WO2023234232A1 - Method for producing (meth)acrylate mixture and method for producing renewable resource-derived (meth)acrylate mixture - Google Patents

Method for producing (meth)acrylate mixture and method for producing renewable resource-derived (meth)acrylate mixture Download PDF

Info

Publication number
WO2023234232A1
WO2023234232A1 PCT/JP2023/019834 JP2023019834W WO2023234232A1 WO 2023234232 A1 WO2023234232 A1 WO 2023234232A1 JP 2023019834 W JP2023019834 W JP 2023019834W WO 2023234232 A1 WO2023234232 A1 WO 2023234232A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
compound
producing
component
Prior art date
Application number
PCT/JP2023/019834
Other languages
French (fr)
Japanese (ja)
Inventor
貴雅 磯
康之 佐内
忍 鏡味
桃子 吉岡
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2023234232A1 publication Critical patent/WO2023234232A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • C08G63/21Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to a method for producing a (meth)acrylate mixture, a method for producing a (meth)acrylate mixture derived from renewable resources, and a method for producing a composition containing the (meth)acrylate mixture obtained thereby.
  • Active energy ray-curable compositions can be cured by irradiation with active energy rays such as ultraviolet rays, visible light, and electron beams for a very short time, and are highly productive, making them suitable for applications such as inks, coating agents, and resist materials. Widely used.
  • active energy rays such as ultraviolet rays, visible light, and electron beams
  • As a component of the active energy ray curable composition (meth)acrylate is used, and polyester (meth)acrylate is known as one of them.
  • polyesters and acrylates have also been studied.
  • U.S. Pat. No. 5,001,302 discloses polyester polyols made from (a) recycled and digested polyester, (b) glycol, and (c) lignin or tannin.
  • the polyester polyol obtained above is converted into urethane and used as a raw material for a paint.
  • (meth)acrylate using the polyester polyol obtained in this process complicated steps are required to produce the polyester polyol, and there are concerns about high costs.
  • Patent Document 2 describes a radiation-curable coating agent for flooring materials containing polyacrylate, etc., which is a compound derived from renewable resources.
  • Patent Document 2 does not include any description regarding a purification process for removing the catalyst from the product, and there is concern about problems caused by the catalyst remaining in the product.
  • the main ingredient is sebacic acid, a vegetable oil derived from renewable resources, the hardness of the cured product is insufficient to be used as a coating agent, etc. there were.
  • the present inventors can obtain a desired (meth)acrylate mixture in high yield using a renewable resource-derived compound as a raw material, and the obtained (meth)acrylate mixture also corresponds to a renewable resource-derived compound,
  • the present inventors conducted a dehydration esterification reaction between (meth)acrylic acid and an alcohol having three or more hydroxyl groups in the presence of an acid catalyst, and achieved a specific hydroxyl value.
  • a step of obtaining a reaction solution containing a hydroxyl group-containing (meth)acrylate, and a step of obtaining a (meth)acrylate mixture with a specific hydroxyl value by adding dicarboxylic acid, diol, (meth)acrylic acid, etc. to the obtained reaction solution.
  • the method for producing (meth)acrylate mixtures which includes the step of neutralizing this mixture using a specific method, allows the use of raw materials derived from renewable resources and disposes of (meth)acrylates etc. dissolved in the aqueous phase.
  • the present invention was completed based on the discovery that all the reaction raw materials can be converted into products without any problems. The present invention will be explained in detail below.
  • a desired (meth)acrylate mixture can be obtained in high yield using a compound derived from renewable resources as a raw material, and can greatly contribute to reducing environmental load.
  • the (meth)acrylate mixture contained in the organic phase obtained by the production method of the present invention and the waste water after the neutralization and purification process serves as a raw material for a curable composition and has fast curing properties, and the cured product thereof is It has high hardness, excellent adhesion to plastic substrates, and low curling properties, so it can be preferably used as ink, coating agent, resist material, etc.
  • the wastewater after the neutralization and purification process which is normally disposed of as wastewater, also serves as a raw material for the curable composition, there is no need to dispose of the wastewater, making it possible to reduce the environmental burden.
  • FIG. 1 refers to a 1 H NMR chart of the organic phase acrylate obtained in Example 1-1.
  • FIG. 2 refers to a 1 H NMR chart of the aqueous phase acrylate obtained in Example 1-1.
  • the present invention relates to a method for producing a (meth)acrylate mixture in which the following steps 1 to 3 are performed sequentially.
  • ⁇ Step 1 (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups are subjected to a dehydration esterification reaction in the presence of an acid catalyst to produce a hydroxyl group-containing (meth) having a hydroxyl value of 55 to 175 mgKOH/g.
  • Step 2 of obtaining a reaction solution containing acrylate Step 2-1 or step 2-2 below to obtain a product with a hydroxyl value of 55 mgKOH/g or less Step 2-1;
  • (B) dicarboxylic acid, (C) diol, and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate to obtain a product.
  • ⁇ Step 3 A step of neutralizing the reaction solution obtained in Step 2 with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
  • the diol (C) is preferably used in a molar ratio of 1 to 50 times the total mole of the dicarboxylic acid (B).
  • the step 2 it is preferable to carry out the step 2-2.
  • at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
  • the present invention comprises a (meth)acrylate mixture obtained by sequentially performing steps 1 to 3, and (E) an ethylenically unsaturated compound other than the (meth)acrylate mixture [hereinafter referred to as "component (E)"]. ] It also relates to a method for producing a curable composition by stirring and mixing.
  • step 2-1 it is preferable to use the diol (C) in a molar ratio of 1 to 50 times the total mole of the dicarboxylic acid (B). Further, as the step 2, it is preferable to carry out the step 2-2.
  • at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
  • the (meth)acrylate mixture obtained by sequentially carrying out the above steps 1 to 3 and (E-1) a compound having one (meth)acryloyl group [hereinafter referred to as "(E-1)”] is used as the (E) component. 1) component”] and (E-2) a compound having two or more (meth)acryloyl groups [hereinafter referred to as "(E-2) component”],
  • a preferred production method involves stirring and mixing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2).
  • the (meth)acrylate mixture obtained in step 3 in the organic phase and/or in the aqueous phase after neutralization is used as a component of a curable composition. The method is preferred.
