WO2023234621A1 - Snout control system, and hot-dip galvanizing equipment comprising same - Google Patents

Snout control system, and hot-dip galvanizing equipment comprising same Download PDF

Info

Publication number
WO2023234621A1
WO2023234621A1 PCT/KR2023/007040 KR2023007040W WO2023234621A1 WO 2023234621 A1 WO2023234621 A1 WO 2023234621A1 KR 2023007040 W KR2023007040 W KR 2023007040W WO 2023234621 A1 WO2023234621 A1 WO 2023234621A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
dam
snout
snorkel
processor
Prior art date
Application number
PCT/KR2023/007040
Other languages
French (fr)
Korean (ko)
Inventor
박태준
이강원
박현우
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220066595A external-priority patent/KR20230166523A/en
Priority claimed from KR1020220066596A external-priority patent/KR20230166524A/en
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023234621A1 publication Critical patent/WO2023234621A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a snout control system and a hot-dip galvanizing facility including the same, and more specifically, to a snout control capable of automatically removing dross floating within the snout device during the production process of hot-dip galvanized steel sheets. It relates to a system and a hot-dip galvanizing facility including the same.
  • the hot-dip galvanizing facility is a melting facility that melts zinc ingots into a molten state at a temperature of 450 degrees or higher and plates a zinc film on the surface of a high-temperature steel sheet.
  • Such hot-dip galvanizing equipment uses intermetallic chemicals due to thermal and chemical instability, such as zinc oxidation due to temperature difference with the outside air and contact with the discharge wiping air of the air knife flowing to the molten metal surface after impacting the surface of the vertical strip. Dross of the Fe2Al structure always occurs.
  • This dross is adsorbed on the surface of the steel sheet and can cause various problems such as processing cracks, plating peeling, and reduced paintability during secondary processing.
  • the management of such dross must be managed more strictly.
  • many steel companies minimize the occurrence of dross by ensuring the thermal and chemical stability of the galvanizing bath, and install dam-structured equipment inside the snout, where one end is immersed in the galvanizing bath to introduce the steel sheet.
  • the snorkel part connected to the snout device is welded with the dam on the inside and manufactured as an integrated piece.
  • the steel plate had to be cut to replace the snorkel part, which lengthened the maintenance time of the equipment, causing problems with productivity.
  • the detachable dam is applied according to the real-time molten metal level change of the detachable dam and the galvanizing tank, and the detachable dam is applied according to the molten metal level using a machine vision camera and sensor.
  • the purpose is to provide a snout control system that can ensure operational convenience and quality stability by automatically controlling the load of the dam and pump unit to improve the above-mentioned problems, and a hot-dip galvanizing facility including the same.
  • the purpose of the present invention is to provide a snout control system and method that ensures operation convenience and quality stability by automatically analyzing the real-time operation status inside the snout device.
  • a snout control system includes a snout device whose one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet during the production process of the hot-dip galvanized steel sheet, thereby introducing the steel sheet into the plating bath; a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and a processor that controls the snout device and the first sensor, wherein the snout device is formed to surround the steel sheet flowing into the plating bath, and has an opening formed at the bottom immersed in the molten metal surface of the plating bath.
  • a snorkel portion that guides the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath; It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface, and the snorkel In the opening portion of the portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion.
  • a dam unit forming an accommodating space capable of accommodating a molten zinc plating solution; and a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating bath, wherein the processor is configured to measure the first plating solution measured by the first sensor.
  • the processor automatically controls the position of the dam unit according to the difference in the gap so that the gap (G) between the water level and the first dam wall is maintained constant.
  • a snout control system includes a snout device whose one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet during the production process of the hot-dip galvanized steel sheet, thereby introducing the steel sheet into the plating bath; a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and a processor that controls the snout device and the first sensor, wherein the snout device is formed to surround the steel sheet flowing into the plating bath, and has an opening formed at the bottom immersed in the molten metal surface of the plating bath.
  • a snorkel portion that guides the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath; It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface, and the snorkel In the opening portion of the portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion.
  • a dam unit forming an accommodating space capable of accommodating a molten zinc plating solution;
  • a camera module installed inside the snorkel unit and formed on a part of the dam unit to recognize foreign substances floating on the molten zinc plating solution surface; and a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating bath, wherein the processor learns an image of the foreign object using the camera module. Based on the information obtained through, the position of the dam unit is controlled to suppress the mixing of the foreign matter moving into the steel plate, or the load of the pump unit is adjusted.
  • the processor receives a sensing signal from the first sensor, and raises or lowers the dam unit to adjust the depth at which the dam unit is immersed in the plating bath according to the sensing signal to keep the gap constant.
  • the gap is constantly controlled by controlling the load of the pump unit to control the flow rate of the molten zinc plating solution pumped by the pump unit.
  • the processor combines the first water level information on the molten zinc plating liquid surface and the position information of the dam unit through the first sensor to detect the protrusion protruding from the first dam wall and the molten zinc plating liquid. It is characterized by maintaining the gap constant by deriving gap (G) information between the molten steel surfaces and controlling the position of the dam unit based on the derived gap information and load information of the pump unit.
  • G gap
  • the dam unit is configured in the form of a sliding rail, and is physically coupled to the outer wall of the snorkel portion, and drives the dam unit to minimize the influence of heat energy transmitted from the plating bath.
  • the driving device for is characterized in that it is connected to any part of the snout device.
  • the processor when the gap information is lower than a preset standard, the processor lowers the dam unit to increase the depth at which the first dam wall portion of the dam unit is immersed in the plating bath, and the gap information is set in advance. If it is higher than the reference water level set in, the dam unit is raised to reduce the depth at which the first dam wall portion of the dam unit is immersed in the plating bath.
  • the snout device is installed on one side of the inner space of the snorkel unit and detects the position information of the dam unit, or the molten zinc overflows the dam wall and is accommodated in the accommodation space of the dam unit. It is characterized in that it further includes a second sensor that measures the second water level of the amount of money.
  • the processor detects a gap between the second water level and the first water level through the second sensor to prevent the molten zinc plating solution from flowing back from the accommodation space of the dam unit to the opening of the snorkel portion. It is characterized by controlling the (gap) to always exceed the set value.
  • the pump unit is installed at a position corresponding to the dam unit outside the snorkel unit, and is connected so that the internal pumping space communicates with the accommodation space of the dam unit, and the pumping space flows from the accommodation space.
  • a housing portion having an outlet on one side to discharge the molten zinc plating solution flowing into the plating bath;
  • An impeller unit rotatably installed in the pumping space of the housing unit to flow the molten zinc plating solution introduced into the pumping space by rotational driving toward the discharge port; and a drive motor installed on one side of the housing unit and connected to a rotating shaft of the impeller unit to rotate the impeller unit.
  • a gas supply unit formed on one side of the camera module to prevent zinc vapor generated from the molten zinc plating solution from sticking to the lens of the camera module; and a gas suction portion formed on the other side of the camera module, wherein the inert gas is moved onto the surface of the lens through the gas supply portion and is sucked into the gas suction portion to remove the zinc vapor.
  • a swirling flow is added to the inert gas moving on the lens surface of the camera module to remove the zinc. It is characterized by removing vapor.
  • a snout control system includes a snout device that is immersed in a plating bath containing a molten zinc plating solution and introduces a steel sheet into the plating bath; And a processor connected to the snout device, wherein the processor determines the height difference between the water level measured through a sensor that measures the water level of the molten zinc plating liquid surface and the dam unit of the snout device. Recognizes at least one of the structure inside the snorkel unit and foreign matter on the molten metal surface based on the image captured through the imaging device installed in the snout device, and recognizes the recognized height difference, the structure inside the snorkel unit, and foreign matter on the molten metal surface. Characterized in that controlling the snout device based on at least one.
  • the processor is characterized in that it recognizes the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit and approaching the steel plate by applying optical flow to the image.
  • the processor displays with a first color when foreign matter is mixed into the hot water surface inside the snorkel unit, and displays with a second color when foreign matter is discharged from the hot water surface inside the snorkel unit to the outside of the dam unit, thereby controlling the internal operation of the snorkel unit. It is characterized by being able to monitor the status in real time.
  • the processor maintains the height of the snout device when the height difference is greater than a preset reference value, a preset structure is present in the image at a preset percentage or more, and the flow of foreign matter on the molten surface is in the forward direction. It is characterized by:
  • the processor when the height difference is greater than a preset reference value, a preset structure is present in the image at a certain rate or more, and the flow of the foreign matter on the hot water surface is in the reverse direction, causes the foreign material on the hot water surface to be discharged to the outside of the dam unit. It is characterized by increasing the height of the snout device.
  • the processor is characterized in that, when the height difference is greater than a preset reference value and the structure does not exist in the image more than a certain percentage, the snout device is raised so that the structure exists more than the certain percentage. Do it as
  • the processor maintains the height of the snout device when the height difference is less than a preset reference value, the structure is present in the image at a certain rate or more, and the flow of the foreign matter on the molten surface is in the forward direction. It is characterized by
  • the processor when the height difference is less than a reference value, the structure is present in the image at a certain rate or more, and the flow of the molten metal foreign matter is in the reverse direction, the switch so that the molten metal foreign matter is discharged to the outside of the dam unit. It is characterized by lowering the height of the nout device.
  • the processor is characterized in that, when the height difference is less than the reference value and the structure does not exist in the image more than a certain ratio, the snout device is lowered so that the structure exists more than the certain ratio. .
  • the flow of foreign substances near the dam unit physically coupled to the outside of the snorkel portion of the snout device is detected in real time, and the water level difference between the water surface inside and outside the dam unit is sensored.
  • the dam unit of the snout device is raised or lowered to automatically control the depth at which the bottom of the dam unit is immersed in the plating bath, thereby suppressing the incorporation of foreign matter into the steel plate.
  • the load of the pump unit is automatically adjusted according to the water level difference between the water surface inside and outside the dam unit to maintain an appropriate load, making it possible to easily discharge foreign substances floating inside the snorkel unit and increase the lifespan of the pump unit.
  • the inside of the snorkel unit by automatically controlling the snout device based on at least one of the water level of the water surface measured through the sensor, the structure inside the snorkel unit based on the image captured through the camera, and the foreign matter on the water surface, the inside of the snorkel unit
  • the operation status can be monitored in real time, which can have the effect of securing operation convenience and quality stability.
  • FIG. 1 is a process diagram schematically showing the manufacturing process of a hot-dip galvanized steel sheet according to an embodiment of the present invention.
  • Figure 2 is a perspective view schematically showing a hot-dip galvanizing equipment in the manufacturing process of the hot-dip galvanized steel sheet of Figure 1.
  • Figure 4 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of Figure 2.
  • Figure 5 is a perspective view schematically showing the inside of the snorkel portion of the snout device of Figure 4.
  • Figure 6 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of Figure 2.
  • Figure 7 is a perspective view schematically showing the inside of the snorkel portion of the snout device of Figure 6.
  • Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
  • Figure 10 is an exemplary diagram for explaining the flow of foreign matter on the molten metal surface according to an embodiment of the present invention.
  • Figure 11 is a flowchart for explaining a snout control method according to an embodiment of the present invention.
  • FIG. 1 is a process diagram schematically showing the manufacturing process of a hot-dip galvanized steel sheet according to an embodiment of the present invention
  • Figure 2 is a perspective view schematically showing a hot-dip galvanizing equipment in the manufacturing process of the hot-dip galvanized steel sheet of Figure 1.
  • It is a cross-sectional view schematically showing the side of the snout control system installed in the hot-dip galvanizing equipment of Figures 3 and 2
  • Figure 4 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing equipment of Figure 2.
  • FIG. 5 is a perspective view schematically showing the inside of the snorkel portion of the snout device of FIG. 4, FIG.
  • FIG. 6 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of FIG. 2, and FIG. 7 is FIG. It is a perspective view schematically showing the inside of the snorkel part of the snout device of Figure 6, and Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
  • the equipment for the manufacturing process of hot-dip galvanized steel sheet largely includes a welding equipment 600, a heating equipment 700, a rolling equipment 800, It may include a post-processing facility (900). In addition, it may include a hot-dip galvanizing facility consisting of a plating tank 300, a snout device 100, a processor 200 that controls the same, and an air knife 500.
  • the processor 200 may be implemented as a central processing unit (CPU), digital signal processor (DSP), micro controller unit (MCU), or system on chip (SoC), and runs an operating system or application.
  • CPU central processing unit
  • DSP digital signal processor
  • MCU micro controller unit
  • SoC system on chip
  • a cold-rolled or hot-rolled steel plate (1) is mounted on the payoff reel (C1), and welding is performed between the preceding and following steel plates (1) through the welding equipment 600.
  • the steel sheet 1 can be heat treated in the heating facility 700 to secure the desired material strength and plating adhesion during hot-dip galvanizing.
  • the steel sheet 1 on which heat treatment has been completed may be introduced into the plating tank 300 of the hot dip galvanizing facility while being maintained at a temperature appropriate for the hot dip galvanizing process.
  • the steel sheet (1) will be introduced through the snout device (100), which is a steel sheet guiding facility. You can.
  • the snout device 100 has one side connected to the heating equipment 700 and the other side is immersed in the molten metal surface of the plating bath 300, and the steel sheet 1 heat-treated in the heating equipment 700 is converted into molten zinc. It can be introduced into the plating bath 300 containing the plating solution 2.
  • the interior of the snout device 100 may be filled with an inert gas (NHx) to prevent plating peeling due to oxidation of the surface of the steel sheet 1.
  • NHx inert gas
  • the steel sheet 1 that has passed through the snout device 100 is hot-dip galvanized in the plating bath 300 containing the molten zinc plating solution 2, and then installed above the plating bath 300 to form a steel sheet ( 1)
  • the amount of plating attached can be adjusted to a preset thickness by the air knife 500, which adjusts the thickness of the molten zinc attached.
  • the plated steel sheet 1 can be manufactured with a beautiful surface through temper rolling in the rolling facility 800, and then post-processing including a shape straightener, post-processing to secure corrosion resistance, and a cutter. It can be finalized into a product by passing through the equipment 900 and being wound onto the tension reel (C2).
  • the hot-dip galvanizing equipment in the manufacturing process of hot-dip galvanized steel sheets in more detail, as shown in FIGS. 2 to 4, it is connected to the heating equipment 700 and one end is connected to the plating tank 300.
  • a snout device (100) immersed in the molten metal surface of the received molten zinc plating solution (2), formed on any part of the plating bath (300) and capable of measuring the first water level of the molten metal surface of the molten zinc plating solution (2).
  • the steel sheet 1 may be introduced into the plating tank 300 containing the molten zinc plating solution 2 by the first sensor 160 and the processor 200 that controls it.
  • the pass line of the steel sheet 1 is in the plating bath ( 300) can be continuously transferred while being vertically changed to the upper part.
  • the molten zinc plating solution (2) contained within the plating bath (300) can be attached to the surface of the steel sheet (1).
  • the steel sheet 1 that has passed through the sink roll (R1) has its warpage corrected as it passes between a pair of stabilizing rolls (R2) installed directly above it, and passes through the air knife 500 to remove molten zinc.
  • the amount of surface adhesion can be adjusted.
  • the snout device 100 in this hot-dip galvanizing facility largely consists of a snorkel unit 110, a detachable dam unit 120, and a pump unit 130. and a first sensor 160 capable of measuring the water level of the molten zinc plating solution 2, and may be controlled by a processor 200 linked to the first sensor 160.
  • the snout device 100 is formed to surround the steel sheet 1 and is filled with an inert gas (NHx) in the internal space A3, so that the steel sheet 1 heat-treated at high temperature in the heating equipment 700 is exposed to the atmosphere. Surface oxidation can be prevented.
  • it has a structure to prevent ash formed by condensation of the vapor of the molten zinc plating solution (2) contained in the plating tank (300) from attaching as a foreign substance to the surface of the steel sheet (1) and causing surface defects. You can.
  • a snorkel portion 110 that is partially immersed in the molten zinc plating solution 2 contained in the plating tank 300 may be installed on the lower side of the snout device 100. More specifically, the snorkel part 110 is formed to surround the steel sheet 1 flowing into the plating bath 300, and the steel sheet is exposed through the opening 111 formed at the bottom immersed in the molten metal surface of the plating bath 300. (1) can be guided to be introduced into the molten zinc plating solution (2) contained in the plating bath (300).
  • the snorkel part 110 is operable and is spaced apart from the inner wall part 112 of the snorkel part 110 by a predetermined distance at the opening of the snorkel part 110 and protrudes at a predetermined height in the height direction of the snorkel part 110.
  • the snorkel part 110 includes a first dam wall portion 121 and a second dam wall portion 122 formed along the inner circumference of the snorkel portion 11, and a second dam wall portion 122 spaced apart from the inner wall portion 112 of the snorkel portion 11.
  • a detachable dam unit 120 that forms an accommodating space capable of accommodating the molten zinc plating solution 2 that overflows the first dam wall 121 after flowing in through the opening between the dam wall parts 121. It further includes.
  • the snorkel unit 110 is formed in the shape of a square tube with a square cross-section and may be coupled to the lower end of the snout device 100, which is formed in the same square tube shape.
  • the dam unit 120 coupled to the outer wall of the snorkel unit 110 is plating by a driving device such as an actuator so that the depth at which the lower end is immersed in the plating tank 300 can be adjusted. It can be driven up and down based on the molten surface of the tank 300.
  • the dam unit 120 is configured in the form of a sliding rail and is physically coupled to the outer wall of the snorkel unit 110.
  • the dam unit ( A driving device (not shown) for driving 120 may be connected to any part of the snout device 100.
  • a cooling pipe (not shown) may be formed along the outer peripheral surface of the motor to enable water cooling.
  • the dam unit 120 is spaced a predetermined distance from the inner wall portion 112 of the snorkel portion 110 at the opening portion 111 of the snorkel portion 110 and is connected to the snorkel portion.
  • the molten zinc plating solution (2) flows in through the opening 111 between the second dam wall 122 and the first dam wall 121, which are spaced apart from the inner wall 112, and then overflows the first dam wall 121. ) can form an accommodation space (A1) that can accommodate.
  • the height of the second dam wall portion 122 is formed to be relatively higher than the height of the first dam wall portion 121. This may cause problems in the raising and lowering drive of the dam unit 120 when the foreign matter (D) approaching the steel plate 1 moves toward the outer wall of the second dam wall portion 122 and the snorkel portion 110. . Therefore, by forming the height of the second dam wall portion 122 to be higher than the water level of the molten zinc plating liquid 2, the foreign matter D approaching the steel plate 1 does not approach the driving part of the dam unit 120. It can be physically blocked.
  • the dam unit 120 is coupled to the outer wall of the snorkel part 110, and has an accommodation space formed by the first dam wall part 121 that is bent inward into the opening 111 of the snorkel part 110. (A1) is formed.
  • This part of the dam unit 120 is immersed in the plating bath 300, or is formed at a position relatively higher than the molten zinc plating solution 2, and the snorkel part 110 )
  • the height of the molten zinc plating solution (2) flowing in through the opening 111 may be equal to that of the surface or may be formed at a relatively low position. Accordingly, when the lower part of the dam unit 120 is immersed in the plating bath 300, the molten zinc plating solution 2 flowing in through the opening 111 of the snorkel part 110 is applied to the first dam wall part 121. It overflows and can be accommodated in the accommodation space (A1) of the dam unit 120.
  • the pump unit 130 is installed on the outside of the snorkel unit 110 to pump and discharge the molten zinc plating solution 2 contained in the accommodation space A1 of the dam unit 120 into the plating tank 300. You can.
  • the pump unit 130 is installed at a position corresponding to the dam unit 120 on the outside of the snorkel unit 110, and the internal pumping space A2 is the accommodation space A1 of the dam unit 120. ) is connected to communicate with.
  • the pump unit 130 includes a housing portion ( 131).
  • the impeller part is rotatably installed in the pumping space (A2) of the housing part 131 and causes the molten zinc plating solution (2) flowing into the pumping space (A2) by rotational drive to flow toward the discharge port (131a).
  • the rotation shaft 133a is connected to the rotation shaft 132a of the impeller portion 132 to It may include a drive motor that rotates the unit 132.
  • This pump unit 130 after flowing in through the opening 111 of the snorkel unit 110, overflows the first dam wall 121 and accommodates the molten zinc in the accommodation space A1 of the dam unit 120.
  • the molten zinc plating solution (2) in the plating tank (300) continuously flows into the opening (111) of the snorkel section (110). It can be induced to flow in through .
  • the molten zinc plating solution (2) contained in the accommodation space (A1) of the dam unit (120) is discharged to the molten metal surface side of the plating tank (300) outside the snorkel unit (110) by the pump unit (130) to melt the molten zinc plating solution (2).
  • the foreign substances (D) such as dross contained in the zinc plating solution (2) to float on the surface of the plating bath (300)
  • the foreign substances (D) are mixed with the molten zinc plating solution (2) in the plating bath (300). It is possible to prevent the molten zinc plating solution 2 from being mixed again, or from being re-introduced through the opening 111 of the snorkel part 110, the lower part of which is immersed under the molten metal surface of the plating tank 300.
  • the shape of the pump unit 130 is not necessarily limited to FIGS. 3 to 5, and the molten zinc plating solution 2 contained in the receiving space A1 of the dam unit 120 is plated on the outside of the snorkel portion 110.
  • Various forms that can be discharged to the molten steel surface side of the tank 300 can be applied.
  • the snout device 100 is installed on one side of the inner space of the snorkel part 110, and flows into the opening part 111 to block the first dam wall part 121. Measure the second water level of the molten zinc plating solution (2) contained in the receiving space (A1) of the overflow dam unit (120), and pour through the opening. It may further include a second sensor (140, 150) that detects a foreign substance (D) floating on the surface of the molten zinc plating solution (2) flowing into the snorkel part (110) and approaching the steel plate (1).
  • a second sensor 140, 150
  • These second sensors 140 and 150 can measure the second water level of the molten zinc plating solution 2 flowing into the opening 111 using any one of an ultrasonic sensor, an infrared sensor, and a radar sensor. .
  • the second sensors (140, 150) may detect foreign substances (D) floating on the surface of the molten zinc plating solution (2), and one of the second sensors (140, 150) may use a camera in addition to the above sensors. It may be a vision sensor that detects foreign matter (D) floating on the surface of the molten zinc plating solution (2) using an image sensor.
  • one of the second sensors 140 and 150 measures the second water level of the molten zinc plating solution (2) using one of an ultrasonic sensor, an infrared sensor, and a radar sensor, and the other uses a vision sensor.
  • the type of sensor can be selectively changed to detect foreign substances (D) floating on the surface of the molten zinc plating solution (2).
  • one of the second sensors 140 and 150 140 is disposed between one side of the steel plate 1 and the inner wall of the snorkel portion 110, and the second sensor ( The other one 150 of 140 and 150 may be disposed between the other side of the steel plate 1 and the inner wall surface of the snorkel portion 110.
  • the reflectance of the foreign matter (D) floating on the surface of the molten zinc plating solution (2) and the reflectance on the surface of the molten zinc plating solution (2) in a normal state are By comparing the reflectance, if the recognition value is different depending on the difference in reflectance value, it can be recognized as the presence of a foreign substance (D) and detected.
  • the normal state means a state in which there is only pure molten zinc plating solution (2) without foreign substances (D).
  • the dam unit 120 when the amount of overflow increases through the descent, the flow rate moving outward from within the dam unit 120 increases.
  • the gap (G) between the first water level measured by the first sensor 160 and the first dam wall 121 is automatically and constantly increased by increasing the RPM of the pump unit 130 according to the increase in the amount of overflow. You can control it.
  • any one of the second sensors 140 and 150 may be implemented as a camera module, that is, a vision sensor with an autofocus function or an ascending and descending function.
  • a sensor other than the camera module The second sensor 150 may be implemented as any one of an ultrasonic sensor, an infrared sensor, and a radar sensor (the second sensor 150, hereinafter indicated with reference numerals, is a second sensor other than the camera module 140). (The terms will be clearly distinguished as applicable).
  • the recognition rate of the foreign matter D floating on the surface of the molten zinc plating solution 2 can be improved.
  • the dam unit 120 Adjust the position or control the load of the pump unit 130.
  • an image library of foreign matter (D) on the surface of the molten zinc plating solution (2) is built through prior image learning, and each image is stored in the data storage of the processor 200, While receiving real-time information on the foreign matter (D) floating on the surface of the molten galvanizing solution (2) based on the learning data of the constructed foreign matter (D) image library, the first water level measured by the first sensor 160 and Comprehensively considering the gap (G) information between the dam wall portions 121 and the load information of the pump unit 10, if the amount of overflow increases through the lowering of the dam unit 120, the dam unit (120) Increases the flow rate moving from within to outward.
  • the gap (G) between the first water level measured by the first sensor 160 and the first dam wall 121 is automatically and constantly increased by increasing the RPM of the pump unit 130 according to the increase in the amount of overflow. You can control it.
  • the camera module 140 and the second sensor 150 may function complementary to each other to detect foreign substances (D) floating on the surface of the molten zinc plating solution (2).
  • the camera module 140 and the second sensor 150 may have an arrangement structure according to FIGS. 6 and 7. That is, the positions of the camera module 140 and the second sensor 150 are arranged on the same level line, but they can be arranged in any order between the steel plate 1 and the inner wall surface of the snorkel unit 110.
  • the camera module 140 is formed adjacent to the steel plate 1, and is spaced apart by a predetermined distance on the same level line as the camera module 140, so that the second sensor (150) can be formed.
  • the second sensor 150 may be formed adjacent to the steel plate 1, and the camera module 140 may be formed at a predetermined distance apart from the second sensor 150 on the same level line.
  • the processor 200 is electrically connected to the first sensor 160 and the second sensors 140 and 150, and receives sensing signals from the first sensor 160 and the second sensors 140 and 150. According to the sensing signal, the dam unit 120 is raised or lowered to adjust the depth at which the dam unit 120 is immersed in the plating tank 300, or the pump unit 130 pumps the molten zinc plating solution ( 2) The load of the pump unit 130 can be adjusted to control the flow rate.
  • the processor 200 when the processor 200 detects that a foreign matter D is approaching the steel plate 1 through the second sensors 140 and 150, the processor 200 lowers the dam unit 120 to the bottom of the dam unit 120.
  • the depth of immersion in this plating tank 300 can be increased.
  • the second sensors 140 and 150 float on the surface of the molten zinc plating solution 2 flowing into the snorkel part 110 through the opening 111 of the snorkel part 110.
  • the processor 200 lowers the dam unit 120 to increase the depth at which the lower end of the dam unit 120 is immersed in the plating bath 300.
  • the top of the first dam wall portion 121 of the dam unit 120 coupled to the outer surface of the snorkel portion 110 is lower than the surface of the molten zinc plating solution 2 flowing into the snorkel portion 110. You can control it so that it goes away.
  • the processor 200 controls the load of the pump unit 130 in consideration of the case where the gap G is greatly widened, so that a portion of the molten zinc plating solution 2 is rapidly pumped into the pump unit 130. ), the gap (G) can be kept constant by controlling it to escape to the outside through the receiving space (A2).
  • the molten zinc plating solution (2) flowing into the inside of the snorkel part 110 through the opening 111 of the snorkel part 110 is induced to overflow the first dam wall part 121 more quickly, causing the snorkel
  • the molten zinc plating solution (2) is floating on the surface of the molten metal.
  • the foreign matter (D) moves away from the steel plate (1) along with the flow of the molten zinc plating solution (2), overflows the dam wall 121, and is received into the accommodation space (A1) of the dam unit 120 by the pump unit 130. It can be induced to be discharged to the surface of the plating tank 300.
  • the immersion depth of the dam unit 120 is automatically controlled by the second sensors 140, 150 and the processor 200, or the pump unit ( By controlling the load 130), it is possible to prevent foreign matter (D) from attaching to the steel sheet (1) during the hot-dip galvanizing process.
  • the processor 200 combines the first water level of the molten zinc plating liquid (2) detected through the first sensor 160 and the position information of the first dam wall portion 121 of the dam unit 120 to , Gap information (G) between the protrusion protruding from the first dam wall 121 and the molten zinc plating solution 2 is derived, and the dam is constructed based on the derived gap information and load information of the pump unit 130.
  • the gap can be kept constant.
  • the gap may satisfy the range of 10mm to 20mm.
  • the gap is less than 10 mm, the foreign matter ( It is not easy to generate a flow speed that can move D) to be discharged to the outside, so foreign matter (D) cannot be discharged effectively.
  • the gap exceeds 20 mm, the flow rate of the foreign matter D becomes very fast and exceeds the load of the pump unit 130. Therefore, to solve this problem, the gap should be maintained between 10mm and 20mm.
  • the molten zinc plating solution 2 flowing into the snorkel unit 110 becomes more exposed to the water level. 1
  • the molten zinc plating solution 2 flowing into the inside of the snorkel part 110 through the opening 111 of the snorkel part 110 is connected to the first dam wall part.
  • the flow that overflows 121 and flows into the receiving space A1 of the dam unit 120 may be weakened.
  • the flow of the foreign matter (D) floating on the surface of the molten zinc plating solution (2) inside the snorkel part 110 is also weakened, and as the time for floating around the steel plate (1) increases, the foreign matter (D) This may increase the probability that it may adhere to the steel plate (1) and cause defects.
  • the dam unit 120 rises or falls so that the water level difference (H) according to the position information between the first water level and the first dam wall portion 121 of the dam unit 120 is maintained constant.
  • the water level difference (H) By controlling the water level difference (H), foreign matter (D) floating on the surface of the molten zinc plating solution (2) inside the snorkel part 110 is prevented from attaching to the steel plate (1), and the pump unit (130) is prevented from attaching to the steel plate (1). Maintaining an appropriate load can also have the effect of increasing the lifespan of the pump unit 130.
  • the water level difference (H) according to the first water level and the position information of the first dam wall portion 121 of the dam unit 120 may be preset by the operator and stored in the processor 200, and the processor (200) can control the load of the pump unit 130 so that the position information of the first water level and the dam unit 120 can be maintained constant with the water level difference (H) set and input in advance. .
  • the processor 200 in conjunction with the second sensors 140 and 150, controls the immersion depth of the dam unit 120 in addition to controlling the load of the pump unit 130, thereby controlling the first water level and the dam unit ( 120) can also be induced to maintain the water level difference (H) constant according to the position.
  • the processor 200 lowers the dam unit 120 to determine the depth at which the lower end of the dam unit 120 is immersed in the plating bath 300. If the position of the dam unit 120 is higher than the standard, the depth at which the lower end of the dam unit 120 is immersed in the plating tank 300 can be reduced by raising the dam unit 120.
  • the dam unit 120 when the position of the dam unit 120 is lower than the preset standard and the water level difference (H) depending on the first water level and the position of the dam unit 120 is large, the dam unit 120 is lowered. , the depth to which the top of the dam wall 121 is immersed is deepened from the surface of the molten zinc plating solution 2 flowing into the snorkel part 110, and the molten zinc plating solution flowing in through the opening part 111 ( 2) By increasing the flow over the first dam wall 121, the water level difference (H) can be reduced.
  • the dam unit 120 By raising it, the depth at which the top of the first dam wall part 121 is immersed from the molten zinc plating liquid 2 flowing into the snorkel part 110 is shallower, and the molten metal flowing in through the opening part 111 is reduced.
  • the galvanizing solution (2) can reduce the flow over the first dam wall 121, thereby causing the water level difference (H) to increase.
  • the foreign matter (D) near the dam unit 120 inside the snorkel portion 110 of the snout device 100 The first water level of the molten zinc plating solution (2) is recognized using the flow and the first sensor 160, and the water level difference (H) according to the position information of the dam unit 120 is detected by the second sensor 140, By recognizing through 150), when foreign substances (D) near the dam unit 120 approach the steel plate 1, the dam unit 120 of the snout device 100 is raised or lowered to raise or lower the dam unit 120.
  • the depth at which the lower end is immersed in the plating bath 300 is automatically controlled to suppress the incorporation of foreign matter (D) into the steel plate 1, and the load on the pump unit 130 is automatically adjusted according to the position of the dam unit 120.
  • foreign matter D floating inside the snorkel unit 110 can be easily discharged and the lifespan of the pump unit 130 can be increased.
  • the second sensors 140 and 150 can measure the second water level of the molten zinc plating solution (2) overflowing the first dam wall 121 and accommodated in the receiving space A1 of the dam unit 120.
  • the processor 200 uses the second sensor 140 to prevent the molten zinc plating solution 2 from flowing back from the accommodation space A1 of the dam unit 120 to the opening 111 of the snorkel unit 110. 150), the gap G between the second water level and the first water level can be controlled to always be 80 mm or more.
  • the gap between the first water level and the second water level is less than 80 mm, a load is generated on the pump unit 130, making it impossible to effectively discharge the foreign matter (D), and the foreign matter (D) that was not discharged to the outside and
  • the molten zinc plating solution (2) flows back to the opening portion (111) of the snorkel portion (110) through the first dam wall portion (121). Therefore, in order to effectively control this, the gap between the first water level and the second water level must be controlled to at least 80 mm in consideration of the load of the pump unit 130.
  • the second sensors 140 and 150 are capable of detecting foreign matter (D) floating on the water surface inside the snorkel part 110 of the snout device 100 or detecting the position of the dam unit 120, and
  • the first sensor 160 that can detect the first water level of the molten zinc plating solution (2), the water level difference (H) according to the position information of the first water level and the dam unit 120 is detected
  • the dam management inside the snout device 100 it can have the effect of securing operational convenience and quality stability.
  • the present invention prevents contamination of the lens using the methods shown in FIGS. 8 and 9.
  • Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
  • the snout device 100 of the present invention includes a gas supply unit 142 and a gas supply to supply an inert gas that can adsorb and remove zinc vapor or a reactive gas that reacts with the zinc vapor. It further includes a suction unit 144. At this time, gas is supplied around the camera module 140 to supply gas onto the surface of the lens provided on one side of the camera module 140, and a gas supply pipe 143 and a gas intake pipe ( 145) is also included. Gas can be supplied at all times while galvanizing is being performed, and the camera module 140 is positioned outside the sensing area of the lens so as not to affect the detection of foreign substances (D) floating on the molten zinc plating solution (2). A gas supply pipe 143 and a gas suction pipe 145 may be formed in the area.
  • the inside of the snout device 100 of the present invention is filled with an inert gas to prevent plating peeling due to coral on the surface of the steel plate 1.
  • the camera module 140 It may further include a swirling flow generating device (not shown) capable of generating a swirling flow by rotating the inert gas supplied into the snout on the surface of the lens. Due to the swirling flow, zinc vapor is adsorbed to the inert gas and can be removed through a separate pipe (not shown).
  • the dam unit 120 which is formed integrally with the snorkel unit 110, is manufactured in a detachable form, and the dam unit 120 is physically coupled to the outer surface of the snorkel unit 110, Since replacement is possible even while the process line is running, improvements in maintainability and productivity are expected.
  • the detachable dam unit 120 the operator can more easily precisely process the surface of the dam unit 120, so that the surface may be affected by flow rate deviation between the front and back surfaces due to poor machining of the dam unit 120. A reduction in quality defects can be expected.
  • the operator controlled the position of the dam unit 120 through constant monitoring, so it was an operating environment with a high risk of mass defects, but the processor 200 controlled the dam unit 120 according to the water level of the molten zinc plating solution (2).
  • the processor 200 controlled the dam unit 120 according to the water level of the molten zinc plating solution (2).
  • Figure 10 is an exemplary diagram for explaining the flow of foreign matter in the molten metal surface according to an embodiment of the present invention
  • Figure 11 is a flow chart for explaining a snout control method according to an embodiment of the present invention.
  • Example 2 focuses on the automatic control configuration of the snout device by the processor 200, and the structure and detailed configuration of the hot-dip galvanizing equipment premised on Example 2 are the same as Example 1.
  • the processor 200 recognizes the difference in height between the water level of the water surface measured through the first sensor 160 and the dam unit 120, and snorkels based on the image captured through the camera module 140. At least one of the structure inside the unit 110 and the foreign matter on the molten metal surface is recognized, and the snout device 100 can be controlled based on at least one of the recognized height difference, the structure inside the snorkel unit 110, and the foreign substance on the molten metal surface. .
  • the processor 200 monitors the change in water level of the water surface in real time through the first sensor 160, analyzes the image captured through the camera module 140, and monitors the internal operation status of the snorkel unit 110 in real time. By controlling the rise or fall of the snout device 100 based on the monitoring results, process troubles and human errors can be prevented.
  • the processor 200 may receive the water level of the molten steel surface measured through the first sensor 160 and the image captured through the camera module 140.
  • the processor 200 may recognize the height difference between the water level of the hot water surface and the dam unit 120, and compare the height difference between the water level of the hot water surface and the dam unit 120 with a preset reference value.
  • the reference value may be a preset value, for example, 2 mm.
  • the height difference between the water level of the hot water surface and the dam unit 120 may mean the height difference between the water level of the hot water surface and the first dam wall portion 121.
  • the height difference between the water level of the hot water surface and the dam unit 120 may mean the height difference between the water level of the hot water surface and the top of the first dam wall portion 121.
  • the processor 200 can apply computer vision technology to the image captured through the camera module 140 to observe the flow of molten metal into and out of the dam unit 120 inside the snout device 100. That is, the processor 200 can monitor the operating situation inside the snout device 100 by analyzing the internal structure and the flow of floating foreign matter according to the water level of the hot water surface using the image captured through the camera module 140. there is.
  • the processor 200 may recognize a preset structure inside the snorkel unit 110 by applying an object recognition algorithm to the image captured through the camera module 140. That is, the processor 200 can recognize the degree of locking of the structure or the recognition (existence) rate of the structure by applying an object recognition algorithm.
  • the preset structure is a structure set through learning and may include, for example, a support base.
  • the processor 200 may determine whether structures recognized through an object recognition algorithm exist at or above a preset certain ratio.
  • the certain ratio may be an arbitrarily set value, for example, 90%.
  • the processor 200 applies optical flow to the image captured through the camera module 140 to recognize foreign substances floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1. can do. That is, the processor 200 may use optical flow, one of the image processing technologies, to observe the flow of foreign substances floating on the molten metal surface.
  • Optical flow is a vector map that represents the motion of each pixel between two consecutive frames, and is a technology that can recognize optical flow in an image. When using optical flow, there is an advantage of being able to observe the movement of objects in images captured through CCTV or general cameras without the need for expensive machine vision cameras.
  • Optical flow is mainly expressed as a Colormap, with the direction expressed as H (color) and the size as S (saturation).
  • the processor 200 displays the internal operation status of the snorkel unit 110 by displaying the first color when foreign matter is mixed into the dam unit 120 and the second color when the foreign matter is discharged to the outside of the dam unit 120. Monitoring can be done in real time. That is, the optical flow may indicate that foreign matter is mixed into the dam unit 120 when the flow of foreign matter floating on the molten steel surface is in the reverse direction, and when the flow of foreign matter floating on the molten steel surface is forward, the foreign matter is discharged to the outside of the dam unit 120. It can be displayed.
  • the processor 200 may display red when foreign matter is mixed into the dam unit 120, and may display green when foreign matter is discharged to the outside of the dam unit 120. .
  • the processor 200 converts the vector sum of foreign matter incorporation and discharge of foreign substances into the snorkel unit 110 into real-time data, thereby enabling analysis of the operation status within the snorkel unit 110 in real time. At this time, the processor 200 may generate a vector sum of foreign matter incorporation and foreign matter discharge into the molten metal surface inside the snorkel unit 110 in a graph as shown in FIG. 10.
  • the processor 200 may control the snout device 100 based on at least one of the height difference between the water level of the hot water surface and the dam unit 120, the structure inside the snorkel unit 110, and foreign matter on the hot water surface.
  • the processor 200 may determine that the internal operation status of the snorkel unit 110 is normal and maintain the height of the snout device 100.
  • the processor 200 operates inside the dam unit 120. By determining that foreign substances are mixed into the molten metal surface, the height of the snout device 100 can be increased. In this case, since the molten metal foreign matter is flowing into the dam unit 120, the processor 200 may raise the height of the snout device 100 so that the molten metal foreign matter is discharged to the outside of the dam unit 120.
  • the processor 200 uses the snout device 100 to ensure that the structure exists more than a certain percentage. can increase.
  • the fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. Accordingly, the processor 200 can discharge the molten metal inside the dam unit 120 to the outside of the dam unit 120 by raising the snout device 100.
  • the processor 200 uses the snorkel unit 110 The height of the snout device 100 can be maintained by determining that the internal operation status is normal.
  • the processor 200 uses the snout device 100 ) can be lowered.
  • floating foreign matter on the surface of the molten metal is mixed inside the dam unit 120, and the dam unit 120 is high, so the processor 200 uses a snout device ( 100) can be lowered. That is, when the snout device 100 is lowered, the dam unit 120 is also lowered, so foreign substances on the molten metal surface inside the dam unit 120 may be discharged to the outside of the dam unit 120.
  • the processor 200 uses the snout device 100 to ensure that the structure exists at a certain rate or more. can be lowered.
  • the fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is.
  • the processor 200 may lower the snout device 100 in order to discharge the molten surface foreign matter to the outside of the dam unit 120. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
  • the processor 200 controls the snout device 100 based on at least one of the height difference between the water level of the hot water surface and the dam unit 120, the structure inside the snorkel unit 110, and foreign matter on the hot water surface, By automatically controlling the depth at which the bottom of the snout device 100 is immersed in the plating tank 10, the operating status inside the snorkel unit 110 can be monitored in real time, thereby ensuring convenience of operation and quality stability. It can have an effect.
  • the processor 200 automatically controls the immersion depth of the snout device 100 when foreign matter approaches the steel sheet 1, thereby preventing foreign matter from attaching to the steel sheet 1 during the hot-dip galvanizing process. there is.
  • the processor 200 monitors the change in water level in the water surface in real time through the first sensor 160, and analyzes the internal operation status of the snorkel unit 110 in real time using computer vision technology to detect the degree of risk occurrence. By automatically controlling the snout device 100 based on the detection results, process troubles and human errors can be prevented, ultimately enabling process automation to be implemented.
  • the snout control system is based on at least one of the height difference between the water level of the hot water surface and the dam unit 120 of the snout device 100, the structure inside the snorkel unit 110, and the flow of foreign matter on the hot water surface.
  • Figure 11 is a flowchart for explaining a snout control method according to an embodiment of the present invention.
  • the processor 200 receives the water level of the molten steel surface measured through the first sensor 160 and the image captured through the camera module 140 (S602).
  • step S602 the processor 200 calculates the height difference between the water level of the water surface and the dam unit 120, and determines whether the calculated height difference is greater than or equal to the reference value (S604).
  • step S604 if the height difference is greater than or equal to the reference value, the processor 200 recognizes a preset structure using the image captured through the camera module 140 (S606), and the recognized structure is greater than or equal to a preset certain ratio. Determine recognition (S608). At this time, the processor 200 may recognize the structure inside the snorkel unit 110 by applying an object recognition algorithm to the image.
  • the processor 200 recognizes the flow of foreign matter on the molten metal surface based on the image (S610) and determines whether the foreign matter flow on the molten metal surface is in the forward direction (S612). At this time, the processor 200 may apply optical flow to recognize the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1.
  • the forward direction of the foreign matter flow on the hot water surface may mean that foreign matter floating on the hot water surface is discharged, and the reverse direction of foreign matter flow on the hot water surface may mean that foreign matter is mixed into the hot water surface.
  • step S612 if the flow of foreign matter on the molten metal surface is forward, the processor 200 maintains the height of the snout device 100 (S614). That is, if the flow of foreign matter on the molten metal surface is in the forward direction, this means that the foreign matter on the molten metal surface is normally discharged to the outside of the dam unit 120, so the processor 200 can maintain the height of the snout device 100.
  • step S612 if the flow of foreign matter on the molten metal surface is in the reverse direction, the processor 200 increases the height of the snout device 100 (S616). That is, if the flow of foreign matter on the molten steel surface is in the reverse direction, foreign matter is mixed into the molten metal surface, so it is necessary to discharge the mixed foreign matter to the outside of the dam unit 120. Accordingly, the processor 200 can increase the height of the snout device 100. When the height of the snout device 100 increases, the height of the dam unit 120 also increases, which may cause foreign substances on the molten steel surface to be discharged to the outside of the dam unit 120.
  • step S608 if the recognized structure does not exist at a certain rate or more, the processor 200 raises the snout device 100 so that the structure exists at a certain rate (S618).
  • the fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. Accordingly, the processor 200 can discharge the molten metal to the outside of the dam unit 120 by raising the snout device 100.
  • step S604 if the height difference is not greater than the reference value, the processor 200 determines whether the height difference is less than the reference value (S620).
  • step S620 if the height difference is less than the reference value, the processor 200 recognizes the preset structure using the image captured through the camera module 140 (S622) and determines whether the structure is greater than a preset certain ratio. Judge (S624). At this time, the processor 200 may recognize the structure inside the snorkel unit 110 by applying an object recognition algorithm to the image.
  • step S624 if the recognized structure exists at a certain rate or more, the processor 200 recognizes the flow of foreign matter on the molten metal surface based on the image (S626) and determines whether the foreign matter flow on the molten metal surface is in the forward direction (S628). At this time, the processor 200 may apply optical flow to recognize the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1.
  • step S628 if the flow of foreign matter on the molten metal surface is in the forward direction, the processor 200 maintains the height of the snout device 100 (S630). In this case, the processor 200 may determine that the internal operation status of the snorkel unit 110 is normal and maintain the height of the snout device 100.
  • step S628 if the flow of foreign matter on the molten metal surface is in the reverse direction, the processor 200 lowers the height of the snout device 100 (S632). In this case, floating foreign matter on the surface of the molten metal is mixed inside the dam unit 120, and the dam unit 120 is high, so the processor 200 uses a snout device ( 100) can be lowered. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
  • step S624 if the recognized structure does not exist at a certain rate or more, the processor 200 lowers the snout device 100 so that the structure exists at a certain rate (S634).
  • the fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is.
  • the processor 200 may lower the snout device 100 in order to discharge the molten surface foreign matter to the outside of the dam unit 120. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
  • Example 2 by automatically controlling the snout device based on at least one of the water level of the water surface measured through the sensor, the structure inside the snorkel unit based on the image captured through the camera, and the foreign matter on the water surface, the inside of the snorkel unit The operation status can be monitored in real time, which can have the effect of securing operation convenience and quality stability.
  • implementations described herein may be implemented as, for example, a method or process, device, software program, data stream, or signal. Although discussed only in the context of a single form of implementation (eg, only as a method), implementations of the features discussed may also be implemented in other forms (eg, devices or programs).
  • the device may be implemented with appropriate hardware, software, firmware, etc.
  • the method may be implemented in a device such as a processor, which generally refers to a processing device that includes a computer, microprocessor, integrated circuit, or programmable logic device. Processors also include communication devices such as computers, cell phones, portable/personal digital assistants (“PDAs”) and other devices that facilitate communication of information between end-users.
  • PDAs portable/personal digital assistants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Provided is a snout control system comprising: a snout apparatus in which one end of a steel sheet is immersed in a plating bath, containing a hot-dip galvanizing solution for plating the steel sheet, to introduce the steel sheet into the plating bath during the production process of a hot-dip galvanized steel sheet; a first sensor which is formed on a portion of the plating bath and can measure the first water level of the molten steel of the hot-dip galvanizing solution; and a processor which controls the snout apparatus and the first sensor.

