WO2023234445A1 - 디스플레이 장치 및 그의 동작 방법 - Google Patents

디스플레이 장치 및 그의 동작 방법 Download PDF

Info

Publication number
WO2023234445A1
WO2023234445A1 PCT/KR2022/007899 KR2022007899W WO2023234445A1 WO 2023234445 A1 WO2023234445 A1 WO 2023234445A1 KR 2022007899 W KR2022007899 W KR 2022007899W WO 2023234445 A1 WO2023234445 A1 WO 2023234445A1
Authority
WO
WIPO (PCT)
Prior art keywords
apl
saturation
image
display device
luminance
Prior art date
Application number
PCT/KR2022/007899
Other languages
English (en)
French (fr)
Inventor
김소린
류병우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2022/007899 priority Critical patent/WO2023234445A1/ko
Publication of WO2023234445A1 publication Critical patent/WO2023234445A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits

Definitions

  • the present invention relates to a display device and a method of operating the same.
  • OLED displays organic light emitting diode displays
  • An OLED display device is a display device using organic light emitting elements. Because organic light-emitting devices are self-light-emitting devices, OLED displays have the advantage of lower power consumption and can be manufactured thinner than liquid crystal displays that require a backlight. Additionally, OLED display devices have the advantage of a wide viewing angle and fast response speed. However, organic light emitting devices have the disadvantage of having a relatively short lifespan. In particular, organic light emitting devices have a problem of burn-in and shortened lifespan when continuously emitting light at high brightness.
  • the OLED display device can determine luminance according to the average picture level (APL) of the input image.
  • APL may be determined based on the maximum value among the RGB values of the input image, and the luminance may be determined according to the determined APL.
  • the luminance deteriorates when a color image is input.
  • the present disclosure seeks to minimize the problem of luminance deterioration when a high-saturation image is input.
  • the present disclosure seeks to improve the problem of luminance degradation in high-saturation images and at the same time minimize problems such as occurrence of afterimages or deterioration of pixel life due to high luminance output.
  • a display device includes a display and a controller that obtains the luminance of an image to be output from the display based on the average picture level (APL) of the input image, and the controller determines the APL based on the saturation of the input image. can be obtained.
  • APL average picture level
  • the controller calculates the first APL based on the RGB maximum value of the input image, calculates the second APL based on the luminance ratio of the input image, and combines the first APL and the second APL based on saturation to obtain the final APL. It can be obtained.
  • the controller can adjust the ratio of the first APL and the second APL according to the saturation of the input image.
  • the controller can obtain the final APL so that the higher the saturation of the input image, the higher the proportion of the second APL is than the first APL.
  • the controller may determine the weight based on the saturation of the input image and adjust the proportion of the first APL and the second APL according to the weight.
  • the display device may further include a memory that stores weight data that adjusts the ratio of the first APL and the second APL according to the weight.
  • the weight data may include a lookup table in which saturation and weight are mapped so that as the saturation of the input image increases, the proportion of the second APL is adjusted to be higher than that of the first APL.
  • the memory may further store PLC (Peak Luminance Curve) data to which the luminance of the output image according to APL is mapped.
  • PLC Peak Luminance Curve
  • the display may output an image at a first luminance when a full white image is input, and may output an image at a second luminance higher than the first luminance when an image composed of full red, full green, and full blue is input.
  • the controller includes an RGB acquisition unit that acquires the RGB of the input image, a saturation acquisition unit that acquires the saturation of the input image, a weight acquisition unit that acquires a weight based on the saturation of the input image, and an APL acquisition unit that obtains the APL based on the weight. May include wealth.
  • a method of operating a display device includes obtaining an average picture level (APL) of an input image, obtaining luminance based on the APL of the input image, and outputting an image with the obtained luminance. and may further include obtaining the APL based on the saturation of the input image.
  • APL average picture level
  • Obtaining the APL includes calculating a first APL based on the RGB maximum value of the input image, calculating a second APL based on the luminance ratio of the input image, and calculating the first APL and the second APL based on saturation. It may include the step of combining APLs to obtain the final APL.
  • the step of acquiring the APL may further include adjusting the ratio of the first APL and the second APL according to the saturation of the input image.
  • the step of adjusting the proportion of the first APL and the second APL may be a step of determining a weight based on the saturation of the input image and adjusting the proportion of the first APL and the second APL according to the weight.
  • the method of operating the display device may further include storing weight data in which saturation and weight are mapped so that the proportion of the second APL is adjusted to be higher than that of the first APL as the saturation of the input image becomes higher.
  • a device that determines luminance according to APL (Average Picture Level) and outputs an image can minimize the problem of luminance degradation due to saturation by obtaining the APL based on the saturation of the input image.
  • APL Average Picture Level
  • the final APL is obtained by combining the first APL calculated based on the RGB maximum value according to saturation and the second APL calculated based on the luminance ratio, thereby minimizing the decrease in luminance due to saturation.
  • High-brightness output due to color components can minimize problems such as afterimage occurrence and reduced pixel lifespan.
  • FIG. 1 is a diagram illustrating a display device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the display device of FIG. 1.
  • FIG. 3 is an example of an internal block diagram of the controller of FIG. 2.
  • FIG. 4A is a diagram illustrating a control method of the remote control device of FIG. 2.
  • Figure 4b is an internal block diagram of the remote control device of Figure 2.
  • Figure 5 is an internal block diagram of the display of Figure 2.
  • FIGS. 6A to 6B are diagrams referenced in the description of the organic light emitting panel of FIG. 5.
  • Figure 7 is a diagram illustrating an example of PLC data according to an embodiment of the present disclosure.
  • FIG. 8 is a control block diagram illustrating a method in which a display device calculates APL considering saturation according to an embodiment of the present disclosure.
  • Figure 9 is a flowchart showing a method of operating a display device according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of weight data according to an embodiment of the present disclosure.
  • FIG. 11 is a graph showing luminance according to an input image in a display device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a display device according to an embodiment of the present invention.
  • the display device 100 may include a display 180.
  • the display 180 may be implemented as any one of various panels.
  • the display 180 may be one of a liquid crystal display panel (LCD panel), an organic light emitting panel (OLED panel), an inorganic light emitting panel (LED panel), etc.
  • LCD panel liquid crystal display panel
  • OLED panel organic light emitting panel
  • LED panel inorganic light emitting panel
  • the display 180 is provided with an organic light emitting panel (OLED panel).
  • OLED panel organic light emitting panel
  • the display device 100 of FIG. 1 can be a monitor, TV, tablet PC, mobile terminal, etc.
  • FIG. 2 is a block diagram showing the configuration of the display device of FIG. 1.
  • the display device 100 includes a broadcast receiver 130, an external device interface 135, a memory 140, a user input interface 150, a controller 170, a wireless communication interface 173, and a display. It may include (180), a speaker (185), and a power supply circuit (190).
  • the broadcast receiver 130 may include a tuner 131, a demodulator 132, and a network interface 133.
  • the tuner 131 can select a specific broadcast channel according to a channel selection command.
  • the tuner 131 may receive a broadcast signal for a specific selected broadcast channel.
  • the demodulator 132 can separate the received broadcast signal into a video signal, an audio signal, and a data signal related to the broadcast program, and can restore the separated video signal, audio signal, and data signal to a form that can be output.
  • the network interface 133 may provide an interface for connecting the display device 100 to a wired/wireless network including an Internet network.
  • the network interface 133 may transmit or receive data with other users or other electronic devices through a connected network or another network linked to the connected network.
  • the network interface 133 can access a certain web page through a connected network or another network linked to the connected network. In other words, you can access a certain web page through a network and transmit or receive data with the corresponding server.
  • the network interface 133 can receive content or data provided by a content provider or network operator. That is, the network interface 133 can receive content and information related thereto, such as movies, advertisements, games, VODs, and broadcast signals, provided from a content provider or network provider through a network.
  • the network interface 133 can receive firmware update information and update files provided by a network operator, and can transmit data to the Internet, a content provider, or a network operator.
  • the network interface 133 can select and receive a desired application from among applications open to the public through a network.
  • the external device interface 135 may receive an application or application list within an adjacent external device and transfer it to the controller 170 or memory 140.
  • the external device interface 135 may provide a connection path between the display device 100 and an external device.
  • the external device interface 135 may receive one or more of video and audio output from an external device connected wirelessly or wired to the display device 100 and transmit it to the controller 170.
  • the external device interface 135 may include a plurality of external input terminals.
  • the plurality of external input terminals may include an RGB terminal, one or more High Definition Multimedia Interface (HDMI) terminals, and a component terminal.
  • HDMI High Definition Multimedia Interface
  • An image signal from an external device input through the external device interface 135 may be output through the display 180.
  • a voice signal from an external device input through the external device interface 135 may be output through the speaker 185.
  • An external device that can be connected to the external device interface 135 may be any one of a set-top box, Blu-ray player, DVD player, game console, sound bar, smartphone, PC, USB memory, or home theater, but this is only an example.
  • some of the content data stored in the display device 100 may be transmitted to a selected user or selected electronic device among other users or other electronic devices pre-registered in the display device 100.
  • the memory 140 stores programs for processing and controlling each signal in the controller 170, and can store processed video, audio, or data signals.
  • the memory 140 may perform a function for temporary storage of video, voice, or data signals input from the external device interface 135 or the network interface 133, and may store information about a predetermined image through a channel memory function. You can also store information.
  • the memory 140 may store an application or application list input from the external device interface 135 or the network interface 133.
  • the display device 100 can play content files (video files, still image files, music files, document files, application files, etc.) stored in the memory 140 and provide them to the user.
  • content files video files, still image files, music files, document files, application files, etc.
  • the user input interface 150 may transmit a signal input by the user to the controller 170 or transmit a signal from the controller 170 to the user.
  • the user input interface 150 can be used remotely according to various communication methods such as Bluetooth, Ultra Wideband (WB), ZigBee, Radio Frequency (RF) communication, or infrared (IR) communication.
  • Control signals such as power on/off, channel selection, and screen settings can be received and processed from the control device 200, or control signals from the controller 170 can be processed to be transmitted to the remote control device 200.
  • the user input interface 150 can transmit control signals input from local keys (not shown) such as power key, channel key, volume key, and setting value to the controller 170.
  • local keys such as power key, channel key, volume key, and setting value
  • the video signal processed by the controller 170 may be input to the display 180 and displayed as an image corresponding to the video signal. Additionally, the image signal processed by the controller 170 may be input to an external output device through the external device interface 135.
  • the voice signal processed by the controller 170 may be output as audio to the speaker 185. Additionally, the voice signal processed by the controller 170 may be input to an external output device through the external device interface 135.
  • controller 170 may control overall operations within the display device 100.
  • controller 170 can control the display device 100 by a user command or internal program input through the user input interface 150, and connects to the network to display the application or application list desired by the user on the display device ( 100) You can make it available for download.
  • the controller 170 allows channel information selected by the user to be output through the display 180 or speaker 185 along with the processed video or audio signal.
  • the controller 170 controls video signals from an external device, for example, a camera or camcorder, input through the external device interface 135, according to an external device video playback command received through the user input interface 150.
  • the voice signal can be output through the display 180 or speaker 185.
  • the controller 170 can control the display 180 to display an image, for example, a broadcast image input through the tuner 131, an external input image input through the external device interface 135, Alternatively, an image input through the network interface unit or an image stored in the memory 140 may be controlled to be displayed on the display 180.
  • the image displayed on the display 180 may be a still image or a moving image, and may be a 2D image or a 3D image.
  • controller 170 can control the playback of content stored in the display device 100, received broadcast content, or external input content, which may include broadcast video, external input video, audio files, It can be in various forms, such as still images, connected web screens, and document files.
  • the wireless communication interface 173 can communicate with external devices through wired or wireless communication.
  • the wireless communication interface 173 can perform short range communication with an external device.
  • the wireless communication interface 173 includes BluetoothTM, Bluetooth Low Energy (BLE), Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and NFC ( Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technology can be used to support short-distance communication.
  • This wireless communication interface 173 is between the display device 100 and a wireless communication system, between the display device 100 and another display device 100, or between the display device 100 through wireless area networks. It can support wireless communication between the network and the display device 100 (or external server).
  • Local area wireless networks may be wireless personal area networks.
  • the other display device 100 is a wearable device capable of exchanging data with (or interoperating with) the display device 100 according to the present invention, for example, a smartwatch, smart glasses. It can be a mobile terminal such as (smart glass), HMD (head mounted display), or smart phone.
  • the wireless communication interface 173 may detect (or recognize) a wearable device capable of communication around the display device 100 .
  • the controller 170 transfers at least a portion of the data processed by the display device 100 to a wireless communication interface. It can be transmitted to a wearable device through (173). Accordingly, a user of a wearable device can use data processed by the display device 100 through the wearable device.
  • the display 180 converts the video signal, data signal, and OSD signal processed by the controller 170 or the video signal and data signal received from the external device interface 135 into R, G, and B signals, respectively, and provides a driving signal. can be created.
  • the display device 100 shown in FIG. 2 is only one embodiment of the present invention. Some of the illustrated components may be integrated, added, or omitted depending on the specifications of the display device 100 that is actually implemented.
  • two or more components may be combined into one component, or one component may be subdivided into two or more components.
  • the functions performed by each block are for explaining embodiments of the present invention, and the specific operations or devices do not limit the scope of the present invention.
  • the display device 100 does not have a tuner 131 and a demodulator 132 and has a network interface 133 or an external device interface 135. You can also receive and play video through the device.
  • the display device 100 is divided into an image processing device such as a set-top box for receiving broadcast signals or contents according to various network services, and a content playback device for playing content input from the image processing device. It can be implemented.
  • an image processing device such as a set-top box for receiving broadcast signals or contents according to various network services
  • a content playback device for playing content input from the image processing device. It can be implemented.
  • the method of operating a display device includes not only the display device 100 as described with reference to FIG. 2, but also the image processing device such as the separated set-top box or the display 180. ) and a content playback device having an audio output unit 185.
  • the speaker 185 receives the audio-processed signal from the controller 170 and outputs it as audio.
  • the power supply circuit 190 supplies the corresponding power throughout the display device 100.
  • power can be supplied to the controller 170, which can be implemented in the form of a system on chip (SOC), the display 180 for displaying images, and the speaker 185 for audio output.
  • SOC system on chip
  • the power supply circuit 190 may include a converter that converts alternating current power to direct current power and a dc/dc converter that converts the level of direct current power.
  • the remote control device 200 transmits user input to the user input interface 150.
  • the remote control device 200 may use Bluetooth, Radio Frequency (RF) communication, infrared (IR) communication, Ultra Wideband (UWB), ZigBee, etc. Additionally, the remote control device 200 may receive video, audio, or data signals output from the user input interface 150, and display them or output audio signals on the remote control device 200.
  • RF Radio Frequency
  • IR infrared
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • FIG. 3 is an example of an internal block diagram of the controller of FIG. 2.
  • the controller 170 includes a demultiplexer 310, an image processor 320, a processor 330, an OSD generator 340, and a mixer 345. , a frame rate converter 350, and a formatter 360. In addition, it may further include an audio processing unit (not shown) and a data processing unit (not shown).
  • the demultiplexer 310 demultiplexes the input stream. For example, when MPEG-2 TS is input, it can be demultiplexed and separated into video, voice, and data signals.
  • the stream signal input to the demultiplexer 310 may be a stream signal output from the tuner 131, demodulator 132, or external device interface 135.
  • the image processing unit 320 may perform image processing of demultiplexed video signals.
  • the image processing unit 320 may include an image decoder 325 and a scaler 335.
  • the video decoder 325 decodes the demultiplexed video signal, and the scaler 335 performs scaling so that the resolution of the decoded video signal can be output on the display 180.
  • the video decoder 325 can be equipped with decoders of various standards. For example, an MPEG-2, H,264 decoder, a 3D image decoder for color image and depth image, a decoder for multiple viewpoint images, etc. may be provided.
  • the processor 330 may control overall operations within the display device 100 or the controller 170. For example, the processor 330 may control the tuner 131 to select (tuning) an RF broadcast corresponding to a channel selected by the user or a pre-stored channel.
  • the processor 330 may control the display device 100 by a user command or internal program input through the user input interface 150.
  • processor 330 may perform data transmission control with the network interface unit 135 or the external device interface 135.
  • processor 330 may control the operations of the demultiplexer 310, the image processor 320, and the OSD generator 340 within the controller 170.
  • the OSD generator 340 generates an OSD signal according to user input or by itself. For example, based on a user input signal, a signal can be generated to display various information in graphics or text on the screen of the display 180.
  • the generated OSD signal may include various data such as a user interface screen of the display device 100, various menu screens, widgets, and icons. Additionally, the generated OSD signal may include 2D objects or 3D objects.
  • the OSD generator 340 may generate a pointer that can be displayed on the display 180 based on the pointing signal input from the remote control device 200.
  • a pointer may be generated in a pointing signal processor, and the OSD generator 340 may include such a pointing signal processor (not shown).
  • the pointing signal processor (not shown) is provided separately rather than within the OSD generator 340.
  • the mixer 345 may mix the OSD signal generated by the OSD generator 340 and the decoded image signal processed by the image processor 320.
  • the mixed video signal is provided to the frame rate converter 350.
  • the frame rate converter (FRC) 350 can convert the frame rate of the input video. Meanwhile, the frame rate conversion unit 350 is also capable of outputting the image as is without separate frame rate conversion.
  • the formatter 360 can change the format of an input image signal into an image signal for display on a display and output it.
  • the formatter 360 can change the format of the video signal.
  • the format of the 3D video signal is Side by Side format, Top / Down format, Frame Sequential format, Interlaced format, Checker Box. It can be changed to any one of various 3D formats such as format.
  • the audio processing unit (not shown) in the controller 170 may perform audio processing of the demultiplexed audio signal.
  • the audio processing unit (not shown) may be equipped with various decoders.
  • the audio processing unit within the controller 170 can process bass, treble, and volume control.
  • the data processing unit within the controller 170 may perform data processing of the demultiplexed data signal.
  • the demultiplexed data signal is an encoded data signal, it can be decoded.
  • the encoded data signal may be electronic program guide information including broadcast information such as the start time and end time of the broadcast program aired on each channel.
  • FIG. 3 the block diagram of the controller 170 shown in FIG. 3 is a block diagram for one embodiment of the present invention. Each component of the block diagram may be integrated, added, or omitted depending on the specifications of the controller 170 that is actually implemented.
  • the frame rate converter 350 and the formatter 360 may not be provided within the controller 170, but may be provided separately or as a single module.
  • FIG. 4A is a diagram illustrating a control method of the remote control device of FIG. 2.
  • a pointer 205 corresponding to the remote control device 200 is displayed on the display 180.
  • the user can move or rotate the remote control device 200 up and down, left and right ((b) in FIG. 4A), and forward and backward ((c) in FIG. 4A).
  • the pointer 205 displayed on the display 180 of the display device corresponds to the movement of the remote control device 200.
  • this remote control device 200 can be called a spatial remote control or a 3D pointing device because the corresponding pointer 205 is moved and displayed according to movement in 3D space.
  • FIG. 4A illustrates that when the user moves the remote control device 200 to the left, the pointer 205 displayed on the display 180 of the display device also moves to the left correspondingly.
  • Information about the movement of the remote control device 200 detected through the sensor of the remote control device 200 is transmitted to the display device.
  • the display device can calculate the coordinates of the pointer 205 from information about the movement of the remote control device 200.
  • the display device may display the pointer 205 to correspond to the calculated coordinates.
  • FIG. 4A illustrates a case where the user moves the remote control device 200 away from the display 180 while pressing a specific button in the remote control device 200.
  • the selected area in the display 180 corresponding to the pointer 205 can be zoomed in and displayed enlarged.
  • the selected area in the display 180 corresponding to the pointer 205 may be zoomed out and displayed in a reduced size.
  • the remote control device 200 moves away from the display 180, the selected area may be zoomed out, and when the remote control device 200 approaches the display 180, the selected area may be zoomed in.
  • the moving speed or direction of the pointer 205 may correspond to the moving speed or direction of the remote control device 200.
  • Figure 4b is an internal block diagram of the remote control device of Figure 2.
  • the remote control device 200 includes a wireless communication unit 420, a user input unit 430, a sensor unit 440, an output unit 450, a power supply unit 460, a storage unit 470, It may include a control unit 480.
  • the wireless communication unit 420 transmits and receives signals to and from any one of the display devices according to the embodiments of the present invention described above.
  • display devices according to embodiments of the present invention one display device 100 will be described as an example.
  • the remote control device 200 may be provided with an RF module 421 that can transmit and receive signals with the display device 100 according to RF communication standards. Additionally, the remote control device 200 may be equipped with an IR module 423 that can transmit and receive signals with the display device 100 according to IR communication standards.
  • the remote control device 200 transmits a signal containing information about the movement of the remote control device 200 to the display device 100 through the RF module 421.
  • the remote control device 200 may receive a signal transmitted by the display device 100 through the RF module 421. Additionally, the remote control device 200 may transmit commands for power on/off, channel change, volume change, etc. to the display device 100 through the IR module 423, as necessary.
  • the user input unit 430 may be comprised of a keypad, button, touch pad, or touch screen.
  • the user can input commands related to the display device 100 into the remote control device 200 by manipulating the user input unit 430. If the user input unit 430 is provided with a hard key button, the user can input a command related to the display device 100 to the remote control device 200 through a push operation of the hard key button. If the user input unit 430 has a touch screen, the user can touch a soft key on the touch screen to input a command related to the display device 100 through the remote control device 200. Additionally, the user input unit 430 may be provided with various types of input means that the user can operate, such as scroll keys and jog keys, and this embodiment does not limit the scope of the present invention.
