WO2023234351A1 - All-solid-state lithium ion secondary battery and method for producing all-solid-state lithium ion secondary battery - Google Patents

All-solid-state lithium ion secondary battery and method for producing all-solid-state lithium ion secondary battery Download PDF

Info

Publication number
WO2023234351A1
WO2023234351A1 PCT/JP2023/020287 JP2023020287W WO2023234351A1 WO 2023234351 A1 WO2023234351 A1 WO 2023234351A1 JP 2023020287 W JP2023020287 W JP 2023020287W WO 2023234351 A1 WO2023234351 A1 WO 2023234351A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
solid
electrode active
negative electrode
Prior art date
Application number
PCT/JP2023/020287
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 白鳥
健吾 齋藤
健太 渡辺
伸太郎 安井
雅俊 東海林
Original Assignee
富士フイルム株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東京工業大学 filed Critical 富士フイルム株式会社
Publication of WO2023234351A1 publication Critical patent/WO2023234351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals

Definitions

  • the present invention relates to an all-solid lithium ion secondary battery and a method for manufacturing an all-solid lithium ion secondary battery.
  • organic solvents with high ionic conductivity have been used as electrolytes in lithium ion secondary batteries.
  • organic solvents are flammable, there is a safety problem.
  • FIG. 1 shows the basic configuration of an all-solid-state lithium-ion secondary battery.
  • the all-solid-state lithium ion secondary battery 10 includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side.
  • the layers are in contact with each other and have an adjacent structure.
  • a sulfide-based solid electrolyte or an oxide-based solid electrolyte is mainly used.
  • Sulfide-based solid electrolytes are soft and deform plastically, so the particles are bound together just by pressure molding. Therefore, sulfide-based solid electrolytes have low interparticle interfacial resistance and excellent ionic conductivity.
  • sulfide-based solid electrolytes have the problem of reacting with water and generating toxic hydrogen sulfide.
  • Patent Document 1 discloses a solid electrolyte formed of a lithium-containing oxide having a specific elemental composition, and describes that this solid electrolyte exhibits high ionic conductivity.
  • high-temperature sintering treatment is required.
  • Patent Document 2 describes a lithium compound whose lithium ion conductivity at 25°C is 1.0 ⁇ 10 -6 S/cm or more and a lithium compound obtained from X-ray total scattering measurement.
  • a complex with lithium tetraborate is described whose reduced two-body distribution function G(r) exhibits a particular profile.
  • this composite is composed of a lithium-containing oxide, lithium tetraborate plastically deforms between the lithium compounds and plays the role of connecting the lithium compounds, so this It is said that the composite can form a lithium ion conductor exhibiting good lithium ion conductivity by pressure treatment without being subjected to high temperature sintering treatment.
  • Patent Document 2 Although the composite described in Patent Document 2 is composed of a lithium-containing oxide, it is soft and can be used between particles without being subjected to sintering treatment or without adding a binder such as an organic polymer. It can ensure binding, and has properties that conventional oxide-based solid electrolytes have not been able to achieve.
  • a binder such as an organic polymer.
  • the conductivity of lithium ions is not currently sufficient for practical use as a solid electrolyte layer in all-solid-state lithium-ion secondary batteries, and that It has become clear that there is room for improvement.
  • the present invention is an all-solid-state lithium ion secondary battery using a lithium-containing oxide as a solid electrolyte layer, wherein the solid electrolyte layer can be formed using organic polymers, for example, without being subjected to high-temperature sintering treatment.
  • An all-solid-state lithium ion secondary battery that has excellent interparticle binding properties, higher lithium ion conductivity, and excellent safety even when a binder is not blended, and a method for manufacturing the same. The challenge is to provide the following.
  • An all-solid lithium ion secondary battery comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer arranged in this order,
  • the solid electrolyte layer includes a solid electrolyte containing a lithium-containing oxide containing Li, B, and O, a lithium salt, and water, and the lithium salt
  • the value of the ratio of the content of is 0.001 to 1.5 in molar ratio
  • the value of the ratio of the content of water is 1 to 12 in molar ratio
  • An all-solid-state lithium ion secondary battery wherein the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer is 1.3 V or more.
  • the positive electrode active material is LiCoO 2 , LiNiO 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , Li 2 MnO 3 -LiNiMnCoO 2 , Containing at least one of LiMn2O4 , LiNi0.5Mn1.5O4 , LiFePO4 , LiMnPO4 , LiCoPO4 , Li2CoP2O7 and LiNiPO4 ,
  • the negative electrode active material contains at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metal Li,
  • the all-solid lithium ion secondary battery according to [1] or [2], wherein the difference in discharge potential between the positive electrode active material and the negative electrode active material based on Li is 1.3 V or more.
  • the negative electrode active material is at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metallic Li.
  • the positive electrode active material is selected from LiCoO 2 , Li 2 MnO 3 -LiNiMnCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiMnPO 4 , LiCoPO 4 , Li 2 CoP 2 O 7 and LiNiPO 4 .
  • a method for manufacturing a lithium ion secondary battery is selected from LiCoO 2 , Li 2 MnO 3 -LiNiMnCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiMnPO 4 , LiCoPO 4 , Li 2 CoP 2 O 7 and LiNiPO
  • the all-solid-state lithium ion secondary battery of the present invention uses a lithium-containing oxide in the solid electrolyte layer, and the solid electrolyte layer can be made of, for example, an organic polymer without being subjected to high-temperature sintering treatment. Even when such a binder is not blended, it has excellent binding properties between particles, higher lithium ion conductivity, and excellent safety. Further, the method for manufacturing an all-solid lithium ion secondary battery of the present invention is a suitable manufacturing method for obtaining the above-mentioned all-solid lithium ion secondary battery of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of an all-solid-state lithium ion secondary battery.
  • FIG. 2 is a diagram showing an example of an X-ray diffraction pattern for explaining the X-ray diffraction characteristics of a preferred embodiment of the solid electrolyte (I) used in the present invention.
  • FIG. 3 is a diagram showing an example of the reduced two-body distribution function G(r) obtained from X-ray total scattering measurement of the solid electrolyte (I) used in the present invention.
  • FIG. 4 is a diagram showing an example of a spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20° C. or 120° C.
  • FIG. 5 is a diagram showing an example of a spectrum obtained when solid 7 Li-NMR measurement of lithium tetraborate crystal is performed at 20°C or 120°C.
  • FIG. 6 is a diagram showing an example of a spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20° C. for a preferred form of the solid electrolyte (I) used in the present invention.
  • FIG. 7 is a diagram in which the peaks shown in FIG. 6 are separated into waveforms.
  • FIG. 8 is a diagram showing an example of a Raman spectrum of a preferable form of the solid electrolyte (I) used in the present invention.
  • FIG. 5 is a diagram showing an example of a spectrum obtained when solid 7 Li-NMR measurement of lithium tetraborate crystal is performed at 20°C or 120°C.
  • FIG. 6 is a diagram showing an example of a spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20° C. for a preferred form of the solid electrolyt
  • FIG. 9 is a diagram showing a Raman spectrum of a lithium tetraborate crystal.
  • FIG. 10 is a diagram showing the reduced two-body distribution function G(r) obtained by X-ray total scattering measurement of powdered Li 2 B 4 O 7 crystal.
  • FIG. 11 is a diagram showing an X-ray diffraction pattern of powdered Li 2 B 4 O 7 crystal.
  • the all-solid lithium ion secondary battery of the present invention (hereinafter also referred to as "the secondary battery of the present invention") is an all-solid lithium ion secondary battery comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer arranged in this order.
  • the difference in discharge potential between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer is 1.3 V or more based on Li.
  • the solid electrolyte layer contains a solid electrolyte (I) having a specific composition described below.
  • the solid electrolyte layer in the secondary battery of the present invention contains the solid electrolyte (I) with a specific composition, it can be used without being subjected to high-temperature sintering treatment, as will be described later. Even when it is not blended, it has excellent binding properties between particles, higher lithium ion conductivity, and excellent safety. Furthermore, the solid electrolyte (I) having a specific composition contains two types of water: “free water” and "bound water”. This "bound water” interacts with the lithium-containing oxide and/or lithium salt, and the potential window of the solid electrolyte (I) becomes wider than the potential window of water, and it is no longer decomposed by redox even if the potential difference is 1.3 V or more.
  • a combination of a positive electrode active material and a negative electrode active material a combination in which the difference in discharge potential based on Li is 1.3 V or more can be adopted, and a secondary battery with increased capacity can be provided.
  • a positive electrode active material and a negative electrode active material a combination in which the difference in discharge potential based on Li is 1.3 V or more can be adopted, and a secondary battery with increased capacity can be provided.
  • water undergoes redox decomposition at a potential difference of 1.3 V or more, so the positive electrode active material and negative electrode active material used are
  • this problem is solved even though the solid electrolyte (I) contains water. I can do it.
  • the structure of the secondary battery of the present invention is not particularly limited as long as the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are arranged in this order, and there is no solid state between these layers and the adjacent positive electrode layer and negative electrode layer.
  • Each constituent layer (including a current collector, etc.) constituting the secondary battery of the present invention may have a single-layer structure or a multi-layer structure.
  • the solid electrolyte layer is a solid electrolyte (I) with a specific composition, and the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer
  • the solid battery configurations described in paragraphs [0021] to [0046] of JP 2016-001602 A can be referred to and applied to the present invention.
  • Each layer of the secondary battery of the present invention will be explained below.
  • the solid electrolyte layer constituting the secondary battery of the present invention is a layer formed of a solid electrolyte having a specific composition or a mixture of this solid electrolyte and other components.
  • This solid electrolyte with a specific composition includes a lithium-containing oxide containing Li, B, and O (hereinafter also referred to as a "lithium-containing oxide”), water, and a lithium salt.
  • the ratio of the content of lithium salt to the content of lithium-containing oxide is 0.001 to 1.5 in terms of molar ratio.
  • the ratio of the water content to the lithium-containing oxide content is 1 to 12 in terms of molar ratio.
  • a solid electrolyte with a specific composition in which the ratio of the lithium salt content and water content to the lithium-containing oxide content satisfies the above-mentioned specific molar ratio will be referred to as a "solid electrolyte ( Also referred to as ⁇ I)''.
  • the solid electrolyte (I) is usually an inorganic solid electrolyte.
  • the solid electrolyte (I) exhibits elastic properties that allow it to easily undergo plastic deformation.
  • a constituent layer such as a solid electrolyte layer containing solid electrolyte (I) formed by pressure treatment etc.
  • the adhesion between solid electrolytes (I) and/or the composition with solid electrolyte (I) Adhesion with other components present in the layer is improved, interfacial resistance can be reduced, and better ionic conductivity can be obtained.
  • this solid electrolyte (I) although it is a highly safe oxide-based solid electrolyte, it can achieve excellent lithium ion conductivity through pressure treatment, etc., without having to undergo high-temperature sintering treatment. Constituent layers such as the solid electrolyte layer shown can be formed.
  • the water contained in the solid electrolyte (I) includes at least bound water. It is not clear why the solid electrolyte (I) exhibits high lithium ion conductivity, but in the solid electrolyte (I), a soft hydration layer is likely to be formed on the surface of the lithium-containing oxide, and in this hydration layer, It is thought that a large amount of lithium derived from lithium salt is contained, and as a result, the ionic conductivity is further enhanced.
  • bound water means water other than water existing as free water, or an OH group bonded to a lithium-containing oxide.
  • the solid electrolyte (I) Even if the solid electrolyte (I) contains water in the above content ratio, it remains in the state of solid particles (including a state in which solid particles are bound together), and can be used as a solid electrolyte of an all-solid lithium ion secondary battery. It's something that works. That is, the solid electrolyte (I) contains bound water that is not removed or difficult to remove under normal drying conditions. Note that, as long as the solid electrolyte (I) functions as a solid electrolyte of an all-solid lithium ion secondary battery in the state of solid particles (a state that can be handled as a powder), the solid electrolyte (I) may contain free water.
  • the "all-solid lithium ion secondary battery” includes a form in which the solid electrolyte contains water, as long as the solid electrolyte can be handled as solid particles (solid powder).
  • the solid electrolyte (I) used in the present invention in which the ratio of the water content to the lithium-containing oxide content is 12 or less in terms of molar ratio, is neither in a paste-like nor gel-like state, but in a solid particle state. (solid powder) state.
  • the solid electrolyte (I) be in an amorphous state (synonymous with an amorphous state or an amorphous state) from the viewpoint of more easily exhibiting elastic properties that are more likely to be plastically deformed.
  • the solid electrolyte (I) being in an "amorphous state” means that it satisfies the following X-ray diffraction characteristics.
  • the first peak is .65° or less
  • the peak top is located in the range of 25.4 to 25.8° with a diffraction angle 2 ⁇
  • the second peak is with a full width at half maximum of 0.65° or less
  • the diffraction angle 2 ⁇ is 33.4
  • the peak top is located in the range of ⁇ 33.8°
  • the third peak has a full width at half maximum of 0.65° or less
  • the peak top is located in the range of the diffraction angle 2 ⁇ of 34.4 to 34.8°
  • peak X at least one peak (hereinafter referred to as "peak X") among the first peak, second peak, third peak, and fourth peak is present, the peak At least one of the peaks has an intensity ratio of 5.0 or less as calculated by the intensity measurement method described below.
  • the average intensity (Av1) in the range of +0.45° to +0.55° is calculated from the diffraction angle 2 ⁇ of the peak top of peak X, and the average intensity (Av1) in the range of ⁇ 0.55° to ⁇ 0.
  • the average intensity (Av2) in the range of 45° is calculated, and the additive average value of the above Av1 and Av2 is calculated.
  • the value of the ratio of the peak intensity at the peak top of peak X to this additive average value is defined as the intensity ratio.
  • the X-ray diffraction characteristics will be explained in more detail.
  • the solid electrolyte (I) satisfies the above-mentioned X-ray diffraction characteristics and is in an amorphous state.
  • the full width at half maximum (FWHM) of a peak means the peak width (°) at 1/2 point of the peak intensity at the peak top.
  • FIG. 2 is a diagram showing an example of a peak X appearing in a diffraction pattern obtained from X-ray diffraction measurement using CuK ⁇ rays of solid electrolyte (I).
  • a specific peak whose peak top intensity is 1 is shown in the X-ray diffraction pattern shown in FIG. 2.
  • the average intensity (Av1) in the range of +0.45° to +0.55° is calculated from the diffraction angle 2 ⁇ at the peak top of peak
  • the average intensity (Av2) in the range of -0.55° to -0.45° from the top diffraction angle 2 ⁇ is calculated.
  • the average value of Av1 and Av2 is calculated, and the ratio of intensity 1 to the average value is determined as the intensity ratio.
  • the first to fourth peaks above are mainly peaks derived from the crystal structure in the solid electrolyte (for example, the crystal structure of lithium tetraborate), and if these peaks do not exist, it is in an amorphous state. It means something.
  • the fact that the intensity ratio of at least one of the peaks X is 5.0 or less means that the solid electrolyte (I) is This means that there is almost no crystal structure that would impede the effects of the invention.
  • a peak derived from a specific component eg, lithium salt
  • the above X-ray diffraction measurement is performed using CuK ⁇ radiation under measurement conditions of 0.01°/step and 3°/min.
  • the intensity ratio of at least one of the peaks X is 3.0 or less. is preferred. Among them, none of the first peak, second peak, third peak and fourth peak are present, or at least one of the first peak, second peak, third peak and fourth peak is present. Even if two peaks X exist, it is more preferable that the intensity ratio of at least one of the peaks X is 2.0 or less.
  • the diffraction X-ray intensity is the highest.
  • a large peak is selected as the first peak, and the above-mentioned X-ray diffraction characteristics are determined.
  • the peak top is located in the range of 25.4 to 25.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest.
  • a large peak is selected as the second peak, and the above-mentioned X-ray diffraction characteristics are determined.
  • the peak top is located in the range of 33.4 to 33.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest.
  • a large peak is selected as the third peak, and the above-mentioned X-ray diffraction characteristics are determined.
  • the peak top is located in the range of 34.4 to 34.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest.
  • a large peak is selected as the fourth peak, and the above-mentioned X-ray diffraction characteristics are determined.
  • the solid electrolyte (I) preferably satisfies the following requirement A-1 in terms of total X-ray scattering properties. Further, when the solid electrolyte (I) satisfies the above-mentioned X-ray diffraction characteristics, this solid electrolyte (I) usually satisfies the following requirement A-2.
  • G(r) obtained from X-ray total scattering measurement of the solid electrolyte (I)
  • the absolute value of G(r) is less than 1.0 in the range where r is more than 5 ⁇ and less than 10 ⁇ .
  • the oxide solid electrolyte (I) When the solid electrolyte (I) satisfies requirements A-1 and A-2, it has a short-range ordered structure related to the interatomic distances of B-O and B-B, but has almost no long-range ordered structure. Therefore, the oxide solid electrolyte itself is softer than conventional lithium-containing oxides and exhibits elastic properties that make it easier to plastically deform. As a result, in the layer containing the solid electrolyte (I) formed by pressure treatment etc., the adhesion between the solid electrolytes (I) and/or the constituent layers such as the solid electrolyte (I) and the solid electrolyte layer etc. It is presumed that adhesion with other components present therein is improved, interfacial resistance can be reduced, and better ionic conductivity can be obtained. Requirement A-1 and Requirement A-2 will be explained in more detail with reference to the drawings.
  • FIG. 3 shows an example of the reduced two-body distribution function G(r) obtained by X-ray total scattering measurement of the solid electrolyte (I).
  • the vertical axis in FIG. 3 is a reduced two-body distribution function obtained by Fourier transforming X-ray scattering, and indicates the probability that an atom exists at a position at a distance r.
  • X-ray total scattering measurement can be performed with SPring-8 BL04B2 (acceleration voltage 61.4 keV, wavelength 0.2019 ⁇ ).
  • the reduced two-body distribution function G(r) is obtained by converting the scattering intensity I obs obtained by experiment according to the following procedure. First, the scattering intensity I obs is expressed by the following formula (1).
  • the structure factor S(Q) can be obtained by dividing the coherent scattering I coh by the product of the number N of atoms and the square of the atomic scattering factor f, as expressed by the following formula (2).
  • I obs I coh + I in coh + I fluorescence (1)
  • a structure factor S(Q) is used for PDF (Pair Distribution Function) analysis.
  • the only required intensity is the coherent scattering I coh .
  • Incoherent scattering I incoh and X-ray fluorescence I fluorescence can be subtracted from the scattering intensity I obs by blank measurements, subtraction using theoretical formulas, and detector discriminators.
  • the coherent scattering I coh is expressed by Debye's scattering formula (formula (3) below) (N: total number of atoms, f: atomic scattering factor, r ij : interatomic distance between ij).
  • the two-body distribution function g(r) is expressed by the following formula (7).
  • the two-body distribution function can be obtained by Fourier transformation of the structure factor S(Q).
  • G(r) which oscillates around 0, represents the density difference from the average density at each interatomic distance, and if there is a correlation at a specific interatomic distance, the average density will be higher than 1. Therefore, it reflects the distance and coordination number of elements corresponding to local to intermediate distances.
  • ⁇ (r) approaches the average density, so g(r) approaches 1. Therefore, in an amorphous structure, the larger r becomes, the less order there is, so g(r) becomes 1, that is, G(r) becomes 0.
  • r is 1.43 ⁇ 0.2 ⁇ .
  • G(r) obtained from the X-ray total scattering measurement of the solid electrolyte (I)
  • r is 1.43 ⁇ 0.2 ⁇ .
  • the peak top of the first peak P1 is located at 1.43 ⁇
  • the peak top of the second peak P2 is located at 2.40 ⁇ .
  • the absolute value of G(r) is less than 1.0 in the range of more than 5 ⁇ and less than 10 ⁇ .
  • the fact that the absolute value of G(r) is less than 1.0 in the range where r is more than 5 ⁇ and less than 10 ⁇ means that there is almost no long-range ordered structure in the solid electrolyte (I). .
  • the method for bringing the solid electrolyte (I) into an amorphous state there is no particular restriction on the method for bringing the solid electrolyte (I) into an amorphous state.
  • a method of using a mechanically milled lithium-containing oxide as a raw material This mechanical milling process may be performed in the presence of a lithium salt.
  • -Mechanical milling process- Mechanical milling is a process in which a sample is ground while applying mechanical energy.
  • the mechanical milling treatment include milling treatment using a ball mill, vibration mill, turbo mill, or disk mill, and from the viewpoint of obtaining the solid electrolyte (I) in an amorphous state with high productivity, the milling treatment using a ball mill is preferred.
  • ball mills include vibrating ball mills, rotary ball mills, and planetary ball mills, with planetary ball mills being more preferred.
  • the material of the grinding balls is not particularly limited, and examples thereof include agate, silicon nitride, zirconia, alumina, and iron-based alloys, with stabilized zirconia (YSZ) being preferred.
  • the average particle diameter of the grinding balls is not particularly limited, and is preferably 1 to 10 mm, more preferably 3 to 7 mm, from the standpoint of producing solid electrolyte (I) with good productivity.
  • the above average particle diameter is determined by randomly measuring the diameters of 50 grinding balls and taking the arithmetic average of the diameters. If the crushing ball is not perfectly spherical, the major axis is the diameter.
  • the number of grinding balls is not particularly limited.
  • the material of the grinding pot in the ball milling process is also not particularly limited. Examples include agate, silicon nitride, zirconia, alumina, and iron-based alloys, with stabilized zirconia (YSZ) being preferred.
  • the rotation speed of the ball milling process is not particularly limited, and can be, for example, 200 to 700 rpm, preferably 350 to 550 rpm.
  • the processing time of the ball milling process is not particularly limited, and can be, for example, 10 to 200 hours, preferably 20 to 140 hours.
  • the atmosphere of the ball milling process may be the atmosphere or an inert gas (eg, argon gas, helium gas, nitrogen gas, etc.) atmosphere.
  • Step 1A Mechanically milling the lithium-containing oxide in the presence of a lithium salt
  • Step 2A Mixing the product obtained in Step 1A with water
  • Step 3A Dispersion obtained in Step 2A Step of obtaining solid electrolyte (I) by removing water from
  • the amount of lithium salt used is not particularly limited, and is appropriately adjusted so as to obtain the solid electrolyte (I) defined in the present invention.
  • the amount of water used is not particularly limited.
  • the amount of water used can be 10 to 200 parts by weight, and preferably 50 to 150 parts by weight, relative to 100 parts by weight of the product obtained in step 1A.
  • the method of mixing the product obtained in Step 1A and water is not particularly limited, and may be mixed all at once, or may be mixed by adding water stepwise to the product obtained in Step 1A. good.
  • ultrasonic treatment may be performed as necessary.
  • the time for ultrasonication is not particularly limited, and can be, for example, 10 minutes to 5 hours.
  • Step 3A is a step of removing water from the dispersion obtained in Step 2A to obtain solid electrolyte (I).
  • the method for removing water from the dispersion obtained in step 2A is not particularly limited, and water may be removed by heat treatment or vacuum drying treatment.
  • the drying conditions are not particularly limited, and, for example, normal drying conditions applied to general drying processes can be appropriately applied, and examples thereof include the drying conditions applied in Examples. Typical drying conditions include, for example, natural drying ( ⁇ 30% RH), drying in a desiccator ( ⁇ 5% RH), and drying by heating up to 100° C. for 30 minutes to 2 hours.
  • step 0 may be performed in which the lithium-containing oxide is mechanically milled in an environment where no lithium salt is present.
  • Step 1B Mechanically milling the lithium-containing oxide
  • Step 2B Mixing the product obtained in Step 1B with water and lithium salt
  • Step 3B Remove water from the dispersion obtained in Step 2B Step of obtaining solid electrolyte (I)
  • the method for performing steps 1B to 3B differs from the method for performing steps 1A to 3A above in that a lithium salt is mixed in the lithium-containing oxide subjected to mechanical milling treatment in the presence of water. Therefore, the difference between Process 1B and Process 1A is that in Process 1A, mechanical milling is performed in the presence of lithium salt, whereas in Process 1B, mechanical milling is performed without using lithium salt. The point is that Therefore, in Step 2B, the product obtained in Step 1B, water, and lithium salt are mixed.
  • the procedure of Step 2B is not particularly limited, and it may be a method (method 1) of mixing the product obtained in Step 1B, water, and lithium salt all at once, or a method of mixing the product obtained in Step 1B with water and lithium salt at once, or and water to prepare a dispersion, and then the resulting dispersion and lithium salt may be mixed (Method 2), or the product obtained in Step 1B and water may be mixed.
  • a method (method 3) may be used in which dispersion 1 is prepared by mixing, solution 2 is prepared by mixing the lithium salt and water, and dispersion 1 and solution 2 are mixed.
  • a dispersion treatment such as ultrasonication may be appropriately performed.
  • Method 2 when mixing a dispersion of the product obtained in Step 1B and water with a lithium salt, if there is too much lithium salt, the resulting liquid tends to gel, and the mixing of the lithium salt is difficult. Quantity is limited. On the other hand, in method 3, even if the product obtained in step 1B and the lithium salt are mixed in equimolar amounts, gelation of the liquid is unlikely to occur, and the amount of lithium salt mixed can be increased. . From this point of view, method 3 is preferred. The procedures of Step 3B and Step 3A are the same.
  • Step 1C A step of mechanically milling the lithium-containing oxide
  • Step 2C A step of mixing the product obtained in Step 1C with water
  • Step 3C A process of removing water from the dispersion obtained in Step 2C.
  • Step 1C and Step 1B are the same.
  • the procedures of Step 2C and Step 2A are the same.
  • Step 3C differs from Steps 3A and 3B in that a product obtained by removing water from the dispersion obtained in Step 2C is mixed with a lithium salt.
  • the amount of lithium salt used is not particularly limited, and is appropriately adjusted so as to obtain the solid electrolyte (I) defined in the present invention.
  • the method of mixing the product obtained by removing water from the dispersion obtained in step 2C with the lithium salt is not particularly limited, and the above product is impregnated with a solution of the lithium salt dissolved in water. A method of mixing both may be used.
  • the molar ratio of the lithium salt content to the lithium-containing oxide content is 0.001 to 1.5, and the water content is The value of the ratio is 1 to 12 in terms of molar ratio.
  • the value of the ratio of the content of lithium salt to the content of lithium-containing oxide in solid electrolyte (I) is preferably 0.001 to 1.2 in molar ratio, more preferably 0.01 to 1.2, More preferably 0.1 to 1.2, particularly preferably 0.5 to 1.2.
  • the molar ratio of the water content to the lithium-containing oxide content in the solid electrolyte (I) is more preferably 2 to 12, and even more preferably 3 to 11.
  • this molar ratio is also preferably 2 to 10, preferably 2 to 8, preferably 2 to 7, and also preferably 3 to 7.
  • the molar amounts of the lithium-containing oxide, lithium salt, and water in the solid electrolyte (I) can be determined based on elemental analysis. Examples of the elemental analysis include the elemental analysis method described in the elemental composition of the solid electrolyte (I) below. Moreover, the molar amount of water can also be determined by the Karl Fischer method.
  • the content of water in the solid electrolyte (I) is preferably 50% by mass or less, more preferably 45% by mass or less, even more preferably 40% by mass or less, and particularly preferably 35% by mass or less. Further, the content of water in the solid electrolyte (I) is also preferably 30% by mass or less, and preferably 25% by mass or less. Further, the content of water in the solid electrolyte (I) is usually 5% by mass or more, preferably 10% by mass or more, and also preferably 15% by mass or more.
  • the content of water in the solid electrolyte (I) is preferably 5 to 50% by mass, more preferably 5 to 45% by mass, even more preferably 10 to 40% by mass, particularly preferably 10 to 35% by mass, It is also preferably 10 to 30% by weight, preferably 15 to 30% by weight, and preferably 15 to 25% by weight.
  • the content of the lithium-containing oxide in the solid electrolyte (I) is preferably 20 to 80% by mass, more preferably 20 to 75% by mass, and even more preferably 25 to 70% by mass.
  • the content of the lithium salt in the solid electrolyte (I) is preferably 0.5 to 60% by mass, more preferably 1.0 to 55% by mass, even more preferably 2.0 to 50% by mass, and 5. It is also preferably 0 to 50% by mass.
  • the lithium-containing oxide constituting the solid electrolyte (I) contains Li, B, and O, as described above.
  • the above lithium-containing oxide is represented by Li 2+x B 4+y O 7+z (-0.3 ⁇ x ⁇ 0.3, -0.3 ⁇ y ⁇ 0.3, -0.3 ⁇ z ⁇ 0.3).
  • Such a lithium-containing oxide typically includes lithium tetraborate (Li 2 B 4 O 7 ). Further, the above lithium-containing oxide has Li 1+x B 3+y O 5+z (-0.3 ⁇ x ⁇ 0.3, -0.3 ⁇ y ⁇ 0.3, -0.3 ⁇ z ⁇ 0.3). Also preferred are the compounds represented. Such a lithium-containing oxide typically includes lithium triborate (LiB 3 O 5 ).
  • the above lithium-containing oxide has Li 3+x B 11+y O 18+z (-0.3 ⁇ x ⁇ 0.3, -0.3 ⁇ y ⁇ 0.3, -0.3 ⁇ z ⁇ 0.3). Also preferred are the compounds represented. A typical example of such a lithium-containing oxide is Li 3 B 11 O 18 . Further, the above lithium-containing oxide has Li 3+x B 7+y O 12+z (-0.3 ⁇ x ⁇ 0.3, -0.3 ⁇ y ⁇ 0.3, -0.3 ⁇ z ⁇ 0.3). Also preferred are the compounds represented. A typical example of such a lithium-containing oxide is Li 3 B 7 O 12 .
  • the lithium-containing oxide is preferably at least one of the above Li 2+x B 4+y O 7+z , the above Li 1+x B 3+y O 5+z , Li 3+x B 11+y O 18+ z , and Li 3+x B 7+y O 12+z .
  • lithium-containing oxides such as LiBO 5 , Li 2 B 7 O 12 , LiB 2 O 3 (OH)H 2 O, and Li 4 B 8 O 13 (OH) 2 (H 2 O) 3 and the like can also be used.
  • the lithium-containing oxide is preferably in an amorphous state.
  • the lithium-containing oxide in the solid electrolyte (I) is also in the desired amorphous state so that the solid electrolyte (I) is in the above-mentioned amorphous state.
  • the lithium-containing oxide is preferably amorphous lithium tetraborate.
  • the lithium salt constituting the solid electrolyte (I) used in the present invention is not particularly limited, and examples include salts composed of Li + and anions, preferably salts composed of Li + and organic anions, More preferred is a salt composed of Li + and an organic anion having a halogen atom.
  • the lithium salt constituting the solid electrolyte (I) used in the present invention is an element of group 3 of the periodic table, an element of group 4 of the periodic table, an element of group 13 of the periodic table, an element of group 14 of the periodic table, an element of group 14 of the periodic table, or an element of group 14 of the periodic table.
  • LiN(R f1 SO 2 ) (R f2 SO 2 ) R f1 and R f2 each independently represent a halogen atom or a perfluoroalkyl group. R f1 and R f2 may be the same or different.
  • R f1 and R f2 are perfluoroalkyl groups
  • the number of carbon atoms in the perfluoroalkyl group is not particularly limited.
  • R f1 and R f2 are preferably a halogen atom or a perfluoroalkyl group having 1 to 6 carbon atoms, more preferably a halogen atom or a perfluoroalkyl group having 1 to 2 carbon atoms, and are halogen atoms. It is even more preferable.
  • the volume of the terminal group increases, steric hindrance increases, which becomes a factor that inhibits ion conduction. Therefore, when R f1 and R f2 are perfluoroalkyl groups, it is preferable that the number of carbon atoms is small.
  • the lithium salt that can be contained in the solid electrolyte (I) used in the present invention is not limited to the compound represented by the above formula (1). Examples of lithium salts that can be included in the solid electrolyte (I) used in the present invention are shown below.
  • Inorganic lithium salts Inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiSbF 6 ; Perhalates such as LiClO 4 , LiBrO 4 and LiIO 4 ; LiAlCl 4 etc. Inorganic chloride salt.
  • Oxalatoborate salts lithium bis(oxalato)borate and lithium difluorooxalatoborate.
  • lithium salts include LiF, LiCl, LiBr, LiI, Li 2 SO 4 , LiNO 3 , Li 2 CO 3 , CH 3 COOLi, LiAsF 6 , LiSbF 6 , LiAlCl 4 , and LiB(C 6 H 5 ) 4 and the like.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li(R f11 SO 2 ), LiN(R f11 SO 2 ) 2 , LiN(FSO 2 ) 2 , or LiN(R f11 SO 2 )(R f12 SO 2 ) is preferable, and LiPF 6 , LiBF 4 , LiN(R f11 SO 2 ) 2 , LiN(FSO 2 ) 2 or LiN(R f11 SO 2 )(R f12 SO 2 ) is more preferable. .
  • R f11 and R f12 each independently represent a perfluoroalkyl group, and the number of carbon atoms is preferably 1 to 6, more preferably 1 to 4, and 1 to 2. It is even more preferable. Note that R f11 and R f12 may be the same or different. Also preferred as the lithium salt are LiNO 3 and lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide.
  • solid electrolyte (I) The component composition of the solid electrolyte (I) has been explained based on the compounds constituting the solid electrolyte (I). Next, solid electrolyte (I) will be explained from the viewpoint of preferred elemental composition. That is, in one form of the secondary battery of the present invention, the solid electrolyte (I) does not include "lithium-containing oxide” and “lithium salt” as invention-specific matters, but has the following elemental composition, for example: can be specified.
  • the solid electrolyte (I) used in the present invention has a molar amount of Li of 1.58 to 3.49 (preferably 1.58 to 3.49), when the molar amount of B in the solid electrolyte (I) is 4.00.
  • the molar amount of B in the solid electrolyte (I) is 4.00
  • the molar amount of O is 6.23 to 25.00 (preferably 6.50 to 23.00, more preferably 8.00 to 25.00).
  • the molar amounts of elements other than B, other than Li, and other than O are each 0.001 to 10.00 (preferably 0.001 ⁇ 6.00, more preferably 0.01 ⁇ 5.00).
  • the content of each element is determined by ordinary elemental analysis.
  • elemental analysis for example, Li and B are analyzed using ICP-OES (inductively coupled plasma optical emission spectrometry), N, etc. are analyzed using an inert gas melting method, and for example, F and S are analyzed using combustion ion analysis. Analyze by chromatography. Regarding O, it can be calculated as a difference from the total amount of powder by adding up the analyzed masses of elements other than O. Note that the method for calculating the content of each element is not limited to the above, and the content of other elements may be estimated from the analysis result of the content of one element, taking into consideration the structure of the compound used. Based on the content of each element calculated by elemental analysis, the molar amounts of Li, O, and other elements are calculated when the molar amount of B is 4.00.
  • the solid electrolyte (I) in addition to Li, B, and O, the solid electrolyte (I) further contains an element of group 4 of the periodic table, an element of group 15 of the periodic table, and an element of group 16 of the periodic table.
  • Group 17 elements of the periodic table Si, C, Sc, and Y.
  • Examples of Group 4 elements of the periodic table include Ti, Zr, Hf, and Rf.
  • Group 15 elements of the periodic table include N, P, As, Sb, Bi, and Mc.
  • Group 16 elements of the periodic table include S, Se, Te, Po, and Lv.
  • Group 17 elements of the periodic table include F, Cl, Br, I, At, and Ts.
  • an element (E) selected from F, Cl, Br, I, S, P, Si, Se, Te, C, Sb, As, Sc, Y, Zr, Ti, Hf, and N It is preferable to include more than one type, and more preferably two or more types.
  • the solid electrolyte (I) may contain three or more types of element (E), preferably 2 to 5 types, and more preferably 2 to 4 types.
  • a preferred embodiment of the solid electrolyte (I) preferably contains two or more elements (E) selected from F, S, N, P, and C; It is more preferable that two or more selected elements (E) are included, and it is even more preferable that three types of elements (E), F, S, and N are included.
  • the molar amount of Li is preferably 1.58 to 3.49. That is, when the molar amount of B is 4.00, the relative value of the molar amount of Li is preferably 1.58 to 3.49.
  • the molar amount of Li is preferably 1.58 to 3.00, and preferably 1.90 to 3.00. 00 is more preferable, and 2.00 to 3.00 is even more preferable.
  • the molar amount of O is expressed with the molar amount of B in the solid electrolyte (I) being 4.00.
  • the molar amount of O is preferably 6.23 to 25.00. That is, when the molar amount of B is 4.00, the relative value of the molar amount of O is preferably 6.23 to 25.00.
  • the molar amount of O in the solid electrolyte (I) is expressed as 4.00, the molar amount of O is preferably 6.50 to 23.00, and preferably 8.00 to 23.00. 00 is more preferable, 10.00 to 23.00 is more preferable, and 10.00 to 18.00 is particularly preferable.
  • the molar amount of B in the solid electrolyte (I) is 4.00, and the molar amount of element (E) is When expressed, the molar amount of each element (E) is preferably 0.001 to 10.00. That is, when the molar content of B is 4.00, the relative value of the molar content of each element (E) is preferably 0.001 to 10.00. In particular, when the molar amount of B in solid electrolyte (I) is 4.00 and the molar amount of element (E) is expressed, the molar amount of each element (E) is 0.001 to 6.00. Preferably, 0.01 to 5.00 is more preferable.
  • One preferred embodiment of the elemental composition of the solid electrolyte (I) containing one or more (preferably two or more) of the above elements (E) includes Li, B, O, F, S, and N.
  • the molar amount of B is 4.00
  • the molar amount of Li is 1.58 to 3.49 (preferably 1.58 to 3.00, more preferably 1.90 to 3.00, even more preferably 2.00 to 3.00)
  • the molar amount of O is 6.23 to 25.00 (preferably 6.50 to 23.00, more preferably 8.00 to 23.00, even more preferably 10.
  • the molar amount of F is 0.001 to 10.00 (preferably 0.01 to 10.00)
  • the molar amount of S is is 0.001 to 2.00 (preferably 0.01 to 2.00)
  • the molar amount of N is 0.001 to 1.00 (preferably 0.005 to 1.00).
  • the solid electrolyte (I) used in the present invention is preferably in the above-mentioned amorphous state, and as a result, this solid electrolyte (I) has the following properties in addition to the above-mentioned X-ray diffraction properties. It is preferable to indicate.
  • the solid electrolyte (I) shall have a full width at half maximum ratio of 50% or less, which is calculated by the following method from the spectrum obtained by performing solid 7 Li-NMR measurements of the solid electrolyte (I) at 20°C and 120°C. is preferable, more preferably 40% or less, and even more preferably 35% or less.
  • the lower limit is not particularly limited, but is often 10% or more.
  • the above full width at half maximum ratio is determined by performing solid 7 Li-NMR measurements of the solid electrolyte (I) at 20°C and 120°C, respectively, and the chemical shift in the spectrum obtained by measurement at 20°C is in the range of -100 to +100 ppm.
  • FIG. 4 shows an example of a spectrum obtained when solid 7 Li-NMR measurement of solid electrolyte (I) is performed at 20°C or 120°C.
  • the solid line spectrum shown on the lower side of FIG. 4 is the spectrum obtained when solid-state 7 Li-NMR measurement was performed at 20°C
  • the broken line spectrum shown on the upper side of FIG. 4 is the spectrum obtained when solid-state 7 Li-NMR measurement was performed. This is a spectrum obtained when the test was carried out at 120°C.
  • solid-state 7 Li-NMR measurements when the mobility of Li + is high, the peaks obtained are sharper.
  • the spectrum at 20°C and the spectrum at 120°C are compared, the spectrum at 120°C is sharper.
  • the mobility of Li + is high due to the presence of Li defects.
  • Such a solid electrolyte (I) is considered to be easily plastically deformed due to the defect structure as described above, and to have excellent Li + hopping properties.
  • the solid line shown at the bottom of Figure 5 is The spectrum measured at 20° C. and the spectrum measured at 120° C. shown by the broken line shown in the upper part of FIG. 5 tend to have substantially the same shape. That is, the lithium tetraborate crystal has no Li defects, and as a result has a high elastic modulus and is difficult to undergo plastic deformation.
  • the Li-NMR measurement conditions for the above solid 7 are as follows. Using a 4 mm HX CP-MAS probe, single pulse method, 90° pulse width: 3.2 ⁇ s, observation frequency: 155.546 MHz, observation width: 1397.6 ppm, repetition time: 15 sec, integration: 1 time, MAS rotation number: Measure at 0Hz.
  • the solid electrolyte (I) used in the present invention shows that when the waveform of the first peak appearing in the range of -100 to +100 ppm is separated in the spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20°C, the chemical It is preferable that the shift has a second peak with a full width at half maximum of 5 ppm or less in the range of -3 to +3 ppm, and the ratio of the area intensity of the second peak to the area intensity of the first peak is 0.5% or more.
  • the area strength ratio is more preferably 2% or more, further preferably 5% or more, particularly preferably 10% or more, and most preferably 15% or more.
  • the solid state 7 Li-NMR spectral characteristics of the solid electrolyte (I) tend to be as described above.
  • the upper limit of the area strength ratio is not particularly limited, but is often 50% or less.
  • FIG. 6 shows an example of a spectrum obtained when solid 7 Li-NMR measurement of solid electrolyte (I) is performed at 20°C.
  • solid electrolyte (I) has a peak (corresponding to the first peak) observed in the range of -100 to +100 ppm, and in this first peak, the chemical shift is around 0 ppm as shown by the broken line. A small peak is observed.
  • FIG. 7 shows the waveform of the first peak separated. As shown in FIG.
  • the first peak is waveform-separated into a small peak (corresponding to the second peak) represented by a solid line and a large peak represented by a broken line.
  • the second peak appears in a chemical shift range of -3 to +3 ppm, and has a full width at half maximum of 5 ppm or less.
  • the solid electrolyte (I) has a ratio of the area intensity of the second peak shown by the solid line in FIG. 7 to the area intensity of the first peak (the peak before waveform separation) shown in FIG. Area intensity/area intensity of first peak) ⁇ 100(%) ⁇ is preferably within the above range.
  • a method for waveform separation a method using known software can be mentioned, and an example of the software is Igor Pro, a graph processing software manufactured by WaveMetrics.
  • the solid electrolyte (I) has a coefficient of determination of 0.9400 or more obtained by linear regression analysis using the least squares method in the wave number region of 600 to 850 cm -1 of the Raman spectrum of the solid electrolyte (I). It is preferably 0.9600 or more, more preferably 0.9800 or more. The upper limit is not particularly limited, but is usually 1.0000 or less.
  • Raman imaging is performed as a method for measuring the Raman spectrum.
  • Raman imaging is a microscopic spectroscopic technique that combines Raman spectroscopy with microscopic technology. Specifically, this is a method in which measurement light including Raman scattered light is detected by scanning excitation light over a sample, and the distribution of components is visualized based on the intensity of the measurement light.
  • the measurement conditions for Raman imaging are as follows: 27°C in the atmosphere, excitation light at 532 nm, objective lens at 100x, mapping method point scanning, 1 ⁇ m steps, exposure time per point for 1 second, and integration once.
  • the measurement range is 70 ⁇ m ⁇ 50 ⁇ m. However, depending on the film thickness of the sample, the measurement range may become narrower. Further, principal component analysis (PCA) processing is performed on the Raman spectrum data to remove noise. Specifically, in the principal component analysis process, spectra are recombined using components with an autocorrelation coefficient of 0.6 or more.
  • PCA principal component analysis
  • FIG. 8 shows an example of the Raman spectrum of the solid electrolyte (I).
  • the vertical axis shows Raman intensity and the horizontal axis shows Raman shift.
  • a coefficient of determination coefficient of determination R 2
  • a regression line is found by the least squares method, and the coefficient of determination R 2 of the regression line is calculated.
  • the coefficient of determination takes a value between 0 (no linear correlation) and 1 (perfect linear correlation of the measured values) depending on the linear correlation of the measured values.
  • the determination coefficient R2 corresponds to the square of the correlation coefficient (Pearson's product moment correlation coefficient). More specifically, in this specification, the coefficient of determination R2 is calculated by the following formula.
  • x 1 and y 1 represent the wave number in the Raman spectrum and the Raman intensity corresponding to that wave number
  • x 2 is the (additive) average of the wave numbers
  • y 2 is the (additive) Raman intensity. Represents the average.
  • FIG. 9 shows a Raman spectrum of a general lithium tetraborate crystal.
  • peaks are observed in the wave number regions of 716 to 726 cm ⁇ 1 and 771 to 785 cm ⁇ 1 , which are derived from its structure.
  • the coefficient of determination is less than 0.9400 when linear regression analysis is performed using the least squares method in the wave number region of 600 to 850 cm ⁇ 1 to calculate the coefficient of determination.
  • the fact that the coefficient of determination is 0.9400 or more indicates that the solid electrolyte (I) contains almost no crystal structure. Therefore, as a result, it is considered that the solid electrolyte (I) has the property of being easily plastically deformed and the property of being excellent in Li + hopping property.
  • the solid electrolyte (I) has a value of the ratio of the maximum absorption intensity in the wavenumber region of 3000 to 3500 cm ⁇ 1 to the maximum absorption intensity in the wavenumber region of 800 to 1600 cm ⁇ 1 (3000 to 3500 cm ⁇ 1
  • the ratio is preferably 1/5 or more (0.2 or more).
  • the ratio is preferably 3/10 or more, more preferably 2/5 or more.
  • the upper limit is not particularly limited, but is preferably 1 or less.
  • An OH stretching vibration mode is observed in the wave number region of 3000 to 3500 cm ⁇ 1 in the infrared absorption spectrum, and a B—O stretching vibration mode is observed in the wave number region of 800 to 1600 cm ⁇ 1 .
  • a strong absorption intensity derived from the OH stretching vibration mode is observed, indicating that it contains a large number of OH groups and/or a large amount of water.
  • lithium ions tend to move easily, and as a result, ion conductivity tends to improve.
  • a vibration mode derived from lithium salt can also be observed.
  • the above infrared absorption spectrum measurement conditions can be as follows. Objective lens: 32x Cassegrain type (NA 0.65), detector: MCT-A, measurement range: 650 to 4000 cm ⁇ 1 , resolution: 4 cm ⁇ 1 , sample cell: Measurement is performed using a diamond cell. The obtained infrared absorption spectrum is corrected to remove signals derived from atmospheric water and CO 2 , and then offset correction is applied to the background to make the absorption intensity 0. Further, after vacuum drying at 40° C. for 2 hours, measurement is performed in the atmosphere.
  • NA 0.65 32x Cassegrain type
  • detector MCT-A
  • measurement range 650 to 4000 cm ⁇ 1
  • resolution 4 cm ⁇ 1
  • sample cell Measurement is performed using a diamond cell. The obtained infrared absorption spectrum is corrected to remove signals derived from atmospheric water and CO 2 , and then offset correction is applied to the background to make the absorption intensity 0. Further, after vacuum drying at 40° C. for 2 hours, measurement is performed in the atmosphere.
  • the ionic conductivity (27° C.) of the solid electrolyte (I) is not particularly limited, and from the viewpoint of application to various uses, it is preferably 1.0 ⁇ 10 ⁇ 5 S/cm or more, and 1.0 ⁇ 10 ⁇ 4 S /cm or more is more preferable, 1.0 ⁇ 10 ⁇ 3 S/cm or more is even more preferable, and 3.0 ⁇ 10 ⁇ 3 S/cm or more is particularly preferable.
  • the upper limit is not particularly limited, but is often 1.0 ⁇ 10 ⁇ 2 S/cm or less.
  • the solid electrolyte (I) exhibits the following characteristics or physical properties.
  • the mass reduction rate when solid electrolyte (I) is heated to 800° C. is preferably 20 to 40% by mass, more preferably 25 to 35% by mass.
  • the mass reduction caused by the heating is considered to be due to the removal of water contained in the solid electrolyte (I).
  • the conductivity of lithium ions can be further improved.
  • heating is performed at a temperature increase rate of 20°C/sec in the range from 25°C to 800°C.
  • a known thermogravimetric differential thermal analysis (TG-DTA) device can be used to measure the amount of mass loss.
  • the above mass reduction rate is ⁇ (mass at 25°C - mass at 800°C)/mass at 25°C ⁇ x 100 Calculated by In measuring the mass reduction rate, the solid electrolyte (I) was previously subjected to vacuum drying at 40° C. for 2 hours. Furthermore, the mass reduction rate is measured in the atmosphere.
  • the solid electrolyte layer constituting the secondary battery of the present invention may contain other components in addition to the solid electrolyte (I).
  • the solid electrolyte layer can include a binder made of an organic polymer.
  • the organic polymer constituting the binder may be particulate or non-particulate. By including the binder, it becomes possible to more reliably prevent cracks from occurring in the solid electrolyte layer or the electrode layer.
  • the solid electrolyte layer may contain another solid electrolyte other than the solid electrolyte (I).
  • Other solid electrolyte means a solid electrolyte in which lithium ions can be moved.
  • an inorganic solid electrolyte is preferable.
  • Other solid electrolytes include oxide-based solid electrolytes, halide-based solid electrolytes, and hydride-based solid electrolytes, with oxide-based solid electrolytes being more preferred.
  • the solid electrolyte layer contains other components such as an ionic liquid and a surfactant.
  • an ionic liquid is a liquid "salt" composed only of ions (anions, cations), and has a higher viscosity than water (equivalent to free water in the present invention), so its ionic conductivity is lower than that of water.
  • the potential window is wide, depending on the type of ionic liquid and the amount added, it is possible to achieve both ionic conductivity and potential window at a better level by using water and an ionic liquid in combination.
  • the cation structures constituting the ionic liquid include pyrrolidinium cations such as 1-butyl-1-methylpyrrolidinium cation (BMP + ), n-methyl-n-pentylpyrrolidinium cation (PYR15 + ), and 1-butyl cation.
  • Imidazolium cations such as -3-methylimidazolium cation (BMI + ), 1-ethyl-3-methylimidazolium cation (EMI + ), n-methyl-n-propylpiperidinium cation (PIP + ), etc.
  • Examples include sulfonium cations such as piperidinium cations and triethylsulfonium cations (TES + ).
  • the anion structures constituting the ionic liquid include N(FSO 2 ) 2 ⁇ [FSI ⁇ ], N(CF 3 SO 2 ) 2 ⁇ [TFSI ⁇ ], N(CF 3 CF 2 SO 2 ) 2 ⁇ [LIBETI ⁇ ] and other perfluoroalkanesulfonylimide anions, perfluoroalkanesulfonate anions such as CF 3 SO 3 - , inorganic fluoride anions such as PF 6 - and BF 4 - , and perhalogen acid ions such as ClO 4 - .
  • a surfactant it is possible to further improve the charge/discharge cycle characteristics of the secondary battery of the present invention.
  • a surfactant it is possible to improve the dispersibility of the solid electrolyte (I) in the solid electrolyte layer, the dispersibility of the lithium salt in the solid electrolyte (I), and the like.
  • the surfactant compounds commonly used as surfactants can be used within a range that does not impair the effects of the present invention.
  • the thickness of the solid electrolyte layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 10 to 1000 ⁇ m, preferably 50 to 400 ⁇ m.
  • the positive electrode layer is generally composed of a positive electrode current collector and a positive electrode active material layer, it may be composed of a positive electrode active material layer and not include a positive electrode current collector. In other words, when the positive electrode active material layer also functions as a positive electrode current collector, it does not need to be composed of two layers, the positive electrode current collector and the positive electrode active material layer, and may be a single layer structure. . Further, the positive electrode active material layer usually contains a solid electrolyte (preferably an inorganic solid electrolyte) together with the positive electrode active material, but it may not contain a solid electrolyte.
  • a solid electrolyte preferably an inorganic solid electrolyte
  • the type of the solid electrolyte is not particularly limited. From the viewpoint of emphasizing higher safety, an oxide-based solid electrolyte can be used. From the viewpoint of achieving both flexibility and safety at a high level, it is preferable to use the solid electrolyte (I) described above. By doing so, the solid electrolyte (I) also acts like a binder for the solid particles contained in the positive electrode layer, and the positive electrode layer can be made more flexible.
  • the positive electrode active material layer may contain one or more solid electrolytes.
  • the content of the solid electrolyte in the positive electrode active material layer is not particularly limited, and the total content with the positive electrode active material is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass. More preferably 90 to 99% by mass.
  • the positive electrode active material itself used in the positive electrode layer is not particularly limited as long as the difference in discharge potential with respect to the Li standard satisfies 1.3 V or more with the negative electrode active material, and it can be used in ordinary lithium ion secondary batteries.
  • a wide variety of positive electrode active materials can be used. A preferred form of the positive electrode active material will be explained below.
  • the positive electrode active material is preferably one that can reversibly insert and/or release lithium ions.
  • the positive electrode active material is not particularly limited as long as the difference in discharge potential between it and the negative electrode active material based on Li satisfies 1.3 V or more, and transition metal oxides are preferable, and transition metal elements Ma (Co, Ni, A transition metal oxide containing one or more elements selected from Fe, Mn, Cu, and V is more preferable.
  • this transition metal oxide contains element Mb (metal elements of group 1 (Ia) of the periodic table other than lithium, elements of group 2 (IIa) of the periodic table, Al, Ga, In, Ge, Sn, Pb, Sb , Bi, Si, P, and B) may be mixed.
  • the mixing amount of element Mb is preferably 0 to 30 mol% with respect to the amount of transition metal element Ma (100 mol%). More preferably, it is synthesized by mixing Li/Ma at a molar ratio of 0.3 to 2.2.
  • Specific examples of transition metal oxides include (MA) transition metal oxides having a layered rock salt structure, (MB) transition metal oxides having a spinel structure, (MC) lithium-containing transition metal phosphate compounds, (MD ) Lithium-containing transition metal halide phosphoric acid compounds, (ME) lithium-containing transition metal silicate compounds, and the like.
  • transition metal oxides having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNiO 2 (lithium nickel oxide [LNO]), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminate [NCA]), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (nickel manganese cobalt lithium [NMC]), LiNi 0.5 Mn 0.5 O 2 ( lithium manganese nickelate), and Li 2 MnO 3 -LiNiMnCoO 2 .
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNiO 2 lithium nickel oxide [LNO]
  • LiNi 0.85 Co 0.10 Al 0. 05 O 2 nickel cobalt lithium aluminate [NCA]
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 nickel manganese cobalt lithium [NMC]
  • LiNi 0.5 Mn 0.5 O 2 lithium manganese nickelate
  • transition metal oxides having a spinel structure examples include LiMn 2 O 4 (LMO), LiNi 0.5 Mn 1.5 O 4 ([LNMO]), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Examples include Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 .
  • Lithium-containing transition metal phosphate compounds include, for example, olivine-type iron phosphates such as LiFePO 4 ([LFP]) and Li 3 Fe 2 (PO 4 ) 3 , and iron pyrophosphates such as LiFeP 2 O 7 .
  • olivine-type manganese phosphate salts such as LiMnPO 4 [(LMP)]
  • olivine-type nickel phosphate salts such as LiNiPO 4 [(LNP)]
  • olivine-type cobalt phosphate salts such as LiCoPO 4 [(LCP)]
  • Examples include olivine-type cobalt pyrophosphate salts such as Li 2 CoP 2 O 7 and monoclinic NASICON-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • lithium-containing transition metal halide phosphate compounds include iron fluorophosphates such as Li 2 FePO 4 F, manganese fluorophosphates such as Li 2 MnPO 4 F, and Li 2 CoPO Examples include cobalt fluorophosphate salts such as 4F .
  • lithium-containing transition metal silicate compound examples include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • the shape of the positive electrode active material is not particularly limited, and is usually particulate.
  • the volume average particle diameter of the positive electrode active material is not particularly limited, and is preferably, for example, 0.1 to 50 ⁇ m.
  • the volume average particle diameter of the positive electrode active material can be determined in the same manner as the volume average particle diameter of the negative electrode active material, which will be described later.
  • the positive electrode active material obtained by the calcination method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the surface of the positive electrode active material may be coated with a surface coating agent described later, sulfur or phosphorus, or even with actinic light.
  • the surface coating material (also referred to as coating material) for the positive electrode active material can suppress contact between the positive electrode active material and water, and can also suppress Li deficiency at the interface between the positive electrode active material and the solid electrolyte. It is considered that the charge/discharge cycle characteristics of the all-solid-state lithium ion secondary battery can be further improved.
  • the coating material for the positive electrode active material is preferably a Li ion conductive oxide, such as LiNbO 3 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , More preferred than Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , Li 2 MoO 4 , Li 2 WO 4 or Li 3 AlF 6 Can be mentioned.
  • Li ion conductive oxide such as LiNbO 3 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , More preferred than Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , Li 2 MoO 4 , Li 2 WO 4 or Li 3
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the content of the positive electrode active material in the positive electrode active material layer is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, even more preferably 40 to 93% by mass, and 50 to 90% by mass. % is particularly preferred.
  • the positive electrode active material preferably has a discharge potential of 3.5 V or more based on Li, more preferably 3.7 V or more, even more preferably 3.8 V or more, and 4. It is particularly preferable that the voltage is .2V or more.
  • the discharge potential of the positive electrode active material based on Li is , means the discharge potential of a material with a lower potential based on Li.
  • Examples of positive electrode active materials having a discharge potential of 3.8 V or higher based on Li include LiCoO 2 (LCO, 3.9 V), Li 2 MnO 3 -LiNiMnCoO 2 (3.9 V), and LiMn 2 O 4 (LMO). , 3.8V), LiNi0.5Mn1.5O4 (LNMO, 4.7V ) , LiMnPO4 ( LMP, 4.1V), LiCoPO4 ( LCP , 4.8V), Li2CoP2O7 (5V) and LiNiPO 4 (LNP, 5.1V), and at least one of these is preferred.
  • the value written in parentheses after each positive electrode active material is the discharge potential based on Li. LCO can provide better cycle characteristics, and LNMO can provide a wider potential difference.
  • an interfacial resistance stabilizing layer such as an oxide or a carbon-based material, which will be described later.
  • the current collector that constitutes the positive electrode layer is an electron conductor. Further, the positive electrode current collector is usually in the form of a film sheet. Constituent materials of the positive electrode current collector include aluminum (Al), aluminum alloy (Al alloy), stainless steel, nickel, copper, platinum, carbon, and titanium (Ti), including aluminum, copper, platinum, and carbon. Or titanium is preferable, and aluminum or titanium is more preferable.
  • the positive electrode current collector has a coating layer (thin film) of aluminum, carbon, nickel, titanium, copper, platinum, or silver on the surface of a metal base material such as aluminum, copper, platinum, carbon, titanium, or stainless steel.
  • a coating layer of aluminum, copper, platinum, carbon or titanium on the surface of a metal base material of aluminum, copper, platinum, carbon or titanium are preferred, and metals of aluminum, copper, platinum, carbon or titanium are preferably used. It is more preferable to have an aluminum or titanium coating layer on the surface of the base material. and those having a coating layer (thin film) of aluminum, copper, platinum, carbon, or titanium on the surface of a metal base material such as copper (Cu).
  • the positive electrode current collector is preferably Al, Ti, or a metal coated with Al or Ti; Alternatively, Cu coated with Ti is more preferable.
  • this fluorine reacts with the surface of the oxide film to form a highly corrosion-resistant fluoride film. Al is formed. After the formation of Al fluoride, the reaction between Al and the lithium salt does not proceed any further and the lithium salt is not consumed, so it is presumed that the charge/discharge cycle characteristics are improved.
  • Ti has low reactivity, when it contains materials in the electrode layer (for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
  • active material for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
  • salt salt, water
  • the thickness of the positive electrode active material layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 5 to 500 ⁇ m, preferably 20 to 200 ⁇ m. Further, the thickness of the positive electrode current collector constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the negative electrode layer is generally composed of a negative electrode current collector and a negative electrode active material layer, it may be composed of a negative electrode active material layer and not include a negative electrode current collector. In other words, if the negative electrode active material layer also functions as a negative electrode current collector, it does not need to be composed of two layers, the negative electrode current collector and the negative electrode active material layer, and may be a single layer structure. . Further, the negative electrode active material layer usually contains a solid electrolyte (preferably an inorganic solid electrolyte) together with the negative electrode active material, but it may not contain a solid electrolyte.
  • a solid electrolyte preferably an inorganic solid electrolyte
  • the type of the solid electrolyte is not particularly limited. From the viewpoint of both flexibility and safety, an oxide-based solid electrolyte can be used. From the viewpoint of achieving both flexibility and safety at a higher level, it is preferable to use the solid electrolyte (I) described above. By doing so, the solid electrolyte (I) also acts like a binder for the solid particles contained in the negative electrode layer, and the negative electrode layer can be made more flexible.
  • the negative electrode active material layer may contain one or more solid electrolytes.
  • the content of the solid electrolyte in the negative electrode active material layer is not particularly limited, and the total content with the negative electrode active material is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass, More preferably 90 to 99% by mass.
  • the negative electrode active material itself used in the negative electrode layer is not particularly limited as long as the difference in discharge potential on Li basis satisfies 1.3 V or more between it and the positive electrode active material, and it can be used in ordinary lithium ion secondary batteries.
  • a wide variety of negative electrode active materials can be used. A preferred form of the negative electrode active material will be explained below.
  • the negative electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the negative electrode active material is not particularly limited as long as the difference in discharge potential based on Li with the positive electrode active material satisfies 1.3 V or more, and examples thereof include carbonaceous materials, oxides of metal elements or semimetal elements, Examples include simple lithium (also referred to as metal Li), lithium alloys, and negative electrode active materials that can form alloys with lithium.
  • the carbonaceous material used as the negative electrode active material is a material consisting essentially of carbon.
  • carbon black such as acetylene black (AB)
  • graphite natural graphite and artificial graphite such as vapor-grown graphite
  • PAN polyacrylonitrile
  • furfuryl alcohol resin examples include carbonaceous materials made by firing synthetic resins.
  • various carbon fibers such as PAN carbon fiber, cellulose carbon fiber, pitch carbon fiber, vapor grown carbon fiber, dehydrated PVA (polyvinyl alcohol) carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • graphite mesophase microspheres, graphite whiskers, and tabular graphite.
  • carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization.
  • carbonaceous materials have the lattice spacing, density, or crystallite size described in JP-A-62-022066, JP-A-2-006856, and JP-A-3-045473. It is preferable to have.
  • the carbonaceous material does not need to be a single material, and may include a mixture of natural graphite and artificial graphite described in JP-A-5-090844, and graphite with a coating layer as described in JP-A-6-004516. You can also use As the carbonaceous material, hard carbon or graphite is preferable, and graphite is more preferable.
  • the oxide of a metal element or metalloid element to be applied as a negative electrode active material is not particularly limited as long as it is an oxide that can occlude and release lithium, and oxides of metal elements (metal oxides, etc.) such as Fe 3 O 4 can be used. oxides of metal elements), composite oxides of metal elements, composite oxides of metal elements and metalloid elements, and oxides of metalloid elements (metalloid oxides). Note that composite oxides of metal elements and composite oxides of metal elements and metalloid elements are collectively referred to as metal composite oxides. As these oxides, amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of group 16 of the periodic table, are also preferable.
  • a metalloid element refers to an element that exhibits intermediate properties between metallic elements and nonmetallic elements, and usually includes six elements: boron, silicon, germanium, arsenic, antimony, and tellurium, and further includes selenium, Contains three elements: polonium and astatine.
  • amorphous means a substance that has a broad scattering band with an apex in the 2 ⁇ value range of 20 to 40 degrees when measured by X-ray diffraction using CuK ⁇ rays, and has a crystalline diffraction line. You may.
  • the strongest intensity among the crystalline diffraction lines seen between 40 and 70 degrees in 2 ⁇ values is less than 100 times the diffraction line intensity at the top of the broad scattering band seen at 20 to 40 degrees in 2 ⁇ values. It is preferably 5 times or less, more preferably 5 times or less, and even more preferably not having any crystalline diffraction lines.
  • amorphous oxides of metalloid elements or the above-mentioned chalcogenides are more preferable, and elements of groups 13 (IIIB) to 15 (VB) of the periodic table (e.g. , Al, Ga, Si, Sn, Ge, Pb, Sb, and Bi) or a (composite) oxide or chalcogenide consisting of one type selected from the group consisting of one type alone or a combination of two or more types thereof is more preferable.
  • Amorphous oxides and chalcogenides include Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 are preferred.
  • Examples of negative electrode active materials that can be used in conjunction with amorphous oxide negative electrode active materials mainly containing Sn, Si, or Ge include carbonaceous materials that can absorb and/or release lithium ions or lithium metal, and lithium alone. , a lithium alloy, or a negative electrode active material that can be alloyed with lithium.
  • the oxide of a metal element or metalloid element (particularly a metal (composite) oxide) and the chalcogenide preferably contain at least one of titanium and lithium as a constituent from the viewpoint of high current density charge/discharge characteristics.
  • metal composite oxides containing lithium include composite oxides of lithium oxide and the aforementioned metal oxides, the aforementioned metal composite oxides, or the aforementioned chalcogenides. More specifically, Li 2 SnO 2 is mentioned. It is also preferable that the negative electrode active material (eg, metal oxide) contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • Li 4 Ti 5 O 12 has excellent rapid charging and discharging characteristics due to small volume fluctuations when lithium ions are intercalated and released, suppresses electrode deterioration, and is an all-solid lithium oxide. This is preferable in that it is possible to improve the life of the ion secondary battery.
  • the lithium alloy as a negative electrode active material is not particularly limited as long as it is an alloy commonly used as a negative electrode active material of all-solid-state lithium ion secondary batteries, and examples thereof include lithium aluminum alloys.
  • the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is commonly used as a negative electrode active material of all-solid-state lithium ion secondary batteries.
  • the negative electrode active material include negative electrode active materials (alloys) containing silicon element or tin element, and various metals such as Al and In. (element-containing active material) is preferable, and a silicon element-containing active material in which the content of silicon element is 50 mol % or more of all constituent elements is more preferable.
  • negative electrodes containing these negative electrode active materials are more expensive than carbon negative electrodes (such as graphite and acetylene black).
  • carbon negative electrodes such as graphite and acetylene black.
  • silicon element-containing active materials include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, or lanthanum (e.g. , LaSi 2 , VSi 2 , La-Si, Gd-Si, and Ni-Si), or structured active materials (eg, LaSi 2 /Si).
  • silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, or lanthanum e.g. , LaSi 2 , VSi 2 , La-Si, Gd-Si, and Ni-Si
  • structured active materials eg, LaSi 2 /Si
  • Other examples include active materials containing silicon and tin elements, such as SnSiO 3 and SnSiS 3 .
  • SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since SiOx generates Si when an all-solid-state lithium ion secondary battery is operated, it is a negative electrode active material that can be alloyed with lithium. (precursor substance thereof).
  • the negative electrode active material containing the tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and active materials containing the silicon element and tin element described above.
  • the negative electrode active material is preferably a negative electrode active material that can be alloyed with lithium, more preferably the silicon material or silicon-containing alloy (alloy containing silicon element), and silicon (Si) or a silicon-containing alloy. More preferred.
  • Titanium niobium composite oxide has a high theoretical volume capacity density, and is expected to have a long life and be capable of rapid charging.
  • An example of the titanium niobium composite oxide is TiNb 2 O 7 ([TNO]).
  • the shape of the negative electrode active material is not particularly limited, a particulate shape is preferable.
  • the volume average particle diameter of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m, more preferably 0.5 to 20 ⁇ m, and even more preferably 1.0 to 15 ⁇ m.
  • the volume average particle diameter is measured by the following procedure. A 1% by mass dispersion of the negative electrode active material is prepared by diluting it with water (heptane in the case of a substance unstable in water) in a 20 mL sample bottle. The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately thereafter used for the test.
  • the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and even more preferably 30 to 80% by mass. It is preferably 35 to 75% by weight, particularly preferably 35 to 75% by weight.
  • the surface of the negative electrode active material may be coated with another oxide such as a metal oxide, a carbon-based material, or the like. These surface coating layers can function as interfacial resistance stabilizing layers.
  • Surface coating agents include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li.
  • lithium niobate compounds such as Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3 , LiNbO 3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li2TiO3 , Li2B4O7 , Li3PO4 , Li2MoO4 , Li3BO3 , LiBO2 , Li2CO3 ,
  • Examples include Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and Li 3 AlF 6 .
  • the surface coating material may be surface-treated with sulfur or phosphorus.
  • the surface of the negative electrode active material may be subjected to surface treatment using active light or active gas (for example, plasma) before and after the surface coating.
  • the surface coating material (also referred to as coating material) for the negative electrode active material can suppress contact between the negative electrode active material and water, and can also suppress Li deficiency at the interface between the negative electrode active material and the solid electrolyte. It is considered that the charge/discharge cycle characteristics of the all-solid-state lithium ion secondary battery can be further improved. From this point of view, the coating material for the negative electrode active material is preferably carbon.
  • the negative electrode active material preferably has a discharge potential of 2.5 V or less based on Li, more preferably 1.7 V or less, even more preferably 1.55 V or less, and 1. It is particularly preferable that the voltage is .0V or less.
  • the discharge potential of the negative electrode active material based on Li is , means the discharge potential of a material with a higher potential based on Li.
  • Examples of negative electrode active materials whose discharge potential is 2.5 V or less based on Li include Li 4 Ti 5 O 12 (LTO, 1.55 V), TiNb 2 O 7 (TNO, 1.55 V), and Fe 3 O. 4 (1.0V), graphite [for example, artificial graphite (0-0.25V), natural graphite (0-0.25V)], hard carbon (0-0.8V), Si (0-0.8V) , SiO (0 to 0.8V), Sn (0 to 0.8V), Al (0 to 0.8V), and metal Li (0V), and at least one of these is preferred.
  • the value written in parentheses after each negative electrode active material is the discharge potential based on Li.
  • the current collector that constitutes the negative electrode layer is an electron conductor. Further, the negative electrode current collector is usually in the form of a film sheet. Examples of the constituent material of the negative electrode current collector include aluminum, copper, copper alloy, stainless steel, nickel, zinc, and titanium (Ti), with aluminum, copper, zinc, or titanium being preferred, and aluminum or titanium being more preferred.
  • a coating layer (thin film) of carbon, nickel, aluminum, copper, zinc, titanium, or silver is applied to the surface of a metal base material such as aluminum, copper, copper alloy, zinc, titanium, or stainless steel. It is preferable to have a coating layer of aluminum, copper, zinc or titanium on the surface of the metal base material of aluminum, copper, zinc or titanium. It is more preferable to use an aluminum or titanium coating layer.
  • the negative electrode current collector is preferably Al, Ti, or a metal coated with Al or Ti; Alternatively, Cu coated with Ti is more preferable.
  • this fluorine reacts with the surface of the oxide film to form a highly corrosion-resistant fluoride film. Al is formed. After the formation of Al fluoride, the reaction between Al and the lithium salt does not proceed any further and the lithium salt is not consumed, so it is presumed that the charge/discharge cycle characteristics are improved.
  • Ti has low reactivity, when it contains materials in the electrode layer (for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
  • active material for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
  • salt salt, water
  • the thickness of the negative electrode active material layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 5 to 500 ⁇ m, preferably 20 to 200 ⁇ m. Further, the thickness of the negative electrode current collector constituting the secondary battery of the present invention is not particularly limited, and may be, for example, 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer that is, the Li standard of the positive electrode active material contained in the positive electrode layer
  • the value obtained by subtracting the Li-based discharge potential of the negative electrode active material contained in the negative electrode layer from the discharge potential at is 1.3 V or more, and the positive electrode active material and the negative electrode active material are used in combination so as to satisfy this value.
  • the discharge potential of the positive electrode active material and the negative electrode active material refers to the intercalation reaction of lithium into the negative electrode active material or the positive electrode active material (a phenomenon in which lithium ions are inserted into the negative electrode active material or the positive electrode active material).
  • the Li standard means the electric potential energy that occurs, and the Li standard means that the potential at which the oxidation-reduction reaction of lithium occurs is set as the standard, that is, 0V.
  • the discharge potential of the positive electrode active material and the negative electrode active material based on Li is determined, for example, by using Li metal as a reference electrode, sandwiching an electrochemically stable electrolyte layer within the range of the measured potential, and measuring the positive electrode active material layer.
  • the Li of the positive electrode active material showing the lowest discharge potential and the negative electrode active material showing the highest discharge potential is This means that the difference in discharge potential with reference is 1.3V or more.
  • the positive electrode active material is LiCoO 2 (LCO, 3.9V), LiNiO 2 ( LNO, 3.5V), LiNi 0.85 Co 0.10 Al 0.05 O 2 (NCA, 3.6V), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC, 3.9V) , Li 2 MnO 3 -LiNiMnCoO 2 (3.9 V), LiMn 2 O 4 (LMO, 3.8 V), LiNi 0.5 Mn 1.5 O 4 (LNMO, 4.7 V), LiFePO 4 (LFP, 3 .2-3.4V), LiMnPO 4 (LMP, 4.1V), LiCoPO 4 (LCP, 4.8V), Li 2 CoP 2 O 7 (5V) and LiNiPO 4 (LNP, 5.1V).
  • the negative electrode active material contains at least one of Li 4 Ti 5 O 12 (LTO, 1.55V), TiNb 2 O 7 (TNO, 1.55V), Fe 3 O 4 (1.0V), graphite [e.g. , artificial graphite (0-0.25V), natural graphite (0-0.25V)], hard carbon (0-0.8V), Si (0-0.8V), SiO (0-0.8V), It is preferable to use a combination containing at least one of Sn (0 to 0.8V), Al (0 to 0.8V), and metal Li (0V). Note that the value written in parentheses after each active material is the discharge potential based on Li.
  • the positive electrode layer and the negative electrode layer may contain components other than the solid electrolyte and other than the active material (other components) in their active material layers.
  • a conductive additive may be included.
  • the conductive aid those known as general conductive aids can be used.
  • Examples of conductive aids include electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black, and furnace black, and amorphous materials such as needle coke.
  • Examples include fibrous carbon such as carbon, vapor-grown carbon fiber, and carbon nanotubes, and carbonaceous materials such as graphene and fullerene.
  • conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may also be used.
  • ordinary conductive aids that do not contain carbon atoms, such as metal powder or metal fibers may be used.
  • a conductive additive is one that does not insert or release Li when a battery is charged or discharged, and does not function as an active material. Therefore, among conductive aids, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials rather than conductive aids. Whether or not it functions as an active material when charging and discharging a battery is not unique, but is determined by the combination with the active material.
  • the content of the conductive additive in the positive electrode active material layer is not particularly limited, but is preferably 0 to 10% by mass, and more preferably 1 to 5% by mass.
  • the content of the conductive additive in the negative electrode active material layer is not particularly limited, but is preferably, for example, 0 to 10% by mass, more preferably 1 to 5% by mass.
  • Other components include the above-mentioned binder and lithium salt.
  • the positive electrode active material layer and the negative electrode active material layer contains other components such as an ionic liquid and a surfactant.
  • the second aspect of the present invention can be achieved by including the ionic liquid in the same manner as in the case where the solid electrolyte (I) is included in the solid electrolyte layer described above. It is possible to further improve the charge/discharge cycle characteristics of the next battery.
  • the ionic liquid is as described above. By adding a surfactant, it is possible to further improve the charge/discharge cycle characteristics of the secondary battery of the present invention.
  • the dispersibility of the active material, conductive agent, and solid electrolyte in the positive electrode active material layer and/or negative electrode active material layer, and the solid electrolyte (I) in the positive electrode active material layer and/or negative electrode active material layer When containing, it is possible to improve the dispersibility of the lithium salt in the solid electrolyte (I).
  • the surfactant is as described above.
  • Solid electrolyte (I) protective agent If the solid electrolyte (I) contains free water and/or weakly bound water, it may be decomposed by a battery operating voltage higher than the electrolysis voltage of water. In order to prevent and suppress this decomposition, the secondary battery of the present invention may be impregnated with a solid electrolyte (I) protective agent. Note that weakly bound water refers to bound water that has a narrow potential window. In the form of impregnating the solid electrolyte (I) protective agent into the secondary battery of the present invention, at least one of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer is impregnated with the solid electrolyte (I) protective agent.
  • At least one layer including the solid electrolyte layer is impregnated with the solid electrolyte (I) protective agent. More preferred is a form in which it is invasive. Impregnation with the solid electrolyte (I) protective agent may be performed at any stage, for example, impregnation at the stage of forming each layer, or at the stage of forming the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer. impregnation in the state.
  • the solid electrolyte (I) protective agent include preferably ester compounds, phosphate ester compounds, phosphite ester compounds, and carbonate compounds among organic compounds.
  • the solid electrolyte (I) protective agent preferably has a flash point of 150° C. or higher.
  • the secondary battery of the present invention uses a solid electrolyte (I) in at least the solid electrolyte layer, and the difference in discharge potential between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer on a Li basis is 1.
  • the battery can be manufactured by referring to a normal method for manufacturing an all-solid-state secondary battery, except for using a positive electrode layer and a negative electrode layer that have a voltage of .3V or more.
  • the method for manufacturing a secondary battery of the present invention can be manufactured including the step of obtaining a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order.
  • the amount of water in the solid electrolyte (I) used may or may not satisfy the amount specified in the present invention.
  • the amount of water in the solid electrolyte (I) contained in the constituent layers such as the solid electrolyte layer can be adjusted according to the present invention.
  • manufacturing the secondary battery of the present invention can also include a step of subjecting the formed solid electrolyte layer to a drying process, if necessary.
  • This step of drying the constituent layers such as the solid electrolyte layer can be carried out if the solid electrolyte (I) in the constituent layers such as the solid electrolyte layer in the obtained secondary battery can be set to the amount of water specified in the present invention. It may be performed at any stage after forming the layer.
  • the laminate in which at least a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order to a drying treatment while being arranged in a battery cell.
  • the drying method is not particularly limited, and for example, the amount of water in the solid electrolyte (I) in the solid electrolyte layer can be reduced by using a desiccator, vacuum drying, freeze vacuum drying, or heat treatment. can be reduced to within the range defined by the present invention.
  • the secondary battery of the present invention is preferably formed by sealing a laminate in which the above-described positive electrode layer, solid electrolyte layer, and negative electrode layer are arranged in this order.
  • the sealing method is not particularly limited as long as it can block or suppress the ingress of moisture (atmosphere).
  • the laminate is sealed by closing the lid of the casing (battery cell) that houses the laminate in which the above-mentioned positive electrode layer, solid electrolyte layer, and negative electrode layer are arranged in this order through a gasket such as an O-ring. For example, how to stop it.
  • cell resistance can also be improved by heating the obtained laminate (for example, at 80° C. for 2 hours).
  • the method for forming a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order is not particularly limited, and methods for forming each layer include forming by coating a dispersion, compacting powder, etc. Can be mentioned.
  • One form of the method for manufacturing a secondary battery of the present invention includes a method for manufacturing a secondary battery that includes forming a solid electrolyte layer by applying a dispersion of solid electrolyte (I). This method can be adopted because an aqueous dispersion (slurry) of the solid electrolyte (I) can be easily prepared.
  • the dispersion liquid of solid electrolyte (I) may contain, in addition to solid electrolyte (I), other components that may be contained in the solid electrolyte layer.
  • the positive electrode active material layer and the negative electrode active material layer can be formed, respectively, by applying a dispersion of the active material.
  • a dispersion liquid in which these components are also dispersed is used.
  • the dispersion medium in the solid electrolyte (I) dispersion liquid and the active material dispersion liquid can be appropriately selected in consideration of reactivity with the components contained in the dispersion liquid.
  • solid electrolyte (I) when solid electrolyte (I) is included, it is preferable to use an aqueous dispersion, and when a sulfide-based solid electrolyte is included, it is preferable to use an organic solvent dispersion.
  • a positive electrode forming composition (positive electrode slurry) containing a positive electrode active material is applied onto a metal foil serving as a positive electrode current collector to form a positive electrode active material layer, and then a positive electrode active material layer is formed.
  • a solid electrolyte layer forming dispersion containing a solid electrolyte (solid electrolyte slurry) is applied onto the positive electrode active material layer to form a solid electrolyte layer, and a negative electrode active material is further applied onto the solid electrolyte layer.
  • An example of a method is to form a negative electrode active material layer by applying a negative electrode forming composition (negative electrode slurry) containing the negative electrode active material layer, and to stack a negative electrode current collector (metal foil) on the negative electrode active material layer. If necessary, the whole can be subjected to pressure treatment to obtain an all-solid lithium ion secondary battery as shown in FIG. 1.
  • a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and a positive electrode current collector (metal foil) is formed on the positive electrode active material layer.
  • An all-solid-state lithium ion secondary battery can also be manufactured by stacking the two and subjecting the whole to pressure treatment if necessary.
  • Another method is to prepare a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer separately, and place them between a positive electrode current collector and a negative electrode current collector (a metal foil), a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector (metal foil) are laminated in this order and pressurized if necessary to produce an all-solid-state lithium ion secondary battery. You can also do it.
  • a support such as a nonwoven fabric may be provided as necessary to make each layer a self-supporting film. Note that it is preferable that the support in the self-supporting membrane is usually removed when laminating each layer to produce an all-solid-state lithium ion secondary battery.
  • Another form of the method for manufacturing a secondary battery of the present invention includes a method for manufacturing a secondary battery that includes applying pressure to powder of solid electrolyte (I) to form a solid electrolyte layer.
  • the solid electrolyte (I) can be easily plastically deformed by pressure, and it itself is soft and plastically deformed, acting like a binder and contributing to improving the cohesion between solid particles or layers.
  • a solid electrolyte layer exhibiting high ionic conductivity can be obtained without undergoing a high-temperature sintering process (in other words, without sintering).
  • the solid electrolyte layer contains other components that may be contained in the solid electrolyte layer as components other than the powder of the solid electrolyte (I)
  • the solid An electrolyte layer can also be formed.
  • the positive electrode active material layer and the negative electrode active material layer can also be formed by pressure molding the powders constituting each layer.
  • other components other than the active material include conductive aids, solid electrolytes, etc., especially when the solid electrolyte is solid electrolyte (I) and/or sulfide-based solid electrolyte, pressure is not applied to the powder mixture.
  • the powder constituting the positive electrode active material layer (hereinafter referred to as positive electrode composite powder), the powder constituting the solid electrolyte layer (hereinafter referred to as solid electrolyte powder), and the negative electrode active material.
  • the powder constituting the layers (hereinafter referred to as negative electrode composite powder)
  • the powder constituting each layer is pressurized and shaped into a predetermined shape to form pellets of each layer, and the pellets of the positive electrode or negative electrode are assembled.
  • An all-solid-state lithium ion secondary battery can also be manufactured by stacking it with an electric body and applying pressure.
  • solid electrolyte powder is filled into a predetermined mold, pressure molded to form solid electrolyte pellets, and negative electrode composite powder is filled on one side of the obtained solid electrolyte pellets.
  • Pellets of negative electrode composite material are formed by pressure molding, and pellets of positive electrode composite material are formed by filling powder of positive electrode composite material on the other side of the obtained solid electrolyte pellets and press molding.
  • a compact is obtained in which pellets of the positive electrode composite material, pellets of the solid electrolyte, and pellets of the negative electrode composite material are laminated in this order.
  • An all-solid-state lithium ion secondary battery as shown in FIG. 1 can be obtained by stacking electric bodies (metal foils) and subjecting the whole body to pressure treatment.
  • the method for preparing solid electrolyte powder can be prepared by freeze-vacuum drying a solid electrolyte layer-forming dispersion (solid electrolyte slurry) containing a solid electrolyte.
  • the method for preparing the powder of the negative electrode composite material there is no particular restriction on the method for preparing the powder of the negative electrode composite material, and for example, it can be prepared by mixing a solid electrolyte powder prepared in advance and a component for forming a negative electrode active material layer including the negative electrode active material. can.
  • the method for preparing the powder of the positive electrode composite material For example, it can be prepared by mixing a solid electrolyte powder prepared in advance and a component for forming a positive electrode active material layer including the positive electrode active material. can.
  • the pressurizing conditions when producing pellets of negative electrode composite material, pellets of solid electrolyte material, and pellets of positive electrode composite material It can be made.
  • pellets of the negative electrode composite material and the negative electrode current collector, and the pellets of the positive electrode composite material and the positive electrode current collector can also be crimped by applying a pressure of about 60 MPa.
  • the pellets may be formed in the order of negative electrode composite material pellets, solid electrolyte pellets, and positive electrode composite material pellets.
  • Another method is to separately produce pellets of the negative electrode composite material, pellets of the solid electrolyte material, and pellets of the positive electrode composite material, stack the obtained pellets, and stack the stacked pellets with the current collectors of the positive electrode and negative electrode.
  • An all-solid-state lithium ion secondary battery can also be manufactured by sandwiching and stacking them and applying pressure.
  • a method for manufacturing a small stacked battery in which a plurality of positive electrode layers, solid electrolyte layers, and negative electrode layers are stacked, with a solid electrolyte layer disposed between adjacent positive electrode layers and negative electrode layers is described, for example. It can be manufactured by referring to the lamination method described in paragraphs [0033] to [0046] of JP-A No. 2016-001602. Note that each layer of the positive electrode active material layer, solid electrolyte layer, and negative electrode active material layer can be manufactured based on the manufacturing method of the present invention described above.
  • the manufacturing method of the secondary battery of the present invention is not limited to that described above as long as the secondary battery defined by the present invention can be obtained.
  • the action of the oxide-based solid electrolyte (I), which can be easily plastically deformed under pressure, can be applied between solid particles or between layers. It is possible to form a layer with reduced interfacial resistance.
  • the solid electrolyte (I) itself is soft and plastically deformable, acts like a binder, and contributes to improving the binding between solid particles or layers, so layer formation is possible without using a binder such as an organic polymer. It is also possible to do so.
  • the secondary battery of the present invention is preferably initialized after manufacture or before use.
  • the method of initialization is not particularly limited, and for example, initial charging and discharging may be carried out under a high press pressure, and then the pressure may be released until the pressure falls within the range of pressure conditions during use of the secondary battery. I can do it.
  • the secondary battery of the present invention can be applied to various uses. There are no particular restrictions on how it can be applied, but for example, when installed in electronic devices, it can be used in notebook computers, pen input computers, mobile computers, e-book players, mobile phones, cordless phone handsets, pagers, handy terminals, mobile fax machines, mobile phones, etc. Examples include photocopiers, portable printers, headphone stereos, video movies, LCD televisions, handy cleaners, portable CDs, mini discs, electric shavers, walkie talkies, electronic organizers, calculators, memory cards, portable tape recorders, radios, and backup power supplies.
  • consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, and medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various military purposes and for space purposes. It can also be combined with solar cells.
  • room temperature means 27°C.
  • the production of the solid electrolyte and the production of the secondary battery described below were performed in an atmosphere where moisture was present in the atmosphere.
  • LiFSI chemical formula: Li(FSO 2 ) 2 N
  • LiFSI lithium salt
  • the obtained powder was added to water so that the powder concentration was 42% by mass, and ultrasonically dispersed for 30 minutes.
  • the obtained dispersion liquid was transferred to a glass Petri dish and dried at 120° C. for 2 hours in the atmosphere to obtain a solid electrolyte film.
  • the obtained film was peeled off to obtain powdered solid electrolyte (I)-1.
  • the powdered solid electrolyte (I)-1 obtained above was compacted at 27° C. (room temperature) and an effective pressure of 220 MPa to obtain a solid electrolyte compact (compact 1).
  • the powder compact 1 has a cylindrical shape with a diameter of 10 mm and a thickness of 0.5 to 1 mm.
  • the ionic conductivity of the compact 1 was 1.5 ⁇ 10 ⁇ 4 S/cm at 27°C and 4.0 ⁇ 10 at 60°C. -4 S/cm.
  • the ionic conductivity of the solid electrolyte (I)-1 was measured at 1 Hz under the conditions of a measurement temperature of 27°C or 60°C and an applied voltage of 50 mV, with two In foil electrodes placed to sandwich the powder compact 1. It was calculated by measuring the AC impedance between both In electrodes in a measurement frequency range of ⁇ 1 MHz and analyzing the arc diameter of the obtained Cole-Cole plot (Nyquist plot).
  • a typical lithium tetraborate crystal has a structure in which BO 4 tetrahedrons and BO 3 triangles exist in a 1:1 ratio (diborate structure), and it is assumed that this structure is maintained in solid electrolyte (I)-1. .
  • the ratio ⁇ (full width at half maximum 2/full width at half maximum 1) ⁇ 100 ⁇ was 33%.
  • the chemical shift was found to be in the range of -3 to 3 ppm, with a full width at half maximum. It had a second peak of 5 ppm or less, and the ratio of the area intensity of the second peak to the area intensity of the first peak was 4%.
  • Solid electrolyte (I)-2 was subjected to various evaluations in the same manner as in Reference Example 1 under atmospheric conditions. The results are summarized in the table below.
  • the obtained lithium-containing oxide fines were added to water so that the concentration of the fines was 42% by mass, and subjected to ultrasonic treatment for 60 minutes to obtain Dispersion 1.
  • 3.25 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 2.
  • the obtained dispersion liquid 1 and solution 2 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes.
  • the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdery solid electrolyte (I)-3.
  • the obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-3. The results are summarized in the table below.
  • Dispersion 3 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3.
  • 2.32 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 4.
  • the obtained dispersion liquid 3 and solution 4 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes.
  • the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain a powdery solid electrolyte (I)-4.
  • the obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-4.
  • the results are summarized in the table below.
  • Dispersion 5 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3. Next, 4.65 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 6. The obtained dispersion liquid 5 and solution 6 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdery solid electrolyte (I)-5. The obtained powdered solid electrolyte (I)-5 was immediately used to perform various evaluations in the same manner as in Reference Example 1 in the atmosphere. The results are summarized in the table below.
  • LiFSI chemical formula: Li(FSO 2 ) 2 N
  • Dispersion 7 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3. Next, 7.13 g of LiTFSI (chemical formula: Li(F 3 CSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 8. The obtained dispersion liquid 7 and solution 8 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdered solid electrolyte (I)-6.
  • LiTFSI chemical formula: Li(F 3 CSO 2 ) 2 N
  • the peak top is the first peak located at 1.40 ⁇ (corresponding to the BO proximity), the peak There was a second peak whose top was located at 2.40 ⁇ (corresponding to B-B proximity), and the G(r) at the peak tops of the first and second peaks were both 1.0 or more (Fig. 10).
  • the absolute value of G(r) at the peak top of each peak is 1. It clearly exceeded 0 (see Figure 10).
  • FIG. 11 shows the X-ray diffraction pattern of the LBO powder of Comparative Reference Example 1.
  • a plurality of narrow peaks were observed in the LBO powder used in Comparative Reference Example 1. More specifically, the strongest peak corresponding to the (1,1,2) plane was observed at a 2 ⁇ value of 21.78°.
  • Other main diffraction peaks include a peak corresponding to the (2,0,2) plane at the position of 25.54°, a peak corresponding to the (2,1,3) plane at the position of 33.58°, 34.
  • a peak corresponding to the (3,1,2) plane appeared at the 62° position, and the intensities of these three peaks were almost equal. These peaks are derived from crystalline components.
  • the "Short distance G(r)" column is marked as "A”, and in other cases, it is marked as "B".
  • the "Elemental analysis” column shows the relative values of the composition of the solid electrolyte (I) obtained in each reference example and the lithium-containing oxide in each comparative reference example, with the B content being "4.00". represents the molar amount of each element.
  • a blank column means that the corresponding element is not contained.
  • area intensity ratio is the ratio of the area intensity of the second peak to the area intensity of the first peak in the solid-state 7 Li-NMR measurement described above, and the evaluation results based on the following criteria are described.
  • the "maximum absorption intensity ratio” column indicates whether the above-mentioned infrared absorption spectrum characteristics are satisfied, and is [maximum absorption intensity in the wave number region of 3000 to 3500 cm -1 ]/[800 to 1600 cm -1 wave number region] is 0.20 or more, it is shown as "A”, and less than 0.20 is shown as "B".
  • "-" means that no measured value is shown.
  • Solid electrolyte (I)-3 of Reference Example 3 has a strong absorption intensity derived from the O-H stretching peak in the wave number region of 3000 to 3500 cm -1 in the infrared absorption spectrum, so it contains a large number of OH groups and water. is thought to exist. Regarding water, the existence of free water and bound water is presumed. In the above, by vacuum drying, the pellets were first dried under conditions that are considered to volatilize from free water, and then the pellets were further dried under strict drying conditions, and the ionic conductivity at each stage was evaluated.
  • the drying time was 5 minutes, the pressure was 200 Pa, and the free water was considered to be in a vaporized state, but the ionic conductivity was a high value of 3.8 ⁇ 10 -3 S/cm. Even at a drying time of 1080 minutes and a pressure of 15 Pa, the ionic conductivity was 5.7 ⁇ 10 ⁇ 4 S/cm. This result indicates that bound water other than free water exists and contributes to ionic conductivity.
  • a solid electrolyte (I) was prepared in the same manner as in Reference Example 7, except that LiTFSI was changed to LiFSI, and the contents of water and LiFSI in the obtained solid electrolyte (I) were changed to the amounts listed in the table below.
  • )-9 to (I)-13 were obtained, and various evaluations were conducted in the same manner as in Reference Example 1 under air. The results are summarized in the table below. However, in Reference Example 13, the powder obtained by vacuum drying was immediately used and the evaluation was conducted in the atmosphere.
  • the "Lithium-containing oxide fines” column, the “Lithium salt” column, and the “Water” column represent relative molar ratios.
  • the molar ratio of the lithium salt to the fine lithium-containing oxide is 1, and the molar ratio of water to the fine lithium-containing oxide is 11.
  • the said molar ratio was calculated by the following method.
  • lithium and boron were quantitatively analyzed by ICP-OES, fluorine and sulfur were quantitatively analyzed by combustion ion chromatography (combustion IC), and for N, the analytical mass of sulfur was determined by considering the atomic weight of each element in Li salt.
  • the analyzed mass of elements other than O was added up and calculated as the difference from the total amount of solid electrolyte.
  • the carbon content was estimated from the analytical mass of sulfur in consideration of each atomic weight in the lithium salt.
  • the molar ratio between the lithium-containing oxide fines and the lithium salt in the solid electrolyte was calculated from the molar ratio of an element (for example, B) found only in the lithium-containing oxide fines and an element found only in the lithium salt.
  • the molar ratio of lithium-containing oxide fines to water is calculated by subtracting the molar ratio of O contained in lithium-containing oxide fines and lithium salt from the molar ratio of O in the solid electrolyte.
  • the molar amount of derived O was calculated and calculated using the obtained molar amount of O derived from water and the molar amount of fine particles of the lithium-containing oxide.
  • the solid electrolyte of each reference example satisfied the composition specified in Claim 1 of the present application, had desired characteristics or physical properties, and exhibited excellent ionic conductivity.
  • ⁇ Preparation of solid electrolyte slurry 1 Preparation of solid electrolyte (I) by the above steps 1B to 3B and method 1> 10 g of the above lithium-containing oxide fines, 15 g of water, and 11 g of LiFSI were mixed in a beaker and subjected to ultrasonic treatment for 30 minutes using an ultrasonic cleaner to obtain a dispersion. This dispersion was further stirred for 30 minutes using a magnetic stirrer to obtain solid electrolyte slurry 1. This solid electrolyte slurry 1 was vacuum dried at 40° C. and 20 Pa for 15 hours to obtain a powder.
  • ⁇ Preparation of solid electrolyte slurry 2 Preparation of solid electrolyte (I) by the above steps 1B to 3B and method 1> 10 g of the above lithium-containing oxide fines, 15 g of water, and 17 g of LiTFSI were mixed in a beaker and subjected to ultrasonic treatment for 30 minutes using an ultrasonic cleaner to obtain a dispersion. This dispersion was further stirred for 30 minutes using a magnetic stirrer to obtain solid electrolyte slurry 2. This solid electrolyte slurry 2 was vacuum dried at 40° C. and 20 Pa for 15 hours to obtain a powder.
  • the multilayer coating film was dried by storing it in a desiccator at a relative humidity of 5% or less for 12 hours, and punched out into a 10 mm diameter piece using a hand punch to form a positive electrode side laminate (solid electrolyte layer/positive electrode active material layer/Al or Ti current collector). ) was obtained. Note that the thickness of the solid electrolyte layer was approximately 60 ⁇ m.
  • the multi-layer coating film was dried by storing it in a desiccator at a relative humidity of 5% or less for 12 hours, and punched out to a diameter of 10 mm using a hand punch to form a negative electrode side laminate (solid electrolyte layer/negative electrode material layer/Al or Ti current collector). I got it. Note that the thickness of the solid electrolyte layer was approximately 60 ⁇ m.
  • ⁇ Production of coating type secondary battery> Place the negative electrode side laminate obtained above on a 10 mm diameter SUS stand of an all-solid battery evaluation cell manufactured by Hosensha (product name: KP-SolidCell) with the solid electrolyte layer side facing upward, and then The positive electrode side laminate obtained above was placed on top with the solid electrolyte layer side facing down. Next, a tube made of Teflon (registered trademark) with an inner diameter of 10.2 mm (hereinafter referred to as a Teflon tube) is inserted from the upper side (positive electrode side laminate side) of Cell A, which is made by stacking the positive electrode side laminate/negative electrode side laminate in this order.
  • Teflon tube Teflon
  • a polished Ti plate with a diameter of 10 mm and a thickness of 2 mm was inserted into the hole at the top of the Teflon tube and placed on top of the positive electrode stack, and a Ti rod with a diameter of 10 mm and a height of 2 cm was inserted and placed on the Ti plate.
  • a drop of silica gel for water removal was placed in the cavity of the KP-SolidCell, and the upper casing of the KP-SolidCell was fitted and sealed using a double O-ring, four-point bolts, and a wing nut.
  • the upper lid was closed and sealed via a double O-ring. After leaving it at room temperature for 40 hours, the whole cell was heated at 80° C. for 2 hours to produce a coated secondary battery.
  • the thickness of the positive electrode active material layer was 80 ⁇ m
  • the thickness of the solid electrolyte layer was 120 ⁇ m
  • the thickness of the negative electrode active material layer was 100 ⁇ m. Table 6 summarizes the configuration of the secondary battery and the evaluation results of the charge/discharge test.
  • E ⁇ When the average battery voltage is 1.85V, E ⁇ is set to 2.3V, and when the average battery voltage is 2.35V, E ⁇ is set to 2.3V. E ⁇ was set to 2.8V, and E ⁇ was set to 3.4V when the average battery voltage was 3.15V.
  • the circuit After charging, the circuit was opened and left for 10 minutes, and then discharged at a constant current value I ⁇ until the battery voltage reached 1.5V. The charging and discharging up to this point was defined as one cycle. After discharging, the circuit was opened and left for 10 minutes, and then the next charge was started, and charging and discharging were repeated under the same conditions.
  • Discharge capacity retention rate (%) (discharge capacity after 50 cycles of 3C charge/discharge/discharge capacity after 10 cycles of 3C charge/discharge) x 100 - Evaluation criteria -
  • the number 1 or 2 in the column of positive electrode, negative electrode, and SE layer (solid electrolyte layer) of the slurry indicates the number 1 or 2 of the positive electrode slurry, negative electrode slurry, and solid electrolyte slurry, respectively, used to form each layer.
  • the active materials described in the positive electrode and negative electrode columns indicate the types of active materials used in the positive electrode slurry and negative electrode slurry used to form each layer, respectively.
  • the average battery voltage (unit: V) is a value obtained by subtracting the Li-based discharge potential of the negative electrode active material from the Li-based discharge potential of the positive electrode active material.
  • the theoretical capacity (unit: mAh/g) is a value calculated from the theoretical discharge capacity of the active material.
  • a Ti rod with a diameter of 10 mm and a height of 2 cm was further inserted and placed on the Ti plate.
  • a drop of silica gel for water removal was placed in the cavity of the KP-SolidCell, and the upper casing of the KP-SolidCell was fitted and sealed using a double O-ring, four-point bolts, and a wing nut.
  • Cell B was restrained from above and below with a torque of 9 Nm (equivalent to 60 MPa) using a restraining pressure applying mechanism installed on the top of the KP-SolidCell.
  • the cell B means a cell formed by stacking a negative electrode side current collector/a compacted powder body/a positive electrode side current collector in this order.
  • the thickness of the positive electrode active material layer was 100 ⁇ m
  • the thickness of the solid electrolyte layer was 200 ⁇ m
  • the thickness of the negative electrode active material layer was 100 ⁇ m.
  • Table 7 summarizes the configuration of the secondary battery and the evaluation results of the charge/discharge test.
  • Discharge capacity retention rate (%) (discharge capacity after 50 cycles of 3C charge/discharge/discharge capacity after 10 cycles of 3C charge/discharge) - Evaluation criteria -

Abstract

The present invention provides an all-solid-state lithium ion secondary battery which is obtained by sequentially arranging a positive electrode layer, a solid electrolyte layer and a negative electrode layer in this order, wherein: the solid electrolyte layer contains a solid electrolyte which contains a lithium-containing oxide that contains Li, B and O, a lithium salt and water; relative to the content of the lithium-containing oxide, the ratio of the content of the lithium salt is 0.001 to 1.5 in terms of the molar ratio and the ratio of the content of water is 1 to 12 in terms of the molar ratio in the solid electrolyte; and the discharge potential difference between a positive electrode active material in the positive electrode layer and a negative electrode active material in the negative electrode layer is 1.3 V or more based on Li. The present invention also provides a method for producing this all-solid-state lithium ion secondary battery.