  • the present invention provides a manufacturing method in which the (meth)acrylate mixture obtained by sequentially performing the steps 1 to 3, the component (E), and the photopolymerization initiator (F-1) are stirred and mixed.
  • An active energy ray-curable composition using 0.01 to 20 parts by weight of (F-1) photoinitiator based on a total of 100 parts by weight of the (meth)acrylate mixture and component (E). It also relates to the manufacturing method.
  • step 2-1 (C) diol may be used in a molar ratio of 1 to 50 times with respect to 1 mole of dicarboxylic acid (B) in total. preferable. Further, as the step 2, it is preferable to carry out the step 2-2.
  • at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
  • the (meth)acrylate mixture obtained by sequentially carrying out the above steps 1 to 3, and a component containing the (E-1) component and (E-2) component as the (E) component A preferred production method involves stirring and mixing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2). Furthermore, after performing steps 1 to 3 in sequence, the (meth)acrylate mixture obtained in step 3 in the organic phase and/or in the aqueous phase after neutralization is used as a component of a curable composition. The method is preferred. Moreover, as the manufacturing method, a method for manufacturing an active energy ray-curable composition for ink or an active energy ray-curable composition for coating agent is preferable. The present invention will be explained in detail below.
  • step 1 (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups [hereinafter referred to as "compound (A)"] are subjected to a dehydration esterification reaction in the presence of an acid catalyst to obtain a hydroxyl value of 55.
  • step 1 This is a step to obtain a reaction solution containing hydroxyl group-containing (meth)acrylate of ⁇ 175 mgKOH/g.
  • Compound (A) is an alcohol having three or more hydroxyl groups, and various compounds can be used. Specific examples of compound (A) include trivalent or higher polyols such as glycerin, diglycerin, trimethylolpropane, trimethylolethane, pentaerythritol, ditrimethylolpropane, and dipentaerythritol, and alkylene oxides of these trivalent or higher polyols. Examples include adducts, tris(2-hydroxyethyl)isocyanurate, and the like.
  • the compound (A) is preferably a compound derived from renewable resources.
  • a compound derived from a renewable resource is a compound having a renewable resource structure, and more specifically refers to a biological raw material (biomass) and a compound produced from a biological raw material.
  • the renewable resource-derived compound plant-derived raw materials and compounds produced from plant-derived raw materials are preferred.
  • the dehydration esterification reaction may be carried out in a conventional manner, including a method of heating and stirring (meth)acrylic acid and compound (A) in the presence of an acid catalyst.
  • the ratio of (meth)acrylic acid used is preferably 0.05 mol to 20 mol, and 0.05 mol based on the total 1 mol of all hydroxyl groups of compound (A) so as to obtain the desired (meth)acrylate. ⁇ 5 mol is more preferred.
  • the proportion of (meth)acrylic acid used is preferably 0.625 to 0.875 mol, more preferably 0.7 to 0.8 mol, per 1 mol of compound (A).
  • acid catalysts include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and fluoroboric acid, organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid, and strong acidic cation type ion exchange resins. can be mentioned.
  • the proportion of the acid catalyst to be used is preferably 0.05 mol % to 20 mol % based on the total 1 mol of all hydroxyl groups of compound (A).
  • the dehydration esterification reaction may be carried out according to a conventional method.
  • the reaction temperature may be appropriately set depending on the raw materials used and the purpose, but from the viewpoint of shortening the reaction time and preventing polymerization, the reaction temperature is preferably 65 to 140°C, more preferably 75 to 120°C.
  • the reaction temperature is preferably 65 to 140°C, more preferably 75 to 120°C.
  • organic solvents include aromatic hydrocarbon compounds such as toluene, benzene, and xylene, aliphatic hydrocarbon compounds such as hexane and heptane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and chlorine-based solvents such as trichlorethylene and tetrachloroethylene. Examples include hydrocarbon compounds and ketones such as methyl ethyl ketone.
  • the amount of organic solvent used is preferably such that the organic solvent concentration in the reaction solution is 30 to 60% by weight, more preferably 40 to 50% by weight.
  • a polymerization inhibitor for the purpose of preventing polymerization of the (meth)acryloyl group, and furthermore, an oxygen-containing gas may be introduced into the reaction solution.
  • the polymerization inhibitor include hydroquinone, tert-butylhydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, benzoquinone, phenothiazine, and organic polymerization inhibitors such as N-oxyl compounds; inorganic polymerization inhibitors such as copper chloride and copper sulfate; and organic salt polymerization inhibitors such as copper dibutyldithiocarbamate.
  • the polymerization inhibitors may be used alone or in any combination of two or more.
  • the proportion of the polymerization inhibitor in the reaction solution is preferably 5 to 20,000 wtppm, more preferably 25 to 3,000 wtppm.
  • the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, and a mixed gas of oxygen and helium.
  • step 1 a reaction solution with a hydroxyl value of 55 to 175 mgKOH/g is obtained, preferably a reaction solution with a hydroxyl value of 105 to 115 mgKOH/g is obtained, and the reaction is stopped to reach the hydroxyl value. . If the hydroxyl value of the reaction solution exceeds 175 mgKOH/g, crosslinkable (meth)acrylate will be produced in Step 2, which may cause gelation or make stirring difficult. On the other hand, if the hydroxyl value of the reaction solution is less than 55 mgKOH/g, the proportion of the target (meth)acrylate contained in the final product will decrease significantly.
  • the hydroxyl value means a value measured according to JIS K 0070.
  • Step 2 is a step of performing Step 2-1 or Step 2-2 below to obtain a product having a hydroxyl value of 55 mgKOH/g or less.
  • Step 2-1; Add (B) dicarboxylic acid [hereinafter referred to as “compound (B)”], (C) diol [hereinafter referred to as “compound (B)”] to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1. C)] and (meth)acrylic acid to obtain the product.
  • Step 2-2 Compound (B) and (D) hydroxyalkyl (meth)acrylate [hereinafter referred to as “compound (D)"] are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1. Add to obtain the product.
  • step 2-1 compound (B), compound (C), and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1 to carry out a dehydration esterification reaction. .
  • compound (B), compound (C), and reaction method will be explained below.