  • the sensor unit 440 may include a gyro sensor 441 or an acceleration sensor 443.
  • the gyro sensor 441 can sense information about the movement of the remote control device 200.
  • the gyro sensor 441 may sense information about the operation of the remote control device 200 based on the x, y, and z axes.
  • the acceleration sensor 443 can sense information about the moving speed of the remote control device 200, etc.
  • a distance measuring sensor may be further provided, thereby allowing the distance to the display 180 to be sensed.
  • the output unit 450 may output a video or audio signal corresponding to a manipulation of the user input unit 430 or a signal transmitted from the display device 100. Through the output unit 450, the user can recognize whether the user input unit 430 is operated or the display device 100 is controlled.
  • the output unit 450 includes an LED module 451 that turns on when the user input unit 430 is manipulated or a signal is transmitted and received with the display device 100 through the wireless communication unit 420, and a vibration module 453 that generates vibration. ), a sound output module 455 that outputs sound, or a display module 457 that outputs an image.
  • the power supply unit 460 supplies power to the remote control device 200.
  • the power supply unit 460 can reduce power waste by stopping power supply when the remote control device 200 does not move for a predetermined period of time.
  • the power supply unit 460 can resume power supply when a predetermined key provided in the remote control device 200 is operated.
  • the storage unit 470 may store various types of programs, application data, etc. necessary for controlling or operating the remote control device 200. If the remote control device 200 transmits and receives signals wirelessly through the display device 100 and the RF module 421, the remote control device 200 and the display device 100 transmit and receive signals through a predetermined frequency band. .
  • the control unit 480 of the remote control device 200 stores and references information about the display device 100 paired with the remote control device 200 and the frequency band that can wirelessly transmit and receive signals in the storage unit 470. can do.
  • the control unit 480 controls all matters related to the control of the remote control device 200.
  • the control unit 480 sends a signal corresponding to a predetermined key operation of the user input unit 430 or a signal corresponding to the movement of the remote control device 200 sensed by the sensor unit 440 through the wireless communication unit 420. 100).
  • the user input interface unit 150 of the display device 100 includes a wireless communication unit 411 capable of wirelessly transmitting and receiving signals with the remote control device 200, and a pointer corresponding to the operation of the remote control device 200.
  • a coordinate value calculation unit 415 capable of calculating coordinate values may be provided.
  • the user input interface unit 150 can transmit and receive signals wirelessly with the remote control device 200 through the RF module 412. Additionally, the remote control device 200 can receive signals transmitted according to IR communication standards through the IR module 413.
  • the coordinate value calculation unit 415 corrects hand tremor or errors from the signal corresponding to the operation of the remote control device 200 received through the wireless communication unit 411 and calculates the coordinate value of the pointer 205 to be displayed on the display 180. (x,y) can be calculated.
  • the remote control device 200 transmission signal input to the display device 100 through the user input interface unit 150 is transmitted to the controller 170 of the display device 100.
  • the controller 170 can determine information about the operation and key manipulation of the remote control device 200 from signals transmitted from the remote control device 200 and control the display device 100 in response.
  • the remote control device 200 may calculate pointer coordinates corresponding to the operation and output them to the user input interface unit 150 of the display device 100.
  • the user input interface unit 150 of the display device 100 may transmit information about the received pointer coordinate value to the controller 170 without a separate hand shake or error correction process.
  • the coordinate value calculation unit 415 may be provided inside the controller 170 rather than in the user input interface unit 150 as shown in the drawing.
  • Figure 5 is an internal block diagram of the display of Figure 2.
  • the display 180 based on an organic light emitting panel includes a panel 210, a first interface unit 230, a second interface unit 231, a timing controller 232, a gate driver 234, and data. It may include a driver 236, a memory 240, a processor 270, a power supply 290, etc.
  • the display 180 may receive the image signal Vd, the first DC power source V1, and the second DC power source V2, and display a predetermined image based on the image signal Vd.
  • the first interface unit 230 in the display 180 may receive an image signal (Vd) and a first DC power source (V1) from the controller 170.
  • the first DC power source V1 may be used to operate the power supply unit 290 and the timing controller 232 within the display 180.
  • the second interface unit 231 may receive the second direct current power V2 from the external power supply circuit 190. Meanwhile, the second DC power source V2 may be input to the data driver 236 in the display 180.
  • the timing controller 232 may output a data driving signal (Sda) and a gate driving signal (Sga) based on the image signal (Vd).
  • the timing controller 232 operates based on the converted video signal va1.
  • the data driving signal (Sda) and the gate driving signal (Sga) can be output.
  • the timing controller 232 may further receive a control signal, a vertical synchronization signal (Vsync), etc. in addition to the video signal (Vd) from the controller 170.
  • Vsync vertical synchronization signal
  • timing controller 232 provides a gate drive signal (Sga) and data for the operation of the gate driver 234 based on a control signal, a vertical synchronization signal (Vsync), etc., in addition to the video signal (Vd).
  • a data driving signal (Sda) for operation of the driver 236 may be output.
  • the data driving signal Sda may be a data driving signal for driving RGBW subpixels when the panel 210 includes RGBW subpixels.
  • the timing controller 232 may further output a control signal Cs to the gate driver 234.
  • the gate driver 234 and the data driver 236 operate through the gate line GL and the data line DL, respectively, according to the gate drive signal Sga and the data drive signal Sda from the timing controller 232. , scanning signals and video signals are supplied to the panel 210. Accordingly, the panel 210 displays a predetermined image.
  • the panel 210 may include an organic light-emitting layer, and in order to display an image, a plurality of gate lines (GL) and data lines (DL) intersect in a matrix form at each pixel corresponding to the organic light-emitting layer. can be placed.
  • GL gate lines
  • DL data lines
  • the data driver 236 may output a data signal to the panel 210 based on the second DC power source V2 from the second interface unit 231.
  • the power supply unit 290 can supply various types of power to the gate driver 234, the data driver 236, the timing controller 232, etc.
  • the processor 270 can perform various controls within the display 180.
  • the gate driver 234, data driver 236, timing controller 232, etc. can be controlled.
  • FIGS. 6A to 6B are diagrams referenced in the description of the organic light emitting panel of FIG. 5.
  • FIG. 6A is a diagram showing pixels within the panel 210.
  • Panel 210 may be an organic light emitting panel.
  • the panel 210 includes a plurality of scan lines (Scan 1 to Scan n) and a plurality of data lines (R1, G1, B1, W1 to Rm, Gm, Bm, Wm) that intersect therewith. can do.
  • a pixel is defined in the intersection area of the scan line and the data line in the panel 210.
  • a pixel Panel
  • RGBW subpixels SPr1, SPg1, SPb1, SPw1
  • one pixel is shown as being provided with RGBW subpixels, but one pixel may also be provided with RGB subpixels. In other words, there are no restrictions on how pixels are arranged.
  • FIG. 6B illustrates a circuit of one sub pixel within a pixel of the organic light emitting panel of FIG. 6A.
  • the organic light-emitting sub-pixel circuit is an active type and includes a scan switching element (SW1), a storage capacitor (Cst), a drive switching element (SW2), and an organic light-emitting layer (OLED). You can.
  • the scan switching element (SW1) has a scan line connected to the gate terminal, and is turned on according to the input scan signal (Vscan). When turned on, the input data signal (Vdata) is transmitted to the gate terminal of the driving switching element (SW2) or one end of the storage capacitor (Cst).
  • the storage capacitor (Cst) is formed between the gate terminal and the source terminal of the driving switching element (SW2), and has a data signal level delivered to one end of the storage capacitor (Cst) and a direct current delivered to the other end of the storage capacitor (Cst).
  • the predetermined difference in power (Vdd) level is stored.
  • the power level stored in the storage capacitor Cst varies depending on the level difference of the data signal Vdata.
  • the power level stored in the storage capacitor (Cst) varies according to the difference in pulse width of the data signal (Vdata).
  • the driving switching element (SW2) is turned on according to the power level stored in the storage capacitor (Cst).
  • a driving current (IOLED) proportional to the stored power level flows through the organic light emitting layer (OLED). Accordingly, the organic light emitting layer (OLED) performs a light emitting operation.
  • the organic light emitting layer includes an RGBW light emitting layer (EML) corresponding to a subpixel, and at least one of a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (ETL), and an electron injection layer (EIL). It may include, and may also include a hole blocking layer.
  • EML RGBW light emitting layer
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • It may include, and may also include a hole blocking layer.
  • subpixels all output white light from the organic light emitting layer (OLED), but in the case of green, red, and blue subpixels, separate color filters are provided to implement colors. That is, in the case of green, red, and blue subpixels, green, red, and blue color filters are further provided, respectively. Meanwhile, in the case of white subpixels, white light is output, so there is no need for a separate color filter.
  • OLED organic light emitting layer
  • the scan switching element (SW1) and the drive switching element (SW2) are exemplified as p-type MOSFETs, but may be n-type MOSFETs or other switching elements such as JFET, IGBT, or SIC. It is also possible to use
  • the controller 170 may determine the luminance of the image based on the average picture level (APL) of the input image. Specifically, the controller 170 may determine the luminance according to the APL of the input image using PLC (Peak Luminance Curve) data.
  • APL average picture level
  • the PLC data may be data in which luminance according to APL is mapped.
  • PLC data may be stored in the memory 140 in the form of a graph or table mapping APL and luminance.
  • Figure 7 is a diagram illustrating an example of PLC data according to an embodiment of the present disclosure.
  • the memory 140 may store PLC data as shown in FIG. 7, and the PLC data in FIG. 7 may be data whose luminance is mapped according to APL.
  • the first APL (APLa) and the first luminance (LLa) are mapped, the second APL (APLb) and the second luminance (LLb) are mapped, and the third APL (APLc) and the first luminance (LLa) are mapped. It may include information such as that the 3rd luminance (LLc) is mapped, and the 4th APL (APLd) and the 4th luminance (LLd) are mapped.
  • the controller 170 determines the luminance of the image as the first luminance (LLa), and when the APL is the third APL (APLc), the controller 170 determines the luminance of the image as the third luminance (LLc). ) can be determined.
  • the controller 170 can calculate the APL of the input image and determine luminance according to the calculated APL.
  • the controller 170 may calculate the APL of the input image on a frame basis or a scene basis.
  • controller 170 calculates the APL of the input image.
  • the controller 170 may calculate the APL based on the maximum value among the RGB values of the input image. For example, the controller 170 can calculate the APL through an equation such as Equation 1 below.
  • the controller 170 can calculate the APL for all pixels based on the sum of the maximum values among the R value, G value, and B value of each pixel. That is, the controller 170 can calculate the APL as the ratio of the sum of the maximum values among the R value, G value, and B value for each pixel of the input image compared to the full white image.
  • the APL calculation method according to the first embodiment will be referred to as the first method (or Max RGB method), but since this is only an example for convenience of explanation, it is reasonable that it is not limited thereto.
  • the controller 170 may calculate the APL based on the luminance ratio of the input image.
  • the brightness ratio may be a Y value converted according to the brightness ratio of RGB.
  • the controller 170 can calculate the APL by converting the RGB of the input image into a luminance ratio.
  • the controller 170 can calculate the APL through an equation such as Equation 2 below.
  • the controller 170 can calculate the APL for all pixels based on the sum of the R value, G value, and B value of each pixel multiplied by a preset coefficient. That is, the controller 170 may calculate the ratio of the sum of the R value, G value, and B value for each pixel of the input image compared to the full white image by a preset coefficient and then calculate the APL. At this time, the coefficients may be set to 0.21 for the R value, 0.72 for the G value, and 0.07 for the B value, but this is only an example and is not limited to this.
  • the APL calculation method according to the second embodiment will be referred to as the second method (or Y APL method), but since this is only an example for convenience of explanation, it is reasonable that it is not limited thereto.
  • Equation 1 and Equation 2 assume that pixel data is 8 bits, and the constant 255 in Equation 1 and Equation 2 may change depending on the pixel data. For example, if the pixel data is 10 bits, the constant 255 in each of Equation 1 and Equation 2 must be changed to 1023.
  • the description will be made assuming that the pixel data is 8 bits, but since this is only an example for convenience of explanation, it is reasonable that it is not limited thereto.
  • the full white image, full red image, full green image, and full blue image are all determined to have the same luminance.
  • the luminance of all the full white image, full red image, full green image, and full blue image is determined to be the first luminance (LLa), and therefore, the full red image, full green image, or full blue image with high saturation
  • LLa first luminance
  • the luminance of the full red image, full green image, or full blue image is determined to be brighter compared to the full white image.
  • the 1st APL (APLa) is 7 (%)
  • the 2nd APL (APLb) is 21 (%)
  • the 3rd APL (APLc) is 72 (%)
  • the 4th APL (APLd) is 72 (%).
  • the luminance of the full white image is determined by the first luminance (LLa)
  • the luminance of the full green image is determined by the second luminance (LLb), which is higher than the first luminance (LLa)
  • the luminance of the full red image may be determined as the third luminance (LLc), which is higher than the second luminance (LLb)
  • the luminance of the full blue image may be determined as the fourth luminance (LLd), which is higher than the third luminance (LLc).
  • the luminance can be determined to be high depending on the color component of the image.
  • afterimages increase and pixel lifespan decreases.
  • the display device 100 seeks to minimize the above-mentioned problems by calculating the APL in consideration of saturation.
  • the controller 170 attempts to calculate the final APL by combining the APL according to the first method and the APL according to the second method according to saturation.
  • the controller 170 calculates the final APL by adjusting the APL proportion according to the second method (Y APL method) to be higher than the APL proportion according to the first method (Max RGB) method as the saturation becomes higher.
  • the problem of high image output being output at low luminance has been improved, and the lower the saturation, the more the APL ratio according to the first method (Max RGB method) is adjusted to be higher than the APL ratio according to the second method (Y APL method), thereby reducing the risk of high luminance output.
  • FIG. 8 is a control block diagram illustrating a method in which a display device calculates APL considering saturation according to an embodiment of the present disclosure.
  • the display device 100 may include an RGB acquisition unit 301, a saturation acquisition unit 303, a weight acquisition unit 305, and an APL acquisition unit 307.
  • the above-described configurations are shown as different configurations classified according to their roles, but this is only an example for convenience of explanation. That is, at least two of the above-described configurations may be implemented as one configuration.
  • the RGB acquisition unit 301, saturation acquisition unit 303, weight acquisition unit 305, and APL acquisition unit 307 may be included in the controller 170. That is, the controller 170 may include an RGB acquisition unit 301, a saturation acquisition unit 303, a weight acquisition unit 305, and an APL acquisition unit 307.
  • the RGB acquisition unit 301 may acquire RGB of the input image.
  • the RGB acquisition unit 301 may acquire RGB for each frame of the input image.
  • the RGB acquisition unit 301 can acquire RGB for each pixel of each frame.
  • RGB may mean R value, G value, and B value.
  • the R value, G value, and B value may vary depending on pixel data. For example, if the pixel data is 8 bits, the R value, G value, and B value have values from 0 to 255, and if the pixel data is 10 bits, the R value, G value, and B value have values from 0 to 1023. You can have it.
  • the saturation acquisition unit 303 may acquire the saturation of the input image.
  • the saturation acquisition unit 303 may acquire saturation for each frame of the input image.
  • the saturation acquisition unit 303 may acquire saturation through a formula such as Equation 3 below.
  • the saturation acquisition unit 303 may obtain saturation through an operation that divides the difference between the maximum and minimum values among the R value, G value, and B value for each pixel by the maximum value. For example, the saturation acquisition unit 303 acquires saturation as 1 (i.e., 100%) when the R, G, and B values are 255, 0, and 0, and when the R, G, and B values are 255. , 255, and 255, saturation can be obtained as 0 (i.e., 0%), and if the R value, G value, and B value are 207, 65, and 209, saturation can be obtained as 0.68 (i.e., 68%).
  • the weight acquisition unit 305 may acquire a weight according to the saturation obtained by the saturation acquisition unit 303.
  • the weight may be a constant that determines the APL proportion according to the first method and the APL proportion according to the second method to be reflected in the final APL.
  • the weight acquisition unit 305 may obtain different weights depending on saturation.
  • the weight acquisition unit 305 may acquire a weight based on weight data in which a weight according to saturation is pre-mapped, which will be described in detail in FIG. 10.
  • the weight acquisition unit 305 determines the weight so that the higher the saturation, the final APL is calculated with a higher proportion of the APL according to the second method, and the lower the saturation is, the final APL is calculated with a higher proportion of the APL according to the first method. Weights can be determined.
  • the APL acquisition unit 307 may finally obtain the APL of the input image based on the weight obtained by the weight acquisition unit 305.
  • the controller 170 may determine the luminance of the output image based on the finally obtained APL.
  • the display 180 may output an image based on the luminance determined according to the finally obtained APL.
  • Figure 9 is a flowchart showing a method of operating a display device according to an embodiment of the present disclosure.
  • the controller 170 may obtain the RGB of each pixel (S101).
  • the controller 170 may obtain saturation based on the RGB of each pixel (S103).
  • the controller 170 may obtain a weight according to saturation (S104).
  • Weight data may be stored in the memory 140, and the controller 170 may obtain a weight according to saturation based on the weight data.
  • weight data according to an embodiment of the present disclosure will be described.
  • FIG. 10 is a diagram illustrating an example of weight data according to an embodiment of the present disclosure.
  • Weight data may be data to which a weight ( ⁇ ) for each saturation is mapped. Weight data may be stored in the form of a curve, LUT (Look-Up Table), etc. with a weight ( ⁇ ) according to saturation.
  • saturation and weight may be mapped so that the higher the saturation, the higher the weight ( ⁇ ).
  • saturation and weight may be mapped so that when saturation is 0, weight ( ⁇ ) is 0, and when saturation is 1 (i.e., 100%), weight ( ⁇ ) has the maximum value.
  • the maximum value may be 255, but this is only an example and may vary depending on pixel data.
  • saturation and weight ( ⁇ ) may be directly proportional, but may also be proportional according to a predetermined proportionality constant k.
  • the predetermined proportionality constant k may vary depending on the saturation section. For example, when saturation is 0 to 0.3 (0 to 30%), the weight is proportional to saturation according to the proportionality constant of 0.8, and when saturation is 0.3 to 0.7 (30 to 70%), the weight is proportional to saturation according to the proportionality constant of 1.2. It is proportional to , and when saturation is 0.7 to 1 (70 to 100%), the weight may be proportional to saturation according to the proportionality constant of 1, but this is only an example for convenience of explanation, so it is reasonable that it is not limited to this.
  • the controller 170 obtains the weight ⁇ as a first value when the saturation is at a first level, and sets the weight ⁇ higher than the first value when the saturation is at a second level higher than the first level. It can be obtained as the second value.
  • the controller 170 may obtain the APL based on the weight (S105).
  • the controller 170 may obtain the APL by combining the APL according to the first method and the APL according to the second method described above according to the weight. That is, the controller 170 can determine the proportion of the APL according to the first method and the proportion of the APL according to the second method in the finally obtained APL according to the weight. In this way, the final APL according to the weight can be calculated based on the following equation (4).
  • the first method and the second method are the same as described above. That is, the first method is the Max RGB method, which calculates the APL based on the maximum value among the RGB of the input image, and the second method is the Y APL method, which calculates the APL based on the luminance ratio of the input image.
  • the final APL can be calculated by increasing the proportion of APL according to .
  • the controller 170 calculates a lower weight ⁇ as the saturation increases, and instead calculates the final APL with a higher proportion of the APL according to the second method as the weight ⁇ becomes lower.
  • APL can also be calculated using a formula other than Equation 4.
  • the present disclosure calculates the final APL in which the controller 170 increases the proportion of the APL according to the second method as the saturation is higher, and calculates the final APL with the proportion of the APL according to the first method as the saturation is lower. You can.
  • the first method there was a disadvantage in that luminance was lowered due to the tendency to calculate a high APL regardless of whether the image was high saturation or low saturation.
  • the higher the saturation the lower the proportion of the APL according to the first method and the higher the proportion of the APL according to the second method to calculate the final APL, thereby minimizing the problem of lowering the luminance of an image with high saturation. there is.
  • the output may be high brightness, and as a result, problems of afterimages and reduced lifespan of pixels may occur.
  • the controller 170 minimizes the problem of luminance degradation by increasing the proportion of APL according to the second method as saturation increases, and at the same time increases the proportion of APL according to the first method as saturation is low, causing afterimage problems and reduced pixel lifespan. It has the advantage of being able to solve even problems.
  • the controller 170 can control the brightness of the image according to the APL (S107).
  • the controller 170 may acquire the luminance according to the finally calculated APL based on the PLC data as described in FIG. 7 and output an image according to the obtained luminance.
  • the controller 170 obtains the luminance of the image to be output from the display 180 based on the average picture level (APL) of the input image.
  • the APL may be obtained based on the saturation of the input image.
  • the controller 170 calculates the first APL based on the RGB maximum value of the input image, calculates the second APL based on the luminance ratio of the input image, and calculates the first APL and the second APL based on saturation. You can obtain the final APL by combining. That is, the controller 170 can adjust the ratio of the first APL and the second APL according to the saturation of the input image.
  • the controller 170 may obtain the final APL so that the proportion of the second APL is higher than that of the first APL as the saturation of the input image increases.
  • the controller 170 may determine a weight based on the saturation of the input image and adjust the proportion of the first APL and the second APL according to the weight.
  • the memory 140 may store weight data that adjusts the proportion of the first APL and the second APL according to the weight, and the weight data may indicate that the higher the saturation of the input image, the higher the proportion of the second APL is. It may include a lookup table in which saturation and weight are mapped to be adjusted higher than the APL. Additionally, the memory 140 may further store PLC data to which the luminance of the output image according to APL is mapped.
  • FIG. 11 is a graph showing luminance according to an input image in a display device according to an embodiment of the present disclosure.
  • the first graph G1 can represent luminance for various APLs while increasing the area of the black area compared to the full white area.
  • the second graph G2 can represent luminance for various APLs by increasing the area of the black area compared to the full red, full green, and full blue areas.
  • the luminance according to APL is the same whether it is a full white image or an image composed of full red, full green, and full blue. In other words, even if an image with color components is input, it is output with the same luminance as a white image, so the brightness of the image with color components may feel dark.
  • This is a graph showing the luminance according to the APL calculated by taking saturation into account when an image consisting of (R, G, B) (0, 0, 255)) is input.
  • the third graph G3 is an APL calculated by combining the APL according to the first method and the APL according to the second method based on the weight according to saturation when an image consisting of full red, full green, and full blue is input.
  • the third graph G3 can represent luminance for various APLs by increasing the area of the black area compared to the full red, full green, and full blue areas.
  • the display 180 outputs an image at a first luminance when a full white image is input, and outputs an image at a second luminance higher than the first luminance when an image composed of full red, full green, and full blue is input. can do.
  • the above-described method can be implemented as processor-readable code on a program-recorded medium.
  • media that the processor can read include ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage devices.
  • the display device described above is not limited to the configuration and method of the above-described embodiments, and the embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made. It may be possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