Description

全固体リチウムイオン二次電池及び全固体リチウムイオン二次電池の製造方法All-solid-state lithium-ion secondary battery and method for manufacturing an all-solid-state lithium-ion secondary battery
 本発明は、全固体リチウムイオン二次電池及び全固体リチウムイオン二次電池の製造方法に関する。 The present invention relates to an all-solid lithium ion secondary battery and a method for manufacturing an all-solid lithium ion secondary battery.
 従来、リチウムイオン二次電池には、電解質として高いイオン伝導性を有する有機溶媒が用いられてきた。しかしながら、有機溶媒は可燃性であるため安全性に問題がある。また、液体状であるためコンパクト化が難しく、電池が大型化する際に容量に関する制限も問題となる。一方、水は不燃性であるものの電位窓が狭く、pH=7の条件では3.8V(Li基準)以上で酸化分解、2.5V(Li基準)以下で還元分解され、電位窓は1.3V未満である。このため、高容量化できず、電解質として水溶液を用いるリチウムイオン二次電池は実用化されていない。
 これらに対して、全固体リチウムイオン二次電池は、これらの課題を解決できる次世代電池の一つである。全固体リチウムイオン二次電池の基本的な構成を図1に示す。全固体リチウムイオン二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこに固体電解質層3を通って移動したリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が固体電解質層3を通って正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
Conventionally, organic solvents with high ionic conductivity have been used as electrolytes in lithium ion secondary batteries. However, since organic solvents are flammable, there is a safety problem. Furthermore, since it is in a liquid state, it is difficult to make it compact, and when the battery becomes larger, capacity limitations become a problem. On the other hand, although water is nonflammable, it has a narrow potential window; under the condition of pH=7, it is oxidatively decomposed above 3.8 V (Li standard), reductively decomposed below 2.5 V (Li standard), and the potential window is 1. It is less than 3V. For this reason, lithium ion secondary batteries that use an aqueous solution as an electrolyte have not been put into practical use because they cannot have a high capacity.
In contrast, all-solid-state lithium ion secondary batteries are one of the next generation batteries that can solve these problems. Figure 1 shows the basic configuration of an all-solid-state lithium-ion secondary battery. The all-solid-state lithium ion secondary battery 10 includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order when viewed from the negative electrode side. The layers are in contact with each other and have an adjacent structure. By adopting such a structure, during charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) that have migrated through the solid electrolyte layer 3 are accumulated there. On the other hand, during discharging, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side through the solid electrolyte layer 3, and electrons are supplied to the operating region 6. In the illustrated example, a light bulb is used as a model for the operating portion 6, and the light bulb is lit by discharge.
 上記の通り、全固体リチウムイオン二次電池では、所望の充放電特性を得るために、固体電解質層には優れたリチウムイオン伝導性が求められる。
 固体電解質層を構成する固体電解質としては、主に、硫化物系固体電解質又は酸化物系固体電解質が用いられている。
 硫化物系固体電解質は柔らかく塑性変形するため、加圧成形するだけで粒子が結着する。それ故、硫化物系固体電解質は粒子間の界面抵抗が低く、イオン伝導性に優れている。しかし、硫化物系固体電解質は水と反応して有毒な硫化水素が発生する問題がある。
 これに対し、酸化物系固体電解質は安全性が高い利点がある。しかし、酸化物系固体電解質は硬く塑性変形しにくい。酸化物系固体電解質の粒子間の結着性を高めるには、高温の焼結処理を要し、電池の生産効率、エネルギーコストの観点などで制約がある。例えば、特許文献1には、特定の元素組成のリチウム含有酸化物で形成した固体電解質が開示され、この固体電解質が高いイオン伝導性を示すことが記載されている。しかし、この特許文献1記載のリチウム含有酸化物を固体電解質シートとして用いるためには高温の焼結処理が必要とされる。
 この問題に対処した技術として、例えば、特許文献2には、25℃におけるリチウムイオン伝導度が1.0×10-6S/cm以上であるリチウム化合物と、X線全散乱測定から得られた還元二体分布関数G(r)が特定のプロファイルを示す四ホウ酸リチウムとを含む複合体が記載されている。特許文献2記載の技術によれば、この複合体はリチウム含有酸化物で構成されていながら、四ホウ酸リチウムがリチウム化合物間において塑性変形してリチウム化合物同士をつなぐ役割を果たし、それ故、この複合体は、高温の焼結処理に付さなくても、加圧処理によって、良好なリチウムイオン伝導性を示すリチウムイオン伝導体を形成することができるとされる。
As mentioned above, in an all-solid-state lithium ion secondary battery, excellent lithium ion conductivity is required in the solid electrolyte layer in order to obtain desired charge/discharge characteristics.
As the solid electrolyte constituting the solid electrolyte layer, a sulfide-based solid electrolyte or an oxide-based solid electrolyte is mainly used.
Sulfide-based solid electrolytes are soft and deform plastically, so the particles are bound together just by pressure molding. Therefore, sulfide-based solid electrolytes have low interparticle interfacial resistance and excellent ionic conductivity. However, sulfide-based solid electrolytes have the problem of reacting with water and generating toxic hydrogen sulfide.
In contrast, oxide-based solid electrolytes have the advantage of high safety. However, oxide-based solid electrolytes are hard and difficult to undergo plastic deformation. In order to improve the binding between particles of an oxide-based solid electrolyte, a high-temperature sintering process is required, and there are restrictions in terms of battery production efficiency and energy cost. For example, Patent Document 1 discloses a solid electrolyte formed of a lithium-containing oxide having a specific elemental composition, and describes that this solid electrolyte exhibits high ionic conductivity. However, in order to use the lithium-containing oxide described in Patent Document 1 as a solid electrolyte sheet, high-temperature sintering treatment is required.
As a technique to deal with this problem, for example, Patent Document 2 describes a lithium compound whose lithium ion conductivity at 25°C is 1.0 × 10 -6 S/cm or more and a lithium compound obtained from X-ray total scattering measurement. A complex with lithium tetraborate is described whose reduced two-body distribution function G(r) exhibits a particular profile. According to the technology described in Patent Document 2, although this composite is composed of a lithium-containing oxide, lithium tetraborate plastically deforms between the lithium compounds and plays the role of connecting the lithium compounds, so this It is said that the composite can form a lithium ion conductor exhibiting good lithium ion conductivity by pressure treatment without being subjected to high temperature sintering treatment.
特開2018-052755号公報JP2018-052755A 国際公開第2021/193204号International Publication No. 2021/193204
 上記特許文献2に記載された複合体は、リチウム含有酸化物で構成されていながらも柔らかく、焼結処理に付さなくても、また有機ポリマー等のバインダーを配合しなくても、粒子間の結着を担保でき、これまでの酸化物系固体電解質が達成し得なかった特性を有している。しかし、本発明者らが検討を進めたところ、全固体リチウムイオン二次電池の固体電解質層として実用化するには、リチウムイオンの伝導性は現段階では十分とはいえず、実用化に向けて改善の余地があることがわかってきた。 Although the composite described in Patent Document 2 is composed of a lithium-containing oxide, it is soft and can be used between particles without being subjected to sintering treatment or without adding a binder such as an organic polymer. It can ensure binding, and has properties that conventional oxide-based solid electrolytes have not been able to achieve. However, as the inventors proceeded with their studies, they found that the conductivity of lithium ions is not currently sufficient for practical use as a solid electrolyte layer in all-solid-state lithium-ion secondary batteries, and that It has become clear that there is room for improvement.
 本発明は、リチウム含有酸化物を固体電解質層に用いた全固体リチウムイオン二次電池であって、上記固体電解質層は、高温の焼結処理に付さなくても、また、例えば、有機ポリマーのようなバインダーを配合しない場合であっても、粒子間の結着性に優れており、リチウムイオン伝導性がより高く、また安全性にも優れる全固体リチウムイオン二次電池、及びその製造方法を提供することを課題とする。 The present invention is an all-solid-state lithium ion secondary battery using a lithium-containing oxide as a solid electrolyte layer, wherein the solid electrolyte layer can be formed using organic polymers, for example, without being subjected to high-temperature sintering treatment. An all-solid-state lithium ion secondary battery that has excellent interparticle binding properties, higher lithium ion conductivity, and excellent safety even when a binder is not blended, and a method for manufacturing the same. The challenge is to provide the following.
 本発明の課題は下記の手段により解決された。 The problem of the present invention was solved by the following means.
〔1〕
 正極層と固体電解質層と負極層とをこの順に配してなる全固体リチウムイオン二次電池であって、
 上記固体電解質層は、Li、B及びOを含むリチウム含有酸化物とリチウム塩と水とを含む固体電解質を含み、この固体電解質中、上記リチウム含有酸化物の含有量に対して、上記リチウム塩の含有量の比の値がモル比で0.001~1.5であり、水の含有量の比の値がモル比で1~12であり、
 上記正極層に含まれる正極活物質と上記負極層に含まれる負極活物質とのLi基準での放電電位の差が1.3V以上である、全固体リチウムイオン二次電池。
〔2〕
 上記リチウム含有酸化物が、Li2+x4+y7+zを含む、〔1〕に記載の全固体リチウムイオン二次電池。
 ただし、-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3である。
〔3〕
 上記正極活物質が、LiCoO、LiNiO、LiNi0.85Co0.10Al0.05、LiNi1/3Mn1/3Co1/3、LiMnO-LiNiMnCoO、LiMn、LiNi0.5Mn1.5、LiFePO、LiMnPO、LiCoPO、LiCoP及びLiNiPOのうちの少なくとも1種を含み、
 上記負極活物質が、LiTi12、TiNb、Fe、黒鉛、ハードカーボン、Si、SiO、Sn、Al及び金属Liのうちの少なくとも1種を含み、
 上記正極活物質と上記負極活物質とのLi基準での放電電位の差が1.3V以上である、〔1〕又は〔2〕に記載の全固体リチウムイオン二次電池。
〔4〕
 上記負極活物質のLi基準での放電電位が2.5V以下である、〔1〕~〔3〕のいずれか1つに記載の全固体リチウムイオン二次電池。
〔5〕
 上記負極活物質が、LiTi12、TiNb、Fe、黒鉛、ハードカーボン、Si、SiO、Sn、Al及び金属Liのうちの少なくとも1種である、〔4〕に記載の全固体リチウムイオン二次電池。
〔6〕
 上記正極活物質のLi基準での放電電位が3.8V以上である、〔1〕~〔5〕のいずれか1つに記載の全固体リチウムイオン二次電池。
〔7〕
 上記正極活物質が、LiCoO、LiMnO-LiNiMnCoO、LiMn、LiNi0.5Mn1.5、LiMnPO、LiCoPO、LiCoP及びLiNiPOのうちの少なくとも1種である、〔6〕に記載の全固体リチウムイオン二次電池。
〔8〕
 上記全固体リチウムイオン二次電池の製造において、上記固体電解質の分散液を塗布して上記固体電解質層を形成することを含む、〔1〕~〔7〕のいずれか1つに記載の全固体リチウムイオン二次電池の製造方法。
〔9〕
 上記全固体リチウムイオン二次電池の製造において、上記固体電解質の粉末に圧力を印加して上記固体電解質層を形成することを含む、〔1〕~〔7〕のいずれか1つに記載の全固体リチウムイオン二次電池の製造方法。
[1]
An all-solid lithium ion secondary battery comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer arranged in this order,
The solid electrolyte layer includes a solid electrolyte containing a lithium-containing oxide containing Li, B, and O, a lithium salt, and water, and the lithium salt The value of the ratio of the content of is 0.001 to 1.5 in molar ratio, the value of the ratio of the content of water is 1 to 12 in molar ratio,
An all-solid-state lithium ion secondary battery, wherein the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer is 1.3 V or more.
[2]
The all-solid lithium ion secondary battery according to [1], wherein the lithium-containing oxide includes Li 2+x B 4+y O 7+z .
However, -0.3<x<0.3, -0.3<y<0.3, and -0.3<z<0.3.
[3]
The positive electrode active material is LiCoO 2 , LiNiO 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , Li 2 MnO 3 -LiNiMnCoO 2 , Containing at least one of LiMn2O4 , LiNi0.5Mn1.5O4 , LiFePO4 , LiMnPO4 , LiCoPO4 , Li2CoP2O7 and LiNiPO4 ,
The negative electrode active material contains at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metal Li,
The all-solid lithium ion secondary battery according to [1] or [2], wherein the difference in discharge potential between the positive electrode active material and the negative electrode active material based on Li is 1.3 V or more.
[4]
The all-solid-state lithium ion secondary battery according to any one of [1] to [3], wherein the negative electrode active material has a discharge potential of 2.5 V or less based on Li.
[5]
[4] The negative electrode active material is at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metallic Li. The all-solid-state lithium ion secondary battery described in .
[6]
The all-solid-state lithium ion secondary battery according to any one of [1] to [5], wherein the positive electrode active material has a discharge potential of 3.8 V or more based on Li.
[7]
The positive electrode active material is selected from LiCoO 2 , Li 2 MnO 3 -LiNiMnCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiMnPO 4 , LiCoPO 4 , Li 2 CoP 2 O 7 and LiNiPO 4 . The all-solid-state lithium ion secondary battery according to [6], which is at least one of the above.
[8]
The all-solid-state according to any one of [1] to [7], wherein the production of the all-solid lithium ion secondary battery includes forming the solid electrolyte layer by applying a dispersion of the solid electrolyte. A method for manufacturing a lithium ion secondary battery.
[9]
The production of the all-solid lithium ion secondary battery according to any one of [1] to [7], including forming the solid electrolyte layer by applying pressure to the powder of the solid electrolyte. A method for manufacturing a solid lithium ion secondary battery.
 本発明ないし明細書において、数値範囲を示して説明する場合、数値範囲の上限値及び下限値を別々に説明するときは、いずれかの上限値及び下限値を適宜に組み合わせて、特定の数値範囲とすることができる。一方、「~」を用いて表される数値範囲を複数設定して説明するときは、数値範囲を形成する上限値及び下限値は、特定の数値範囲として「~」の前後に記載された特定の組み合わせに限定されず、各数値範囲の上限値と下限値とを適宜に組み合わせた数値範囲とすることができる。なお、本発明ないし明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present invention or the specification, when a numerical range is indicated and explained, when an upper limit value and a lower limit value of the numerical range are explained separately, either the upper limit value or the lower limit value is appropriately combined to specify a specific numerical range. It can be done. On the other hand, when setting and explaining multiple numerical ranges expressed using "~", the upper and lower limit values forming the numerical range are specified as specific numerical ranges written before and after "~". The numerical ranges are not limited to the above combinations, and may be a numerical range that is an appropriate combination of the upper limit and lower limit of each numerical range. In the present invention and the specification, a numerical range expressed using "-" means a range that includes the numerical values written before and after "-" as lower and upper limits.
 本発明の全固体リチウムイオン二次電池は、リチウム含有酸化物を固体電解質層に用いており、上記固体電解質層は、高温の焼結処理に付さなくても、また、例えば、有機ポリマーのようなバインダーを配合しない場合であっても、粒子間の結着性に優れており、リチウムイオン伝導性がより高く、また安全性にも優れる。また、本発明の全固体リチウムイオン二次電池の製造方法は、上記の本発明の全固体リチウムイオン二次電池を得るのに好適な製造方法である。 The all-solid-state lithium ion secondary battery of the present invention uses a lithium-containing oxide in the solid electrolyte layer, and the solid electrolyte layer can be made of, for example, an organic polymer without being subjected to high-temperature sintering treatment. Even when such a binder is not blended, it has excellent binding properties between particles, higher lithium ion conductivity, and excellent safety. Further, the method for manufacturing an all-solid lithium ion secondary battery of the present invention is a suitable manufacturing method for obtaining the above-mentioned all-solid lithium ion secondary battery of the present invention.
図1は、全固体リチウムイオン二次電池の構成の一例を模式化して示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the configuration of an all-solid-state lithium ion secondary battery. 図2は、本発明に用いる固体電解質(I)の好ましい形態に係るX線回折特性を説明するためのX線回折パターンの一例を示す図である。FIG. 2 is a diagram showing an example of an X-ray diffraction pattern for explaining the X-ray diffraction characteristics of a preferred embodiment of the solid electrolyte (I) used in the present invention. 図3は、本発明に用いる固体電解質(I)のX線全散乱測定から得られた還元二体分布関数G(r)の一例を示す図である。FIG. 3 is a diagram showing an example of the reduced two-body distribution function G(r) obtained from X-ray total scattering measurement of the solid electrolyte (I) used in the present invention. 図4は、本発明に用いる固体電解質(I)の好ましい形態についての固体Li-NMR測定を20℃又は120℃で行った場合に得られるスペクトルの一例を示す図である。FIG. 4 is a diagram showing an example of a spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20° C. or 120° C. for a preferable form of the solid electrolyte (I) used in the present invention. 図5は、四ホウ酸リチウム結晶の固体Li-NMR測定を20℃又は120℃で行った場合に得られるスペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of a spectrum obtained when solid 7 Li-NMR measurement of lithium tetraborate crystal is performed at 20°C or 120°C. 図6は、本発明に用いる固体電解質(I)の好ましい形態についての固体Li-NMR測定を20℃で行った場合に得られるスペクトルの一例を示す図である。FIG. 6 is a diagram showing an example of a spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20° C. for a preferred form of the solid electrolyte (I) used in the present invention. 図7は、図6に示されたピークを波形分離した図である。FIG. 7 is a diagram in which the peaks shown in FIG. 6 are separated into waveforms. 図8は、本発明に用いる固体電解質(I)の好ましい形態についてのラマンスペクトルの一例を示す図である。FIG. 8 is a diagram showing an example of a Raman spectrum of a preferable form of the solid electrolyte (I) used in the present invention. 図9は、四ホウ酸リチウム結晶のラマンスペクトルを示す図である。FIG. 9 is a diagram showing a Raman spectrum of a lithium tetraborate crystal. 図10は、粉末状のLi結晶のX線全散乱測定によって得られた還元二体分布関数G(r)を示す図である。FIG. 10 is a diagram showing the reduced two-body distribution function G(r) obtained by X-ray total scattering measurement of powdered Li 2 B 4 O 7 crystal. 図11は、粉末状のLi結晶のX線回折パターンを示す図である。FIG. 11 is a diagram showing an X-ray diffraction pattern of powdered Li 2 B 4 O 7 crystal.
[全固体リチウムイオン二次電池]
 本発明の全固体リチウムイオン二次電池(以降において「本発明の二次電池」とも称す)は、正極層と固体電解質層と負極層とをこの順に配してなる全固体リチウムイオン二次電池であり、正極層に含まれる正極活物質と負極層に含まれる負極活物質とのLi基準での放電電位の差が1.3V以上である。固体電解質層は、後述する特定組成の固体電解質(I)を含む。
 本発明の二次電池における固体電解質層は特定組成の固体電解質(I)を含むため、後述する通り、高温の焼結処理に付さなくても、また、例えば、有機ポリマーのようなバインダーを配合しない場合であっても、粒子間の結着性に優れており、リチウムイオン伝導性がより高く、また安全性にも優れる。
 さらに、特定組成の固体電解質(I)には、「自由水」と「束縛水」の二種類の水が含まれる。この「束縛水」は、リチウム含有酸化物及び/又はリチウム塩と相互作用し、固体電解質(I)の電位窓は水の電位窓よりも広くなり、電位差1.3V以上でも酸化還元分解されなくなり、正極活物質と負極活物質との組み合わせとして、Li基準での放電電位の差が1.3V以上である組み合わせを採用することができ、高容量化された二次電池を提供することができる。前述の通り、従来の液系リチウムイオン二次電池のうち水溶液を電解液とする形態においては、水が電位差1.3V以上で酸化還元分解してしまうため、使用する正極活物質と負極活物質の組み合わせについては制限があり、電池を高容量化することが困難であったところを、本発明の二次電池では固体電解質(I)が水を含有しながらも、この問題についても解消することができる。
[All-solid-state lithium ion secondary battery]
The all-solid lithium ion secondary battery of the present invention (hereinafter also referred to as "the secondary battery of the present invention") is an all-solid lithium ion secondary battery comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer arranged in this order. The difference in discharge potential between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer is 1.3 V or more based on Li. The solid electrolyte layer contains a solid electrolyte (I) having a specific composition described below.
Since the solid electrolyte layer in the secondary battery of the present invention contains the solid electrolyte (I) with a specific composition, it can be used without being subjected to high-temperature sintering treatment, as will be described later. Even when it is not blended, it has excellent binding properties between particles, higher lithium ion conductivity, and excellent safety.
Furthermore, the solid electrolyte (I) having a specific composition contains two types of water: "free water" and "bound water". This "bound water" interacts with the lithium-containing oxide and/or lithium salt, and the potential window of the solid electrolyte (I) becomes wider than the potential window of water, and it is no longer decomposed by redox even if the potential difference is 1.3 V or more. As a combination of a positive electrode active material and a negative electrode active material, a combination in which the difference in discharge potential based on Li is 1.3 V or more can be adopted, and a secondary battery with increased capacity can be provided. . As mentioned above, in conventional liquid-based lithium ion secondary batteries that use an aqueous solution as the electrolyte, water undergoes redox decomposition at a potential difference of 1.3 V or more, so the positive electrode active material and negative electrode active material used are However, in the secondary battery of the present invention, this problem is solved even though the solid electrolyte (I) contains water. I can do it.
 本発明の二次電池の構成は、正極層と固体電解質層と負極層とをこの順に配してなる限り特に制限されず、これらの層を隣接する正極層と負極層との間には固体電解質層が配されるようにして複数積層してなる構成(小型積層電池の構成)を含む。本発明の二次電池を構成する各構成層(集電体等を含む。)は単層構造であっても複層構造であってもよい。
 上記小型積層電池の構成のうち、固体電解質層を特定組成の固体電解質(I)とし、正極層に含まれる正極活物質と負極層に含まれる負極活物質とのLi基準での放電電位の差を1.3V以上とする構成以外については、例えば、特開2016-001602号公報の段落[0021]~[0046]に記載の固体電池の構成を参照し、本発明に適用することができる。
 以下、本発明の二次電池の各層について説明する。
The structure of the secondary battery of the present invention is not particularly limited as long as the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are arranged in this order, and there is no solid state between these layers and the adjacent positive electrode layer and negative electrode layer. This includes a structure in which a plurality of electrolyte layers are stacked (a structure of a small stacked battery). Each constituent layer (including a current collector, etc.) constituting the secondary battery of the present invention may have a single-layer structure or a multi-layer structure.
Among the configurations of the above-mentioned small stacked battery, the solid electrolyte layer is a solid electrolyte (I) with a specific composition, and the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer For configurations other than the configuration in which is set to 1.3 V or more, for example, the solid battery configurations described in paragraphs [0021] to [0046] of JP 2016-001602 A can be referred to and applied to the present invention.
Each layer of the secondary battery of the present invention will be explained below.
<固体電解質層>
 本発明の二次電池を構成する固体電解質層は、特定組成の固体電解質を、又は、この固体電解質と他の成分との混合物を、層状に形成してなる層である。この特定組成の固体電解質は、Li、B及びOを含むリチウム含有酸化物(以降において「リチウム含有酸化物」とも称す)と、水と、リチウム塩とを含む。
 この特定組成の固体電解質中、リチウム含有酸化物の含有量に対するリチウム塩の含有量の比の値(リチウム塩/リチウム含有酸化物)は、モル比で0.001~1.5である。また、この特定組成の固体電解質中、リチウム含有酸化物の含有量に対する水の含有量の比の値(水/リチウム含有酸化物)は、モル比で1~12である。
 以降において、リチウム含有酸化物の含有量に対して、リチウム塩の含有量及び水の含有量のそれぞれの比の値が上記特定のモル比を満たす、特定組成の固体電解質を、「固体電解質(I)」とも称す。固体電解質(I)は、通常は無機固体電解質である。
<Solid electrolyte layer>
The solid electrolyte layer constituting the secondary battery of the present invention is a layer formed of a solid electrolyte having a specific composition or a mixture of this solid electrolyte and other components. This solid electrolyte with a specific composition includes a lithium-containing oxide containing Li, B, and O (hereinafter also referred to as a "lithium-containing oxide"), water, and a lithium salt.
In the solid electrolyte having this specific composition, the ratio of the content of lithium salt to the content of lithium-containing oxide (lithium salt/lithium-containing oxide) is 0.001 to 1.5 in terms of molar ratio. Further, in the solid electrolyte having this specific composition, the ratio of the water content to the lithium-containing oxide content (water/lithium-containing oxide) is 1 to 12 in terms of molar ratio.
Hereinafter, a solid electrolyte with a specific composition in which the ratio of the lithium salt content and water content to the lithium-containing oxide content satisfies the above-mentioned specific molar ratio will be referred to as a "solid electrolyte ( Also referred to as ``I)''. The solid electrolyte (I) is usually an inorganic solid electrolyte.
 固体電解質(I)は、塑性変形しやすい弾性特性を示す。その結果、加圧処理などにより形成される、固体電解質(I)を含む固体電解質層等の構成層中において、固体電解質(I)同士の密着性、及び/又は、固体電解質(I)と構成層中に存在する他の成分との密着性が向上し、界面抵抗を低減でき、より優れたイオン伝導性が得られる。この固体電解質(I)を用いることにより、安全性の高い酸化物系固体電解質でありながらも、高温の焼結処理に付さなくても、加圧処理等によって、優れたリチウムイオン伝導性を示す固体電解質層等の構成層を形成することができる。 The solid electrolyte (I) exhibits elastic properties that allow it to easily undergo plastic deformation. As a result, in a constituent layer such as a solid electrolyte layer containing solid electrolyte (I) formed by pressure treatment etc., the adhesion between solid electrolytes (I) and/or the composition with solid electrolyte (I) Adhesion with other components present in the layer is improved, interfacial resistance can be reduced, and better ionic conductivity can be obtained. By using this solid electrolyte (I), although it is a highly safe oxide-based solid electrolyte, it can achieve excellent lithium ion conductivity through pressure treatment, etc., without having to undergo high-temperature sintering treatment. Constituent layers such as the solid electrolyte layer shown can be formed.
 固体電解質(I)に含まれる上記の水は、少なくとも束縛水を含む。固体電解質(I)が高いリチウムイオン伝導性を示す理由は定かではないが、固体電解質(I)において、リチウム含有酸化物の表面には柔らかい水和層が形成されやすく、この水和層中にリチウム塩由来のリチウムが多く含まれ、結果としてイオン伝導性がより高められるものと考えられる。
 ここで、本発明ないし明細書において「束縛水」とは、自由水として存在する水以外の水、またはリチウム含有酸化物に結合しているOH基を意味する。固体電解質(I)は、上記の含有量比の水を含んでいても、固体粒子(固体粒子同士が結着した状態を含む)の状態にあり、全固体リチウムイオン二次電池の固体電解質として機能するものである。つまり、固体電解質(I)は、通常の乾燥条件では除去されない、あるいは除去されにくい束縛水を含む。なお、固体電解質(I)が固体粒子の状態(粉末として取り扱える状態)で、全固体リチウムイオン二次電池の固体電解質として機能すれば、固体電解質(I)は自由水を含んでいてもよい。つまり、本発明において「全固体リチウムイオン二次電池」には、固体電解質が固体粒子(固体粉末)として取り扱えれば、固体電解質が水を含む形態も包含される。そして、リチウム含有酸化物の含有量に対する水の含有量の比の値がモル比で12以下の本発明に用いる固体電解質(I)は、ペースト状及びゲル状のいずれの状態でもなく、固体粒子(固体粉末)の状態にある。
The water contained in the solid electrolyte (I) includes at least bound water. It is not clear why the solid electrolyte (I) exhibits high lithium ion conductivity, but in the solid electrolyte (I), a soft hydration layer is likely to be formed on the surface of the lithium-containing oxide, and in this hydration layer, It is thought that a large amount of lithium derived from lithium salt is contained, and as a result, the ionic conductivity is further enhanced.
Here, in the present invention and the specification, "bound water" means water other than water existing as free water, or an OH group bonded to a lithium-containing oxide. Even if the solid electrolyte (I) contains water in the above content ratio, it remains in the state of solid particles (including a state in which solid particles are bound together), and can be used as a solid electrolyte of an all-solid lithium ion secondary battery. It's something that works. That is, the solid electrolyte (I) contains bound water that is not removed or difficult to remove under normal drying conditions. Note that, as long as the solid electrolyte (I) functions as a solid electrolyte of an all-solid lithium ion secondary battery in the state of solid particles (a state that can be handled as a powder), the solid electrolyte (I) may contain free water. That is, in the present invention, the "all-solid lithium ion secondary battery" includes a form in which the solid electrolyte contains water, as long as the solid electrolyte can be handled as solid particles (solid powder). The solid electrolyte (I) used in the present invention, in which the ratio of the water content to the lithium-containing oxide content is 12 or less in terms of molar ratio, is neither in a paste-like nor gel-like state, but in a solid particle state. (solid powder) state.
 本発明において、固体電解質(I)は、非晶状態(非結晶状態又は非晶質状態と同義)であることが、塑性変形しやすい弾性特性をより示しやすい観点から好ましい。固体電解質(I)が「非晶状態」であるとは、下記のX線回折特性を満たすことを意味する。 In the present invention, it is preferable that the solid electrolyte (I) be in an amorphous state (synonymous with an amorphous state or an amorphous state) from the viewpoint of more easily exhibiting elastic properties that are more likely to be plastically deformed. The solid electrolyte (I) being in an "amorphous state" means that it satisfies the following X-ray diffraction characteristics.
(X線回折特性)
 固体電解質(I)のCuKα線を用いたX線回折測定から得られたX線回折パターンにおいて、回折角2θが21.6~22.0°の範囲にピークトップが位置し、半値全幅が0.65°以下の第1ピーク、回折角2θが25.4~25.8°の範囲にピークトップが位置し、半値全幅が0.65°以下の第2ピーク、回折角2θが33.4~33.8°の範囲にピークトップが位置し、半値全幅が0.65°以下の第3ピーク、及び、回折角2θが34.4~34.8°の範囲にピークトップが位置し、半値全幅が0.65°以下の第4ピークのいずれも存在しないか、又は、
 X線回折パターンにおいて、上記の第1ピーク、第2ピーク、第3ピーク、及び第4ピークのうち少なくとも1つのピーク(以降において「ピークX」と称す)が存在する場合には、ピークXのうち少なくとも1つのピークが、下記の強度測定方法により算出した強度比が5.0以下である。
(X-ray diffraction characteristics)
In the X-ray diffraction pattern obtained from X-ray diffraction measurement using CuKα rays of solid electrolyte (I), the peak top is located in the range of diffraction angle 2θ of 21.6 to 22.0°, and the full width at half maximum is 0. The first peak is .65° or less, the peak top is located in the range of 25.4 to 25.8° with a diffraction angle 2θ, the second peak is with a full width at half maximum of 0.65° or less, and the diffraction angle 2θ is 33.4 The peak top is located in the range of ~33.8°, the third peak has a full width at half maximum of 0.65° or less, and the peak top is located in the range of the diffraction angle 2θ of 34.4 to 34.8°, There is no fourth peak with a full width at half maximum of 0.65° or less, or
In the X-ray diffraction pattern, if at least one peak (hereinafter referred to as "peak X") among the first peak, second peak, third peak, and fourth peak is present, the peak At least one of the peaks has an intensity ratio of 5.0 or less as calculated by the intensity measurement method described below.
-強度測定方法-
 ピークXのピークトップの回折角2θから+0.45°~+0.55°の範囲の平均強度(Av1)を算出し、ピークXのピークトップの回折角2θから-0.55°~-0.45°の範囲の平均強度(Av2)を算出し、上記Av1及びAv2の加算平均値を算出する。この加算平均値に対する、ピークXのピークトップにおけるピーク強度の比の値(ピークXのピークトップにおけるピーク強度/加算平均値)を強度比とする。
-Strength measurement method-
The average intensity (Av1) in the range of +0.45° to +0.55° is calculated from the diffraction angle 2θ of the peak top of peak X, and the average intensity (Av1) in the range of −0.55° to −0. The average intensity (Av2) in the range of 45° is calculated, and the additive average value of the above Av1 and Av2 is calculated. The value of the ratio of the peak intensity at the peak top of peak X to this additive average value (peak intensity at the peak top of peak X/additive average value) is defined as the intensity ratio.
 X線回折特性について、より詳細に説明する。
 固体電解質(I)のCuKα線を用いたX線回折測定から得られたX線回折パターンにおいて、上記の第1ピーク、第2ピーク、第3ピーク、及び、第4ピークのいずれも存在しない場合には、上記のX線回折特性を満たし、固体電解質(I)は非晶状態である。
 また、固体電解質(I)のCuKα線を用いたX線回折測定から得られたX線回折パターンにおいて、上記のピークXが存在する場合、ピークXの少なくとも1つのピークが上記の強度測定方法で得られる強度比が5.0以下を満たす場合も、上記のX線回折特性を満たし、固体電解質(I)は非晶状態である。
 ここで、ピークの半値全幅(FWHM)は、ピークトップにおけるピーク強度の1/2地点でのピーク幅(°)を意味する。
The X-ray diffraction characteristics will be explained in more detail.
In the X-ray diffraction pattern obtained from X-ray diffraction measurement using CuKα rays of the solid electrolyte (I), when none of the above first peak, second peak, third peak, and fourth peak is present. The solid electrolyte (I) satisfies the above-mentioned X-ray diffraction characteristics and is in an amorphous state.
In addition, in the X-ray diffraction pattern obtained from the X-ray diffraction measurement using CuKα rays of the solid electrolyte (I), if the above-mentioned peak Even when the obtained intensity ratio satisfies 5.0 or less, the above-mentioned X-ray diffraction characteristics are satisfied and the solid electrolyte (I) is in an amorphous state.
Here, the full width at half maximum (FWHM) of a peak means the peak width (°) at 1/2 point of the peak intensity at the peak top.
 上記の強度測定方法について図2を参照してより詳しく説明する。
 図2は、固体電解質(I)のCuKα線を用いたX線回折測定から得られる回折パターンで現れるピークXの一例を示す図である。図2に示すX線回折パターンにおいて、ピークトップの強度が強度1を示す特定ピークが示されている。強度測定方法においては、図2に示すように、ピークXのピークトップの回折角2θから+0.45°~+0.55°の範囲における平均強度(Av1)を算出し、さらに、ピークXのピークトップの回折角2θから-0.55°~-0.45°の範囲の平均強度(Av2)を算出する。次に、Av1及びAv2の加算平均値を算出し、加算平均値に対する強度1の比の値を強度比として求める。上記X線回折特性を満たす場合には、固体電解質(I)中において結晶構造が存在しない、又は、ほとんど存在せず、非晶状態であることを意味する。
 つまり、上記の第1ピーク~第4ピークは主に固体電解質中の結晶構造(例えば四ホウ酸リチウムの結晶構造)に由来するピークであり、これらのピークが存在しない場合には非晶状態であることを意味する。また、第1ピーク~第4ピークの少なくとも1つが存在する場合でも、その存在するピークXのうち少なくとも1つピークの強度比が5.0以下であることは、固体電解質(I)において、本発明の効果を阻害するような結晶構造がほとんど存在しないことを意味する。なお、例えば、特定の成分(例えば、リチウム塩)に由来するピークが上述した第1ピーク~第4ピークのいずれかと重なることがある。しかしながら、非晶状態の固体電解質では、通常は第1ピーク~第4ピークのいずれもが低下するため、仮に、上述の特定の成分によるピークが第1ピーク~第4ピークのいずれかとたまたま重なって大きなピークが1つ現れたとしても、強度比が所定値以下のピークXが少なくとも1つ存在することは、固体電解質(I)が非晶状態であることを示しているといえる。
The above intensity measuring method will be explained in more detail with reference to FIG. 2.
FIG. 2 is a diagram showing an example of a peak X appearing in a diffraction pattern obtained from X-ray diffraction measurement using CuKα rays of solid electrolyte (I). In the X-ray diffraction pattern shown in FIG. 2, a specific peak whose peak top intensity is 1 is shown. In the intensity measurement method, the average intensity (Av1) in the range of +0.45° to +0.55° is calculated from the diffraction angle 2θ at the peak top of peak The average intensity (Av2) in the range of -0.55° to -0.45° from the top diffraction angle 2θ is calculated. Next, the average value of Av1 and Av2 is calculated, and the ratio of intensity 1 to the average value is determined as the intensity ratio. When the above X-ray diffraction characteristics are satisfied, it means that the solid electrolyte (I) has no or almost no crystal structure and is in an amorphous state.
In other words, the first to fourth peaks above are mainly peaks derived from the crystal structure in the solid electrolyte (for example, the crystal structure of lithium tetraborate), and if these peaks do not exist, it is in an amorphous state. It means something. Further, even if at least one of the first to fourth peaks is present, the fact that the intensity ratio of at least one of the peaks X is 5.0 or less means that the solid electrolyte (I) is This means that there is almost no crystal structure that would impede the effects of the invention. Note that, for example, a peak derived from a specific component (eg, lithium salt) may overlap with any of the first to fourth peaks described above. However, in an amorphous solid electrolyte, usually all of the first to fourth peaks decrease, so if the peak due to the above-mentioned specific component happens to overlap with any of the first to fourth peaks, Even if one large peak appears, the presence of at least one peak X with an intensity ratio below a predetermined value can be said to indicate that the solid electrolyte (I) is in an amorphous state.
 上記X線回折測定は、CuKα線を使用し、0.01°/ステップ、3°/minの測定条件にて行う。 The above X-ray diffraction measurement is performed using CuKα radiation under measurement conditions of 0.01°/step and 3°/min.
 固体電解質(I)のCuKα線を用いたX線回折測定から得られたX線回折パターンにおいて、上記の第1ピーク、第2ピーク、第3ピーク及び第4ピークがいずれも存在しないか、又は、上記の第1ピーク、第2ピーク、第3ピーク及び第4ピークのうち少なくとも1つのピークXが存在したとしても、ピークXのうち少なくとも1つのピークの強度比が3.0以下であることが好ましい。
 なかでも、上記の第1ピーク、第2ピーク、第3ピーク及び第4ピークがいずれも存在しないか、又は、上記の第1ピーク、第2ピーク、第3ピーク及び第4ピークのうち少なくとも1つのピークXが存在したとしても、ピークXのうち少なくとも1つのピークの強度比が2.0以下であることがより好ましい。
In the X-ray diffraction pattern obtained from X-ray diffraction measurement using CuKα rays of the solid electrolyte (I), none of the above first peak, second peak, third peak and fourth peak exist, or , Even if at least one peak X among the first peak, second peak, third peak, and fourth peak is present, the intensity ratio of at least one of the peaks X is 3.0 or less. is preferred.
Among them, none of the first peak, second peak, third peak and fourth peak are present, or at least one of the first peak, second peak, third peak and fourth peak is present. Even if two peaks X exist, it is more preferable that the intensity ratio of at least one of the peaks X is 2.0 or less.
 なお、上記X線回折パターンにおいて、21.6~22.0°の範囲にピークトップが位置し、半値全幅が0.65°以下のピークが2つ以上存在する場合、回折X線強度が最も大きいピークを第1ピークとして選択し、上記X線回折特性の判定を行う。
 また、上記X線回折パターンにおいて、25.4~25.8°の範囲にピークトップが位置し、半値全幅が0.65°以下のピークが2つ以上存在する場合、回折X線強度が最も大きいピークを第2ピークとして選択し、上記X線回折特性の判定を行う。
 また、上記X線回折パターンにおいて、33.4~33.8°の範囲にピークトップが位置し、半値全幅が0.65°以下のピークが2つ以上存在する場合、回折X線強度が最も大きいピークを第3ピークとして選択し、上記X線回折特性の判定を行う。
 また、上記X線回折パターンにおいて、34.4~34.8°の範囲にピークトップが位置し、半値全幅が0.65°以下のピークが2つ以上存在する場合、回折X線強度が最も大きいピークを第4ピークとして選択し、上記X線回折特性の判定を行う。
In addition, in the above X-ray diffraction pattern, if the peak top is located in the range of 21.6 to 22.0° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffraction X-ray intensity is the highest. A large peak is selected as the first peak, and the above-mentioned X-ray diffraction characteristics are determined.
In addition, in the above X-ray diffraction pattern, if the peak top is located in the range of 25.4 to 25.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest. A large peak is selected as the second peak, and the above-mentioned X-ray diffraction characteristics are determined.
In addition, in the above X-ray diffraction pattern, if the peak top is located in the range of 33.4 to 33.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest. A large peak is selected as the third peak, and the above-mentioned X-ray diffraction characteristics are determined.
In addition, in the above X-ray diffraction pattern, if the peak top is located in the range of 34.4 to 34.8° and there are two or more peaks with a full width at half maximum of 0.65° or less, the diffracted X-ray intensity is the highest. A large peak is selected as the fourth peak, and the above-mentioned X-ray diffraction characteristics are determined.
(X線全散乱特性)
 固体電解質(I)は、X線全散乱特性として下記要件A-1を満たすことが好ましい。また、固体電解質(I)が上記のX線回折特性を満たす場合、この固体電解質(I)は、通常は下記要件A-2を満たす。
(X-ray total scattering characteristics)
The solid electrolyte (I) preferably satisfies the following requirement A-1 in terms of total X-ray scattering properties. Further, when the solid electrolyte (I) satisfies the above-mentioned X-ray diffraction characteristics, this solid electrolyte (I) usually satisfies the following requirement A-2.
-要件A-1-
 固体電解質(I)のX線全散乱測定から得られた還元二体分布関数G(r)において、rが1.43±0.2Åの範囲にピークトップが位置する第1ピーク、及び、rが2.40±0.2Åの範囲にピークトップが位置する第2ピークが存在し、第1ピークのピークトップのG(r)が1.0超を示し、第2ピークのピークトップのG(r)が0.8以上を示す。
-Requirement A-1-
In the reduced two-body distribution function G(r) obtained from X-ray total scattering measurement of the solid electrolyte (I), a first peak whose peak top is located in a range where r is 1.43 ± 0.2 Å, and r There is a second peak whose peak top is located in a range of 2.40 ± 0.2 Å, G(r) at the top of the first peak is more than 1.0, and G(r) at the top of the second peak is (r) indicates 0.8 or more.
-要件A-2-
 固体電解質(I)のX線全散乱測定から得られた還元二体分布関数G(r)において、rが5Å超10Å以下の範囲においてG(r)の絶対値が1.0未満である。
-Requirement A-2-
In the reduced two-body distribution function G(r) obtained from X-ray total scattering measurement of the solid electrolyte (I), the absolute value of G(r) is less than 1.0 in the range where r is more than 5 Å and less than 10 Å.
 固体電解質(I)が要件A-1及び要件A-2を満たす場合、B-O及びB-Bの原子間距離に関連する短距離秩序構造を有するが、長距離秩序構造はほとんど有さないため、酸化物固体電解質自体が、従来のリチウム含有酸化物よりも柔らかく、塑性変形しやすい弾性特性を示す。その結果、加圧処理などにより形成される、固体電解質(I)を含む層中において、固体電解質(I)同士の密着性、及び/又は、固体電解質(I)と固体電解質層等の構成層中に存在する他の成分等との密着性が向上し、界面抵抗を低減でき、より優れたイオン伝導性が得られるものと推測される。
 要件A-1及び要件A-2について、図面を参照してより詳しく説明する。
When the solid electrolyte (I) satisfies requirements A-1 and A-2, it has a short-range ordered structure related to the interatomic distances of B-O and B-B, but has almost no long-range ordered structure. Therefore, the oxide solid electrolyte itself is softer than conventional lithium-containing oxides and exhibits elastic properties that make it easier to plastically deform. As a result, in the layer containing the solid electrolyte (I) formed by pressure treatment etc., the adhesion between the solid electrolytes (I) and/or the constituent layers such as the solid electrolyte (I) and the solid electrolyte layer etc. It is presumed that adhesion with other components present therein is improved, interfacial resistance can be reduced, and better ionic conductivity can be obtained.
Requirement A-1 and Requirement A-2 will be explained in more detail with reference to the drawings.
 図3は、固体電解質(I)のX線全散乱測定によって得られた還元二体分布関数G(r)の一例を示す。図3の縦軸はX線散乱をフーリエ変換して得られた還元二体分布関数であり、距離rの位置に原子が存在する確率を示している。X線全散乱測定は、SPring-8 BL04B2(加速電圧61.4keV、波長0.2019Å)にて行うことができる。実験によって得られる散乱強度Iobsを下記の手順で変換することで還元二体分布関数G(r)を得る。
 まず、散乱強度Iobsは下記式(1)で表される。また、構造因子S(Q)は、下記式(2)で表されるように、干渉性散乱Icohを原子の個数Nと原子散乱因子fの二乗との積で割ることで得られる。
 
   Iobs=Icoh+Iincoh+I蛍光     (1)
FIG. 3 shows an example of the reduced two-body distribution function G(r) obtained by X-ray total scattering measurement of the solid electrolyte (I). The vertical axis in FIG. 3 is a reduced two-body distribution function obtained by Fourier transforming X-ray scattering, and indicates the probability that an atom exists at a position at a distance r. X-ray total scattering measurement can be performed with SPring-8 BL04B2 (acceleration voltage 61.4 keV, wavelength 0.2019 Å). The reduced two-body distribution function G(r) is obtained by converting the scattering intensity I obs obtained by experiment according to the following procedure.
First, the scattering intensity I obs is expressed by the following formula (1). Further, the structure factor S(Q) can be obtained by dividing the coherent scattering I coh by the product of the number N of atoms and the square of the atomic scattering factor f, as expressed by the following formula (2).