Description

스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비Snout control system and hot-dip galvanizing equipment including the same
본 발명은 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비에 관한 것으로서, 더 상세하게는 용융아연도금 강판의 생산 공정 중 스나우트 장치 내에서 부유하는 드로스를 자동으로 제거할 수 있는 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비에 관한 것이다.The present invention relates to a snout control system and a hot-dip galvanizing facility including the same, and more specifically, to a snout control capable of automatically removing dross floating within the snout device during the production process of hot-dip galvanized steel sheets. It relates to a system and a hot-dip galvanizing facility including the same.
용융아연 도금 설비는 아연 잉곳을 450도 이상의 고온 용융상태로 용해시켜 고온의 강판 표면에 아연 피막을 도금하는 용탕 설비이다. 이러한, 용융아연 도금 설비는, 외기와의 온도차 및 수직스트립 표면에 충돌 후 용탕면으로 유동하는 에어나이프의 토출 와이핑 에어와의 접촉에 의한 아연산화 등과 같이 열적, 화학적 불안정으로 인해 금속간 화학물인 Fe2Al구조의 드로스(Dross)가 상시 발생하게 된다. 특히, 도금 강판의 내식성 강화와 표면 품질 개선 등을 위해 알루미늄, 망간, 실리콘 등 다양한 합금 원소 성분이 첨가되면서 외부 인자(온도차, 와이핑 가스접촉에 따른 산화 등)에 의한 드로스 발생량이 크게 증가하게 된다.The hot-dip galvanizing facility is a melting facility that melts zinc ingots into a molten state at a temperature of 450 degrees or higher and plates a zinc film on the surface of a high-temperature steel sheet. Such hot-dip galvanizing equipment uses intermetallic chemicals due to thermal and chemical instability, such as zinc oxidation due to temperature difference with the outside air and contact with the discharge wiping air of the air knife flowing to the molten metal surface after impacting the surface of the vertical strip. Dross of the Fe2Al structure always occurs. In particular, as various alloy elements such as aluminum, manganese, and silicon are added to strengthen the corrosion resistance of plated steel sheets and improve surface quality, the amount of dross generated due to external factors (temperature difference, oxidation due to contact with wiping gas, etc.) significantly increases. do.
이러한, 드로스는, 강판 표면에 흡착되어 2차 가공 중 가공 크랙, 도금 박리 및 도장성 저하 등 다양한 문제를 야기할 수 있다. 특히, 도금 강판이 자동차 외판용으로 공급되기 위해서는 이러한 드로스의 관리가 더욱 엄격히 관리되어야 한다. 많은 철강사에서는 드로스 결함 억제를 위해 아연 도금조의 열적, 화학적 안정성을 확보하여 드로스의 발생을 최소화시키고, 아연 도금조에 일단부가 침지되어 강판을 도입시키는 스나우트 내부에 댐(Dam) 구조의 설비를 도입하여 드로스 뿐만 아니라, 애쉬(Ash, ZnO 산화물) 결함 등의 이물 및 이를 모두 포함하는 용탕면 부유물이 강판에 흡착되지 않도록 하는 등의 배출 관리 관점에서도 많은 연구가 이루어지고 있다.This dross is adsorbed on the surface of the steel sheet and can cause various problems such as processing cracks, plating peeling, and reduced paintability during secondary processing. In particular, in order for plated steel sheets to be supplied for automobile exterior use, the management of such dross must be managed more strictly. In order to suppress dross defects, many steel companies minimize the occurrence of dross by ensuring the thermal and chemical stability of the galvanizing bath, and install dam-structured equipment inside the snout, where one end is immersed in the galvanizing bath to introduce the steel sheet. A lot of research is being done from an emission management perspective, such as preventing not only dross but also foreign substances such as ash (ZnO oxide) defects and suspended matter on the molten metal surface, including all of them, from being adsorbed on the steel sheet.
일반적으로, 많은 철강사들은, 스나우트 장치 내에 부유하는 드로스를 제거하기 위해 스나우트 장치의 스노클부 내부에 댐 형태의 구조물과 메탈 펌프 설비를 활용하여 댐의 밖으로 넘어온 드로스를 아연 도금조의 후면으로 배출시키는 방법의 스나우트 제어 시스템을 사용하고 있다.In general, many steel companies use a dam-shaped structure and metal pump facilities inside the snorkel part of the snout device to remove dross floating within the snout device and pump the dross that has come over the outside of the dam to the back of the galvanizing tank. A snout control system that discharges is used.
본 발명의 배경기술은 대한민국 공개특허공보 제10-2014-0085175호에 개시되어 있다.The background technology of the present invention is disclosed in Korean Patent Publication No. 10-2014-0085175.
그러나, 이러한 종래의 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비는, 조업 중 아연 도금조의 레벨이 너무 높아 댐을 가득 채우거나, 반대로 레벨이 너무 낮아 드로스 등의 이물이 댐 밖으로 배출되지 못하는 경우가 빈번하게 발생함으로써, 이물이 강판에 부착되어 결함을 일으키는 문제점이 있었다. 또한, 이러한 문제로 인해 작업자들이 수시로 스나우트 장치 내부의 댐 관리 현황을 수작업으로 확인하고 관리해야하는 등 아연 도금조의 실시간 용탕 레벨 변화에 따른 스나우트 장치 내부의 댐 관리를 작업자가 실시간으로 지켜보지 않는 이상 드로스 관리에 대한 대응이 어려운 문제점이 있었다.However, in this conventional snout control system and hot-dip galvanizing equipment including the same, the level of the galvanizing tank during operation is too high to fill the dam, or conversely, the level is too low to prevent foreign substances such as dross from being discharged out of the dam. As this occurred frequently, there was a problem in which foreign substances adhered to the steel plate and caused defects. In addition, due to this problem, workers must manually check and manage the dam management status inside the snout device from time to time, unless workers monitor dam management inside the snout device in real time according to real-time molten metal level changes in the galvanizing tank. There was a problem that made it difficult to respond to dross management.
또한, 스나우트 장치와 연결된 스노클부는 내부에 댐과 용접되어 일체형으로 제작된다. 이 경우, 스노클부 교체를 위해 강판을 절단해야 하며, 이로 인해 장비의 유지보수 시간이 길어져 생산성에 문제점이 있었다. 또, 댐 표면을 정밀가공하기 어려운 구조상의 문제가 있어, 탈부착형 댐 및 아연 도금조의 실시간 용탕 레벨 변화에 따른 상기 탈부착형 댐을 적용하고, 머신비전 카메라 및 센서를 이용하여 용탕 레벨에 따라 탈부착형 댐 및 펌프 유닛의 부하를 자동으로 제어하여 상술한 문제점을 개선함으로써, 조업 편이성 및 품질 안정성을 확보할 수 있는 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비를 제공하는 것을 목적으로 한다.In addition, the snorkel part connected to the snout device is welded with the dam on the inside and manufactured as an integrated piece. In this case, the steel plate had to be cut to replace the snorkel part, which lengthened the maintenance time of the equipment, causing problems with productivity. In addition, there are structural problems that make it difficult to precisely process the dam surface, so the detachable dam is applied according to the real-time molten metal level change of the detachable dam and the galvanizing tank, and the detachable dam is applied according to the molten metal level using a machine vision camera and sensor. The purpose is to provide a snout control system that can ensure operational convenience and quality stability by automatically controlling the load of the dam and pump unit to improve the above-mentioned problems, and a hot-dip galvanizing facility including the same.
또한, 본 발명은 스나우트 장치 내부의 실시간 조업 현황을 자동으로 분석하여 조업 편이성 및 품질 안정성을 확보할 수 있도록 하는 스나우트 제어 시스템 및 방법을 제공하는 것을 목적으로 한다.In addition, the purpose of the present invention is to provide a snout control system and method that ensures operation convenience and quality stability by automatically analyzing the real-time operation status inside the snout device.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the problem(s) mentioned above, and other problem(s) not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 측면에 따른 스나우트 제어 시스템은 용융아연도금 강판의 생산 공정 중 상기 강판을 도금하는 용융아연도금액이 수용된 도금조에 일단부가 침지되어, 상기 강판을 상기 도금조로 도입시키는 스나우트 장치; 상기 도금조의 어느 일부 상에 형성되어 상기 용융아연도금액 탕면의 제 1 수위를 측정할 수 있는 제 1 센서; 및 상기 스나우트 장치 및 상기 제 1 센서를 제어하는 프로세서;를 포함하고, 상기 스나우트 장치는, 상기 도금조로 유입되는 상기 강판을 감싸도록 형성되고, 상기 도금조의 탕면에 침지된 하단에 형성된 개방부를 통해 상기 강판이 상기 도금조에 수용된 상기 용융아연도금액으로 도입될 수 있도록 안내하는 스노클부; 탈부착이 가능한 구조로 상기 소노클부의 외벽부에 물리적으로 결합되고, 상기 제 1 센서와 연동되어 상기 용융아연도금액 탕면의 제 1 수위 정보에 따라 상기 스노클부의 외벽면을 따라 구동 가능하며, 상기 스노클부의 상기 개방부에서, 상기 스노클부의 내벽부와 소정의 거리만큼 이격되고 상기 스노클부의 높이 방향으로 소정 높이로 돌출되도록 상기 스노클부의 내측 둘레를 따라 형성되는 제 1 댐벽부 및 상기 제 1 댐벽부와 소정의 거리만큼 이격되어 상기 용융아연도금액 탕면 상으로 노출되는 제 2 댐벽부를 포함하며, 상기 스노클부의 상기 내벽부와 상기 제 1 댐벽부 사이에 상기 개방부를 통해 유입된 후 상기 제 1 댐벽부를 넘친 상기 용융아연 도금액을 수용할 수 있는 수용 공간을 형성하는 댐(Dam) 유닛; 및 상기 스노클부의 외측에 설치되어 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액을 상기 도금조로 펌핑하는 펌프 유닛;을 포함하고, 상기 프로세서는, 상기 제 1 센서에 의해 측정된 상기 제 1 수위와 상기 제 1 댐벽부 사이의 갭(G)이 일정하게 유지되도록 상기 프로세서에서 상기 갭의 차이에 따라, 상기 댐 유닛의 위치를 자동으로 제어하는 것을 특징으로 한다.A snout control system according to an aspect of the present invention includes a snout device whose one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet during the production process of the hot-dip galvanized steel sheet, thereby introducing the steel sheet into the plating bath; a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and a processor that controls the snout device and the first sensor, wherein the snout device is formed to surround the steel sheet flowing into the plating bath, and has an opening formed at the bottom immersed in the molten metal surface of the plating bath. a snorkel portion that guides the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath; It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface, and the snorkel In the opening portion of the portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion. It includes a second dam wall portion spaced apart by a distance of and exposed on the molten galvanizing liquid surface, wherein the first dam wall portion overflows after flowing through the opening portion between the inner wall portion of the snorkel portion and the first dam wall portion. A dam unit forming an accommodating space capable of accommodating a molten zinc plating solution; and a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating bath, wherein the processor is configured to measure the first plating solution measured by the first sensor. The processor automatically controls the position of the dam unit according to the difference in the gap so that the gap (G) between the water level and the first dam wall is maintained constant.
본 발명의 다른 측면에 따른 스나우트 제어 시스템은 용융아연도금 강판의 생산 공정 중 상기 강판을 도금하는 용융아연도금액이 수용된 도금조에 일단부가 침지되어, 상기 강판을 상기 도금조로 도입시키는 스나우트 장치; 상기 도금조의 어느 일부 상에 형성되어 상기 용융아연도금액 탕면의 제 1 수위를 측정할 수 있는 제 1 센서; 및 상기 스나우트 장치 및 상기 제 1 센서를 제어하는 프로세서;를 포함하고, 상기 스나우트 장치는, 상기 도금조로 유입되는 상기 강판을 감싸도록 형성되고, 상기 도금조의 탕면에 침지된 하단에 형성된 개방부를 통해 상기 강판이 상기 도금조에 수용된 상기 용융아연도금액으로 도입될 수 있도록 안내하는 스노클부; 탈부착이 가능한 구조로 상기 소노클부의 외벽부에 물리적으로 결합되고, 상기 제 1 센서와 연동되어 상기 용융아연도금액 탕면의 제 1 수위 정보에 따라 상기 스노클부의 외벽면을 따라 구동 가능하며, 상기 스노클부의 상기 개방부에서, 상기 스노클부의 내벽부와 소정의 거리만큼 이격되고 상기 스노클부의 높이 방향으로 소정 높이로 돌출되도록 상기 스노클부의 내측 둘레를 따라 형성되는 제 1 댐벽부 및 상기 제 1 댐벽부와 소정의 거리만큼 이격되어 상기 용융아연도금액 탕면 상으로 노출되는 제 2 댐벽부를 포함하며, 상기 스노클부의 상기 내벽부와 상기 제 1 댐벽부 사이에 상기 개방부를 통해 유입된 후 상기 제 1 댐벽부를 넘친 상기 용융아연 도금액을 수용할 수 있는 수용 공간을 형성하는 댐(Dam) 유닛; 상기 스노클부의 내측에 설치되되, 상기 댐 유닛의 어느 일부 상에 형성되어 상기 용융아연도금액의 탕면에 부유한 이물을 인식할 수 있는 카메라 모듈; 및 상기 스노클부의 외측에 설치되어 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액을 상기 도금조로 펌핑하는 펌프 유닛;을 포함하고, 상기 프로세서는, 상기 카메라 모듈을 이용하여 상기 이물의 이미지 학습을 통해 얻은 정보를 기반으로 상기 강판으로 이동되는 상기 이물의 혼입을 억제하도록 상기 댐 유닛의 위치를 제어하거나, 또는, 상기 펌프 유닛의 부하를 조절하는 것을 특징으로 한다.A snout control system according to another aspect of the present invention includes a snout device whose one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet during the production process of the hot-dip galvanized steel sheet, thereby introducing the steel sheet into the plating bath; a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and a processor that controls the snout device and the first sensor, wherein the snout device is formed to surround the steel sheet flowing into the plating bath, and has an opening formed at the bottom immersed in the molten metal surface of the plating bath. a snorkel portion that guides the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath; It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface, and the snorkel In the opening portion of the portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion. It includes a second dam wall portion spaced apart by a distance of and exposed on the molten galvanizing liquid surface, wherein the first dam wall portion overflows after flowing through the opening portion between the inner wall portion of the snorkel portion and the first dam wall portion. A dam unit forming an accommodating space capable of accommodating a molten zinc plating solution; A camera module installed inside the snorkel unit and formed on a part of the dam unit to recognize foreign substances floating on the molten zinc plating solution surface; and a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating bath, wherein the processor learns an image of the foreign object using the camera module. Based on the information obtained through, the position of the dam unit is controlled to suppress the mixing of the foreign matter moving into the steel plate, or the load of the pump unit is adjusted.
본 발명에 있어 상기 프로세서는, 상기 제 1 센서로부터 센싱신호를 인가받고, 상기 센싱신호에 따라 상기 댐 유닛이 상기 도금조에 침지된 깊이를 조절할 수 있도록 상기 댐 유닛을 상승 또는 하강시켜 상기 갭을 일정하게 제어하거나, 혹은 상기 펌프 유닛이 펌핑하는 상기 용융아연도금액의 유량을 제어할 수 있도록 상기 펌프 유닛의 부하를 조절하여 상기 갭을 일정하게 제어하는 것을 특징으로 한다.In the present invention, the processor receives a sensing signal from the first sensor, and raises or lowers the dam unit to adjust the depth at which the dam unit is immersed in the plating bath according to the sensing signal to keep the gap constant. The gap is constantly controlled by controlling the load of the pump unit to control the flow rate of the molten zinc plating solution pumped by the pump unit.
본 발명에 있어 상기 프로세서는, 상기 제 1 센서를 통해 상기 용융아연도금액 탕면의 제 1 수위 정보와 상기 댐 유닛의 위치 정보를 조합하여 상기 제 1 댐벽부에 돌출된 돌출부와 상기 용융아연도금액의 탕면 사이의 갭(G) 정보를 도출하고, 도출된 상기 갭 정보와 상기 펌프 유닛의 부하 정보를 토대로 상기 댐 유닛의 위치를 제어함으로써, 상기 갭을 일정하게 유지하는 것을 특징으로 한다.In the present invention, the processor combines the first water level information on the molten zinc plating liquid surface and the position information of the dam unit through the first sensor to detect the protrusion protruding from the first dam wall and the molten zinc plating liquid. It is characterized by maintaining the gap constant by deriving gap (G) information between the molten steel surfaces and controlling the position of the dam unit based on the derived gap information and load information of the pump unit.
본 발명에 있어 상기 댐 유닛은 슬라이딩 레일(sliding rail) 형태로 구성되어, 상기 스노클부의 외벽부와 물리적으로 결합되되, 상기 도금조로부터 전달되는 열에너지의 영향을 최소화하기 위해서, 상기 댐 유닛을 구동시키기 위한 구동장치는 상기 스나우트 장치의 어느 일부에 연결된 것을 특징으로 한다.In the present invention, the dam unit is configured in the form of a sliding rail, and is physically coupled to the outer wall of the snorkel portion, and drives the dam unit to minimize the influence of heat energy transmitted from the plating bath. The driving device for is characterized in that it is connected to any part of the snout device.
본 발명에 있어 상기 프로세서는, 상기 갭 정보가 사전에 설정된 기준보다 낮을 경우, 상기 댐 유닛을 하강시켜 상기 댐 유닛의 상기 제 1 댐벽부가 상기 도금조에 침지된 깊이를 증가시키고, 상기 갭 정보가 사전에 설정된 기준 수위보다 높을 경우, 상기 댐 유닛을 상승시켜 상기 댐 유닛의 상기 제 1 댐벽부가 상기 도금조에 침지된 깊이를 감소시키는 것을 특징으로 한다.In the present invention, when the gap information is lower than a preset standard, the processor lowers the dam unit to increase the depth at which the first dam wall portion of the dam unit is immersed in the plating bath, and the gap information is set in advance. If it is higher than the reference water level set in, the dam unit is raised to reduce the depth at which the first dam wall portion of the dam unit is immersed in the plating bath.
본 발명에 있어 상기 스나우트 장치는, 상기 스노클부의 내측 공간의 어느 일측에 설치되고, 상기 댐 유닛의 위치 정보를 감지하거나, 혹은 상기 댐벽부를 넘쳐 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액 탕면의 제 2 수위를 측정하는 제 2 센서;를 더 포함하는 것을 특징으로 한다.In the present invention, the snout device is installed on one side of the inner space of the snorkel unit and detects the position information of the dam unit, or the molten zinc overflows the dam wall and is accommodated in the accommodation space of the dam unit. It is characterized in that it further includes a second sensor that measures the second water level of the amount of money.
본 발명에 있어 상기 프로세서는, 상기 댐 유닛의 상기 수용공간으로부터 상기 스노클부의 상기 개방부로 상기 용융아연도금액이 역류하지 않도록, 상기 제 2 센서를 통해 상기 제 2 수위와 상기 제 1 수위 사이의 갭(gap)을 항상 설정치 이상으로 제어하는 것을 특징으로 한다.In the present invention, the processor detects a gap between the second water level and the first water level through the second sensor to prevent the molten zinc plating solution from flowing back from the accommodation space of the dam unit to the opening of the snorkel portion. It is characterized by controlling the (gap) to always exceed the set value.
본 발명에 있어 상기 펌프 유닛은, 상기 스노클부의 외측에 상기 댐 유닛과 대응되는 위치에 설치되어, 내부의 펌핑 공간이 상기 댐 유닛의 상기 수용 공간과 연통되도록 연결되고, 상기 수용 공간으로부터 상기 펌핑 공간으로 유입된 상기 용융아연도금액을 상기 도금조로 배출할 수 있도록 일측에 배출구가 형성되는 하우징부; 상기 하우징부의 상기 펌핑 공간에 회전 가능하게 설치되어, 회전 구동에 의해 상기 펌핑 공간으로 유입된 상기 용융아연도금액을 상기 배출구를 향해 유동시키는 임펠러부; 및 상기 하우징부의 일측에 설치되고, 상기 임펠러부의 회전 샤프트와 연결되어 상기 임펠러부를 회전 구동시키는 구동 모터;를 포함하는 것을 특징으로 한다.In the present invention, the pump unit is installed at a position corresponding to the dam unit outside the snorkel unit, and is connected so that the internal pumping space communicates with the accommodation space of the dam unit, and the pumping space flows from the accommodation space. a housing portion having an outlet on one side to discharge the molten zinc plating solution flowing into the plating bath; An impeller unit rotatably installed in the pumping space of the housing unit to flow the molten zinc plating solution introduced into the pumping space by rotational driving toward the discharge port; and a drive motor installed on one side of the housing unit and connected to a rotating shaft of the impeller unit to rotate the impeller unit.
본 발명에 있어 상기 용융아연도금액으로부터 발생하는 아연증기에 의해, 상기 카메라 모듈의 렌즈에 고착되는 것을 방지하기 위해서, 상기 카메라 모듈의 일측에 형성되는 가스공급부; 및 상기 카메라 모듈의 타측에 형성되는 가스흡입부;를 포함하고, 상기 가스공급부를 통해 불활성가스가 상기 렌즈의 표면 상으로 이동되어 상기 가스흡입부로 흡입되면서 상기 아연증기를 제거시키는 것을 특징으로 한다.In the present invention, a gas supply unit formed on one side of the camera module to prevent zinc vapor generated from the molten zinc plating solution from sticking to the lens of the camera module; and a gas suction portion formed on the other side of the camera module, wherein the inert gas is moved onto the surface of the lens through the gas supply portion and is sucked into the gas suction portion to remove the zinc vapor.
본 발명에 있어 상기 용융아연도금액으로부터 발생하는 아연증기에 의해, 상기 카메라 모듈의 렌즈에 고착되는 것을 방지하기 위해서, 상기 카메라 모듈의 렌즈 표면 상으로 이동되는 불활성가스에 선회류를 부가하여 상기 아연증기를 제거시키는 것을 특징으로 한다.In the present invention, in order to prevent zinc vapor generated from the molten zinc plating solution from sticking to the lens of the camera module, a swirling flow is added to the inert gas moving on the lens surface of the camera module to remove the zinc. It is characterized by removing vapor.
본 발명의 다른 측면에 따른 스나우트 제어 시스템은 용융아연도금액이 수용된 도금조에 침지되어, 강판을 상기 도금조로 도입시키는 스나우트 장치; 및 상기 스나우트 장치와 연결되는 프로세서를 포함하고, 상기 프로세서는, 상기 용융아연도금액 탕면의 수위를 측정하는 센서를 통해 측정된 수위와 상기 스나우트 장치의 댐(Dam)유닛과의 높이 차이를 인식하고, 상기 스나우트 장치에 설치되는 촬영장치를 통해 촬영된 영상에 기초하여 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나를 인식하며, 상기 인식된 높이 차이, 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 상기 스나우트 장치를 제어하는 것을 특징으로 한다.A snout control system according to another aspect of the present invention includes a snout device that is immersed in a plating bath containing a molten zinc plating solution and introduces a steel sheet into the plating bath; And a processor connected to the snout device, wherein the processor determines the height difference between the water level measured through a sensor that measures the water level of the molten zinc plating liquid surface and the dam unit of the snout device. Recognizes at least one of the structure inside the snorkel unit and foreign matter on the molten metal surface based on the image captured through the imaging device installed in the snout device, and recognizes the recognized height difference, the structure inside the snorkel unit, and foreign matter on the molten metal surface. Characterized in that controlling the snout device based on at least one.
본 발명에 있어 상기 프로세서는, 상기 영상에 옵티컬 플로우(Optical flow)를 적용하여 상기 스노클부 내부의 탕면에 부유하여 상기 강판에 접근하는 탕면 이물의 흐름을 인식하는 것을 특징으로 한다.In the present invention, the processor is characterized in that it recognizes the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit and approaching the steel plate by applying optical flow to the image.
본 발명에 있어 상기 프로세서는, 상기 스노클부 내부의 탕면에 이물 혼입 시 제1 색상으로 표시하고, 상기 스노클부 내부의 탕면에서 댐 유닛 외부로 이물 배출 시 제2 색상으로 표시함으로써, 스노클부 내부 조업 현황을 실시간으로 모니터링 가능하게 하는 것을 특징으로 한다.In the present invention, the processor displays with a first color when foreign matter is mixed into the hot water surface inside the snorkel unit, and displays with a second color when foreign matter is discharged from the hot water surface inside the snorkel unit to the outside of the dam unit, thereby controlling the internal operation of the snorkel unit. It is characterized by being able to monitor the status in real time.
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 기 설정된 구조물이 기 설정된 일정 비율 이상 존재하며, 탕면 이물의 흐름이 순방향인 경우, 상기 스나우트 장치의 높이를 유지하는 것을 특징으로 한다.In the present invention, the processor maintains the height of the snout device when the height difference is greater than a preset reference value, a preset structure is present in the image at a preset percentage or more, and the flow of foreign matter on the molten surface is in the forward direction. It is characterized by:
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 기 설정된 구조물이 일정 비율 이상 존재하며, 탕면 이물의 흐름이 역방향인 경우, 탕면 이물이 댐 유닛 외부로 배출되도록 상기 스나우트 장치의 높이를 상승시키는 것을 특징으로 한다.In the present invention, the processor, when the height difference is greater than a preset reference value, a preset structure is present in the image at a certain rate or more, and the flow of the foreign matter on the hot water surface is in the reverse direction, causes the foreign material on the hot water surface to be discharged to the outside of the dam unit. It is characterized by increasing the height of the snout device.
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하지 않는 경우, 상기 구조물이 상기 일정 비율 이상 존재하도록 상기 스나우트 장치를 상승시키는 것을 특징으로 한다.In the present invention, the processor is characterized in that, when the height difference is greater than a preset reference value and the structure does not exist in the image more than a certain percentage, the snout device is raised so that the structure exists more than the certain percentage. Do it as
