The one or more openings 121 may be referred to as via openings, as their purpose may be to form one or more first vias as described in the following.
FIG. 12 shows that in a further step of the first exemplary method, the openings 121 are extended into the substrate 13. For instance, a second selective etch of the substrate 13 may be carried out, in order to extend the one or more openings 121 into the substrate 13. The purpose may be to form one or more first vias into the substrate 13.
FIG. 13 shows that in a further step of the first exemplary method, the resist 101 is removed, and then a part of the third spacer 31 and/or of the fourth spacer 32 (both shown) is covered with a protective layer 131, in order to prevent the removal of this part of the third spacer 31 and/or the fourth spacer 32, respectively, in a subsequent next step. The current step may be referred to as block patterning.
FIG. 14 shows that in a further step of the first exemplary method, the plurality of first gaps 51 is formed by selectively removing the third spacer 31, the fourth spacer 32, the first structure 11, and the second structure 12. This step may be referred to as a spacer and core pull. Notably, the protective layer 131 prevents the part of the third spacer 31 and/or the second spacer 32 from being removed.
FIG. 15 shows that in a further step of the first exemplary method, the first metal material 61 is deposited into the first gaps 51. As can be seen, the depositing of the first metal material 61 into the first gaps 51 includes depositing the first metal material 61 into the openings 121 that extend into the substrate 13. This may form one or more first vias.
FIG. 16 shows that in a further step of the first exemplary method, the first metal material 61 (which has been deposited into the first gaps 51) may be recessed (in direction towards the substrate 13) . This step may thus be referred to as metal A recess.
FIG. 17 shows that in a further step of the first exemplary method 10, a first hard mask material 171 is deposited onto the recessed first metal material 61. This step may be referred to as hard mask A formation or hardmask A selective area deposition. Notably, the first hard mask material 171 may not be formed on, or may be removed from, the remaining part of the third spacer 31 or the fourth spacer 32.
FIG. 18 shows that in a further step of the first exemplary method, a plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22, which is arranged between the first metal material 61 and hard mask material 171. This step may be referred to as a spacer pull step. Also the remaining part of the third spacer 31 and fourth spacer 32 may be removed in this step. The selective removal may be carried out by selective etching of the respective materials.
FIG. 19 shows that in a further step of the first exemplary method, the first dielectric material 81 is deposited into the second gaps 71. Further, the plurality of trenches 82 are formed in the first dielectric material 81 (which has been deposited into the second gaps 71) , for instance, by etching the first dielectric material 81.
FIG. 20 shows that in a further step of the first exemplary method, a filler material 201 is deposited into the plurality of trenches 82. This step may be referred to as filler and via B patterning. The patterning may comprise providing a mask material 202 onto one or more areas each above one of the trenches 82 (one is shown) . This may be used for patterning one or second vias as described in the following.
FIG. 21 shows that in a further step of the first exemplary method, lithographic patterning is performed. This lithographic patterning may include applying a resist 101 over the surface of the intermediate integrated device (which is not formed where the mask material 202 was arranged) , and removing the mask material 202 to expose the previously covered area via a mask opening, which particularly exposes one or more trenches 82. Further, a first selective etch of the filler material 201 may be performed in the exposed one or more trenches 82, in order to remove the filler material 201 from these one or more trenches 82.
FIG. 22 shows that in a further step of the first exemplary method, a second selective etch of the exposed and etched dielectric material 81 may be performed to extend the one or more trenches 82 through the dielectric material 81 and into the substrate 13. This may be referred to as via B etch.
FIG. 23 shows that in a further step of the first exemplary method, the resist 101 is removed and the filler material 201 is removed.
FIG. 24 shows that in a further step of the first exemplary method, the second metal material 91 is deposited into the trenches 82. Afterwards a planarization step may be performed. This may be referred to as metal B Fill followed by CMP. The second material 91 in the one or more trenches 82, which have been extended into the substrate 13, may form one or more second vias.