본 개시의 실시 예에 따른 디스플레이 장치는 디스플레이, 및 입력 영상의 APL(Average Picture level)에 기초하여 디스플레이에서 출력될 영상의 휘도를 획득하는 컨트롤러를 포함하고, 컨트롤러는 입력 영상의 채도에 기초하여 APL을 획득할 수 있다.

Description

디스플레이 장치 및 그의 동작 방법
본 발명은 디스플레이 장치 및 그의 동작 방법에 관한 것이다.
최근 들어, 디스플레이 장치의 종류가 다양해지고 있다. 그 중, 유기 발광 다이오드 표시 장치(Organic Light Emitting Diode Display, 이하, OLED 표시 장치라 함)가 많이 사용되고 있다.
OLED 표시 장치는 유기 발광 소자를 이용한 표시 장치이다. 유기 발광 소자는 자체 발광 소자이기 때문에, OLED 표시 장치는 백라이트가 필요한 액정 표시 장치에 비해 소비 전력이 낮고, 얇게 제작될 수 있는 이점이 있다. 또한, OLED 표시 장치는 시야각이 넓고, 응답속도가 빠른 장점이 있다. 다만, 유기 발광 소자는 수명이 비교적 짧은 단점이 있다. 특히, 유기 발광 소자는 고휘도로 지속적으로 발광할 경우 번인(burn-in)되어 수명이 단축되는 문제가 있다.
한편, OLED 표시 장치는 입력 영상의 APL(Average Picture level)에 따라 휘도를 결정할 수 있다. 예를 들어, 입력 영상의 RGB 중 최대 값에 기초하여 APL을 결정하고, 이렇게 결정된 APL에 따라 휘도를 결정할 수 있는데, 이 경우 컬러 영상이 입력될 때 휘도가 저하되는 문제가 있다.
본 개시는 채도가 높은 영상이 입력될 때 휘도가 저하되는 문제를 최소화하고자 한다.
본 개시는 채도가 높은 영상의 휘도 저하 문제를 개선하는 동시에 고휘도 출력으로 인해 잔상이 발생하거나, 픽셀 수명이 저하되는 문제를 최소화하고자 한다.
본 개시의 실시 예에 따른 디스플레이 장치는 디스플레이, 및 입력 영상의 APL(Average Picture level)에 기초하여 디스플레이에서 출력될 영상의 휘도를 획득하는 컨트롤러를 포함하고, 컨트롤러는 입력 영상의 채도에 기초하여 APL을 획득할 수 있다.
컨트롤러는 입력 영상의 RGB 최대 값에 기초하여 제1 APL을 산출하고, 입력 영상의 휘도 비율에 기초하여 제2 APL을 산출하고, 채도에 기초하여 제1 APL과 제2 APL을 조합하여 최종 APL을 획득할 수 있다.
컨트롤러는 입력 영상의 채도에 따라 제1 APL 과 제2 APL의 비중을 조절할 수 있다.
컨트롤러는 입력 영상의 채도가 높을수록 제1 APL 보다 제2 APL의 비중이 높도록 최종 APL을 획득할 수 있다.
컨트롤러는 입력 영상의 채도에 기초하여 가중치를 결정하고, 가중치에 따라 제1 APL과 제2 APL의 비중을 조절할 수 있다.
디스플레이 장치는 가중치에 따라 제1 APL과 제2 APL의 비중을 조절하는 가중치 데이터를 저장하는 메모리를 더 포함할 수 있다.
가중치 데이터는 입력 영상의 채도가 높을수록 제2 APL의 비중이 제1 APL 보다 높게 조절되도록 채도와 가중치가 맵핑된 룩업 테이블을 포함할 수 있다.
메모리는 APL에 따른 출력 영상의 휘도가 맵핑된 PLC(Peak Luminance Curve) 데이터를 더 저장할 수 있다.
디스플레이는 풀 화이트 영상이 입력될 때 제1 휘도로 영상을 출력하고, 풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이 입력될 때 제1 휘도 보다 높은 제2 휘도로 영상을 출력할 수 있다.
컨트롤러는 입력 영상의 RGB를 획득하는 RGB 획득부, 입력 영상의 채도를 획득하는 채도 획득부, 입력 영상의 채도에 기초하여 가중치를 획득하는 가중치 획득부, 및 가중치에 기초하여 APL을 획득하는 APL 획득부를 포함할 수 있다.
본 개시의 실시 예에 따른 디스플레이 장치의 동작 방법은 입력 영상의 APL(Average Picture level)을 획득하는 단계, 입력 영상의 APL에 기초하여 휘도를 획득하는 단계, 및 획득된 휘도로 영상을 출력하는 단계를 포함하고, 입력 영상의 채도에 기초하여 APL을 획득하는 단계를 더 포함할 수 있다.
APL을 획득하는 단계는 입력 영상의 RGB 최대 값에 기초하여 제1 APL을 산출하는 단계, 입력 영상의 휘도 비율에 기초하여 제2 APL을 산출하는 단계, 및 채도에 기초하여 제1 APL과 제2 APL을 조합하여 최종 APL을 획득하는 단계를 포함할 수 있다.
APL을 획득하는 단계는 입력 영상의 채도에 따라 제1 APL 과 제2 APL의 비중을 조절하는 단계를 더 포함할 수 있다.
제1 APL 과 제2 APL의 비중을 조절하는 단계는 입력 영상의 채도에 기초하여 가중치를 결정하고, 가중치에 따라 제1 APL과 제2 APL의 비중을 조절하는 단계일 수 있다.
디스플레이 장치의 동작 방법은 입력 영상의 채도가 높을수록 제2 APL의 비중이 제1 APL 보다 높게 조절되도록 채도와 가중치가 맵핑된 가중치 데이터를 저장하는 단계를 더 포함할 수 있다.
본 개시의 실시 예에 따르면, APL(Average Picture level)에 따라 휘도를 결정하여 영상을 출력하는 장치가 입력 영상의 채도에 기초하여 APL을 획득함으로써 채도에 따른 휘도 저하 문제를 최소화할 수 있다.
본 개시의 실시 예에 따르면, 채도에 따라 RGB 최대 값에 기초하여 산출되는 제1 APL과 휘도 비율에 기초하여 산출되는 제2 APL을 조합하여 최종 APL을 획득함으로써 채도에 따른 휘도 저감을 최소화하는 동시에, 색상 성분으로 인한 고휘도 출력으로 잔상 발생 및 픽셀 수명 저하 문제를 최소화할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 디스플레이 장치를 도시한 도면이다.
도 2는 도 1의 디스플레이 장치의 구성을 블록도로 도시한 것이다.
도 3은 도 2의 컨트롤러의 내부 블록도의 일 예이다.
도 4a는 도 2의 원격제어장치의 제어 방법을 도시한 도면이다.
도 4b는 도 2의 원격제어장치의 내부 블록도이다.
도 5는 도 2의 디스플레이의 내부 블록도이다.
도 6a 내지 도 6b는 도 5의 유기발광패널의 설명에 참조되는 도면이다.
도 7은 본 개시의 실시 예에 따른 PLC 데이터의 일 예가 도시된 도면이다.
도 8은 본 개시의 실시 예에 따른 디스플레이 장치가 채도를 고려하여 APL을 산출하는 방법을 설명하기 위한 제어 블록도이다.
도 9는 본 개시의 실시 예에 따른 디스플레이 장치의 동작 방법이 도시된 순서도이다.
도 10은 본 개시의 실시 예에 따른 가중치 데이터의 일 예가 도시된 도면이다.
도 11은 본 개시의 실시 예에 따른 디스플레이 장치에서 입력 영상에 따른 휘도가 도시된 그래프이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시 예에 따른 디스플레이 장치를 도시한 도면이다.
도면을 참조하면, 디스플레이 장치(100)는, 디스플레이(180)를 포함할 수 있다.
한편, 디스플레이(180)는 다양한 패널 중 어느 하나로 구현될 수 있다. 예를 들어, 디스플레이(180)는, 액정표시패널(LCD 패널), 유기발광패널(OLED 패널), 무기발광패널(LED 패널) 등 중 어느 하나일 수 있다.
본 발명에서는, 디스플레이(180)가 유기발광패널(OLED 패널)을 구비하는 것으로 한다. 그러나, 이는 예시적인 것에 불과하며, 디스플레이(180)는 유기발광패널(OLED 패널)이 아닌 다른 패널을 구비할 수도 있다.
한편, 도 1의 디스플레이 장치(100)는, 모니터, TV, 태블릿 PC, 이동 단말기 등이 가능하다.
도 2는 도 1의 디스플레이 장치의 구성을 블록도로 도시한 것이다.
도 2를 참조하면, 디스플레이 장치(100)는 방송 수신부(130), 외부장치 인터페이스(135), 메모리(140), 사용자입력 인터페이스(150), 컨트롤러(170), 무선 통신 인터페이스(173), 디스플레이(180), 스피커(185), 전원 공급 회로(190)를 포함할 수 있다.
방송 수신부(130)는 튜너(131), 복조기(132) 및 네트워크 인터페이스(133)를 포함할 수 있다.
튜너(131)는 채널 선국 명령에 따라 특정 방송 채널을 선국할 수 있다. 튜너(131)는 선국된 특정 방송 채널에 대한 방송 신호를 수신할 수 있다.
복조기(132)는 수신한 방송 신호를 비디오 신호, 오디오 신호, 방송 프로그램과 관련된 데이터 신호로 분리할 수 있고, 분리된 비디오 신호, 오디오 신호 및 데이터 신호를 출력이 가능한 형태로 복원할 수 있다.
네트워크 인터페이스(133)는 디스플레이 장치(100)를 인터넷망을 포함하는 유/무선 네트워크와 연결하기 위한 인터페이스를 제공할 수 있다. 네트워크 인터페이스(133)는 접속된 네트워크 또는 접속된 네트워크에 링크된 다른 네트워크를 통해, 다른 사용자 또는 다른 전자 기기와 데이터를 송신 또는 수신할 수 있다.
네트워크 인터페이스(133)는 접속된 네트워크 또는 접속된 네트워크에 링크된 다른 네트워크를 통해, 소정 웹 페이지에 접속할 수 있다. 즉, 네트워크를 통해 소정 웹 페이지에 접속하여, 해당 서버와 데이터를 송신 또는 수신할 수 있다.
그리고, 네트워크 인터페이스(133)는 컨텐츠 제공자 또는 네트워크 운영자가 제공하는 컨텐츠 또는 데이터들을 수신할 수 있다. 즉, 네트워크 인터페이스(133)는 네트워크를 통하여 컨텐츠 제공자 또는 네트워크 제공자로부터 제공되는 영화, 광고, 게임, VOD, 방송 신호 등의 컨텐츠 및 그와 관련된 정보를 수신할 수 있다.
또한, 네트워크 인터페이스(133)는 네트워크 운영자가 제공하는 펌웨어의 업데이트 정보 및 업데이트 파일을 수신할 수 있으며, 인터넷 또는 컨텐츠 제공자 또는 네트워크 운영자에게 데이터들을 송신할 수 있다.
네트워크 인터페이스(133)는 네트워크를 통해, 공중에 공개(open)된 애플리케이션들 중 원하는 애플리케이션을 선택하여 수신할 수 있다.
외부장치 인터페이스(135)는 인접하는 외부 장치 내의 애플리케이션 또는 애플리케이션 목록을 수신하여, 컨트롤러(170) 또는 메모리(140)로 전달할 수 있다.
외부장치 인터페이스(135)는 디스플레이 장치(100)와 외부 장치 간의 연결 경로를 제공할 수 있다. 외부장치 인터페이스(135)는 디스플레이 장치(100)에 무선 또는 유선으로 연결된 외부장치로부터 출력된 영상, 오디오 중 하나 이상을 수신하여, 컨트롤러(170)로 전달할 수 있다. 외부장치 인터페이스(135)는 복수의 외부 입력 단자들을 포함할 수 있다. 복수의 외부 입력 단자들은 RGB 단자, 하나 이상의 HDMI(High Definition Multimedia Interface) 단자, 컴포넌트(Component) 단자를 포함할 수 있다.
외부장치 인터페이스(135)를 통해 입력된 외부장치의 영상 신호는 디스플레이(180)를 통해 출력될 수 있다. 외부장치 인터페이스(135)를 통해 입력된 외부장치의 음성 신호는 스피커(185)를 통해 출력될 수 있다.
외부장치 인터페이스(135)에 연결 가능한 외부 장치는 셋톱 박스, 블루레이 플레이어, DVD 플레이어, 게임기, 사운드 바, 스마트폰, PC, USB 메모리, 홈 씨어터 중 어느 하나일 수 있으나, 이는 예시에 불과하다.
또한, 디스플레이 장치(100)에 미리 등록된 다른 사용자 또는 다른 전자 기기 중 선택된 사용자 또는 선택된 전자기기에, 디스플레이 장치(100)에 저장된 일부의 컨텐츠 데이터를 송신할 수 있다.
메모리(140)는 컨트롤러(170) 내의 각 신호 처리 및 제어를 위한 프로그램을 저장하고, 신호 처리된 영상, 음성 또는 데이터신호를 저장할 수 있다.
또한, 메모리(140)는 외부장치 인터페이스(135) 또는 네트워크 인터페이스(133)로부터 입력되는 영상, 음성, 또는 데이터 신호의 임시 저장을 위한 기능을 수행할 수도 있으며, 채널 기억 기능을 통하여 소정 이미지에 관한 정보를 저장할 수도 있다.
메모리(140)는 외부장치 인터페이스(135) 또는 네트워크 인터페이스(133)로부터 입력되는 애플리케이션 또는 애플리케이션 목록을 저장할 수 있다.
디스플레이 장치(100)는 메모리(140) 내에 저장되어 있는 컨텐츠 파일(동영상 파일, 정지영상 파일, 음악 파일, 문서 파일, 애플리케이션 파일 등)을 재생하여 사용자에게 제공할 수 있다.
사용자입력 인터페이스(150)는 사용자가 입력한 신호를 컨트롤러(170)로 전달하거나, 컨트롤러(170)로부터의 신호를 사용자에게 전달할 수 있다. 예를 들어, 사용자입력 인터페이스(150)는 블루투스(Bluetooth), WB(Ultra Wideband), 지그비(ZigBee) 방식, RF(Radio Frequency) 통신 방식 또는 적외선(IR) 통신 방식 등 다양한 통신 방식에 따라, 원격제어장치(200)로부터 전원 온/오프, 채널 선택, 화면 설정 등의 제어 신호를 수신하여 처리하거나, 컨트롤러(170)로부터의 제어 신호를 원격제어장치(200)로 송신하도록 처리할 수 있다.
또한, 사용자입력 인터페이스(150)는, 전원키, 채널키, 볼륨키, 설정치 등의 로컬키(미도시)에서 입력되는 제어 신호를 컨트롤러(170)에 전달할 수 있다.
컨트롤러(170)에서 영상 처리된 영상 신호는 디스플레이(180)로 입력되어 해당 영상 신호에 대응하는 영상으로 표시될 수 있다. 또한, 컨트롤러(170)에서 영상 처리된 영상 신호는 외부장치 인터페이스(135)를 통하여 외부 출력장치로 입력될 수 있다.
컨트롤러(170)에서 처리된 음성 신호는 스피커(185)로 오디오 출력될 수 있다. 또한, 컨트롤러(170)에서 처리된 음성 신호는 외부장치 인터페이스(135)를 통하여 외부 출력장치로 입력될 수 있다.
그 외, 컨트롤러(170)는, 디스플레이 장치(100) 내의 전반적인 동작을 제어할 수 있다.
또한, 컨트롤러(170)는 사용자입력 인터페이스(150)를 통하여 입력된 사용자 명령 또는 내부 프로그램에 의하여 디스플레이 장치(100)를 제어할 수 있으며, 네트워크에 접속하여 사용자가 원하는 애플리케이션 또는 애플리케이션 목록을 디스플레이 장치(100) 내로 다운받을 수 있도록 할 수 있다.
컨트롤러(170)는 사용자가 선택한 채널 정보 등이 처리한 영상 또는 음성신호와 함께 디스플레이(180) 또는 스피커(185)를 통하여 출력될 수 있도록 한다.
또한, 컨트롤러(170)는 사용자입력 인터페이스(150)를 통하여 수신한 외부장치 영상 재생 명령에 따라, 외부장치 인터페이스(135)를 통하여 입력되는 외부 장치, 예를 들어, 카메라 또는 캠코더로부터의, 영상 신호 또는 음성 신호가 디스플레이(180) 또는 스피커(185)를 통해 출력될 수 있도록 한다.
한편, 컨트롤러(170)는 영상을 표시하도록 디스플레이(180)를 제어할 수 있으며, 예를 들어 튜너(131)를 통해 입력되는 방송 영상, 또는 외부장치 인터페이스(135)를 통해 입력되는 외부 입력 영상, 또는 네트워크 인터페이스부를 통해 입력되는 영상, 또는 메모리(140)에 저장된 영상이 디스플레이(180)에서 표시되도록 제어할 수 있다. 이 경우, 디스플레이(180)에 표시되는 영상은 정지 영상 또는 동영상일 수 있으며, 2D 영상 또는 3D 영상일 수 있다.
또한, 컨트롤러(170)는 디스플레이 장치(100) 내에 저장된 컨텐츠, 또는 수신된 방송 컨텐츠, 외부로부터 입력되는 외부 입력 컨텐츠가 재생되도록 제어할 수 있으며, 상기 컨텐츠는 방송 영상, 외부 입력 영상, 오디오 파일, 정지 영상, 접속된 웹 화면, 및 문서 파일 등 다양한 형태일 수 있다.