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기 설정된 기준값 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하며, 상기 탕면 이물의 흐름이 순방향인 경우, 상기 스나우트 장치의 높이를 유지하는 것을 특징으로 한다.In the present invention, the processor maintains the height of the snout device when the height difference is less than a preset reference value, the structure is present in the image at a certain rate or more, and the flow of the foreign matter on the molten surface is in the forward direction. It is characterized by
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기준값을 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하며, 상기 탕면 이물의 흐름이 역방향인 경우, 탕면 이물이 댐 유닛 외부로 배출되도록 상기 스나우트 장치의 높이를 하강시키는 것을 특징으로 한다.In the present invention, the processor, when the height difference is less than a reference value, the structure is present in the image at a certain rate or more, and the flow of the molten metal foreign matter is in the reverse direction, the switch so that the molten metal foreign matter is discharged to the outside of the dam unit. It is characterized by lowering the height of the nout device.
본 발명에 있어 상기 프로세서는, 상기 높이 차이가 기준값 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하지 않은 경우, 상기 구조물이 상기 일정 비율 이상 존재하도록 상기 스나우트 장치를 하강시키는 것을 특징으로 한다.In the present invention, the processor is characterized in that, when the height difference is less than the reference value and the structure does not exist in the image more than a certain ratio, the snout device is lowered so that the structure exists more than the certain ratio. .
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 스나우트 장치의 스노클부의 외부에 물리적으로 결합된 댐 유닛 부근의 이물 들의 흐름을 실시간으로 감지하고, 댐 유닛의 내외부의 탕면의 수위차를 센서를 통해 인식함으로써, 댐 유닛 부근의 이물 들이 강판으로 접근 시 스나우트 장치의 댐 유닛을 상승시키거나 하강시켜 댐 유닛의 하단이 도금조에 침지된 깊이를 자동으로 제어하여 강판으로의 이물 혼입을 억제하고, 댐 유닛의 내외부의 탕면의 수위차에 따라 펌프 유닛의 부하를 자동으로 조절하여 적정한 부하를 유지함에 따라 스노클부 내부에 부유하는 이물의 용이한 배출과 펌프 유닛의 수명을 증가시킬 수 있다.According to an embodiment of the present invention made as described above, the flow of foreign substances near the dam unit physically coupled to the outside of the snorkel portion of the snout device is detected in real time, and the water level difference between the water surface inside and outside the dam unit is sensored. By recognizing through this, when foreign matter near the dam unit approaches the steel plate, the dam unit of the snout device is raised or lowered to automatically control the depth at which the bottom of the dam unit is immersed in the plating bath, thereby suppressing the incorporation of foreign matter into the steel plate. , the load of the pump unit is automatically adjusted according to the water level difference between the water surface inside and outside the dam unit to maintain an appropriate load, making it possible to easily discharge foreign substances floating inside the snorkel unit and increase the lifespan of the pump unit.
이와 같이, 아연 도금조의 실시간 탕면의 수위를 감지할 수 있는 센서를 활용하여 스나우트 장치의 외부면에 물리적으로 결합된 댐 유닛의 관리를 자동 제어함으로써, 조업 편이성 및 품질 안정성을 확보하는 효과를 가질 수 있는 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비를 구현할 수 있다.In this way, by automatically controlling the management of the dam unit physically coupled to the external surface of the snout device using a sensor that can detect the water level of the hot water surface of the galvanizing tank in real time, it has the effect of securing operational convenience and quality stability. A snout control system and a hot-dip galvanizing facility including the same can be implemented.
또한, 본 발명에 따를 때 센서를 통해 측정된 탕면의 수위, 카메라를 통해 촬영된 영상에 기초한 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 스나우트 장치를 자동으로 제어함으로써, 스노클부 내부의 조업 현황을 실시간으로 모니터링할 수 있고, 이를 통해 조업 편이성 및 품질 안정성을 확보하는 효과를 가질 수 있다. In addition, according to the present invention, by automatically controlling the snout device based on at least one of the water level of the water surface measured through the sensor, the structure inside the snorkel unit based on the image captured through the camera, and the foreign matter on the water surface, the inside of the snorkel unit The operation status can be monitored in real time, which can have the effect of securing operation convenience and quality stability.
나아가, 센서를 통해 탕면 수위 변동을 실시간으로 모니터링하고, 카메라를 통해 촬영된 영상을 분석하여 스노클부 내부 조업 현황을 실시간으로 모니터링하며, 그 모니터링 결과에 기초하여 스나우트 장치의 상승 또는 하강을 제어함으로써, 용융아연도금 과정에서 이물이 강판에 부착되는 것을 방지할 수 있을 뿐만 아니라, 공정 트러블 및 휴먼 에러를 방지할 수 있도록 하는 효과가 있다. Furthermore, changes in the water level of the water surface are monitored in real time through a sensor, and images captured through a camera are analyzed to monitor the operating status inside the snorkel unit in real time, and the rise or fall of the snout device is controlled based on the monitoring results. , It is effective in preventing foreign substances from attaching to the steel sheet during the hot-dip galvanizing process, as well as preventing process troubles and human errors.
한편, 본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다.Meanwhile, the effects of the present invention are not limited to the effects mentioned above, and various effects may be included within the range apparent to those skilled in the art from the contents described below.
도 1은 본 발명의 일 실시예에 따른 용융아연도금 강판의 제조 공정을 개략적으로 나타내는 공정도이다.1 is a process diagram schematically showing the manufacturing process of a hot-dip galvanized steel sheet according to an embodiment of the present invention.
도 2는 도 1의 용융아연도금 강판의 제조 공정에서의 용융아연 도금 설비를 개략적으로 나타내는 사시도이다.Figure 2 is a perspective view schematically showing a hot-dip galvanizing equipment in the manufacturing process of the hot-dip galvanized steel sheet of Figure 1.
도 3 및 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 측면을 개략적으로 나타내는 단면도이다.This is a cross-sectional view schematically showing the side of the snout control system installed in the hot-dip galvanizing equipment of FIGS. 3 and 2.
도 4는 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 정면을 개략적으로 나타내는 단면도이다.Figure 4 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of Figure 2.
도 5는 도 4의 스나우트 장치의 스노클부 내부를 개략적으로 나타내는 사시도이다.Figure 5 is a perspective view schematically showing the inside of the snorkel portion of the snout device of Figure 4.
도 6은 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 정면을 개략적으로 나타내는 단면도이다.Figure 6 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of Figure 2.
도 7은 도 6의 스나우트 장치의 스노클부 내부를 개략적으로 나타내는 사시도이다.Figure 7 is a perspective view schematically showing the inside of the snorkel portion of the snout device of Figure 6.
도 8 및 도 9는 본 발명의 일 실시예에 따른 머신비전 카메라의 렌즈를 아연 증기로부터 보호하는 구성을 개략적으로 도시한 도면이다.Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 탕면 이물 흐름을 설명하기 위한 예시도이다.Figure 10 is an exemplary diagram for explaining the flow of foreign matter on the molten metal surface according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 스나우트 제어 방법을 설명하기 위한 흐름도이다.Figure 11 is a flowchart for explaining a snout control method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, various preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified into various other forms, and the scope of the present invention is as follows. It is not limited to examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete and to fully convey the spirit of the present invention to those skilled in the art. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described with reference to drawings that schematically show ideal embodiments of the present invention.
[실시예 1][Example 1]
도 1은 본 발명의 일 실시예에 따른 용융아연도금 강판의 제조 공정을 개략적으로 나타내는 공정도이고, 도 2는 도 1의 용융아연도금 강판의 제조 공정에서의 용융아연 도금 설비를 개략적으로 나타내는 사시도이며, 도 3 및 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 측면을 개략적으로 나타내는 단면도이고, 도 4는 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 정면을 개략적으로 나타내는 단면도이며, 도 5는 도 4의 스나우트 장치의 스노클부 내부를 개략적으로 나타내는 사시도이고, 도 6은 도 2의 용융아연 도금 설비에 설치된 스나우트 제어 시스템의 정면을 개략적으로 나타내는 단면도이며, 도 7은 도 6의 스나우트 장치의 스노클부 내부를 개략적으로 나타내는 사시도이고, 도 8 및 도 9는 본 발명의 일 실시예에 따른 머신비전 카메라의 렌즈를 아연 증기로부터 보호하는 구성을 개략적으로 도시한 도면이다.Figure 1 is a process diagram schematically showing the manufacturing process of a hot-dip galvanized steel sheet according to an embodiment of the present invention, and Figure 2 is a perspective view schematically showing a hot-dip galvanizing equipment in the manufacturing process of the hot-dip galvanized steel sheet of Figure 1. , It is a cross-sectional view schematically showing the side of the snout control system installed in the hot-dip galvanizing equipment of Figures 3 and 2, and Figure 4 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing equipment of Figure 2. , FIG. 5 is a perspective view schematically showing the inside of the snorkel portion of the snout device of FIG. 4, FIG. 6 is a cross-sectional view schematically showing the front of the snout control system installed in the hot-dip galvanizing facility of FIG. 2, and FIG. 7 is FIG. It is a perspective view schematically showing the inside of the snorkel part of the snout device of Figure 6, and Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
먼저, 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른, 용융아연도금 강판의 제조 공정의 설비는, 크게, 용접 설비(600), 가열 설비(700), 압연 설비(800), 후처리 설비(900)를 포함할 수 있다. 또, 도금조(300), 스나우트 장치(100)와 이를 제어하는 프로세서(200) 및 에어나이프(500)로 구성되는 용융아연 도금 설비를 포함할 수 있다. 상기한 프로세서(200)는 중앙 처리 장치(CPU: Central Processing Unit), DSP(Digital Signal Processor), MCU(Micro Controller Unit) 또는 SoC(System on Chip)로도 구현될 수 있으며, 운영 체제 또는 어플리케이션을 구동하여 프로세서(200)에 연결된 복수의 하드웨어 또는 소프트웨어 구성요소들을 제어할 수 있고, 각종 데이터 처리 및 연산을 수행할 수 있으며, 메모리(미도시)에 저장된 적어도 하나의 명령을 실행시키고, 그 실행 결과 데이터를 메모리(미도시)에 저장하도록 구성될 수 있다.First, as shown in FIG. 1, the equipment for the manufacturing process of hot-dip galvanized steel sheet according to an embodiment of the present invention largely includes a welding equipment 600, a heating equipment 700, a rolling equipment 800, It may include a post-processing facility (900). In addition, it may include a hot-dip galvanizing facility consisting of a plating tank 300, a snout device 100, a processor 200 that controls the same, and an air knife 500. The processor 200 may be implemented as a central processing unit (CPU), digital signal processor (DSP), micro controller unit (MCU), or system on chip (SoC), and runs an operating system or application. Thus, it is possible to control a plurality of hardware or software components connected to the processor 200, perform various data processing and calculations, execute at least one command stored in a memory (not shown), and execute the execution result data. It may be configured to store in memory (not shown).
도 1에 도시된 바와 같이, 냉간압연 또는 열간 압연된 후 코일링된 강판(1)을 페이오프릴(C1)에 장착하고, 용접 설비(600)를 통해 선행과 후행 강판(1) 간의 용접을 완료하고, 강판(1)을 원하는 재질강도와 용융아연도금 시 도금밀착성을 확보하기 위해 가열 설비(700)에서 열처리를 할 수 있다.As shown in FIG. 1, a cold-rolled or hot-rolled steel plate (1) is mounted on the payoff reel (C1), and welding is performed between the preceding and following steel plates (1) through the welding equipment 600. After completion, the steel sheet 1 can be heat treated in the heating facility 700 to secure the desired material strength and plating adhesion during hot-dip galvanizing.
이어서, 열처리가 완료된 강판(1)은 용융아연도금 공정에 적당한 온도로 유지된 채 용융아연 도금 설비의 도금조(300)로 인입될 수 있다. 이때, 고온으로 열처리된 강판(1)이 대기에 노출됨으로써 발생되는 강판(1) 표면의 산화와 이로 인한 도금박리 현상을 방지할 수 있도록, 강판 유도 설비인 스나우트 장치(100)를 통해 인입될 수 있다.Subsequently, the steel sheet 1 on which heat treatment has been completed may be introduced into the plating tank 300 of the hot dip galvanizing facility while being maintained at a temperature appropriate for the hot dip galvanizing process. At this time, in order to prevent oxidation of the surface of the steel sheet (1) caused by exposure of the steel sheet (1) heat-treated at high temperature to the atmosphere and the resulting plating peeling phenomenon, the steel sheet (1) will be introduced through the snout device (100), which is a steel sheet guiding facility. You can.
더욱 구체적으로, 스나우트 장치(100)는, 일측이 가열 설비(700)와 연결되고 타측이 도금조(300)의 탕면에 침지되어, 가열 설비(700)에서 열처리된 강판(1)을 용융아연도금액(2)이 수용된 도금조(300)로 도입시킬 수 있다. 이러한, 스나우트 장치(100)의 내부에는, 강판(1) 표면의 산화에 의한 도금박리를 방지할 수 있도록 불활성가스(NHx)가 충진될 수 있다.More specifically, the snout device 100 has one side connected to the heating equipment 700 and the other side is immersed in the molten metal surface of the plating bath 300, and the steel sheet 1 heat-treated in the heating equipment 700 is converted into molten zinc. It can be introduced into the plating bath 300 containing the plating solution 2. The interior of the snout device 100 may be filled with an inert gas (NHx) to prevent plating peeling due to oxidation of the surface of the steel sheet 1.
이어서, 스나우트 장치(100)를 통과한 강판(1)은, 용융아연도금액(2)이 수용된 도금조(300)에서 용융아연 도금된 후, 도금조(300)의 상방에 설치되어 강판(1)에 부착된 용융아연의 두께를 조절하는 에어나이프(500)에 의해 미리 설정된 두께로 도금 부착량이 조절될 수 있다.Next, the steel sheet 1 that has passed through the snout device 100 is hot-dip galvanized in the plating bath 300 containing the molten zinc plating solution 2, and then installed above the plating bath 300 to form a steel sheet ( 1) The amount of plating attached can be adjusted to a preset thickness by the air knife 500, which adjusts the thickness of the molten zinc attached.
이와 같이, 도금이 완료된 강판(1)은, 압연 설비(800)에서 조질 압연을 거쳐 표면이 미려한 상태로 제조될 수 있으며, 이후, 형상교정기와 내식성 확보를 위한 후처리 및 절단기를 포함하는 후처리 설비(900)를 거쳐 텐션릴(C2)에 권취됨으로써 최종 제품화될 수 있다.In this way, the plated steel sheet 1 can be manufactured with a beautiful surface through temper rolling in the rolling facility 800, and then post-processing including a shape straightener, post-processing to secure corrosion resistance, and a cutter. It can be finalized into a product by passing through the equipment 900 and being wound onto the tension reel (C2).
이와 같은, 용융아연도금 강판의 제조 공정에서의 용융아연 도금 설비를 더욱 구체적으로 설명하면, 도 2 내지 도 4에 도시된 바와 같이, 가열 설비(700)와 연결되고 일단부가 도금조(300)에 수용된 용융아연도금액(2)의 탕면에 침지되는 스나우트 장치(100), 도금조(300)의 어느 일부 상에 형성되어 용융아연도금액(2)의 탕면의 제 1 수위를 측정할 수 있는 제 1 센서(160) 및 이를 제어하는 프로세서(200)에 의해 용융아연도금액(2)이 수용된 도금조(300)로 강판(1) 도입될 수 있다.To describe the hot-dip galvanizing equipment in the manufacturing process of hot-dip galvanized steel sheets in more detail, as shown in FIGS. 2 to 4, it is connected to the heating equipment 700 and one end is connected to the plating tank 300. A snout device (100) immersed in the molten metal surface of the received molten zinc plating solution (2), formed on any part of the plating bath (300) and capable of measuring the first water level of the molten metal surface of the molten zinc plating solution (2). The steel sheet 1 may be introduced into the plating tank 300 containing the molten zinc plating solution 2 by the first sensor 160 and the processor 200 that controls it.
그리고, 도금조(300) 내부에 침지된 싱크롤(Sink Roll)(R1)과 그 직상부에 설치된 스테빌라이징롤(Stabilizing Roll)(R2)에 의해 강판(1)은 그 패스라인이 도금조(300)의 직상부로 수직하게 변경되면서 연속 이송될 수 있다. 이러한 과정을 통해 도금조(300) 내부에 수용된 용융아연도금액(2)이 강판(1)의 표면에 부착될 수있다.In addition, the pass line of the steel sheet 1 is in the plating bath ( 300) can be continuously transferred while being vertically changed to the upper part. Through this process, the molten zinc plating solution (2) contained within the plating bath (300) can be attached to the surface of the steel sheet (1).
이후, 싱크롤(R1)을 통과한 강판(1)은, 그 직상부에 설치된 한 쌍의 스테빌라이징롤(R2) 사이를 통과하면서 휨이 교정되고, 에어나이프(500)를 통과하면서 용융아연의 표면 부착량이 조절될 수 있다.Afterwards, the steel sheet 1 that has passed through the sink roll (R1) has its warpage corrected as it passes between a pair of stabilizing rolls (R2) installed directly above it, and passes through the air knife 500 to remove molten zinc. The amount of surface adhesion can be adjusted.
도 2 내지 도 4에 도시된 바와 같이, 이러한, 용융아연 도금 설비에서 스나우트 장치(100)는, 크게, 스노클부(110), 탈부착형 댐(dam) 유닛(120), 펌프 유닛(130) 및 용융아연도금액(2) 탕면의 수위를 측정할 수 있는 제 1 센서(160)를 포함하고, 제 1 센서(160)와 연동되는 프로세서(200)에 의해 제어될 수 있다.As shown in FIGS. 2 to 4, the snout device 100 in this hot-dip galvanizing facility largely consists of a snorkel unit 110, a detachable dam unit 120, and a pump unit 130. and a first sensor 160 capable of measuring the water level of the molten zinc plating solution 2, and may be controlled by a processor 200 linked to the first sensor 160.
스나우트 장치(100)는, 강판(1)을 감싸도록 형성되고 내부 공간(A3)에 불활성가스(NHx)가 충진됨으로써, 가열 설비(700)에서 고온으로 열처리된 강판(1)이 대기에 노출됨에 따른 표면 산화를 방지할 수 있다. 또한, 도금조(300)에 수용된 용융아연도금액(2)의 증기가 응축되어 형성된 에쉬(Ash)가 강판(1)의 표면에 이물질로서 부착되어 표면결함이 발생되는 것을 방지하기 위한 구조를 가질 수 있다.The snout device 100 is formed to surround the steel sheet 1 and is filled with an inert gas (NHx) in the internal space A3, so that the steel sheet 1 heat-treated at high temperature in the heating equipment 700 is exposed to the atmosphere. Surface oxidation can be prevented. In addition, it has a structure to prevent ash formed by condensation of the vapor of the molten zinc plating solution (2) contained in the plating tank (300) from attaching as a foreign substance to the surface of the steel sheet (1) and causing surface defects. You can.
이러한, 스나우트 장치(100)의 하부측에는 도금조(300)에 수용된 용융아연도금액(2)의 탕면에 일부가 침지되는 스노클부(110)가 설치될 수 있다. 더욱 구체적으로, 스노클부(110)는, 도금조(300)로 유입되는 강판(1)을 감싸도록 형성되고, 도금조(300)의 탕면에 침지된 하단에 형성된 개방부(111)를 통해 강판(1)이 도금조(300)에 수용된 용융아연도금액(2)으로 도입될 수 있도록 안내할 수 있다.A snorkel portion 110 that is partially immersed in the molten zinc plating solution 2 contained in the plating tank 300 may be installed on the lower side of the snout device 100. More specifically, the snorkel part 110 is formed to surround the steel sheet 1 flowing into the plating bath 300, and the steel sheet is exposed through the opening 111 formed at the bottom immersed in the molten metal surface of the plating bath 300. (1) can be guided to be introduced into the molten zinc plating solution (2) contained in the plating bath (300).
여기서, 스노클부(110)의 외벽부에 물리적으로 결합되고, 제 1 센서(160)와 연동되어 용융아연도금액(2) 탕면의 제 1 수위 정보에 따라 스노클부(110)의 외벽면을 따라 구동 가능하며, 스노클부(110)의 개방부에서, 스노클부(110)의 내벽부(112)와 소정의 거리만큼 이격되고 스노클부(110)의 높이 방향으로 소정 높이로 돌출되도록 스노클부(110)의 내측 둘레를 따라 형성되는 제 1 댐벽부(121) 및 제 2 댐벽부(122)를 포함하며, 스노클부(11)의 내벽부(112)와 이격된 제 2 댐벽부(122)와 제 1 댐벽부(121) 사이에 개방부를 통해 유입된 후 제 1 댐벽부(121)를 넘친 용융아연도금액(2)을 수용할 수 있는 수용 공간을 형성하는 탈부착형 댐(Dam) 유닛(120)을 더 포함한다.Here, it is physically coupled to the outer wall of the snorkel part 110, and is linked with the first sensor 160 to measure the temperature along the outer wall of the snorkel part 110 according to the first water level information of the molten zinc plating solution (2). The snorkel part 110 is operable and is spaced apart from the inner wall part 112 of the snorkel part 110 by a predetermined distance at the opening of the snorkel part 110 and protrudes at a predetermined height in the height direction of the snorkel part 110. ) includes a first dam wall portion 121 and a second dam wall portion 122 formed along the inner circumference of the snorkel portion 11, and a second dam wall portion 122 spaced apart from the inner wall portion 112 of the snorkel portion 11. 1 A detachable dam unit 120 that forms an accommodating space capable of accommodating the molten zinc plating solution 2 that overflows the first dam wall 121 after flowing in through the opening between the dam wall parts 121. It further includes.
예컨대, 스노클부(110)는, 사각의 횡단면을 가지는 사각관 형상으로 형성되어, 동일한 사각관 형상으로 형성되는 스나우트 장치(100)의 하단부에 결합될 수 있다. 또한, 도시되지는 않았지만, 스노클부(110)의 외벽부에 결합된 댐 유닛(120)은, 하단이 도금조(300)에 침지되는 깊이가 조절될 수 있도록 액츄에이터와 같은 구동장치에 의해, 도금조(300)의 탕면의 기준으로 상하로 구동될 수 있다. 댐 유닛(120)은 슬라이딩 레일(sliding rail) 형태로 구성되어, 스노클부(110)의 외벽부와 물리적으로 결합되되, 도금조(300)로부터 전달되는 열에너지의 영향을 최소화하기 위해서, 댐 유닛(120)을 구동시키기 위한 구동장치(미도시)는 스나우트 장치(100)의 어느 일부에 연결될 수 있다. 이때, 상기 구동장치(미도시)에 구비된 모터(미도시)의 과열을 방지하기 위해서, 상기 모터의 외주면을 따라 수냉이 가능하도록 냉각 배관(미도시)이 형성될 수 있다.For example, the snorkel unit 110 is formed in the shape of a square tube with a square cross-section and may be coupled to the lower end of the snout device 100, which is formed in the same square tube shape. In addition, although not shown, the dam unit 120 coupled to the outer wall of the snorkel unit 110 is plating by a driving device such as an actuator so that the depth at which the lower end is immersed in the plating tank 300 can be adjusted. It can be driven up and down based on the molten surface of the tank 300. The dam unit 120 is configured in the form of a sliding rail and is physically coupled to the outer wall of the snorkel unit 110. In order to minimize the influence of heat energy transmitted from the plating tank 300, the dam unit ( A driving device (not shown) for driving 120 may be connected to any part of the snout device 100. At this time, in order to prevent overheating of the motor (not shown) provided in the driving device (not shown), a cooling pipe (not shown) may be formed along the outer peripheral surface of the motor to enable water cooling.
또한, 도 3 내지 도 5에 도시된 바와 같이, 댐 유닛(120)은, 스노클부(110)의 개방부(111)에서, 스노클부(110)의 내벽부(112)와 소정 거리 이격되고 스노클부(110)의 높이 방향으로 소정 높이로 돌출되도록 스노클부(110)의 내측 둘레를 따라 형성되는 제 1 댐벽부(121) 및 제 2 댐벽부(122)를 포함하여, 스노클부(110)의 내벽부(112)와 이격된 제 2 댐벽부(122)와 제 1 댐벽부(121) 사이에 개방부(111)를 통해 유입된 후 제 1 댐벽부(121)를 넘친 용융아연도금액(2)을 수용할 수 있는 수용 공간(A1)을 형성할 수 있다. 여기서, 제 2 댐벽부(122)의 높이는 제 1 댐벽부(121)의 높이보다 상대적으로 더 높게 형성된다. 이는, 강판(1)으로 접근하는 이물(D)이 제 2 댐벽부(122)와 스노클부(110)의 외벽부 쪽으로 이동할 경우, 댐 유닛(120)의 승하강 구동에 문제를 발생시킬 수 있다. 따라서, 제 2 댐벽부(122)의 높이를 용융아연도금액(2) 탕면의 수위보다 더 높게 형성함으로써, 강판(1)으로 접근하는 이물(D)이 댐 유닛(120)의 구동부에 접근하지 못하도록 물리적으로 차단할 수 있다.In addition, as shown in FIGS. 3 to 5, the dam unit 120 is spaced a predetermined distance from the inner wall portion 112 of the snorkel portion 110 at the opening portion 111 of the snorkel portion 110 and is connected to the snorkel portion. Including a first dam wall portion 121 and a second dam wall portion 122 formed along the inner circumference of the snorkel portion 110 to protrude at a predetermined height in the height direction of the snorkel portion 110. The molten zinc plating solution (2) flows in through the opening 111 between the second dam wall 122 and the first dam wall 121, which are spaced apart from the inner wall 112, and then overflows the first dam wall 121. ) can form an accommodation space (A1) that can accommodate. Here, the height of the second dam wall portion 122 is formed to be relatively higher than the height of the first dam wall portion 121. This may cause problems in the raising and lowering drive of the dam unit 120 when the foreign matter (D) approaching the steel plate 1 moves toward the outer wall of the second dam wall portion 122 and the snorkel portion 110. . Therefore, by forming the height of the second dam wall portion 122 to be higher than the water level of the molten zinc plating liquid 2, the foreign matter D approaching the steel plate 1 does not approach the driving part of the dam unit 120. It can be physically blocked.