I obs = I coh + I in coh + I fluorescence (1)
 PDF(Pair Distribution Function)解析には構造因子S(Q)を用いる。上記式(2)において、必要な強度は干渉性散乱Icohのみである。非干渉性散乱Iincoh及び蛍光X線I蛍光は、ブランク測定、理論式を用いた差し引き、及び、検出器のディスクリミネーターにより散乱強度Iobsから差し引くことができる。
 干渉性散乱IcohはDebyeの散乱式(下記式(3))で表される(N:原子の総数、f:原子散乱因子、rij:i-j間の原子間距離)。
A structure factor S(Q) is used for PDF (Pair Distribution Function) analysis. In the above equation (2), the only required intensity is the coherent scattering I coh . Incoherent scattering I incoh and X-ray fluorescence I fluorescence can be subtracted from the scattering intensity I obs by blank measurements, subtraction using theoretical formulas, and detector discriminators.
The coherent scattering I coh is expressed by Debye's scattering formula (formula (3) below) (N: total number of atoms, f: atomic scattering factor, r ij : interatomic distance between ij).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 任意の原子に着目し距離rにおける原子密度をρ(r)とすれば、r-r+d(r)の半径の球内に存在する原子の数は4πrρ(r)drとなるため、上記式(3)は下記式(4)で表される。 Focusing on an arbitrary atom, if the atomic density at a distance r is ρ(r), then the number of atoms existing in a sphere with radius r−r+d(r) is 4πr 2 ρ(r)dr, so the above Formula (3) is expressed by the following formula (4).
 原子の平均密度をρとし、上記式(4)を変形すると下記式(5)が得られる。 If the average density of atoms is set to ρ 0 and the above formula (4) is modified, the following formula (5) is obtained.
 上記式(5)と式(2)より、下記式(6)が得られる。 From the above formula (5) and formula (2), the following formula (6) is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 二体分布関数g(r)は、下記式(7)で表される。 The two-body distribution function g(r) is expressed by the following formula (7).
 上記式(6)及び式(7)より、下記式(8)が得られる。 From the above formulas (6) and (7), the following formula (8) is obtained.
 以上のように、二体分布関数は構造因子S(Q)のフーリエ変換により求めることができる。中/長距離の秩序を観測しやすくするため、二体分布関数g(r)を式:G(r)=4πr(g(r)-1)と変換したものが還元二体分布関数G(r)(図3)である。0の周りで振動するg(r)は、それぞれの原子間距離における平均密度からの密度差を表しており、特定の原子間距離において相関がある場合は平均密度1より高くなる。したがって、局所から中距離に対応する元素の距離及び配位数を反映している。秩序性がなくなるとρ(r)は平均密度に近づくため、g(r)が1に近づいていく。したがって、非晶質構造ではrが大きくなるほど秩序がなくなるため、g(r)が1、すなわちG(r)が0になる。 As described above, the two-body distribution function can be obtained by Fourier transformation of the structure factor S(Q). To make it easier to observe medium/long-range order, the two-body distribution function g(r) is transformed into the formula: G(r)=4πr(g(r)-1), which gives the reduced two-body distribution function G( r) (Figure 3). g(r), which oscillates around 0, represents the density difference from the average density at each interatomic distance, and if there is a correlation at a specific interatomic distance, the average density will be higher than 1. Therefore, it reflects the distance and coordination number of elements corresponding to local to intermediate distances. When orderliness disappears, ρ(r) approaches the average density, so g(r) approaches 1. Therefore, in an amorphous structure, the larger r becomes, the less order there is, so g(r) becomes 1, that is, G(r) becomes 0.
 要件A-1においては、図3に示すように、固体電解質(I)のX線全散乱測定から得られた還元二体分布関数G(r)において、rが1.43±0.2Åの範囲にピークトップが位置する第1ピークP1、及び、rが2.40±0.2Åの範囲にピークトップが位置する第2ピークP2が存在し、第1ピークP1のピークトップのG(r)が1.0超(好ましくは1.2以上)を示し、第2ピークP2のピークトップのG(r)が0.8以上(好ましくは、1.0超)を示す。
 なお、図3においては、第1ピークP1のピークトップは1.43Åに位置し、第2ピークP2のピークトップは2.40Åに位置する。
 1.43Åの位置には、B(ホウ素)-O(酸素)の原子間距離に帰属されるピークが存在する。また、2.40Åの位置には、B(ホウ素)-B(ホウ素)の原子間距離に帰属されるピークが存在する。つまり、上記2つのピーク(第1ピーク及び第2ピーク)が観測されるということは、上記2つの原子間距離に対応する周期構造が、固体電解質(I)中に存在することを意味する。
In requirement A-1, as shown in Figure 3, in the reduced two-body distribution function G(r) obtained from the X-ray total scattering measurement of the solid electrolyte (I), r is 1.43 ± 0.2 Å. There is a first peak P1 whose peak top is located within the range, and a second peak P2 whose peak top is located within the range where r is 2.40±0.2 Å. ) is more than 1.0 (preferably 1.2 or more), and G(r) at the top of the second peak P2 is 0.8 or more (preferably more than 1.0).
In addition, in FIG. 3, the peak top of the first peak P1 is located at 1.43 Å, and the peak top of the second peak P2 is located at 2.40 Å.
At a position of 1.43 Å, there is a peak attributed to the interatomic distance of B (boron)—O (oxygen). Further, at a position of 2.40 Å, there is a peak attributed to the interatomic distance of B (boron)-B (boron). That is, the observation of the two peaks (first peak and second peak) means that a periodic structure corresponding to the two interatomic distances exists in the solid electrolyte (I).
 また、要件A-2においては、図3に示すように、rが5Å超10Å以下の範囲において、G(r)の絶対値が1.0未満である。上記のようにrが5Å超10Å以下の範囲においてG(r)の絶対値が1.0未満であることは、固体電解質(I)中には長距離秩序構造はほとんど存在しないことを意味する。 Further, in requirement A-2, as shown in FIG. 3, the absolute value of G(r) is less than 1.0 in the range of more than 5 Å and less than 10 Å. As mentioned above, the fact that the absolute value of G(r) is less than 1.0 in the range where r is more than 5 Å and less than 10 Å means that there is almost no long-range ordered structure in the solid electrolyte (I). .
 なお、上記還元二体分布関数G(r)において、rが5Å以下の範囲に第1ピーク以外かつ第2ピーク以外のピークがあってもよい。 Note that in the reduced two-body distribution function G(r), there may be a peak other than the first peak and other than the second peak in the range where r is 5 Å or less.
 固体電解質(I)を非晶状態とするための方法に特に制限はない。例えば、固体電解質(I)の調製において、原料とするリチウム含有酸化物として、メカニカルミリング処理を施したものを用いる方法がある。このメカニカルミリング処理は、リチウム塩の存在下で行ってもよい。 There is no particular restriction on the method for bringing the solid electrolyte (I) into an amorphous state. For example, in preparing the solid electrolyte (I), there is a method of using a mechanically milled lithium-containing oxide as a raw material. This mechanical milling process may be performed in the presence of a lithium salt.
-メカニカルミリング処理-
 メカニカルミリング処理とは、試料を、機械的エネルギーを付与しながら粉砕する処理である。メカニカルミリング処理としては、例えば、ボールミル、振動ミル、ターボミル、又はディスクミルを用いたミリング処理が挙げられ、生産性よく非晶状態の固体電解質(I)を得る点から、ボールミルを用いたミリング処理が好ましい。ボールミルとしては、例えば、振動ボールミル、回転ボールミル、及び、遊星型ボールミルが挙げられ、遊星型ボールミルがより好ましい。
-Mechanical milling process-
Mechanical milling is a process in which a sample is ground while applying mechanical energy. Examples of the mechanical milling treatment include milling treatment using a ball mill, vibration mill, turbo mill, or disk mill, and from the viewpoint of obtaining the solid electrolyte (I) in an amorphous state with high productivity, the milling treatment using a ball mill is preferred. Examples of ball mills include vibrating ball mills, rotary ball mills, and planetary ball mills, with planetary ball mills being more preferred.
 ボールミルを用いたミリング処理(以降において、ボールミリング処理と称す。)の条件は、処理対象に応じて適宜に調整される。粉砕用ボール(メディア)の材質は特に制限されず、例えば、メノウ、窒化珪素、ジルコニア、アルミナ、及び、鉄系合金が挙げられ、安定化ジルコニア(YSZ)が好ましい。粉砕用ボールの平均粒子径は特に制限されず、生産性よく固体電解質(I)を製造できる点から、1~10mmが好ましく、3~7mmがより好ましい。上記平均粒子径は、無作為に50個の粉砕用ボールの直径を測定して、それらを算術平均したものである。粉砕用ボールが真球状でない場合、長径を直径とする。粉砕用ボールの数は特に制限されない。 Conditions for milling using a ball mill (hereinafter referred to as ball milling) are adjusted as appropriate depending on the object to be processed. The material of the grinding balls (media) is not particularly limited, and examples thereof include agate, silicon nitride, zirconia, alumina, and iron-based alloys, with stabilized zirconia (YSZ) being preferred. The average particle diameter of the grinding balls is not particularly limited, and is preferably 1 to 10 mm, more preferably 3 to 7 mm, from the standpoint of producing solid electrolyte (I) with good productivity. The above average particle diameter is determined by randomly measuring the diameters of 50 grinding balls and taking the arithmetic average of the diameters. If the crushing ball is not perfectly spherical, the major axis is the diameter. The number of grinding balls is not particularly limited.
 ボールミリング処理における粉砕用ポットの材質も特に制限はない。例えば、メノウ、窒化珪素、ジルコニア、アルミナ、及び、鉄系合金が挙げられ、安定化ジルコニア(YSZ)が好ましい。 The material of the grinding pot in the ball milling process is also not particularly limited. Examples include agate, silicon nitride, zirconia, alumina, and iron-based alloys, with stabilized zirconia (YSZ) being preferred.
 ボールミリング処理の回転数は特に制限されず、例えば200~700rpmとすることができ、350~550rpmが好ましい。ボールミリング処理の処理時間は特に制限されず、例えば10~200時間とすることができ、20~140時間が好ましい。ボールミリング処理の雰囲気は、大気下であってもよいし、不活性ガス(例えば、アルゴンガス、ヘリウムガス、窒素ガスなど)雰囲気下であってもよい。 The rotation speed of the ball milling process is not particularly limited, and can be, for example, 200 to 700 rpm, preferably 350 to 550 rpm. The processing time of the ball milling process is not particularly limited, and can be, for example, 10 to 200 hours, preferably 20 to 140 hours. The atmosphere of the ball milling process may be the atmosphere or an inert gas (eg, argon gas, helium gas, nitrogen gas, etc.) atmosphere.
 メカニカルミリング処理を施したリチウム含有酸化物を用いた固体電解質(I)の製造方法としては、下記の工程1A~3Aを行うことが好ましい。
工程1A:リチウム塩の存在下で、リチウム含有酸化物にメカニカルミリング処理を施す工程
工程2A:工程1Aで得られた生成物と水とを混合する工程
工程3A:工程2Aで得られた分散液から水を除去して固体電解質(I)を得る工程
As a method for producing solid electrolyte (I) using a lithium-containing oxide subjected to mechanical milling treatment, it is preferable to perform the following steps 1A to 3A.
Step 1A: Mechanically milling the lithium-containing oxide in the presence of a lithium salt Step 2A: Mixing the product obtained in Step 1A with water Step 3A: Dispersion obtained in Step 2A Step of obtaining solid electrolyte (I) by removing water from
 工程1Aにおいて、リチウム塩の使用量は特に制限されず、本発明で規定する固体電解質(I)が得られるように適宜に調整される。 In Step 1A, the amount of lithium salt used is not particularly limited, and is appropriately adjusted so as to obtain the solid electrolyte (I) defined in the present invention.
 上記工程2Aにおいて、水の使用量は特に制限されない。例えば、工程1Aで得られる生成物100質量部に対して、水の使用量を10~200質量部とすることができ、水の使用量を50~150質量部とすることが好ましい。
 工程1Aで得られた生成物と水とを混合する方法は特に制限されず、一括で混合してもよいし、工程1Aで得られた生成物に段階的に水を加えて混合してもよい。混合する際には、必要に応じて、超音波処理を施してもよい。超音波処理の時間は特に制限されず、例えば、10分~5時間とすることができる。
In the above step 2A, the amount of water used is not particularly limited. For example, the amount of water used can be 10 to 200 parts by weight, and preferably 50 to 150 parts by weight, relative to 100 parts by weight of the product obtained in step 1A.
The method of mixing the product obtained in Step 1A and water is not particularly limited, and may be mixed all at once, or may be mixed by adding water stepwise to the product obtained in Step 1A. good. When mixing, ultrasonic treatment may be performed as necessary. The time for ultrasonication is not particularly limited, and can be, for example, 10 minutes to 5 hours.
 工程3Aは、工程2Aで得られた分散液から水を除去して、固体電解質(I)を得る工程である。工程2Aで得られた分散液から水を除去する方法は特に制限されず、加熱処理により水を除去してもよいし、真空乾燥処理により水を除去してもよい。
 乾燥条件は、特に制限されず、例えば、一般的な乾燥処理に適用される通常の乾燥条件を適宜に適用でき、例えば、実施例で適用した各乾燥条件が挙げられる。通常の乾燥条件としては、例えば、自然乾燥(<30%RH)、デシケーター(<5%RH)乾燥、100℃までの加熱乾燥30分~2時間の各条件が挙げられる。
Step 3A is a step of removing water from the dispersion obtained in Step 2A to obtain solid electrolyte (I). The method for removing water from the dispersion obtained in step 2A is not particularly limited, and water may be removed by heat treatment or vacuum drying treatment.
The drying conditions are not particularly limited, and, for example, normal drying conditions applied to general drying processes can be appropriately applied, and examples thereof include the drying conditions applied in Examples. Typical drying conditions include, for example, natural drying (<30% RH), drying in a desiccator (<5% RH), and drying by heating up to 100° C. for 30 minutes to 2 hours.
 上記工程1Aの前に、リチウム塩が存在しない環境下で、リチウム含有酸化物にメカニカルミリング処理を施す工程0を実施してもよい。 Before the above step 1A, step 0 may be performed in which the lithium-containing oxide is mechanically milled in an environment where no lithium salt is present.
 固体電解質(I)の製造方法としては、上記工程1A~3Aに代えて、下記の工程1B~3Bを行うことも好ましい。
工程1B:リチウム含有酸化物にメカニカルミリング処理を施す工程
工程2B:工程1Bで得られた生成物と水とリチウム塩とを混合する工程
工程3B:工程2Bで得られた分散液から水を除去して、固体電解質(I)を得る工程
As a method for producing the solid electrolyte (I), it is also preferable to perform the following steps 1B to 3B instead of the above steps 1A to 3A.
Step 1B: Mechanically milling the lithium-containing oxide Step 2B: Mixing the product obtained in Step 1B with water and lithium salt Step 3B: Remove water from the dispersion obtained in Step 2B Step of obtaining solid electrolyte (I)
 工程1B~3Bを行う方法は、上記工程1A~3Aを行う方法に対して、メカニカルミリング処理を施したリチウム含有酸化物に水の存在下でリチウム塩を混合する点で、相違する。そのため、工程1Bと工程1Aとの違いは、工程1Aではリチウム塩の存在下でメカニカルミリング処理を実施しているのに対して、工程1Bではリチウム塩を使用せずにメカニカルミリング処理を実施している点にある。したがって、工程2Bでは、工程1Bで得られた生成物と水とリチウム塩とを混合している。
 工程2Bの手順は特に制限されず、工程1Bで得られた生成物と水とリチウム塩とを一括して混合する方法(方法1)であってもよいし、工程1Bで得られた生成物と水とを混合して分散液を調製した後、得られた分散液とリチウム塩とを混合する方法(方法2)であってもよいし、工程1Bで得られた生成物と水とを混合して分散液1を作製し、リチウム塩と水とを混合して溶液2を作製し、分散液1と溶液2とを混合する方法(方法3)であってもよい。工程1Bで得られた生成物と水とを混合する際には、超音波処理などの分散処理を適宜実施してもよい。
 方法2においては、工程1Bで得られた生成物と水とを混合した分散液とリチウム塩とを混合する際に、リチウム塩が多すぎると、得られる液がゲル化しやすく、リチウム塩の混合量が制約される。それに対して、方法3では、工程1Bで得られた生成物とリチウム塩とを等モル量程度混合しても、液のゲル化が生じにくく、リチウム塩の混合量をより多くすることができる。この観点で、方法3が好ましい。
 工程3Bと工程3Aの手順は同じである。
The method for performing steps 1B to 3B differs from the method for performing steps 1A to 3A above in that a lithium salt is mixed in the lithium-containing oxide subjected to mechanical milling treatment in the presence of water. Therefore, the difference between Process 1B and Process 1A is that in Process 1A, mechanical milling is performed in the presence of lithium salt, whereas in Process 1B, mechanical milling is performed without using lithium salt. The point is that Therefore, in Step 2B, the product obtained in Step 1B, water, and lithium salt are mixed.
The procedure of Step 2B is not particularly limited, and it may be a method (method 1) of mixing the product obtained in Step 1B, water, and lithium salt all at once, or a method of mixing the product obtained in Step 1B with water and lithium salt at once, or and water to prepare a dispersion, and then the resulting dispersion and lithium salt may be mixed (Method 2), or the product obtained in Step 1B and water may be mixed. A method (method 3) may be used in which dispersion 1 is prepared by mixing, solution 2 is prepared by mixing the lithium salt and water, and dispersion 1 and solution 2 are mixed. When mixing the product obtained in step 1B with water, a dispersion treatment such as ultrasonication may be appropriately performed.
In Method 2, when mixing a dispersion of the product obtained in Step 1B and water with a lithium salt, if there is too much lithium salt, the resulting liquid tends to gel, and the mixing of the lithium salt is difficult. Quantity is limited. On the other hand, in method 3, even if the product obtained in step 1B and the lithium salt are mixed in equimolar amounts, gelation of the liquid is unlikely to occur, and the amount of lithium salt mixed can be increased. . From this point of view, method 3 is preferred.
The procedures of Step 3B and Step 3A are the same.
 固体電解質(I)の製造方法としては、上記工程1A~3Aに代えて、下記の工程1C~3Cを行うことも好ましい。
工程1C:リチウム含有酸化物にメカニカルミリング処理を施す工程
工程2C:工程1Cで得られた生成物と水とを混合する工程
工程3C:工程2Cで得られた分散液から水を除去して得られた生成物とリチウム塩とを混合して固体電解質(I)を得る工程
As a method for producing the solid electrolyte (I), it is also preferable to perform the following steps 1C to 3C instead of the above steps 1A to 3A.
Step 1C: A step of mechanically milling the lithium-containing oxide Step 2C: A step of mixing the product obtained in Step 1C with water Step 3C: A process of removing water from the dispersion obtained in Step 2C. A step of mixing the obtained product and lithium salt to obtain solid electrolyte (I)
 工程1Cと工程1Bの手順は同じである。
 工程2Cと工程2Aの手順は同じである。
 工程3Cは、工程2Cで得られた分散液から水を除去して得られた生成物とリチウム塩とを混合している点で、工程3A及び3Bと異なる。
 工程3Cにおいて、リチウム塩の使用量は特に制限されず、本発明で規定する固体電解質(I)が得られるように適宜に調整される。
 工程2Cで得られた分散液から水を除去して得られた生成物とリチウム塩との混合方法は特に制限されず、リチウム塩を水に溶解させた溶液を上記生成物に含浸させて、両者を混合する方法であってもよい。
The procedures of Step 1C and Step 1B are the same.
The procedures of Step 2C and Step 2A are the same.
Step 3C differs from Steps 3A and 3B in that a product obtained by removing water from the dispersion obtained in Step 2C is mixed with a lithium salt.
In step 3C, the amount of lithium salt used is not particularly limited, and is appropriately adjusted so as to obtain the solid electrolyte (I) defined in the present invention.
The method of mixing the product obtained by removing water from the dispersion obtained in step 2C with the lithium salt is not particularly limited, and the above product is impregnated with a solution of the lithium salt dissolved in water. A method of mixing both may be used.
(固体電解質(I)の成分組成)
 本発明に用いる固体電解質(I)中、リチウム含有酸化物の含有量に対して、リチウム塩の含有量の比の値がモル比で0.001~1.5であり、水の含有量の比の値がモル比で1~12である。
 固体電解質(I)中のリチウム含有酸化物の含有量に対するリチウム塩の含有量の比の値は、モル比で0.001~1.2が好ましく、0.01~1.2がより好ましく、0.1~1.2がさらに好ましく、0.5~1.2が特に好ましい。
 また、固体電解質(I)中のリチウム含有酸化物の含有量に対する水の含有量の比の値は、モル比で2~12がさらに好ましく、3~11がさらに好ましい。また、このモル比は2~10であることも好ましく、2~8であることも好ましく、2~7であることも好ましく、3~7であることも好ましい。
 固体電解質(I)中のリチウム含有酸化物、リチウム塩、及び水のモル量は、元素分析に基づき決定することができる。元素分析としては、例えば、後述の固体電解質(I)の元素組成において記載する元素分析の手法が挙げられる。また、水のモル量はカールフィッシャー法などにより決定することもできる。
(Component composition of solid electrolyte (I))
In the solid electrolyte (I) used in the present invention, the molar ratio of the lithium salt content to the lithium-containing oxide content is 0.001 to 1.5, and the water content is The value of the ratio is 1 to 12 in terms of molar ratio.
The value of the ratio of the content of lithium salt to the content of lithium-containing oxide in solid electrolyte (I) is preferably 0.001 to 1.2 in molar ratio, more preferably 0.01 to 1.2, More preferably 0.1 to 1.2, particularly preferably 0.5 to 1.2.
Furthermore, the molar ratio of the water content to the lithium-containing oxide content in the solid electrolyte (I) is more preferably 2 to 12, and even more preferably 3 to 11. Further, this molar ratio is also preferably 2 to 10, preferably 2 to 8, preferably 2 to 7, and also preferably 3 to 7.
The molar amounts of the lithium-containing oxide, lithium salt, and water in the solid electrolyte (I) can be determined based on elemental analysis. Examples of the elemental analysis include the elemental analysis method described in the elemental composition of the solid electrolyte (I) below. Moreover, the molar amount of water can also be determined by the Karl Fischer method.
 固体電解質(I)中の水の含有量は50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましく、35質量%以下が特に好ましい。また、固体電解質(I)中の水の含有量は30質量%以下であることも好ましく、25質量%以下であることも好ましい。
 また、固体電解質(I)中の水の含有量は、通常は5質量%以上であり、10質量%以上であることも好ましく、15質量%以上であることも好ましい。したがって、固体電解質(I)中の水の含有量は、5~50質量%が好ましく、5~45質量%がより好ましく、10~40質量%がさらに好ましく、10~35質量%が特に好ましく、10~30質量%であることも好ましく、15~30質量%であることも好ましく、15~25質量%であることも好ましい。
 固体電解質(I)中のリチウム含有酸化物の含有量は20~80質量%が好ましく、20~75質量%がより好ましく、25~70質量%がさらに好ましい。
 また、固体電解質(I)中のリチウム塩の含有量は、0.5~60質量%が好ましく、1.0~55質量%がより好ましく、2.0~50質量%がさらに好ましく、5.0~50質量%であることも好ましい。
The content of water in the solid electrolyte (I) is preferably 50% by mass or less, more preferably 45% by mass or less, even more preferably 40% by mass or less, and particularly preferably 35% by mass or less. Further, the content of water in the solid electrolyte (I) is also preferably 30% by mass or less, and preferably 25% by mass or less.
Further, the content of water in the solid electrolyte (I) is usually 5% by mass or more, preferably 10% by mass or more, and also preferably 15% by mass or more. Therefore, the content of water in the solid electrolyte (I) is preferably 5 to 50% by mass, more preferably 5 to 45% by mass, even more preferably 10 to 40% by mass, particularly preferably 10 to 35% by mass, It is also preferably 10 to 30% by weight, preferably 15 to 30% by weight, and preferably 15 to 25% by weight.
The content of the lithium-containing oxide in the solid electrolyte (I) is preferably 20 to 80% by mass, more preferably 20 to 75% by mass, and even more preferably 25 to 70% by mass.
Further, the content of the lithium salt in the solid electrolyte (I) is preferably 0.5 to 60% by mass, more preferably 1.0 to 55% by mass, even more preferably 2.0 to 50% by mass, and 5. It is also preferably 0 to 50% by mass.
-リチウム含有酸化物-
 固体電解質(I)を構成するリチウム含有酸化物は、上記の通り、Li、B及びOを含む。
 上記リチウム含有酸化物は、Li2+x4+y7+z(-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3)で表される化合物が好ましい。つまり、Bのモル量を4.00として、Liのモル量を表したとき、Liのモル量は1.58~2.49(すなわち、1.7×4/4.3~2.3×4/3.7)であり、Oのモル量は6.23~7.89(すなわち、6.7×4/4.3~7.3×4/3.7)であることが好ましい。言い換えると、Bの含有モル量を4.00としたとき、Liの含有モル量の相対値が1.58~2.49であり、Oのモル量は6.23~7.89であることが好ましい。このようなリチウム含有酸化物として、典型的には四ホウ酸リチウム(Li)が挙げられる。
 また、上記リチウム含有酸化物は、Li1+x3+y5+z(-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3)で表される化合物も好ましい。このようなリチウム含有酸化物として、典型的には三ホウ酸リチウム(LiB)が挙げられる。
 また、上記リチウム含有酸化物は、Li3+x11+y18+z(-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3)で表される化合物も好ましい。このようなリチウム含有酸化物として、典型的にはLi1118が挙げられる。
 また、上記リチウム含有酸化物は、Li3+x7+y12+z(-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3)で表される化合物も好ましい。このようなリチウム含有酸化物として、典型的にはLi12が挙げられる。
 したがって、上記リチウム含有酸化物は、上記Li2+x4+y7+z、上記Li1+x3+y5+z、Li3+x11+y18+z、及びLi3+x7+y12+zの少なくとも1種であることが好ましい。
 また、上記のリチウム含有酸化物に代えて、あるいは上記のリチウム含有酸化物とともに、リチウム含有酸化物としてLiBO、Li12、LiB(OH)HO、及び、Li13(OH)(HO)などの少なくとも1種を用いることもできる。
 固体電解質(I)中において、リチウム含有酸化物は非晶状態にあることが好ましい。すなわち、固体電解質(I)が上述した非晶状態になるように、固体電解質(I)中においてリチウム含有酸化物も、所望の非晶状態にあることが好ましい。
 なかでも、リチウム含有酸化物は、非晶状態の四ホウ酸リチウムであることが好ましい。
-Lithium-containing oxide-
The lithium-containing oxide constituting the solid electrolyte (I) contains Li, B, and O, as described above.
The above lithium-containing oxide is represented by Li 2+x B 4+y O 7+z (-0.3<x<0.3, -0.3<y<0.3, -0.3<z<0.3). Compounds such as In other words, when the molar amount of B is 4.00 and the molar amount of Li is expressed, the molar amount of Li is 1.58 to 2.49 (that is, 1.7×4/4.3 to 2.3× 4/3.7), and the molar amount of O is preferably 6.23 to 7.89 (ie, 6.7×4/4.3 to 7.3×4/3.7). In other words, when the molar amount of B is 4.00, the relative value of the molar amount of Li is 1.58 to 2.49, and the molar amount of O is 6.23 to 7.89. is preferred. Such a lithium-containing oxide typically includes lithium tetraborate (Li 2 B 4 O 7 ).
Further, the above lithium-containing oxide has Li 1+x B 3+y O 5+z (-0.3<x<0.3, -0.3<y<0.3, -0.3<z<0.3). Also preferred are the compounds represented. Such a lithium-containing oxide typically includes lithium triborate (LiB 3 O 5 ).
Further, the above lithium-containing oxide has Li 3+x B 11+y O 18+z (-0.3<x<0.3, -0.3<y<0.3, -0.3<z<0.3). Also preferred are the compounds represented. A typical example of such a lithium-containing oxide is Li 3 B 11 O 18 .
Further, the above lithium-containing oxide has Li 3+x B 7+y O 12+z (-0.3<x<0.3, -0.3<y<0.3, -0.3<z<0.3). Also preferred are the compounds represented. A typical example of such a lithium-containing oxide is Li 3 B 7 O 12 .
Therefore, the lithium-containing oxide is preferably at least one of the above Li 2+x B 4+y O 7+z , the above Li 1+x B 3+y O 5+z , Li 3+x B 11+y O 18+ z , and Li 3+x B 7+y O 12+z .
In addition, in place of or together with the above lithium-containing oxide, lithium-containing oxides such as LiBO 5 , Li 2 B 7 O 12 , LiB 2 O 3 (OH)H 2 O, and Li 4 B 8 O 13 (OH) 2 (H 2 O) 3 and the like can also be used.
In the solid electrolyte (I), the lithium-containing oxide is preferably in an amorphous state. That is, it is preferable that the lithium-containing oxide in the solid electrolyte (I) is also in the desired amorphous state so that the solid electrolyte (I) is in the above-mentioned amorphous state.
Among these, the lithium-containing oxide is preferably amorphous lithium tetraborate.
-リチウム塩-
 本発明に用いる固体電解質(I)を構成するリチウム塩は、特に制限されず、Liと陰イオンとから構成される塩が挙げられ、Liと有機陰イオンから構成される塩が好ましく、Liと、ハロゲン原子を有する有機陰イオンから構成される塩がより好ましい。
 本発明に用いる固体電解質(I)を構成するリチウム塩は、周期律表第3族元素、周期律表第4族元素、周期律表第13族元素、周期律表第14族元素、周期律表第15族元素、周期律表第16族元素、周期律表第17族元素、および、Hからなる群から選択される特定元素を2種以上含むことが好ましい。
 本発明に用いる固体電解質(I)を構成するリチウム塩としては、例えば、下記式(1)で表される化合物が好ましい。
 
  式(1)  LiN(Rf1SO)(Rf2SO
 
 Rf1及びRf2は、それぞれ独立に、ハロゲン原子又はパーフルオロアルキル基を示す。Rf1及びRf2は互いに同一でも異なっていてもよい。
 Rf1及びRf2がパーフルオロアルキル基である場合において、パーフルオロアルキル基中の炭素数は特に制限されない。
 Rf1及びRf2は、ハロゲン原子又は炭素数1~6のパーフルオロアルキル基であることが好ましく、ハロゲン原子又は炭素数1~2のパーフルオロアルキル基であることがより好ましく、ハロゲン原子であることがさらに好ましい。末端基の体積が増大すると立体障害が大きくなり、イオン伝導を阻害する要因となるため、Rf1及びRf2がパーフルオロアルキル基である場合、炭素数が少ないほうが好ましい。
-Lithium salt-
The lithium salt constituting the solid electrolyte (I) used in the present invention is not particularly limited, and examples include salts composed of Li + and anions, preferably salts composed of Li + and organic anions, More preferred is a salt composed of Li + and an organic anion having a halogen atom.
The lithium salt constituting the solid electrolyte (I) used in the present invention is an element of group 3 of the periodic table, an element of group 4 of the periodic table, an element of group 13 of the periodic table, an element of group 14 of the periodic table, an element of group 14 of the periodic table, or an element of group 14 of the periodic table. It is preferable to contain two or more specific elements selected from the group consisting of elements of group 15 of the table, elements of group 16 of the periodic table, elements of group 17 of the periodic table, and H.
As the lithium salt constituting the solid electrolyte (I) used in the present invention, for example, a compound represented by the following formula (1) is preferable.

Formula (1) LiN(R f1 SO 2 ) (R f2 SO 2 )