FIG. 25 shows that in a further step of the first exemplary method, lithographic patterning is performed to expose only a part 251 of the second metal material 91.
FIG. 26 shows that in a further step of the first exemplary method, the part 251 of the second metal material 91 that was exposed is selectively removed. This may be referred  to as a self-aligned cut of metal B by direct metal etch (DME) . The dielectric material 81 under the removed second metal material 91 may be laid free.
FIG. 27 shows that in a further step of the first exemplary method, a second dielectric material 271 is deposited to where the second metal material 91 was selectively removed.
FIG. 28 shows that in a further step of the first exemplary method, the exposed second metal material 91 may be recessed in direction of the substrate 13. This may be referred to as metal B recess.
FIG. 29 shows that in a further step of the first exemplary method, a second hard mask material 291 is deposited onto the recessed second metal material 91. This may be referred to as hard mask B formation or hard mask B selective area deposition.
FIG. 30-49 show a second exemplary method for fabricating an integrated device according to this disclosure, in particular, show steps that happen after the steps of the method shown in FIG. 1-4. That, is the second exemplary method comprises the steps shown in FIG. 1-4 and the steps shown in FIG. 30-49. A repeated description of the former is omitted.
FIG. 30 shows that in a further step of the second exemplary method, the third spacer 31 and the fourth spacer 32, and the first structure 11 and the second structure 12 are selectively removed, respectively, wherein a plurality of first gaps 51 are formed above the substrate 13.
FIG. 31 shows that in a further step of the second exemplary method, a filler material 311 is deposited into the first gaps 51, particularly, between the first and  second spacer  21, 22. This may be followed by CMP.
FIG. 32 shows that in a further step of the second exemplary method, lithographic patterning is performed. The lithographic patterning may be referred to as via patterning, since it may be used for patterning one or more first vias. In particular, the intermediate integrated device is covered with a resist 101 or the like, which is then selectively developed and removed to open a certain area 321 of the underlying device for further  processing. For instance, as shown, a part of the first spacer 21 and the filler material 311 (where the third spacer 31 was before) is exposed. It is also possible to expose another part of the filler material 311 (where the fourth spacer 32 may before) in a similar manner.
FIG. 33 shows that in a further step of the second exemplary method, one or more openings 121 are selectively formed in the filler material 311. For instance, a first selective etch of the filler material 311 may be performed, in order to form the one or more openings 121. These may be referred to as via openings, as their purpose may be fabricating the first vias.
FIG. 34 shows that in a further step of the second exemplary method, the openings 121 are extended into the substrate 13. For example, a second selective etch of the substrate 13 may be performed to extend the one or more openings 121 into the substrate 13. This may be referred to as via etch for the first vias.
FIG. 35 shows that in a further step of the second exemplary method, the resist 101 is removed and a part of the filler material 311 may be covered with a protective layer 131, in order to prevent the removal of this part of the filler material 311 in a subsequent step. The current step may be referred to as block patterning.
FIG. 36 shows that in a further step of the second exemplary method, the filler material 311 is removed to reopen the first gaps 51. For instance, the filler material 311 may be selectively etched. The protective layer 131 is then removed, and the previously covered filler material 311 remains.
FIG. 37 shows that in a further step of the second exemplary method, the first metal material 61 is deposited into the reopened first gaps 51. The depositing of the first metal material 61 into the reopened first gaps 51 includes depositing the first metal material 61 into the openings 121 that extend into the substrate 13, in order to form one or more first vias. Then, a planarization like CMP may be performed.
FIG. 38 shows that in a further step of the second exemplary method, the first metal material 61 in the first gaps 51 is recessed in direction of the substrate 13.
FIG. 39 shows that in a further step of the second exemplary method, the first hard mask material 171 is deposited onto the recessed first metal material 61.
FIG. 40 shows that in a further step of the second exemplary method, the plurality of second gaps 71 are formed by selectively removing the first spacer 21 and the second spacer 22. This may be referred to as spacer pull.
FIG. 41 shows that in a further step of the second exemplary method, the first dielectric material 81 is deposited into the second gaps 71. Further, the plurality of trenches 82 are formed in the first dielectric material 81 deposited into the second gaps 71. For instance, a selective etch of the dielectric material 81 may form the one or more trenches 82.