  • Compound (B) is a dicarboxylic acid, and various compounds can be used. Specific examples of compound (B) include aliphatic dicarboxylic acids such as itaconic acid, succinic acid, fumaric acid, and adipic acid, aromatic dicarboxylic acids such as terephthalic acid, and heterocyclic skeletons such as 2,5-furandicarboxylic acid. Examples include dicarboxylic acids having the following.
  • the compound (B) is preferably a compound derived from renewable resources. Specific examples of the compound include itaconic acid, succinic acid, fumaric acid, adipic acid, and 2,5-furandicarboxylic acid, with itaconic acid being more preferred.
  • the proportion of compound (B) to be used is preferably 0.8 to 50 times, more preferably 0.9 to 1.1 times, per mole of the total number of moles of hydroxyl groups in the reaction solution obtained in step 1. It is twice the mole.
  • the proportion of compound (B) used is less than 0.8 times the mole, the proportion of (meth)acrylate having polyester units in the (meth)acrylate mixture decreases, and the highly hydrophilic component The amount increases and dissolves in water during the process of washing the reaction solution with water, causing loss of raw materials.
  • the proportion of compound (B) used is more than 50 times the molar ratio, the acrylate equivalent in the (meth)acrylate mixture decreases, which may lead to a decrease in the hardness of the resulting cured composition.
  • Compound (C) is a diol, and various compounds can be used. Specific examples of compound (C) include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyl glycol, and cyclic ether diols such as 2,5-tetrahydrofurandimethanol. , and diols having a heterocyclic skeleton such as 2,5-furandimethanol.
  • the compound (C) is preferably a compound derived from renewable resources. Specific examples of such compounds include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 2,5-tetrahydrofurandimethanol, and 2,5-furandimethanol.
  • the usage ratio of compound (C) is preferably 1 to 50 times, more preferably 1.3 to 1.5 times, per mole of compound (B). If the proportion of compound (C) used is less than 1 mole, the proportion of the target polyester diol will decrease, the proportion of dicarboxylic acid monoester as a by-product will increase, and furthermore, the proportion of dicarboxylic acid monoester produced as a by-product will increase. Since the ester dissolves in water during the process of washing the reaction solution with water, it may cause loss of raw materials.
  • the ratio of compound (C) used is more than 50 times the mole, the ratio of the target (meth)acrylate will decrease, resulting in a decrease in the acrylate equivalent of the reactant, resulting in a decrease in the hardness of the cured product of the composition. It may lead to
  • the ratio of (meth)acrylic acid added in reaction step 2-1 in step 2-1 is preferably 1.0 to 1.2 moles per mole of compound (C).
  • the hydroxyl value of the product at which step 2-1 is stopped is 55 mgKOH/g or less, preferably 35 mgKOH/g or less.
  • the hydroxyl value of the product exceeds 55 mgKOH/g, a large amount of hydrophilic components remain, resulting in a low yield of the desired (meth)acrylate.
  • step 2-1 the acid catalyst contained in the reactant of step 1 causes a dehydration esterification reaction between an acid and an alcohol to proceed, and reactions with various compounds proceed.
  • the reaction temperature in step 2-1 is preferably 75 to 110°C, more preferably 85 to 100°C.
  • the dehydration esterification reaction of acid and alcohol in step 2-1 includes dehydration esterification reaction of (meth)acrylic acid and alcohol, dehydration esterification reaction of compound (B) and compound (C), etc. progresses, and examples of the main reactions are listed below (2-1-1) to (2-1-6).
  • polyester (meth)acrylate (2-1-3) Production of (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1) or hydroxyl group-containing (meth)acrylate (2) and compound (B) (2-1-4) Production of (meth)acrylate by reaction of polyester diol (2) and compound (B) (2-1-5) Production of (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1), hydroxyl group-containing (meth)acrylate (2), and/or polyester diol (2) with compound (B) Generate (2-1-6) Production of (meth)acrylate by reaction of compound (C) and (meth)acrylic acid
  • the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound.
  • step 2-2 compound (B) and compound (D) are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1 to carry out a dehydration esterification reaction.
  • compound (B), compound (D), and reaction method will be explained below.
  • Compound (B) is a dicarboxylic acid, and various compounds can be used, specific examples of which include the same compounds as mentioned above.
  • the compound (B) is preferably a compound derived from renewable resources, and specific examples thereof include the same compounds as mentioned above.
  • the proportion of compound (B) to be used is preferably 0.8 to 50 times, more preferably 0.9 to 1.1 times, per mole of the total number of moles of hydroxyl groups in the reaction solution obtained in step 1. It is twice the mole.
  • the proportion of compound (B) used is less than 0.8 times the mole, the proportion of (meth)acrylate having polyester units in the (meth)acrylate mixture decreases, and the highly hydrophilic component The amount increases and dissolves in water during the process of washing the reaction solution with water, causing loss of raw materials.
  • the proportion of compound (B) used is more than 50 times the molar ratio, the acrylate equivalent in the (meth)acrylate mixture decreases, which may lead to a decrease in the hardness of the resulting cured composition.
  • Compound (D) is a hydroxyalkyl (meth)acrylate, and various compounds can be used. Specific examples of compound (D) include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
  • the compound (D) is preferably a compound derived from renewable resources. Specific examples of the compound include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate, with hydroxybutyl (meth)acrylate being more preferred.
  • the ratio of compound (D) to be used is preferably 1.0 to 2.0, more preferably 1.0 to 1.0, based on the total number of moles of the remaining (meth)acrylic acid from step 1 and compound (B). It is 5. If the ratio of compound (D) used is less than 1.0, a large amount of monoester of dicarboxylic acid will be produced, resulting in poor curability. If the ratio of compound (D) used is greater than 2.0, a large amount of di(meth)acrylate will be produced, resulting in poor curability.
  • the hydroxyl value of the product that terminates reaction step 2-2 in step 2-2 is 55 mgKOH/g or less, preferably 35 mgKOH/g or less.
  • the hydroxyl value of the product exceeds 55 mgKOH/g, a large amount of hydrophilic components remain, resulting in a low yield of the desired (meth)acrylate.
  • Step 2-2 the acid catalyst contained in the reactant of Step 1 causes a dehydration esterification reaction between the acid and the alcohol, and reactions with various compounds proceed.
  • the reaction temperature in step 2-2 is preferably 75 to 110°C, more preferably 85 to 100°C.