무선 통신 인터페이스(173)는 유선 또는 무선 통신을 통해 외부 기기와 통신을 수행할 수 있다. 무선 통신 인터페이스(173)는 외부 기기와 근거리 통신(Short range communication)을 수행할 수 있다. 이를 위해, 무선 통신 인터페이스(173)는 블루투스(Bluetooth™), BLE(Bluetooth Low Energy), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다. 이러한, 무선 통신 인터페이스(173)는 근거리 무선 통신망(Wireless Area Networks)을 통해 디스플레이 장치(100)와 무선 통신 시스템 사이, 디스플레이 장치(100)와 다른 디스플레이 장치(100) 사이, 또는 디스플레이 장치(100)와 디스플레이 장치(100, 또는 외부서버)가 위치한 네트워크 사이의 무선 통신을 지원할 수 있다. 근거리 무선 통신망은 근거리 무선 개인 통신망(Wireless Personal Area Networks)일 수 있다.
여기에서, 다른 디스플레이 장치(100)는 본 발명에 따른 디스플레이 장치(100)와 데이터를 상호 교환하는 것이 가능한(또는 연동 가능한) 웨어러블 디바이스(wearable device, 예를 들어, 스마트워치(smartwatch), 스마트 글래스(smart glass), HMD(head mounted display)), 스마트 폰과 같은 이동 단말기가 될 수 있다. 무선 통신 인터페이스(173)는 디스플레이 장치(100) 주변에, 통신 가능한 웨어러블 디바이스를 감지(또는 인식)할 수 있다. 나아가, 컨트롤러(170)는 감지된 웨어러블 디바이스가 본 발명에 따른 디스플레이 장치(100)와 통신하도록 인증된(authenticated) 디바이스인 경우, 디스플레이 장치(100)에서 처리되는 데이터의 적어도 일부를, 무선 통신 인터페이스(173)를 통해 웨어러블 디바이스로 송신할 수 있다. 따라서, 웨어러블 디바이스의 사용자는, 디스플레이 장치(100)에서 처리되는 데이터를, 웨어러블 디바이스를 통해 이용할 수 있다.
디스플레이(180)는 컨트롤러(170)에서 처리된 영상 신호, 데이터 신호, OSD 신호 또는 외부장치 인터페이스(135)에서 수신되는 영상 신호, 데이터 신호 등을 각각 R, G, B 신호로 변환하여 구동 신호를 생성할 수 있다.
한편, 도 2에 도시된 디스플레이 장치(100)는 본 발명의 일 실시 예에 불과하므로. 도시된 구성요소들 중 일부는 실제 구현되는 디스플레이 장치(100)의 사양에 따라 통합, 추가, 또는 생략될 수 있다.
즉, 필요에 따라 2 이상의 구성요소가 하나의 구성요소로 합쳐지거나, 혹은 하나의 구성요소가 2 이상의 구성요소로 세분되어 구성될 수 있다. 또한, 각 블록에서 수행하는 기능은 본 발명의 실시 예를 설명하기 위한 것이며, 그 구체적인 동작이나 장치는 본 발명의 권리범위를 제한하지 아니한다.
본 발명의 또 다른 실시 예에 따르면, 디스플레이 장치(100)는 도 2에 도시된 바와 달리, 튜너(131)와 복조기(132)를 구비하지 않고 네트워크 인터페이스(133) 또는 외부장치 인터페이스(135)를 통해서 영상을 수신하여 재생할 수도 있다.
예를 들어, 디스플레이 장치(100)는 방송 신호 또는 다양한 네트워크 서비스에 따른 컨텐츠들을 수신하기 위한 등과 같은 셋톱 박스 등과 같은 영상 처리 장치와 상기 영상 처리 장치로부터 입력되는 컨텐츠를 재생하는 컨텐츠 재생 장치로 분리되어 구현될 수 있다.
이 경우, 이하에서 설명할 본 발명의 실시 예에 따른 디스플레이 장치의 동작 방법은 도 2를 참조하여 설명한 바와 같은 디스플레이 장치(100)뿐 아니라, 상기 분리된 셋톱 박스 등과 같은 영상 처리 장치 또는 디스플레이(180) 및 오디오출력부(185)를 구비하는 컨텐츠 재생 장치 중 어느 하나에 의해 수행될 수도 있다.
스피커(185)는, 컨트롤러(170)에서 음성 처리된 신호를 입력 받아 음성으로 출력한다.
전원 공급 회로(190)는, 디스플레이 장치(100) 전반에 걸쳐 해당 전원을 공급한다. 특히, 시스템 온 칩(System On Chip, SOC)의 형태로 구현될 수 있는 컨트롤러(170)와, 영상 표시를 위한 디스플레이(180), 및 오디오 출력을 위한 스피커(185) 등에 전원을 공급할 수 있다.
구체적으로, 전원 공급 회로(190)는, 교류 전원을 직류 전원으로 변환하는 컨버터와, 직류 전원의 레벨을 변환하는 dc/dc 컨버터를 구비할 수 있다.
원격제어장치(200)는, 사용자 입력을 사용자입력 인터페이스(150)로 송신한다. 이를 위해, 원격제어장치(200)는, 블루투스(Bluetooth), RF(Radio Frequency) 통신, 적외선(IR) 통신, UWB(Ultra Wideband), 지그비(ZigBee) 방식 등을 사용할 수 있다. 또한, 원격제어장치(200)는, 사용자입력 인터페이스(150)에서 출력한 영상, 음성 또는 데이터 신호 등을 수신하여, 이를 원격제어장치(200)에서 표시하거나 음성 출력할 수 있다.
도 3은 도 2의 컨트롤러의 내부 블록도의 일 예이다.
도면을 참조하여 설명하면, 본 발명의 일실시예에 의한 컨트롤러(170)는, 역다중화부(310), 영상 처리부(320), 프로세서(330), OSD 생성부(340), 믹서(345), 프레임 레이트 변환부(350), 및 포맷터(360)를 포함할 수 있다. 그 외 오디오 처리부(미도시), 데이터 처리부(미도시)를 더 포함할 수 있다.
역다중화부(310)는, 입력되는 스트림을 역다중화한다. 예를 들어, MPEG-2 TS가 입력되는 경우 이를 역다중화하여, 각각 영상, 음성 및 데이터 신호로 분리할 수 있다. 여기서, 역다중화부(310)에 입력되는 스트림 신호는, 튜너(131) 또는 복조기(132) 또는 외부장치 인터페이스(135)에서 출력되는 스트림 신호일 수 있다.
영상 처리부(320)는, 역다중화된 영상 신호의 영상 처리를 수행할 수 있다. 이를 위해, 영상 처리부(320)는, 영상 디코더(325), 및 스케일러(335)를 구비할 수 있다.
영상 디코더(325)는, 역다중화된 영상신호를 복호화하며, 스케일러(335)는, 복호화된 영상신호의 해상도를 디스플레이(180)에서 출력 가능하도록 스케일링(scaling)을 수행한다.
영상 디코더(325)는 다양한 규격의 디코더를 구비하는 것이 가능하다. 예를 들어, MPEG-2, H,264 디코더, 색차 영상(color image) 및 깊이 영상(depth image)에 대한 3D 영상 디코더, 복수 시점 영상에 대한 디코더 등을 구비할 수 있다.
프로세서(330)는, 디스플레이 장치(100) 내 또는 컨트롤러(170) 내의 전반적인 동작을 제어할 수 있다. 예를 들어, 프로세서(330)는 튜너(131)를 제어하여, 사용자가 선택한 채널 또는 기저장된 채널에 해당하는 RF 방송을 선택(Tuning)하도록 제어할 수 있다.
또한, 프로세서(330)는, 사용자입력 인터페이스(150)를 통하여 입력된 사용자 명령 또는 내부 프로그램에 의하여 디스플레이 장치(100)를 제어할 수 있다.
또한, 프로세서(330)는, 네트워크 인터페이스부(135) 또는 외부장치 인터페이스(135)와의 데이터 전송 제어를 수행할 수 있다.
또한, 프로세서(330)는, 컨트롤러(170) 내의 역다중화부(310), 영상 처리부(320), OSD 생성부(340) 등의 동작을 제어할 수 있다.
OSD 생성부(340)는, 사용자 입력에 따라 또는 자체적으로 OSD 신호를 생성한다. 예를 들어, 사용자 입력 신호에 기초하여, 디스플레이(180)의 화면에 각종 정보를 그래픽(Graphic)이나 텍스트(Text)로 표시하기 위한 신호를 생성할 수 있다. 생성되는 OSD 신호는, 디스플레이 장치(100)의 사용자 인터페이스 화면, 다양한 메뉴 화면, 위젯, 아이콘 등의 다양한 데이터를 포함할 수 있다. 또한, 생성되는 OSD 신호는, 2D 오브젝트 또는 3D 오브젝트를 포함할 수 있다.
또한, OSD 생성부(340)는, 원격제어장치(200)로부터 입력되는 포인팅 신호에 기초하여, 디스플레이(180)에 표시 가능한, 포인터를 생성할 수 있다. 특히, 이러한 포인터는, 포인팅 신호 처리부에서 생성될 수 있으며, OSD 생성부(340)는, 이러한 포인팅 신호 처리부(미도시)를 포함할 수 있다. 물론, 포인팅 신호 처리부(미도시)가 OSD 생성부(340) 내에 구비되지 않고 별도로 마련되는 것도 가능하다.
믹서(345)는, OSD 생성부(340)에서 생성된 OSD 신호와 영상 처리부(320)에서 영상 처리된 복호화된 영상 신호를 믹싱할 수 있다. 믹싱된 영상 신호는 프레임 레이트 변환부(350)에 제공된다.
프레임 레이트 변환부(Frame Rate Conveter, FRC)(350)는, 입력되는 영상의 프레임 레이트를 변환할 수 있다. 한편, 프레임 레이트 변환부(350)는, 별도의 프레임 레이트 변환 없이, 그대로 출력하는 것도 가능하다.
한편, 포맷터(Formatter)(360)는, 입력되는 영상 신호의 포맷을, 디스플레이에 표시하기 위한 영상 신호로 변화시켜 출력할 수 있다.
포맷터(360)는, 영상 신호의 포맷을 변경할 수 있다. 예를 들어, 3D 영상 신호의 포맷을, 사이드 바이 사이드(Side by Side) 포맷, 탑 다운(Top / Down) 포맷, 프레임 시퀀셜(Frame Sequential) 포맷, 인터레이스 (Interlaced) 포맷, 체커 박스(Checker Box) 포맷 등의 다양한 3D 포맷 중 어느 하나의 포맷으로 변경할 수 있다.
한편, 컨트롤러(170) 내의 오디오 처리부(미도시)는, 역다중화된 음성 신호의 음성 처리를 수행할 수 있다. 이를 위해 오디오 처리부(미도시)는 다양한 디코더를 구비할 수 있다.
또한, 컨트롤러(170) 내의 오디오 처리부(미도시)는, 베이스(Base), 트레블(Treble), 음량 조절 등을 처리할 수 있다.
컨트롤러(170) 내의 데이터 처리부(미도시)는, 역다중화된 데이터 신호의 데이터 처리를 수행할 수 있다. 예를 들어, 역다중화된 데이터 신호가 부호화된 데이터 신호인 경우, 이를 복호화할 수 있다. 부호화된 데이터 신호는, 각 채널에서 방영되는 방송프로그램의 시작시간, 종료시간 등의 방송정보를 포함하는 전자 프로그램 가이드 정보(Electronic Program Guide) 정보일 수 있다.
한편, 도 3에 도시된 컨트롤러(170)의 블록도는 본 발명의 일 실시 예를 위한 블록도이다. 블록도의 각 구성요소는 실제 구현되는 컨트롤러(170)의 사양에 따라 통합, 추가, 또는 생략될 수 있다.
특히, 프레임 레이트 변환부(350), 및 포맷터(360)는 컨트롤러(170) 내에 마련되지 않고, 각각 별도로 구비되거나, 하나의 모듈로서 별도로 구비될 수도 있다.
도 4a는 도 2의 원격제어장치의 제어 방법을 도시한 도면이다.
도 4a의 (a)에 도시된 바와 같이, 디스플레이(180)에 원격제어장치(200)에 대응하는 포인터(205)가 표시되는 것을 예시한다.
사용자는 원격제어장치(200)를 상하, 좌우(도 4a의 (b)), 앞뒤(도 4a의 (c))로 움직이거나 회전할 수 있다. 디스플레이 장치의 디스플레이(180)에 표시된 포인터(205)는 원격제어장치(200)의 움직임에 대응한다. 이러한 원격제어장치(200)는, 도면과 같이, 3D 공간 상의 움직임에 따라 해당 포인터(205)가 이동되어 표시되므로, 공간 리모콘 또는 3D 포인팅 장치라 명명할 수 있다.
도 4a의 (b)는 사용자가 원격제어장치(200)를 왼쪽으로 이동하면, 디스플레이 장치의 디스플레이(180)에 표시된 포인터(205)도 이에 대응하여 왼쪽으로 이동하는 것을 예시한다.
원격제어장치(200)의 센서를 통하여 감지된 원격제어장치(200)의 움직임에 관한 정보는 디스플레이 장치로 전송된다. 디스플레이 장치는 원격제어장치(200)의 움직임에 관한 정보로부터 포인터(205)의 좌표를 산출할 수 있다. 디스플레이 장치는 산출한 좌표에 대응하도록 포인터(205)를 표시할 수 있다.
도 4a의 (c)는, 원격제어장치(200) 내의 특정 버튼을 누른 상태에서, 사용자가 원격제어장치(200)를 디스플레이(180)에서 멀어지도록 이동하는 경우를 예시한다. 이에 의해, 포인터(205)에 대응하는 디스플레이(180) 내의 선택 영역이 줌인되어 확대 표시될 수 있다. 이와 반대로, 사용자가 원격제어장치(200)를 디스플레이(180)에 가까워지도록 이동하는 경우, 포인터(205)에 대응하는 디스플레이(180) 내의 선택 영역이 줌아웃되어 축소 표시될 수 있다. 한편, 원격제어장치(200)가 디스플레이(180)에서 멀어지는 경우, 선택 영역이 줌아웃되고, 원격제어장치(200)가 디스플레이(180)에 가까워지는 경우, 선택 영역이 줌인될 수도 있다.
한편, 원격제어장치(200) 내의 특정 버튼을 누른 상태에서는 상하, 좌우 이동의 인식이 배제될 수 있다. 즉, 원격제어장치(200)가 디스플레이(180)에서 멀어지거나 접근하도록 이동하는 경우, 상,하,좌,우 이동은 인식되지 않고, 앞뒤 이동만 인식되도록 할 수 있다. 원격제어장치(200) 내의 특정 버튼을 누르지 않은 상태에서는, 원격제어장치(200)의 상,하,좌,우 이동에 따라 포인터(205)만 이동하게 된다.
한편, 포인터(205)의 이동속도나 이동방향은 원격제어장치(200)의 이동속도나 이동방향에 대응할 수 있다.
도 4b는 도 2의 원격제어장치의 내부 블록도이다.
도면을 참조하여 설명하면, 원격제어장치(200)는 무선통신부(420), 사용자 입력부(430), 센서부(440), 출력부(450), 전원공급부(460), 저장부(470), 제어부(480)를 포함할 수 있다.
무선통신부(420)는 전술하여 설명한 본 발명의 실시예들에 따른 디스플레이 장치 중 임의의 어느 하나와 신호를 송수신한다. 본 발명의 실시예들에 따른 디스플레이 장치들 중에서, 하나의 디스플레이 장치(100)를 일예로 설명하도록 하겠다.
본 실시예에서, 원격제어장치(200)는 RF 통신규격에 따라 디스플레이 장치(100)와 신호를 송수신할 수 있는 RF 모듈(421)을 구비할 수 있다. 또한 원격제어장치(200)는 IR 통신규격에 따라 디스플레이 장치(100)와 신호를 송수신할 수 있는 IR 모듈(423)을 구비할 수 있다.
본 실시예에서, 원격제어장치(200)는 디스플레이 장치(100)로 원격제어장치(200)의 움직임 등에 관한 정보가 담긴 신호를 RF 모듈(421)을 통하여 전송한다.
또한, 원격제어장치(200)는 디스플레이 장치(100)가 전송한 신호를 RF 모듈(421)을 통하여 수신할 수 있다. 또한, 원격제어장치(200)는 필요에 따라 IR 모듈(423)을 통하여 디스플레이 장치(100)로 전원 온/오프, 채널 변경, 볼륨 변경 등에 관한 명령을 전송할 수 있다.
사용자 입력부(430)는 키패드, 버튼, 터치 패드, 또는 터치 스크린 등으로 구성될 수 있다. 사용자는 사용자 입력부(430)를 조작하여 원격제어장치(200)로 디스플레이 장치(100)와 관련된 명령을 입력할 수 있다. 사용자 입력부(430)가 하드키 버튼을 구비할 경우 사용자는 하드키 버튼의 푸쉬 동작을 통하여 원격제어장치(200)로 디스플레이 장치(100)와 관련된 명령을 입력할 수 있다. 사용자 입력부(430)가 터치스크린을 구비할 경우 사용자는 터치스크린의 소프트키를 터치하여 원격제어장치(200)로 디스플레이 장치(100)와 관련된 명령을 입력할 수 있다. 또한, 사용자 입력부(430)는 스크롤 키나, 조그 키 등 사용자가 조작할 수 있는 다양한 종류의 입력수단을 구비할 수 있으며 본 실시예는 본 발명의 권리범위를 제한하지 아니한다.
센서부(440)는 자이로 센서(441) 또는 가속도 센서(443)를 구비할 수 있다. 자이로 센서(441)는 원격제어장치(200)의 움직임에 관한 정보를 센싱할 수 있다.
일예로, 자이로 센서(441)는 원격제어장치(200)의 동작에 관한 정보를 x,y,z 축을 기준으로 센싱할 수 있다. 가속도 센서(443)는 원격제어장치(200)의 이동속도 등에 관한 정보를 센싱할 수 있다. 한편, 거리측정센서를 더 구비할 수 있으며, 이에 의해, 디스플레이(180)와의 거리를 센싱할 수 있다.