예컨대, 댐 유닛(120)은, 스노클부(110)의 외벽부에 결합되되, 스노클부(110)의 개방부(111) 안쪽으로 절곡된 형태의 제 1 댐벽부(121)에 의해 형성된 수용 공간(A1)을 형성한다. 이러한, 댐 유닛(120)의 일부는, 스노클부(110)가 도금조(300)에 침지되거나, 혹은 용융아연도금액(2)의 탕면보다 상대적으로 높은 위치로 형성된 상태에서, 스노클부(110)의 개방부(111)를 통해 유입된 용융아연도금액(2)의 탕면과 그 높이가 일치되거나 상대적으로 낮은 위치로 형성될 수 있다. 이에 따라, 댐 유닛(120)의 하단부가 도금조(300)에 침지 시, 스노클부(110)의 개방부(111)를 통해 유입된 용융아연도금액(2)이 제 1 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1)에 수용될 수 있다.For example, the dam unit 120 is coupled to the outer wall of the snorkel part 110, and has an accommodation space formed by the first dam wall part 121 that is bent inward into the opening 111 of the snorkel part 110. (A1) is formed. This part of the dam unit 120 is immersed in the plating bath 300, or is formed at a position relatively higher than the molten zinc plating solution 2, and the snorkel part 110 ) The height of the molten zinc plating solution (2) flowing in through the opening 111 may be equal to that of the surface or may be formed at a relatively low position. Accordingly, when the lower part of the dam unit 120 is immersed in the plating bath 300, the molten zinc plating solution 2 flowing in through the opening 111 of the snorkel part 110 is applied to the first dam wall part 121. It overflows and can be accommodated in the accommodation space (A1) of the dam unit 120.
또한, 펌프 유닛(130)은, 스노클부(110)의 외측에 설치되어 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2)을 도금조(300)로 펌핑하여 배출시킬 수 있다.In addition, the pump unit 130 is installed on the outside of the snorkel unit 110 to pump and discharge the molten zinc plating solution 2 contained in the accommodation space A1 of the dam unit 120 into the plating tank 300. You can.
더욱 구체적으로, 펌프 유닛(130)은, 스노클부(110)의 외측에 댐 유닛(120)과 대응되는 위치에 설치되어, 내부의 펌핑 공간(A2)이 댐 유닛(120)의 수용 공간(A1)과 연통되도록 연결된다. 펌프 유닛(130)은 수용 공간(A1)으로부터 펌핑 공간(A2)으로 유입된 용융아연도금액(2)을 도금조(300)로 배출할 수 있도록 일측에 배출구(131a)가 형성되는 하우징부(131)를 포함한다. 여기서, 하우징부(131)의 펌핑 공간(A2)에 회전 가능하게 설치되어, 회전 구동에 의해 펌핑 공간(A2)으로 유입된 용융아연도금액(2)을 배출구(131a)를 향해 유동시키는 임펠러부(132) 및 댐 유닛(120)의 측면에 설치된 브라켓(B)에 의해 하우징부(131)의 일측에 설치되고, 회전축(133a)이 임펠러부(132)의 회전 샤프트(132a)와 연결되어 임펠러부(132)를 회전 구동시키는 구동 모터를 포함할 수 있다.More specifically, the pump unit 130 is installed at a position corresponding to the dam unit 120 on the outside of the snorkel unit 110, and the internal pumping space A2 is the accommodation space A1 of the dam unit 120. ) is connected to communicate with. The pump unit 130 includes a housing portion ( 131). Here, the impeller part is rotatably installed in the pumping space (A2) of the housing part 131 and causes the molten zinc plating solution (2) flowing into the pumping space (A2) by rotational drive to flow toward the discharge port (131a). (132) and a bracket (B) installed on the side of the dam unit 120, which is installed on one side of the housing portion 131, and the rotation shaft 133a is connected to the rotation shaft 132a of the impeller portion 132 to It may include a drive motor that rotates the unit 132.
이러한, 펌프 유닛(130)은, 스노클부(110)의 개방부(111)를 통해 유입된 후 제 1 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2)을 스노클부(110) 외부의 도금조(300)의 탕면측으로 배출함으로써, 도금조(300) 내의 용융아연도금액(2)이 지속적으로 스노클부(110)의 개방부(111)를 통하여 유입될 수 있도록 유도할 수 있다.This pump unit 130, after flowing in through the opening 111 of the snorkel unit 110, overflows the first dam wall 121 and accommodates the molten zinc in the accommodation space A1 of the dam unit 120. By discharging the amount (2) to the molten metal surface side of the plating tank (300) outside the snorkel section (110), the molten zinc plating solution (2) in the plating tank (300) continuously flows into the opening (111) of the snorkel section (110). It can be induced to flow in through .
이와 같이, 펌프 유닛(130)에 의해, 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2)을 스노클부(110) 외부의 도금조(300)의 탕면측으로 배출하여 용융아연도금액(2)에 포함된 드로스와 같은 이물(D)이 도금조(300)의 탕면 상에 부유하도록 유도함으로써, 이물(D)이 도금조(300) 내의 용융아연도금액(2)과 혼합되어 용융아연도금액(2)을 재오염시키거나, 하단부가 도금조(300)의 탕면 아래로 침지된 스노클부(110)의 개방부(111)를 통하여 재유입되는 것을 방지할 수 있다.In this way, the molten zinc plating solution (2) contained in the accommodation space (A1) of the dam unit (120) is discharged to the molten metal surface side of the plating tank (300) outside the snorkel unit (110) by the pump unit (130) to melt the molten zinc plating solution (2). By inducing foreign substances (D) such as dross contained in the zinc plating solution (2) to float on the surface of the plating bath (300), the foreign substances (D) are mixed with the molten zinc plating solution (2) in the plating bath (300). It is possible to prevent the molten zinc plating solution 2 from being mixed again, or from being re-introduced through the opening 111 of the snorkel part 110, the lower part of which is immersed under the molten metal surface of the plating tank 300.
이때, 펌프 유닛(130)에 의해, 도금조(300)의 탕면측으로 배출되어 도금조(300)의 탕면 상에 부유하는 드로스와 같은 이물(D)은, 별도의 제거 장치에 의해 도금조(300)의 탕면 상에서 제거되거나, 작업자에 의해 제거될 수 있다.At this time, the foreign matter (D), such as dross, which is discharged to the molten metal surface side of the plating bath 300 by the pump unit 130 and floating on the molten metal surface of the plating bath 300, is removed from the plating bath 300 by a separate removal device. ) may be removed from the surface of the molten metal, or may be removed by the operator.
또한, 펌프 유닛(130)의 형태는 반드시 도 3 내지 도 5에 국한되지 않고, 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2)을 스노클부(110) 외부의 도금조(300)의 탕면측으로 배출할 수 있는 다양한 형태가 적용될 수 있다.In addition, the shape of the pump unit 130 is not necessarily limited to FIGS. 3 to 5, and the molten zinc plating solution 2 contained in the receiving space A1 of the dam unit 120 is plated on the outside of the snorkel portion 110. Various forms that can be discharged to the molten steel surface side of the tank 300 can be applied.
도 4 및 도 5에 도시된 바와 같이, 스나우트 장치(100)는, 스노클부(110)의 내측 공간의 어느 일측에 설치되고, 개방부(111)로 유입되어 제 1 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2) 탕면의 제 2 수위를 측정하고, 개방부를 통해 스노클부(110) 내부로 유입된 용융아연도금액(2)의 탕면에 부유하여 강판(1)으로 접근하는 이물(D)을 감지하는 제 2 센서(140, 150) 를 더 포함할 수 있다.As shown in Figures 4 and 5, the snout device 100 is installed on one side of the inner space of the snorkel part 110, and flows into the opening part 111 to block the first dam wall part 121. Measure the second water level of the molten zinc plating solution (2) contained in the receiving space (A1) of the overflow dam unit (120), and pour through the opening. It may further include a second sensor (140, 150) that detects a foreign substance (D) floating on the surface of the molten zinc plating solution (2) flowing into the snorkel part (110) and approaching the steel plate (1).
이러한 제 2 센서(140, 150)는, 초음파 센서, 적외선 센서 및 레이더 센서 중 어느 하나를 이용하여 개방부(111)로 유입되는 용융아연도금액(2) 탕면의 제 2 수위를 측정할 수 있다. 또, 제 2 센서(140, 150)는 용융아연도금액(2)의 탕면에 부유하는 이물(D)을 감지할 수도 있으며, 제 2 센서(140, 150) 중 어느 하나는 상기 센서들 이외에 카메라 이미지 센서를 이용하여 용융아연도금액(2)의 탕면에 부유하는 이물(D)을 감지하는 비전 센서일 수도 있다. 혹은, 제 2 센서(140, 150) 중 어느 하나는 초음파 센서, 적외선 센서 및 레이더 센서 중 어느 하나를 이용하여 용융아연도금액(2) 탕면의 제 2 수위를 측정하고, 다른 하나는 비전 센서를 이용하여 용융아연도금액(2)의 탕면에 부유하는 이물(D)을 감지하도록 센서의 종류를 선택적으로 변경 가능하다. 도 4 및 도 5에 도시된 것과 같이 제2 센서(140, 150) 중 어느 하나(140)는 강판(1)의 일 측과 스노클부(110)의 내벽면 사이에 배치되고, 제2 센서(140, 150) 중 다른 하나(150)는 강판(1)의 타 측과 스노클부(110)의 내벽면 사이에 배치될 수 있다.These second sensors 140 and 150 can measure the second water level of the molten zinc plating solution 2 flowing into the opening 111 using any one of an ultrasonic sensor, an infrared sensor, and a radar sensor. . In addition, the second sensors (140, 150) may detect foreign substances (D) floating on the surface of the molten zinc plating solution (2), and one of the second sensors (140, 150) may use a camera in addition to the above sensors. It may be a vision sensor that detects foreign matter (D) floating on the surface of the molten zinc plating solution (2) using an image sensor. Alternatively, one of the second sensors 140 and 150 measures the second water level of the molten zinc plating solution (2) using one of an ultrasonic sensor, an infrared sensor, and a radar sensor, and the other uses a vision sensor. The type of sensor can be selectively changed to detect foreign substances (D) floating on the surface of the molten zinc plating solution (2). As shown in FIGS. 4 and 5, one of the second sensors 140 and 150 140 is disposed between one side of the steel plate 1 and the inner wall of the snorkel portion 110, and the second sensor ( The other one 150 of 140 and 150 may be disposed between the other side of the steel plate 1 and the inner wall surface of the snorkel portion 110.
제 2 센서(150)로서, 레이저 센서를 사용할 경우, 용융아연도금액(2) 탕면에 부유하는 이물(D)에서의 반사율과 노멀(normal)한 상태의 용융아연도금액(2) 탕면에서의 반사율을 서로 비교하여 반사율 값 차이에 따른 인식값이 상이한 경우를 이물(D)이 있는 것으로 인식하여 감지할 수 있다. 여기서, 상기 노멀한 상태는 이물(D)이 없는 순수한 용융아연도금액(2)만 있는 상태를 의미한다.When using a laser sensor as the second sensor 150, the reflectance of the foreign matter (D) floating on the surface of the molten zinc plating solution (2) and the reflectance on the surface of the molten zinc plating solution (2) in a normal state are By comparing the reflectance, if the recognition value is different depending on the difference in reflectance value, it can be recognized as the presence of a foreign substance (D) and detected. Here, the normal state means a state in which there is only pure molten zinc plating solution (2) without foreign substances (D).
구체적으로, 제 1 센서(160)에 의해 측정된 상기 제 1 수위와 댐벽부(121) 사이의 갭(G) 정보와, 펌프 유닛(10)의 부하 정보를 종합적으로 고려하여, 댐 유닛(120)의 하강을 통한 오버플로우(over flow) 양이 증대되면, 댐 유닛(120) 내에서 밖으로 이동하는 유속을 증대시킨다. 또는 오버플로우 양 증가에 따른 펌프 유닛(130)의 RPM을 증가시켜 제 1 센서(160)에 의해 측정된 상기 제 1 수위와 제 1 댐벽부(121) 사이의 갭(G)을 일정하게 자동으로 제어할 수 있다.Specifically, by comprehensively considering the gap (G) information between the first water level measured by the first sensor 160 and the dam wall 121 and the load information of the pump unit 10, the dam unit 120 ), when the amount of overflow increases through the descent, the flow rate moving outward from within the dam unit 120 increases. Alternatively, the gap (G) between the first water level measured by the first sensor 160 and the first dam wall 121 is automatically and constantly increased by increasing the RPM of the pump unit 130 according to the increase in the amount of overflow. You can control it.
한편, 전술한 것과 같이 제2 센서(140, 150) 중 어느 하나의 센서(140)는 카메라 모듈, 즉 자동초점 기능 혹은 승하강 기능을 갖는 비전 센서로 구현될 수 있으며, 이 경우 카메라 모듈 이외의 제2 센서(150)는 초음파 센서, 적외선 센서 및 레이더 센서 중 어느 하나로 구현될 수 있다(도면 부호를 병기하여, 이하에서 표기하는 제2 센서(150)는 카메라 모듈(140) 이외의 제2 센서에 해당하는 것으로 용어를 명확히 구분하기로 한다). 카메라 모듈(140)의 상기 기능에 의해, 용융아연도금액(2)의 탕면에 부유하는 이물(D)의 인식률이 향상될 수 있다. 카메라 모듈(140)로 측정된 이물(D)의 이미지를 반복적으로 학습하여, 이물(D)의 크기 및 형태에 따른 이미지 신호를 프로세서(200)에 전송하여 이를 기반으로, 댐 유닛(120)의 위치를 조정하거나, 혹은 펌프 유닛(130)의 부하를 제어하도록 한다.Meanwhile, as described above, any one of the second sensors 140 and 150 may be implemented as a camera module, that is, a vision sensor with an autofocus function or an ascending and descending function. In this case, a sensor other than the camera module The second sensor 150 may be implemented as any one of an ultrasonic sensor, an infrared sensor, and a radar sensor (the second sensor 150, hereinafter indicated with reference numerals, is a second sensor other than the camera module 140). (The terms will be clearly distinguished as applicable). By the above-mentioned function of the camera module 140, the recognition rate of the foreign matter D floating on the surface of the molten zinc plating solution 2 can be improved. By repeatedly learning the image of the foreign matter (D) measured by the camera module 140, and transmitting an image signal according to the size and shape of the foreign matter (D) to the processor 200, based on this, the dam unit 120 Adjust the position or control the load of the pump unit 130.
구체적으로, 카메라 모듈(140)을 이용하여, 사전 이미지 학습을 통한 용융아연도금액(2) 탕면의 이물(D) 이미지 라이브러리를 구축하여 각각의 이미지를 프로세서(200)의 데이터 저장소에 저장하고, 구축된 이물(D) 이미지 라이브러리의 학습 데이터를 토대로 용융아연도금액(2) 탕면에 부유하는 이물(D)의 실시간 정보를 수신하면서, 제 1 센서(160)에 의해 측정된 상기 제 1 수위와 댐벽부(121) 사이의 갭(G) 정보와, 펌프 유닛(10)의 부하 정보를 종합적으로 고려하여, 댐 유닛(120)의 하강을 통한 오버플로우(over flow) 양이 증대되면, 댐 유닛(120) 내에서 밖으로 이동하는 유속을 증대시킨다. 또는 오버플로우 양 증가에 따른 펌프 유닛(130)의 RPM을 증가시켜 제 1 센서(160)에 의해 측정된 상기 제 1 수위와 제 1 댐벽부(121) 사이의 갭(G)을 일정하게 자동으로 제어할 수 있다.Specifically, using the camera module 140, an image library of foreign matter (D) on the surface of the molten zinc plating solution (2) is built through prior image learning, and each image is stored in the data storage of the processor 200, While receiving real-time information on the foreign matter (D) floating on the surface of the molten galvanizing solution (2) based on the learning data of the constructed foreign matter (D) image library, the first water level measured by the first sensor 160 and Comprehensively considering the gap (G) information between the dam wall portions 121 and the load information of the pump unit 10, if the amount of overflow increases through the lowering of the dam unit 120, the dam unit (120) Increases the flow rate moving from within to outward. Alternatively, the gap (G) between the first water level measured by the first sensor 160 and the first dam wall 121 is automatically and constantly increased by increasing the RPM of the pump unit 130 according to the increase in the amount of overflow. You can control it.
카메라 모듈(140) 및 제2 센서(150)는 용융아연도금액(2)의 탕면에 부유하는 이물(D)을 감지하기 위해 상호 보완적으로 기능할 수 있다. 이러한 상호 보완적 기능을 위해 카메라 모듈(140) 및 제2 센서(150)는 도 6 및 도 7에 따른 배치 구조를 가질 수 있다. 즉, 카메라 모듈(140)과 제 2 센서(150)의 위치는 동일한 레벨 선상에 배치되되, 강판(1)과 스노클부(110)의 내벽면 사이에서 순서에 관계없이 배치될 수 있다. 예를 들어, 도 6 및 도 7에 도시된 것과 같이 강판(1)과 인접한 부근에 카메라 모듈(140)이 형성되고, 카메라 모듈(140)과 동일한 레벨 선상에서 소정의 거리만큼 이격되어 제 2 센서(150)가 형성될 수 있다. 또는, 강판(1)과 인접한 부근에 제 2 센서(150)가 형성되고, 제 2 센서(150)와 동일한 레벨 선상에서 소정의 거리만큼 이격되어 카메라 모듈(140)이 형성되어도 무방하다.The camera module 140 and the second sensor 150 may function complementary to each other to detect foreign substances (D) floating on the surface of the molten zinc plating solution (2). For these complementary functions, the camera module 140 and the second sensor 150 may have an arrangement structure according to FIGS. 6 and 7. That is, the positions of the camera module 140 and the second sensor 150 are arranged on the same level line, but they can be arranged in any order between the steel plate 1 and the inner wall surface of the snorkel unit 110. For example, as shown in FIGS. 6 and 7, the camera module 140 is formed adjacent to the steel plate 1, and is spaced apart by a predetermined distance on the same level line as the camera module 140, so that the second sensor (150) can be formed. Alternatively, the second sensor 150 may be formed adjacent to the steel plate 1, and the camera module 140 may be formed at a predetermined distance apart from the second sensor 150 on the same level line.
또한, 프로세서(200)는, 제 1 센서(160) 및 제 2 센서(140, 150)와 전기적으로 연결되어, 제 1 센서(160) 및 제 2 센서(140, 150)로부터 센싱신호를 인가받고, 상기 센싱신호에 따라 댐 유닛(120)이 도금조(300)에 침지된 깊이를 조절할 수 있도록 댐 유닛(120)을 상승 또는 하강시키거나, 펌프 유닛(130)이 펌핑하는 용융아연도금액(2)의 유량을 제어할 수 있도록 펌프 유닛(130)의 부하를 조절할 수 있다.In addition, the processor 200 is electrically connected to the first sensor 160 and the second sensors 140 and 150, and receives sensing signals from the first sensor 160 and the second sensors 140 and 150. According to the sensing signal, the dam unit 120 is raised or lowered to adjust the depth at which the dam unit 120 is immersed in the plating tank 300, or the pump unit 130 pumps the molten zinc plating solution ( 2) The load of the pump unit 130 can be adjusted to control the flow rate.
예컨대, 프로세서(200)는, 제 2 센서(140, 150)를 통해 이물(D)이 강판(1)으로 접근하는 것으로 감지될 경우, 댐 유닛(120)을 하강시켜 댐 유닛(120)의 하단이 도금조(300)에 침지된 깊이를 증가시킬 수 있다.For example, when the processor 200 detects that a foreign matter D is approaching the steel plate 1 through the second sensors 140 and 150, the processor 200 lowers the dam unit 120 to the bottom of the dam unit 120. The depth of immersion in this plating tank 300 can be increased.
더욱 구체적으로, 제 2 센서(140, 150)에 의해, 스노클부(110)의 개방부(111)를 통해 스노클부(110)의 내부로 유입된 용융아연도금액(2)의 탕면에 부유하는 이물(D)이 강판(1) 측으로 접근하는 것으로 감지될 경우, 프로세서(200)가 댐 유닛(120)을 하강시켜 댐 유닛(120)의 하단이 도금조(300)에 침지된 깊이를 증가시킴으로써, 스노클부(110)의 외부면에 결합된 댐 유닛(120)의 제 1 댐벽부(121)의 상단이 스노클부(110)의 내부로 유입된 용융아연도금액(2)의 탕면 보다 더 낮아지도록 제어할 수 있다.More specifically, the second sensors 140 and 150 float on the surface of the molten zinc plating solution 2 flowing into the snorkel part 110 through the opening 111 of the snorkel part 110. When a foreign object (D) is detected approaching the steel plate (1), the processor 200 lowers the dam unit 120 to increase the depth at which the lower end of the dam unit 120 is immersed in the plating bath 300. , the top of the first dam wall portion 121 of the dam unit 120 coupled to the outer surface of the snorkel portion 110 is lower than the surface of the molten zinc plating solution 2 flowing into the snorkel portion 110. You can control it so that it goes away.
이때, 제 1 센서(160)에 의해 측정된 상기 제 1 수위와 댐벽부(121) 사이의 갭(G)이 일정하게 유지되도록 댐 유닛(120)의 위치를 조정해야 하기 때문에, 이물(D)이 감지됨에 따라 댐 유닛(120)을 용융아연도금액(2)의 하단부로 하강시킬 경우, 순간적으로, 상기 갭(G)의 크기가 크게 벌어질 수 있다. 이러한 경우를 위해서, 프로세서(200)는 상기 갭(G)이 크게 벌어지게 될 경우를 고려하여, 펌프 유닛(130)의 부하를 제어하여 용융아연도금액(2)의 일부가 빠르게 펌프 유닛(130)의 수용공간(A2)을 통해 외부로 빠져나가도록 제어함으로써, 상기 갭(G)을 일정하게 유지할 수 있다.At this time, because the position of the dam unit 120 must be adjusted so that the gap (G) between the first water level measured by the first sensor 160 and the dam wall 121 is maintained constant, the foreign matter (D) When this is detected and the dam unit 120 is lowered to the lower end of the molten zinc plating solution 2, the size of the gap G may instantly widen significantly. For this case, the processor 200 controls the load of the pump unit 130 in consideration of the case where the gap G is greatly widened, so that a portion of the molten zinc plating solution 2 is rapidly pumped into the pump unit 130. ), the gap (G) can be kept constant by controlling it to escape to the outside through the receiving space (A2).
이에 따라, 스노클부(110)의 개방부(111)를 통해 스노클부(110)의 내부로 유입된 용융아연도금액(2)이 제 1 댐벽부(121)를 더욱 빠르게 넘치도록 유도하여, 스노클부(110) 내부에서 용융아연도금액(2)의 흐름을 개방부(111)에서 댐 유닛(120)의 수용 공간(A1) 측으로 빠르게 유도함으로써, 용융아연도금액(2)의 탕면에 부유하는 이물(D)이 용융아연도금액(2)의 흐름과 함께 강판(1)으로부터 멀어져 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1) 측으로 수용된 후 펌프 유닛(130)에 의해 도금조(300)의 탕면으로 배출되도록 유도할 수 있다.Accordingly, the molten zinc plating solution (2) flowing into the inside of the snorkel part 110 through the opening 111 of the snorkel part 110 is induced to overflow the first dam wall part 121 more quickly, causing the snorkel By rapidly guiding the flow of the molten zinc plating solution (2) from the opening part 111 inside the part 110 to the receiving space A1 of the dam unit 120, the molten zinc plating solution (2) is floating on the surface of the molten metal. The foreign matter (D) moves away from the steel plate (1) along with the flow of the molten zinc plating solution (2), overflows the dam wall 121, and is received into the accommodation space (A1) of the dam unit 120 by the pump unit 130. It can be induced to be discharged to the surface of the plating tank 300.
이와 같이, 제 2 센서(140, 150) 및 프로세서(200)에 의해, 이물(D)이 강판(1)으로 접근 시, 댐 유닛(120)의 침지 깊이를 자동으로 제어하거나, 혹은 펌프 유닛(130)의 부하를 제어함으로써, 용융아연도금 과정에서 이물(D)이 강판(1)에 부착되는 것을 방지할 수 있다.In this way, when the foreign matter D approaches the steel plate 1, the immersion depth of the dam unit 120 is automatically controlled by the second sensors 140, 150 and the processor 200, or the pump unit ( By controlling the load 130), it is possible to prevent foreign matter (D) from attaching to the steel sheet (1) during the hot-dip galvanizing process.
또한, 프로세서(200)는, 제 1 센서(160)를 통해 감지되는 용융아연도금액(2) 탕면의 제 1 수위와 댐 유닛(120)의 제 1 댐벽부(121)의 위치 정보를 조합하여, 제 1 댐벽부(121)에 돌출된 돌출부와 용융아연도금액(2)의 탕면 사이의 갭(G) 정보를 도출하고, 도출된 상기 갭 정보와 펌프 유닛(130)의 부하 정보를 토대로 댐 유닛(120)의 위치를 제어함으로써, 상기 갭을 일정하게 유지할 수 있다. 상기 갭은 10mm 내지 20mm의 범위를 만족할 수 있다. 이물(D)이 강판(1)으로 접근 시, 댐 유닛(120)을 통해 외부로 배출되기 위해서는 이물(D)이 배출되는 유속이 임계점을 넘어서야 하는데, 만약, 상기 갭이 10mm 미만일 경우, 이물(D)이 외부로 배출되도록 이동할 수 있는 유속을 일으키기 쉽지 않아, 이물(D)을 효과적으로 배출할 수 없다. 반면, 상기 갭이 20mm 초과할 경우, 이물(D)의 유속이 매우 빨라져 펌프 유닛(130)의 부하를 초과하게 된다. 따라서, 이를 해결하기 위해서, 상기 갭은 10mm 내지 20mm를 유지해야 한다.In addition, the processor 200 combines the first water level of the molten zinc plating liquid (2) detected through the first sensor 160 and the position information of the first dam wall portion 121 of the dam unit 120 to , Gap information (G) between the protrusion protruding from the first dam wall 121 and the molten zinc plating solution 2 is derived, and the dam is constructed based on the derived gap information and load information of the pump unit 130. By controlling the position of the unit 120, the gap can be kept constant. The gap may satisfy the range of 10mm to 20mm. When the foreign matter (D) approaches the steel plate (1), in order for the foreign matter (D) to be discharged to the outside through the dam unit 120, the flow rate at which the foreign matter (D) is discharged must exceed the critical point. If the gap is less than 10 mm, the foreign matter ( It is not easy to generate a flow speed that can move D) to be discharged to the outside, so foreign matter (D) cannot be discharged effectively. On the other hand, when the gap exceeds 20 mm, the flow rate of the foreign matter D becomes very fast and exceeds the load of the pump unit 130. Therefore, to solve this problem, the gap should be maintained between 10mm and 20mm.