  • step 2-2 In the dehydration esterification reaction of acid and alcohol in step 2-2, the following (2-2-1) proceeds, and the following (2-2-2) proceeds as a side reaction.
  • the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound.
  • the obtained (meth)acrylate mixture has excellent curability, and the obtained cured product has physical properties such as hardness, adhesion, and low curling property. It is preferable because it has excellent properties.
  • Step 3 is a step in which acidic components in the reaction solution obtained in Step 2 are neutralized with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
  • the reaction solution obtained in step 2 contains acidic components such as unreacted (meth)acrylic acid and an acid catalyst in addition to the (meth)acrylate mixture that is the product.
  • the neutralization treatment in step 3 is performed for the purpose of removing acidic components such as unreacted (meth)acrylic acid and acid catalyst in the reaction solution.
  • the neutralization treatment is carried out by bringing the reaction solution into contact with a neutralizing agent, which is an alkaline aqueous solution. Specifically, it may be carried out according to a conventional method. For example, the neutralizing agent is added to the reaction solution, stirring and Examples include a method of mixing.
  • Examples of the amine compound in the neutralizing agent include ethylamine, ethylenediamine, diethylamine, pyrrolidine, piperidine, triethylamine, and pyridine.
  • an aqueous solution of ammonia and/or an aqueous solution of an amine compound is used as the neutralizing agent.
  • alkali metal salts such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and alkaline earth metal salts such as calcium hydroxide are not used as neutralizing agents, Wastewater can be made so-called metal-free, meaning that it does not contain metal compounds.
  • step 3 it is preferable to use an aqueous solution of ammonia and an aqueous solution of an ammonium salt, or an aqueous solution of an amine compound and an aqueous solution of an ammonium salt.
  • the ammonium salt include ammonium sulfate and the like.
  • concentrations of the ammonia aqueous solution and the amine compound aqueous solution may be appropriately set depending on the purpose, and are preferably 1 to 50% by weight, more preferably 10 to 20% by weight.
  • the proportion of the neutralizing agent used is preferably adjusted so that the base value is 1 to 1.5 times the acid value of the organic phase, preferably 1 to 1.5 times the acid value of the organic phase after preliminary water washing.
  • Step 3 which is a neutralization step
  • an organic solvent it is preferable to add an organic solvent to dilute the reaction solution obtained in Step 2 or to perform preliminary water washing before carrying out Step 3.
  • the organic solvent used for dilution is preferably the same compound as the organic solvent used in steps 1 and 2.
  • the dilution ratio of the organic solvent is preferably adjusted so that the total concentration of the organic solvent and the organic solvent after dilution is 50 to 70% by weight.
  • the water washing treatment may be performed only once, or may be performed multiple times.
  • an aqueous detergent an aqueous solution of ammonium salt or sodium salt can be used in combination, if necessary, in order to create a difference in specific gravity.
  • Specific examples include ammonium sulfate, sodium ammonium sulfate, and sodium chloride, with ammonium sulfate being more preferred for the purpose of being metal-free.
  • the water washing treatment may be performed only once or multiple times depending on the purpose.
  • the liquid after the neutralization treatment is separated into two layers, an organic phase and an aqueous phase, and since the organic phase has a lower specific gravity than the aqueous phase, the organic phase is separated into the upper layer and the lower aqueous phase.
  • the lower aqueous phase is drawn off and separated from the organic phase.
  • the method for using the separated organic phase may be appropriately selected depending on the contents of the organic phase. Examples of how to use the separated organic phase include using it as it is as a raw material for a curable composition, and using it as a raw material for a curable composition after distilling off the organic solvent.
  • the method for using the extracted aqueous phase may be appropriately selected depending on the contents of the aqueous phase.
  • the extracted aqueous phase can be used as it is as a raw material for a curable composition, after water is removed by distillation etc., it can be used as a raw material for a curable composition, or it can be disposed of. Can be mentioned.
  • the ( meth)acrylate mixture obtained by the production method of the present invention can be either the (meth)acrylate mixture in the organic phase obtained in the neutralization step of step 3 or the (meth)acrylate mixture in the aqueous phase. It is also possible to use meth)acrylate mixtures.
  • Examples of the (meth)acrylate mixture contained in the organic phase subjected to Step 2-1 and then Step 3 include the following (O-1-1) to (O-1-5).
  • (O-1-1) Metal-acrylate without hydroxyl group obtained in Step 1
  • (meth)acrylate without hydroxyl group obtained in Step 2 (O-1-2)
  • the (meth)acrylate mixture contained in the aqueous phase after Step 2-1 and Step 3 is a compound having a hydroxyl group and a (meth)acryloyl group, a compound having a carboxy group and a (meth)acryloyl group, etc.
  • Examples include (W-1-1) to (W-1-5) below. Note that the compound having a carboxyl group and a (meth)acryloyl group exists as an ammonium salt or a salt of an amine compound in the aqueous phase.
  • Examples of the (meth)acrylate mixture contained in the organic phase subjected to Step 3 through Step 2-2 include the following (O-2-1) and (O-2-2).
  • the (meth)acrylate mixture contained in the aqueous phase after Step 2-2 and Step 3 is a compound having a hydroxyl group and a (meth)acryloyl group, a compound having a carboxy group and a (meth)acryloyl group, etc. Examples include (W-2-1) to (W-2-4) below. Note that the compound having a carboxyl group and a (meth)acryloyl group exists as an ammonium salt or a salt of an amine compound in the aqueous phase.
  • the organic phase or aqueous phase containing the (meth)acrylate mixture can be used as is, or the (meth)acrylate mixture after removing the organic solvent or water from the organic phase or aqueous phase can be used. You can also do it.
  • the (meth)acrylate mixture obtained by the production method of the present invention can be used in various applications in which (meth)acrylates have conventionally been used.
  • it is suitably used in various industrial applications as a main component of a composition, a crosslinking component, or a reactive diluent component in applications such as coating agents such as paints, inks, adhesives, resists, fillers, and molding materials. be able to.
  • As a molding material it can also be used by processing it into shapes such as films and sheets, and the films and sheets can be used for optical applications such as optical lenses.
  • the (meth)acrylate mixture obtained by the production method of the present invention is preferably used as a component of a curable composition, and more preferably used as a coating agent and ink.