출력부(450)는 사용자 입력부(430)의 조작에 대응하거나 디스플레이 장치(100)에서 전송한 신호에 대응하는 영상 또는 음성 신호를 출력할 수 있다. 출력부(450)를 통하여 사용자는 사용자 입력부(430)의 조작 여부 또는 디스플레이 장치(100)의 제어 여부를 인지할 수 있다.
일예로, 출력부(450)는 사용자 입력부(430)가 조작되거나 무선통신부(420)을 통하여 디스플레이 장치(100)와 신호가 송수신되면 점등되는 LED 모듈(451), 진동을 발생하는 진동 모듈(453), 음향을 출력하는 음향 출력 모듈(455), 또는 영상을 출력하는 디스플레이 모듈(457)을 구비할 수 있다.
전원공급부(460)는 원격제어장치(200)로 전원을 공급한다. 전원공급부(460)는 원격제어장치(200)이 소정 시간 동안 움직이지 않은 경우 전원 공급을 중단함으로서 전원 낭비를 줄일 수 있다. 전원공급부(460)는 원격제어장치(200)에 구비된 소정 키가 조작된 경우에 전원 공급을 재개할 수 있다.
저장부(470)는 원격제어장치(200)의 제어 또는 동작에 필요한 여러 종류의 프로그램, 애플리케이션 데이터 등이 저장될 수 있다. 만일 원격제어장치(200)가 디스플레이 장치(100)와 RF 모듈(421)을 통하여 무선으로 신호를 송수신할 경우 원격제어장치(200)와 디스플레이 장치(100)는 소정 주파수 대역을 통하여 신호를 송수신한다. 원격제어장치(200)의 제어부(480)는 원격제어장치(200)와 페어링된 디스플레이 장치(100)와 신호를 무선으로 송수신할 수 있는 주파수 대역 등에 관한 정보를 저장부(470)에 저장하고 참조할 수 있다.
제어부(480)는 원격제어장치(200)의 제어에 관련된 제반사항을 제어한다. 제어부(480)는 사용자 입력부(430)의 소정 키 조작에 대응하는 신호 또는 센서부(440)에서 센싱한 원격제어장치(200)의 움직임에 대응하는 신호를 무선통신부(420)를 통하여 디스플레이 장치(100)로 전송할 수 있다.
디스플레이 장치(100)의 사용자 입력 인터페이스부(150)는, 원격제어장치(200)와 무선으로 신호를 송수신할 수 있는 무선통신부(411)와, 원격제어장치(200)의 동작에 대응하는 포인터의 좌표값을 산출할 수 있는 좌표값 산출부(415)를 구비할 수 있다.
사용자 입력 인터페이스부(150)는, RF 모듈(412)을 통하여 원격제어장치(200)와 무선으로 신호를 송수신할 수 있다. 또한 IR 모듈(413)을 통하여 원격제어장치(200)이 IR 통신 규격에 따라 전송한 신호를 수신할 수 있다.
좌표값 산출부(415)는 무선통신부(411)를 통하여 수신된 원격제어장치(200)의 동작에 대응하는 신호로부터 손떨림이나 오차를 수정하여 디스플레이(180)에 표시할 포인터(205)의 좌표값(x,y)을 산출할 수 있다.
사용자 입력 인터페이스부(150)를 통하여 디스플레이 장치(100)로 입력된 원격제어장치(200) 전송 신호는 디스플레이 장치(100)의 컨트롤러(170)로 전송된다. 컨트롤러(170)는 원격제어장치(200)에서 전송한 신호로부터 원격제어장치(200)의 동작 및 키 조작에 관한 정보를 판별하고, 그에 대응하여 디스플레이 장치(100)를 제어할 수 있다.
또 다른 예로, 원격제어장치(200)는, 그 동작에 대응하는 포인터 좌표값을 산출하여 디스플레이 장치(100)의 사용자 입력 인터페이스부(150)로 출력할 수 있다. 이 경우, 디스플레이 장치(100)의 사용자 입력 인터페이스부(150)는 별도의 손떨림이나 오차 보정 과정 없이 수신된 포인터 좌표값에 관한 정보를 컨트롤러(170)로 전송할 수 있다.
또한, 다른 예로, 좌표값 산출부(415)가, 도면과 달리 사용자 입력 인터페이스부(150)가 아닌, 컨트롤러(170) 내부에 구비되는 것도 가능하다.
도 5는 도 2의 디스플레이의 내부 블록도이다.
도면을 참조하면, 유기발광패널 기반의 디스플레이(180)는, 패널(210), 제1 인터페이스부(230), 제2 인터페이스부(231), 타이밍 컨트롤러(232), 게이트 구동부(234), 데이터 구동부(236), 메모리(240), 프로세서(270), 전원 공급부(290) 등을 포함할 수 있다.
디스플레이(180)는, 영상 신호(Vd)와, 제1 직류 전원(V1) 및 제2 직류 전원(V2)을 수신하고, 영상 신호(Vd)에 기초하여, 소정 영상을 표시할 수 있다.
한편, 디스플레이(180) 내의 제1 인터페이스부(230)는, 컨트롤러(170)로부터 영상 신호(Vd)와, 제1 직류 전원(V1)을 수신할 수 있다.
여기서, 제1 직류 전원(V1)은, 디스플레이(180) 내의 전원 공급부(290), 및 타이밍 컨트롤러(232)의 동작을 위해 사용될 수 있다.
다음, 제2 인터페이스부(231)는, 외부의 전원 공급 회로(190)로부터 제2 직류 전원(V2)을 수신할 수 있다. 한편, 제2 직류 전원(V2)은, 디스플레이(180) 내의 데이터 구동부(236)에 입력될 수 있다.
타이밍 컨트롤러(232)는, 영상 신호(Vd)에 기초하여, 데이터 구동 신호(Sda) 및 게이트 구동 신호(Sga)를 출력할 수 있다.
예를 들어, 제1 인터페이스부(230)가 입력되는 영상 신호(Vd)를 변환하여 변환된 영상 신호(va1)를 출력하는 경우, 타이밍 컨트롤러(232)는, 변환된 영상 신호(va1)에 기초하여, 데이터 구동 신호(Sda) 및 게이트 구동 신호(Sga)를 출력할 수 있다.
타이밍 컨트롤러(timing controller)(232)는, 컨트롤러(170)로부터의 비디오 신호(Vd) 외에, 제어 신호, 수직동기신호(Vsync) 등을 더 수신할 수 있다.
그리고, 타이밍 컨트롤러(timing controller)(232)는, 비디오 신호(Vd) 외에, 제어 신호, 수직동기신호(Vsync) 등에 기초하여, 게이트 구동부(234)의 동작을 위한 게이트 구동 신호(Sga), 데이터 구동부(236)의 동작을 위한 데이터 구동 신호(Sda)를 출력할 수 있다.
이때의 데이터 구동 신호(Sda)는, 패널(210)이 RGBW의 서브픽셀을 구비하는 경우, RGBW 서브픽셀 구동용 데이터 구동 신호일 수 있다.
한편, 타이밍 컨트롤러(232)는, 게이트 구동부(234)에 제어 신호(Cs)를 더 출력할 수 있다.
게이트 구동부(234)와 데이터 구동부(236)는, 타이밍 컨트롤러(232)로부터의 게이트 구동 신호(Sga), 데이터 구동 신호(Sda)에 따라, 각각 게이트 라인(GL) 및 데이터 라인(DL)을 통해, 주사 신호 및 영상 신호를 패널(210)에 공급한다. 이에 따라, 패널(210)은 소정 영상을 표시하게 된다.
한편, 패널(210)은, 유기 발광층을 포함할 수 있으며, 영상을 표시하기 위해, 유기 발광층에 대응하는 각 화소에, 다수개의 게이트 라인(GL) 및 데이터 라인(DL)이 매트릭스 형태로 교차하여 배치될 수 있다.
한편, 데이터 구동부(236)는, 제2 인터페이스부(231)로부터의 제2 직류 전원(V2)에 기초하여, 패널(210)에 데이터 신호를 출력할 수 있다.
전원 공급부(290)는, 각종 전원을, 게이트 구동부(234)와 데이터 구동부(236), 타이밍 컨트롤러(232) 등에 공급할 수 있다.
프로세서(270)는, 디스플레이(180) 내의 각종 제어를 수행할 수 있다. 예를 들어, 게이트 구동부(234)와 데이터 구동부(236), 타이밍 컨트롤러(232) 등을 제어할 수 있다.
도 6a 내지 도 6b는 도 5의 유기발광패널의 설명에 참조되는 도면이다.
먼저, 도 6a는, 패널(210) 내의 픽셀(Pixel)을 도시하는 도면이다. 패널(210)은 유기발광패널일 수 있다.
도면을 참조하면, 패널(210)은, 복수의 스캔 라인(Scan 1 ~ Scan n)과, 이에 교차하는 복수의 데이터 라인(R1,G1,B1,W1 ~ Rm,Gm,Bm,Wm)을 구비할 수 있다.
한편, 패널(210) 내의 스캔 라인과, 데이터 라인의 교차 영역에, 픽셀(pixel)이 정의된다. 도면에서는, RGBW의 서브픽셀(SPr1,SPg1,SPb1,SPw1)을 구비하는 픽셀(Pixel)을 도시한다.
도 6a에서는, 하나의 픽셀에 RGBW의 서브픽셀이 구비된 것으로 도시되어 있으나, 하나의 픽셀에 RGB의 서브픽셀이 구비될 수도 있다. 즉, 픽셀의 소자 배열 방식에는 제한되지 않는다.
도 6b은, 도 6a의 유기발광패널의 픽셀(Pixel) 내의 어느 하나의 서브픽셀(sub pixel)의 회로를 예시한다.
도면을 참조하면, 유기발광 서브픽셀(sub pixel) 회로(CRTm)는, 능동형으로서, 스캔 스위칭 소자(SW1), 저장 커패시터(Cst), 구동 스위칭 소자(SW2), 유기발광층(OLED)을 구비할 수 있다.
스캔 스위칭 소자(SW1)는, 게이트 단자에 스캔 라인(Scan Line)이 접속되어, 입력되는 스캔 신호(Vscan)에 따라 턴 온하게 된다. 턴 온되는 경우, 입력되는 데이터 신호(Vdata)를 구동 스위칭 소자(SW2)의 게이트 단자 또는 저장 커패시터(Cst)의 일단으로 전달하게 된다.
저장 커패시터(Cst)는, 구동 스위칭 소자(SW2)의 게이트 단자와 소스 단자 사이에 형성되며, 저장 커패시터(Cst)의 일단에 전달되는 데이터 신호 레벨과, 저장 커패시터(Cst)의 타단에 전달되는 직류 전원(Vdd) 레벨의 소정 차이를 저장한다.
예를 들어, 데이터 신호가, PAM(Pluse Amplitude Modulation) 방식에 따라 서로 다른 레벨을 갖는 경우, 데이터 신호(Vdata)의 레벨 차이에 따라, 저장 커패시터(Cst)에 저장되는 전원 레벨이 달라지게 된다.
다른 예로, 데이터 신호가 PWM(Pluse Width Modulation) 방식에 따라 서로 다른 펄스폭을 갖는 경우, 데이터 신호(Vdata)의 펄스폭 차이에 따라, 저장 커패시터(Cst)에 저장되는 전원 레벨이 달라지게 된다.
구동 스위칭 소자(SW2)는, 저장 커패시터(Cst)에 저장된 전원 레벨에 따라 턴 온된다. 구동 스위칭 소자(SW2)가 턴 온하는 경우, 저장된 전원 레벨에 비례하는, 구동 전류(IOLED)가 유기발광층(OLED)에 흐르게 된다. 이에 따라, 유기발광층(OLED)은 발광동작을 수행하게 된다.
유기발광층(OLED)은, 서브픽셀에 대응하는 RGBW의 발광층(EML)을 포함하며, 정공주입층(HIL), 정공 수송층(HTL), 전자 수송층(ETL), 전자 주입층(EIL) 중 적어도 하나를 포함할 수 있으며, 그 외에 정공 저지층 등도 포함할 수 있다.
한편, 서브픽셀(sub pixel)은, 유기발광층(OLED)에서 모두 백색의 광을 출력하나, 녹색,적색,청색 서브픽셀의 경우, 색상 구현을 위해, 별도의 컬러필터가 구비된다. 즉, 녹색,적색,청색 서브픽셀의 경우, 각각 녹색,적색,청색 컬러필터를 더 구비한다. 한편, 백색 서브픽셀의 경우, 백색광을 출력하므로, 별도의 컬러필터가 필요 없게 된다.
한편, 도면에서는, 스캔 스위칭 소자(SW1)와 구동 스위칭 소자(SW2)로서, p타입의 MOSFET인 경우를 예시하나, n타입의 MOSFET이거나, 그 외, JFET, IGBT, 또는 SIC 등의 스위칭 소자가 사용되는 것도 가능하다.
컨트롤러(170)는 입력 영상의 APL(Average Picture level)에 기초하여 영상의 휘도를 결정할 수 있다. 구체적으로, 컨트롤러(170)는 PLC(Peak Luminance Curve) 데이터를 이용하여 입력 영상의 APL에 따른 휘도를 결정할 수 있다.
이 때, PLC 데이터는 APL에 따른 휘도가 맵핑된 데이터일 수 있다. PLC 데이터는 APL과 휘도를 맵핑한 그래프, 테이블 등의 형태로 메모리(140)에 저장되어 있을 수 있다.
도 7은 본 개시의 실시 예에 따른 PLC 데이터의 일 예가 도시된 도면이다.
예를 들어, 메모리(140)에는 도 7에 도시된 바와 같은 PLC 데이터가 저장되어 있을 수 있고, 도 7의 PLC 데이터는 APL에 따라 휘도가 맵핑된 데이터일 수 있다.
도 7의 PLC 데이터를 참고하며 제1 APL(APLa)과 제1 휘도(LLa)가 맵핑되고, 제2 APL(APLb)과 제2 휘도(LLb)가 맵핑되고, 제3 APL(APLc)과 제3 휘도(LLc)가 맵핑되고, 제4 APL(APLd)과 제4 휘도(LLd)가 맵핑되는 등의 정보를 포함할 수 있다. 따라서, 컨트롤러(170)는 APL이 제1 APL(APLa)인 경우 영상의 휘도를 제1 휘도(LLa)로 결정하고, APL이 제3 APL(APLc)인 경우 영상의 휘도를 제3 휘로(LLc)로 결정할 수 있다.
따라서, 컨트롤러(170)는 영상이 입력되면, 입력 영상의 APL을 산출하고, 산출된 APL에 따른 휘도를 결정할 수 있다. 컨트롤러(170)는 입력 영상의 APL을 프레임 단위 또는 씬(scene) 단위로 산출할 수 있다.
다음으로, 컨트롤러(170)가 입력 영상의 APL을 산출하는 방법에 대해 설명한다.
제1 실시 예에 따르면, 컨트롤러(170)는 입력 영상의 RGB 중 최대값에 기초하여 APL을 산출할 수 있다. 예를 들어, 컨트롤러(170)는 아래 수학식 1과 같은 수식을 통해 APL을 산출할 수 있다.
Figure PCTKR2022007899-appb-img-000001
수학식 1에 따르면, 컨트롤러(170)는 모든 픽셀에 대해 각 픽셀의 R값, G값, B값 중 최대값들을 합한 값에 기초하여 APL을 산출할 수 있다. 즉, 컨트롤러(170)는 풀 화이트(Full white) 영상 대비 입력 영상의 픽셀별 R값, G값, B값 중 최대값들을 합한 값의 비율을 APL로 산출할 수 있다. 이하, 제1 실시 예에 따른 APL 산출 방법을 제1 방식(또는 Max RGB 방식)이라고 명명하나, 이는 설명의 편의를 위한 예시에 불과하므로, 이에 제한되지 않음이 타당하다.
제2 실시 예에 따르면, 컨트롤러(170)는 입력 영상의 휘도 비율에 기초하여 APL을 산출할 수 있다. 여기서, 휘도 비율은 RGB의 밝기 비율에 따라 환산한 Y 값일 수 있따.
구체적으로, 컨트롤러(170)는 입력 영상의 RGB를 휘도 비율로 변환하여 APL을 산출할 수 있다. 예를 들어, 컨트롤러(170)는 아래 수학식 2와 같은 수식을 통해 APL을 산출할 수 있다.
Figure PCTKR2022007899-appb-img-000002
수학식 2에 따르면, 컨트롤러(170)는 모든 픽셀에 대해 각 픽셀의 R값, G값, B값 각각에 기 설정된 소정의 계수를 곱한 후 합한 값에 기초하여 APL을 산출할 수 있다. 즉, 컨트롤러(170)는 풀 화이트 영상 대비 입력 영상의 픽셀별 R값, G값, B값 각각에 기 설정된 소정의 계수를 곱한 후 합한 값의 비율을 APL로 산출할 수 있다. 이 때, R값에 0.21, G값에 0.72, B값에 0.07이 계수로 설정되어 있을 수 있으나, 이는 예시에 불과하므로 이에 제한되지 않음이 타당하다. 이하, 제2 실시 예에 따른 APL 산출 방법을 제2 방식(또는 Y APL 방식)이라고 명명하나, 이는 설명의 편의를 위한 예시에 불과하므로, 이에 제한되지 않음이 타당하다.
한편, 수학식 1 및 수학식 2는 픽셀 데이터가 8 bit인 경우로 가정한 것으로, 픽셀 데이터에 따라 수학식 1 및 수학식 2의 상수 255는 변경될 수 있다. 예를 들어, 픽셀 데이터가 10 bit인 경우 수학식 1 및 수학식 2 각각의 상수 255는 1023으로 변경되어야 한다. 이하, 픽셀 데이터가 8 bit 인 경우로 가정하여 설명하나, 이는 설명의 편의를 위한 예시에 불과하므로, 이에 제한되지 않음이 타당하다.
아래 표 1은 입력 영상이 Full White(R, G, B=255, 255, 255), Full Red(R, G, B=255, 0, 0), Full Green(R, G, B=0, 255, 0), Full Blue(R, G, B=0, 0, 255)일 때 Max RGB 방식 및 Y APL 방식 각각에 따라 산출된 APL이다.
구분 Full White Full Red Full Green Full blue
APL APL APL APL
Max RGB 100% 100% 100% 100%
Y APL 100% 21% 72% 7%