R f1 and R f2 each independently represent a halogen atom or a perfluoroalkyl group. R f1 and R f2 may be the same or different.
When R f1 and R f2 are perfluoroalkyl groups, the number of carbon atoms in the perfluoroalkyl group is not particularly limited.
R f1 and R f2 are preferably a halogen atom or a perfluoroalkyl group having 1 to 6 carbon atoms, more preferably a halogen atom or a perfluoroalkyl group having 1 to 2 carbon atoms, and are halogen atoms. It is even more preferable. When the volume of the terminal group increases, steric hindrance increases, which becomes a factor that inhibits ion conduction. Therefore, when R f1 and R f2 are perfluoroalkyl groups, it is preferable that the number of carbon atoms is small.
 本発明に用いる固体電解質(I)に含まれ得るリチウム塩は、上記式(1)で表される化合物に限定されるものではない。本発明に用いる固体電解質(I)に含まれ得るリチウム塩を以下に例示する。 The lithium salt that can be contained in the solid electrolyte (I) used in the present invention is not limited to the compound represented by the above formula (1). Examples of lithium salts that can be included in the solid electrolyte (I) used in the present invention are shown below.
(L-1)無機リチウム塩:LiPF、LiBF、LiAsF、及び、LiSbFなどの無機フッ化物塩;LiClO、LiBrO、及び、LiIOなどの過ハロゲン酸塩;LiAlClなどの無機塩化物塩。 (L-1) Inorganic lithium salts: Inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiSbF 6 ; Perhalates such as LiClO 4 , LiBrO 4 and LiIO 4 ; LiAlCl 4 etc. Inorganic chloride salt.
(L-2)含フッ素有機リチウム塩:LiCFSOなどのパーフルオロアルカンスルホン酸塩;LiN(CFSO(本明細書において、Li(FSONとも記載する。)、LiN(CFCFSO、LiN(FSO、及び、LiN(CFSO)(CSO)などのフルオロスルホニルイミド塩又はパーフルオロアルカンスルホニルイミド塩;LiC(CFSOなどのパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、及び、Li[PF(CFCFCFCF]などのフルオロアルキルフッ化リン酸塩(好ましくはパーフルオロアルキルフッ化リン酸塩)。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkanesulfonate such as LiCF 3 SO 3 ; LiN(CF 3 SO 2 ) 2 (also referred to herein as Li(FSO 2 ) 2 N). , LiN( CF3CF2SO2 ) 2 , LiN ( FSO2 ) 2 , and LiN(CF3SO2)( C4F9SO2 ) ; Perfluoroalkanesulfonyl methide salts such as LiC(CF 3 SO 2 ) 3 ; Li[PF 5 (CF 2 CF 2 CF 3 )], Li[PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li[PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li[PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li[PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], and Li[PF 3 (CF 2 CF 2 CF 2 CF 3 ) 3 ] and the like (preferably perfluoroalkyl fluorophosphates).
(L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、及び、リチウムジフルオロオキサラトボレート。 (L-3) Oxalatoborate salts: lithium bis(oxalato)borate and lithium difluorooxalatoborate.
 上記以外にも、リチウム塩の例として、LiF、LiCl、LiBr、LiI、LiSO、LiNO、LiCO、CHCOOLi、LiAsF、LiSbF、LiAlCl、及び、LiB(Cなどが挙げられる。
 なかでも、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(Rf11SO)、LiN(Rf11SO、LiN(FSO、又は、LiN(Rf11SO)(Rf12SO)が好ましく、LiPF、LiBF、LiN(Rf11SO、LiN(FSO、又は、LiN(Rf11SO)(Rf12SO)がより好ましい。これらの例示では、Rf11及びRf12は、それぞれ独立に、パーフルオロアルキル基を示し、炭素数は1~6であることが好ましく、1~4であることがより好ましく、1~2であることが更に好ましい。なお、Rf11及びRf12は互いに同一でも異なっていてもよい。また、リチウム塩としてLiNO、及び1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホンイミドリチウムも好ましい。
In addition to the above, examples of lithium salts include LiF, LiCl, LiBr, LiI, Li 2 SO 4 , LiNO 3 , Li 2 CO 3 , CH 3 COOLi, LiAsF 6 , LiSbF 6 , LiAlCl 4 , and LiB(C 6 H 5 ) 4 and the like.
Among them, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li(R f11 SO 2 ), LiN(R f11 SO 2 ) 2 , LiN(FSO 2 ) 2 , or LiN(R f11 SO 2 )(R f12 SO 2 ) is preferable, and LiPF 6 , LiBF 4 , LiN(R f11 SO 2 ) 2 , LiN(FSO 2 ) 2 or LiN(R f11 SO 2 )(R f12 SO 2 ) is more preferable. . In these examples, R f11 and R f12 each independently represent a perfluoroalkyl group, and the number of carbon atoms is preferably 1 to 6, more preferably 1 to 4, and 1 to 2. It is even more preferable. Note that R f11 and R f12 may be the same or different. Also preferred as the lithium salt are LiNO 3 and lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide.
(固体電解質(I)の元素組成)
 固体電解質(I)について、その成分組成を、固体電解質(I)を構成する化合物を基準として説明した。続いて、固体電解質(I)を、好ましい元素組成の観点から説明する。すなわち、本発明の二次電池は一形態において、固体電解質(I)について、「リチウム含有酸化物」及び「リチウム塩」を発明特定事項として有さずに、元素組成によって、例えば次のように特定することができる。
 本発明に用いる固体電解質(I)は、固体電解質(I)中のBのモル量を4.00とした場合に、Liのモル量が1.58~3.49(好ましくは1.58~3.00、より好ましくは1.90~3.00、さらに好ましくは2.00~3.00)であることが好ましい。また、固体電解質(I)中のBのモル量を4.00とした場合に、Oのモル量が6.23~25.00(好ましくは6.50~23.00、より好ましくは8.00~23.00、さらに好ましくは10.00~23.00、特に好ましくは10.00~18.00)であることが好ましい。また、固体電解質(I)中のBのモル量を4.00とした場合に、B以外かつLi以外かつO以外の元素のモル量がそれぞれ0.001~10.00(好ましくは0.001~6.00、より好ましくは0.01~5.00)であることが好ましい。
(Elemental composition of solid electrolyte (I))
The component composition of the solid electrolyte (I) has been explained based on the compounds constituting the solid electrolyte (I). Next, solid electrolyte (I) will be explained from the viewpoint of preferred elemental composition. That is, in one form of the secondary battery of the present invention, the solid electrolyte (I) does not include "lithium-containing oxide" and "lithium salt" as invention-specific matters, but has the following elemental composition, for example: can be specified.
The solid electrolyte (I) used in the present invention has a molar amount of Li of 1.58 to 3.49 (preferably 1.58 to 3.49), when the molar amount of B in the solid electrolyte (I) is 4.00. 3.00, more preferably 1.90 to 3.00, even more preferably 2.00 to 3.00). Furthermore, when the molar amount of B in the solid electrolyte (I) is 4.00, the molar amount of O is 6.23 to 25.00 (preferably 6.50 to 23.00, more preferably 8.00 to 25.00). 00 to 23.00, more preferably 10.00 to 23.00, particularly preferably 10.00 to 18.00). Furthermore, when the molar amount of B in the solid electrolyte (I) is 4.00, the molar amounts of elements other than B, other than Li, and other than O are each 0.001 to 10.00 (preferably 0.001 ~6.00, more preferably 0.01~5.00).
 各元素の含有量は、通常の元素分析によって特定される。元素分析の手法としては、例えば、Li及びBに関してはICP-OES(Inductively coupled plasma optical emission spectrometry)によって分析し、Nなどは不活性ガス溶融法により分析し、例えば、F及びSに関しては燃焼イオンクロマトグラフィーによって分析する。Oに関しては、O以外の元素の分析質量を足し合わせ、粉末全量からの差分として算出できる。なお、各元素の含有量の算出方法は上記に限定されず、使用する化合物の構造を考慮して、1つの元素の含有量の分析結果より他の元素の含有量を見積もってもよい。
 元素分析によって算出される各元素の含有量より、Bのモル量を4.00としたときのLi、O、及び、他の元素のモル量を算出する。
The content of each element is determined by ordinary elemental analysis. For elemental analysis, for example, Li and B are analyzed using ICP-OES (inductively coupled plasma optical emission spectrometry), N, etc. are analyzed using an inert gas melting method, and for example, F and S are analyzed using combustion ion analysis. Analyze by chromatography. Regarding O, it can be calculated as a difference from the total amount of powder by adding up the analyzed masses of elements other than O. Note that the method for calculating the content of each element is not limited to the above, and the content of other elements may be estimated from the analysis result of the content of one element, taking into consideration the structure of the compound used.
Based on the content of each element calculated by elemental analysis, the molar amounts of Li, O, and other elements are calculated when the molar amount of B is 4.00.
 固体電解質(I)の好ましい態様において、固体電解質(I)はLi、B及びOに加えて、さらに、周期律表第4族元素、周期律表第15族元素、周期律表第16族元素、周期律表第17族元素、Si、C、Sc、及び、Yから選択される元素(E)を1種以上含み、より好ましくは2種以上含む。
 周期律表第4族元素としては、Ti、Zr、Hf、及び、Rfが挙げられる。周期律表第15族元素としては、N、P、As、Sb、Bi、及び、Mcが挙げられる。周期律表第16族元素としては、S、Se、Te、Po、及び、Lvが挙げられる。周期律表第17族元素としては、F、Cl、Br、I、At、及び、Tsが挙げられる。
 なかでも、F、Cl、Br、I、S、P、Si、Se、Te、C、Sb、As、Sc、Y、Zr、Ti、Hf、及び、Nから選択される元素(E)を1種以上含むことが好ましく、2種以上含むことがより好ましい。
 固体電解質(I)に含まれる元素(E)の種類は3種以上であってもよく、2~5種が好ましく、2~4種がより好ましい。
 固体電解質(I)の好適態様としては、F、S、N、P、及び、Cから選択される2種以上の元素(E)を含むことが好ましく、F、S、C、及び、Nから選択される2種以上の元素(E)を含むことがより好ましく、F、S、及び、Nの3種の元素(E)を含むことがさらに好ましい。
In a preferred embodiment of the solid electrolyte (I), in addition to Li, B, and O, the solid electrolyte (I) further contains an element of group 4 of the periodic table, an element of group 15 of the periodic table, and an element of group 16 of the periodic table. , Group 17 elements of the periodic table, Si, C, Sc, and Y.
Examples of Group 4 elements of the periodic table include Ti, Zr, Hf, and Rf. Group 15 elements of the periodic table include N, P, As, Sb, Bi, and Mc. Group 16 elements of the periodic table include S, Se, Te, Po, and Lv. Group 17 elements of the periodic table include F, Cl, Br, I, At, and Ts.
Among them, an element (E) selected from F, Cl, Br, I, S, P, Si, Se, Te, C, Sb, As, Sc, Y, Zr, Ti, Hf, and N It is preferable to include more than one type, and more preferably two or more types.
The solid electrolyte (I) may contain three or more types of element (E), preferably 2 to 5 types, and more preferably 2 to 4 types.
A preferred embodiment of the solid electrolyte (I) preferably contains two or more elements (E) selected from F, S, N, P, and C; It is more preferable that two or more selected elements (E) are included, and it is even more preferable that three types of elements (E), F, S, and N are included.
 上記の元素(E)を1種以上(好ましくは2種以上)含む固体電解質(I)において、固体電解質(I)中のBのモル量を4.00として、Liのモル量を表したとき、Liのモル量は1.58~3.49であることが好ましい。つまり、Bの含有モル量を4.00としたとき、Liの含有モル量の相対値が1.58~3.49であることが好ましい。なかでも、固体電解質(I)中のBのモル量を4.00として、Liのモル量を表したとき、Liのモル量は1.58~3.00が好ましく、1.90~3.00がより好ましく、2.00~3.00がさらに好ましい。 In the solid electrolyte (I) containing one or more (preferably two or more) of the above elements (E), when the molar amount of Li is expressed with the molar amount of B in the solid electrolyte (I) being 4.00. , the molar amount of Li is preferably 1.58 to 3.49. That is, when the molar amount of B is 4.00, the relative value of the molar amount of Li is preferably 1.58 to 3.49. Among these, when the molar amount of Li is expressed with the molar amount of B in the solid electrolyte (I) being 4.00, the molar amount of Li is preferably 1.58 to 3.00, and preferably 1.90 to 3.00. 00 is more preferable, and 2.00 to 3.00 is even more preferable.
 上記の元素(E)を1種以上(好ましくは2種以上)含む固体電解質(I)において、固体電解質(I)中のBのモル量を4.00として、Oのモル量を表したとき、Oのモル量は6.23~25.00であることが好ましい。つまり、Bの含有モル量を4.00としたとき、Oの含有モル量の相対値が6.23~25.00であることが好ましい。なかでも、固体電解質(I)中のBのモル量を4.00として、Oのモル量を表したとき、Oのモル量は6.50~23.00が好ましく、8.00~23.00がより好ましく、10.00~23.00がより好ましく、10.00~18.00が特に好ましい。 In the solid electrolyte (I) containing one or more (preferably two or more) of the above elements (E), when the molar amount of O is expressed with the molar amount of B in the solid electrolyte (I) being 4.00. , the molar amount of O is preferably 6.23 to 25.00. That is, when the molar amount of B is 4.00, the relative value of the molar amount of O is preferably 6.23 to 25.00. Among these, when the molar amount of O in the solid electrolyte (I) is expressed as 4.00, the molar amount of O is preferably 6.50 to 23.00, and preferably 8.00 to 23.00. 00 is more preferable, 10.00 to 23.00 is more preferable, and 10.00 to 18.00 is particularly preferable.
 上記の元素(E)を1種以上(好ましくは2種以上)含む固体電解質(I)において、固体電解質(I)中のBのモル量を4.00として、元素(E)のモル量を表したとき、元素(E)のそれぞれのモル量は0.001~10.00であることが好ましい。つまり、Bの含有モル量を4.00としたとき、元素(E)のそれぞれの含有モル量の相対値が0.001~10.00であることが好ましい。なかでも、固体電解質(I)中のBのモル量を4.00として、元素(E)のモル量を表したとき、元素(E)のそれぞれのモル量は0.001~6.00が好ましく、0.01~5.00がより好ましい。 In the solid electrolyte (I) containing one or more types (preferably two or more types) of the above element (E), the molar amount of B in the solid electrolyte (I) is 4.00, and the molar amount of element (E) is When expressed, the molar amount of each element (E) is preferably 0.001 to 10.00. That is, when the molar content of B is 4.00, the relative value of the molar content of each element (E) is preferably 0.001 to 10.00. In particular, when the molar amount of B in solid electrolyte (I) is 4.00 and the molar amount of element (E) is expressed, the molar amount of each element (E) is 0.001 to 6.00. Preferably, 0.01 to 5.00 is more preferable.
 上記の元素(E)を1種以上(好ましくは2種以上)含む固体電解質(I)の元素組成の好適態様の一つとしては、Li、B、O、F、S、及び、Nを含み、Bのモル量を4.00としたとき、Liのモル量が1.58~3.49(好ましくは1.58~3.00、より好ましくは1.90~3.00、さらに好ましくは2.00~3.00)であり、Oのモル量が6.23~25.00(好ましくは6.50~23.00、より好ましくは8.00~23.00、さらに好ましくは10.00~23.00、特に好ましくは10.00~18.00)であり、Fのモル量が0.001~10.00(好ましくは0.01~10.00)であり、Sのモル量が0.001~2.00(好ましくは0.01~2.00)であり、Nのモル量が0.001~1.00(好ましくは0.005~1.00)である固体電解質が挙げられる。 One preferred embodiment of the elemental composition of the solid electrolyte (I) containing one or more (preferably two or more) of the above elements (E) includes Li, B, O, F, S, and N. , when the molar amount of B is 4.00, the molar amount of Li is 1.58 to 3.49 (preferably 1.58 to 3.00, more preferably 1.90 to 3.00, even more preferably 2.00 to 3.00), and the molar amount of O is 6.23 to 25.00 (preferably 6.50 to 23.00, more preferably 8.00 to 23.00, even more preferably 10. 00 to 23.00, particularly preferably 10.00 to 18.00), the molar amount of F is 0.001 to 10.00 (preferably 0.01 to 10.00), and the molar amount of S is is 0.001 to 2.00 (preferably 0.01 to 2.00), and the molar amount of N is 0.001 to 1.00 (preferably 0.005 to 1.00). Can be mentioned.
 本発明に用いる固体電解質(I)は、上述した非晶状態のものであることが好ましく、その結果として、この固体電解質(I)は上記のX線回折特性に加えて、下記の各特性を示すことが好ましい。 The solid electrolyte (I) used in the present invention is preferably in the above-mentioned amorphous state, and as a result, this solid electrolyte (I) has the following properties in addition to the above-mentioned X-ray diffraction properties. It is preferable to indicate.
(固体Li-NMRスペクトル特性)
 固体電解質(I)は、固体電解質(I)の固体Li-NMR測定を20℃及び120℃で行い、得られるスペクトルから下記の方法で算出される半値全幅割合が、50%以下であることが好ましく、40%以下であることがより好ましく、35%以下であることがさらに好ましい。下限は特に制限されないが、10%以上の場合が多い。
 上記の半値全幅割合は、固体電解質(I)の固体Li-NMR測定を20℃及び120℃でそれぞれ行い、20℃での測定で得られるスペクトルおける、化学シフトが-100~+100ppmの範囲に現れるピークの半値全幅(半値全幅1)と、120℃での測定で得られるスペクトルにおける、化学シフトが-100~+100ppmの範囲に現れるピークの半値全幅(半値全幅2)とを求めた後、半値全幅1に対する半値全幅2の割合の百分率{(半値全幅2/半値全幅1)×100(%)}を算出することにより、得られる。ピークの半値全幅(FWHM)は、ピークの高さ(H)の1/2地点(H/2)での幅(ppm)を意味する。
 以下、上記特性について図4を用いて説明する。図4では、固体電解質(I)の固体Li-NMR測定を20℃又は120℃で行った際に得られるスペクトルの一例を示す。図4中の下側に示す実線のスペクトルが固体Li-NMR測定を20℃で行った際に得られるスペクトルであり、図4中の上側に示す破線のスペクトルが固体Li-NMR測定を120℃で行った際に得られるスペクトルである。
 一般的に、固体Li-NMR測定において、Liの運動性が高い場合、得られるピークがよりシャープに得られる。図4に示す態様においては、20℃におけるスペクトルと120℃におけるスペクトルとを比較すると、120℃におけるスペクトルがよりシャープとなっている。つまり、図4に示す態様においては、Li欠陥などがあるために、Liの運動性が高くなっていることを示す。このような固体電解質(I)は、上記のような欠陥構造に由来して、塑性変形しやすくなり、かつ、Liのホッピング性に優れると考えられる。
 なお、参考のために示すと、一般的な四ホウ酸リチウム結晶に関して、固体Li-NMR測定を20℃又は120℃で行った際には、図5の下側に示す、実線で表される20℃で測定したスペクトルと、図5の上側に示す、破線で表される120℃で測定されるスペクトルとが略同じ形状となりやすい。つまり、四ホウ酸リチウム結晶においては、Li欠陥などがなく、結果として、弾性率が高く、塑性変形しづらい。
(Solid 7 Li-NMR spectral characteristics)
The solid electrolyte (I) shall have a full width at half maximum ratio of 50% or less, which is calculated by the following method from the spectrum obtained by performing solid 7 Li-NMR measurements of the solid electrolyte (I) at 20°C and 120°C. is preferable, more preferably 40% or less, and even more preferably 35% or less. The lower limit is not particularly limited, but is often 10% or more.
The above full width at half maximum ratio is determined by performing solid 7 Li-NMR measurements of the solid electrolyte (I) at 20°C and 120°C, respectively, and the chemical shift in the spectrum obtained by measurement at 20°C is in the range of -100 to +100 ppm. After determining the full width at half maximum of the peak that appears (full width at half maximum 1) and the full width at half maximum (full width at half maximum 2) of the peak that appears in the chemical shift range of -100 to +100 ppm in the spectrum obtained by measurement at 120°C, It is obtained by calculating the percentage of the full width at half maximum 2 to the full width 1 {(full width at half maximum 2/full width at half maximum 1)×100(%)}. The full width at half maximum (FWHM) of a peak means the width (ppm) at 1/2 point (H/2) of the peak height (H).
The above characteristics will be explained below using FIG. 4. FIG. 4 shows an example of a spectrum obtained when solid 7 Li-NMR measurement of solid electrolyte (I) is performed at 20°C or 120°C. The solid line spectrum shown on the lower side of FIG. 4 is the spectrum obtained when solid-state 7 Li-NMR measurement was performed at 20°C, and the broken line spectrum shown on the upper side of FIG. 4 is the spectrum obtained when solid-state 7 Li-NMR measurement was performed. This is a spectrum obtained when the test was carried out at 120°C.
Generally, in solid-state 7 Li-NMR measurements, when the mobility of Li + is high, the peaks obtained are sharper. In the embodiment shown in FIG. 4, when the spectrum at 20°C and the spectrum at 120°C are compared, the spectrum at 120°C is sharper. In other words, in the embodiment shown in FIG. 4, the mobility of Li + is high due to the presence of Li defects. Such a solid electrolyte (I) is considered to be easily plastically deformed due to the defect structure as described above, and to have excellent Li + hopping properties.
For reference, when solid-state 7 Li-NMR measurements are performed at 20°C or 120°C for a general lithium tetraborate crystal, the solid line shown at the bottom of Figure 5 is The spectrum measured at 20° C. and the spectrum measured at 120° C. shown by the broken line shown in the upper part of FIG. 5 tend to have substantially the same shape. That is, the lithium tetraborate crystal has no Li defects, and as a result has a high elastic modulus and is difficult to undergo plastic deformation.
 上記固体Li-NMR測定条件は以下の通りである。
 4mm HX CP-MASプローブを用い、シングルパルス法、90°パルス幅:3.2μs、観測周波数:155.546MHz、観測幅:1397.6ppm、繰り返し時間:15sec、積算:1回、MAS回転数:0Hzで測定する。
The Li-NMR measurement conditions for the above solid 7 are as follows.
Using a 4 mm HX CP-MAS probe, single pulse method, 90° pulse width: 3.2 μs, observation frequency: 155.546 MHz, observation width: 1397.6 ppm, repetition time: 15 sec, integration: 1 time, MAS rotation number: Measure at 0Hz.
 また、本発明に用いる固体電解質(I)は、固体Li-NMR測定を20℃で行った際に得られるスペクトルにおいて-100~+100ppmの範囲に現れる第1ピークを波形分離した際に、化学シフトが-3~+3ppmの範囲に半値全幅5ppm以下の第2ピークを有し、第1ピークの面積強度に対する第2ピークの面積強度の割合が0.5%以上であることが好ましい。上記面積強度の割合は、2%以上がより好ましく、5%以上がさらに好ましく、10%以上が特に好ましく、15%以上が最も好ましい。固体電解質(I)が水を含む本発明の形態では、固体電解質(I)の固体Li-NMRスペクトル特性が上記のようになる傾向にある。上記面積強度の割合の上限は特に制限されないが、50%以下の場合が多い。 In addition, the solid electrolyte (I) used in the present invention shows that when the waveform of the first peak appearing in the range of -100 to +100 ppm is separated in the spectrum obtained when solid-state 7 Li-NMR measurement is performed at 20°C, the chemical It is preferable that the shift has a second peak with a full width at half maximum of 5 ppm or less in the range of -3 to +3 ppm, and the ratio of the area intensity of the second peak to the area intensity of the first peak is 0.5% or more. The area strength ratio is more preferably 2% or more, further preferably 5% or more, particularly preferably 10% or more, and most preferably 15% or more. In the embodiment of the present invention in which the solid electrolyte (I) contains water, the solid state 7 Li-NMR spectral characteristics of the solid electrolyte (I) tend to be as described above. The upper limit of the area strength ratio is not particularly limited, but is often 50% or less.
 以下、上記特性について図6及び図7を用いて説明する。
 図6では、固体電解質(I)の固体Li-NMR測定を20℃で行った際に得られるスペクトルの一例を示す。図6に示すように、固体電解質(I)は、-100~+100ppmの範囲にピーク(第1ピークに該当)が観測され、この第1ピークにおいては化学シフト0ppm付近に破線で囲ったように小さなピークが観測される。上述したように、Liの運動性が高い場合、ピークがシャープに観測されるため、その影響が出ていると考えられる。
 次に、第1ピークを波形分離したものを図7に示す。図7に示すように、第1のピークは、実線で表される小さなピーク(第2ピークに該当)と、破線で表される大きなピークに波形分離される。上記第2ピークは、化学シフトが-3~+3ppmの範囲に現れ、半値全幅5ppm以下のピークである。
 固体電解質(I)は、図6で表される第1ピーク(波形分離前のピーク)の面積強度に対する、図7の実線で表される第2ピークの面積強度の割合{(第2ピークの面積強度/第1ピークの面積強度)×100(%)}が上記範囲内であることが好ましい。
 波形分離の方法としては、公知のソフトを使用する方法が挙げられ、ソフトとしては、例えば、WaveMetrics社のグラフ処理ソフトIgor Pro(イゴールプロ)が挙げられる。
The above characteristics will be explained below using FIGS. 6 and 7.
FIG. 6 shows an example of a spectrum obtained when solid 7 Li-NMR measurement of solid electrolyte (I) is performed at 20°C. As shown in Figure 6, solid electrolyte (I) has a peak (corresponding to the first peak) observed in the range of -100 to +100 ppm, and in this first peak, the chemical shift is around 0 ppm as shown by the broken line. A small peak is observed. As mentioned above, when the mobility of Li + is high, the peak is observed sharply, so this is considered to be an influence.
Next, FIG. 7 shows the waveform of the first peak separated. As shown in FIG. 7, the first peak is waveform-separated into a small peak (corresponding to the second peak) represented by a solid line and a large peak represented by a broken line. The second peak appears in a chemical shift range of -3 to +3 ppm, and has a full width at half maximum of 5 ppm or less.
The solid electrolyte (I) has a ratio of the area intensity of the second peak shown by the solid line in FIG. 7 to the area intensity of the first peak (the peak before waveform separation) shown in FIG. Area intensity/area intensity of first peak)×100(%)} is preferably within the above range.
As a method for waveform separation, a method using known software can be mentioned, and an example of the software is Igor Pro, a graph processing software manufactured by WaveMetrics.
(ラマンスペクトル特性)
 固体電解質(I)は、固体電解質(I)のラマンスペクトルの600~850cm-1の波数領域で、最小二乗法による線形回帰分析を行って得られる決定係数が、0.9400以上であることが好ましく、0.9600以上であることがより好ましく、0.9800以上であることも好ましい。上限は特に制限されないが、通常は1.0000以下である。
(Raman spectrum characteristics)
The solid electrolyte (I) has a coefficient of determination of 0.9400 or more obtained by linear regression analysis using the least squares method in the wave number region of 600 to 850 cm -1 of the Raman spectrum of the solid electrolyte (I). It is preferably 0.9600 or more, more preferably 0.9800 or more. The upper limit is not particularly limited, but is usually 1.0000 or less.
 上記ラマンスペクトル特性について図8を参照しながら説明する。
 まず、固体電解質(I)のラマンスペクトルを取得する。ラマンスペクトルの測定方法としては、ラマンイメージングを実施する。ラマンイメージングとは、ラマン分光法に顕微技術を組み合わせた顕微分光手法である。具体的には、試料上で励起光を走査させることによりラマン散乱光を含む測定光を検出し、測定光の強度に基づいて成分の分布などを可視化する手法である。
 ラマンイメージングの測定条件としては、27℃、大気下で、励起光を532nm、対物レンズを100倍、マッピング方式の点走査、1μmステップ、1点当たりの露光時間を1秒、積算回数を1回、測定範囲を70μm×50μmの範囲とする。但し、試料の膜厚によっては測定範囲がより狭小となることもある。
 また、ラマンスペクトルのデータに対して、主成分分析(PCA)処理を施して、ノイズを除去する。具体的には、主成分分析処理においては、自己相関係数0.6以上の成分を用いてスペクトルを再結合する。
The above Raman spectral characteristics will be explained with reference to FIG. 8.
First, a Raman spectrum of the solid electrolyte (I) is obtained. Raman imaging is performed as a method for measuring the Raman spectrum. Raman imaging is a microscopic spectroscopic technique that combines Raman spectroscopy with microscopic technology. Specifically, this is a method in which measurement light including Raman scattered light is detected by scanning excitation light over a sample, and the distribution of components is visualized based on the intensity of the measurement light.
The measurement conditions for Raman imaging are as follows: 27°C in the atmosphere, excitation light at 532 nm, objective lens at 100x, mapping method point scanning, 1 μm steps, exposure time per point for 1 second, and integration once. , the measurement range is 70 μm×50 μm. However, depending on the film thickness of the sample, the measurement range may become narrower.
Further, principal component analysis (PCA) processing is performed on the Raman spectrum data to remove noise. Specifically, in the principal component analysis process, spectra are recombined using components with an autocorrelation coefficient of 0.6 or more.
 図8に、固体電解質(I)のラマンスペクトルの一例を示す。図8に示すグラフにおいて、縦軸がラマン強度、横軸がラマンシフトを示す。図8に示すラマンスペクトルの600~850cm-1の波数領域において、最小二乗法による線形回帰分析を行って得られる決定係数(決定係数R)を算出する。つまり、図8のラマンスペクトルの600~850cm-1の波数領域において、最小二乗法により回帰直線(図8中の太線)を求めて、その回帰直線の決定係数Rを算出する。なお、決定係数は、測定値の線形相関に応じて、0(線形相関なし)と1(測定値の完全な線形相関)との間の値をとる。
 固体電解質(I)においては、図8に示すように、600~850cm-1の波数領域においてピークが略観測されず、結果として、高い決定係数を示す。
 なお、上記決定係数Rは、相関係数(ピアソンの積率相関係数)の二乗に該当する。より具体的には、本明細書において、決定係数Rは、以下の式によって算出される。式中、x及びyは、ラマンスペクトル中の波数と、その波数に対応したラマン強度とを表し、xは波数の(相加)平均を、yはラマン強度の(相加)平均を表す。
FIG. 8 shows an example of the Raman spectrum of the solid electrolyte (I). In the graph shown in FIG. 8, the vertical axis shows Raman intensity and the horizontal axis shows Raman shift. In the wave number region of 600 to 850 cm −1 of the Raman spectrum shown in FIG. 8, a coefficient of determination (coefficient of determination R 2 ) obtained by performing linear regression analysis using the least squares method is calculated. That is, in the wave number region of 600 to 850 cm −1 of the Raman spectrum in FIG. 8, a regression line (thick line in FIG. 8) is found by the least squares method, and the coefficient of determination R 2 of the regression line is calculated. Note that the coefficient of determination takes a value between 0 (no linear correlation) and 1 (perfect linear correlation of the measured values) depending on the linear correlation of the measured values.
In the solid electrolyte (I), as shown in FIG. 8, almost no peak is observed in the wave number region of 600 to 850 cm −1 , and as a result, it exhibits a high coefficient of determination.
Note that the determination coefficient R2 corresponds to the square of the correlation coefficient (Pearson's product moment correlation coefficient). More specifically, in this specification, the coefficient of determination R2 is calculated by the following formula. In the formula, x 1 and y 1 represent the wave number in the Raman spectrum and the Raman intensity corresponding to that wave number, x 2 is the (additive) average of the wave numbers, and y 2 is the (additive) Raman intensity. Represents the average.
 一方で、参考のために、図9に、一般的な四ホウ酸リチウム結晶のラマンスペクトルを示す。図9に示すように、一般的な四ホウ酸リチウム結晶の場合、その構造に由来する、716~726cm-1、及び、771~785cm-1の波数領域において、ピークが観測される。このようなピークがある場合に、600~850cm-1の波数領域において、最小二乗法による線形回帰分析を行って決定係数を算出すると、その決定係数は0.9400未満となる。
 つまり、上記決定係数が0.9400以上であることは、固体電解質(I)に結晶構造がほとんど含まれていないことを示している。そのため、結果として、固体電解質(I)は塑性変形しやすい特性、及び、Liのホッピング性に優れる特性を有すると考えられる。
On the other hand, for reference, FIG. 9 shows a Raman spectrum of a general lithium tetraborate crystal. As shown in FIG. 9, in the case of a general lithium tetraborate crystal, peaks are observed in the wave number regions of 716 to 726 cm −1 and 771 to 785 cm −1 , which are derived from its structure. When such a peak exists, the coefficient of determination is less than 0.9400 when linear regression analysis is performed using the least squares method in the wave number region of 600 to 850 cm −1 to calculate the coefficient of determination.
In other words, the fact that the coefficient of determination is 0.9400 or more indicates that the solid electrolyte (I) contains almost no crystal structure. Therefore, as a result, it is considered that the solid electrolyte (I) has the property of being easily plastically deformed and the property of being excellent in Li + hopping property.
(赤外吸収スペクトル特性)
 固体電解質(I)は、赤外吸収スペクトルにおいて、800~1600cm-1の波数領域における最大吸収強度に対する、3000~3500cm-1の波数領域における最大吸収強度の比の値(3000~3500cm-1の波数領域における最大吸収強度/800~1600cm-1の波数領域における最大吸収強度)が、1/5以上(0.2以上)であることが好ましい。なかでも、上記比が3/10以上が好ましく、2/5以上がより好ましい。上限は特に制限されないが、1以下が好ましい。
 赤外吸収スペクトルの3000~3500cm-1の波数領域にはO-H伸縮振動モードが観察され、800~1600cm-1の波数領域にはB-O伸縮振動モードが観察される。固体電解質(I)は、O-H伸縮振動モードに由来する吸収強度が強く観測され、多数のOH基及び/又は多量の水が含まれていることがわかる。このような固体電解質(I)では、リチウムイオンが移動しやすくなり、結果として、イオン伝導性が向上する傾向にある。
 なお、800~1600cm-1の波数領域においては、リチウム塩由来の振動モードも観察され得る。
(Infrared absorption spectrum characteristics)
In the infrared absorption spectrum, the solid electrolyte (I) has a value of the ratio of the maximum absorption intensity in the wavenumber region of 3000 to 3500 cm −1 to the maximum absorption intensity in the wavenumber region of 800 to 1600 cm −1 (3000 to 3500 cm −1 The ratio (maximum absorption intensity in the wave number region/maximum absorption intensity in the wave number region from 800 to 1600 cm −1 ) is preferably 1/5 or more (0.2 or more). Among these, the ratio is preferably 3/10 or more, more preferably 2/5 or more. The upper limit is not particularly limited, but is preferably 1 or less.
An OH stretching vibration mode is observed in the wave number region of 3000 to 3500 cm −1 in the infrared absorption spectrum, and a B—O stretching vibration mode is observed in the wave number region of 800 to 1600 cm −1 . In the solid electrolyte (I), a strong absorption intensity derived from the OH stretching vibration mode is observed, indicating that it contains a large number of OH groups and/or a large amount of water. In such a solid electrolyte (I), lithium ions tend to move easily, and as a result, ion conductivity tends to improve.
Note that in the wave number region of 800 to 1600 cm −1 , a vibration mode derived from lithium salt can also be observed.
 上記赤外吸収スペクトル測定条件を以下の通りとすることができる。
 対物レンズ:32倍カセグレン式(NA0.65)、検出器:MCT-A、測定範囲:650~4000cm-1、分解能:4cm-1、試料セル:ダイヤモンドセルで測定する。
 得られた赤外吸収スペクトルについて、大気の水とCO由来の信号除去のために補正をかけ、さらに、バックグラウンドにオフセット補正をかけて吸収強度0とする。また、40℃で2時間真空乾燥させた後に大気下で測定を行う。
The above infrared absorption spectrum measurement conditions can be as follows.
Objective lens: 32x Cassegrain type (NA 0.65), detector: MCT-A, measurement range: 650 to 4000 cm −1 , resolution: 4 cm −1 , sample cell: Measurement is performed using a diamond cell.
The obtained infrared absorption spectrum is corrected to remove signals derived from atmospheric water and CO 2 , and then offset correction is applied to the background to make the absorption intensity 0. Further, after vacuum drying at 40° C. for 2 hours, measurement is performed in the atmosphere.
 固体電解質(I)のイオン伝導度(27℃)は特に制限されず、各種用途への応用の観点から、1.0×10-5S/cm以上が好ましく、1.0×10-4S/cm以上がより好ましく、1.0×10-3S/cm以上が更に好ましく、3.0×10-3S/cm以上が特に好ましい。上限は特に制限されないが、1.0×10-2S/cm以下の場合が多い。 The ionic conductivity (27° C.) of the solid electrolyte (I) is not particularly limited, and from the viewpoint of application to various uses, it is preferably 1.0×10 −5 S/cm or more, and 1.0×10 −4 S /cm or more is more preferable, 1.0×10 −3 S/cm or more is even more preferable, and 3.0×10 −3 S/cm or more is particularly preferable. The upper limit is not particularly limited, but is often 1.0×10 −2 S/cm or less.
 また、固体電解質(I)は下記の特性ないし物性を示すことも好ましい。 Furthermore, it is also preferable that the solid electrolyte (I) exhibits the following characteristics or physical properties.
(質量減少率)
 固体電解質(I)を800℃まで加熱した際における質量減少率が20~40質量%であることが好ましく、25~35質量%がより好ましい。上記加熱により生じる質量減少は、固体電解質(I)に含まれる水分が除去されていると考えられる。固体電解質(I)がこのような水分を含有することにより、リチウムイオンの伝導性をより向上させることができる。
 上記加熱処理では、25℃から800℃までの範囲で20℃/秒の昇温速度にて加熱する。質量減少量の測定には、公知の熱重量示差熱分析(TG-DTA)装置を用いることができる。上記質量減少率は、
 {(25℃における質量-800℃における質量)/25℃における質量}×100
によって算出される。
 質量減少率の測定に当たり、固体電解質(I)は事前に、40℃で2時間の真空乾燥に付される。また、質量減少率の測定は大気下で行う。
(mass reduction rate)
The mass reduction rate when solid electrolyte (I) is heated to 800° C. is preferably 20 to 40% by mass, more preferably 25 to 35% by mass. The mass reduction caused by the heating is considered to be due to the removal of water contained in the solid electrolyte (I). When the solid electrolyte (I) contains such water, the conductivity of lithium ions can be further improved.
In the above heat treatment, heating is performed at a temperature increase rate of 20°C/sec in the range from 25°C to 800°C. A known thermogravimetric differential thermal analysis (TG-DTA) device can be used to measure the amount of mass loss. The above mass reduction rate is
{(mass at 25°C - mass at 800°C)/mass at 25°C} x 100
Calculated by
In measuring the mass reduction rate, the solid electrolyte (I) was previously subjected to vacuum drying at 40° C. for 2 hours. Furthermore, the mass reduction rate is measured in the atmosphere.
 本発明の二次電池を構成する固体電解質層は、固体電解質(I)に加え、他の成分を含有してもよい。
 例えば、固体電解質層は有機ポリマーからなるバインダーを含むことができる。バインダーを構成する有機ポリマーは、粒子状であってもよいし、非粒子状であってもよい。バインダーを含むことにより、固体電解質層ないし電極層に割れ等が生じることを、より確実に防ぐことが可能になる。
 また、固体電解質層は、固体電解質(I)以外の他の固体電解質を含んでもよい。他の固体電解質とは、その内部においてリチウムイオンを移動させることができる固体状の電解質を意味する。固体電解質としては、無機の固体電解質が好ましい。他の固体電解質としては、酸化物系固体電解質、ハロゲン化物系固体電解質、及び、水素化物系固体電解質が挙げられ、酸化物系固体電解質がより好ましい。
The solid electrolyte layer constituting the secondary battery of the present invention may contain other components in addition to the solid electrolyte (I).
For example, the solid electrolyte layer can include a binder made of an organic polymer. The organic polymer constituting the binder may be particulate or non-particulate. By including the binder, it becomes possible to more reliably prevent cracks from occurring in the solid electrolyte layer or the electrode layer.
Further, the solid electrolyte layer may contain another solid electrolyte other than the solid electrolyte (I). Other solid electrolyte means a solid electrolyte in which lithium ions can be moved. As the solid electrolyte, an inorganic solid electrolyte is preferable. Other solid electrolytes include oxide-based solid electrolytes, halide-based solid electrolytes, and hydride-based solid electrolytes, with oxide-based solid electrolytes being more preferred.
 本発明の二次電池においては、固体電解質層に、イオン液体、界面活性剤等のその他の成分を含ませることも好ましい。
 イオン液体の添加により、本発明の二次電池の充放電サイクル特性をより向上させることが可能である。イオン液体とは、イオンのみ(アニオン、カチオン)から構成される液体の「塩」であり、水(本発明における自由水に相当)に比べて粘性が高いため水に比べてイオン伝導率は低い一方、電位窓は広いため、イオン液体の種類及び添加量等によっては、水とイオン液体との併用によって、イオン伝導性と電位窓をより優れたレベルで両立することが可能である。
 イオン液体を構成するカチオン構造としては、1-ブチル-1-メチルピロリジニウムカチオン(BMP)、n-メチル-n-ペンチルピロリジニウムカチオン(PYR15)等のピロリジニウム系カチオン、1-ブチル-3-メチルイミダゾリウムカチオン(BMI)、1-エチル-3-メチルイミダゾリウムカチオン(EMI)等のイミダゾリウム系カチオン、n-メチル-n-プロピルピペリジニウムカチオン(PIP)等のピぺリジニウム系カチオン、トリエチルスルフォニウムカチオン(TES)等のスルホニウム系カチオンが挙げられる。
 イオン液体を構成するアニオン構造としては、N(FSO [FSI]、N(CFSO [TFSI]、N(CFCFSO [LIBETI]等のパーフルオロアルカンスルホニルイミドアニオン、CFSO 等のパーフルオロアルカンスルホン酸アニオン、PF 、BF 等の無機フッ化物アニオン、ClO 等の過ハロゲン酸イオンが挙げられる。
 また、界面活性剤の添加により、本発明の二次電池の充放電サイクル特性をより向上させることが可能である。界面活性剤の添加により、固体電解質層中における固体電解質(I)の分散性及び固体電解質(I)中のリチウム塩の分散性等を向上させることが可能である。
 界面活性剤としては、界面活性剤として常用される化合物を本発明の効果を損なわない範囲で使用することができる。
In the secondary battery of the present invention, it is also preferable that the solid electrolyte layer contains other components such as an ionic liquid and a surfactant.
By adding an ionic liquid, it is possible to further improve the charge/discharge cycle characteristics of the secondary battery of the present invention. An ionic liquid is a liquid "salt" composed only of ions (anions, cations), and has a higher viscosity than water (equivalent to free water in the present invention), so its ionic conductivity is lower than that of water. On the other hand, since the potential window is wide, depending on the type of ionic liquid and the amount added, it is possible to achieve both ionic conductivity and potential window at a better level by using water and an ionic liquid in combination.
The cation structures constituting the ionic liquid include pyrrolidinium cations such as 1-butyl-1-methylpyrrolidinium cation (BMP + ), n-methyl-n-pentylpyrrolidinium cation (PYR15 + ), and 1-butyl cation. Imidazolium cations such as -3-methylimidazolium cation (BMI + ), 1-ethyl-3-methylimidazolium cation (EMI + ), n-methyl-n-propylpiperidinium cation (PIP + ), etc. Examples include sulfonium cations such as piperidinium cations and triethylsulfonium cations (TES + ).
The anion structures constituting the ionic liquid include N(FSO 2 ) 2 [FSI ], N(CF 3 SO 2 ) 2 [TFSI ], N(CF 3 CF 2 SO 2 ) 2 [LIBETI ] and other perfluoroalkanesulfonylimide anions, perfluoroalkanesulfonate anions such as CF 3 SO 3 - , inorganic fluoride anions such as PF 6 - and BF 4 - , and perhalogen acid ions such as ClO 4 - . .
Further, by adding a surfactant, it is possible to further improve the charge/discharge cycle characteristics of the secondary battery of the present invention. By adding a surfactant, it is possible to improve the dispersibility of the solid electrolyte (I) in the solid electrolyte layer, the dispersibility of the lithium salt in the solid electrolyte (I), and the like.
As the surfactant, compounds commonly used as surfactants can be used within a range that does not impair the effects of the present invention.
 本発明の二次電池を構成する固体電解質層の厚さは特に制限されず、例えば、10~1000μmとすることができ、50~400μmが好ましい。 The thickness of the solid electrolyte layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 10 to 1000 μm, preferably 50 to 400 μm.
<正極層>
 正極層は、正極集電体と正極活物質層とから構成されるのが一般的であるが、正極活物質層から構成され、正極集電体を含まない構成であってもよい。換言すれば、正極活物質層が正極集電体としても機能する場合には、正極集電体と正極活物質層の2層で構成されている必要はなく、単層構成であってもよい。
 また、正極活物質層は、通常は、正極活物質とともに固体電解質(好ましくは無機固体電解質)を含有するが、固体電解質を含有していなくてもよい。
<Positive electrode layer>
Although the positive electrode layer is generally composed of a positive electrode current collector and a positive electrode active material layer, it may be composed of a positive electrode active material layer and not include a positive electrode current collector. In other words, when the positive electrode active material layer also functions as a positive electrode current collector, it does not need to be composed of two layers, the positive electrode current collector and the positive electrode active material layer, and may be a single layer structure. .
Further, the positive electrode active material layer usually contains a solid electrolyte (preferably an inorganic solid electrolyte) together with the positive electrode active material, but it may not contain a solid electrolyte.
 正極活物質層が固体電解質を含有する場合、この固体電解質の種類は特に制限されない。より高い安全性を重視する観点からは酸化物系固体電解質を用いることができる。
 柔軟性と安全性の両立を高いレベルで実現する観点から、上述した固体電解質(I)を用いることが好ましい。こうすることで、固体電解質(I)が正極層に含まれる固体粒子のバインダーのようにも作用して、正極層に、より柔軟性を持たせることができる。
 正極活物質層は、固体電解質を1種又は2種以上含有していてもよい。
 固体電解質の、正極活物質層中の含有量は、特に制限されず、正極活物質との合計含有量として、50~99.9質量%が好ましく、70~99.5質量%がより好ましく、90~99質量%が更に好ましい。
When the positive electrode active material layer contains a solid electrolyte, the type of the solid electrolyte is not particularly limited. From the viewpoint of emphasizing higher safety, an oxide-based solid electrolyte can be used.
From the viewpoint of achieving both flexibility and safety at a high level, it is preferable to use the solid electrolyte (I) described above. By doing so, the solid electrolyte (I) also acts like a binder for the solid particles contained in the positive electrode layer, and the positive electrode layer can be made more flexible.
The positive electrode active material layer may contain one or more solid electrolytes.
The content of the solid electrolyte in the positive electrode active material layer is not particularly limited, and the total content with the positive electrode active material is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass. More preferably 90 to 99% by mass.
 正極層に用いる正極活物質それ自体は、負極活物質との間で、Li基準での放電電位の差が1.3V以上を満たす限り特に制限されず、通常のリチウムイオン二次電池に使用可能な正極活物質を広く用いることができる。正極活物質の好適な形態を以下に説明する。 The positive electrode active material itself used in the positive electrode layer is not particularly limited as long as the difference in discharge potential with respect to the Li standard satisfies 1.3 V or more with the negative electrode active material, and it can be used in ordinary lithium ion secondary batteries. A wide variety of positive electrode active materials can be used. A preferred form of the positive electrode active material will be explained below.
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。正極活物質は、負極活物質との間でのLi基準での放電電位の差が1.3V以上を満たす限り特に制限されず、遷移金属酸化物が好ましく、遷移金属元素Ma(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を含む遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素Mb(リチウム以外の周期律表の第1(Ia)族の金属元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。元素Mbの混合量としては、遷移金属元素Maの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物、及び、(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Cathode active material)
The positive electrode active material is preferably one that can reversibly insert and/or release lithium ions. The positive electrode active material is not particularly limited as long as the difference in discharge potential between it and the negative electrode active material based on Li satisfies 1.3 V or more, and transition metal oxides are preferable, and transition metal elements Ma (Co, Ni, A transition metal oxide containing one or more elements selected from Fe, Mn, Cu, and V is more preferable. In addition, this transition metal oxide contains element Mb (metal elements of group 1 (Ia) of the periodic table other than lithium, elements of group 2 (IIa) of the periodic table, Al, Ga, In, Ge, Sn, Pb, Sb , Bi, Si, P, and B) may be mixed. The mixing amount of element Mb is preferably 0 to 30 mol% with respect to the amount of transition metal element Ma (100 mol%). More preferably, it is synthesized by mixing Li/Ma at a molar ratio of 0.3 to 2.2.
Specific examples of transition metal oxides include (MA) transition metal oxides having a layered rock salt structure, (MB) transition metal oxides having a spinel structure, (MC) lithium-containing transition metal phosphate compounds, (MD ) Lithium-containing transition metal halide phosphoric acid compounds, (ME) lithium-containing transition metal silicate compounds, and the like.
 (MA)層状岩塩型構造を有する遷移金属酸化物として、例えば、LiCoO(コバルト酸リチウム[LCO])、LiNiO(ニッケル酸リチウム[LNO])、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Mn1/3Co1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)、及び、LiMnO-LiNiMnCoOが挙げられる。 (MA) Examples of transition metal oxides having a layered rock salt structure include LiCoO 2 (lithium cobalt oxide [LCO]), LiNiO 2 (lithium nickel oxide [LNO]), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminate [NCA]), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (nickel manganese cobalt lithium [NMC]), LiNi 0.5 Mn 0.5 O 2 ( lithium manganese nickelate), and Li 2 MnO 3 -LiNiMnCoO 2 .
 (MB)スピネル型構造を有する遷移金属酸化物として、例えば、LiMn(LMO)、LiNi0.5Mn1.5([LNMO])、LiCoMnO、LiFeMn、LiCuMn、LiCrMn、及び、LiNiMnが挙げられる。 (MB) Examples of transition metal oxides having a spinel structure include LiMn 2 O 4 (LMO), LiNi 0.5 Mn 1.5 O 4 ([LNMO]), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Examples include Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 .
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO([LFP])及びLiFe(POなどのオリビン型リン酸鉄塩、LiFePなどのピロリン酸鉄塩、LiMnPO[(LMP)]などのオリビン型リン酸マンガン塩、LiNiPO[(LNP)]などのオリビン型リン酸ニッケル塩、LiCoPO[(LCP)]などのオリビン型リン酸コバルト塩、LiCoPなどのオリビン型ピロリン酸コバルト塩並びに、Li(PO(リン酸バナジウムリチウム)などの単斜晶NASICON型リン酸バナジウム塩が挙げられる。 (MC) Lithium-containing transition metal phosphate compounds include, for example, olivine-type iron phosphates such as LiFePO 4 ([LFP]) and Li 3 Fe 2 (PO 4 ) 3 , and iron pyrophosphates such as LiFeP 2 O 7 . salts, olivine-type manganese phosphate salts such as LiMnPO 4 [(LMP)], olivine-type nickel phosphate salts such as LiNiPO 4 [(LNP)], olivine-type cobalt phosphate salts such as LiCoPO 4 [(LCP)], Examples include olivine-type cobalt pyrophosphate salts such as Li 2 CoP 2 O 7 and monoclinic NASICON-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOFなどのフッ化リン酸鉄塩、LiMnPOFなどのフッ化リン酸マンガン塩、及び、LiCoPOFなどのフッ化リン酸コバルト塩が挙げられる。 (MD) Examples of lithium-containing transition metal halide phosphate compounds include iron fluorophosphates such as Li 2 FePO 4 F, manganese fluorophosphates such as Li 2 MnPO 4 F, and Li 2 CoPO Examples include cobalt fluorophosphate salts such as 4F .
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、及び、LiCoSiOが挙げられる。 (ME) Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
 正極活物質の形状は特に制限されず、通常は粒子状である。正極活物質の体積平均粒子径は特に制限されず、例えば、0.1~50μmが好ましい。正極活物質の体積平均粒子径は、後述する負極活物質の体積平均粒子径と同様にして決定できる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後、使用してもよい。
The shape of the positive electrode active material is not particularly limited, and is usually particulate. The volume average particle diameter of the positive electrode active material is not particularly limited, and is preferably, for example, 0.1 to 50 μm. The volume average particle diameter of the positive electrode active material can be determined in the same manner as the volume average particle diameter of the negative electrode active material, which will be described later.
The positive electrode active material obtained by the calcination method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質は、後述する負極活物質と同様に、後記表面被覆剤、硫黄又はリンで、さらには活性光線により、表面被覆されていてもよい。
 正極活物質の表面被覆材(コーティング材とも称す。)により、正極活物質と水の接触を抑制することができ、また、正極活物質と固体電解質との界面におけるLiの欠乏を抑制することができ、全固体リチウムイオン二次電池の充放電サイクル特性をより向上させることができると考えられる。この観点から、正極活物質のコーティング材は、Liイオン伝導性酸化物が好ましく、LiNbO、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiMoO、LiWO又はLiAlFより好ましく挙げられる。
Similar to the negative electrode active material described below, the surface of the positive electrode active material may be coated with a surface coating agent described later, sulfur or phosphorus, or even with actinic light.
The surface coating material (also referred to as coating material) for the positive electrode active material can suppress contact between the positive electrode active material and water, and can also suppress Li deficiency at the interface between the positive electrode active material and the solid electrolyte. It is considered that the charge/discharge cycle characteristics of the all-solid-state lithium ion secondary battery can be further improved. From this point of view, the coating material for the positive electrode active material is preferably a Li ion conductive oxide, such as LiNbO 3 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , More preferred than Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , Li 2 MoO 4 , Li 2 WO 4 or Li 3 AlF 6 Can be mentioned.
 正極活物質は、1種単独で使用してもよいし、2種以上を併用してもよい。
 正極活物質の、正極活物質層中における含有量は、特に制限されず、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量%が更に好ましく、50~90質量%が特に好ましい。
The positive electrode active materials may be used alone or in combination of two or more.
The content of the positive electrode active material in the positive electrode active material layer is not particularly limited, and is preferably 10 to 97% by mass, more preferably 30 to 95% by mass, even more preferably 40 to 93% by mass, and 50 to 90% by mass. % is particularly preferred.
 これらの中でも、正極活物質としては、Li基準での放電電位が3.5V以上であることが好ましく、3.7V以上であることがより好ましく、3.8V以上であることがさらに好ましく、4.2V以上であることが特に好ましい。
 なお、正極活物質が後述のコート層を有し、このコート層が可逆的にリチウムイオンを挿入及び放出可能な材料により構成されている場合には、正極活物質のLi基準での放電電位は、より電位の低い材料のLi基準での放電電位を意味する。
 前述の通り、本発明の二次電池は、特定組成の固体電解質(I)に含まれる「自由水」と「束縛水」の二種類の水のうち、「束縛水」がリチウム含有酸化物及び/又はリチウム塩と相互作用し、固体電解質(I)の電位窓は水の電位窓よりも広くなる。このため、従来の液系リチウムイオン二次電池のうち水溶液を電解液とする形態において水の酸化分解が生じてしまう3.8V(Li基準、pH=7)以上でも固体電解質(I)は分解せず、Li基準での放電電位が3.8V以上である正極活物質を使用することができる。
 Li基準での放電電位が3.8V以上である正極活物質としては、例えば、LiCoO(LCO、3.9V)、LiMnO-LiNiMnCoO(3.9V)、LiMn(LMO、3.8V)、LiNi0.5Mn1.5(LNMO、4.7V)、LiMnPO(LMP、4.1V)、LiCoPO(LCP、4.8V)、LiCoP(5V)及びLiNiPO(LNP、5.1V)が挙げられ、これらのうちの少なくとも1種であることが好ましい。なお、各正極活物質の後ろに括弧書きで記載する値は、Li基準での放電電位である。LCOはサイクル特性をより良好なものとすることができ、LNMOは電位差をより広げることができる。
 なお、これらに後述の酸化物もしくは炭素系材料などの界面抵抗安定化層をコートしたものも好ましい。
Among these, the positive electrode active material preferably has a discharge potential of 3.5 V or more based on Li, more preferably 3.7 V or more, even more preferably 3.8 V or more, and 4. It is particularly preferable that the voltage is .2V or more.
Note that when the positive electrode active material has a coat layer described below, and this coat layer is made of a material that can reversibly insert and release lithium ions, the discharge potential of the positive electrode active material based on Li is , means the discharge potential of a material with a lower potential based on Li.
As mentioned above, in the secondary battery of the present invention, of the two types of water, "free water" and "bound water" contained in the solid electrolyte (I) having a specific composition, "bound water" is composed of lithium-containing oxide and / or interacts with the lithium salt, and the potential window of the solid electrolyte (I) becomes wider than that of water. For this reason, the solid electrolyte (I) decomposes even above 3.8 V (Li standard, pH = 7), which causes oxidative decomposition of water in conventional liquid-based lithium ion secondary batteries that use an aqueous solution as the electrolyte. Instead, a positive electrode active material having a discharge potential of 3.8 V or more based on Li can be used.
Examples of positive electrode active materials having a discharge potential of 3.8 V or higher based on Li include LiCoO 2 (LCO, 3.9 V), Li 2 MnO 3 -LiNiMnCoO 2 (3.9 V), and LiMn 2 O 4 (LMO). , 3.8V), LiNi0.5Mn1.5O4 (LNMO, 4.7V ) , LiMnPO4 ( LMP, 4.1V), LiCoPO4 ( LCP , 4.8V), Li2CoP2O7 (5V) and LiNiPO 4 (LNP, 5.1V), and at least one of these is preferred. Note that the value written in parentheses after each positive electrode active material is the discharge potential based on Li. LCO can provide better cycle characteristics, and LNMO can provide a wider potential difference.
In addition, it is also preferable to coat these with an interfacial resistance stabilizing layer such as an oxide or a carbon-based material, which will be described later.
(正極集電体)
 正極層を構成する集電体は、電子伝導体である。また、正極集電体は、通常はフィルムシート状である。
 正極集電体の構成材料としては、アルミニウム(Al)、アルミニウム合金(Al合金)、ステンレス鋼、ニッケル、銅、白金、カーボン、及び、チタン(Ti)が挙げられ、アルミニウム、銅、白金、カーボン又はチタンが好ましく、アルミニウム又はチタンがより好ましい。
 なお、正極集電体としては、アルミニウム、銅、白金、カーボン、チタン又はステンレス鋼等の金属基材の表面にアルミニウム、カーボン、ニッケル、チタン、銅、白金又は銀のコート層(薄膜)を有するものが挙げられ、アルミニウム、銅、白金、カーボン又はチタンの金属基材の表面にアルミニウム、銅、白金、カーボン又はチタンのコート層を有するものが好ましく、アルミニウム、銅、白金、カーボン又はチタンの金属基材の表面にアルミニウム又はチタンのコート層を有するものがより好ましい。
、及び、銅(Cu)等の金属基材の表面にアルミニウム、銅、白金、カーボン又はチタンのコート層(薄膜)を有するものも挙げられる。
(Positive electrode current collector)
The current collector that constitutes the positive electrode layer is an electron conductor. Further, the positive electrode current collector is usually in the form of a film sheet.
Constituent materials of the positive electrode current collector include aluminum (Al), aluminum alloy (Al alloy), stainless steel, nickel, copper, platinum, carbon, and titanium (Ti), including aluminum, copper, platinum, and carbon. Or titanium is preferable, and aluminum or titanium is more preferable.
In addition, the positive electrode current collector has a coating layer (thin film) of aluminum, carbon, nickel, titanium, copper, platinum, or silver on the surface of a metal base material such as aluminum, copper, platinum, carbon, titanium, or stainless steel. Those having a coating layer of aluminum, copper, platinum, carbon or titanium on the surface of a metal base material of aluminum, copper, platinum, carbon or titanium are preferred, and metals of aluminum, copper, platinum, carbon or titanium are preferably used. It is more preferable to have an aluminum or titanium coating layer on the surface of the base material.
and those having a coating layer (thin film) of aluminum, copper, platinum, carbon, or titanium on the surface of a metal base material such as copper (Cu).
 これらのなかでも、充放電サイクル特性をより向上させる観点からは、正極集電体は、Al、Ti、又は、AlもしくはTiでコートされた金属であることが好ましく、Al、Ti、又は、AlもしくはTiでコートされたCuであることがより好ましい。
 Alは、もともと強固な酸化被膜を表面に有することに加え、電極層中にフッ素含有リチウム塩が含有される場合にはこのフッ素と酸化被膜の表面とが反応して耐食性の非常に高いフッ化Alが形成される。フッ化Alの形成後は、Alとリチウム塩の反応がそれ以上進行せず、リチウム塩が消費されないため、充放電サイクル特性が向上されると推定される。
 また、Tiは反応性が低いため、電極層中の物質(例えば、活物質、導電助剤、固体電解質(I)を含有する場合には固体電解質(I)を構成するリチウム含有酸化物、リチウム塩、水)と反応しにくく、充放電サイクル特性が向上されると推定される。
Among these, from the viewpoint of further improving charge-discharge cycle characteristics, the positive electrode current collector is preferably Al, Ti, or a metal coated with Al or Ti; Alternatively, Cu coated with Ti is more preferable.