  • the components of the organic phase obtained in the neutralization step of step 3 can be used, or the components of the aqueous phase can be used.
  • the organic phase or aqueous phase containing the (meth)acrylate mixture can be used as is, or the (meth)acrylate mixture after evaporating the organic solvent or water in the organic phase or aqueous phase can be used. You can also do it.
  • the composition will be an organic solvent-based composition
  • the aqueous phase containing the (meth)acrylate mixture is used as it is, the composition will be an aqueous composition.
  • component (E) ethylenically unsaturated compounds other than the (meth)acrylate mixture obtained by the production method of the present invention
  • component (F) polymerization initiators
  • Component (E) includes a compound having one (meth)acryloyl group [hereinafter referred to as "component (E-1)”], and a compound having two or more (meth)acryloyl groups [hereinafter referred to as “component (E-1)”]. “component (E-2)”], etc.
  • Component (E-1) is a compound having one (meth)acryloyl group in one molecule.
  • Specific examples of component (E-1) include (meth)acrylate having one (meth)acryloyl group (hereinafter referred to as “monofunctional (meth)acrylate”); (meth)acrylamide compounds (hereinafter referred to as “monofunctional (meth)acrylamide”), etc.
  • monofunctional (meth)acrylates include: Methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, lauryl ( Alkyl (meth)acrylates such as meth)acrylate and stearyl (meth)acrylate; Cyclohexyl (meth)acrylate, menthyl acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate ) Monofunctional (meth)acrylates having alicyclic groups such as acrylates; Glycidyl
  • monofunctional (meth)acrylamide compounds include N-methyl (meth)acrylamide, Nn-propyl (meth)acrylamide, N-isopropyl (meth)acrylamide, Nn-butyl (meth)acrylamide, N- N-alkyl (meth)acrylamide such as -sec-butyl (meth)acrylamide, N-t-butyl (meth)acrylamide, N-n-hexyl (meth)acrylamide; N- such as N-hydroxyethyl (meth)acrylamide Hydroxyalkyl (meth)acrylamide; and N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide Acrylamide, N,N-di-n-propyl (meth)acrylamide, N,N-diisopropyl (
  • Component (E-1) is preferably a renewable resource-derived compound produced from a renewable resource-derived raw material.
  • Specific examples of the compound include octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, menthyl acrylate, and isobornyl (meth)acrylate.
  • the content ratio of component (E-1) may be appropriately set depending on the purpose, and it is preferably contained in the total amount of curable components from 0 to 20 parts by weight.
  • E-2) Component (E-2) Component is a compound having two or more (meth)acryloyl groups.
  • examples of compounds having two (meth)acryloyl groups include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • meth)acrylates and di(meth)acrylates of aliphatic diols such as nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate; Diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, etc.
  • polyalkylene glycol di(meth)acrylate Polyol di(meth)acrylate such as glycerin di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di(meth)acrylate, ditrimethylolpropane di(meth)acrylate and dipentaerythritol di(meth)acrylate ) acrylate; Di(meth)acrylate of glycerol alkylene oxide adduct, Di(meth)acrylate of pentaerythritol alkylene oxide adduct, Di(meth)acrylate of ditrimethylolpropane alkylene oxide adduct, Di(meth)acrylate of dipentaerythritol alkylene oxide adduct.
  • Polyol di(meth)acrylate such as glycerin di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaeryth
  • Di(meth)acrylates of polyol alkylene oxide adducts such as acrylates; Di(meth)acrylate of isocyanuric acid alkylene oxide adduct; Urethane (meth)acrylate of pentaerythritol di(meth)acrylate and organic polyisocyanate; Di(meth)acrylate of alicyclic diol such as tricyclodecane dimethylol di(meth)acrylate;
  • Examples include di(meth)acrylates of alkylene oxide adducts of bisphenol compounds, such as di(meth)acrylates of alkylene oxide adducts of bisphenol A and di(meth)acrylates of alkylene oxide adducts of bisphenol F.
  • examples of the alkylene oxide adducts mentioned above include ethylene oxide adducts, propylene oxide adducts, and ethylene oxide and propylene oxide adducts.
  • Examples of compounds having three or more (meth)acryloyl groups include glycerin tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri- or tetra(meth)acrylate, ditrimethylolpropane tri- or polyol poly(meth)acrylates such as tri-, tetra-, penta- or hexa(meth)acrylates of tetra(meth)acrylate and dipentaerythritol; Tri(meth)acrylate of glycerol alkylene oxide adduct, tri- or tetra(meth)acrylate of pentaerythritol alkylene oxide adduct, tri- or tetra(meth)acrylate of ditrimethylolpropane alkylene oxide adduct, diglycerol alkylene oxide adduct Poly(meth)acrylates of polyol alkylene oxide adducts
  • alkylene oxide adducts examples include ethylene oxide adducts, propylene oxide adducts, and ethylene oxide and propylene oxide adducts.
  • organic polyisocyanate tolylene diisocyanate, 1,6-hexane diisocyanate, 4,4'-diphenylmethane diisocyanate, polymethylene polyphenylisocyanate, 1,6-hexane diisocyanate trimer, hydrogenated tolylene diisocyanate, Hydrogenated 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, paraphenylene diisocyanate, tolylene diisocyanate dimer, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate interadduct, 4,4'- Examples include dicyclohexylmethane diisocyanate, trimethylo
  • oligomers can also be used, and examples include urethane (meth)acrylate, which is a reaction product of diol, organic polyisocyanate, and hydroxyl group-containing (meth)acrylate, and epoxy (meth)acrylate. I can do it.
  • Component (E-2) is preferably a renewable resource-derived compound produced from a renewable resource-derived raw material.
  • Specific examples of such compounds include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, di(meth)acrylate of glycerol alkylene oxide adducts, and glycerol triacrylate. Examples include (meth)acrylate and tetra(meth)acrylate of diglycerin alkylene oxide adduct.
  • the content ratio of the (E-2) component may be set as appropriate depending on the purpose. It is preferably contained in the total amount of 0 to 40 parts by weight (referred to as "curable component").
  • Component (F) is a polymerization initiator.
  • a photopolymerization initiator [hereinafter referred to as "component (F-1)"] is added to the composition. ].