Max RGB 방식에 따르면, 풀 화이트 영상, 풀 레드 영상, 풀 그린 영상 및 풀 블루 영상이 모두 동일 휘도로 결정된다. 도 7의 예시에 따를 경우, 풀 화이트 영상, 풀 레드 영상, 풀 그린 영상 및 풀 블루 영상 모두 휘도가 제1 휘도(LLa)로 결정되고, 따라서 채도가 높은 풀 레드 영상, 풀 그린 영상 또는 풀 블루 영상은 휘도가 다소 낮게 출력되는 문제가 있다.
한편, Y APL 방식에 따르면, 풀 화이트 영상 대비 풀 레드 영상, 풀 그린 영상 또는 풀 블루 영상의 휘도가 밝게 결정된다. 도 7의 예시를 참조하면, 경우 제1 APL(APLa)이 7(%), 제2 APL(APLb)이 21(%), 제3 APL(APLc)이 72(%), 제4 APL(APLd)이 100(%)일 수 있고, 따라서, 풀 화이트 영상의 휘도는 제1 휘도(LLa)로 결정되고, 풀 그린 영상의 휘도는 제1 휘도(LLa) 보다 높은 제2 휘도(LLb)로 결정되고, 풀 레드 영상의 휘도는 제2 휘도(LLb) 보다 높은 제3 휘도(LLc)로 결정되고, 풀 블루 영상의 휘도는 제3 휘도(LLc) 보다 높은 제4 휘도(LLd)로 결정될 수 있다. 즉, Y APL 방식에 따르면 영상의 색상 성분에 따라서 휘도가 높게 결정될 수 있다. 그러나, 이와 같이 영상의 색상 성분으로 인해 계속해서 고휘도로 출력된다면 잔상이 증가하고, 픽셀 수명이 저하되는 단점이 있다.
이에, 잔상 발생과 픽셀 수명 저하 문제를 최소화하면서, 채도 높은 영상의 휘도가 낮게 출력되는 문제를 최소화하고자 한다. 본 개시의 실시 예에 따른 디스플레이 장치(100)는 채도를 고려하여 APL을 산출함으로써 상술한 문제들을 최소화하고자 한다.
컨트롤러(170)는 채도에 따라 제1 방식에 따른 APL과 제2 방식에 따른 APL을 조합하여 최종 APL을 산출하고자 한다. 보다 상세하게, 컨트롤러(170)는 채도가 높을수록 제2 방식(Y APL 방식)에 따른 APL 비중을 제1 방식(Max RGB) 방식에 따른 APL 비중 보다 높게 조절하여 최종 APL을 산출하여, 채도가 높은 영상의 휘도가 낮게 출력되는 문제를 개선하고, 채도가 낮을수록 제1 방식(Max RGB 방식)에 따른 APL 비중을 제2 방식(Y APL 방식)에 따른 APL 비중 보다 높게 조절하여 고휘도 출력으로 인한 잔상 발상 및 픽셀 수명 저하 문제를 개선하고자 한다.
도 8은 본 개시의 실시 예에 따른 디스플레이 장치가 채도를 고려하여 APL을 산출하는 방법을 설명하기 위한 제어 블록도이다.
본 개시의 실시 예에 따른 디스플레이 장치(100)는 RGB 획득부(301), 채도 획득부(303), 가중치 획득부(305) 및 APL 획득부(307)를 포함할 수 있다. 상술한 구성들은 그 역할에 따라 구분되는 상이한 구성들로 도시되어 있으나, 이는 설명의 편의를 위한 예시에 불과하다. 즉, 상술한 구성들 중 적어도 2 이상이 하나의 구성으로 구현될 수도 있다.
본 개시의 일 실시 예에 따르면, RGB 획득부(301), 채도 획득부(303), 가중치 획득부(305) 및 APL 획득부(307)는 컨트롤러(170)에 포함될 수 있다. 즉, 컨트롤러(170)는 RGB 획득부(301), 채도 획득부(303), 가중치 획득부(305) 및 APL 획득부(307)를 포함할 수 있다.
RGB 획득부(301)는 입력 영상의 RGB를 획득할 수 있다. RGB 획득부(301)는 입력 영상의 프레임별 RGB를 획득할 수 있다. RGB 획득부(301)는 각 프레임의 픽셀별 RGB를 획득할 수 있다. 여기서, RGB는 R값, G값 및 B값을 의미할 수 있다. R값, G값 및 B값은 픽셀 데이터에 따라 다를 수 있다. 예를 들어, 픽셀 데이터가 8 bit인 경우 R값, G값 및 B값은 0 ~ 255 의 값을 갖고, 픽셀 데이터가 10 bit인 경우 R값, G값 및 B값은 0 ~ 1023 의 값을 갖을 수 있다.
채도 획득부(303)는 입력 영상의 채도(saturation)을 획득할 수 있다. 채도 획득부(303)는 입력 영상의 프레임별 채도를 획득할 수 있다. 일 실시 예에 따르면, 채도 획득부(303)는 아래 수학식 3과 같은 수식을 통해 채도를 획득할 수 있다.
Figure PCTKR2022007899-appb-img-000003
즉, 채도 획득부(303)는 픽셀 별로 R값, G값 및 B값 중 최대 값과 최소 값의 차를 최대 값으로 나누는 연산을 통해 채도를 획득할 수 있다. 예를 들어, 채도 획득부(303)는 R값, G값, B값이 255, 0, 0인 경우 채도를 1(즉, 100%)로 획득하고, R값, G값, B값이 255, 255, 255인 경우 채도를 0(즉, 0%)로 획득하고, R값, G값, B값이 207, 65, 209인 경우 채도를 0.68(즉, 68%)로 획득할 수 있다.
가중치 획득부(305)는 채도 획득부(303)에 의해 획득된 채도에 따라 가중치를 획득할 수 있다. 여기서, 가중치는 최종 APL에 반영될 제1 방식에 따른 APL 비중과 제2 방식에 따른 APL 비중을 결정하는 상수일 수 있다. 가중치 획득부(305)는 채도에 따라 가중치를 상이하게 획득할 수 있다. 가중치 획득부(305)는 채도에 따른 가중치가 미리 맵핑되어 있는 가중치 데이터에 기초하여 가중치를 획득할 수 있고, 이에 대해서는 도 10에서 상세히 설명하기로 한다.
가중치 획득부(305)는 채도가 높을수록 제2 방식에 따른 APL의 비중이 높은 최종 APL이 산출되도록 가중치를 결정하고, 채도가 낮을수록 제1 방식에 따른 APL의 비중이 높은 최종 APL이 산출되도록 가중치를 결정할 수 있다.
APL 획득부(307)는 가중치 획득부(305)에 의해 획득된 가중치에 기초하여 입력 영상의 APL을 최종으로 획득할 수 있다.
컨트롤러(170)는 최종으로 획득된 APL에 기초하여 출력 영상의 휘도를 결정할 수 있다. 디스플레이(180)는 최종으로 획득된 APL에 따라 결정된 휘도에 기초하여 영상을 출력할 수 있다.
도 9는 본 개시의 실시 예에 따른 디스플레이 장치의 동작 방법이 도시된 순서도이다.
컨트롤러(170)는 각 픽셀의 RGB를 획득할 수 있다(S101).
컨트롤러(170)는 각 픽셀의 RGB에 기초하여 채도를 획득할 수 있다(S103).
컨트롤러(170)는 채도에 따른 가중치를 획득할 수 있다(S104).
메모리(140)에는 가중치 데이터가 저장되어 있을 수 있고, 컨트롤러(170)는 가중치 데이터에 기초하여 채도에 따른 가중치를 획득할 수 있다.
도 10을 참고하여, 본 개시의 실시 예에 따른 가중치 데이터에 대해 설명한다.
도 10은 본 개시의 실시 예에 따른 가중치 데이터의 일 예가 도시된 도면이다.
가중치 데이터는 채도 별 가중치(α)가 맵핑된 데이터일 수 있다. 가중치 데이터는 채도에 따른 가중치(α)가 커브(curve)의 형태, LUT(Look-Up Table)의 형태 등으로 저장될 수 있다.
가중치 데이터에는 채도가 높을수록 가중치(α)도 높아지도록 채도와 가중치가 맵핑되어 있을 수 있다. 예를 들어, 가중치 데이터는 채도가 0일 때 가중치(α)가 0이고, 채도가 1(즉, 100%)일 때 가중치(α)가 최대 값을 갖도록 채도와 가중치가 맵핑되어 있을 수 있고, 여기서 최대 값은 255일 수 있으나, 이는 예시적인 것에 불과하며 픽셀 데이터에 따라 달라질 수 있다.
한편, 채도와 가중치(α)는 정비례할 수도 있으나, 소정의 비례상수 k에 따라 비례할 수도 있다. 그리고, 소정의 비례상수 k는 채도 구간에 따라 달라질 수도 있다. 예를 들어, 채도가 0~0.3(0~30%)일 때 가중치는 비례상수 0.8에 따라 채도와 비례하고, 채도가 0.3~0.7(30~70%)일 때 가중치는 비례상수 1.2에 따라 채도와 비례하고, 채도가 0.7~1(70~100%)일 때 가중치는 비례상수 1에 따라 채도와 비례할 수 있으나, 이는 설명의 편의를 위한 예시에 불과하므로, 이에 제한되지 않음이 타당하다.
예를 들어, 컨트롤러(170)는 채도가 제1 레벨일 때 가중치(α)를 제1 값으로 획득하고, 채도가 제1 레벨 보다 높은 제2 레벨일 때 가중치(α)를 제1 값 보다 높은 제2 값으로 획득할 수 있다.
다시, 도 9를 설명한다.
컨트롤러(170)는 가중치에 기초하여 APL을 획득할 수 있다(S105).
컨트롤러(170)는 가중치에 따라 상술한 제1 방식에 따른 APL과 제2 방식에 따른 APL을 조합하여 APL을 획득할 수 있다. 즉, 컨트롤러(170)는 가중치에 따라 최종 획득되는 APL에서 제1 방식에 따른 APL이 차지하는 비중과 제2 방식에 따른 APL이 차지하는 비중을 결정할 수 있다. 이와 같이, 가중치에 따른 최종 APL은 다음의 수학식 4와 같은 수식에 기초하여 산출될 수 있다.
Figure PCTKR2022007899-appb-img-000004
여기서, 제1 방식과 제2 방식은 앞에서 설명한 바와 같다. 즉, 제1 방식은 Max RGB 방식으로 입력 영상의 RGB 중 최대값에 기초하여 APL을 산출하는 방식으로, 제2 방식은 Y APL 방식으로 입력 영상의 휘도 비율에 기초하여 APL을 산출하는 방식이다.
그리고, 수학식 4를 참고하면 알 수 있듯이, 가중치(α)가 높을수록 제2 방식에 따른 APL의 비중이 높고, 가중치(α)가 낮을수록 제1 방식에 따른 APL의 비중이 높은 APL이 최종으로 산출될 수 있다. 즉, 컨트롤러(170)는 채도가 높을수록 높은 가중치(α)를 획득하여 제2 방식에 따른 APL의 비중을 높인 최종 APL을 산출하고, 채도가 낮을수록 낮은 가중치(α)를 획득하여 제1 방식에 따른 APL의 비중을 높인 최종 APL을 산출할 수 있다.
한편, 실시 예에 따라, 컨트롤러(170)는 채도가 높을수록 가중치(α)를 낮게 산출하고, 그 대신 가중치(α)가 낮을수록 제2 방식에 따른 APL의 비중을 높인 최종 APL을 산출하도록 수학식 4가 아닌 다른 수식을 통해 APL을 산출할 수도 있다.
정리하면, 본 개시는 컨트롤러(170)가 채도가 높을수록 제2 방식에 따른 APL의 비중을 높인 최종 APL을 산출하고, 채도가 낮을수록 제1 방식에 따른 APL의 비중을 높인 최종 APL을 산출할 수 있다.
제1 방식에 따르면, 채도가 높은 영상이든 채도가 낮은 영상이든 APL이 높기 산출되는 경향에 의하여 휘도가 저하되는 단점이 있었다. 그런데, 본 개시와 같이 채도가 높을수록 제1 방식에 따른 APL의 비중을 낮추고 제2 방식에 따른 APL의 비중을 높여 최종 APL을 산출함으로써, 채도가 높은 영상의 휘도가 저하되는 문제를 최소화할 수 있다.
그리고, 제2 방식에 따르면, 색상 성분에 따라 APL이 낮게 획득됨에 따라 고휘도록 출력될 수 있고, 이에 따라 잔상 문제 및 픽셀의 수명 저하 문제가 발생할 수 있다.
따라서, 컨트롤러(170)는 채도가 높을수록 제2 방식에 따른 APL의 비중을 높여 휘도 저하 문제를 최소화하는 동시에, 채도가 낮을수록 제1 방식에 따른 APL의 비중을 높여 잔상 문제 및 픽셀의 수명 저하 문제까지 해결 가능한 이점이 있다.
컨트롤러(170)는 APL에 따라 영상의 휘도를 제어할 수 있다(S107).
컨트롤러(170)는 최종적으로 산출된 APL에 따른 휘도를 도 7에서 설명한 바와 같은 PLC 데이터에 기초하여 획득하고, 획득된 휘도에 따라 영상을 출력할 수 있다.
정리하면, 컨트롤러(170)는 입력 영상의 APL(Average Picture level)에 기초하여 디스플레이(180)에서 출력될 영상의 휘도를 획득하는데, 이 때 입력 영상의 채도에 기초하여 APL을 획득할 수 있다. 구체적으로, 컨트롤러(170)는 입력 영상의 RGB 최대 값에 기초하여 제1 APL을 산출하고, 입력 영상의 휘도 비율에 기초하여 제2 APL을 산출하고, 채도에 기초하여 제1 APL과 제2 APL을 조합하여 최종 APL을 획득할 수 있다. 즉, 컨트롤러(170)는 입력 영상의 채도에 따라 제1 APL 과 상기 제2 APL의 비중을 조절할 수 있다. 컨트롤러(170)는 입력 영상의 채도가 높을수록 제1 APL 보다 제2 APL의 비중이 높도록 최종 APL을 획득할 수 있다. 컨트롤러(170)는 입력 영상의 채도에 기초하여 가중치를 결정하고, 가중치에 따라 제1 APL과 제2 APL의 비중을 조절할 수 있다. 이를 위해, 메모리(140)는 가중치에 따라 제1 APL과 제2 APL의 비중을 조절하는 가중치 데이터를 저장하고 있을 수 있고, 가중치 데이터는 입력 영상의 채도가 높을수록제2 APL의 비중이 제1 APL 보다 높게 조절되도록 채도와 가중치가 맵핑된 룩업 테이블을 포함할 수 있다. 그리고, 메모리(140)는 APL에 따른 출력 영상의 휘도가 맵핑된 PLC 데이터를 더 저장하고 있을 수 있다.
다음으로, 도 11을 참고하여, 본 개시의 다양한 APL 산출 방식에 따른 출력 영상의 휘도를 설명한다.
도 11은 본 개시의 실시 예에 따른 디스플레이 장치에서 입력 영상에 따른 휘도가 도시된 그래프이다.
제1 그래프(G1)는 풀 화이트((R,G,B)=(255,255,255)) 영상이 입력될 때 제1 방식에 따라 산출된 APL에 따른 휘도를 나타낸 그래프이다. 특히, 제1 그래프(G1)는 풀 화이트 영역 대비 검정 영역의 면적을 늘리면서 다양한 APL에 대한 휘도를 나타낼 수 있다.
제2 그래프(G2)는 풀 레드((R,G,B)=(255,0,0)), 풀 그린((R,G,B)=(0,255,0)) 및 풀 블루((R,G,B)=(0,0,255))로 이루어진 영상이 입력될 때 제1 방식에 따라 산출된 APL에 따른 휘도를 나타낸 그래프이다. 특히, 제2 그래프(G2)는 풀 레드, 풀 그린 및 풀 블루 영역 대비 검정 영역의 면적을 늘리면서 다양한 APL에 대한 휘도를 나타낼 수 있다.
제1 및 제2 그래프(G1)(G2)를 참고하면, 풀 화이트 영상이든 풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이든 APL에 따른 휘도가 동일함을 확인할 수 있다. 즉, 색상 성분이 있는 영상이 입력되더라도 화이트 영상과 동일한 휘도로 출력되는 바, 색상 성분이 있는 영상의 경우 밝기가 어둡게 느껴질 수 있다.
한편, 제3 그래프(G3)는 풀 레드((R,G,B)=(255,0,0)), 풀 그린((R,G,B)=(0,255,0)) 및 풀 블루((R,G,B)=(0,0,255))로 이루어진 영상이 입력될 때 채도를 고려하여 산출된 APL에 따른 휘도를 나타낸 그래프이다. 즉, 제3 그래프(G3)는 풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이 입력될 때 채도에 따른 가중치에 기초하여 제1 방식에 따른 APL과 제2 방식에 따른 APL을 조합하여 산출된 APL에 따른 휘도를 나타낸 그래프이다. 특히, 제3 그래프(G3)는 풀 레드, 풀 그린 및 풀 블루 영역 대비 검정 영역의 면적을 늘리면서 다양한 APL에 대한 휘도를 나타낼 수 있다.
제2 및 제3 그래프(G2)(G3)를 참고하면, 동일하게 풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이 입력 되더라도, 채도에 따른 가중치를 고려하여 APL 산출 시에는 채도가 높을수록 휘도가 높게 출력되는 것을 확인할 수 있다. 즉, 디스플레이(180)는 풀 화이트 영상이 입력될 때 제1 휘도로 영상을 출력하고, 풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이 입력될 때 제1 휘도 보다 높은 제2 휘도로 영상을 출력할 수 있다.
본 발명의 일 실시 예에 의하면, 전술한 방법은, 프로그램이 기록된 매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 매체의 예로는, ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장장치 등이 있다.
상기와 같이 설명된 디스플레이 장치는 상기 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (15)