In addition to originally having a strong oxide film on the surface, when a fluorine-containing lithium salt is contained in the electrode layer, this fluorine reacts with the surface of the oxide film to form a highly corrosion-resistant fluoride film. Al is formed. After the formation of Al fluoride, the reaction between Al and the lithium salt does not proceed any further and the lithium salt is not consumed, so it is presumed that the charge/discharge cycle characteristics are improved.
In addition, since Ti has low reactivity, when it contains materials in the electrode layer (for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
 本発明の二次電池を構成する正極活物質層の厚さは特に制限されず、例えば、5~500μmとすることができ、20~200μmが好ましい。
 また、本発明の二次電池を構成する正極集電体の厚さは特に制限されず、例えば、10~100μmとすることができ、10~50μmが好ましい。
The thickness of the positive electrode active material layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 5 to 500 μm, preferably 20 to 200 μm.
Further, the thickness of the positive electrode current collector constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 10 to 100 μm, preferably 10 to 50 μm.
<負極層>
 負極層は、負極集電体と負極活物質層とから構成されるのが一般的であるが、負極活物質層から構成され、負極集電体を含まない構成であってもよい。換言すれば、負極活物質層が負極集電体としても機能する場合には、負極集電体と負極活物質層の2層で構成されている必要はなく、単層構成であってもよい。
 また、負極活物質層は、通常は、負極活物質とともに固体電解質(好ましくは無機固体電解質)を含有するが、固体電解質を含有していなくてもよい。
<Negative electrode layer>
Although the negative electrode layer is generally composed of a negative electrode current collector and a negative electrode active material layer, it may be composed of a negative electrode active material layer and not include a negative electrode current collector. In other words, if the negative electrode active material layer also functions as a negative electrode current collector, it does not need to be composed of two layers, the negative electrode current collector and the negative electrode active material layer, and may be a single layer structure. .
Further, the negative electrode active material layer usually contains a solid electrolyte (preferably an inorganic solid electrolyte) together with the negative electrode active material, but it may not contain a solid electrolyte.
 負極活物質層が固体電解質を含有する場合、この固体電解質の種類は特に制限されない。柔軟性と安全性の両立の観点からは酸化物系固体電解質を用いることができる。
 柔軟性と安全性の両立をより高いレベルで実現する観点から、上述した固体電解質(I)を用いることが好ましい。こうすることで、固体電解質(I)が負極層に含まれる固体粒子のバインダーのようにも作用して、負極層に、より柔軟性を持たせることができる。
 負極活物質層は、固体電解質を1種又は2種以上含有していてもよい。
 固体電解質の、負極活物質層中の含有量は、特に制限されず、負極活物質との合計含有量として、50~99.9質量%が好ましく、70~99.5質量%がより好ましく、90~99質量%が更に好ましい。
When the negative electrode active material layer contains a solid electrolyte, the type of the solid electrolyte is not particularly limited. From the viewpoint of both flexibility and safety, an oxide-based solid electrolyte can be used.
From the viewpoint of achieving both flexibility and safety at a higher level, it is preferable to use the solid electrolyte (I) described above. By doing so, the solid electrolyte (I) also acts like a binder for the solid particles contained in the negative electrode layer, and the negative electrode layer can be made more flexible.
The negative electrode active material layer may contain one or more solid electrolytes.
The content of the solid electrolyte in the negative electrode active material layer is not particularly limited, and the total content with the negative electrode active material is preferably 50 to 99.9% by mass, more preferably 70 to 99.5% by mass, More preferably 90 to 99% by mass.
 負極層に用いる負極活物質それ自体は、正極活物質との間で、Li基準での放電電位の差が1.3V以上を満たす限り特に制限されず、通常のリチウムイオン二次電池に使用可能な負極活物質を広く用いることができる。負極活物質の好適な形態を以下に説明する。 The negative electrode active material itself used in the negative electrode layer is not particularly limited as long as the difference in discharge potential on Li basis satisfies 1.3 V or more between it and the positive electrode active material, and it can be used in ordinary lithium ion secondary batteries. A wide variety of negative electrode active materials can be used. A preferred form of the negative electrode active material will be explained below.
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。負極活物質は、正極活物質との間でのLi基準での放電電位の差が1.3V以上を満たす限り特に制限されず、例えば、炭素質材料、金属元素又は半金属元素の酸化物、リチウム単体(金属Liとも称す。)、リチウム合金、及び、リチウムと合金形成可能な負極活物質が挙げられる。
(Negative electrode active material)
The negative electrode active material is preferably one that can reversibly insert and release lithium ions. The negative electrode active material is not particularly limited as long as the difference in discharge potential based on Li with the positive electrode active material satisfies 1.3 V or more, and examples thereof include carbonaceous materials, oxides of metal elements or semimetal elements, Examples include simple lithium (also referred to as metal Li), lithium alloys, and negative electrode active materials that can form alloys with lithium.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)などのカーボンブラック、黒鉛(天然黒鉛、及び、気相成長黒鉛などの人造黒鉛)、及び、PAN(ポリアクリロニトリル)系の樹脂又はフルフリルアルコール樹脂などの各種の合成樹脂を焼成した炭素質材料が挙げられる。
 さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維などの各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、並びに、平板状の黒鉛も挙げられる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料とに分けることもできる。
 また、炭素質材料は、特開昭62-022066号公報、特開平2-006856号公報、及び、特開平3-045473号公報に記載される面間隔、密度、又は、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-090844号公報に記載の天然黒鉛と人造黒鉛の混合物、及び、特開平6-004516号公報に記載の被覆層を有する黒鉛を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく、黒鉛がより好ましい。
The carbonaceous material used as the negative electrode active material is a material consisting essentially of carbon. For example, petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite and artificial graphite such as vapor-grown graphite), and various types such as PAN (polyacrylonitrile) resin or furfuryl alcohol resin. Examples include carbonaceous materials made by firing synthetic resins.
Furthermore, various carbon fibers such as PAN carbon fiber, cellulose carbon fiber, pitch carbon fiber, vapor grown carbon fiber, dehydrated PVA (polyvinyl alcohol) carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Also mentioned are graphite, mesophase microspheres, graphite whiskers, and tabular graphite.
These carbonaceous materials can also be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization.
In addition, carbonaceous materials have the lattice spacing, density, or crystallite size described in JP-A-62-022066, JP-A-2-006856, and JP-A-3-045473. It is preferable to have. The carbonaceous material does not need to be a single material, and may include a mixture of natural graphite and artificial graphite described in JP-A-5-090844, and graphite with a coating layer as described in JP-A-6-004516. You can also use
As the carbonaceous material, hard carbon or graphite is preferable, and graphite is more preferable.
 負極活物質として適用される金属元素又は半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、Fe等の金属元素の酸化物(金属酸化物)、金属元素の複合酸化物、金属元素と半金属元素との複合酸化物、及び、半金属元素の酸化物(半金属酸化物)が挙げられる。なお、金属元素の複合酸化物、及び、金属元素と半金属元素との複合酸化物をまとめて、金属複合酸化物ともいう。
 これらの酸化物としては、非晶質酸化物が好ましく、金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましい。
 本発明において、半金属元素とは、金属元素と非金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、さらにはセレン、ポロニウム及びアスタチンの3元素を含む。
 また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40~70°に見られる結晶性の回折線のうち最も強い強度が、2θ値で20~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことがさらに好ましい。
The oxide of a metal element or metalloid element to be applied as a negative electrode active material is not particularly limited as long as it is an oxide that can occlude and release lithium, and oxides of metal elements (metal oxides, etc.) such as Fe 3 O 4 can be used. oxides of metal elements), composite oxides of metal elements, composite oxides of metal elements and metalloid elements, and oxides of metalloid elements (metalloid oxides). Note that composite oxides of metal elements and composite oxides of metal elements and metalloid elements are collectively referred to as metal composite oxides.
As these oxides, amorphous oxides are preferable, and chalcogenides, which are reaction products of metal elements and elements of group 16 of the periodic table, are also preferable.
In the present invention, a metalloid element refers to an element that exhibits intermediate properties between metallic elements and nonmetallic elements, and usually includes six elements: boron, silicon, germanium, arsenic, antimony, and tellurium, and further includes selenium, Contains three elements: polonium and astatine.
In addition, amorphous means a substance that has a broad scattering band with an apex in the 2θ value range of 20 to 40 degrees when measured by X-ray diffraction using CuKα rays, and has a crystalline diffraction line. You may. The strongest intensity among the crystalline diffraction lines seen between 40 and 70 degrees in 2θ values is less than 100 times the diffraction line intensity at the top of the broad scattering band seen at 20 to 40 degrees in 2θ values. It is preferably 5 times or less, more preferably 5 times or less, and even more preferably not having any crystalline diffraction lines.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又は、カルコゲナイドがさらに好ましい。
 非晶質酸化物及びカルコゲナイドとしては、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましい。
 Sn、Si、又は、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、又は、リチウムと合金化可能な負極活物質が好ましい。
Among the compound group consisting of the above-mentioned amorphous oxides and chalcogenides, amorphous oxides of metalloid elements or the above-mentioned chalcogenides are more preferable, and elements of groups 13 (IIIB) to 15 (VB) of the periodic table (e.g. , Al, Ga, Si, Sn, Ge, Pb, Sb, and Bi) or a (composite) oxide or chalcogenide consisting of one type selected from the group consisting of one type alone or a combination of two or more types thereof is more preferable.
Amorphous oxides and chalcogenides include Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 are preferred.
Examples of negative electrode active materials that can be used in conjunction with amorphous oxide negative electrode active materials mainly containing Sn, Si, or Ge include carbonaceous materials that can absorb and/or release lithium ions or lithium metal, and lithium alone. , a lithium alloy, or a negative electrode active material that can be alloyed with lithium.
 金属元素又は半金属元素の酸化物(とりわけ金属(複合)酸化物)及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含むことが、高電流密度充放電特性の点で好ましい。
 リチウムを含む金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと、上記金属酸化物、上記金属複合酸化物又は上記カルコゲナイドとの複合酸化物が挙げられる。より具体的には、LiSnOが挙げられる。
 負極活物質(例えば、金属酸化物)は、チタン元素を含むこと(チタン酸化物)も好ましい。具体的には、LiTi12(チタン酸リチウム[LTO])は、リチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制され全固体リチウムイオン二次電池の寿命向上が可能となる点で好ましい。
The oxide of a metal element or metalloid element (particularly a metal (composite) oxide) and the chalcogenide preferably contain at least one of titanium and lithium as a constituent from the viewpoint of high current density charge/discharge characteristics.
Examples of metal composite oxides containing lithium (lithium composite metal oxides) include composite oxides of lithium oxide and the aforementioned metal oxides, the aforementioned metal composite oxides, or the aforementioned chalcogenides. More specifically, Li 2 SnO 2 is mentioned.
It is also preferable that the negative electrode active material (eg, metal oxide) contains a titanium element (titanium oxide). Specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) has excellent rapid charging and discharging characteristics due to small volume fluctuations when lithium ions are intercalated and released, suppresses electrode deterioration, and is an all-solid lithium oxide. This is preferable in that it is possible to improve the life of the ion secondary battery.
 負極活物質としてのリチウム合金としては、全固体リチウムイオン二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。 The lithium alloy as a negative electrode active material is not particularly limited as long as it is an alloy commonly used as a negative electrode active material of all-solid-state lithium ion secondary batteries, and examples thereof include lithium aluminum alloys.
 リチウムと合金形成可能な負極活物質は、全固体リチウムイオン二次電池の負極活物質として通常用いられるものであれば特に制限されない。上記負極活物質として、ケイ素元素又はスズ元素を含む負極活物質(合金)、並びに、Al及びInなどの各金属が挙げられ、より高い電池容量を可能とするケイ素元素を含む負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50mol%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含む負極(例えば、ケイ素元素含有活物質を含むSi負極、スズ元素を含む活物質を含むSn負極)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
The negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is commonly used as a negative electrode active material of all-solid-state lithium ion secondary batteries. Examples of the negative electrode active material include negative electrode active materials (alloys) containing silicon element or tin element, and various metals such as Al and In. (element-containing active material) is preferable, and a silicon element-containing active material in which the content of silicon element is 50 mol % or more of all constituent elements is more preferable.
In general, negative electrodes containing these negative electrode active materials (e.g., Si negative electrodes containing silicon element-containing active materials, Sn negative electrodes containing tin element-containing active materials) are more expensive than carbon negative electrodes (such as graphite and acetylene black). , more Li ions can be stored. That is, the amount of Li ions stored per unit mass increases. Therefore, battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)などのケイ素材料、さらには、チタン、バナジウム、クロム、マンガン、ニッケル、銅、若しくは、ランタンを含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、及び、Ni-Si)、又は、組織化した活物質(例えば、LaSi/Si)が挙げられる。他にも、SnSiO、及び、SnSiSなどのケイ素元素及びスズ元素を含む活物質が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体リチウムイオン二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、及び、上記ケイ素元素及びスズ元素を含む活物質が挙げられる。
Examples of silicon element-containing active materials include silicon materials such as Si and SiOx (0<x≦1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, or lanthanum (e.g. , LaSi 2 , VSi 2 , La-Si, Gd-Si, and Ni-Si), or structured active materials (eg, LaSi 2 /Si). Other examples include active materials containing silicon and tin elements, such as SnSiO 3 and SnSiS 3 . Note that SiOx itself can be used as a negative electrode active material (semi-metal oxide), and since SiOx generates Si when an all-solid-state lithium ion secondary battery is operated, it is a negative electrode active material that can be alloyed with lithium. (precursor substance thereof).
Examples of the negative electrode active material containing the tin element include Sn, SnO, SnO 2 , SnS, SnS 2 , and active materials containing the silicon element and tin element described above.
 電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましく、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含む合金)がより好ましく、ケイ素(Si)又はケイ素含有合金がさらに好ましい。 In terms of battery capacity, the negative electrode active material is preferably a negative electrode active material that can be alloyed with lithium, more preferably the silicon material or silicon-containing alloy (alloy containing silicon element), and silicon (Si) or a silicon-containing alloy. More preferred.
 負極活物質として、チタンニオブ複合酸化物を用いることも好ましい。チタンニオブ複合酸化物は理論体積容量密度が高く、長寿命、急速充電も可能となることが期待されている。チタンニオブ複合酸化物として、例えば、TiNb([TNO])が挙げられる。 It is also preferable to use titanium niobium composite oxide as the negative electrode active material. Titanium niobium composite oxide has a high theoretical volume capacity density, and is expected to have a long life and be capable of rapid charging. An example of the titanium niobium composite oxide is TiNb 2 O 7 ([TNO]).
 負極活物質の形状は特に制限されないが、粒子状が好ましい。負極活物質の体積平均粒子径は特に制限されないが、0.1~60μmが好ましく、0.5~20μmがより好ましく、1.0~15μmがさらに好ましい。
 体積平均粒子径の測定は、以下の手順で行う。
 負極活物質を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件などは必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
Although the shape of the negative electrode active material is not particularly limited, a particulate shape is preferable. The volume average particle diameter of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 μm, more preferably 0.5 to 20 μm, and even more preferably 1.0 to 15 μm.
The volume average particle diameter is measured by the following procedure.
A 1% by mass dispersion of the negative electrode active material is prepared by diluting it with water (heptane in the case of a substance unstable in water) in a 20 mL sample bottle. The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes, and immediately thereafter used for the test. Using this dispersion sample, data is acquired 50 times using a quartz cell for measurement at a temperature of 25° C. using a laser diffraction/scattering particle size distribution measuring device to obtain the volume average particle diameter. For other detailed conditions, refer to the description of JIS Z 8828:2013 "Particle size analysis - dynamic light scattering method" if necessary. Five samples are prepared for each level and the average value is used.
 負極活物質は、1種単独で使用してもよいし、2種以上を併用してもよい。
 負極活物質の、負極活物質層中における含有量は、特に制限されず、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがさらに好ましく、35~75質量%であることが特に好ましい。
One type of negative electrode active material may be used alone, or two or more types may be used in combination.
The content of the negative electrode active material in the negative electrode active material layer is not particularly limited, and is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and even more preferably 30 to 80% by mass. It is preferably 35 to 75% by weight, particularly preferably 35 to 75% by weight.
 負極活物質の表面は、別の金属酸化物等の酸化物、又は、炭素系材料等で表面被覆されていてもよい。これらの表面被覆層は、界面抵抗安定化層として機能することができる。
 表面被覆剤としては、Ti、Nb、Ta、W、Zr、Al、Si又はLiを含む金属酸化物が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、及び、ニオブ酸リチウム系化合物が挙げられ、例えば、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B及びLiAlFが挙げられる。また、C、SiC、SiOC(炭素添加シリコン酸化物)等の炭素系材料も表面被覆材として用いることができる。
 また、負極活物質の表面は硫黄又はリンで表面処理されていてもよい。
 さらに、負極活物質の表面は、上記表面被覆の前後において活性光線又は活性気体(例えば、プラズマ)により表面処理を施されていてもよい。
 負極活物質の表面被覆材(コーティング材とも称す。)により、負極活物質と水の接触を抑制することができ、また、負極活物質と固体電解質との界面におけるLiの欠乏を抑制することができ、全固体リチウムイオン二次電池の充放電サイクル特性をより向上させることができると考えられる。この観点から、負極活物質のコーティング材は、カーボンが好ましい。
The surface of the negative electrode active material may be coated with another oxide such as a metal oxide, a carbon-based material, or the like. These surface coating layers can function as interfacial resistance stabilizing layers.
Surface coating agents include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include spinel titanate, tantalum oxides, niobium oxides, and lithium niobate compounds, such as Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3 , LiNbO 3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li2TiO3 , Li2B4O7 , Li3PO4 , Li2MoO4 , Li3BO3 , LiBO2 , Li2CO3 , Examples include Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and Li 3 AlF 6 . Further, carbon-based materials such as C, SiC, and SiOC (carbon-added silicon oxide) can also be used as the surface coating material.
Further, the surface of the negative electrode active material may be surface-treated with sulfur or phosphorus.
Furthermore, the surface of the negative electrode active material may be subjected to surface treatment using active light or active gas (for example, plasma) before and after the surface coating.
The surface coating material (also referred to as coating material) for the negative electrode active material can suppress contact between the negative electrode active material and water, and can also suppress Li deficiency at the interface between the negative electrode active material and the solid electrolyte. It is considered that the charge/discharge cycle characteristics of the all-solid-state lithium ion secondary battery can be further improved. From this point of view, the coating material for the negative electrode active material is preferably carbon.
 これらの中でも、負極活物質としては、Li基準での放電電位が2.5V以下であることが好ましく、1.7V以下であることがより好ましく、1.55V以下であることがさらに好ましく、1.0V以下であることが特に好ましい。
 なお、負極活物質が上述のコート層を有し、このコート層が可逆的にリチウムイオンを挿入及び放出可能な材料により構成されている場合には、負極活物質のLi基準での放電電位は、より電位の高い材料のLi基準での放電電位を意味する。
 前述の通り、本発明の二次電池は、特定組成の固体電解質(I)に含まれる「自由水」と「束縛水」の二種類の水のうち、「束縛水」がリチウム含有酸化物及び/又はリチウム塩と相互作用し、固体電解質(I)の電位窓は水の電位窓よりも広くなる。このため、従来の液系リチウムイオン二次電池のうち水溶液を電解液とする形態において水の還元分解が生じてしまう2.5V(Li基準、pH=7)以下でも固体電解質(I)は分解せず、Li基準での放電電位が2.5V以下である負極活物質を使用することができる。
 Li基準での放電電位が2.5V以下である負極活物質としては、例えば、LiTi12(LTO、1.55V)、TiNb(TNO、1.55V)、Fe(1.0V)、黒鉛〔例えば、人造黒鉛(0~0.25V)、天然黒鉛(0~0.25V)〕、ハードカーボン(0~0.8V)、Si(0~0.8V)、SiO(0~0.8V)、Sn(0~0.8V)、Al(0~0.8V)及び金属Li(0V)が挙げられ、これらのうちの少なくとも1種であることが好ましい。なお、各負極活物質の後ろに括弧書きで記載する値は、Li基準での放電電位である。
 なお、これらに上述の酸化物もしくは炭素系材料などの界面抵抗安定化層をコートしたものも好ましい。
Among these, the negative electrode active material preferably has a discharge potential of 2.5 V or less based on Li, more preferably 1.7 V or less, even more preferably 1.55 V or less, and 1. It is particularly preferable that the voltage is .0V or less.
Note that when the negative electrode active material has the above-mentioned coat layer and this coat layer is made of a material that can reversibly insert and release lithium ions, the discharge potential of the negative electrode active material based on Li is , means the discharge potential of a material with a higher potential based on Li.
As mentioned above, in the secondary battery of the present invention, of the two types of water, "free water" and "bound water" contained in the solid electrolyte (I) having a specific composition, "bound water" is composed of lithium-containing oxide and / or interacts with the lithium salt, and the potential window of the solid electrolyte (I) becomes wider than that of water. For this reason, the solid electrolyte (I) decomposes even below 2.5 V (Li standard, pH = 7), where water reductive decomposition occurs in conventional liquid-based lithium ion secondary batteries that use an aqueous solution as the electrolyte. Instead, a negative electrode active material having a discharge potential of 2.5 V or less based on Li can be used.
Examples of negative electrode active materials whose discharge potential is 2.5 V or less based on Li include Li 4 Ti 5 O 12 (LTO, 1.55 V), TiNb 2 O 7 (TNO, 1.55 V), and Fe 3 O. 4 (1.0V), graphite [for example, artificial graphite (0-0.25V), natural graphite (0-0.25V)], hard carbon (0-0.8V), Si (0-0.8V) , SiO (0 to 0.8V), Sn (0 to 0.8V), Al (0 to 0.8V), and metal Li (0V), and at least one of these is preferred. Note that the value written in parentheses after each negative electrode active material is the discharge potential based on Li.
In addition, it is also preferable to coat these with an interfacial resistance stabilizing layer such as the above-mentioned oxide or carbon-based material.
(負極集電体)
 負極層を構成する集電体は、電子伝導体である。また、負極集電体は、通常はフィルムシート状である。
 負極集電体の構成材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、亜鉛、及び、チタン(Ti)が挙げられ、アルミニウム、銅、亜鉛又はチタン好ましく、アルミニウム又はチタンがより好ましい。
 なお、負極集電体としては、アルミニウム、銅、銅合金、亜鉛、チタン又はステンレス鋼等の金属基材の表面にカーボン、ニッケル、アルミニウム、銅、亜鉛、チタン又は銀のコート層(薄膜)を有するものが挙げられ、アルミニウム、銅、亜鉛又はチタンの金属基材の表面にアルミニウム、銅、亜鉛又はチタンのコート層を有するものが好ましく、アルミニウム、銅、亜鉛又はチタンの金属基材の表面にアルミニウム又はチタンのコート層を有するものがより好ましい。
(Negative electrode current collector)
The current collector that constitutes the negative electrode layer is an electron conductor. Further, the negative electrode current collector is usually in the form of a film sheet.
Examples of the constituent material of the negative electrode current collector include aluminum, copper, copper alloy, stainless steel, nickel, zinc, and titanium (Ti), with aluminum, copper, zinc, or titanium being preferred, and aluminum or titanium being more preferred.
In addition, as a negative electrode current collector, a coating layer (thin film) of carbon, nickel, aluminum, copper, zinc, titanium, or silver is applied to the surface of a metal base material such as aluminum, copper, copper alloy, zinc, titanium, or stainless steel. It is preferable to have a coating layer of aluminum, copper, zinc or titanium on the surface of the metal base material of aluminum, copper, zinc or titanium. It is more preferable to use an aluminum or titanium coating layer.
 これらのなかでも、充放電サイクル特性をより向上させる観点からは、負極集電体は、Al、Ti、又は、AlもしくはTiでコートされた金属であることが好ましく、Al、Ti、又は、AlもしくはTiでコートされたCuであることがより好ましい。
 Alは、もともと強固な酸化被膜を表面に有することに加え、電極層中にフッ素含有リチウム塩が含有される場合にはこのフッ素と酸化被膜の表面とが反応して耐食性の非常に高いフッ化Alが形成される。フッ化Alの形成後は、Alとリチウム塩の反応がそれ以上進行せず、リチウム塩が消費されないため、充放電サイクル特性が向上されると推定される。
 また、Tiは反応性が低いため、電極層中の物質(例えば、活物質、導電助剤、固体電解質(I)を含有する場合には固体電解質(I)を構成するリチウム含有酸化物、リチウム塩、水)と反応しにくく、充放電サイクル特性が向上されると推定される。
Among these, from the viewpoint of further improving charge-discharge cycle characteristics, the negative electrode current collector is preferably Al, Ti, or a metal coated with Al or Ti; Alternatively, Cu coated with Ti is more preferable.
In addition to originally having a strong oxide film on its surface, when a fluorine-containing lithium salt is contained in the electrode layer, this fluorine reacts with the surface of the oxide film to form a highly corrosion-resistant fluoride film. Al is formed. After the formation of Al fluoride, the reaction between Al and the lithium salt does not proceed any further and the lithium salt is not consumed, so it is presumed that the charge/discharge cycle characteristics are improved.
In addition, since Ti has low reactivity, when it contains materials in the electrode layer (for example, active material, conductive agent, solid electrolyte (I), lithium-containing oxide, lithium It is presumed that this material is less likely to react with salt (salt, water) and improves charge/discharge cycle characteristics.
 本発明の二次電池を構成する負極活物質層の厚さは特に制限されず、例えば、5~500μmとすることができ、20~200μmが好ましい。
 また、本発明の二次電池を構成する負極集電体の厚さは特に制限されず、例えば、10~100μmとすることができ、10~50μmが好ましい。
The thickness of the negative electrode active material layer constituting the secondary battery of the present invention is not particularly limited, and can be, for example, 5 to 500 μm, preferably 20 to 200 μm.
Further, the thickness of the negative electrode current collector constituting the secondary battery of the present invention is not particularly limited, and may be, for example, 10 to 100 μm, preferably 10 to 50 μm.
(本発明の二次電池における活物質)
 本発明の二次電池においては、正極層に含まれる正極活物質と負極層に含まれる負極活物質とのLi基準での放電電位の差、すなわち、正極層に含まれる正極活物質のLi基準での放電電位から負極層に含まれる負極活物質のLi基準での放電電位を引いた値が1.3V以上であり、これを満たすようにして正極活物質と負極活物質を組み合わせて用いる。
 本発明において、正極活物質及び負極活物質の放電電位とは、負極活物質又は正極活物質へのリチウムのインターカレーション反応(リチウムイオンが負極活物質又は正極活物質に挿入される現象)が起こる電気的なポテンシャルエネルギーを意味し、Li基準とは、リチウムの酸化還元反応が起こるポテンシャルを基準、すなわち0Vとすることを意味する。
 本発明において、正極活物質及び負極活物質のLi基準での放電電位は、例えば、Li金属を参照極とし、測定電位の範囲内で電気化学的に安定な電解質層を挟み、正極活物質層または負極活物質層を作用極としたサイクリックボルタンメトリー(ポテンショスタットにてスイープ電圧0.5mV/s)により測定することができる。
 なお、正極活物質が2種類以上含まれる場合及び/又は負極活物質が2種類以上含まれる場合には、最も低い放電電位を示す正極活物質と最も高い放電電位を示す負極活物質とのLi基準での放電電位の差が1.3V以上であることを意味する。
 本発明においては、正極活物質と負極活物質とのLi基準での放電電位の差が1.3V以上を満たすように、正極活物質が、LiCoO(LCO、3.9V)、LiNiO(LNO、3.5V)、LiNi0.85Co0.10Al0.05(NCA、3.6V)、LiNi1/3Mn1/3Co1/3(NMC、3.9V)、LiMnO-LiNiMnCoO(3.9V)、LiMn(LMO、3.8V)、LiNi0.5Mn1.5(LNMO、4.7V)、LiFePO(LFP、3.2~3.4V)、LiMnPO(LMP、4.1V)、LiCoPO(LCP、4.8V)、LiCoP(5V)及びLiNiPO(LNP、5.1V)のうちの少なくとも1種を含み、負極活物質が、LiTi12(LTO、1.55V)、TiNb(TNO、1.55V)、Fe(1.0V)、黒鉛〔例えば、人造黒鉛(0~0.25V)、天然黒鉛(0~0.25V)〕、ハードカーボン(0~0.8V)、Si(0~0.8V)、SiO(0~0.8V)、Sn(0~0.8V)、Al(0~0.8V)及び金属Li(0V)のうちの少なくとも1種を含む組み合わせとすることが好ましい。なお、各活物質の後ろに括弧書きで記載する値は、Li基準での放電電位である。
(Active material in the secondary battery of the present invention)
In the secondary battery of the present invention, the difference in discharge potential based on Li between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer, that is, the Li standard of the positive electrode active material contained in the positive electrode layer The value obtained by subtracting the Li-based discharge potential of the negative electrode active material contained in the negative electrode layer from the discharge potential at is 1.3 V or more, and the positive electrode active material and the negative electrode active material are used in combination so as to satisfy this value.
In the present invention, the discharge potential of the positive electrode active material and the negative electrode active material refers to the intercalation reaction of lithium into the negative electrode active material or the positive electrode active material (a phenomenon in which lithium ions are inserted into the negative electrode active material or the positive electrode active material). The Li standard means the electric potential energy that occurs, and the Li standard means that the potential at which the oxidation-reduction reaction of lithium occurs is set as the standard, that is, 0V.
In the present invention, the discharge potential of the positive electrode active material and the negative electrode active material based on Li is determined, for example, by using Li metal as a reference electrode, sandwiching an electrochemically stable electrolyte layer within the range of the measured potential, and measuring the positive electrode active material layer. Alternatively, it can be measured by cyclic voltammetry (sweep voltage 0.5 mV/s with a potentiostat) using the negative electrode active material layer as a working electrode.
In addition, when two or more types of positive electrode active materials are included and/or when two or more types of negative electrode active materials are included, the Li of the positive electrode active material showing the lowest discharge potential and the negative electrode active material showing the highest discharge potential is This means that the difference in discharge potential with reference is 1.3V or more.
In the present invention, the positive electrode active material is LiCoO 2 (LCO, 3.9V), LiNiO 2 ( LNO, 3.5V), LiNi 0.85 Co 0.10 Al 0.05 O 2 (NCA, 3.6V), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC, 3.9V) , Li 2 MnO 3 -LiNiMnCoO 2 (3.9 V), LiMn 2 O 4 (LMO, 3.8 V), LiNi 0.5 Mn 1.5 O 4 (LNMO, 4.7 V), LiFePO 4 (LFP, 3 .2-3.4V), LiMnPO 4 (LMP, 4.1V), LiCoPO 4 (LCP, 4.8V), Li 2 CoP 2 O 7 (5V) and LiNiPO 4 (LNP, 5.1V). The negative electrode active material contains at least one of Li 4 Ti 5 O 12 (LTO, 1.55V), TiNb 2 O 7 (TNO, 1.55V), Fe 3 O 4 (1.0V), graphite [e.g. , artificial graphite (0-0.25V), natural graphite (0-0.25V)], hard carbon (0-0.8V), Si (0-0.8V), SiO (0-0.8V), It is preferable to use a combination containing at least one of Sn (0 to 0.8V), Al (0 to 0.8V), and metal Li (0V). Note that the value written in parentheses after each active material is the discharge potential based on Li.
 正極層及び負極層は、それらの活物質層に、固体電解質以外かつ活物質以外の成分(他の成分)を含んでいてもよい。例えば、導電助剤を含むことができる。
 導電助剤としては、一般的な導電助剤として知られているものを用いることができる。導電助剤としては、例えば、電子伝導性材料である、天然黒鉛、及び、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、及び、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維、及び、カーボンナノチューブなどの繊維状炭素、並びに、グラフェン、及び、フラーレンなどの炭素質材料が挙げられる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、及び、ポリフェニレン誘導体などの導電性高分子を用いてもよい。
 上記導電助剤以外にも、金属粉又は金属繊維などの炭素原子を含有しない通常の導電助剤を用いてもよい。
 導電助剤とは、電池を充放電した際にLiの挿入と放出が起きず、活物質として機能しないものをいう。従って、導電助剤の中でも、電池を充放電した際に活物質層中において活物質として機能しうるものは、導電助剤ではなく活物質に分類する。電池を充放電した際に活物質として機能するか否かは、一義的ではなく、活物質との組み合わせにより決定される。
 導電助剤の、正極活物質層中における含有量は、特に制限されないが、例えば、0~10質量%が好ましく、1~5質量%がより好ましい。
 導電助剤の、負極活物質層中における含有量は、特に制限されないが、例えば、0~10質量%が好ましく、1~5質量%がより好ましい。
The positive electrode layer and the negative electrode layer may contain components other than the solid electrolyte and other than the active material (other components) in their active material layers. For example, a conductive additive may be included.
As the conductive aid, those known as general conductive aids can be used. Examples of conductive aids include electron conductive materials such as graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black, and furnace black, and amorphous materials such as needle coke. Examples include fibrous carbon such as carbon, vapor-grown carbon fiber, and carbon nanotubes, and carbonaceous materials such as graphene and fullerene. Further, conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may also be used.
In addition to the above conductive aids, ordinary conductive aids that do not contain carbon atoms, such as metal powder or metal fibers, may be used.
A conductive additive is one that does not insert or release Li when a battery is charged or discharged, and does not function as an active material. Therefore, among conductive aids, those that can function as active materials in the active material layer when the battery is charged and discharged are classified as active materials rather than conductive aids. Whether or not it functions as an active material when charging and discharging a battery is not unique, but is determined by the combination with the active material.
The content of the conductive additive in the positive electrode active material layer is not particularly limited, but is preferably 0 to 10% by mass, and more preferably 1 to 5% by mass.
The content of the conductive additive in the negative electrode active material layer is not particularly limited, but is preferably, for example, 0 to 10% by mass, more preferably 1 to 5% by mass.
 他の成分としては、上述したバインダー及びリチウム塩も挙げられる。 Other components include the above-mentioned binder and lithium salt.
 本発明の二次電池においては、正極活物質層及び負極活物質層の少なくともいずれかの層に、イオン液体、界面活性剤等のその他の成分を含ませることも好ましい。
 正極活物質層及び/又は負極活物質層が固体電解質(I)を含有する場合には、イオン液体を含ませることにより、上述の固体電解質層に含ませた場合と同様に、本発明の二次電池の充放電サイクル特性をより向上させることが可能である。イオン液体については、上述の通りである。
 界面活性剤の添加により、本発明の二次電池の充放電サイクル特性をより向上させることが可能である。界面活性剤の添加により、正極活物質層及び/又は負極活物質層中における活物質、導電助剤、固体電解質の分散性、正極活物質層及び/又は負極活物質層が固体電解質(I)を含有する場合には、固体電解質(I)中のリチウム塩の分散性等を向上させることが可能である。界面活性剤については、上述の通りである。
In the secondary battery of the present invention, it is also preferable that at least one of the positive electrode active material layer and the negative electrode active material layer contains other components such as an ionic liquid and a surfactant.
When the positive electrode active material layer and/or the negative electrode active material layer contains the solid electrolyte (I), the second aspect of the present invention can be achieved by including the ionic liquid in the same manner as in the case where the solid electrolyte (I) is included in the solid electrolyte layer described above. It is possible to further improve the charge/discharge cycle characteristics of the next battery. The ionic liquid is as described above.
By adding a surfactant, it is possible to further improve the charge/discharge cycle characteristics of the secondary battery of the present invention. By adding a surfactant, the dispersibility of the active material, conductive agent, and solid electrolyte in the positive electrode active material layer and/or negative electrode active material layer, and the solid electrolyte (I) in the positive electrode active material layer and/or negative electrode active material layer When containing, it is possible to improve the dispersibility of the lithium salt in the solid electrolyte (I). The surfactant is as described above.
(固体電解質(I)保護剤)
 固体電解質(I)が自由水及び/又は弱い束縛水を含む場合、水の電気分解電圧よりも高い電池動作電圧により分解される可能性がある。この分解を防止、抑制する目的で、本発明の二次電池は、固体電解質(I)保護剤を含浸する形態であってもよい。なお、弱い束縛水とは、束縛水のうち、電位窓の狭いものを意味する。
 本発明の二次電池に固体電解質(I)保護剤を含侵する形態としては、固体電解質層、正極活物質層及び負極活物質層の少なくともいずれかに固体電解質(I)保護剤を含侵させる形態であればよく、少なくとも固体電解質層を含む1層以上に固体電解質(I)保護剤を含侵させる形態が好ましく、固体電解質(I)を含む層に固体電解質(I)保護剤を含侵させる形態がより好ましい。固体電解質(I)保護剤の含侵は、いずれの段階で行ってもよく、例えば、各層を形成する段階の含侵、固体電解質層、正極活物質層及び負極活物質層を含む積層体の状態での含侵が挙げられる。
 固体電解質(I)保護剤の例としては、有機化合物の中でも、エステル系化合物、リン酸エステル系化合物、亜リン酸エステル系化合物及びカーボネート系化合物が好ましく挙げられる。具体的には、イソデシルジフェニルフォスフェート、2-エチルヘキシルジフェニルフォスフェート、パルミチン酸イソプロピル等が好ましく挙げられる。
 また、上記固体電解質(I)保護剤は、安全性の観点で、引火点150℃以上であることが好ましい。
(Solid electrolyte (I) protective agent)
If the solid electrolyte (I) contains free water and/or weakly bound water, it may be decomposed by a battery operating voltage higher than the electrolysis voltage of water. In order to prevent and suppress this decomposition, the secondary battery of the present invention may be impregnated with a solid electrolyte (I) protective agent. Note that weakly bound water refers to bound water that has a narrow potential window.
In the form of impregnating the solid electrolyte (I) protective agent into the secondary battery of the present invention, at least one of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer is impregnated with the solid electrolyte (I) protective agent. Preferably, at least one layer including the solid electrolyte layer is impregnated with the solid electrolyte (I) protective agent. More preferred is a form in which it is invasive. Impregnation with the solid electrolyte (I) protective agent may be performed at any stage, for example, impregnation at the stage of forming each layer, or at the stage of forming the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer. impregnation in the state.
Examples of the solid electrolyte (I) protective agent include preferably ester compounds, phosphate ester compounds, phosphite ester compounds, and carbonate compounds among organic compounds. Specifically, preferred examples include isodecyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, and isopropyl palmitate.
Further, from the viewpoint of safety, the solid electrolyte (I) protective agent preferably has a flash point of 150° C. or higher.
<全固体リチウムイオン二次電池の製造>
 本発明の二次電池は、少なくとも固体電解質層に固体電解質(I)を用い、正極層に含まれる正極活物質と負極層に含まれる負極活物質とのLi基準での放電電位の差が1.3V以上となるような正極層及び負極層を用いること以外は、通常の全固体二次電池の製造方法を参照して製造することができる。すなわち、本発明の二次電池の製造方法は、正極層と固体電解質層と負極層とをこの順に配してなる積層体を得る工程を含んで製造できる。ここで、用いる固体電解質(I)の水の量は本発明で規定する量を満たすものでもよく、満たさないものでもよい。全固体二次電池の製造方法においては、用いる固体電解質(I)の水の量に関わらず、固体電解質層等の構成層中に含有される固体電解質(I)の水の量を本発明で規定する量に設定するために、本発明の二次電池の製造では、必要に応じて、形成した固体電解質層を乾燥処理に付す工程を含むこともできる。この固体電解質層等の構成層の乾燥工程は、得られる二次電池における固体電解質層等の構成層中の固体電解質(I)を本発明で規定する水量に設定できれば、固体電解質層等の構成層を形成後、どのような段階で行ってもよい。より確実に本発明で規定する水量に設定するために、少なくとも、正極層と固体電解質層と負極層とをこの順に配した積層体を電池セル内に配した状態で、乾燥処理に付すことが好ましい。乾燥方法は特に制限されず、例えば、デシケーターを用いたり、真空乾燥に付したり、凍結真空乾燥に付したり、加熱処理に付したりして、固体電解質層の固体電解質(I)の水量を、本発明で規定する範囲内へと低減することができる。
 本発明の二次電池は、上記の正極層と固体電解質層と負極層とをこの順に配した積層体を密封してなるものであることが好ましい。密封することにより、上記乾燥工程後、固体電解質層への水分の混入をより確実に防ぐことが可能となり、サイクル特性をより向上させることができる。密封の方法は特に制限されず、水分(大気)の混入を遮断し、あるいは抑制できればよい。例えば、上記の正極層と固体電解質層と負極層とをこの順に配した積層体を格納する筐体(電池セル)の蓋を、Oリング等のガスケットを介して閉じることにより、積層体を封止する方法などが挙げられる。さらに、得られた積層体を加熱(例えば、80℃で2時間)することにより、セル抵抗を向上させることもできる。
<Manufacture of all-solid-state lithium ion secondary battery>
The secondary battery of the present invention uses a solid electrolyte (I) in at least the solid electrolyte layer, and the difference in discharge potential between the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer on a Li basis is 1. The battery can be manufactured by referring to a normal method for manufacturing an all-solid-state secondary battery, except for using a positive electrode layer and a negative electrode layer that have a voltage of .3V or more. That is, the method for manufacturing a secondary battery of the present invention can be manufactured including the step of obtaining a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order. Here, the amount of water in the solid electrolyte (I) used may or may not satisfy the amount specified in the present invention. In the method for manufacturing an all-solid-state secondary battery, regardless of the amount of water in the solid electrolyte (I) used, the amount of water in the solid electrolyte (I) contained in the constituent layers such as the solid electrolyte layer can be adjusted according to the present invention. In order to set the amount to a specified value, manufacturing the secondary battery of the present invention can also include a step of subjecting the formed solid electrolyte layer to a drying process, if necessary. This step of drying the constituent layers such as the solid electrolyte layer can be carried out if the solid electrolyte (I) in the constituent layers such as the solid electrolyte layer in the obtained secondary battery can be set to the amount of water specified in the present invention. It may be performed at any stage after forming the layer. In order to more reliably set the water amount to the amount specified in the present invention, it is possible to subject the laminate in which at least a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order to a drying treatment while being arranged in a battery cell. preferable. The drying method is not particularly limited, and for example, the amount of water in the solid electrolyte (I) in the solid electrolyte layer can be reduced by using a desiccator, vacuum drying, freeze vacuum drying, or heat treatment. can be reduced to within the range defined by the present invention.
The secondary battery of the present invention is preferably formed by sealing a laminate in which the above-described positive electrode layer, solid electrolyte layer, and negative electrode layer are arranged in this order. By sealing, it is possible to more reliably prevent moisture from entering the solid electrolyte layer after the drying step, and the cycle characteristics can be further improved. The sealing method is not particularly limited as long as it can block or suppress the ingress of moisture (atmosphere). For example, the laminate is sealed by closing the lid of the casing (battery cell) that houses the laminate in which the above-mentioned positive electrode layer, solid electrolyte layer, and negative electrode layer are arranged in this order through a gasket such as an O-ring. For example, how to stop it. Furthermore, cell resistance can also be improved by heating the obtained laminate (for example, at 80° C. for 2 hours).
 また、正極層と固体電解質層と負極層とをこの順に配した積層体の形成方法は特に制限されず、各層の形成方法としては、分散液の塗工による形成、粉末の圧粉成形等が挙げられる。
 本発明の二次電池の製造方法の一形態としては、固体電解質(I)の分散液を塗布して固体電解質層を形成することを含む、二次電池の製造方法が挙げられる。固体電解質(I)は水分散液(スラリー)を容易に調製することができるため、この方法を採用することができる。なお、固体電解質(I)の分散液は、固体電解質(I)以外に、固体電解質層に含有されていてもよいその他の成分を含んでいてもよい。
 正極活物質層及び負極活物質層についても、活物質の分散液を塗布して、正極活物質層及び負極活物質層をそれぞれ形成することができる。活物質以外の成分として、導電助剤、固体電解質等その他の成分を含む場合には、これらの成分も分散された分散液を用いる。
 固体電解質(I)の分散液、活物質の分散液における分散媒は、分散液に含まれる成分との反応性を考慮して適宜選択することができる。例えば、固体電解質(I)を含む場合には水分散液とすることが好ましく、硫化物系固体電解質を含む場合には、有機溶媒の分散系とすることが好ましい。
 全固体二次電池の製造方法として、例えば、正極集電体である金属箔上に、正極活物質を含む正極形成用組成物(正極スラリー)を塗布して正極活物質層を形成し、次に、この正極活物質層の上に、固体電解質を含む固体電解質層形成用分散液(固体電解質スラリー)を塗布して固体電解質層を形成し、さらに、固体電解質層の上に負極活物質を含む負極形成用組成物(負極スラリー)を塗布して負極活物質層を形成し、負極活物質層の上に負極集電体(金属箔)を重ねる方法が挙げられる。必要により全体を加圧処理に付して、図1に示すような全固体リチウムイオン二次電池を得ることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極活物質層の上に正極集電体(金属箔)を重ね、必要により全体を加圧処理に付して、全固体リチウムイオン二次電池を製造することもできる。
Furthermore, the method for forming a laminate in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order is not particularly limited, and methods for forming each layer include forming by coating a dispersion, compacting powder, etc. Can be mentioned.
One form of the method for manufacturing a secondary battery of the present invention includes a method for manufacturing a secondary battery that includes forming a solid electrolyte layer by applying a dispersion of solid electrolyte (I). This method can be adopted because an aqueous dispersion (slurry) of the solid electrolyte (I) can be easily prepared. Note that the dispersion liquid of solid electrolyte (I) may contain, in addition to solid electrolyte (I), other components that may be contained in the solid electrolyte layer.
Regarding the positive electrode active material layer and the negative electrode active material layer, the positive electrode active material layer and the negative electrode active material layer can be formed, respectively, by applying a dispersion of the active material. When other components other than the active material, such as a conductive aid and a solid electrolyte, are included, a dispersion liquid in which these components are also dispersed is used.
The dispersion medium in the solid electrolyte (I) dispersion liquid and the active material dispersion liquid can be appropriately selected in consideration of reactivity with the components contained in the dispersion liquid. For example, when solid electrolyte (I) is included, it is preferable to use an aqueous dispersion, and when a sulfide-based solid electrolyte is included, it is preferable to use an organic solvent dispersion.
As a manufacturing method for an all-solid-state secondary battery, for example, a positive electrode forming composition (positive electrode slurry) containing a positive electrode active material is applied onto a metal foil serving as a positive electrode current collector to form a positive electrode active material layer, and then a positive electrode active material layer is formed. Next, a solid electrolyte layer forming dispersion containing a solid electrolyte (solid electrolyte slurry) is applied onto the positive electrode active material layer to form a solid electrolyte layer, and a negative electrode active material is further applied onto the solid electrolyte layer. An example of a method is to form a negative electrode active material layer by applying a negative electrode forming composition (negative electrode slurry) containing the negative electrode active material layer, and to stack a negative electrode current collector (metal foil) on the negative electrode active material layer. If necessary, the whole can be subjected to pressure treatment to obtain an all-solid lithium ion secondary battery as shown in FIG. 1.
In addition, by reversing the formation method of each layer, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and a positive electrode current collector (metal foil) is formed on the positive electrode active material layer. An all-solid-state lithium ion secondary battery can also be manufactured by stacking the two and subjecting the whole to pressure treatment if necessary.
 別の方法としては、正極活物質層、固体電解質層、及び、負極活物質層をそれぞれ別々に作製して、それらを正極集電体と負極集電体の間に、正極集電体(金属箔)、正極活物質層、固体電解質層、負極活物質層、負極集電体(金属箔)を順になるように積層して、必要により加圧し、全固体リチウムイオン二次電池を製造することもできる。
 この場合、各層の形成において、必要により不織布等の支持体を配して、各層を自立膜とすることが可能である。なお、自立膜における支持体は、通常、各層を積層して全固体リチウムイオン二次電池を作製する際には、取り除いて使用することが好ましい。
Another method is to prepare a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer separately, and place them between a positive electrode current collector and a negative electrode current collector (a metal foil), a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector (metal foil) are laminated in this order and pressurized if necessary to produce an all-solid-state lithium ion secondary battery. You can also do it.
In this case, in forming each layer, a support such as a nonwoven fabric may be provided as necessary to make each layer a self-supporting film. Note that it is preferable that the support in the self-supporting membrane is usually removed when laminating each layer to produce an all-solid-state lithium ion secondary battery.
 本発明の二次電池の製造方法の別の形態としては、固体電解質(I)の粉末に圧力を印加して固体電解質層を形成することを含む、二次電池の製造方法が挙げられる。固体電解質(I)は圧力で容易に塑性変形可能であり、それ自体が柔らかく塑性変形し、バインダーのように作用して、固体粒子間ないし層間の結着性向上に寄与するため、この方法により、高温での焼結処理を経ずに(換言すると、非焼結に)、高いイオン伝導性を発現する固体電解質層を得ることができる。なお、固体電解質(I)の粉末以外の成分として、固体電解質層に含有されていてもよいその他の成分を含む場合、固体電解質(I)の粉末を含む混合物に圧力を印加することにより、固体電解質層を形成することもできる。
 正極活物質層及び負極活物質層についても、各層を構成する粉末を加圧成形することにより形成することができる。活物質以外の成分として、導電助剤、固体電解質等その他の成分を含む場合、特に固体電解質が固体電解質(I)及び/又は硫化物系固体電解質である場合には、粉末の混合物に圧力を印加することにより、高温での焼結処理を経ずに(換言すると、非焼結に)、高いイオン伝導性を発現する固体電解質層を得ることができる。
 具体的には、正極活物質層を構成する粉末(以下、正極合材の粉末と称す。)、固体電解質層を構成する粉末(以下、固体電解質の粉末と称す。)、及び、負極活物質層を構成する粉末(以下、負極合材の粉末と称す。)を用いて、各層を構成する粉末をそれぞれ加圧し、所定の形状とすることによって各層のペレットを形成し、正極又は負極の集電体と重ね、加圧することにより、全固体リチウムイオン二次電池を製造することもできる。
 例えば、固体電解質の粉末を所定の金型に充填し、加圧成形することにより固体電解質のペレットを形成し、得られた固体電解質のペレットの一方の面上に負極合材の粉末を充填して加圧成形することにより負極合材のペレットを形成し、得られた固体電解質のペレットのもう一方の面上に正極合材の粉末を充填して加圧成形することにより正極合材のペレットを形成し、正極合材のペレット、固体電解質のペレット及び負極合材のペレットがこの順に積層された圧粉成形体を得る。続いて、負極集電体(金属箔)の上に、得られた圧粉成形体の負極合材のペレットが下側になるようにして重ね、さらに、正極合材のペレットの上側に正極集電体(金属箔)を重ね、全体を加圧処理に付すことにより、図1に示すような全固体リチウムイオン二次電池を得ることができる。
 固体電解質の粉末の調製方法に特に制限はなく、例えば、固体電解質を含む固体電解質層形成用分散液(固体電解質スラリー)を凍結真空乾燥することにより調製することができる。
 負極合材の粉末の調製方法に特に制限はなく、例えば、予め調製しておいた固体電解質の粉末と、負極活物質を含む負極活物質層形成用の成分を混合することにより調製することができる。
 正極合材の粉末の調製方法に特に制限はなく、例えば、予め調製しておいた固体電解質の粉末と、正極活物質を含む正極活物質層形成用の成分を混合することにより調製することができる。
 負極合材のペレット、固体電解質のペレット及び正極合材のペレットを作製する際の加圧条件は特に制限はないが、例えば、50~300MPaの圧力を10秒かける程度の加圧により、ペレットを作製することができる。
 また、負極合材のペレットと負極集電体、正極合材のペレットと正極集電体との圧着についても、60MPa程度の加圧により行うことができる。
 なお、各層のペレットの形成順に特に制限はなく、例えば、負極合材のペレット、固体電解質のペレット及び正極合材のペレットの順にペレットの形成を行うこともできる。
 別の方法としては、負極合材のペレット、固体電解質のペレット及び正極合材のペレットをそれぞれ別々に作製して、得られたペレットを積層し、正極及び負極の集電体で積層したペレットを挟むようにして重ねて加圧することにより、全固体リチウムイオン二次電池を製造することもできる。
Another form of the method for manufacturing a secondary battery of the present invention includes a method for manufacturing a secondary battery that includes applying pressure to powder of solid electrolyte (I) to form a solid electrolyte layer. The solid electrolyte (I) can be easily plastically deformed by pressure, and it itself is soft and plastically deformed, acting like a binder and contributing to improving the cohesion between solid particles or layers. A solid electrolyte layer exhibiting high ionic conductivity can be obtained without undergoing a high-temperature sintering process (in other words, without sintering). In addition, when the solid electrolyte layer contains other components that may be contained in the solid electrolyte layer as components other than the powder of the solid electrolyte (I), by applying pressure to the mixture containing the powder of the solid electrolyte (I), the solid An electrolyte layer can also be formed.
The positive electrode active material layer and the negative electrode active material layer can also be formed by pressure molding the powders constituting each layer. When other components other than the active material include conductive aids, solid electrolytes, etc., especially when the solid electrolyte is solid electrolyte (I) and/or sulfide-based solid electrolyte, pressure is not applied to the powder mixture. By applying this, it is possible to obtain a solid electrolyte layer that exhibits high ionic conductivity without undergoing a high-temperature sintering process (in other words, without sintering).
Specifically, the powder constituting the positive electrode active material layer (hereinafter referred to as positive electrode composite powder), the powder constituting the solid electrolyte layer (hereinafter referred to as solid electrolyte powder), and the negative electrode active material. Using the powder constituting the layers (hereinafter referred to as negative electrode composite powder), the powder constituting each layer is pressurized and shaped into a predetermined shape to form pellets of each layer, and the pellets of the positive electrode or negative electrode are assembled. An all-solid-state lithium ion secondary battery can also be manufactured by stacking it with an electric body and applying pressure.