  • component (F-1) is a compound that generates radicals upon irradiation with active energy rays and initiates polymerization of a compound having an ethylenically unsaturated group.
  • component (F-1) examples include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenyl Propan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, oligo 2-hydroxy-2-methyl-1-[4- (1-methylvinyl)phenyl]propanone, 2-hydroxy-1-[4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl]-2-methylpropan-1-one, 2-methyl- 1-[4-(Methylthio)]phenyl-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino-
  • the component (F-1) is ⁇ -hydroxyphenyl ketones, In the atmosphere, even a thin film coating has good surface hardening properties and is preferred. Specifically, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propan-1-one are preferred. More preferred.
  • the component (F-1) has excellent compatibility with water. and 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, phenyl Methyl glyoxylate is preferred.
  • component (F-2) a thermal polymerization initiator
  • component (F-2) various compounds can be used, including organic peroxides and azo compounds.
  • the present invention also relates to a method for producing a curable composition. That is, the present invention relates to a method for producing a curable composition in which a (meth)acrylate mixture and component (E) are stirred and mixed.
  • the present invention also relates to a method for producing an active energy ray-curable composition. That is, it is a manufacturing method in which a (meth)acrylate mixture, component (E), and component (F-1) are stirred and mixed, and 0.01 to 20 parts by weight of the curable components are mixed.
  • the present invention relates to a method for producing an active energy ray-curable composition using parts by weight of component (F).
  • step 2-1 compound (C) is preferably used in a molar ratio of 1 to 50 times per mole of compound (B) in total.
  • Step 2-2 the obtained (meth)acrylate mixture has excellent curability, and the obtained cured product has excellent physical properties such as hardness, adhesion, and low curling properties.
  • at least one of compound (A), compound (B), compound (C), and compound (D) contains a compound derived from a renewable resource.
  • a method for producing the composition a method of stirring and mixing the (meth)acrylate mixture and component (E) at the ratio shown below is preferable. Contains 40 to 100 parts by weight of a (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2) as component (E).
  • the (meth)acrylate mixture in the organic phase obtained in step 3 and/or the neutralized aqueous phase is converted into a hardening type.
  • it is used as a component of a composition.
  • Example [Method for producing acrylate mixture] 1-1.
  • Example 1-1 1) Process 1 In a 1 L four-necked flask with a side tube equipped with a reflux tube, 196 g of an ethylene oxide adduct of diglycerin as compound (A) [manufactured by Kao Corporation, Emulgen G2E-4] was placed. Hereinafter, it will be referred to as "G2E4". ], 119 g of acrylic acid (ratio of 0.76 mol to 1 mol of total hydroxyl groups in alcohol), 8.3 g of 70% methanesulfonic acid (hereinafter referred to as "MSA”), 0.6 g of cupric chloride, and toluene. 240g was added.
  • G2E4 ethylene oxide adduct of diglycerin as compound (A) [manufactured by Kao Corporation, Emulgen G2E-4] was placed. Hereinafter, it will be referred to as "G2E4".
  • reaction solution was heated and stirred at a temperature of 85 to 95°C.
  • oxygen-containing gas 5% by volume of oxygen, 95% by volume of nitrogen
  • the dehydration esterification reaction was carried out for 11 hours while the water produced was taken out of the system through a Dean-Stark tube.
  • the obtained reaction product had a hydroxyl value of 61 mgKOH/g.
  • step 2 After completion of step 1, the pressure was returned to normal pressure, and 71 g of itaconic acid (hereinafter referred to as "ITA”) was added as compound (B) and 1,4-butanediol (hereinafter referred to as “BDOH”) as compound (C). ), 56 g of acrylic acid (hereinafter referred to as “AA”), and 67 g of toluene were added, and while oxygen-containing gas was blown into the flask, the reaction solution was heated and stirred at a temperature of 85 to 95°C. As the reaction progressed, the dehydration esterification reaction was carried out for 13 hours while the water produced was taken out of the system through a Dean-Stark tube.
  • ITA itaconic acid
  • BDOH 1,4-butanediol
  • step 3 After the reaction in step 2 was completed, 389 g of toluene was added to dilute the reaction mixture. Furthermore, 106 g of distilled water was added, stirred, and left to stand, and then the lower aqueous phase was removed. Next, 53 g of 10% aqueous ammonia and 53 g of 4% aqueous ammonium sulfate were added with stirring, sufficiently stirred, and left to stand, after which 380 g of the lower phase was collected. Subsequently, 178 g of 4% ammonium sulfate water was added to the organic phase while stirring, and after the mixture was allowed to stand still, the lower aqueous phase was removed.
  • the upper organic phase was heated under reduced pressure to distill off toluene.
  • the obtained acrylate mixture weighed 248 g (yield 60%), and the measurement results of APHA, hydroxyl value, acid value, and viscosity are shown in Table 2.
  • a 1 H NMR chart of the obtained organic phase acrylate is shown in FIG. 1, and a 1 H NMR chart of the obtained aqueous phase acrylate is shown in FIG.
  • Example 1-2 Examples 1-2 to 1-7
  • Steps 1 and 2 were carried out in the same manner as in Example 1, except that the raw materials and proportions shown in Tables 1 and 2 were used.
  • dilution with toluene, washing with distilled water, neutralization with 10% ammonia water and 4% ammonium sulfate water, recovery of the lower phase, washing with 4% ammonium sulfate water, and desolvation were performed. 3 was carried out.
  • the amount of aqueous phase shown in Table 2 was collected during neutralization.
  • Table 2 shows the measurement results of the yield, APHA, acid value, and viscosity of the obtained acrylate mixture.
  • Example 1 Comparative example 1-1
  • Steps 1 and 2 were carried out in the same manner as in Example 1, except that the raw materials and proportions shown in Tables 1 and 2 were used.
  • 389 g of toluene was added for dilution.
  • 106 g of distilled water was added, stirred, and left to stand, and then the lower aqueous phase was removed.
  • 126 g of a 20% aqueous sodium hydroxide solution was added with stirring, sufficiently stirred, and left to stand, and then 243 g of the lower phase was collected.