  1. 디스플레이; 및
    입력 영상의 APL(Average Picture level)에 기초하여 상기 디스플레이에서 출력될 영상의 휘도를 획득하는 컨트롤러를 포함하고,
    상기 컨트롤러는
    상기 입력 영상의 채도에 기초하여 상기 APL을 획득하는
    디스플레이 장치.
  2. 청구항 1에 있어서,
    상기 컨트롤러는
    상기 입력 영상의 RGB 최대 값에 기초하여 제1 APL을 산출하고,
    상기 입력 영상의 휘도 비율에 기초하여 제2 APL을 산출하고,
    상기 채도에 기초하여 상기 제1 APL과 상기 제2 APL을 조합하여 최종 APL을 획득하는
    디스플레이 장치.
  3. 청구항 2에 있어서,
    상기 컨트롤러는
    상기 입력 영상의 채도에 따라 상기 제1 APL 과 상기 제2 APL의 비중을 조절하는
    디스플레이 장치.
  4. 청구항 3에 있어서,
    상기 컨트롤러는
    상기 입력 영상의 채도가 높을수록 상기 제1 APL 보다 상기 제2 APL의 비중이 높도록 상기 최종 APL을 획득하는
    디스플레이 장치.
  5. 청구항 3에 있어서,
    상기 컨트롤러는
    상기 입력 영상의 채도에 기초하여 가중치를 결정하고,
    상기 가중치에 따라 상기 제1 APL과 상기 제2 APL의 비중을 조절하는
    디스플레이 장치.
  6. 청구항 5에 있어서,
    상기 가중치에 따라 상기 제1 APL과 상기 제2 APL의 비중을 조절하는 가중치 데이터를 저장하는 메모리를 더 포함하는
    디스플레이 장치.
  7. 청구항 6에 있어서,
    상기 가중치 데이터는
    상기 입력 영상의 채도가 높을수록 상기 제2 APL의 비중이 상기 제1 APL 보다 높게 조절되도록 채도와 가중치가 맵핑된 룩업 테이블을 포함하는
    디스플레이 장치.
  8. 청구항 6에 있어서,
    상기 메모리는
    상기 APL에 따른 출력 영상의 휘도가 맵핑된 PLC(Peak Luminance Curve) 데이터를 더 저장하는
    디스플레이 장치.
  9. 청구항 1에 있어서,
    상기 디스플레이는
    풀 화이트 영상이 입력될 때 제1 휘도로 영상을 출력하고,
    풀 레드, 풀 그린 및 풀 블루로 이루어진 영상이 입력될 때 상기 제1 휘도 보다 높은 제2 휘도로 영상을 출력하는
    디스플레이 장치.
  10. 청구항 1에 있어서,
    상기 컨트롤러는
    상기 입력 영상의 RGB를 획득하는 RGB 획득부;
    상기 입력 영상의 채도를 획득하는 채도 획득부;
    상기 입력 영상의 채도에 기초하여 가중치를 획득하는 가중치 획득부; 및
    상기 가중치에 기초하여 상기 APL을 획득하는 APL 획득부를 포함하는
    디스플레이 장치.
  11. 입력 영상의 APL(Average Picture level)을 획득하는 단계;
    상기 입력 영상의 APL에 기초하여 휘도를 획득하는 단계; 및
    상기 획득된 휘도로 영상을 출력하는 단계를 포함하고,
    상기 입력 영상의 채도에 기초하여 상기 APL을 획득하는 단계를 더 포함하는
    디스플레이 장치의 동작 방법.
  12. 청구항 11에 있어서,
    상기 APL을 획득하는 단계는
    상기 입력 영상의 RGB 최대 값에 기초하여 제1 APL을 산출하는 단계,
    상기 입력 영상의 휘도 비율에 기초하여 제2 APL을 산출하는 단계, 및
    상기 채도에 기초하여 상기 제1 APL과 상기 제2 APL을 조합하여 최종 APL을 획득하는 단계를 포함하는
    디스플레이 장치의 동작 방법.
  13. 청구항 12에 있어서,
    상기 APL을 획득하는 단계는
    상기 입력 영상의 채도에 따라 상기 제1 APL 과 상기 제2 APL의 비중을 조절하는 단계를 더 포함하는
    디스플레이 장치의 동작 방법.
  14. 청구항 13에 있어서,
    상기 제1 APL 과 상기 제2 APL의 비중을 조절하는 단계는
    상기 입력 영상의 채도에 기초하여 가중치를 결정하고, 상기 가중치에 따라 상기 제1 APL과 상기 제2 APL의 비중을 조절하는 단계인
    디스플레이 장치의 동작 방법.
  15. 청구항 14에 있어서,
    상기 입력 영상의 채도가 높을수록 상기 제2 APL의 비중이 상기 제1 APL 보다 높게 조절되도록 채도와 가중치가 맵핑된 가중치 데이터를 저장하는 단계를 더 포함하는
    디스플레이 장치의 동작 방법.
PCT/KR2022/007899 2022-06-03 2022-06-03 디스플레이 장치 및 그의 동작 방법 WO2023234445A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/007899 WO2023234445A1 (ko) 2022-06-03 2022-06-03 디스플레이 장치 및 그의 동작 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/007899 WO2023234445A1 (ko) 2022-06-03 2022-06-03 디스플레이 장치 및 그의 동작 방법