더욱 구체적으로, 상기 제 1 수위와 댐 유닛(120)의 위치 정보에 따른 수위차(H)가 작아질수록, 스노클부(110)의 내부로 유입된 용융아연도금액(2)의 탕면과 제 1 댐벽부(121)의 상단의 높이가 비슷해짐으로써, 스노클부(110)의 개방부(111)를 통해 스노클부(110)의 내부로 유입된 용융아연도금액(2)이 제 1 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1)으로 흐르는 흐름이 약해질 수 있다. 이러한 경우, 스노클부(110) 내부의 용융아연도금액(2)의 탕면에서 부유하는 이물(D) 또한 그 흐름이 약해져 강판(1)의 주위에서 부유하는 시간이 증가함에 따라, 이물(D)이 강판(1)에 부착되어 불량을 유발할 수 있는 확률이 증가할 수 있다.More specifically, as the water level difference (H) according to the position information of the first water level and the dam unit 120 becomes smaller, the molten zinc plating solution 2 flowing into the snorkel unit 110 becomes more exposed to the water level. 1 As the height of the top of the dam wall 121 becomes similar, the molten zinc plating solution 2 flowing into the inside of the snorkel part 110 through the opening 111 of the snorkel part 110 is connected to the first dam wall part. The flow that overflows 121 and flows into the receiving space A1 of the dam unit 120 may be weakened. In this case, the flow of the foreign matter (D) floating on the surface of the molten zinc plating solution (2) inside the snorkel part 110 is also weakened, and as the time for floating around the steel plate (1) increases, the foreign matter (D) This may increase the probability that it may adhere to the steel plate (1) and cause defects.
따라서, 상기 제 1 수위와 댐 유닛(120)의 제 1 댐벽부(121)의 위치 정보에 따른 수위차(H)가 일정하게 유지될 수 있도록, 댐 유닛(120)이 상승하거나, 혹은 하강하면서 수위차(H)를 제어함으로써, 스노클부(110) 내부의 용융아연도금액(2)의 탕면에서 부유하는 이물(D)이 강판(1)에 부착되는 것을 방지하고, 펌프 유닛(130)의 적정한 부하 유지로 펌프 유닛(130)의 수명 또한 증가시키는 효과를 가질 수 있다.Therefore, the dam unit 120 rises or falls so that the water level difference (H) according to the position information between the first water level and the first dam wall portion 121 of the dam unit 120 is maintained constant. By controlling the water level difference (H), foreign matter (D) floating on the surface of the molten zinc plating solution (2) inside the snorkel part 110 is prevented from attaching to the steel plate (1), and the pump unit (130) is prevented from attaching to the steel plate (1). Maintaining an appropriate load can also have the effect of increasing the lifespan of the pump unit 130.
여기서, 상기 제 1 수위와 댐 유닛(120)의 제 1 댐벽부(121)의 위치 정보에 따른 수위차(H)는, 작업자에 의해 사전에 설정되어 프로세서(200)에 저장될 수 있으며, 프로세서(200)는, 사전에 설정되어 입력된 수위차(H)로 상기 제 1 수위와 댐 유닛(120)의 위치 정보가 일정하게 유지될 수 있도록, 펌프 유닛(130)의 부하를 제어할 수 있다.Here, the water level difference (H) according to the first water level and the position information of the first dam wall portion 121 of the dam unit 120 may be preset by the operator and stored in the processor 200, and the processor (200) can control the load of the pump unit 130 so that the position information of the first water level and the dam unit 120 can be maintained constant with the water level difference (H) set and input in advance. .
또한, 프로세서(200)는, 제 2 센서(140, 150)와 연동하여, 펌프 유닛(130)의 부하 제어 이외에도 댐 유닛(120)의 침지 깊이도 함께 제어함으로써, 상기 제 1 수위와 댐 유닛(120)의 위치에 따른 수위차(H)를 일정하게 유지하도록 유도할 수도 있다.In addition, the processor 200, in conjunction with the second sensors 140 and 150, controls the immersion depth of the dam unit 120 in addition to controlling the load of the pump unit 130, thereby controlling the first water level and the dam unit ( 120) can also be induced to maintain the water level difference (H) constant according to the position.
예컨대, 프로세서(200)는, 댐 유닛(120)의 위치가 사전에 설정된 기준 보다 낮을 경우, 댐 유닛(120)을 하강시켜 댐 유닛(120)의 하단이 도금조(300)에 침지된 깊이를 증가시키고, 상기 댐 유닛(120)의 위치가 상기 기준 보다 높을 경우, 댐 유닛(120)을 상승시켜 댐 유닛(120)의 하단이 도금조(300)에 침지된 깊이를 감소시킬 수 있다.For example, if the position of the dam unit 120 is lower than the preset standard, the processor 200 lowers the dam unit 120 to determine the depth at which the lower end of the dam unit 120 is immersed in the plating bath 300. If the position of the dam unit 120 is higher than the standard, the depth at which the lower end of the dam unit 120 is immersed in the plating tank 300 can be reduced by raising the dam unit 120.
이에 따라, 댐 유닛(120)의 위치가 사전에 설정된 기준 보다 낮아져, 상기 제 1 수위와 댐 유닛(120)의 위치에 따른 수위차(H)가 크게 발생할 경우, 댐 유닛(120)을 하강시킴으로써, 스노클부(110)의 내부로 유입된 용융아연도금액(2)의 탕면으로부터 댐벽부(121)의 상단이 침지된 깊이를 깊게하여, 개방부(111)를 통해 유입된 용융아연도금액(2)이 제 1 댐벽부(121)를 넘치는 흐름을 증가시켜 상기 수위차(H)가 감소하도록 유도할 수 있다. 이와는 반대로, 댐 유닛(120)의 위치 정보가 사전에 설정된 기준 보다 높아져, 상기 제 1 수위와 댐 유닛(120)의 위치에 따른 수위차(H)가 거의 없어질 경우, 댐 유닛(120)을 상승시킴으로써, 스노클부(110)의 내부로 유입된 용융아연도금액(2)의 탕면으로부터 제 1 댐벽부(121)의 상단이 침지된 깊이를 얕게하여, 개방부(111)를 통해 유입된 용융아연도금액(2)이 제 1 댐벽부(121)를 넘치는 흐름을 감소시켜 수위차(H)가 증가하도록 유도할 수 있다.Accordingly, when the position of the dam unit 120 is lower than the preset standard and the water level difference (H) depending on the first water level and the position of the dam unit 120 is large, the dam unit 120 is lowered. , the depth to which the top of the dam wall 121 is immersed is deepened from the surface of the molten zinc plating solution 2 flowing into the snorkel part 110, and the molten zinc plating solution flowing in through the opening part 111 ( 2) By increasing the flow over the first dam wall 121, the water level difference (H) can be reduced. On the contrary, when the position information of the dam unit 120 becomes higher than the preset standard and the water level difference (H) according to the position of the first water level and the dam unit 120 almost disappears, the dam unit 120 By raising it, the depth at which the top of the first dam wall part 121 is immersed from the molten zinc plating liquid 2 flowing into the snorkel part 110 is shallower, and the molten metal flowing in through the opening part 111 is reduced. The galvanizing solution (2) can reduce the flow over the first dam wall 121, thereby causing the water level difference (H) to increase.
따라서, 본 발명의 일 실시예에 따른 스나우트 제어 시스템 및 이를 포함하는 용융아연 도금 설비에 따르면, 스나우트 장치(100)의 스노클부(110) 내부의 댐 유닛(120) 부근의 이물(D) 들의 흐름 및 제 1 센서(160)를 이용하여 용융아연도금액(2) 탕면의 제 1 수위를 인식하고, 댐 유닛(120)의 위치 정보에 따른 수위차(H)를 제 2 센서(140, 150)를 통해 인식함으로써, 댐 유닛(120) 부근의 이물(D) 들이 강판(1)으로 접근 시 스나우트 장치(100)의 댐 유닛(120)를 상승시키거나 하강시켜 댐 유닛(120)의 하단이 도금조(300)에 침지된 깊이를 자동으로 제어하여 강판(1)으로의 이물(D) 혼입을 억제하고, 댐 유닛(120)의 위치에 따라 펌프 유닛(130)의 부하를 자동으로 조절하여 적정한 부하를 유지함에 따라 스노클부(110) 내부에 부유하는 이물(D)의 용이한 배출과 펌프 유닛(130)의 수명을 증가시킬 수 있다.Therefore, according to the snout control system and the hot-dip galvanizing facility including the same according to an embodiment of the present invention, the foreign matter (D) near the dam unit 120 inside the snorkel portion 110 of the snout device 100 The first water level of the molten zinc plating solution (2) is recognized using the flow and the first sensor 160, and the water level difference (H) according to the position information of the dam unit 120 is detected by the second sensor 140, By recognizing through 150), when foreign substances (D) near the dam unit 120 approach the steel plate 1, the dam unit 120 of the snout device 100 is raised or lowered to raise or lower the dam unit 120. The depth at which the lower end is immersed in the plating bath 300 is automatically controlled to suppress the incorporation of foreign matter (D) into the steel plate 1, and the load on the pump unit 130 is automatically adjusted according to the position of the dam unit 120. By adjusting and maintaining an appropriate load, foreign matter D floating inside the snorkel unit 110 can be easily discharged and the lifespan of the pump unit 130 can be increased.
또한, 제 2 센서(140, 150)는 제 1 댐벽부(121)를 넘쳐 댐 유닛(120)의 수용 공간(A1)에 수용된 용융아연도금액(2) 탕면의 제 2 수위를 측정할 수 있다. 여기서, 프로세서(200)는, 댐 유닛(120)의 수용 공간(A1)으로부터 스노클부(110)의 개방부(111)로 용융아연도금액(2)이 역류하지 않도록, 제 2 센서(140, 150)를 통해 상기 제 2 수위와 상기 제 1 수위 사이의 갭(G)이 항상 80mm 이상으로 제어할 수 있다. 만약, 상기 제 1 수위와 제 2 수위 사이의 갭이 80mm 미만일 경우, 펌프 유닛(130)에 부하가 발생하여, 이물(D)을 효과적으로 배출하지 못하게 되고, 외부로 배출되지 못한 이물(D) 및 용융아연도금액(2)은 제 1 댐벽부(121)을 통해 스노클부(110)의 개방부(111)로 역류하게 된다. 따라서, 이를 효과적으로 제어하기 위해서는 펌프 유닛(130)의 부하를 고려하여 상기 제 1 수위 및 제 2 수위 사이의 갭은 최소 80mm 이상으로 제어되어야 한다.In addition, the second sensors 140 and 150 can measure the second water level of the molten zinc plating solution (2) overflowing the first dam wall 121 and accommodated in the receiving space A1 of the dam unit 120. . Here, the processor 200 uses the second sensor 140 to prevent the molten zinc plating solution 2 from flowing back from the accommodation space A1 of the dam unit 120 to the opening 111 of the snorkel unit 110. 150), the gap G between the second water level and the first water level can be controlled to always be 80 mm or more. If the gap between the first water level and the second water level is less than 80 mm, a load is generated on the pump unit 130, making it impossible to effectively discharge the foreign matter (D), and the foreign matter (D) that was not discharged to the outside and The molten zinc plating solution (2) flows back to the opening portion (111) of the snorkel portion (110) through the first dam wall portion (121). Therefore, in order to effectively control this, the gap between the first water level and the second water level must be controlled to at least 80 mm in consideration of the load of the pump unit 130.
이와 같이, 스나우트 장치(100)의 스노클부(110) 내부의 탕면에 부유하는 이물(D)을 감지하거나, 댐 유닛(120)의 위치를 감지할 수 있는 제 2 센서(140, 150) 및 용융아연도금액(2) 탕면의 제 1 수위를 감지할 수 있는 제 1 센서(160)를 활용하여, 상기 제 1 수위와 댐 유닛(120)의 위치 정보에 따른 수위차(H)를 감지하여 스나우트 장치(100) 내부의 댐 관리를 자동 제어함으로써, 조업 편이성 및 품질 안정성을 확보하는 효과를 가질 수 있다.In this way, the second sensors 140 and 150 are capable of detecting foreign matter (D) floating on the water surface inside the snorkel part 110 of the snout device 100 or detecting the position of the dam unit 120, and By using the first sensor 160 that can detect the first water level of the molten zinc plating solution (2), the water level difference (H) according to the position information of the first water level and the dam unit 120 is detected By automatically controlling the dam management inside the snout device 100, it can have the effect of securing operational convenience and quality stability.
한편, 용융아연도금액(2)으로부터 증발되는 아연증기로 인해, 스노클부(110)의 내부에 배치된 카메라 모듈(140)의 렌즈를 오염시켜 용융아연도금액(2) 탕면에 부유한 이물(D)을 인식하는데 악영향을 끼친다. 이를 해결하기 위해서, 본 발명에서는 도 8 및 도 9에 도시된 방식들을 이용하여 상기 렌즈의 오염을 방지하였다.Meanwhile, zinc vapor evaporating from the molten zinc plating solution (2) contaminates the lens of the camera module 140 disposed inside the snorkel part 110, causing foreign substances floating on the molten zinc plating solution (2). D) has a negative effect on recognition. To solve this problem, the present invention prevents contamination of the lens using the methods shown in FIGS. 8 and 9.
도 8 및 도 9는 본 발명의 일 실시예에 따른 머신비전 카메라의 렌즈를 아연 증기로부터 보호하는 구성을 개략적으로 도시한 도면이다.Figures 8 and 9 are diagrams schematically showing a configuration for protecting the lens of a machine vision camera from zinc vapor according to an embodiment of the present invention.
먼저, 도 8을 참조하면, 본 발명의 스나우트 장치(100)는 아연증기를 흡착하여 제거할 수 있는 불활성가스 혹은 상기 아연증기와 반응을 일으키는 반응성 가스를 공급할 수 있도록 가스공급부(142) 및 가스흡입부(144)를 더 포함한다. 이때, 카메라 모듈(140)의 주변으로 가스를 공급하여 카메라 모듈(140)의 일측에 구비된 렌즈의 표면 상으로 가스를 공급하고, 흡입할 수 있도록 형성된 가스 공급 배관(143) 및 가스 흡입 배관(145)도 포함한다. 가스의 공급은 아연도금이 수행되는 동안 상시 이루어질 수 있으며, 카메라 모듈(140)이 용융아연도금액(2) 탕면에 부유되는 이물(D)을 감지하는데 영향을 미치지 않도록 상기 렌즈의 센싱 영역에서 벗어난 영역에 가스 공급 배관(143) 및 가스 흡입 배관(145)이 형성될 수 있다.First, referring to FIG. 8, the snout device 100 of the present invention includes a gas supply unit 142 and a gas supply to supply an inert gas that can adsorb and remove zinc vapor or a reactive gas that reacts with the zinc vapor. It further includes a suction unit 144. At this time, gas is supplied around the camera module 140 to supply gas onto the surface of the lens provided on one side of the camera module 140, and a gas supply pipe 143 and a gas intake pipe ( 145) is also included. Gas can be supplied at all times while galvanizing is being performed, and the camera module 140 is positioned outside the sensing area of the lens so as not to affect the detection of foreign substances (D) floating on the molten zinc plating solution (2). A gas supply pipe 143 and a gas suction pipe 145 may be formed in the area.
다른 예로서, 도 9를 참조하면, 본 발명의 스나우트 장치(100)의 내부에 강판(1)의 표면의 산호에 의한 도금박리를 방지하도록 불활성가스를 충진하는데, 이때, 카메라 모듈(140)의 렌즈의 표면 상에서 스나우트 내부로 공급되는 불활성가스를 회전시켜 선회류를 생성할 수 있는 선회류 생성 장치(미도시)를 더 포함할 수 있다. 상기 선회류에 의해, 아연증기는 불활성가스에 흡착되어 별도의 배관(미도시)으로 제거될 수 있다.As another example, referring to Figure 9, the inside of the snout device 100 of the present invention is filled with an inert gas to prevent plating peeling due to coral on the surface of the steel plate 1. At this time, the camera module 140 It may further include a swirling flow generating device (not shown) capable of generating a swirling flow by rotating the inert gas supplied into the snout on the surface of the lens. Due to the swirling flow, zinc vapor is adsorbed to the inert gas and can be removed through a separate pipe (not shown).
실시예 1에 따를 때, 스노클부(110)와 일체형으로 형성되는 댐 유닛(120)을 탈부착형태로 제조하여, 스노클부(110)의 외부면 상에 댐 유닛(120)을 물리적으로 결합함으로써, 공정 라인의 운영(running) 중에도 교체가 가능하므로, 정비성 및 생산성 향상이 기대된다. 또, 탈부착형 댐 유닛(120)을 도입함으로써, 작업자가 보다 수월하게 댐 유닛(120)의 표면을 정밀가공 할 수 있으므로 댐 유닛(120)의 가공 불량에 의한 전면/이면의 유량 편차에 의한 표면 품질 불량 발생 저감을 기대할 수 있다.According to Example 1, the dam unit 120, which is formed integrally with the snorkel unit 110, is manufactured in a detachable form, and the dam unit 120 is physically coupled to the outer surface of the snorkel unit 110, Since replacement is possible even while the process line is running, improvements in maintainability and productivity are expected. In addition, by introducing the detachable dam unit 120, the operator can more easily precisely process the surface of the dam unit 120, so that the surface may be affected by flow rate deviation between the front and back surfaces due to poor machining of the dam unit 120. A reduction in quality defects can be expected.
또한, 작업자가 상시 모니터링을 통해 댐 유닛(120)의 위치를 제어하여 대량 불량의 리스크가 큰 조업 환경이었으나, 프로세서(200)에서 용융아연도금액(2) 탕면의 수위에 따라 댐 유닛(120)의 위치를 자동으로 제어함에 따라 작업자에 의한 에러를 방지할 수 있고, 이에 의한 표면 품질 불량을 저감할 수 있는 효과를 얻을 수 있다.In addition, the operator controlled the position of the dam unit 120 through constant monitoring, so it was an operating environment with a high risk of mass defects, but the processor 200 controlled the dam unit 120 according to the water level of the molten zinc plating solution (2). By automatically controlling the position of the operator, errors caused by the operator can be prevented and surface quality defects can be reduced.
[실시예 2][Example 2]
도 10은 본 발명의 일 실시예에 따른 탕면 이물 흐름을 설명하기 위한 예시도이고, 도 11은 본 발명의 일 실시예에 따른 스나우트 제어 방법을 설명하기 위한 흐름도이다. 실시예 2는 프로세서(200)에 의한 스나우트 장치의 자동 제어 구성에 포커싱하며, 실시예 2가 전제하는 용융아연 도금 설비의 구조 및 그 세부 구성은 실시예 1과 동일하다.Figure 10 is an exemplary diagram for explaining the flow of foreign matter in the molten metal surface according to an embodiment of the present invention, and Figure 11 is a flow chart for explaining a snout control method according to an embodiment of the present invention. Example 2 focuses on the automatic control configuration of the snout device by the processor 200, and the structure and detailed configuration of the hot-dip galvanizing equipment premised on Example 2 are the same as Example 1.
실시예 2에서 프로세서(200)는 제 1 센서(160)를 통해 측정된 탕면의 수위와 댐 유닛(120)과의 높이 차이를 인식하고, 카메라 모듈(140)을 통해 촬영된 영상에 기초하여 스노클부(110) 내부의 구조물 및 탕면 이물 중 적어도 하나를 인식하며, 인식된 높이 차이, 스노클부(110) 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 스나우트 장치(100)를 제어할 수 있다.In Example 2, the processor 200 recognizes the difference in height between the water level of the water surface measured through the first sensor 160 and the dam unit 120, and snorkels based on the image captured through the camera module 140. At least one of the structure inside the unit 110 and the foreign matter on the molten metal surface is recognized, and the snout device 100 can be controlled based on at least one of the recognized height difference, the structure inside the snorkel unit 110, and the foreign substance on the molten metal surface. .
프로세서(200)는 제 1 센서(160)를 통해 탕면 수위 변동을 실시간으로 모니터링하고, 카메라 모듈(140)를 통해 촬영된 영상을 분석하여 스노클부(110) 내부 조업 현황을 실시간으로 모니터링하며, 그 모니터링 결과에 기초하여 스나우트 장치(100)의 상승 또는 하강을 제어함으로써, 공정 트러블 및 휴먼 에러를 방지할 수 있도록 한다.The processor 200 monitors the change in water level of the water surface in real time through the first sensor 160, analyzes the image captured through the camera module 140, and monitors the internal operation status of the snorkel unit 110 in real time. By controlling the rise or fall of the snout device 100 based on the monitoring results, process troubles and human errors can be prevented.
이하, 프로세서(200)의 동작에 대해 구체적으로 설명하기로 한다. Hereinafter, the operation of the processor 200 will be described in detail.
프로세서(200)는 제 1 센서(160)를 통해 측정된 탕면의 수위 및 카메라 모듈(140)를 통해 촬영된 영상을 수신할 수 있다. The processor 200 may receive the water level of the molten steel surface measured through the first sensor 160 and the image captured through the camera module 140.
프로세서(200)는 탕면의 수위와 댐 유닛(120)과의 높이 차이를 인식하고, 탕면 수위와 댐 유닛(120)과의 높이 차이를 기 설정된 기준값과 비교할 수 있다. 여기서, 기준값은 미리 설정된 값으로, 예컨대, 2mm일 수 있다. 탕면 수위와 댐 유닛(120)과의 높이 차이는 탕면 수위와 제1 댐벽부(121)와의 높이 차이를 의미할 수 있다. 구체적으로, 탕면 수위와 댐 유닛(120)과의 높이 차이는 탕면 수위와 제1 댐벽부(121) 상단과의 높이 차이를 의미할 수 있다. The processor 200 may recognize the height difference between the water level of the hot water surface and the dam unit 120, and compare the height difference between the water level of the hot water surface and the dam unit 120 with a preset reference value. Here, the reference value may be a preset value, for example, 2 mm. The height difference between the water level of the hot water surface and the dam unit 120 may mean the height difference between the water level of the hot water surface and the first dam wall portion 121. Specifically, the height difference between the water level of the hot water surface and the dam unit 120 may mean the height difference between the water level of the hot water surface and the top of the first dam wall portion 121.
그런 후, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상에 컴퓨터 비전 기술을 적용하여 스나우트 장치(100) 내부 댐 유닛(120) 내/외부로의 탕면 흐름을 관찰할 수 있다. 즉, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상을 활용하여 탕면 수위에 따른 내부 구조물 및 탕면 부유 이물의 흐름을 분석함으로써, 스나우트 장치(100) 내부의 조업 상황을 모니터링할 수 있다.Then, the processor 200 can apply computer vision technology to the image captured through the camera module 140 to observe the flow of molten metal into and out of the dam unit 120 inside the snout device 100. That is, the processor 200 can monitor the operating situation inside the snout device 100 by analyzing the internal structure and the flow of floating foreign matter according to the water level of the hot water surface using the image captured through the camera module 140. there is.
구체적으로, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상에 객체 인식 알고리즘을 적용하여 스노클부(110) 내부의 기 설정된 구조물을 인식할 수 있다. 즉, 프로세서(200)는 구조물의 잠김 정도 또는 구조물의 인식(존재) 비율을 객체 인식 알고리즘을 적용하여 인식할 수 있다. 여기서, 기 설정된 구조물은 학습을 통해 설정된 구조물로서, 예컨대, 지지대 등을 포함할 수 있다.Specifically, the processor 200 may recognize a preset structure inside the snorkel unit 110 by applying an object recognition algorithm to the image captured through the camera module 140. That is, the processor 200 can recognize the degree of locking of the structure or the recognition (existence) rate of the structure by applying an object recognition algorithm. Here, the preset structure is a structure set through learning and may include, for example, a support base.
프로세서(200)는 객체 인식 알고리즘을 통해 인식된 구조물이 기 설정된 일정 비율 이상 존재하는지를 판단할 수 있다. 여기서, 일정 비율은 예컨대, 90% 등으로, 임의로 설정된 값일 수 있다. The processor 200 may determine whether structures recognized through an object recognition algorithm exist at or above a preset certain ratio. Here, the certain ratio may be an arbitrarily set value, for example, 90%.
그런 후, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상에 옵티컬 플로우(Optical flow)를 적용하여 스노클부(110) 내부의 탕면에 부유하여 강판(1)에 접근하는 탕면 이물을 인식할 수 있다. 즉, 프로세서(200)는 탕면 부유 이물의 흐름을 관찰하기 위해 영상처리 기술 중 하나인 옵티컬 플로우(Optical flow)를 이용할 수 있다. 옵티컬 플로우(Optical flow)는 연속한 두 프레임(Frame) 사이에서 각 픽셀(Pixel)의 모션(Motion)을 나타내는 벡터 맵(Vector Map)으로써 영상 내 광학 흐름을 인식할 수 있는 기술이다. 옵티컬 플로우(Optical flow) 활용 시 고가의 머신비전 카메라 없이도 CCTV나 일반 카메라를 통해 촬영된 영상 내 객체 이동을 관찰할 수 있는 장점이 있다. 옵티컬 플로우(Optical flow)는 주로 Colormap으로 표현하는데 H(색상)으로 방향을 표현하고, S(채도)로 크기를 나타낼 수 있다. Then, the processor 200 applies optical flow to the image captured through the camera module 140 to recognize foreign substances floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1. can do. That is, the processor 200 may use optical flow, one of the image processing technologies, to observe the flow of foreign substances floating on the molten metal surface. Optical flow is a vector map that represents the motion of each pixel between two consecutive frames, and is a technology that can recognize optical flow in an image. When using optical flow, there is an advantage of being able to observe the movement of objects in images captured through CCTV or general cameras without the need for expensive machine vision cameras. Optical flow is mainly expressed as a Colormap, with the direction expressed as H (color) and the size as S (saturation).
이에, 프로세서(200)는 댐 유닛(120) 내부로 이물 혼입 시 제1 색상으로 표시하고, 댐 유닛(120) 외부로 이물 배출 시 제2 색상으로 표시함으로써, 스노클부(110) 내부 조업 현황을 실시간으로 모니터링 가능하게 할 수 있다. 즉, 옵티컬 플로우는 탕면 부유 이물의 흐름이 역방향인 경우 댐 유닛(120) 내부로 이물이 혼입되는 것을 표시할 수 있고, 탕면 부유 이물의 흐름이 순방향인 경우 댐 유닛(120) 외부로 이물이 배출되는 것을 표시할 수 있다. Accordingly, the processor 200 displays the internal operation status of the snorkel unit 110 by displaying the first color when foreign matter is mixed into the dam unit 120 and the second color when the foreign matter is discharged to the outside of the dam unit 120. Monitoring can be done in real time. That is, the optical flow may indicate that foreign matter is mixed into the dam unit 120 when the flow of foreign matter floating on the molten steel surface is in the reverse direction, and when the flow of foreign matter floating on the molten steel surface is forward, the foreign matter is discharged to the outside of the dam unit 120. It can be displayed.