  • Comparative example 1-2 In a 1 L four-necked flask with a side tube equipped with a reflux tube, 117 g of G2E4, 42 g of itaconic acid (0.5 mole per mole of total hydroxyl groups in the alcohol), 13.5 g of 70% MSA, and sulfuric chloride. 0.6 g of copper and 381 g of toluene were charged. While blowing oxygen-containing gas into the flask, the reaction solution was heated and stirred at a temperature of 85 to 95°C. As the reaction progressed, the dehydration esterification reaction was carried out for 6 hours while the water produced was taken out of the system through a Dean-Stark tube. However, a gel insoluble in toluene was formed and the gel entangled with the stirring blades, making stirring difficult, so the synthesis was stopped. The reaction rate calculated from the amount of distilled water was 30%.
  • Liquid property evaluation /APHA Measured according to JIS K 0071-1:2017.
  • - Hydroxyl value Measured according to JIS K 0070.
  • - Acid value Measured according to JIS K 0070.
  • Viscosity Measured at 25°C using an E-type viscometer (“TV-22 type viscometer” manufactured by Toki Sangyo Co., Ltd., cone plate type).
  • Example [Production of active energy ray-curable composition] 2-1 Example 2-1 1-Hydroxy-cyclohexyl-phenyl ketone (manufactured by IGM Resins, Omnirad 184, hereinafter) was added as component (E-1) to 100 parts by weight of the acrylate mixture produced in Example 1-1 and obtained after desolvation of the organic phase. , referred to as "Omn184”) was added thereto, and the mixture was stirred and mixed at 60° C. for 3 hours to obtain a composition.
  • Examples 2-2 to 2-7 [Production of active energy ray-curable solvent-free composition] Compositions were produced in the same manner as in Example 2-1, except that the acrylate mixtures produced in Examples 1-2 to 1-7 and obtained after desolvation of the organic phase were used.
  • Comparative Example 2-1 Production of active energy ray-curable solvent-free composition
  • a composition was produced in the same manner as in Example 2-1, except that the acrylate mixture produced in Comparative Example 1-1 and obtained after solvent removal was used.
  • Example 3-1 [Production of active energy ray-curable water dispersion composition] Methyl benzoyl formate [Omnirad MBF manufactured by IGM Resins] was added as component (E-1) to 100 parts of the solid content in the aqueous phase separated in Example 1-1. Hereinafter referred to as "MBF”. ] was added and stirred and mixed at 60° C. for 3 hours to obtain an aqueous dispersion composition.
  • MBF active energy ray-curable water dispersion composition
  • Examples 3-2 to 3-7 [Production of active energy ray-curable water dispersion composition] Compositions were produced in the same manner as in Example 3-1, except that the aqueous phase separated in Examples 1-2 to 1-7 was used.
  • Comparative Example 3-1 [Production of active energy ray-curable water dispersion composition] 5 parts of MBF as component (E-1) was added to 100 parts of the solid content in the water separated in Comparative Example 1-1, and the mixture was stirred and mixed at 60° C. for 3 hours to obtain a water-dispersed composition.
  • Pencil hardness Evaluation was performed under a load of 750 g according to JIS K 5600-5-4.
  • compositions of Examples 2-1 to 2-7 had excellent curability, and the cured products thereof had excellent appearance and pencil hardness. Furthermore, the water-dispersed compositions of Examples 3-1 to 3-7 had excellent curability, and the cured products had good appearance, pencil hardness, adhesion, and curl. On the other hand, the aqueous dispersion composition of Comparative Example 3-1 had poor curability due to the presence of the sodium salt, and the appearance of the cured product also deteriorated, making it impossible to evaluate pencil hardness, adhesion, and curl. From the above results, it is clear that in Examples 1-1 to 1-7, all of the charged reaction raw materials can be converted into raw materials for the curable composition. According to the invention, it is possible to prevent the generation of neutralized wastewater that has a large environmental load, and to provide an industrially effective manufacturing method.
  • the production method of the present invention can obtain a desired (meth)acrylate mixture in high yield using a renewable resource-derived compound as a raw material, and the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound, It can greatly contribute to reducing environmental impact.
  • the (meth)acrylate mixture contained in the organic phase obtained by the production method of the present invention and the wastewater after the neutralization purification step can both be used as a raw material for a curable composition, etc., and the curable composition can be It can be preferably used as ink, coating agent, resist agent, filler, molding material, etc., and more preferably used as coating agent and ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

[Problem] To provide a production method by which a desired (meth)acrylate mixture can be obtained at extremely high yield by using a renewable resource-derived raw material, environmental load reduction is significant, the obtained mixture has excellent curability, and a cured product thereof has excellent various physical properties. [Solution] This method for producing a (meth)acrylate mixture sequentially carries out the following steps: step 1 which is a step for reacting (meth)acrylic acid with an alcohol having at least three hydroxyl groups in the presence of an acid catalyst to obtain a reaction solution having a specific hydroxyl value; step 2 which is a step for carrying out the following step 2-1 or step 2-2 to obtain a product having at most a specific hydroxyl value, where step 2-1 is a step for adding dicarboxylic acid, diol, and (meth)acrylic acid to the reaction solution of step 1 to obtain a product, and step 2-2 is a step for adding dicarboxylic acid and hydroxyalkyl (meth)acrylate to the reaction solution of step 1 to obtain a product; and step 3 which is a step for neutralizing the reaction solution of step 2 with an aqueous solution of ammonia or/and an amine compound.

Description

(メタ)アクリレート混合物の製造方法、及び再生可能資源由来の(メタ)アクリレート混合物の製造方法Method for producing (meth)acrylate mixture and method for producing (meth)acrylate mixture derived from renewable resources
 本発明は、(メタ)アクリレート混合物の製造方法、再生可能資源由来の(メタ)アクリレート混合物の製造方法、及びこれにより得られた(メタ)アクリレート混合物を含む組成物の製造方法に関するものである。 The present invention relates to a method for producing a (meth)acrylate mixture, a method for producing a (meth)acrylate mixture derived from renewable resources, and a method for producing a composition containing the (meth)acrylate mixture obtained thereby.
 活性エネルギー線硬化型組成物は、紫外線、可視光線及び電子線等の活性エネルギー線をごく短時間照射することで硬化可能であり、生産性が高く、インキ、コーティング剤及びレジスト材料等の用途に幅広く用いられている。
 活性エネルギー線硬化型組成物の成分としては、(メタ)アクリレートが使用され、さらにその一つとして、ポリエステル(メタ)アクリレートが知られている。
Active energy ray-curable compositions can be cured by irradiation with active energy rays such as ultraviolet rays, visible light, and electron beams for a very short time, and are highly productive, making them suitable for applications such as inks, coating agents, and resist materials. Widely used.