FIG. 42 shows that in a further step of the second exemplary method, a filler material 201 is deposited into the plurality of trenches 82. Further lithographic patterning is performed. This lithographic patterning may include applying a resist 101 over the surface of the intermediate integrated device and exposing, by forming a mask opening 42 in the resist 101, one or more of the trenches 82 that are filled with the filler material 201.
FIG. 43 shows that in a further step of the second exemplary method, a first selective etch of the filler material 201 in the one or more exposed trenches 82 may be performed, in order to remove the filler material 202 from these one or more trenches 82.
FIG. 44 shows that in a further step of the second exemplary method, a second selective etch of the dielectric material 81 in the exposed one or more trenches 82 may be performed to extend the one or more trenches 82 through the dielectric material 81 and into the substrate 13. This may be referred to as a via etch for the second vias.
FIG. 45 shows that in a further step of the second exemplary method, the resist 101 is removed and a third dielectric material 451 may be provided over a part of one or more the trenches 82 filled with filler material 201.
FIG. 46 shows that in a further step of the second exemplary method, the filler material 201 is removed. However, in the a part of one or more the trenches 82 filled with filler material 201 covered with the third dielectric material 451, the removal of the filler  material 201 is prevented, and the filler material 201 remains after the third dielectric material 451 is removed.
FIG. 47 shows that in a further step of the second exemplary method, the second metal material 91 is deposited into the trenches 82. The deposition of the second metal material 91 into the part of the trenches 82 where the filler material 201 remains is prevented. The deposition of the second metal material 91 into the trenches 82 that are extended into the substrate 13 forms the second vias. Then, a CMP may be performed.
FIG. 48 shows that in a further step of the second exemplary method, the exposed second metal material 91 may be recessed in direction of the substrate 13.
FIG. 49 shows that in a further step of the second exemplary method, a second hard mask material 291 is deposited onto the recessed second metal material 91.
In all the above methods, which were described with respect to FIGs. 1-9, FIGs. 10-29, and FIGs. 30-49, respectively, a material of the first spacer 21 and the second spacer 22 on the one hand, and a material of the third spacer 31 and the fourth spacer 33 on the other hand, may be different materials. The first spacer 21 and the second spacer 22 are made of the same material. Also the third spacer 31 and the fourth spacer 32 may be made of the same material. The  spacers  21, 22, 31, 32 may, respectively, be made of an oxide (e.g., silicon oxide or titanium oxide) , or a nitride (e.g., silicon nitride) , or silicon germanium, or other suitable spacer material.
In all the above methods, which were described with respect to FIGs. 1-9, FIGs. 10-29, and FIGs. 30-49, respectively, the first metal material and the second metal material are different materials. For example, the first metal may comprise at least one of ruthenium, copper, molybdenum, cobalt, and tungsten. For example, the second metal material may comprise at least one of ruthenium, copper, molybdenum, cobalt, and tungsten
In all the above methods, which were described with respect to FIGs. 1-9, FIGs. 10-29, and FIGs. 30-49, respectively, the substrate 13 may comprise at least one of a MOL and a BEOL layer. Further, the first dielectric material 81 may comprise silicon nitride and/or may comprise a dielectric used in the MOL layer.
In all the above methods, which were described with respect to FIGs. 1-9, FIGs. 10-29, and FIGs. 30-49, respectively, the substrate 13 may comprise one or more integrated electrical circuits. Further, the first structure 11 and/or the second structure 12 may be a power rail of at least one of the integrated electrical circuits in the substrate 13.
The present disclosure has been described in conjunction with various embodiments as examples as well as implementations. However, other variations can be understood and effected by those persons skilled in the art and practicing the claimed matter, from the studies of the drawings, this disclosure and the independent claims. In the claims as well as in the description the word “comprising” does not exclude other elements or steps and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several entities or items recited in the claims. The mere fact that certain measures are recited in the mutual different dependent claims does not indicate that a combination of these measures cannot be used in an advantageous implementation.