Publications (1)

Publication Number Publication Date
WO2023234445A1 true WO2023234445A1 (ko) 2023-12-07

Family

ID=89025020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007899 WO2023234445A1 (ko) 2022-06-03 2022-06-03 디스플레이 장치 및 그의 동작 방법

Country Status (1)

Country Link
WO (1) WO2023234445A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353069A (ja) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd 彩度適応的な映像向上装置およびその方法
KR20110099981A (ko) * 2010-03-03 2011-09-09 삼성모바일디스플레이주식회사 유기전계발광 표시장치 및 그 구동방법
KR101147100B1 (ko) * 2005-06-20 2012-05-17 엘지디스플레이 주식회사 액정 표시장치의 구동장치 및 구동방법
KR20140081383A (ko) * 2012-12-21 2014-07-01 엘지디스플레이 주식회사 유기발광 표시장치 및 이의 구동방법
KR20190012537A (ko) * 2017-07-27 2019-02-11 엘지디스플레이 주식회사 표시장치, 표시패널, 컨트롤러 및 휘도 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353069A (ja) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd 彩度適応的な映像向上装置およびその方法
KR101147100B1 (ko) * 2005-06-20 2012-05-17 엘지디스플레이 주식회사 액정 표시장치의 구동장치 및 구동방법
KR20110099981A (ko) * 2010-03-03 2011-09-09 삼성모바일디스플레이주식회사 유기전계발광 표시장치 및 그 구동방법
KR20140081383A (ko) * 2012-12-21 2014-07-01 엘지디스플레이 주식회사 유기발광 표시장치 및 이의 구동방법
KR20190012537A (ko) * 2017-07-27 2019-02-11 엘지디스플레이 주식회사 표시장치, 표시패널, 컨트롤러 및 휘도 제어 방법

Similar Documents

Publication Publication Date Title
WO2019035657A1 (en) IMAGE DISPLAY APPARATUS
WO2015076608A1 (ko) 비디오 처리 방법 및 비디오 처리 장치
WO2022177043A1 (ko) 디스플레이 장치
WO2021033796A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2019098778A1 (en) Display apparatus, method for controlling the same and image providing apparatus
WO2021040447A1 (en) Image display apparatus
WO2021080209A1 (en) Display apparatus and operating method thereof
WO2020060186A1 (ko) 영상표시장치
WO2020209464A1 (en) Liquid crystal display device
WO2020235698A1 (ko) 유기 발광 다이오드 표시 장치
WO2017164608A1 (en) Image display apparatus
WO2021010529A1 (ko) 디스플레이 장치
WO2021137309A1 (ko) 영상표시장치 및 그 동작방법
WO2022025343A1 (en) Organic light-emitting diode display device and operating method thereof
WO2023234445A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2019112218A1 (ko) 디스플레이 장치, 및 그 제어 방법
WO2022092534A1 (ko) 디스플레이 장치 및 그의 로컬 디밍 제어 방법
WO2020060187A1 (ko) 영상표시장치
WO2020130233A1 (ko) 유기 발광 다이오드 표시 장치
WO2021029469A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2021085672A1 (ko) 디스플레이 장치 및 이의 제어 방법
WO2023282384A1 (ko) 유기 발광 다이오드 표시 장치
WO2021020627A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2021040073A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2021221191A1 (ko) 신호 처리 장치, 및 이를 구비하는 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944983

Country of ref document: EP

Kind code of ref document: A1