예를 들면, 프로세서(200)는 도 10에 도시된 바와 같이 댐 유닛(120) 내부에 탕면 이물 혼입 시 빨간색으로 표시할 수 있고, 댐 유닛(120) 외부로 이물 배출 시 초록색으로 표시할 수 있다. For example, as shown in FIG. 10, the processor 200 may display red when foreign matter is mixed into the dam unit 120, and may display green when foreign matter is discharged to the outside of the dam unit 120. .
또한, 프로세서(200)는 스노클부(110) 내부의 탕면 이물 혼입과 이물 배출에 대한 벡터 합을 실시간으로 데이터화함으로써, 실시간으로 스노클부(110) 내부의 조업 현황을 분석할 수 있도록 한다. 이때, 프로세서(200)는 스노클부(110) 내부의 탕면에 이물 혼입과 이물 배출에 대한 벡터 합을 도 10에 도시된 바와 같이 그래프로 생성할 수 있다. In addition, the processor 200 converts the vector sum of foreign matter incorporation and discharge of foreign substances into the snorkel unit 110 into real-time data, thereby enabling analysis of the operation status within the snorkel unit 110 in real time. At this time, the processor 200 may generate a vector sum of foreign matter incorporation and foreign matter discharge into the molten metal surface inside the snorkel unit 110 in a graph as shown in FIG. 10.
프로세서(200)는 탕면의 수위와 댐 유닛(120)과의 높이 차이, 스노클부(110) 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 스나우트 장치(100)를 제어할 수 있다. The processor 200 may control the snout device 100 based on at least one of the height difference between the water level of the hot water surface and the dam unit 120, the structure inside the snorkel unit 110, and foreign matter on the hot water surface.
예를 들면, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 이상이고, 카메라 모듈(140)를 통해 촬영된 영상에 기 설정된 구조물이 기 설정된 일정 비율 이상 존재하며, 탕면 이물의 흐름이 순방향인 경우, 프로세서(200)는 스노클부(110) 내부 조업 현황이 정상이라고 판단하여 스나우트 장치(100)의 높이를 유지할 수 있다. For example, the height difference between the water level of the hot water surface and the dam unit 120 is greater than the standard value, a preset structure is present in the image captured through the camera module 140 above a preset certain ratio, and the flow of foreign matter on the hot water surface is In the forward direction, the processor 200 may determine that the internal operation status of the snorkel unit 110 is normal and maintain the height of the snout device 100.
또한, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 이상이고, 영상에 구조물이 일정 비율 이상 존재하며, 탕면 이물의 흐름이 역방향인 경우, 프로세서(200)는 댐 유닛(120) 내부에 탕면 이물이 혼입되고 있다고 판단하여, 스나우트 장치(100)의 높이를 상승시킬 수 있다. 이 경우, 탕면 이물이 댐 유닛(120) 내부로 유입되고 있으므로, 프로세서(200)는 탕면 이물이 댐 유닛(120) 외부로 배출되도록 스나우트 장치(100)의 높이를 상승시킬 수 있다. 즉, 스나우트 장치(100)의 높이를 상승시키면, 댐 유닛(120) 또한 상승되므로, 댐 유닛(120)의 하단이 도금조(10)에 침지된 깊이를 감소시킬 수 있고, 이를 통해 댐 유닛(120) 내부의 탕면 이물이 댐 유닛(120) 외부로 배출될 수 있다.In addition, if the height difference between the water level of the hot water surface and the dam unit 120 is greater than the reference value, a structure is present in the image at a certain rate or more, and the flow of foreign matter on the hot water surface is in the reverse direction, the processor 200 operates inside the dam unit 120. By determining that foreign substances are mixed into the molten metal surface, the height of the snout device 100 can be increased. In this case, since the molten metal foreign matter is flowing into the dam unit 120, the processor 200 may raise the height of the snout device 100 so that the molten metal foreign matter is discharged to the outside of the dam unit 120. That is, when the height of the snout device 100 is raised, the dam unit 120 is also raised, so the depth at which the lower end of the dam unit 120 is immersed in the plating bath 10 can be reduced, and through this, the dam unit 120 is raised. (120) Foreign matter inside the molten steel surface may be discharged to the outside of the dam unit 120.
또한, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 이상이고, 영상에 구조물이 일정 비율 이상 존재하지 않은 경우, 프로세서(200)는 구조물이 일정 비율 이상 존재하도록 스나우트 장치(100)를 상승시킬 수 있다. 영상에 구조물이 일정 비율 이상 존재하지 않은 것은 구조물이 탕면에 많이 잠김 것을 의미하고, 이는 댐 유닛(120) 내부의 수위가 높다는 것을 의미하므로, 댐 유닛(120) 내부의 탕면을 외부로 배출시킬 필요가 있다. 이에, 프로세서(200)는 스나우트 장치(100)를 상승시킴으로써, 댐 유닛(120) 내부의 탕면을 댐 유닛(120) 외부로 배출시킬 수 있다.In addition, if the difference between the water level of the water surface and the height of the dam unit 120 is greater than the reference value and the structure does not exist in the image more than a certain percentage, the processor 200 uses the snout device 100 to ensure that the structure exists more than a certain percentage. can increase. The fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. Accordingly, the processor 200 can discharge the molten metal inside the dam unit 120 to the outside of the dam unit 120 by raising the snout device 100.
또한, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 미만이고, 영상에 구조물이 일정 비율 이상 존재하며, 탕면 부유 이물의 흐름이 순방향인 경우, 프로세서(200)는 스노클부(110) 내부 조업 현황이 정상이라고 판단하여 스나우트 장치(100)의 높이를 유지할 수 있다. In addition, if the height difference between the water level of the water surface and the dam unit 120 is less than the reference value, a structure is present in the image at a certain rate or more, and the flow of foreign matter floating on the water surface is in the forward direction, the processor 200 uses the snorkel unit 110 The height of the snout device 100 can be maintained by determining that the internal operation status is normal.
또한, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 미만이고, 영상에 구조물이 일정 비율 이상 존재하며, 탕면 부유 이물의 흐름이 역방향인 경우, 프로세서(200)는 스나우트 장치(100)의 높이를 하강시킬 수 있다. 이 경우, 탕면 부유 이물이 댐 유닛(120) 내부에 혼입된 상태이고, 댐 유닛(120)이 높게 있으므로, 탕면 이물을 댐 유닛(120) 외부로 배출하기 위해 프로세서(200)는 스나우트 장치(100)를 하강시킬 수 있다. 즉, 스나우트 장치(100)를 하강시키면, 댐 유닛(120) 또한 하강되므로, 댐 유닛(120) 내부의 탕면 이물이 댐 유닛(120) 외부로 배출될 수 있다. In addition, if the height difference between the water level of the water surface and the dam unit 120 is less than the reference value, a structure is present in the image at a certain rate or more, and the flow of floating foreign matter on the water surface is in the reverse direction, the processor 200 uses the snout device 100 ) can be lowered. In this case, floating foreign matter on the surface of the molten metal is mixed inside the dam unit 120, and the dam unit 120 is high, so the processor 200 uses a snout device ( 100) can be lowered. That is, when the snout device 100 is lowered, the dam unit 120 is also lowered, so foreign substances on the molten metal surface inside the dam unit 120 may be discharged to the outside of the dam unit 120.
또한, 탕면의 수위와 댐 유닛(120)과의 높이 차이가 기준값 미만이고, 영상에 구조물이 일정 비율 이상 존재하지 않은 경우, 프로세서(200)는 구조물이 일정 비율 이상 존재하도록 스나우트 장치(100)를 하강시킬 수 있다. 영상에 구조물이 일정 비율 이상 존재하지 않은 것은 구조물이 탕면에 많이 잠김 것을 의미하고, 이는 댐 유닛(120) 내부의 수위가 높다는 것을 의미하므로, 댐 유닛(120) 내부의 탕면을 외부로 배출할 필요가 있다. 이때, 댐 유닛(120)은 높게 있으므로, 탕면 이물을 댐 유닛(120) 외부로 배출하기 위해 프로세서(200)는 스나우트 장치(100)를 하강시킬 수 있다. 그러면, 댐 유닛(120) 내부의 이물이 댐 유닛(120) 외부로 배출될 수 있다. In addition, if the difference between the water level of the water surface and the height of the dam unit 120 is less than the reference value and the structure does not exist in the image at a certain rate or more, the processor 200 uses the snout device 100 to ensure that the structure exists at a certain rate or more. can be lowered. The fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. At this time, since the dam unit 120 is high, the processor 200 may lower the snout device 100 in order to discharge the molten surface foreign matter to the outside of the dam unit 120. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
상술한 바와 같이 프로세서(200)는 탕면의 수위와 댐 유닛(120)과의 높이 차이, 스노클부(110) 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 스나우트 장치(100)를 제어하여, 스나우트 장치(100)의 하단이 도금조(10)에 침지된 깊이를 자동으로 제어하여 스노클부(110) 내부의 조업 현황을 실시간으로 모니터링할 수 있고, 이를 통해 조업 편이성 및 품질 안정성을 확보하는 효과를 가질 수 있다. 또한, 프로세서(200)는 이물이 강판(1)으로 접근 시, 스나우트 장치(100)의 침지 깊이를 자동으로 제어함으로써, 용융아연도금 과정에서 이물이 강판(1)에 부착되는 것을 방지할 수 있다.As described above, the processor 200 controls the snout device 100 based on at least one of the height difference between the water level of the hot water surface and the dam unit 120, the structure inside the snorkel unit 110, and foreign matter on the hot water surface, By automatically controlling the depth at which the bottom of the snout device 100 is immersed in the plating tank 10, the operating status inside the snorkel unit 110 can be monitored in real time, thereby ensuring convenience of operation and quality stability. It can have an effect. In addition, the processor 200 automatically controls the immersion depth of the snout device 100 when foreign matter approaches the steel sheet 1, thereby preventing foreign matter from attaching to the steel sheet 1 during the hot-dip galvanizing process. there is.
프로세서(200)는 제 1 센서(160)를 통해 탕면 수위 변동을 실시간으로 모니터링하고, 컴퓨터 비전 기술을 활용하여 스노클부(110) 내부 조업 현황을 실시간으로 분석하여 리스크(risk) 발생 정도를 감지할 수 있고, 그 감지결과에 기초하여 스나우트 장치(100)를 자동으로 제어함으로써, 공정 트러블 및 휴먼 에러를 방지하여 최종적으로 공정 자동화를 구현할 수 있도록 한다. The processor 200 monitors the change in water level in the water surface in real time through the first sensor 160, and analyzes the internal operation status of the snorkel unit 110 in real time using computer vision technology to detect the degree of risk occurrence. By automatically controlling the snout device 100 based on the detection results, process troubles and human errors can be prevented, ultimately enabling process automation to be implemented.
본 발명의 실시예에 따른 스나우트 제어 시스템은 탕면 수위와 스나우트 장치(100)의 댐 유닛(120)과의 높이 차이, 스노클부(110) 내부의 구조물 및 탕면 이물 흐름 중 적어도 하나에 기초하여 스나우트 장치(100)를 상승 또는 하강시킴으로써, 강판(1)으로의 이물 혼입을 억제할 수 있다. The snout control system according to an embodiment of the present invention is based on at least one of the height difference between the water level of the hot water surface and the dam unit 120 of the snout device 100, the structure inside the snorkel unit 110, and the flow of foreign matter on the hot water surface. By raising or lowering the snout device 100, the incorporation of foreign matter into the steel plate 1 can be suppressed.
도 11은 본 발명의 일 실시예에 따른 스나우트 제어 방법을 설명하기 위한 흐름도이다. Figure 11 is a flowchart for explaining a snout control method according to an embodiment of the present invention.
도 11을 참조하면, 프로세서(200)는 제 1 센서(160)를 통해 측정된 탕면의 수위 및 카메라 모듈(140)를 통해 촬영된 영상을 수신한다(S602).Referring to FIG. 11, the processor 200 receives the water level of the molten steel surface measured through the first sensor 160 and the image captured through the camera module 140 (S602).
S602 단계가 수행되면, 프로세서(200)는 탕면의 수위와 댐 유닛(120)과의 높이 차이를 산출하고, 산출된 높이 차이가 기준값 이상인지를 판단한다(S604).When step S602 is performed, the processor 200 calculates the height difference between the water level of the water surface and the dam unit 120, and determines whether the calculated height difference is greater than or equal to the reference value (S604).
S604 단계의 판단결과, 높이 차이가 기준값 이상인 경우, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상을 이용하여 기 설정된 구조물을 인식하고(S606), 인식된 구조물이 기 설정된 일정 비율 이상인지를 판단한다(S608). 이때, 프로세서(200)는 영상에 객체 인식 알고리즘을 적용하여 스노클부(110) 내부의 구조물을 인식할 수 있다. As a result of the determination in step S604, if the height difference is greater than or equal to the reference value, the processor 200 recognizes a preset structure using the image captured through the camera module 140 (S606), and the recognized structure is greater than or equal to a preset certain ratio. Determine recognition (S608). At this time, the processor 200 may recognize the structure inside the snorkel unit 110 by applying an object recognition algorithm to the image.
S608 단계의 판단결과, 인식된 구조물이 일정 비율 이상 존재하는 경우, 프로세서(200)는 영상에 기초하여 탕면 이물 흐름을 인식하고(S610), 탕면 이물 흐름이 순방향인지를 판단한다(S612). 이때, 프로세서(200)는 옵티컬 플로우(Optical flow)를 적용하여 스노클부(110) 내부의 탕면에 부유하여 강판(1)에 접근하는 탕면 이물 흐름을 인식할 수 있다. 탕면 이물 흐름이 순방향인 것은 탕면에 부유하는 이물이 배출되는 것을 의미할 수 있고, 탕면 이물 흐름이 역방향인 것은 탕면에 이물이 혼입되는 것을 의미할 수 있다. As a result of the determination in step S608, if the recognized structure exists at a certain rate or more, the processor 200 recognizes the flow of foreign matter on the molten metal surface based on the image (S610) and determines whether the foreign matter flow on the molten metal surface is in the forward direction (S612). At this time, the processor 200 may apply optical flow to recognize the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1. The forward direction of the foreign matter flow on the hot water surface may mean that foreign matter floating on the hot water surface is discharged, and the reverse direction of foreign matter flow on the hot water surface may mean that foreign matter is mixed into the hot water surface.
S612 단계의 판단결과, 탕면 이물 흐름이 순방향인 경우, 프로세서(200)는 스나우트 장치(100)의 높이를 유지한다(S614). 즉, 탕면 이물 흐름이 순방향이면, 탕면 이물이 정상적으로 댐 유닛(120) 외부로 배출되는 것을 의미하므로, 프로세서(200)는 스나우트 장치(100)의 높이를 유지할 수 있다. As a result of the determination in step S612, if the flow of foreign matter on the molten metal surface is forward, the processor 200 maintains the height of the snout device 100 (S614). That is, if the flow of foreign matter on the molten metal surface is in the forward direction, this means that the foreign matter on the molten metal surface is normally discharged to the outside of the dam unit 120, so the processor 200 can maintain the height of the snout device 100.
S612 단계의 판단결과, 탕면 이물 흐름이 역방향인 경우, 프로세서(200)는 스나우트 장치(100)의 높이를 상승시킨다(S616). 즉, 탕면 이물 흐름이 역방향이면, 탕면에 이물이 혼입되고 있으므로, 혼입되는 이물을 댐 유닛(120) 외부로 배출할 필요가 있다. 이에, 프로세서(200)는 스나우트 장치(100)의 높이를 상승시킬 수 있다. 스나우트 장치(100)의 높이가 상승되면, 댐 유닛(120)의 높이도 같이 상승하게 되고, 이로 인해 댐 유닛(120) 외부로 탕면의 이물이 배출될 수 있다.As a result of the determination in step S612, if the flow of foreign matter on the molten metal surface is in the reverse direction, the processor 200 increases the height of the snout device 100 (S616). That is, if the flow of foreign matter on the molten steel surface is in the reverse direction, foreign matter is mixed into the molten metal surface, so it is necessary to discharge the mixed foreign matter to the outside of the dam unit 120. Accordingly, the processor 200 can increase the height of the snout device 100. When the height of the snout device 100 increases, the height of the dam unit 120 also increases, which may cause foreign substances on the molten steel surface to be discharged to the outside of the dam unit 120.
S608 단계의 판단결과, 인식된 구조물이 일정 비율 이상 존재하지 않은 경우, 프로세서(200)는 구조물이 일정 비율 존재하도록 스나우트 장치(100)를 상승시킨다(S618). 영상에 구조물이 일정 비율 이상 존재하지 않은 것은 구조물이 탕면에 많이 잠김 것을 의미하고, 이는 댐 유닛(120) 내부의 수위가 높다는 것을 의미하므로, 댐 유닛(120) 내부의 탕면을 외부로 배출할 필요가 있다. 이에, 프로세서(200)는 스나우트 장치(100)를 상승시킴으로써, 탕면을 댐 유닛(120) 외부로 배출시킬 수 있다.As a result of the determination in step S608, if the recognized structure does not exist at a certain rate or more, the processor 200 raises the snout device 100 so that the structure exists at a certain rate (S618). The fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. Accordingly, the processor 200 can discharge the molten metal to the outside of the dam unit 120 by raising the snout device 100.
S604 단계의 판단결과, 높이 차이가 기준값 이상이 아닌 경우, 프로세서(200)는 높이 차이가 기준값 미만인지를 판단한다(S620).As a result of the determination in step S604, if the height difference is not greater than the reference value, the processor 200 determines whether the height difference is less than the reference value (S620).
S620 단계의 판단결과, 높이 차이가 기준값 미만인 경우, 프로세서(200)는 카메라 모듈(140)를 통해 촬영된 영상을 이용하여 기 설정된 구조물을 인식하고(S622), 구조물이 기 설정된 일정 비율 이상인지를 판단한다(S624). 이때, 프로세서(200)는 영상에 객체 인식 알고리즘을 적용하여 스노클부(110) 내부의 구조물을 인식할 수 있다. As a result of the determination in step S620, if the height difference is less than the reference value, the processor 200 recognizes the preset structure using the image captured through the camera module 140 (S622) and determines whether the structure is greater than a preset certain ratio. Judge (S624). At this time, the processor 200 may recognize the structure inside the snorkel unit 110 by applying an object recognition algorithm to the image.
S624 단계의 판단결과, 인식된 구조물이 일정 비율 이상 존재하는 경우, 프로세서(200)는 영상에 기초하여 탕면 이물 흐름을 인식하고(S626), 탕면 이물 흐름이 순방향인지를 판단한다(S628). 이때, 프로세서(200)는 옵티컬 플로우(Optical flow)를 적용하여 스노클부(110) 내부의 탕면에 부유하여 강판(1)에 접근하는 탕면 이물 흐름을 인식할 수 있다. As a result of the determination in step S624, if the recognized structure exists at a certain rate or more, the processor 200 recognizes the flow of foreign matter on the molten metal surface based on the image (S626) and determines whether the foreign matter flow on the molten metal surface is in the forward direction (S628). At this time, the processor 200 may apply optical flow to recognize the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit 110 and approaching the steel plate 1.
S628 단계의 판단결과, 탕면 이물 흐름이 순방향인 경우, 프로세서(200)는 스나우트 장치(100)의 높이를 유지한다(S630). 이 경우, 프로세서(200)는 스노클부(110) 내부 조업 현황이 정상이라고 판단하여 스나우트 장치(100)의 높이를 유지할 수 있다. As a result of the determination in step S628, if the flow of foreign matter on the molten metal surface is in the forward direction, the processor 200 maintains the height of the snout device 100 (S630). In this case, the processor 200 may determine that the internal operation status of the snorkel unit 110 is normal and maintain the height of the snout device 100.
S628 단계의 판단결과, 탕면 이물 흐름이 역방향인 경우, 프로세서(200)는 스나우트 장치(100)의 높이를 하강시킨다(S632). 이 경우, 탕면 부유 이물이 댐 유닛(120) 내부에 혼입된 상태이고, 댐 유닛(120)이 높게 있으므로, 탕면 이물을 댐 유닛(120) 외부로 배출하기 위해 프로세서(200)는 스나우트 장치(100)를 하강시킬 수 있다. 그러면, 댐 유닛(120) 내부의 이물이 댐 유닛(120) 외부로 배출될 수 있다. As a result of the determination in step S628, if the flow of foreign matter on the molten metal surface is in the reverse direction, the processor 200 lowers the height of the snout device 100 (S632). In this case, floating foreign matter on the surface of the molten metal is mixed inside the dam unit 120, and the dam unit 120 is high, so the processor 200 uses a snout device ( 100) can be lowered. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
S624 단계의 판단결과, 인식된 구조물이 일정 비율 이상 존재하지 않은 경우, 프로세서(200)는 구조물이 일정 비율 존재하도록 스나우트 장치(100)를 하강시킨다(S634). 영상에 구조물이 일정 비율 이상 존재하지 않은 것은 구조물이 탕면에 많이 잠김 것을 의미하고, 이는 댐 유닛(120) 내부의 수위가 높다는 것을 의미하므로, 댐 유닛(120) 내부의 탕면을 외부로 배출할 필요가 있다. 이때, 댐 유닛(120)은 높게 있으므로, 탕면 이물을 댐 유닛(120) 외부로 배출하기 위해 프로세서(200)는 스나우트 장치(100)를 하강시킬 수 있다. 그러면, 댐 유닛(120) 내부의 이물이 댐 유닛(120) 외부로 배출될 수 있다.As a result of the determination in step S624, if the recognized structure does not exist at a certain rate or more, the processor 200 lowers the snout device 100 so that the structure exists at a certain rate (S634). The fact that the structure does not exist above a certain percentage in the image means that the structure is largely submerged in the water surface, which means that the water level inside the dam unit 120 is high, so it is necessary to discharge the water surface inside the dam unit 120 to the outside. There is. At this time, since the dam unit 120 is high, the processor 200 may lower the snout device 100 in order to discharge the molten surface foreign matter to the outside of the dam unit 120. Then, foreign matter inside the dam unit 120 may be discharged to the outside of the dam unit 120.
실시예 2에 따를 때, 센서를 통해 측정된 탕면의 수위, 카메라를 통해 촬영된 영상에 기초한 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 스나우트 장치를 자동으로 제어함으로써, 스노클부 내부의 조업 현황을 실시간으로 모니터링할 수 있고, 이를 통해 조업 편이성 및 품질 안정성을 확보하는 효과를 가질 수 있다. According to Example 2, by automatically controlling the snout device based on at least one of the water level of the water surface measured through the sensor, the structure inside the snorkel unit based on the image captured through the camera, and the foreign matter on the water surface, the inside of the snorkel unit The operation status can be monitored in real time, which can have the effect of securing operation convenience and quality stability.
또한, 센서를 통해 탕면 수위 변동을 실시간으로 모니터링하고, 카메라를 통해 촬영된 영상을 분석하여 스노클부 내부 조업 현황을 실시간으로 모니터링하며, 그 모니터링 결과에 기초하여 스나우트 장치의 상승 또는 하강을 제어함으로써, 용융아연도금 과정에서 이물이 강판에 부착되는 것을 방지할 수 있을 뿐만 아니라, 공정 트러블 및 휴먼 에러를 방지할 수 있도록 하는 효과가 있다.In addition, changes in the water level of the water surface are monitored in real time through a sensor, the operation status inside the snorkel unit is monitored in real time by analyzing images captured through a camera, and the rise or fall of the snout device is controlled based on the monitoring results. , It is effective in preventing foreign substances from attaching to the steel sheet during the hot-dip galvanizing process, as well as preventing process troubles and human errors.
또한, 본 명세서에서 설명된 구현은, 예컨대, 방법 또는 프로세스, 장치, 소프트웨어 프로그램, 데이터 스트림 또는 신호로 구현될 수 있다. 단일 형태의 구현의 맥락에서만 논의(예컨대, 방법으로서만 논의)되었더라도, 논의된 특징의 구현은 또한 다른 형태(예컨대, 장치 또는 프로그램)로도 구현될 수 있다. 장치는 적절한 하드웨어, 소프트웨어 및 펌웨어 등으로 구현될 수 있다. 방법은, 예컨대, 컴퓨터, 마이크로프로세서, 집적 회로 또는 프로그래밍 가능한 로직 디바이스 등을 포함하는 프로세싱 디바이스를 일반적으로 지칭하는 프로세서 등과 같은 장치에서 구현될 수 있다. 프로세서는 또한 최종-사용자 사이에 정보의 통신을 용이하게 하는 컴퓨터, 셀 폰, 휴대용/개인용 정보 단말기(personal digital assistant: "PDA") 및 다른 디바이스 등과 같은 통신 디바이스를 포함한다.Additionally, implementations described herein may be implemented as, for example, a method or process, device, software program, data stream, or signal. Although discussed only in the context of a single form of implementation (eg, only as a method), implementations of the features discussed may also be implemented in other forms (eg, devices or programs). The device may be implemented with appropriate hardware, software, firmware, etc. The method may be implemented in a device such as a processor, which generally refers to a processing device that includes a computer, microprocessor, integrated circuit, or programmable logic device. Processors also include communication devices such as computers, cell phones, portable/personal digital assistants (“PDAs”) and other devices that facilitate communication of information between end-users.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.