For example, solid electrolyte powder is filled into a predetermined mold, pressure molded to form solid electrolyte pellets, and negative electrode composite powder is filled on one side of the obtained solid electrolyte pellets. Pellets of negative electrode composite material are formed by pressure molding, and pellets of positive electrode composite material are formed by filling powder of positive electrode composite material on the other side of the obtained solid electrolyte pellets and press molding. A compact is obtained in which pellets of the positive electrode composite material, pellets of the solid electrolyte, and pellets of the negative electrode composite material are laminated in this order. Next, the negative electrode composite pellets of the obtained compacted powder are stacked on the negative electrode current collector (metal foil) with the pellets facing downward, and then the positive electrode collector is placed on top of the positive electrode composite pellets. An all-solid-state lithium ion secondary battery as shown in FIG. 1 can be obtained by stacking electric bodies (metal foils) and subjecting the whole body to pressure treatment.
There are no particular limitations on the method for preparing solid electrolyte powder, and for example, it can be prepared by freeze-vacuum drying a solid electrolyte layer-forming dispersion (solid electrolyte slurry) containing a solid electrolyte.
There is no particular restriction on the method for preparing the powder of the negative electrode composite material, and for example, it can be prepared by mixing a solid electrolyte powder prepared in advance and a component for forming a negative electrode active material layer including the negative electrode active material. can.
There is no particular restriction on the method for preparing the powder of the positive electrode composite material. For example, it can be prepared by mixing a solid electrolyte powder prepared in advance and a component for forming a positive electrode active material layer including the positive electrode active material. can.
There are no particular restrictions on the pressurizing conditions when producing pellets of negative electrode composite material, pellets of solid electrolyte material, and pellets of positive electrode composite material. It can be made.
Further, the pellets of the negative electrode composite material and the negative electrode current collector, and the pellets of the positive electrode composite material and the positive electrode current collector can also be crimped by applying a pressure of about 60 MPa.
Note that there is no particular restriction on the order in which the pellets of each layer are formed; for example, the pellets may be formed in the order of negative electrode composite material pellets, solid electrolyte pellets, and positive electrode composite material pellets.
Another method is to separately produce pellets of the negative electrode composite material, pellets of the solid electrolyte material, and pellets of the positive electrode composite material, stack the obtained pellets, and stack the stacked pellets with the current collectors of the positive electrode and negative electrode. An all-solid-state lithium ion secondary battery can also be manufactured by sandwiching and stacking them and applying pressure.
 また、隣接する正極層と負極層との間には固体電解質層が配されるようにして、正極層、固体電解質層及び負極層が複数積層されてなる小型積層電池の製造方法については、例えば、特開2016-001602号公報の段落[0033]~[0046]に記載の積層方法を参考にして製造することができる。なお、正極活物質層、固体電解質層、及び、負極活物質層の各層の作製方法については、上述の本発明の製造方法に基づき作製することができる。 In addition, a method for manufacturing a small stacked battery in which a plurality of positive electrode layers, solid electrolyte layers, and negative electrode layers are stacked, with a solid electrolyte layer disposed between adjacent positive electrode layers and negative electrode layers, is described, for example. It can be manufactured by referring to the lamination method described in paragraphs [0033] to [0046] of JP-A No. 2016-001602. Note that each layer of the positive electrode active material layer, solid electrolyte layer, and negative electrode active material layer can be manufactured based on the manufacturing method of the present invention described above.
 なお、本発明の二次電池は、本発明で規定する二次電池が得られる限り、その製法は上記で説明したものに何ら限定されるものではない。 Note that the manufacturing method of the secondary battery of the present invention is not limited to that described above as long as the secondary battery defined by the present invention can be obtained.
 本発明の二次電池の製造では、固体電解質として硫化物系固体電解質を用いずとも、圧力で容易に塑性変形可能な酸化物系の上記固体電解質(I)の作用によって、固体粒子間ないし層間の界面抵抗を抑えた層形成が可能である。
 固体電解質(I)それ自体が柔らかく塑性変形し、バインダーのように作用して、固体粒子間ないし層間の結着性向上に寄与するために、有機ポリマーのようなバインダーを用いずに層形成をすることも可能である。
In manufacturing the secondary battery of the present invention, without using a sulfide-based solid electrolyte as a solid electrolyte, the action of the oxide-based solid electrolyte (I), which can be easily plastically deformed under pressure, can be applied between solid particles or between layers. It is possible to form a layer with reduced interfacial resistance.
The solid electrolyte (I) itself is soft and plastically deformable, acts like a binder, and contributes to improving the binding between solid particles or layers, so layer formation is possible without using a binder such as an organic polymer. It is also possible to do so.
 本発明の二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化の方法は特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、二次電池の使用時の圧力条件の範囲になるまで圧力を開放することにより、行うことができる。 The secondary battery of the present invention is preferably initialized after manufacture or before use. The method of initialization is not particularly limited, and for example, initial charging and discharging may be carried out under a high press pressure, and then the pressure may be released until the pressure falls within the range of pressure conditions during use of the secondary battery. I can do it.
<全固体リチウムイオン二次電池の用途>
 本発明の二次電池は、種々の用途に適用することができる。適用態様には特に制限はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、及び、バックアップ電源が挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、及び、医療機器(ペースメーカー、補聴器、肩もみ機など)が挙げられる。さらに、各種軍需用、及び、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
<Applications of all-solid-state lithium ion secondary batteries>
The secondary battery of the present invention can be applied to various uses. There are no particular restrictions on how it can be applied, but for example, when installed in electronic devices, it can be used in notebook computers, pen input computers, mobile computers, e-book players, mobile phones, cordless phone handsets, pagers, handy terminals, mobile fax machines, mobile phones, etc. Examples include photocopiers, portable printers, headphone stereos, video movies, LCD televisions, handy cleaners, portable CDs, mini discs, electric shavers, walkie talkies, electronic organizers, calculators, memory cards, portable tape recorders, radios, and backup power supplies. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, and medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various military purposes and for space purposes. It can also be combined with solar cells.
 実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。本発明において室温とは27℃を意味する。また、下記の固体電解質の製造ないし二次電池の製造は雰囲気中に水分が存在する大気下で行った。 The present invention will be explained in more detail based on Examples, but the present invention is not to be construed as being limited thereto. In the present invention, room temperature means 27°C. Further, the production of the solid electrolyte and the production of the secondary battery described below were performed in an atmosphere where moisture was present in the atmosphere.
[参考例1:上記工程0、1A~3Aによる作製]
 ボールミル(フリッチュ社製、遊星型ボールミルP-7)を用いて、粉末状のLi結晶(LBO粉末)(レアメタリック社製)を、ポット:安定化ジルコニア(YSZ)(45mL)、粉砕用ボール:YSZ(平均粒子径:5mm、数:50個)、回転数:370rpm(revolutions per minute)、LBO粉末量:1g、雰囲気:大気、ボールミルの処理時間:100時間の条件にて、ボールミルして、微細化したリチウム含有酸化物(以下「リチウム含有酸化物の微細物」ともいう。)を得た。
 得られたリチウム含有酸化物の微細物1gに、リチウム塩として0.05gのLiFSI(化学式:Li(FSON)を添加し(リチウム含有酸化物の微細物に対して5質量%である。)、さらに100時間ボールミルした。得られた粉末を、粉末濃度42質量%となるように水に添加し、30分間超音波分散させた。続いて、得られた分散液をガラスシャーレに移し、大気下にて、120℃で2時間乾燥させ、固体電解質のフィルムを得た。続いて、得られたフィルムを剥がして粉末状の固体電解質(I)-1を得た。
[Reference Example 1: Production according to the above steps 0, 1A to 3A]
Using a ball mill (manufactured by Fritsch, planetary ball mill P-7), powdered Li 2 B 4 O 7 crystals (LBO powder) (manufactured by Rare Metallic) were placed in a pot of stabilized zirconia (YSZ) (45 mL). , Grinding balls: YSZ (average particle diameter: 5 mm, number: 50 pieces), rotation speed: 370 rpm (revolutions per minute), LBO powder amount: 1 g, atmosphere: air, ball mill processing time: 100 hours. , and ball milled to obtain a finely divided lithium-containing oxide (hereinafter also referred to as "fine lithium-containing oxide").
To 1 g of the obtained lithium-containing oxide fines, 0.05 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) was added as a lithium salt (5% by mass based on the lithium-containing oxide fines). ) and further ball milled for 100 hours. The obtained powder was added to water so that the powder concentration was 42% by mass, and ultrasonically dispersed for 30 minutes. Subsequently, the obtained dispersion liquid was transferred to a glass Petri dish and dried at 120° C. for 2 hours in the atmosphere to obtain a solid electrolyte film. Subsequently, the obtained film was peeled off to obtain powdered solid electrolyte (I)-1.
<固体電解質の成形体の作製及び評価>
 上記で得られた粉末状の固体電解質(I)-1を、27℃(室温)にて実効圧力220MPaで圧粉成形して、固体電解質の成形体(圧粉体1)を得た。圧粉体1の形状は、直径10mm、厚さ0.5~1mmの円柱状である。得られた圧粉体1のイオン伝導度を測定した結果、圧粉体1のイオン伝導度は、27℃で1.5×10-4S/cmであり、60℃で4.0×10-4S/cmであった。
<Preparation and evaluation of solid electrolyte molded body>
The powdered solid electrolyte (I)-1 obtained above was compacted at 27° C. (room temperature) and an effective pressure of 220 MPa to obtain a solid electrolyte compact (compact 1). The powder compact 1 has a cylindrical shape with a diameter of 10 mm and a thickness of 0.5 to 1 mm. As a result of measuring the ionic conductivity of the obtained compact 1, the ionic conductivity of the compact 1 was 1.5×10 −4 S/cm at 27°C and 4.0×10 at 60°C. -4 S/cm.
 上記固体電解質(I)-1のイオン伝導度は、圧粉体1を挟むように2つのIn箔からなる電極を配置して、測定温度27℃又は60℃及び印加電圧50mVの条件下、1Hz~1MHzの測定周波数域にて両In電極間の交流インピーダンスを測定し、得られたCole-Coleプロット(ナイキストプロット)の円弧径を解析することにより、算出した。 The ionic conductivity of the solid electrolyte (I)-1 was measured at 1 Hz under the conditions of a measurement temperature of 27°C or 60°C and an applied voltage of 50 mV, with two In foil electrodes placed to sandwich the powder compact 1. It was calculated by measuring the AC impedance between both In electrodes in a measurement frequency range of ~1 MHz and analyzing the arc diameter of the obtained Cole-Cole plot (Nyquist plot).
 CuKα線を使用し、固体電解質(I)-1のX線回折測定を上述の通りに行った。測定条件は、0.01°/ステップ、3°/minとした。その結果、上述したX線回折特性を満足することが明らかとなり、固体電解質(I)-1は非晶状態であることがわかった。 X-ray diffraction measurement of solid electrolyte (I)-1 was performed as described above using CuKα radiation. The measurement conditions were 0.01°/step and 3°/min. As a result, it was revealed that the above-mentioned X-ray diffraction characteristics were satisfied, and solid electrolyte (I)-1 was found to be in an amorphous state.
 上記で得られた固体電解質(I)-1を用いて、X線全散乱測定をSPring-8L04B2(加速電圧:61.4keV、波長:0.2019Å)にて行った。サンプルは2mmφ又は1mmφのカプトンキャピラリーに封止し、実験を行った。得られたデータを、上述したようにフーリエ変換して還元二体分布関数を得た。
 解析の結果、X線全散乱測定から得られた還元二体分布関数G(r)において、rが1~5Åの範囲にて、ピークトップのG(r)が1.0超えを示し、ピークトップが1.43Åに位置する第1ピーク、及び、ピークトップのG(r)が1.0超えを示し、ピークトップが2.40Åに位置する第2ピークが確認された。
 一方で、固体電解質(I)-1では、一般的な四ホウ酸リチウム結晶において観察されるB-O間距離及びB-B間距離に帰属されるピークは維持されていた。一般的な四ホウ酸リチウム結晶はBO四面体とBO三角形が1:1で存在する構造(ダイボレート構造)であり、固体電解質(I)-1ではその構造が維持されていると推定した。
Using the solid electrolyte (I)-1 obtained above, X-ray total scattering measurement was performed with SPring-8L04B2 (acceleration voltage: 61.4 keV, wavelength: 0.2019 Å). The sample was sealed in a 2 mmφ or 1 mmφ Kapton capillary, and experiments were conducted. The obtained data was Fourier transformed as described above to obtain a reduced two-body distribution function.
As a result of the analysis, in the reduced two-body distribution function G(r) obtained from X-ray total scattering measurement, G(r) at the peak top exceeded 1.0 in the range of r from 1 to 5 Å, and the peak A first peak whose top was located at 1.43 Å, and a second peak whose peak top G(r) exceeded 1.0 and whose peak top was located at 2.40 Å were confirmed.
On the other hand, in solid electrolyte (I)-1, the peaks attributed to the BO distance and the BB distance observed in general lithium tetraborate crystals were maintained. A typical lithium tetraborate crystal has a structure in which BO 4 tetrahedrons and BO 3 triangles exist in a 1:1 ratio (diborate structure), and it is assumed that this structure is maintained in solid electrolyte (I)-1. .
 上記で得られた固体電解質(I)-1の固体Li-NMR測定を20℃で行った際に得られるスペクトルにおける化学シフトが-100~+100ppmの範囲に現れるピークの半値全幅(半値全幅1)に対する、固体電解質(I)-1の固体Li-NMR測定を120℃で行った際に得られるスペクトルにおける化学シフトが-100~+100ppmの範囲に現れるピークの半値全幅(半値全幅2)の割合{(半値全幅2/半値全幅1)×100}は、33%であった。
 また、固体Li-NMR測定を20℃で行った際に得られるスペクトルにおいて-100~+100ppmの範囲に現れる第1ピークを波形分離した際に、化学シフトが-3~3ppmの範囲に半値全幅5ppm以下の第2ピークを有し、第1ピークの面積強度に対する第2ピークの面積強度の割合は4%であった。
The full width at half maximum (full width at half maximum 1 ) of the solid electrolyte (I)-1 at 120°C. The ratio {(full width at half maximum 2/full width at half maximum 1)×100} was 33%.
In addition, when the first peak appearing in the range of -100 to +100 ppm in the spectrum obtained when solid-state 7 Li-NMR measurement was performed at 20 °C was separated into waveforms, the chemical shift was found to be in the range of -3 to 3 ppm, with a full width at half maximum. It had a second peak of 5 ppm or less, and the ratio of the area intensity of the second peak to the area intensity of the first peak was 4%.
 上記で得られた固体電解質(I)-1を用いて上述した条件にて赤外吸収スペクトル測定を行い、得られた赤外吸収スペクトルにおいて、800~1600cm-1の波数領域における最大吸収強度に対する、3000~3500cm-1の波数領域における最大吸収強度の比の値は、0.72であった。 Using the solid electrolyte (I)-1 obtained above, an infrared absorption spectrum was measured under the above conditions, and in the obtained infrared absorption spectrum, the maximum absorption intensity in the wave number region of 800 to 1600 cm , the value of the ratio of maximum absorption intensity in the wave number region of 3000 to 3500 cm −1 was 0.72.
 上記で得られた固体電解質(I)-1のラマンスペクトルにおいて、600~850cm-1の波数領域での最小二乗法による線形回帰分析を行って得られる決定係数は0.9974であった。
 固体電解質(I)-1を上述したように25℃から800℃まで加熱した際における質量減少率は29.8%であった。
In the Raman spectrum of solid electrolyte (I)-1 obtained above, the coefficient of determination obtained by linear regression analysis using the least squares method in the wave number region of 600 to 850 cm -1 was 0.9974.
The mass reduction rate when solid electrolyte (I)-1 was heated from 25° C. to 800° C. as described above was 29.8%.
 得られた固体電解質(I)-1中の各元素の分析に関しては、リチウム及びホウ素をICP-OESで、フッ素及び硫黄を燃焼イオンクロマトグラフィー(燃焼IC)で定量分析し、Nに関しては、Li塩中の各原子量を考慮して硫黄の分析質量から見積もり、Oに関しては、O以外の元素の分析質量を足し合わせ、粉末全量からの差分として算出した。結果を下表に示す。 Regarding the analysis of each element in the obtained solid electrolyte (I)-1, lithium and boron were quantitatively analyzed by ICP-OES, fluorine and sulfur were quantitatively analyzed by combustion ion chromatography (combustion IC), and N was analyzed quantitatively by ICP-OES. It was estimated from the analytical mass of sulfur in consideration of each atomic weight in the salt, and O was calculated as the difference from the total amount of powder by adding up the analytical masses of elements other than O. The results are shown in the table below.
[参考例2:上記工程1B~3B、方法2による作製]
 参考例1で使用したリチウム含有酸化物の微細物1gを、この微細物の濃度が42質量%となるように水に添加し、30分間超音波分散させた。得られた分散液に、リチウム塩として0.05gのLiFSI(化学式:Li(FSON)を添加し(リチウム含有酸化物の微細物に対して5質量%である。)、さらに30分間超音波分散させた。
 得られた分散液をガラスシャーレに移し、大気下にて、120℃で2時間乾燥させ、固体電解質のフィルムを得た。続いて、得られたフィルムを剥がして粉末状の固体電解質(I)-2を得た。固体電解質(I)-2について、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference example 2: Production according to the above steps 1B to 3B and method 2]
1 g of the lithium-containing oxide fines used in Reference Example 1 were added to water so that the concentration of the fines was 42% by mass, and the mixture was ultrasonically dispersed for 30 minutes. To the resulting dispersion, 0.05 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) was added as a lithium salt (5% by mass based on the fine particles of the lithium-containing oxide), and an additional 30 Ultrasonic dispersion was carried out for a minute.
The obtained dispersion liquid was transferred to a glass Petri dish and dried at 120° C. for 2 hours in the atmosphere to obtain a solid electrolyte film. Subsequently, the obtained film was peeled off to obtain powdered solid electrolyte (I)-2. Solid electrolyte (I)-2 was subjected to various evaluations in the same manner as in Reference Example 1 under atmospheric conditions. The results are summarized in the table below.
[参考例3:上記工程1B~3B、方法3による作製]
 ボールミル(フリッチュ社製、遊星型ボールミルP-7)を用いて、粉末状のLi(LBO粉末)(レアメタリック社製)を、ポット:YSZ(45ml)、粉砕用ボール:YSZ(平均粒子径:5mm、重量:70g)、回転数:530rpm(revolutions per minute)、LBO粉末量:4.2g、雰囲気:大気、ボールミルの処理時間:100時間の条件にて、ボールミルして、リチウム含有酸化物の微細物を得た。
 得られたリチウム含有酸化物の微細物を、この微細物の濃度が42質量%となるように水に添加し、60分間超音波処理して、分散液1を得た。
 次に、リチウム塩として3.25gのLiFSI(化学式:Li(FSON)を、濃度87質量%となるように水に添加し、60分間超音波処理して、溶液2を得た。
 得られた分散液1及び溶液2を混合し、マグネチックスターラーで60分間撹拌混合させた。続いて、得られた分散液を40℃、10Paで15時間、真空乾燥させて粉末状の固体電解質(I)-3を得た。得られた粉末を大気下で一定期間静置し、固体電解質(I)-3を用いて、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference example 3: Production according to the above steps 1B to 3B and method 3]
Using a ball mill (manufactured by Fritsch, planetary ball mill P-7), powdered Li 2 B 4 O 7 (LBO powder) (manufactured by Rare Metallic) was ground using a pot: YSZ (45 ml), a grinding ball: YSZ (average particle size: 5 mm, weight: 70 g), rotation speed: 530 rpm (revolutions per minute), amount of LBO powder: 4.2 g, atmosphere: air, ball milling time: 100 hours. Fine particles of lithium-containing oxide were obtained.
The obtained lithium-containing oxide fines were added to water so that the concentration of the fines was 42% by mass, and subjected to ultrasonic treatment for 60 minutes to obtain Dispersion 1.
Next, 3.25 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 2. .
The obtained dispersion liquid 1 and solution 2 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdery solid electrolyte (I)-3. The obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-3. The results are summarized in the table below.
[参考例4:上記工程1B~3B、方法3による作製]
 参考例3における分散液1の調製と同様にして分散液3を得た。
 次に、リチウム塩として2.32gのLiFSI(化学式:Li(FSON)を、濃度87質量%で水に添加し、60分間超音波処理して、溶液4を得た。
 得られた分散液3及び溶液4を混合し、マグネチックスターラーで60分間撹拌混合させた。続いて、得られた分散液を40℃、10Paで15時間、真空乾燥させて粉末状の固体電解質(I)-4を得た。得られた粉末を大気下で一定期間静置し、固体電解質(I)-4を用いて、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference example 4: Production according to the above steps 1B to 3B and method 3]
Dispersion 3 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3.
Next, 2.32 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 4.
The obtained dispersion liquid 3 and solution 4 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain a powdery solid electrolyte (I)-4. The obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-4. The results are summarized in the table below.
[参考例5:上記工程1B~3B、方法3による作製]
 参考例3における分散液1の調製と同様にして分散液5を得た。
 次に、リチウム塩として4.65gのLiFSI(化学式:Li(FSON)を、濃度87質量%で水に添加し、60分間超音波処理して、溶液6を得た。
 得られた分散液5及び溶液6を混合し、マグネチックスターラーで60分間、撹拌混合させた。続いて、得られた分散液を40℃、10Paで15時間、真空乾燥させて粉末状の固体電解質(I)-5を得た。得られた粉末状の固体電解質(I)-5を速やかに用いて、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference Example 5: Production according to the above steps 1B to 3B and method 3]
Dispersion 5 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3.
Next, 4.65 g of LiFSI (chemical formula: Li(FSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 6.
The obtained dispersion liquid 5 and solution 6 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdery solid electrolyte (I)-5. The obtained powdered solid electrolyte (I)-5 was immediately used to perform various evaluations in the same manner as in Reference Example 1 in the atmosphere. The results are summarized in the table below.
[参考例6:上記工程1B~3B、方法3による作製]
 参考例3における分散液1の調製と同様にして分散液7を得た。
 次に、リチウム塩として7.13gのLiTFSI(化学式:Li(FCSON)を、濃度87質量%で水に添加し、60分間超音波処理して、溶液8を得た。
 得られた分散液7及び溶液8を混合し、マグネチックスターラーで60分間撹拌混合させた。続いて、得られた分散液を40℃、10Paで15時間、真空乾燥させて粉末状の固体電解質(I)-6を得た。得られた粉末を大気下で一定期間静置し、固体電解質(I)-6を用いて、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
 なお、参考例6において、下記表1に示す炭素量は、リチウム塩中の各原子量を考慮して硫黄の分析質量から見積もった。
[Reference Example 6: Production according to the above steps 1B to 3B and method 3]
Dispersion 7 was obtained in the same manner as in the preparation of Dispersion 1 in Reference Example 3.
Next, 7.13 g of LiTFSI (chemical formula: Li(F 3 CSO 2 ) 2 N) as a lithium salt was added to water at a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 8.
The obtained dispersion liquid 7 and solution 8 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdered solid electrolyte (I)-6. The obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-6. The results are summarized in the table below.
In addition, in Reference Example 6, the carbon content shown in Table 1 below was estimated from the analytical mass of sulfur in consideration of each atomic weight in the lithium salt.
[比較参考例1]
 参考例1で使用したLBO粉末(ボールミルしていない粉末状のLi結晶)について元素分析を行った結果、得られたLBO粉末の組成は、Li1.964.006.80であった。LBO粉末を27℃(室温)にて実効圧力220MPaで圧粉成形して、比較参考用の圧粉体C1を得た。得られた圧粉体C1のイオン伝導度は検出できなかった。
 また、参考例1と同様にして、LBO粉末を用いてX線全散乱測定を行い、還元二体分布関数G(r)を得た。図10に、LBO粉末から得られた還元二体分布関数G(r)を示す。
 解析の結果、LBO粉末のX線全散乱測定から得られた還元二体分布関数G(r)においては、ピークトップが1.40Åに位置する第1ピーク(B-O近接に対応)、ピークトップが2.40Åに位置する第2ピーク(B-B近接に対応)が存在し、第1ピーク及び第2ピークのピークトップのG(r)はいずれも1.0以上であった(図10参照)。また、その他に、ピークトップが3.65Å、5.22Å、5.51Å、及び、8.54Åに位置するピークが存在し、それぞれのピークのピークトップのG(r)の絶対値は1.0を明らかに超えていた(図10参照)。
[Comparative reference example 1]
As a result of elemental analysis of the LBO powder (powdered Li 2 B 4 O 7 crystals not ball milled) used in Reference Example 1, the composition of the obtained LBO powder was Li 1.96 B 4.00 O It was 6.80 . The LBO powder was compacted at 27° C. (room temperature) and an effective pressure of 220 MPa to obtain a compact C1 for comparative reference. The ionic conductivity of the obtained green compact C1 could not be detected.
Further, in the same manner as in Reference Example 1, X-ray total scattering measurement was performed using LBO powder to obtain the reduced two-body distribution function G(r). FIG. 10 shows the reduced two-body distribution function G(r) obtained from the LBO powder.
As a result of the analysis, in the reduced two-body distribution function G(r) obtained from the X-ray total scattering measurement of LBO powder, the peak top is the first peak located at 1.40 Å (corresponding to the BO proximity), the peak There was a second peak whose top was located at 2.40 Å (corresponding to B-B proximity), and the G(r) at the peak tops of the first and second peaks were both 1.0 or more (Fig. 10). In addition, there are other peaks with peak tops located at 3.65 Å, 5.22 Å, 5.51 Å, and 8.54 Å, and the absolute value of G(r) at the peak top of each peak is 1. It clearly exceeded 0 (see Figure 10).
 CuKα線を使用し、比較参考例1のLBO粉末について、X線回折測定を行った。測定条件は、0.01°/ステップ、3°/minであった。
 図11に、比較参考例1のLBO粉末のX線回折パターンを示す。図11に示すように、比較参考例1で用いたLBO粉末は複数の幅の小さいピークが観測された。より具体的には、2θ値で21.78°の位置に(1,1,2)面に相当する最も強いピークが見られた。その他の主な回折ピークとして、25.54°の位置に(2,0,2)面に相当するピーク、33.58°の位置に(2,1,3)面に相当するピーク、34.62°の位置に(3,1,2)面に相当するピークが発現し、これら3つのピークの強度はほぼ同等であった。これらのピークは結晶成分に由来するものである。
X-ray diffraction measurement was performed on the LBO powder of Comparative Reference Example 1 using CuKα radiation. The measurement conditions were 0.01°/step and 3°/min.
FIG. 11 shows the X-ray diffraction pattern of the LBO powder of Comparative Reference Example 1. As shown in FIG. 11, a plurality of narrow peaks were observed in the LBO powder used in Comparative Reference Example 1. More specifically, the strongest peak corresponding to the (1,1,2) plane was observed at a 2θ value of 21.78°. Other main diffraction peaks include a peak corresponding to the (2,0,2) plane at the position of 25.54°, a peak corresponding to the (2,1,3) plane at the position of 33.58°, 34. A peak corresponding to the (3,1,2) plane appeared at the 62° position, and the intensities of these three peaks were almost equal. These peaks are derived from crystalline components.
[比較参考例2]
 参考例1で調製したリチウム含有酸化物の微細物(粉末状のLi結晶をボールミルしたもの)に対して元素分析を行った結果、リチウム含有酸化物の微細物の組成は、Li1.944.006.80であった。
 次いで、上記リチウム含有酸化物の微細物を、27℃(室温)にて実効圧力220MPaで圧粉成形して、比較参考用の圧粉体(圧粉体R1)を得た。得られた圧粉体R1のイオン伝導度は、27℃で7.5×10-9S/cmであり、60℃で7.5×10-8S/cmであった。
[Comparative reference example 2]
As a result of elemental analysis of the lithium-containing oxide fines prepared in Reference Example 1 (ball-milled powdered Li 2 B 4 O 7 crystals), the composition of the lithium-containing oxide fines was as follows: Li 1.94 B 4.00 O 6.80 .
Next, the fine particles of the lithium-containing oxide were compacted at 27° C. (room temperature) and an effective pressure of 220 MPa to obtain a compact for comparative reference (compact R1). The ionic conductivity of the obtained green compact R1 was 7.5×10 −9 S/cm at 27° C. and 7.5×10 −8 S/cm at 60° C.
 下表において、上述のようにX線全散乱測定から得られた還元二体分布関数G(r)で、rが1.43±0.2Åの範囲にピークトップが位置する第1ピーク、及び、rが2.40±0.2Åの範囲にピークトップが位置する第2ピークが存在し、第1ピークのピークトップのG(r)及び第2ピークのピークトップのG(r)が1.0超を示す場合、「短距離G(r)」欄を「A」とし、それ以外の場合を「B」とした。
 なお、下表に示す参考例1~5、及び、参考例9~13においては、第1ピークのピークトップのG(r)の値は1.2以上であった。
 また、上記還元二体分布関数G(r)において、rが5Å超10Å以下の範囲においてG(r)の絶対値が1.0未満を示す場合には、下表の「長距離G(r)」欄を「A」とし、G(r)の絶対値が1.0未満を満たさない場合を「B」とした。
 また、上述したCuKα線を使用したX線回折測定の結果、上記のX線回折特性を満たす場合を「A」とし、満たさない場合を「B」とした。なお、下表に示す参考例1~6、及び、後述する参考例7~13においては、X線回折パターンにおいて、第1ピーク、第2ピーク、第3ピーク及び第4ピークがいずれも存在しないか、又は、第1ピーク、第2ピーク、第3ピーク及び第4ピークのうち少なくとも1つのピークの強度比が2.0以下であった。
In the table below, in the reduced two-body distribution function G(r) obtained from the X-ray total scattering measurement as described above, the first peak whose peak top is located in the range where r is 1.43 ± 0.2 Å, and , there is a second peak whose peak top is located in a range where r is 2.40±0.2 Å, and G(r) at the peak top of the first peak and G(r) at the peak top of the second peak are 1. When the value exceeds .0, the "Short distance G(r)" column is marked as "A", and in other cases, it is marked as "B".
In addition, in Reference Examples 1 to 5 and Reference Examples 9 to 13 shown in the table below, the value of G(r) at the top of the first peak was 1.2 or more.
In addition, in the above reduced two-body distribution function G(r), if the absolute value of G(r) is less than 1.0 in the range where r is more than 5 Å and less than or equal to 10 Å, then )” column was designated as “A”, and cases where the absolute value of G(r) did not satisfy less than 1.0 were designated as “B”.
Further, as a result of the X-ray diffraction measurement using the CuKα rays described above, the case where the above-mentioned X-ray diffraction characteristics were satisfied was rated as “A”, and the case where the above-mentioned X-ray diffraction characteristics were not satisfied was rated as “B”. In addition, in Reference Examples 1 to 6 shown in the table below and Reference Examples 7 to 13 described below, none of the first peak, second peak, third peak, and fourth peak are present in the X-ray diffraction pattern. Or, the intensity ratio of at least one peak among the first peak, second peak, third peak, and fourth peak was 2.0 or less.
 下表中、「元素分析」欄は、各参考例で得られた固体電解質(I)及び各比較参考例におけるリチウム含有酸化物の組成をBの含有量を「4.00」とした相対値として各元素の含有モル量を表す。
 下表中、空欄は、対応する元素を含有しないことを意味する。
In the table below, the "Elemental analysis" column shows the relative values of the composition of the solid electrolyte (I) obtained in each reference example and the lithium-containing oxide in each comparative reference example, with the B content being "4.00". represents the molar amount of each element.
In the table below, a blank column means that the corresponding element is not contained.
 下表中、「半値全幅割合(%)」、「決定係数」及び「質量減少率(%)」は、参考例1の上記記載にて説明した通りである。 In the table below, "percentage of full width at half maximum (%)", "coefficient of determination", and "mass reduction rate (%)" are as explained in the above description of Reference Example 1.
 下表中、「面積強度の割合」は、上述した固体Li-NMR測定において、第1ピークの面積強度に対する第2ピークの面積強度の割合であり、下記基準に基づく評価結果を記載している
<面積強度の割合の基準>
A:面積強度の割合が15%以上である場合
B:面積強度の割合が0.5%以上15%未満の場合
C:面積強度の割合が0.5%未満の場合
In the table below, "area intensity ratio" is the ratio of the area intensity of the second peak to the area intensity of the first peak in the solid-state 7 Li-NMR measurement described above, and the evaluation results based on the following criteria are described. <Standard for ratio of area intensity>
A: When the area intensity ratio is 15% or more B: When the area intensity ratio is 0.5% or more and less than 15% C: When the area intensity ratio is less than 0.5%
 下表中、「最大吸収強度比」欄は、上述した赤外吸収スペクトル特性を満たすか否かを示すものであり、[3000~3500cm-1の波数領域における最大吸収強度]/[800~1600cm-1の波数領域における最大吸収強度]が0.20以上を「A」、0.20未満を「B」として示した。
 下表中、「-」は、測定値を示していないことを意味する。
In the table below, the "maximum absorption intensity ratio" column indicates whether the above-mentioned infrared absorption spectrum characteristics are satisfied, and is [maximum absorption intensity in the wave number region of 3000 to 3500 cm -1 ]/[800 to 1600 cm -1 wave number region] is 0.20 or more, it is shown as "A", and less than 0.20 is shown as "B".
In the table below, "-" means that no measured value is shown.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表に示すように、参考例1~6の固体電解質(I)-1、(I)-2、(I)-3、(I)-4、(I)-5及び(I)-6は、所望の特性ないし物性を有し、イオン伝導性に優れることがわかる。また、元素分析の結果から、参考例3~6においては固体電解質中のLiの含有量がより多いことが確認された。参考例3~6ではメカニカルミリング処理されたリチウム含有酸化物を含む水分散液と、リチウム塩を含む水溶液とを混合すること(上述した工程2Bにおける方法3)が行われており、リチウム塩をより多く混合でき、その結果、固体電解質中に取り込まれるLi量が増加したと推測される。また、リチウム塩としてLiFSIを用いた参考例3、4及び5では、イオン伝導度がより向上していることもわかった。これは、増加したLiの中に運動性の高いLiが含まれているためと推測される。 As shown in the table above, solid electrolytes (I)-1, (I)-2, (I)-3, (I)-4, (I)-5 and (I)-6 of Reference Examples 1 to 6 It can be seen that it has desired characteristics or physical properties and is excellent in ionic conductivity. Furthermore, from the results of elemental analysis, it was confirmed that in Reference Examples 3 to 6, the content of Li in the solid electrolyte was higher. In Reference Examples 3 to 6, an aqueous dispersion containing a mechanically milled lithium-containing oxide and an aqueous solution containing a lithium salt were mixed (method 3 in step 2B described above), and the lithium salt was mixed with an aqueous solution containing a lithium salt. It is presumed that more Li could be mixed, and as a result, the amount of Li incorporated into the solid electrolyte increased. It was also found that in Reference Examples 3, 4, and 5 in which LiFSI was used as the lithium salt, the ionic conductivity was further improved. This is presumed to be because Li with high mobility is included in the increased Li.
<固体電解質中の水の影響>
 参考例3で得られた固体電解質(I)-3の圧粉体(ペレット)(10mmφ、0.9mmt(thickness))を、60MPa拘束下、27℃で真空乾燥させ、真空乾燥時間に対する、圧力変化及びイオン伝導度を調べた。なお、圧粉体の作製方法、及び、イオン伝導度評価は、In電極をTi電極に変更した以外は、上述の通りである。結果を表3に示す。
<Effect of water in solid electrolyte>
The green compact (pellet) of solid electrolyte (I)-3 obtained in Reference Example 3 (10 mmφ, 0.9 mmt (thickness)) was vacuum-dried at 27°C under 60 MPa restraint, and the pressure relative to the vacuum drying time was The changes and ionic conductivity were investigated. Note that the method for producing the green compact and the evaluation of ionic conductivity were as described above, except that the In electrode was changed to a Ti electrode. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 参考例3の固体電解質(I)-3は、赤外吸収スペクトルにおいて3000~3500cm-1の波数領域にO-H伸縮ピークに由来する吸収強度が強く観測されるため、多数のOH基や水が存在していると考えられる。また、水については、自由水と束縛水の存在が推測される。上記では、真空乾燥により、まず自由水から揮発すると考えられる条件でペレットを乾燥させ、さらに厳しい乾燥条件でペレットを乾燥させ、各段階におけるイオン伝導度を評価した。 Solid electrolyte (I)-3 of Reference Example 3 has a strong absorption intensity derived from the O-H stretching peak in the wave number region of 3000 to 3500 cm -1 in the infrared absorption spectrum, so it contains a large number of OH groups and water. is thought to exist. Regarding water, the existence of free water and bound water is presumed. In the above, by vacuum drying, the pellets were first dried under conditions that are considered to volatilize from free water, and then the pellets were further dried under strict drying conditions, and the ionic conductivity at each stage was evaluated.
 上記表に示すように、乾燥時間5分間で圧力は200Paであり、自由水は気化した状態であると考えられるが、イオン伝導度は3.8×10-3S/cmという高い値を示し、乾燥時間1080分間、圧力15Paにおいても、イオン伝導度は5.7×10-4S/cmを示した。この結果は、自由水以外の束縛水が存在し、これがイオン伝導性に寄与していることを示すものである。 As shown in the table above, the drying time was 5 minutes, the pressure was 200 Pa, and the free water was considered to be in a vaporized state, but the ionic conductivity was a high value of 3.8 × 10 -3 S/cm. Even at a drying time of 1080 minutes and a pressure of 15 Pa, the ionic conductivity was 5.7×10 −4 S/cm. This result indicates that bound water other than free water exists and contributes to ionic conductivity.
[参考例7:上記工程1B~3B、方法3による作製]
 上記参考例3における分散液1の調製と同様にして、リチウム含有酸化物の微細物の濃度が42質量%である分散液9を得た。
 次に、リチウム塩として7.12gのLiTFSI(化学式:Li(FCSONを、濃度87質量%となるように水に添加し、60分間超音波処理して、溶液10を得た。
 得られた分散液9及び溶液10を混合し、マグネチックスターラーで60分間撹拌混合させた。続いて、得られた分散液を40℃、10Paで15時間、真空乾燥させて粉末状の固体電解質(I)-7を得た。得られた粉末を大気下で一定期間静置し、固体電解質(I)-7を用いて、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference Example 7: Production according to the above steps 1B to 3B and method 3]
In the same manner as in the preparation of Dispersion 1 in Reference Example 3 above, Dispersion 9 having a concentration of lithium-containing oxide fines of 42% by mass was obtained.
Next, 7.12 g of LiTFSI (chemical formula: Li(F 3 CSO 2 ) 2 ) 2 N as a lithium salt was added to water to a concentration of 87% by mass, and sonicated for 60 minutes to obtain solution 10. Ta.
The obtained dispersion liquid 9 and solution 10 were mixed and stirred and mixed using a magnetic stirrer for 60 minutes. Subsequently, the obtained dispersion was vacuum dried at 40° C. and 10 Pa for 15 hours to obtain powdered solid electrolyte (I)-7. The obtained powder was allowed to stand in the atmosphere for a certain period of time, and various evaluations were conducted in the atmosphere in the same manner as in Reference Example 1 using solid electrolyte (I)-7. The results are summarized in the table below.
[参考例8]
 得られる固体電解質(I)中における水及びLiTFSIの含有量が下表に記載の量になるように変更したこと以外は、参考例7と同様にして固体電解質(I)-8を得て、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。
[Reference example 8]
Solid electrolyte (I)-8 was obtained in the same manner as in Reference Example 7, except that the contents of water and LiTFSI in the obtained solid electrolyte (I) were changed to the amounts listed in the table below. In the same manner as Reference Example 1, various evaluations were carried out under the atmosphere. The results are summarized in the table below.
[参考例9~13]
 LiTFSIをLiFSIに変更し、得られる固体電解質(I)中における水及びLiFSIの含有量が下表に記載の量になるように変更したこと以外は、参考例7と同様にして固体電解質(I)-9~(I)-13を得て、参考例1と同様にして、大気下で各種評価を実施した。結果を下表にまとめて示す。但し、参考例13は、真空乾燥させて得られた粉末を速やかに用いて大気下で評価を実施した。
[Reference Examples 9 to 13]
A solid electrolyte (I) was prepared in the same manner as in Reference Example 7, except that LiTFSI was changed to LiFSI, and the contents of water and LiFSI in the obtained solid electrolyte (I) were changed to the amounts listed in the table below. )-9 to (I)-13 were obtained, and various evaluations were conducted in the same manner as in Reference Example 1 under air. The results are summarized in the table below. However, in Reference Example 13, the powder obtained by vacuum drying was immediately used and the evaluation was conducted in the atmosphere.
 下表中、「リチウム含有酸化物の微細物」欄、「リチウム塩」欄、及び、「水」欄は、相対モル比を表す。例えば、参考例7では、リチウム含有酸化物の微細物に対するリチウム塩のモル比が1であり、リチウム含有酸化物の微細物に対する水のモル比が11である。なお、上記モル比は、以下の方法で算出した。
 各元素の分析は、リチウム及びホウ素をICP-OESで、フッ素及び硫黄を燃焼イオンクロマトグラフィー(燃焼IC)で定量分析し、Nに関しては、Li塩中の各原子量を考慮して硫黄の分析質量から見積もり、Oに関しては、O以外の元素の分析質量を足し合わせ、固体電解質全量からの差分として算出した。なお、参考例7及び8において、炭素量は、リチウム塩中の各原子量を考慮して硫黄の分析質量から見積もった。固体電解質中のリチウム含有酸化物の微細物とリチウム塩とのモル比は、リチウム含有酸化物の微細物中にしかない元素(例えばB)とリチウム塩中にしかない元素のモル比から算出した。また、リチウム含有酸化物の微細物と水とのモル比は、固体電解質中のOのモル比からリチウム含有酸化物の微細物、リチウム塩に含まれるOのモル比を減算して、水に由来するOのモル量を算出して、得られた水由来のOのモル量とリチウム含有酸化物の微細物のモル量とを用いて算出した。
In the table below, the "Lithium-containing oxide fines" column, the "Lithium salt" column, and the "Water" column represent relative molar ratios. For example, in Reference Example 7, the molar ratio of the lithium salt to the fine lithium-containing oxide is 1, and the molar ratio of water to the fine lithium-containing oxide is 11. In addition, the said molar ratio was calculated by the following method.
For the analysis of each element, lithium and boron were quantitatively analyzed by ICP-OES, fluorine and sulfur were quantitatively analyzed by combustion ion chromatography (combustion IC), and for N, the analytical mass of sulfur was determined by considering the atomic weight of each element in Li salt. Regarding O, the analyzed mass of elements other than O was added up and calculated as the difference from the total amount of solid electrolyte. In addition, in Reference Examples 7 and 8, the carbon content was estimated from the analytical mass of sulfur in consideration of each atomic weight in the lithium salt. The molar ratio between the lithium-containing oxide fines and the lithium salt in the solid electrolyte was calculated from the molar ratio of an element (for example, B) found only in the lithium-containing oxide fines and an element found only in the lithium salt. In addition, the molar ratio of lithium-containing oxide fines to water is calculated by subtracting the molar ratio of O contained in lithium-containing oxide fines and lithium salt from the molar ratio of O in the solid electrolyte. The molar amount of derived O was calculated and calculated using the obtained molar amount of O derived from water and the molar amount of fine particles of the lithium-containing oxide.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、表4に記載のモル量と分子量に基づき、固体電解質(I)中の各成分含有量(質量%)を算出した。結果を下表Aに示す。 Furthermore, based on the molar amounts and molecular weights listed in Table 4, the content (mass %) of each component in the solid electrolyte (I) was calculated. The results are shown in Table A below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表に示すように、各参考例の固体電解質は、本願請求項1で規定する組成を満たし、かつ所望の特性ないし物性を有しており、優れたイオン伝導性を示した。 As shown in the table above, the solid electrolyte of each reference example satisfied the composition specified in Claim 1 of the present application, had desired characteristics or physical properties, and exhibited excellent ionic conductivity.
[製造例1]塗布型二次電池の製造
<リチウム含有酸化物の微細物の調製>
 粉末状のLi結晶(LBO粉末)(レアメタリック社製)45gと、ジルコニアビーズ770gと、水3mLとを、500mLジルコニアポットに入れ、テフロン(登録商標)製のリングとジルコニア製の蓋で封止した。これを、300rpm(revolutions per minute)で45時間、遊星ボールミリング装置(P-7、フリッチュ社製)を用いてボールミリング処理を施してLBO粉末を粉砕し、リチウム含有酸化物の微細物を得た。
[Production Example 1] Production of a coated secondary battery <Preparation of fine particles of lithium-containing oxide>
Put 45 g of powdered Li 2 B 4 O 7 crystals (LBO powder) (manufactured by Rare Metallic), 770 g of zirconia beads, and 3 mL of water into a 500 mL zirconia pot, and add a Teflon (registered trademark) ring and a zirconia pot. It was sealed with a lid. This was ball milled at 300 rpm (revolutions per minute) for 45 hours using a planetary ball milling device (P-7, manufactured by Fritsch) to pulverize the LBO powder and obtain fine particles of lithium-containing oxide. Ta.
<固体電解質スラリー1の調製:上記工程1B~3B、方法1による固体電解質(I)の作製>
 上記のリチウム含有酸化物の微細物を10gと、水15gと、LiFSIを11gとをビーカー中で混合して、超音波洗浄機を用いて30分間超音波処理して分散液を得た。この分散液をさらにマグネチックスターラーで30分間撹拌し、固体電解質スラリー1を得た。
 この固体電解質スラリー1を40℃、20Paで15時間真空乾燥して粉末を得た。得られた粉末をデシケータ(湿度5%)で数日保管した後、大気下で分析したところ、上述したX線回折特性を有しており、非晶状態であることを確認した。また、上述した方法でイオン伝導度を測定したところ、4.5×10-3S/cmであった。また、リチウム含有酸化物の含有量に対して、LiFSIの含有量の比の値がモル比で1であり、水の含有量の比の値がモル比で9であった。元素組成については、Li=3、B=4、O=20、F=2、S=2、N=1であった。
<Preparation of solid electrolyte slurry 1: Preparation of solid electrolyte (I) by the above steps 1B to 3B and method 1>
10 g of the above lithium-containing oxide fines, 15 g of water, and 11 g of LiFSI were mixed in a beaker and subjected to ultrasonic treatment for 30 minutes using an ultrasonic cleaner to obtain a dispersion. This dispersion was further stirred for 30 minutes using a magnetic stirrer to obtain solid electrolyte slurry 1.
This solid electrolyte slurry 1 was vacuum dried at 40° C. and 20 Pa for 15 hours to obtain a powder. When the obtained powder was stored in a desiccator (humidity 5%) for several days and then analyzed in the atmosphere, it was confirmed that it had the above-mentioned X-ray diffraction characteristics and was in an amorphous state. Further, when the ionic conductivity was measured using the method described above, it was found to be 4.5×10 −3 S/cm. Further, the ratio of the LiFSI content to the content of the lithium-containing oxide was 1 in molar ratio, and the ratio of the water content was 9 in molar ratio. Regarding the elemental composition, Li=3, B=4, O=20, F=2, S=2, and N=1.
<固体電解質スラリー2の調製:上記工程1B~3B、方法1による固体電解質(I)の作製>
 上記のリチウム含有酸化物の微細物を10gと、水15gと、LiTFSIを17gとをビーカー中で混合して、超音波洗浄機を用いて30分間超音波処理して分散液を得た。この分散液をさらにマグネチックスターラーで30分間撹拌し、固体電解質スラリー2を得た。
 この固体電解質スラリー2を40℃、20Paで15時間真空乾燥して粉末を得た。得られた粉末をデシケータ(湿度5%)で数日保管した後、大気下で分析したところ、上述したX線回折特性を有しており、非晶状態であることを確認した。また、上述した方法でイオン伝導度を測定したところ、7.0×10-4S/cmであった。また、リチウム含有酸化物の含有量に対して、LiTFSIの含有量の比の値がモル比で1であり、水の含有量の比の値がモル比で10であった。元素組成については、Li=3、B=4、O=21、F=6、S=2、N=1、C=2であった。
<Preparation of solid electrolyte slurry 2: Preparation of solid electrolyte (I) by the above steps 1B to 3B and method 1>
10 g of the above lithium-containing oxide fines, 15 g of water, and 17 g of LiTFSI were mixed in a beaker and subjected to ultrasonic treatment for 30 minutes using an ultrasonic cleaner to obtain a dispersion. This dispersion was further stirred for 30 minutes using a magnetic stirrer to obtain solid electrolyte slurry 2.
This solid electrolyte slurry 2 was vacuum dried at 40° C. and 20 Pa for 15 hours to obtain a powder. When the obtained powder was stored in a desiccator (humidity 5%) for several days and then analyzed in the atmosphere, it was confirmed that it had the above-mentioned X-ray diffraction characteristics and was in an amorphous state. Further, when the ionic conductivity was measured using the method described above, it was found to be 7.0×10 −4 S/cm. Further, the ratio of the LiTFSI content to the content of the lithium-containing oxide was 1 in molar ratio, and the ratio of the water content was 10 in molar ratio. Regarding the elemental composition, Li=3, B=4, O=21, F=6, S=2, N=1, and C=2.
<正極スラリー1の調製>
 上記の固体電解質スラリー1の5.2gに、正極活物質を5.0gと、導電助剤としてカーボンナノチューブ(CNT)の6質量%水分散液(KJ特殊紙社製)4.8gを加え、マグネチックスターラーで30分攪拌して、正極スラリー1を得た。
<Preparation of positive electrode slurry 1>
To 5.2 g of the above solid electrolyte slurry 1, 5.0 g of the positive electrode active material and 4.8 g of a 6% by mass aqueous dispersion of carbon nanotubes (CNT) (manufactured by KJ Special Paper Co., Ltd.) as a conductive agent were added. The mixture was stirred using a magnetic stirrer for 30 minutes to obtain positive electrode slurry 1.
<正極スラリー2の調製>
 上記の固体電解質スラリー2の4.6gに、正極活物質を5.0gと、導電助剤としてカーボンナノチューブ(CNT)の6質量%水分散液(KJ特殊紙社製)4.8gを加え、マグネチックスターラーで30分攪拌して、正極スラリー2を得た。
<Preparation of positive electrode slurry 2>
To 4.6 g of the above solid electrolyte slurry 2, 5.0 g of the positive electrode active material and 4.8 g of a 6% by mass aqueous dispersion of carbon nanotubes (CNT) (manufactured by KJ Special Paper Co., Ltd.) as a conductive agent were added. The mixture was stirred using a magnetic stirrer for 30 minutes to obtain positive electrode slurry 2.
<負極スラリー1の調製>
 上記の固体電解質スラリー1の7.6gに、負極活物質を5.0gと、導電助剤としてCNTの6質量%水分散液(KJ特殊紙社製)9.8gを加え、マグネチックスターラーで30分攪拌して、負極スラリー1を得た。
<Preparation of negative electrode slurry 1>
To 7.6 g of the above solid electrolyte slurry 1, 5.0 g of the negative electrode active material and 9.8 g of a 6% by mass aqueous dispersion of CNT (manufactured by KJ Special Paper Co., Ltd.) as a conductive agent were added, and the mixture was stirred with a magnetic stirrer. After stirring for 30 minutes, negative electrode slurry 1 was obtained.
<負極スラリー2の調製>
 上記の固体電解質スラリー2の7.0gに、負極活物質を5.0gと、導電助剤としてCNTの6質量%水分散液(KJ特殊紙社製)9.8gを加え、マグネチックスターラーで30分攪拌して、負極スラリー2を得た。
<Preparation of negative electrode slurry 2>
To 7.0 g of the solid electrolyte slurry 2 above, 5.0 g of the negative electrode active material and 9.8 g of a 6% by mass aqueous dispersion of CNT (manufactured by KJ Special Paper Co., Ltd.) as a conductive agent were added, and the mixture was stirred with a magnetic stirrer. After stirring for 30 minutes, negative electrode slurry 2 was obtained.
<正極側積層体[固体電解質層/正極活物質層/Al又はTi集電体]の調製>
 上記の正極スラリー1又は2を、卓上塗工機を用いて、アプリケーターギャップ100μm、塗工速度30mm/sで、50μm厚のA4サイズAl又はTi箔上に塗布した。1時間、室温で放置後、上記の固体電解質スラリー1又は2を、卓上塗工機を用いて、アプリケーターギャップ200μm、塗工速度90mm/sで、正極スラリー塗膜上に重層塗布した。重層塗布膜を、相対湿度5%以下のデシケーター内に12時間保管して乾燥し、ハンドパンチで10mm径に打ち抜いて正極側積層体(固体電解質層/正極活物質層/Al又はTi集電体)を得た。なお、固体電解質層の厚さはおよそ60μmであった。
<Preparation of positive electrode side laminate [solid electrolyte layer/positive electrode active material layer/Al or Ti current collector]>
The above positive electrode slurry 1 or 2 was applied onto a 50 μm thick A4 size Al or Ti foil using a tabletop coater with an applicator gap of 100 μm and a coating speed of 30 mm/s. After being left at room temperature for 1 hour, the above solid electrolyte slurry 1 or 2 was coated in multiple layers on the positive electrode slurry coating using a tabletop coater at an applicator gap of 200 μm and a coating speed of 90 mm/s. The multilayer coating film was dried by storing it in a desiccator at a relative humidity of 5% or less for 12 hours, and punched out into a 10 mm diameter piece using a hand punch to form a positive electrode side laminate (solid electrolyte layer/positive electrode active material layer/Al or Ti current collector). ) was obtained. Note that the thickness of the solid electrolyte layer was approximately 60 μm.
<負極側積層体[固体電解質層/負極活物質層/Al又はTi集電体]の調製>
 上記の負極スラリー1又は2を、卓上塗工機を用いて、アプリケーターギャップ200μm、塗工速度30mm/sで、50μm厚のA4サイズAl又はTi箔上に塗布した。1時間、室温で放置後、上記の固体電解質スラリー1又は2を、卓上塗工機を用いて、アプリケーターギャップ300μm、塗工速度90mm/sで、負極スラリー塗膜上に重層塗布した。重層塗布膜を、相対湿度5%以下のデシケーター内に12時間保管して乾燥し、ハンドパンチで10mm径に打ち抜いて負極側積層体(固体電解質層/負極物質層/Al又はTi集電体)を得た。なお、固体電解質層の厚さはおよそ60μmであった。
<Preparation of negative electrode side laminate [solid electrolyte layer/negative electrode active material layer/Al or Ti current collector]>
The above negative electrode slurry 1 or 2 was applied onto a 50 μm thick A4 size Al or Ti foil using a tabletop coater with an applicator gap of 200 μm and a coating speed of 30 mm/s. After being left at room temperature for 1 hour, the solid electrolyte slurry 1 or 2 described above was coated in multiple layers on the negative electrode slurry coating using a desktop coater at an applicator gap of 300 μm and a coating speed of 90 mm/s. The multi-layer coating film was dried by storing it in a desiccator at a relative humidity of 5% or less for 12 hours, and punched out to a diameter of 10 mm using a hand punch to form a negative electrode side laminate (solid electrolyte layer/negative electrode material layer/Al or Ti current collector). I got it. Note that the thickness of the solid electrolyte layer was approximately 60 μm.
<塗布型二次電池の作製>
 上記で得た負極側積層体を、固体電解質層側が上を向くようにして宝泉社製の全固体電池評価セル(商品名:KP-SolidCell)の10mm径SUS台の上に置き、さらにその上に、上記で得た正極側積層体を固体電解質層側が下を向くようにして置いた。
 続いて、正極側積層体/負極側積層体の順に重ねてなるセルAの上側(正極側積層体側)から、内径10.2mmのテフロン(登録商標)製の管(以下、テフロン管という。)をはめ込み、テフロン管の上部の穴から10mm径、2mm厚の研磨Ti板を入れて正極積層体の上に置き、さらに10mm径、高さ2cmのTi棒を入れてTi板の上に置いた。
 続いて、KP-SolidCellの空洞内に水除去用のシリカゲルを1粒置いて、KP-SolidCellの上部筐体をはめ込んでダブルOリングと4点ボルトと蝶ナットを用いて封止した。KP-SolidCellの上部に敷設されている拘束圧印加機構にて、5Nmのトルク(30MPa相当)で上下からセルAを拘束した。
 続いて、KP-SolidCellを一旦開放してセルAを取り出し、拘束圧印加で染み出した余分な液状成分を拭き取った後、再度、上記と同様にしてKP-SolidCellにセルAをセットして、5Nmのトルク(30MPa相当)で拘束圧を印加した。
 その後、上部の蓋を開放した状態で、2時間凍結真空乾燥にかけてセルA内部の水分を充分に除去した。真空乾燥機からKP-SolidCellを取り出し後、上部の蓋をダブルOリングを介して閉めて封止した。40時間室温で放置した後、セルごと80℃で2時間加熱することにより、塗布型二次電池を作製した。この塗布型二次電池において、正極活物質層の厚さは80μm、固体電解質層の厚さは120μm、負極活物質層の厚さは100μmであった。
 表6に、二次電池の構成及び充放電試験の評価結果をまとめて記載する。
<Production of coating type secondary battery>
Place the negative electrode side laminate obtained above on a 10 mm diameter SUS stand of an all-solid battery evaluation cell manufactured by Hosensha (product name: KP-SolidCell) with the solid electrolyte layer side facing upward, and then The positive electrode side laminate obtained above was placed on top with the solid electrolyte layer side facing down.
Next, a tube made of Teflon (registered trademark) with an inner diameter of 10.2 mm (hereinafter referred to as a Teflon tube) is inserted from the upper side (positive electrode side laminate side) of Cell A, which is made by stacking the positive electrode side laminate/negative electrode side laminate in this order. A polished Ti plate with a diameter of 10 mm and a thickness of 2 mm was inserted into the hole at the top of the Teflon tube and placed on top of the positive electrode stack, and a Ti rod with a diameter of 10 mm and a height of 2 cm was inserted and placed on the Ti plate. .
Next, a drop of silica gel for water removal was placed in the cavity of the KP-SolidCell, and the upper casing of the KP-SolidCell was fitted and sealed using a double O-ring, four-point bolts, and a wing nut. Cell A was restrained from above and below with a torque of 5 Nm (equivalent to 30 MPa) using a restraining pressure applying mechanism installed on the top of the KP-SolidCell.
Next, once open the KP-SolidCell and take out the cell A, wipe off the excess liquid component that seeped out due to the application of confining pressure, and then set the cell A in the KP-SolidCell again in the same manner as above. A confining pressure was applied with a torque of 5 Nm (equivalent to 30 MPa).
Thereafter, the moisture inside the cell A was sufficiently removed by freeze-vacuum drying for 2 hours with the upper lid open. After taking out the KP-SolidCell from the vacuum dryer, the upper lid was closed and sealed via a double O-ring. After leaving it at room temperature for 40 hours, the whole cell was heated at 80° C. for 2 hours to produce a coated secondary battery. In this coating type secondary battery, the thickness of the positive electrode active material layer was 80 μm, the thickness of the solid electrolyte layer was 120 μm, and the thickness of the negative electrode active material layer was 100 μm.
Table 6 summarizes the configuration of the secondary battery and the evaluation results of the charge/discharge test.
(充放電試験)
 上記で得た塗布型二次電池に対し、拘束圧(30MPa)を印加し、27℃の温度条件下、充放電装置として東陽テクニカ社製の580-NOHFR(商品名)を用いて、以下の条件で充電及び放電を繰り返し行った。
 充電は、所望の電池電圧Eαになるまで一定の電流値Iβで行い、所望の電池電圧Eαになった後は電圧を一定(Eα)にして、電流値が2.4Cになるまで行った。なお、電池電圧Eαは後述の表に記載の平均電池電圧の値に応じて、平均電池電圧1.85Vの場合にはEαを2.3Vに、平均電池電圧2.35Vの場合にはEαを2.8Vに、平均電池電圧3.15Vの場合にはEαを3.4Vに、それぞれ設定した。
 充電後、回路を開放して10分間放置後、一定の電流値Iβで、電池電圧が1.5Vになるまで放電を行った。
 ここまでの充電及び放電を1サイクルとした。
 放電後、回路を開放して10分間放置後、次の充電に移り、同様の条件で充電及び放電を繰り返した。
 なお、上記充電及び放電において、電流値Iβは、電池の初期化として、1サイクル目の充放電においては0.2Cに設定して行い、以降の充放電においては3Cに設定し、充放電サイクル試験を行った。
 