Claims (18)

  1. A method (10) of metal integration for fabricating an integrated device, the method (10) comprising
    forming a first structure (11) and a second structure (12) from a common layer on a substrate (13) , wherein the first structure (11) and the second metal structure (12) are separated from each other along a first direction (x) and extend each into a second direction (z) ;
    forming a first spacer (21) and a second spacer (22) on the substrate (13) , wherein the first spacer (21) and the second spacer (22) extend each into the second direction (z) , the first spacer (21) lining the first structure (11) on two sides of the first structure (11) , and the second spacer (22) lining the second structure (12) on two sides of the second structure (12) ;
    forming a third spacer (31) and a fourth spacer (32) on the substrate (13) , wherein the third spacer (31) and the fourth spacer (32) extend each into the second direction (z) , the third spacer (31) lining the first spacer (21) on two sides of the first spacer (21) , and the fourth spacer (32) lining the second spacer (22) on two sides of the second spacer (22) ;
    forming a fifth spacer (41) between the third spacer (31) and the fourth spacer (32) ;
    forming a plurality of first gaps (51) by selectively removing the third spacer (31) , the fourth spacer (32) , the first structure (11) , and the second structure (12) ;
    depositing a first metal material (61) into the first gaps (51) ;
    forming a plurality of second gaps (71) by selectively removing the first spacer (21) and the second spacer (22) ;
    depositing a first dielectric material (81) into the second gaps (71) ;
    forming a plurality of trenches (82) in the first dielectric material (81) in the second gaps (7) ; and
    depositing a second metal material (91) into the trenches (82) .
  2. The method (10) according to claim 1, further comprising, after selectively removing the third spacer (31) , the fourth spacer (32) , the first structure (11) , and the second structure (12) :
    depositing a first filler material (311) into the first gaps (51) ; and
    removing the first filler material (311) to reopen the first gaps (51) ;
    wherein the first metal material (61) is deposited into the reopened first gaps (51) .
  3. The method (10) according to claim 1 or 2, further comprising, before selectively removing the first spacer (21) and the second spacer (22) :
    selectively forming one or more openings (121) in the third spacer (31) , or in the fourth spacer (32) , or in the first filler material (311) , respectively; and
    extending the openings (121) into the substrate (13) ;
    wherein the depositing of the first metal material (61) into the first gaps (51) includes depositing the first metal material (61) into the openings (121) that extend into the substrate (13) , in order to form one or more first vias.
  4. The method (10) according to one of the claims 1 to 3, further comprising, before depositing the second metal material (91) into the trenches (82) :
    extending one or more of the trenches (82) through the first dielectric material (81) and into the substrate (13) ;
    wherein the depositing of the second metal material (91) into the trenches (82) includes depositing the second metal material (91) into the trenches (82) that extend into the substrate (13) , in order to form one or more second vias.
  5. The method (10) according to claim 3 or 4, wherein the one or more openings (121) are formed in the third spacer (31) , or in the fourth spacer (32) , or in the first filler material (311) by:
    lithographic patterning;
    a first selective etch of the third spacer (31) , or the fourth spacer (32) , or the first filler material (311) , to form the one or more openings (121) ; and
    a second selective etch of the substrate (13) to extend the one or more openings (121) into the substrate (13) .
  6. The method (10) according to one of the claims 2 to 5, further comprising, before selectively removing the third spacer (31) or the fourth spacer (32) , or before removing the first filler material (311) :
    covering a part of the third spacer (31) , or of the fourth spacer (32) , or of the first filler material (311) with a protective layer (131) , in order to prevent the removal of this part of the third spacer (31) , or the fourth spacer (32) , or the first filler material (311) .
  7. The method (10) according to one of the claims 1 to 6, further comprising, before selectively removing the first spacer (21) and the second spacer (22) :
    recessing the first metal material (61) in the first gaps (51) ; and
    depositing a first hard mask material (171) into the first gaps (51) onto the recessed first metal material (61) .
  8. The method (10) according to one of the claims 4 to 7, wherein the one or more trenches (82) are extended into the substrate (13) by:
    depositing a second filler material (201) into the plurality of trenches (82) ;
    lithographic patterning;
    a first selective etch of the second filler material (201) in the one or more trenches (82) ;
    a second selective etch of the dielectric material (81) to extend the one or more trenches (82) through the dielectric material (81) and into the substrate (13) ; and
    removing the second filler material (201) .
  9. The method (10) according to one of the claims 1 to 8, further comprising, after depositing the second metal material (91) into the trenches (82) :
    selectively removing a part of the second metal material (91) ; and
    depositing a second dielectric material (271) to where the second metal material (91) was selectively removed.
  10. The method (10) according to claim 9, wherein the selectively removing of the part of the second metal material (91) comprises:
    lithographic patterning to expose only the part of the second metal material (91) ; and
    a selective metal etch of the exposed second metal material (91) .
  11. The method (10) according to one of the claims 1 to 8, comprising, before
    depositing the second metal material (91) into the trenches (82) :
    forming a third dielectric material (451) in a part of the trenches (82) , in order to prevent the deposition of the second metal material (91) into this part of the trenches (82) .
  12. The method (10) according to one of the claims 9 or 11, further comprising:
    recessing the exposed second metal material (91) ; and
    depositing a second hard mask material (291) onto the recessed second metal material (91) .
  13. The method (10) according to one of the claims 1 to 12, wherein:
    a material of the first spacer (21) and the second spacer (22) on the one hand, and a material of the third spacer (31) and the fourth spacer (32) on the other hand, are different materials; and/or
    the first metal material (61) and the second metal material (91) are different materials.
  14. The method (10) according to one of the claims 1 to 13, wherein:
    the first metal material (61) and/or the second metal material (91) comprises at least one of ruthenium, copper, molybdenum, cobalt, and tungsten.
  15. The method (10) according to one of the claims 1 to 14, wherein:
    the substrate (13) comprises at least one of a middle of line, MOL, and back end of line, BEOL, layer.
  16. The method (10) according to one of the claims 1 to 15, wherein:
    the first dielectric material (81) comprises silicon nitride and/or a dielectric used in the MOL layer.
  17. The method (10) according to one of the claims 1 to 16, wherein:
    the substrate (13) comprises one or more integrated electrical circuits; and
    the first structure (11) and/or the second structure (12) is a power rail of at least one of the integrated electrical circuits in the substrate (13) .
  18. An integrated device obtainable by the method (10) according to any one of the claims 1 to 17.
PCT/CN2022/097621 2022-06-08 2022-06-08 Method of metal integration for fabricating integrated device WO2023236103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097621 WO2023236103A1 (en) 2022-06-08 2022-06-08 Method of metal integration for fabricating integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097621 WO2023236103A1 (en) 2022-06-08 2022-06-08 Method of metal integration for fabricating integrated device