Claims (20)

  1. 용융아연도금 강판의 생산 공정 중 상기 강판을 도금하는 용융아연도금액이 수용된 도금조에 일단부가 침지되어, 상기 강판을 상기 도금조로 도입시키는 스나우트 장치;During the production process of a hot-dip galvanized steel sheet, one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet, and a snout device for introducing the steel sheet into the plating bath;
    상기 도금조의 어느 일부 상에 형성되어 상기 용융아연도금액 탕면의 제 1 수위를 측정할 수 있는 제 1 센서; 및a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and
    상기 스나우트 장치 및 상기 제 1 센서를 제어하는 프로세서;를 포함하고,Includes; a processor that controls the snout device and the first sensor,
    상기 스나우트 장치는,The snout device,
    상기 도금조로 유입되는 상기 강판을 감싸도록 형성되고, 상기 도금조의 탕면에 침지된 하단에 형성된 개방부를 통해 상기 강판이 상기 도금조에 수용된 상기 용융아연도금액으로 도입될 수 있도록 안내하는 스노클부;a snorkel portion formed to surround the steel sheet flowing into the plating bath and guiding the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath through an opening formed at a lower end immersed in the molten metal surface of the plating bath;
    탈부착이 가능한 구조로 상기 스노클부의 외벽부에 물리적으로 결합되고, 상기 제 1 센서와 연동되어 상기 용융아연도금액 탕면의 제 1 수위 정보에 따라 상기 스노클부의 외벽면을 따라 구동 가능하며, 상기 스노클부의 상기 개방부에서, 상기 스노클부의 내벽부와 소정의 거리만큼 이격되고 상기 스노클부의 높이 방향으로 소정 높이로 돌출되도록 상기 스노클부의 내측 둘레를 따라 형성되는 제 1 댐벽부 및 상기 제 1 댐벽부와 소정의 거리만큼 이격되어 상기 용융아연도금액 탕면 상으로 노출되는 제 2 댐벽부를 포함하며, 상기 스노클부의 상기 내벽부와 상기 제 1 댐벽부 사이에 상기 개방부를 통해 유입된 후 상기 제 1 댐벽부를 넘친 상기 용융아연도금액을 수용할 수 있는 수용 공간을 형성하는 댐(Dam) 유닛; 및It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface. In the opening portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion. It includes a second dam wall portion spaced apart by a distance and exposed on the surface of the molten galvanizing liquid, and the molten metal overflows the first dam wall portion after flowing through the opening portion between the inner wall portion of the snorkel portion and the first dam wall portion. Dam unit forming a receiving space capable of receiving galvanizing solution; and
    상기 스노클부의 외측에 설치되어 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액을 상기 도금조로 펌핑하는 펌프 유닛;을 포함하고,It includes a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating tank,
    상기 프로세서는,The processor,
    상기 제 1 센서에 의해 측정된 상기 제 1 수위와 상기 제 1 댐벽부 사이의 갭(G)이 일정하게 유지되도록 상기 프로세서에서 상기 갭의 차이에 따라, 상기 댐 유닛의 위치를 자동으로 제어하는, 스나우트 제어 시스템.The processor automatically controls the position of the dam unit according to the difference in the gap so that the gap (G) between the first water level measured by the first sensor and the first dam wall portion is maintained constant, Snout control system.
  2. 용융아연도금 강판의 생산 공정 중 상기 강판을 도금하는 용융아연도금액이 수용된 도금조에 일단부가 침지되어, 상기 강판을 상기 도금조로 도입시키는 스나우트 장치;During the production process of a hot-dip galvanized steel sheet, one end is immersed in a plating bath containing a molten zinc plating solution for plating the steel sheet, and a snout device for introducing the steel sheet into the plating bath;
    상기 도금조의 어느 일부 상에 형성되어 상기 용융아연도금액 탕면의 제 1 수위를 측정할 수 있는 제 1 센서; 및a first sensor formed on a portion of the plating bath to measure a first water level of the molten zinc plating liquid surface; and
    상기 스나우트 장치 및 상기 제 1 센서를 제어하는 프로세서;를 포함하고,Includes; a processor that controls the snout device and the first sensor,
    상기 스나우트 장치는,The snout device,
    상기 도금조로 유입되는 상기 강판을 감싸도록 형성되고, 상기 도금조의 탕면에 침지된 하단에 형성된 개방부를 통해 상기 강판이 상기 도금조에 수용된 상기 용융아연도금액으로 도입될 수 있도록 안내하는 스노클부;a snorkel portion formed to surround the steel sheet flowing into the plating bath and guiding the steel sheet to be introduced into the molten zinc plating solution contained in the plating bath through an opening formed at a lower end immersed in the molten metal surface of the plating bath;
    탈부착이 가능한 구조로 상기 스노클부의 외벽부에 물리적으로 결합되고, 상기 제 1 센서와 연동되어 상기 용융아연도금액 탕면의 제 1 수위 정보에 따라 상기 스노클부의 외벽면을 따라 구동 가능하며, 상기 스노클부의 상기 개방부에서, 상기 스노클부의 내벽부와 소정의 거리만큼 이격되고 상기 스노클부의 높이 방향으로 소정 높이로 돌출되도록 상기 스노클부의 내측 둘레를 따라 형성되는 제 1 댐벽부 및 상기 제 1 댐벽부와 소정의 거리만큼 이격되어 상기 용융아연도금액 탕면 상으로 노출되는 제 2 댐벽부를 포함하며, 상기 스노클부의 상기 내벽부와 상기 제 1 댐벽부 사이에 상기 개방부를 통해 유입된 후 상기 제 1 댐벽부를 넘친 상기 용융아연도금액을 수용할 수 있는 수용 공간을 형성하는 댐(Dam) 유닛;It has a detachable structure and is physically coupled to the outer wall of the snorkel portion, and is interlocked with the first sensor and can be driven along the outer wall of the snorkel portion according to the first water level information of the molten zinc plating liquid surface. In the opening portion, a first dam wall portion formed along the inner circumference of the snorkel portion to be spaced apart from the inner wall portion of the snorkel portion by a predetermined distance and protruding at a predetermined height in the height direction of the snorkel portion, and a predetermined distance between the first dam wall portion and the snorkel portion. It includes a second dam wall portion spaced apart by a distance and exposed on the surface of the molten galvanizing liquid, and the molten metal overflows the first dam wall portion after flowing through the opening portion between the inner wall portion of the snorkel portion and the first dam wall portion. Dam unit forming a receiving space capable of receiving galvanizing solution;
    상기 스노클부의 내측에 설치되되, 상기 댐 유닛의 어느 일부 상에 형성되어 상기 용융아연도금액의 탕면에 부유한 이물을 인식할 수 있는 카메라 모듈; 및A camera module installed inside the snorkel unit and formed on a part of the dam unit to recognize foreign substances floating on the molten zinc plating solution surface; and
    상기 스노클부의 외측에 설치되어 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액을 상기 도금조로 펌핑하는 펌프 유닛;을 포함하고,It includes a pump unit installed outside the snorkel unit to pump the molten zinc plating solution accommodated in the receiving space of the dam unit into the plating tank,
    상기 프로세서는,The processor,
    상기 카메라 모듈을 이용하여 상기 이물의 이미지 학습을 통해 얻은 정보를 기반으로 상기 강판으로 이동되는 상기 이물의 혼입을 억제하도록 상기 댐 유닛의 위치를 제어하거나, 또는, 상기 펌프 유닛의 부하를 조절하는, 스나우트 제어 시스템.Controlling the position of the dam unit to suppress the mixing of the foreign matter moving to the steel plate based on information obtained through image learning of the foreign matter using the camera module, or adjusting the load of the pump unit, Snout control system.
  3. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 프로세서는,The processor,
    상기 제 1 센서로부터 센싱신호를 인가받고, 상기 센싱신호에 따라 상기 댐 유닛이 상기 도금조에 침지된 깊이를 조절할 수 있도록 상기 댐 유닛을 상승 또는 하강시켜 상기 갭을 일정하게 제어하거나, 혹은 상기 펌프 유닛이 펌핑하는 상기 용융아연도금액의 유량을 제어할 수 있도록 상기 펌프 유닛의 부하를 조절하여 상기 갭을 일정하게 제어하는, 스나우트 제어 시스템.A sensing signal is received from the first sensor, and the gap is constantly controlled by raising or lowering the dam unit so that the depth of the dam unit is immersed in the plating bath can be adjusted according to the sensing signal, or the pump unit A snout control system that constantly controls the gap by adjusting the load of the pump unit to control the flow rate of the pumping molten zinc plating solution.
  4. 제3항에 있어서,According to paragraph 3,
    상기 프로세서는,The processor,
    상기 제 1 센서를 통해 상기 용융아연도금액 탕면의 제 1 수위 정보와 상기 댐 유닛의 위치 정보를 조합하여 상기 제 1 댐벽부에 돌출된 돌출부와 상기 용융아연도금액의 탕면 사이의 갭(G) 정보를 도출하고,By combining the first water level information of the molten zinc plating liquid surface and the position information of the dam unit through the first sensor, a gap (G) between the protrusion protruding from the first dam wall and the molten zinc plating liquid surface is determined. derive information,
    도출된 상기 갭 정보와 상기 펌프 유닛의 부하 정보를 토대로 상기 댐 유닛의 위치를 제어함으로써, 상기 갭을 일정하게 유지하는, 스나우트 제어 시스템.A snout control system that maintains the gap constant by controlling the position of the dam unit based on the derived gap information and load information of the pump unit.
  5. 제4항에 있어서,According to paragraph 4,
    상기 댐 유닛은 슬라이딩 레일(sliding rail) 형태로 구성되어, 상기 스노클부의 외벽부와 물리적으로 결합되되,The dam unit is configured in the form of a sliding rail and is physically coupled to the outer wall of the snorkel portion,
    상기 도금조로부터 전달되는 열에너지의 영향을 최소화하기 위해서, 상기 댐 유닛을 구동시키기 위한 구동장치는 상기 스나우트 장치의 어느 일부에 연결된 것을 특징으로 하는, 스나우트 제어 시스템.A snout control system, characterized in that a driving device for driving the dam unit is connected to any part of the snout device in order to minimize the influence of heat energy transmitted from the plating bath.
  6. 제4항에 있어서,According to paragraph 4,
    상기 프로세서는,The processor,
    상기 갭 정보가 사전에 설정된 기준보다 낮을 경우, 상기 댐 유닛을 하강시켜 상기 댐 유닛의 상기 제 1 댐벽부가 상기 도금조에 침지된 깊이를 증가시키고,If the gap information is lower than a preset standard, the dam unit is lowered to increase the depth at which the first dam wall portion of the dam unit is immersed in the plating bath,
    상기 갭 정보가 사전에 설정된 기준 수위보다 높을 경우, 상기 댐 유닛을 상승시켜 상기 댐 유닛의 상기 제 1 댐벽부가 상기 도금조에 침지된 깊이를 감소시키는, 스나우트 제어 시스템.When the gap information is higher than a preset reference water level, the snout control system raises the dam unit to reduce the depth at which the first dam wall portion of the dam unit is immersed in the plating bath.
  7. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 스나우트 장치는,The snout device,
    상기 스노클부의 내측 공간의 어느 일측에 설치되고, 상기 댐 유닛의 위치 정보를 감지하거나, 혹은 상기 댐벽부를 넘쳐 상기 댐 유닛의 상기 수용 공간에 수용된 상기 용융아연도금액 탕면의 제 2 수위를 측정하는 제 2 센서;를 더 포함하는, 스나우트 제어 시스템.A device installed on one side of the inner space of the snorkel unit, detects the position information of the dam unit, or measures the second water level of the molten zinc plating liquid overflowing the dam wall and accommodated in the receiving space of the dam unit. A snout control system further comprising: 2 sensors.
  8. 제7항에 있어서,In clause 7,
    상기 프로세서는,The processor,
    상기 댐 유닛의 상기 수용 공간으로부터 상기 스노클부의 상기 개방부로 상기 용융아연도금액이 역류하지 않도록, 상기 제 2 센서를 통해 상기 제 2 수위와 상기 제 1 수위 사이의 갭(gap)을 항상 설정치 이상으로 제어하는, 스나우트 제어 시스템.To prevent the molten galvanizing solution from flowing back from the receiving space of the dam unit to the opening of the snorkel part, the gap between the second water level and the first water level is always set above a set value through the second sensor. Controlling, snout control system.
  9. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 펌프 유닛은,The pump unit is,
    상기 스노클부의 외측에 상기 댐 유닛과 대응되는 위치에 설치되어, 내부의 펌핑 공간이 상기 댐 유닛의 상기 수용 공간과 연통되도록 연결되고, 상기 수용 공간으로부터 상기 펌핑 공간으로 유입된 상기 용융아연도금액을 상기 도금조로 배출할 수 있도록 일측에 배출구가 형성되는 하우징부;It is installed on the outside of the snorkel unit at a position corresponding to the dam unit, and is connected so that the internal pumping space communicates with the receiving space of the dam unit, and the molten galvanizing solution flowing into the pumping space from the receiving space is provided. a housing portion having an outlet on one side to allow discharge into the plating bath;
    상기 하우징부의 상기 펌핑 공간에 회전 가능하게 설치되어, 회전 구동에 의해 상기 펌핑 공간으로 유입된 상기 용융아연도금액을 상기 배출구를 향해 유동시키는 임펠러부; 및An impeller unit rotatably installed in the pumping space of the housing unit to flow the molten zinc plating solution introduced into the pumping space by rotational driving toward the discharge port; and
    상기 하우징부의 일측에 설치되고, 상기 임펠러부의 회전 샤프트와 연결되어 상기 임펠러부를 회전 구동시키는 구동 모터;를 포함하는, 스나우트 제어 시스템.A snout control system comprising: a drive motor installed on one side of the housing unit, connected to a rotating shaft of the impeller unit, and rotating the impeller unit.
  10. 제2항에 있어서,According to paragraph 2,
    상기 용융아연도금액으로부터 발생하는 아연증기에 의해, 상기 카메라 모듈의 렌즈에 고착되는 것을 방지하기 위해서, 상기 카메라 모듈의 일측에 형성되는 가스공급부; 및 상기 카메라 모듈의 타측에 형성되는 가스흡입부;를 포함하고,a gas supply unit formed on one side of the camera module to prevent zinc vapor generated from the hot-dip galvanizing solution from sticking to the lens of the camera module; And a gas intake portion formed on the other side of the camera module,
    상기 가스공급부를 통해 불활성가스가 상기 렌즈의 표면 상으로 이동되어 상기 가스흡입부로 흡입되면서 상기 아연증기를 제거시키는, 스나우트 제어 시스템.A snout control system in which the inert gas is moved onto the surface of the lens through the gas supply unit and is sucked into the gas intake unit to remove the zinc vapor.
  11. 제2항에 있어서,According to paragraph 2,
    상기 용융아연도금액으로부터 발생하는 아연증기에 의해, 상기 카메라 모듈의 렌즈에 고착되는 것을 방지하기 위해서, 상기 카메라 모듈의 렌즈 표면 상으로 이동되는 불활성가스에 선회류를 부가하여 상기 아연증기를 제거시키는, 스나우트 제어 시스템.In order to prevent zinc vapor generated from the molten zinc plating solution from sticking to the lens of the camera module, a swirling flow is added to the inert gas moving on the lens surface of the camera module to remove the zinc vapor. , snout control system.
  12. 용융아연도금액이 수용된 도금조에 침지되어, 강판을 상기 도금조로 도입시키는 스나우트 장치; 및A snout device that is immersed in a plating tank containing a molten zinc plating solution and introduces a steel sheet into the plating tank; and
    상기 스나우트 장치와 연결되는 프로세서를 포함하고,Includes a processor connected to the snout device,
    상기 프로세서는,The processor,
    상기 용융아연도금액 탕면의 수위를 측정하는 센서를 통해 측정된 수위와 상기 스나우트 장치의 댐(Dam)유닛과의 높이 차이를 인식하고, 상기 스나우트 장치에 설치되는 촬영장치를 통해 촬영된 영상에 기초하여 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나를 인식하며, 상기 인식된 높이 차이, 스노클부 내부의 구조물 및 탕면 이물 중 적어도 하나에 기초하여 상기 스나우트 장치를 제어하는 것을 특징으로 하는 스나우트 제어 시스템.Recognizes the height difference between the water level measured through a sensor that measures the water level of the molten galvanizing liquid surface and the dam unit of the snout device, and an image captured through a photographing device installed on the snout device Based on this, it recognizes at least one of the structure inside the snorkel unit and the foreign matter on the molten metal surface, and controls the snout device based on at least one of the recognized height difference, the structure inside the snorkel unit, and the foreign substance on the molten metal surface. Naut control system.
  13. 제12항에 있어서,According to clause 12,
    상기 프로세서는, The processor,
    상기 영상에 옵티컬 플로우(Optical flow)를 적용하여 상기 스노클부 내부의 탕면에 부유하여 상기 강판에 접근하는 탕면 이물의 흐름을 인식하는 것을 특징으로 하는 스나우트 제어 시스템.A snout control system, characterized in that it recognizes the flow of foreign matter floating on the surface of the molten metal inside the snorkel unit and approaching the steel plate by applying optical flow to the image.
  14. 제13항에 있어서,According to clause 13,
    상기 프로세서는, The processor,
    상기 스노클부 내부의 탕면에 이물 혼입 시 제1 색상으로 표시하고, 상기 스노클부 내부의 탕면에서 댐 유닛 외부로 이물 배출 시 제2 색상으로 표시함으로써, 스노클부 내부 조업 현황을 실시간으로 모니터링 가능하게 하는 것을 특징으로 하는 스나우트 제어 시스템.When foreign matter is mixed into the water surface inside the snorkel unit, it is displayed in a first color, and when foreign matter is discharged from the water surface inside the snorkel unit to the outside of the dam unit, it is displayed in a second color, enabling real-time monitoring of the operating status inside the snorkel unit. Snout control system characterized in that.
  15. 제12항에 있어서,According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 기 설정된 구조물이 기 설정된 일정 비율 이상 존재하며, 탕면 이물의 흐름이 순방향인 경우, 상기 스나우트 장치의 높이를 유지하는 것을 특징으로 하는 스나우트 제어 시스템.Snout control, characterized in that maintaining the height of the snout device when the height difference is greater than a preset reference value, a preset structure in the image exists at a preset percentage or more, and the flow of foreign matter on the molten surface is in the forward direction. system.
  16. 제12항에 있어서, According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 기 설정된 구조물이 일정 비율 이상 존재하며, 탕면 이물의 흐름이 역방향인 경우, 탕면 이물이 댐 유닛 외부로 배출되도록 상기 스나우트 장치의 높이를 상승시키는 것을 특징으로 하는 스나우트 제어 시스템.If the height difference is more than a preset reference value, a preset structure exists in the image at a certain rate or more, and the flow of the foreign matter on the hot water surface is reverse, raising the height of the snout device so that the foreign material on the hot water surface is discharged outside the dam unit. Snout control system characterized in that.
  17. 제12항에 있어서, According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기 설정된 기준값 이상이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하지 않는 경우, 상기 구조물이 상기 일정 비율 이상 존재하도록 상기 스나우트 장치를 상승시키는 것을 특징으로 하는 스나우트 제어 시스템.When the height difference is more than a preset reference value and the structure does not exist in the image by more than a certain percentage, the snout control system is characterized in that it raises the snout device so that the structure exists more than the certain percentage.
  18. 제12항에 있어서, According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기 설정된 기준값 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하며, 상기 탕면 이물의 흐름이 순방향인 경우, 상기 스나우트 장치의 높이를 유지하는 것을 특징으로 하는 스나우트 제어 시스템.A snout control system that maintains the height of the snout device when the height difference is less than a preset reference value, the structure is present in the image at a certain rate or more, and the flow of the foreign matter on the molten metal surface is forward.
  19. 제12항에 있어서, According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기준값을 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하며, 상기 탕면 이물의 흐름이 역방향인 경우, 탕면 이물이 댐 유닛 외부로 배출되도록 상기 스나우트 장치의 높이를 하강시키는 것을 특징으로 하는 스나우트 제어 시스템.If the height difference is less than the reference value, the structure is present in the image at a certain rate or more, and the flow of the molten metal foreign matter is in the reverse direction, lowering the height of the snout device so that the molten metal foreign matter is discharged outside the dam unit. Features a snout control system.
  20. 제12항에 있어서, According to clause 12,
    상기 프로세서는, The processor,
    상기 높이 차이가 기준값 미만이고, 상기 영상에 상기 구조물이 일정 비율 이상 존재하지 않은 경우, 상기 구조물이 상기 일정 비율 이상 존재하도록 상기 스나우트 장치를 하강시키는 것을 특징으로 하는 스나우트 제어 시스템.When the height difference is less than a reference value and the structure does not exist in the image at a certain rate or more, the snout control system is characterized in that the snout device is lowered so that the structure exists at a certain rate or more.
PCT/KR2023/007040 2022-05-31 2023-05-24 Snout control system, and hot-dip galvanizing equipment comprising same WO2023234621A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020220066595A KR20230166523A (en) 2022-05-31 2022-05-31 Snout Control System and hot-dip galvanizing equipment including the same
KR10-2022-0066595 2022-05-31
KR10-2022-0066596 2022-05-31
KR1020220066596A KR20230166524A (en) 2022-05-31 2022-05-31 Snout Control System and hot-dip galvanizing equipment including the same
KR20230026671 2023-02-28
KR10-2023-0026671 2023-02-28