 また、放電容量維持率(%)は下式により算出し、下記評価基準に基づき評価した。
  放電容量維持率(%)=(3C充放電50サイクル後の放電容量/3C充放電10サイクル後の放電容量)×100
 
 - 評価基準 - 
A:放電容量維持率が90%以上である。
B:放電容量維持率が80%以上90%未満である。
C:放電容量維持率が70%以上80%未満である。
D:放電容量維持率が70%未満である。
(Charge/discharge test)
A confining pressure (30 MPa) was applied to the coated secondary battery obtained above, and the following procedure was carried out under a temperature condition of 27°C using 580-NOHFR (trade name) manufactured by Toyo Technica as a charging/discharging device. Charging and discharging were repeated under the following conditions.
Charging is performed at a constant current value I β until the desired battery voltage E α is reached, and after the desired battery voltage E α is reached, the voltage is kept constant (E α ) and the current value becomes 2.4C. I went to In addition, the battery voltage E α is determined according to the value of the average battery voltage listed in the table below. When the average battery voltage is 1.85V, E α is set to 2.3V, and when the average battery voltage is 2.35V, E α is set to 2.3V. E α was set to 2.8V, and E α was set to 3.4V when the average battery voltage was 3.15V.
After charging, the circuit was opened and left for 10 minutes, and then discharged at a constant current value until the battery voltage reached 1.5V.
The charging and discharging up to this point was defined as one cycle.
After discharging, the circuit was opened and left for 10 minutes, and then the next charge was started, and charging and discharging were repeated under the same conditions.
In addition, in the above charging and discharging, the current value I β is set to 0.2C in the first charging and discharging cycle as battery initialization, and is set to 3C in the subsequent charging and discharging. A cycle test was conducted.