Publications (1)

Publication Number Publication Date
WO2023236103A1 true WO2023236103A1 (en) 2023-12-14

Family

ID=89117247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097621 WO2023236103A1 (en) 2022-06-08 2022-06-08 Method of metal integration for fabricating integrated device

Country Status (1)

Country Link
WO (1) WO2023236103A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429123B1 (en) * 2000-10-04 2002-08-06 Vanguard International Semiconductor Corporation Method of manufacturing buried metal lines having ultra fine features
US20090186485A1 (en) * 2008-01-23 2009-07-23 Lam Chung H Sub-lithographic printing method
CN103928312A (en) * 2013-01-10 2014-07-16 中芯国际集成电路制造(上海)有限公司 Pattern formation method
US20180269107A1 (en) * 2017-03-14 2018-09-20 United Microelectronics Corp. Method of Forming a Semiconductor Device
US20220093414A1 (en) * 2020-09-22 2022-03-24 International Business Machines Corporation Creating different width lines and spaces in a metal layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429123B1 (en) * 2000-10-04 2002-08-06 Vanguard International Semiconductor Corporation Method of manufacturing buried metal lines having ultra fine features
US20090186485A1 (en) * 2008-01-23 2009-07-23 Lam Chung H Sub-lithographic printing method
CN103928312A (en) * 2013-01-10 2014-07-16 中芯国际集成电路制造(上海)有限公司 Pattern formation method
US20180269107A1 (en) * 2017-03-14 2018-09-20 United Microelectronics Corp. Method of Forming a Semiconductor Device
US20220093414A1 (en) * 2020-09-22 2022-03-24 International Business Machines Corporation Creating different width lines and spaces in a metal layer

Similar Documents

Publication Publication Date Title
US11860550B2 (en) Multi-metal fill with self-aligned patterning and dielectric with voids
KR102196718B1 (en) A method of generating mask layouts, a self-aligned block patterning method and a method of manufacturing an integrated circuit
US9099530B2 (en) Methods of patterning small via pitch dimensions
US10269715B2 (en) Split rail structures located in adjacent metal layers
JP2017500744A (en) Extended contact using litho-freeze-litho-etch process
US11929258B2 (en) Via connection to a partially filled trench
US10784155B2 (en) Multi-metal fill with self-align patterning
US20130285246A1 (en) Semiconductor Device With Self-Aligned Interconnects and Blocking Portions
CN108447777B (en) Variable space mandrel dicing for self-aligned double patterning
JP2006005350A (en) Semiconductor device with scattering bar arranged near wires
US20230118565A1 (en) Hybrid method for forming semiconductor interconnect structure
WO2023236103A1 (en) Method of metal integration for fabricating integrated device
CN112750773B (en) Method for producing gate and source/drain via connections for contact transistors
CN113363142A (en) Method for forming semiconductor device
US20240087891A1 (en) Method for Processing a Substrate
CN111668091B (en) Semiconductor device and method of forming the same
EP3843130A1 (en) A method for forming an interconnection structure
KR100447977B1 (en) Method for forming metal line of semiconductor device by using dual damascene process
CN114446770A (en) Semiconductor structure and forming method thereof
CN113972167A (en) Method for forming semiconductor structure
CN115223984A (en) Method for forming semiconductor structure
WO2020112388A1 (en) Metal interconnect structure by subtractive process
KR20040002150A (en) Method for forming metal line of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945248

Country of ref document: EP

Kind code of ref document: A1