Publications (1)

Publication Number Publication Date
WO2023234621A1 true WO2023234621A1 (en) 2023-12-07

Family

ID=89025281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007040 WO2023234621A1 (en) 2022-05-31 2023-05-24 Snout control system, and hot-dip galvanizing equipment comprising same

Country Status (1)

Country Link
WO (1) WO2023234621A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040000749A (en) * 2002-06-25 2004-01-07 김현상 Melting system using electric resistance and method thereof
KR20160003053A (en) * 2013-04-26 2016-01-08 티센크루프 스틸 유럽 악티엔게젤샤프트 Device for the continuous hot-dip galvanizing of metal strip
KR102148459B1 (en) * 2019-05-03 2020-08-26 (주)스텝이엔지 Apparatus for removing dross in hot dip galvanizing process of steel plate
KR20210093534A (en) * 2020-01-20 2021-07-28 현대로템 주식회사 Snout chute automatic control system for Zinc-plating processing facility
KR20220042916A (en) * 2020-09-28 2022-04-05 (주)미래융합정보기술 Vision inspection system by using remote learning of product defects image

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040000749A (en) * 2002-06-25 2004-01-07 김현상 Melting system using electric resistance and method thereof
KR20160003053A (en) * 2013-04-26 2016-01-08 티센크루프 스틸 유럽 악티엔게젤샤프트 Device for the continuous hot-dip galvanizing of metal strip
KR102148459B1 (en) * 2019-05-03 2020-08-26 (주)스텝이엔지 Apparatus for removing dross in hot dip galvanizing process of steel plate
KR20210093534A (en) * 2020-01-20 2021-07-28 현대로템 주식회사 Snout chute automatic control system for Zinc-plating processing facility
KR20220042916A (en) * 2020-09-28 2022-04-05 (주)미래융합정보기술 Vision inspection system by using remote learning of product defects image

Similar Documents

Publication Publication Date Title
KR930010005B1 (en) Robot for continuous casting
WO2020036346A1 (en) Refinement apparatus and method
TWI692025B (en) Substrate treatment device and treatment method for substrate treatment device
WO2023234621A1 (en) Snout control system, and hot-dip galvanizing equipment comprising same
WO2017213311A1 (en) Melt treating apparatus and melt treating method
TW201911451A (en) Substrate processing apparatus and component inspection method of substrate processing apparatus
CN111389323A (en) Machine vision sight glass liquid separation identification control device and method for partition confirmation
KR102231570B1 (en) Vacuum degassing tank diagnosis support device, diagnosis support method, diagnosis method and maintenance method
WO2018021635A1 (en) Continuous casting abnormality prediction device
TW201910009A (en) Substrate processing device and component inspection method of substrate processing device
JP2013043185A (en) Method of manufacturing metal ingot and metal ingot manufacturing device
CN110986789A (en) Multi-point image identification measurement control method for glass ribbon in float glass tin bath
CN217103567U (en) Ultra-wide angle industrial endoscope applied to float glass tin bath
JPH105959A (en) Continuous casting equipment and continuous casting method
WO2019245129A1 (en) Wafer cleaning device
US6471768B2 (en) Method of and apparatus for growing ribbon of crystal
JPS63242451A (en) Method and apparatus for measuring power layer thickness in mold
KR20230166524A (en) Snout Control System and hot-dip galvanizing equipment including the same
KR20080059992A (en) A scum removal at free surface of roll sump in twin roll strip casting process
JP2914990B2 (en) Method for detecting abnormal state of molten metal surface, method for preventing abnormally molten metal surface, and apparatus for preventing the same
WO2024117659A1 (en) Device for supplying pouch film for secondary battery
KR101780127B1 (en) Measuring apparatus for molten steel
KR200363077Y1 (en) Dross remove equipment for snout
KR101940915B1 (en) Twin roll strip caster having function for removing scum
KR20230060878A (en) Snout Control System and hot-dip galvanizing equipment including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816283

Country of ref document: EP

Kind code of ref document: A1