Further, the discharge capacity retention rate (%) was calculated by the following formula and evaluated based on the following evaluation criteria.
Discharge capacity retention rate (%) = (discharge capacity after 50 cycles of 3C charge/discharge/discharge capacity after 10 cycles of 3C charge/discharge) x 100

- Evaluation criteria -
A: The discharge capacity retention rate is 90% or more.
B: The discharge capacity retention rate is 80% or more and less than 90%.
C: The discharge capacity retention rate is 70% or more and less than 80%.
D: Discharge capacity retention rate is less than 70%.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<表の注>
 以下の記載において、各活物質の後ろに記載する値は、Li基準での放電電位である。
(正極活物質)
 LFP:LiFePO、3.4V、体積平均粒子径:10μm
 LCO:LiCoO、3.9V、体積平均粒子径:12μm
 NMC:LiNi1/3Mn1/3Co1/3、3.9V、体積平均粒子径:10μm
 LNLCO:LiNbOコート層を有するLCO、3.9V、体積平均粒子径:12μm
 LNMO:LiNi0.5Mn1.5、4.7V、体積平均粒子径:5μm
(負極活物質)
 LTO:LiTi12、1.55V、体積平均粒子径:7μm
 cLTO:カーボンコート層を有するLTO、1.55V、体積平均粒子径:10μm
 TNO:TiNb、1.55V、体積平均粒子径:10μm
<Table notes>
In the following description, the value written after each active material is the discharge potential on a Li basis.
(Cathode active material)
LFP: LiFePO 4 , 3.4V, volume average particle diameter: 10 μm
LCO: LiCoO 2 , 3.9V, volume average particle diameter: 12 μm
NMC: LiNi 1/3 Mn 1/3 Co 1/3 O 2 , 3.9V, volume average particle diameter: 10 μm
LNLCO: LCO with 3 coated layers of LiNbO, 3.9V, volume average particle size: 12 μm
LNMO: LiNi 0.5 Mn 1.5 O 4 , 4.7 V, volume average particle diameter: 5 μm
(Negative electrode active material)
LTO: Li 4 Ti 5 O 12 , 1.55V, volume average particle diameter: 7 μm
cLTO: LTO with carbon coat layer, 1.55V, volume average particle diameter: 10 μm
TNO: TiNb 2 O 7 , 1.55V, volume average particle diameter: 10 μm
 スラリーの正極、負極及びSE層(固体電解質層)の欄に記載の番号1又は2は、各層の形成に用いた正極スラリー、負極スラリー及び固体電解質スラリーの番号1又は2をそれぞれ示す。
 活物質の正極及び負極の欄に記載の活物質は、各層の形成に用いた正極スラリー及び負極スラリーで使用した活物質の種類をそれぞれ示す。
 平均電池電圧(単位:V)は、正極活物質のLi基準での放電電位から負極活物質のLi基準での放電電位を引いた値である。
 理論容量(単位:mAh/g)は、活物質の理論放電容量から算出した値である。
The number 1 or 2 in the column of positive electrode, negative electrode, and SE layer (solid electrolyte layer) of the slurry indicates the number 1 or 2 of the positive electrode slurry, negative electrode slurry, and solid electrolyte slurry, respectively, used to form each layer.
The active materials described in the positive electrode and negative electrode columns indicate the types of active materials used in the positive electrode slurry and negative electrode slurry used to form each layer, respectively.
The average battery voltage (unit: V) is a value obtained by subtracting the Li-based discharge potential of the negative electrode active material from the Li-based discharge potential of the positive electrode active material.
The theoretical capacity (unit: mAh/g) is a value calculated from the theoretical discharge capacity of the active material.
 上記表6から、固体電解質(I)を含む固体電解質層を有する本発明の二次電池は、1.3V以上の広い電位窓を達成し、優れた充放電サイクル特性を示すことがわかった。 From Table 6 above, it was found that the secondary battery of the present invention having a solid electrolyte layer containing solid electrolyte (I) achieved a wide potential window of 1.3 V or more and exhibited excellent charge-discharge cycle characteristics.
[製造例2]圧粉型二次電池の製造
<固体電解質粉末1の調製:上記工程1B~3B、方法1による固体電解質(I)の作製>
 上記製造例1で調製したリチウム含有酸化物の微細物を10gと、水15gと、LiFSIの11gとをビーカー中で混合して、超音波洗浄機を用いて30分間超音波処理(分散)した後、さらに、マグネチックスターラーで30分攪拌、分散して、固体電解質スラリーを得た。得られたスラリーを、40℃、10Paで12時間、凍結真空乾燥することにより、固体電解質粉末1を得た。
[Production Example 2] Production of a compacted powder type secondary battery <Preparation of solid electrolyte powder 1: Production of solid electrolyte (I) by the above steps 1B to 3B and method 1>
10 g of the lithium-containing oxide fines prepared in Production Example 1 above, 15 g of water, and 11 g of LiFSI were mixed in a beaker, and the mixture was sonicated (dispersed) for 30 minutes using an ultrasonic cleaner. After that, the mixture was further stirred and dispersed using a magnetic stirrer for 30 minutes to obtain a solid electrolyte slurry. Solid electrolyte powder 1 was obtained by freeze-vacuum drying the obtained slurry at 40° C. and 10 Pa for 12 hours.
<正極合材粉末1の調製>
 上記の固体電解質粉末1を100mgと、正極活物質を150mgと、導電助剤カーボンブラック(デンカ社製)を3mgとを乳鉢混合して、正極合材粉末1を得た。
<Preparation of positive electrode composite powder 1>
100 mg of the solid electrolyte powder 1, 150 mg of the positive electrode active material, and 3 mg of the conductive agent carbon black (manufactured by Denka Corporation) were mixed in a mortar to obtain a positive electrode composite powder 1.
<負極合材粉末1の調製>
 上記の固体電解質粉末1を60mgと、負極活物質を120mgと、導電助剤カーボンブラック(デンカ社製)を3mgとを乳鉢混合して、負極合材粉末1を得た。
<Preparation of negative electrode composite powder 1>
60 mg of the solid electrolyte powder 1, 120 mg of the negative electrode active material, and 3 mg of the conductive agent carbon black (manufactured by Denka Corporation) were mixed in a mortar to obtain negative electrode composite powder 1.
<圧粉成型体の製造>
 圧粉成型用SUS管(内径10mm)下部の穴に10mm径のSUSパンチ(短尺)を差し込み、SUS管上部の穴から上記の固体電解質粉末1を入れて均した。上部の穴からSUSパンチ(長尺)を差し込んで油圧式プレス器を用いて50MPaにて10秒加圧し、圧力を開放してSUSパンチ(長尺)をSUS管から抜きとった。
 続いて、SUS管上部の穴から負極合材粉末1を入れ、固体電解質粉末1の圧粉層上に均した。上部の穴からSUSパンチ(長尺)を差し込んで油圧式プレス器を用いて50MPaにて10秒加圧し、圧力を開放した後、上側にSUSパンチ(長尺)/SUS管/SUSパンチ(短尺)が下側にある状態から上下をひっくり返して、SUSパンチ(短尺)が上側になるようにした後、SUS管からSUSパンチ(短尺)を抜きとった。
 SUS管上部の穴から正極合材粉末1を入れ、固体電解質粉末1の圧粉層上に均した。上部の穴からSUSパンチ(短尺)を差し込んで油圧式プレス器を用いて200MPaにて10秒加圧し、圧力を開放して、パンチ抜き器を用いて、負極合材粉末1の圧粉層/固体電解質粉末1の圧粉層/正極合材粉末1の圧粉層の順に積層された圧粉成型体を取り出し、染み出た余分な液成分を拭き取った。
<Manufacture of compacted powder body>
A 10 mm diameter SUS punch (short length) was inserted into the hole at the bottom of a SUS tube for powder compaction (inner diameter 10 mm), and the solid electrolyte powder 1 was poured into the hole at the top of the SUS tube and leveled. A SUS punch (long length) was inserted through the upper hole, pressurized at 50 MPa for 10 seconds using a hydraulic press, the pressure was released, and the SUS punch (long length) was pulled out from the SUS pipe.
Subsequently, negative electrode composite powder 1 was introduced through the hole at the top of the SUS tube and leveled on the compacted powder layer of solid electrolyte powder 1. Insert the SUS punch (long) through the hole at the top, apply pressure at 50 MPa for 10 seconds using a hydraulic press, release the pressure, and then insert the SUS punch (long) / SUS pipe / SUS punch (short) into the upper part. ) was on the bottom side, and then turned it upside down so that the SUS punch (short length) was on the top side, and then the SUS punch (short length) was removed from the SUS tube.
Positive electrode composite powder 1 was put into the hole at the top of the SUS tube and leveled on the compacted powder layer of solid electrolyte powder 1. Insert a SUS punch (short length) into the upper hole, apply pressure at 200 MPa for 10 seconds using a hydraulic press, release the pressure, and use a puncher to remove the compacted powder layer of negative electrode composite powder 1. The compacted powder body in which the compacted powder layer of solid electrolyte powder 1/the compacted powder layer of positive electrode composite powder 1 were laminated in this order was taken out, and the excess liquid component that had seeped out was wiped off.
<圧粉型二次電池の作製>
 10mm径に打抜いた50μm厚のAl箔(負極側集電体)を宝泉社製の全固体電池評価セル(商品名:KP-SolidCell)の10mm径SUS台の上に置き、その上に上記で得た圧粉成型体を負極側を下にして置いた。内径10.2mmのテフロン管をはめ込み、テフロン管の上部の穴から10mm径に打抜いた50μm厚のAl箔(正極側集電体)を入れ、その上に10mm径、2mm厚の研磨Ti板を置いて、さらに10mm径、高さ2cmのTi棒を入れてTi板の上に置いた。
 続いて、KP-SolidCellの空洞内に水除去用のシリカゲルを1粒置いて、KP-SolidCellの上部筐体をはめ込んでダブルOリングと4点ボルトと蝶ナットを用いて封止した。KP-SolidCellの上部に敷設されている拘束圧印加機構にて、9Nmのトルク(60MPa相当)で上下からセルBを拘束した。ここで、セルBとは、負極側集電体/圧粉成型体/正極側集電体の順に重ねてなるセルを意味する。
 続いて、KP-SolidCellを一旦開放してセルBを取り出し、拘束圧印加で染み出した余分な液状成分を拭き取った後、再度、上記と同様にしてKP-SolidCellにセルBをセットして、9Nmのトルク(60MPa相当)で拘束圧を印加した。
 その後、上部の蓋を開放した状態で、2時間凍結真空乾燥にかけてセルB内部の水分を充分に除去した。真空乾燥機からKP-SolidCellを取り出し後、上部の蓋をダブルOリングを介して閉めて封止した。40時間室温で放置した後、セルごと80℃で2時間加熱することにより、圧粉型二次電池を作製とした。この圧粉型二次電池において、正極活物質層の厚さは100μm、固体電解質層の厚さは200μm、負極活物質層の厚さは100μmであった。
 表7に、二次電池の構成及び充放電試験の評価結果をまとめて記載する。
<Production of powder-type secondary battery>
Place a 50 μm thick Al foil (negative electrode side current collector) punched to a diameter of 10 mm on a 10 mm diameter SUS stand of an all-solid battery evaluation cell (product name: KP-SolidCell) manufactured by Hosensha, and place it on top of it. The powder compact obtained above was placed with the negative electrode side facing down. Insert a Teflon tube with an inner diameter of 10.2 mm, insert a 50 μm thick Al foil (positive electrode side current collector) punched to a diameter of 10 mm through the hole at the top of the Teflon tube, and place a polished Ti plate with a diameter of 10 mm and a thickness of 2 mm on top of it. A Ti rod with a diameter of 10 mm and a height of 2 cm was further inserted and placed on the Ti plate.
Next, a drop of silica gel for water removal was placed in the cavity of the KP-SolidCell, and the upper casing of the KP-SolidCell was fitted and sealed using a double O-ring, four-point bolts, and a wing nut. Cell B was restrained from above and below with a torque of 9 Nm (equivalent to 60 MPa) using a restraining pressure applying mechanism installed on the top of the KP-SolidCell. Here, the cell B means a cell formed by stacking a negative electrode side current collector/a compacted powder body/a positive electrode side current collector in this order.
Next, once open the KP-SolidCell and take out the cell B, wipe off the excess liquid component that seeped out due to the application of confining pressure, and then set the cell B in the KP-SolidCell again in the same manner as above. A confining pressure was applied with a torque of 9 Nm (equivalent to 60 MPa).
Thereafter, with the upper lid open, the cell B was subjected to freeze-vacuum drying for 2 hours to sufficiently remove moisture inside the cell B. After taking out the KP-SolidCell from the vacuum dryer, the upper lid was closed and sealed via a double O-ring. After leaving it at room temperature for 40 hours, the whole cell was heated at 80° C. for 2 hours to produce a powder-type secondary battery. In this compacted powder type secondary battery, the thickness of the positive electrode active material layer was 100 μm, the thickness of the solid electrolyte layer was 200 μm, and the thickness of the negative electrode active material layer was 100 μm.
Table 7 summarizes the configuration of the secondary battery and the evaluation results of the charge/discharge test.
(充放電試験)
 上記で得た圧粉型二次電池に対し、拘束圧(60MPa)を印加し、27℃の温度条件下、充放電装置として東陽テクニカ社製の580-NOHFR(商品名)を用いて、以下の条件で充電及び放電を繰り返し行った。
 充電は、電池電圧が2.8Vになるまで一定の電流値Iβで行い、2.8Vになった後は電圧を一定(2.8V)にして、電流値が2.4Cになるまで行った。
 充電後、回路を開放して10分間放置後、一定の電流値Iβで、電池電圧が1.5Vになるまで放電を行った。
 ここまでの充電及び放電を1サイクルとした。
 放電後、回路を開放して10分間放置後、次の充電に移り、同様の条件で充電及び放電を繰り返した。
 なお、上記充電及び放電において、電流値Iβは、電池の初期化として、1サイクル目の充放電においては0.2Cに設定して行い、以降の充放電においては3Cに設定し、充放電サイクル試験を行った。
 
 また、放電容量維持率(%)は下式により算出し、下記評価基準に基づき評価した。
  放電容量維持率(%)=(3C充放電50サイクル後の放電容量/3C充放電10サイクル後の放電容量)
 
 - 評価基準 - 
A:放電容量維持率が90%以上である。
B:放電容量維持率が80%以上90%未満である。
C:放電容量維持率が70%以上80%未満である。
D:放電容量維持率が70%未満である。
(Charge/discharge test)
A confining pressure (60 MPa) was applied to the powder-type secondary battery obtained above, and the following procedure was performed under the temperature condition of 27°C using 580-NOHFR (trade name) manufactured by Toyo Technica as a charging/discharging device. Charging and discharging were repeated under these conditions.
Charging was performed at a constant current value until the battery voltage reached 2.8V, and after reaching 2.8V, the voltage was kept constant (2.8V) and continued until the current value reached 2.4C. Ta.
After charging, the circuit was opened and left for 10 minutes, and then discharged at a constant current value until the battery voltage reached 1.5V.
The charging and discharging up to this point was defined as one cycle.
After discharging, the circuit was opened and left for 10 minutes, and then the next charge was started, and charging and discharging were repeated under the same conditions.
In addition, in the above charging and discharging, the current value I β is set to 0.2C in the first charging and discharging cycle as battery initialization, and is set to 3C in the subsequent charging and discharging. A cycle test was conducted.

Further, the discharge capacity retention rate (%) was calculated by the following formula and evaluated based on the following evaluation criteria.
Discharge capacity retention rate (%) = (discharge capacity after 50 cycles of 3C charge/discharge/discharge capacity after 10 cycles of 3C charge/discharge)

- Evaluation criteria -
A: The discharge capacity retention rate is 90% or more.
B: The discharge capacity retention rate is 80% or more and less than 90%.
C: The discharge capacity retention rate is 70% or more and less than 80%.
D: Discharge capacity retention rate is less than 70%.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<表の注>
 各活物質、平均電池電圧、理論容量については、上記表6の注に記載の通りである。
<Table notes>
Each active material, average battery voltage, and theoretical capacity are as described in the notes of Table 6 above.
 上記表7から、固体電解質(I)を含む固体電解質層を有する本発明の二次電池は、1.3V以上の広い電位窓を達成し、優れた充放電サイクル特性を示すことがわかった。 From Table 7 above, it was found that the secondary battery of the present invention having a solid electrolyte layer containing solid electrolyte (I) achieved a wide potential window of 1.3 V or more and exhibited excellent charge-discharge cycle characteristics.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the invention has been described in conjunction with embodiments thereof, we do not intend to limit our invention in any detail in the description unless otherwise specified and contrary to the spirit and scope of the invention as set forth in the appended claims. I believe that it should be interpreted broadly without any restrictions.
 本願は、2022年6月1日に日本国で特許出願された特願2022-089964に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2022-089964, which was filed in Japan on June 1, 2022, and the contents thereof are incorporated herein by reference. Incorporate it as a part.
 1   負極集電体
 2   負極活物質層
 3   固体電解質層
 4   正極活物質層
 5   正極集電体
 6   作動部位
 10  全固体リチウムイオン二次電池

 
1 Negative electrode current collector 2 Negative electrode active material layer 3 Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 10 All-solid-state lithium ion secondary battery

Claims (9)

  1.  正極層と固体電解質層と負極層とをこの順に配してなる全固体リチウムイオン二次電池であって、
     前記固体電解質層は、Li、B及びOを含むリチウム含有酸化物とリチウム塩と水とを含む固体電解質を含み、該固体電解質中、前記リチウム含有酸化物の含有量に対して、前記リチウム塩の含有量の比の値がモル比で0.001~1.5であり、水の含有量の比の値がモル比で1~12であり、
     前記正極層に含まれる正極活物質と前記負極層に含まれる負極活物質とのLi基準での放電電位の差が1.3V以上である、全固体リチウムイオン二次電池。
    An all-solid lithium ion secondary battery comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer arranged in this order,
    The solid electrolyte layer includes a solid electrolyte containing a lithium-containing oxide containing Li, B, and O, a lithium salt, and water, and in the solid electrolyte, the lithium salt is The value of the ratio of the content of is 0.001 to 1.5 in molar ratio, the value of the ratio of the content of water is 1 to 12 in molar ratio,
    An all-solid-state lithium ion secondary battery, wherein a difference in discharge potential based on Li between a positive electrode active material contained in the positive electrode layer and a negative electrode active material contained in the negative electrode layer is 1.3 V or more.
  2.  前記リチウム含有酸化物が、Li2+x4+y7+zを含む、請求項1に記載の全固体リチウムイオン二次電池。
     ただし、-0.3<x<0.3、-0.3<y<0.3、-0.3<z<0.3である。
    The all-solid-state lithium ion secondary battery according to claim 1, wherein the lithium-containing oxide includes Li2 +xB4 + yO7+z .
    However, -0.3<x<0.3, -0.3<y<0.3, and -0.3<z<0.3.
  3.  前記正極活物質が、LiCoO、LiNiO、LiNi0.85Co0.10Al0.05、LiNi1/3Mn1/3Co1/3、LiMnO-LiNiMnCoO、LiMn、LiNi0.5Mn1.5、LiFePO、LiMnPO、LiCoPO、LiCoP及びLiNiPOのうちの少なくとも1種を含み、
     前記負極活物質が、LiTi12、TiNb、Fe、黒鉛、ハードカーボン、Si、SiO、Sn、Al及び金属Liのうちの少なくとも1種を含み、
     前記正極活物質と前記負極活物質とのLi基準での放電電位の差が1.3V以上である、請求項1又は2に記載の全固体リチウムイオン二次電池。
    The positive electrode active material is LiCoO 2 , LiNiO 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , Li 2 MnO 3 -LiNiMnCoO 2 , Containing at least one of LiMn2O4 , LiNi0.5Mn1.5O4 , LiFePO4 , LiMnPO4 , LiCoPO4 , Li2CoP2O7 and LiNiPO4 ,
    The negative electrode active material contains at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metal Li,
    The all-solid-state lithium ion secondary battery according to claim 1 or 2, wherein a difference in discharge potential between the positive electrode active material and the negative electrode active material based on Li is 1.3 V or more.
  4.  前記負極活物質のLi基準での放電電位が2.5V以下である、請求項1~3のいずれか1項に記載の全固体リチウムイオン二次電池。 The all-solid-state lithium ion secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material has a discharge potential of 2.5 V or less based on Li.
  5.  前記負極活物質が、LiTi12、TiNb、Fe、黒鉛、ハードカーボン、Si、SiO、Sn、Al及び金属Liのうちの少なくとも1種である、請求項4に記載の全固体リチウムイオン二次電池。 4 . The negative electrode active material is at least one of Li 4 Ti 5 O 12 , TiNb 2 O 7 , Fe 3 O 4 , graphite, hard carbon, Si, SiO, Sn, Al, and metal Li. The all-solid-state lithium ion secondary battery described in .
  6.  前記正極活物質のLi基準での放電電位が3.8V以上である、請求項1~5のいずれか1項に記載の全固体リチウムイオン二次電池。 The all-solid-state lithium ion secondary battery according to any one of claims 1 to 5, wherein the positive electrode active material has a discharge potential of 3.8 V or more based on Li.
  7.  前記正極活物質が、LiCoO、LiMnO-LiNiMnCoO、LiMn、LiNi0.5Mn1.5、LiMnPO、LiCoPO、LiCoP及びLiNiPOのうちの少なくとも1種である、請求項6に記載の全固体リチウムイオン二次電池。 The positive electrode active material is selected from LiCoO 2 , Li 2 MnO 3 -LiNiMnCoO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiMnPO 4 , LiCoPO 4 , Li 2 CoP 2 O 7 and LiNiPO 4 . The all-solid-state lithium ion secondary battery according to claim 6, which is at least one type of.
  8.  前記全固体リチウムイオン二次電池の製造において、前記固体電解質の分散液を塗布して前記固体電解質層を形成することを含む、請求項1~7のいずれか1項に記載の全固体リチウムイオン二次電池の製造方法。 The all-solid lithium ion battery according to any one of claims 1 to 7, wherein the manufacturing of the all-solid lithium ion secondary battery includes forming the solid electrolyte layer by applying a dispersion of the solid electrolyte. A method for manufacturing a secondary battery.
  9.  前記全固体リチウムイオン二次電池の製造において、前記固体電解質の粉末に圧力を印加して前記固体電解質層を形成することを含む、請求項1~7のいずれか1項に記載の全固体リチウムイオン二次電池の製造方法。 The all-solid lithium according to any one of claims 1 to 7, wherein the manufacturing of the all-solid lithium ion secondary battery includes forming the solid electrolyte layer by applying pressure to the solid electrolyte powder. A method for manufacturing an ion secondary battery.
PCT/JP2023/020287 2022-06-01 2023-05-31 All-solid-state lithium ion secondary battery and method for producing all-solid-state lithium ion secondary battery WO2023234351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022089964 2022-06-01
JP2022-089964 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023234351A1 true WO2023234351A1 (en) 2023-12-07

Family

ID=89024898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020287 WO2023234351A1 (en) 2022-06-01 2023-05-31 All-solid-state lithium ion secondary battery and method for producing all-solid-state lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2023234351A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112421A (en) * 2019-05-13 2019-08-09 浙江锋锂新能源科技有限公司 Non-contact mixed solid-liquid electrolyte lithium storage battery and preparation method thereof
WO2021193204A1 (en) * 2020-03-23 2021-09-30 富士フイルム株式会社 Composite, lithium ion conductor, all-solid lithium ion secondary battery, electrode sheet for all-solid lithium ion secondary battery, and lithium tetraborate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112421A (en) * 2019-05-13 2019-08-09 浙江锋锂新能源科技有限公司 Non-contact mixed solid-liquid electrolyte lithium storage battery and preparation method thereof
WO2021193204A1 (en) * 2020-03-23 2021-09-30 富士フイルム株式会社 Composite, lithium ion conductor, all-solid lithium ion secondary battery, electrode sheet for all-solid lithium ion secondary battery, and lithium tetraborate

Similar Documents

Publication Publication Date Title
US20200251774A1 (en) All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
Kaur et al. Surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance
JP4948510B2 (en) All solid battery
JP7377502B2 (en) Composite, lithium ion conductor, all solid lithium ion secondary battery, electrode sheet for all solid lithium ion secondary battery, lithium tetraborate
WO2022118870A2 (en) Lithium-based solid electrolyte, inorganic solid electrolyte, lithium-based solid electrolyte production method, modified positive electrode active material, modified negative electrode active material, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, solid electrolyte sheet, electrode for all-solid-state secondary battery
JP6621532B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY AND ALL-SOLID SECONDARY BATTERY, AND SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY
JP6928122B2 (en) Solid electrolyte composition and method for producing the same, solid electrolyte-containing sheet, and electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery.
EP4257549A1 (en) Oxide solid electrolyte, binder, solid electrolyte layer, active material, electrode, and all-solid-state secondary battery
US11658282B2 (en) Composition for forming active material layer and method for manufacturing the same, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
KR102381363B1 (en) Li6P2S8I SOLID ELECTROLYTE AND LITHIUM ION BATTERY INCLUDING THE SAME
CA3173433A1 (en) New lithium rare-earth halides
WO2023234351A1 (en) All-solid-state lithium ion secondary battery and method for producing all-solid-state lithium ion secondary battery
WO2023234349A1 (en) All-solid-state lithium-ion secondary battery and method for manufacturing all-solid-state lithium-ion secondary battery
WO2012105799A2 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
WO2023234352A1 (en) All-solid-state lithium-ion secondary battery and method for manufacturing all-solid-state lithium-ion secondary battery
WO2023234350A1 (en) Wound all-solid-state lithium ion secondary battery and method for producing wound all-solid-state lithium ion secondary battery
EP3713003A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, solid-state rechargeable battery, and method for producing solid electrolyte-containing sheet and solid-state rechargeable battery
WO2023234358A1 (en) Electrode composition for all-solid-state secondary batteries, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and methods for producing electrode sheet for all-solid-state secondary batteries and for producing all-solid-state secondary battery
WO2023234359A1 (en) Electrode composition for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for producing electrode sheet for all-solid-state secondary battery and producing all-solid-state secondary battery
WO2023234209A1 (en) Lithium-based solid electrolyte, method for producing lithium-based solid electrolyte, modified positive electrode active material, modified negative electrode active material, all-solid-state secondary battery, electrode sheet for all-solid-state secondary batteries, solid electrolyte sheet, and electrode for all-solid-state secondary batteries
WO2023234357A1 (en) Active material recovery method
WO2024096111A1 (en) Composite electrolyte, electrolyte for battery, and battery
Zhou Designing Electrolytes and Electrode-electrolyte Interfaces for Next-Generation Lithium Metal Batteries
WO2021191057A1 (en) New solid sulfide electrolytes
CN116507587A (en) Oxide solid electrolyte, binder, solid electrolyte layer, active material, electrode, and all-solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816108

Country of ref document: EP

Kind code of ref document: A1