As a component of the active energy ray curable composition, (meth)acrylate is used, and polyester (meth)acrylate is known as one of them.
 しかし、(メタ)アクリレートをはじめとする化合物の製造に使用される原料の多くは、石油や石炭等の化石燃料由来であり、環境負荷をかける一因となっている。
 又、(メタ)アクリレートを製造する際には、反応物の精製工程において、中和・水洗工程を経て最終製品が得られるが、当該中和・水洗工程では廃水が発生してしまい、その処理方法の多くは燃焼処理であり、これも環境負荷をかける一因となっている。
 このため、環境負荷の少ない再生可能資源由来化合物の原料を用いて(メタ)アクリレートを製造し、さらに、エステル化反応後の廃水量を抑制する製造方法を見出すことが求められている。
However, many of the raw materials used to manufacture compounds such as (meth)acrylates are derived from fossil fuels such as petroleum and coal, which contributes to the environmental burden.
Furthermore, when producing (meth)acrylate, the final product is obtained through a neutralization and water washing process in the reactant purification process, but wastewater is generated during the neutralization and water washing process, and its treatment is difficult. Most of the methods involve combustion, which is also a cause of environmental impact.
For this reason, there is a need to find a production method that produces (meth)acrylate using raw materials of compounds derived from renewable resources that have less environmental impact, and that also suppresses the amount of waste water after the esterification reaction.
 上記を背景として、近年、再生可能資源由来化合物を使用した化合物の製造が検討されており、ポリエステルやアクリレートについても検討がされている。
 例えば、特許文献1には、(a)リサイクルし、消化処理したポリエステル、(b)グリコール、及び(c)リグニン又はタンニンから製造されたポリエステルポリオールが開示されている。特許文献1では、前記で得られたポリエステルポリオールをウレタン化することで、塗料の原料としている。
 しかしながら、当該工程で得られたポリエステルポリオールを使用して(メタ)アクリレートを製造する場合、ポリエステルポリオールの製造に煩雑な工程を要するうえ、コスト高が懸念されるものであった。
 特許文献2には、フローリング材のための再生可能資源由来化合物であるポリアクリレート等を含む放射線硬化性コーティング剤が記載されている。
 しかしながら、特許文献2には、生成物から触媒の除去をする精製工程に関する記載がなく、生成物中に残存する触媒による問題が懸念されるものであった。又、再生可能資源由来化合物である植物油のセバシン酸を主成分に使用しているため、硬化物は硬度が不十分なものであり、コーティング剤等の用途に使用するには不十分なものであった。
Against the background of the above, in recent years, the production of compounds using compounds derived from renewable resources has been studied, and polyesters and acrylates have also been studied.
For example, U.S. Pat. No. 5,001,302 discloses polyester polyols made from (a) recycled and digested polyester, (b) glycol, and (c) lignin or tannin. In Patent Document 1, the polyester polyol obtained above is converted into urethane and used as a raw material for a paint.
However, when producing (meth)acrylate using the polyester polyol obtained in this process, complicated steps are required to produce the polyester polyol, and there are concerns about high costs.
Patent Document 2 describes a radiation-curable coating agent for flooring materials containing polyacrylate, etc., which is a compound derived from renewable resources.
However, Patent Document 2 does not include any description regarding a purification process for removing the catalyst from the product, and there is concern about problems caused by the catalyst remaining in the product. In addition, because the main ingredient is sebacic acid, a vegetable oil derived from renewable resources, the hardness of the cured product is insufficient to be used as a coating agent, etc. there were.
特表2018-508611号公報Special table 2018-508611 publication 特表2011-519396号公報Special Publication No. 2011-519396
 本発明者らは、再生可能資源由来化合物を原料として高収率で所望の(メタ)アクリレート混合物として得ることができ、得られる(メタ)アクリレート混合物は、再生可能資源由来化合物にも該当し、環境負荷低減が大きく、得られる(メタ)アクリレート混合物が硬化性に優れ、さらにその硬化物が、硬度、密着性、及び低カール性等の物性に優れる製造方法を見出すため、鋭意検討を行った。 The present inventors can obtain a desired (meth)acrylate mixture in high yield using a renewable resource-derived compound as a raw material, and the obtained (meth)acrylate mixture also corresponds to a renewable resource-derived compound, We conducted extensive research to find a manufacturing method that greatly reduces environmental impact, provides a (meth)acrylate mixture with excellent curability, and provides a cured product with excellent physical properties such as hardness, adhesion, and low curling properties. .
 本発明者らは、前記課題を解決するために鋭意検討した結果、(メタ)アクリル酸と3個以上の水酸基を有するアルコールを、酸触媒存在下で脱水エステル化反応を行い、特定の水酸基価とした水酸基含有(メタ)アクリレートを含む反応液を得る工程と、得られた反応液とジカルボン酸、ジオール及び(メタ)アクリル酸等を添加して特定水酸基価の(メタ)アクリレート混合物を得る工程と、これを特定の方法で中和する工程を含む(メタ)アクリレート混合物の製造方法が、再生可能資源由来原料を使用することができるうえ、水相に溶解した(メタ)アクリレート等を廃棄することなく、反応原料を全て製品へ転換することができることを見出し、本発明を完成した。
 以下、本発明を詳細に説明する。
As a result of intensive studies to solve the above problems, the present inventors conducted a dehydration esterification reaction between (meth)acrylic acid and an alcohol having three or more hydroxyl groups in the presence of an acid catalyst, and achieved a specific hydroxyl value. A step of obtaining a reaction solution containing a hydroxyl group-containing (meth)acrylate, and a step of obtaining a (meth)acrylate mixture with a specific hydroxyl value by adding dicarboxylic acid, diol, (meth)acrylic acid, etc. to the obtained reaction solution. The method for producing (meth)acrylate mixtures, which includes the step of neutralizing this mixture using a specific method, allows the use of raw materials derived from renewable resources and disposes of (meth)acrylates etc. dissolved in the aqueous phase. The present invention was completed based on the discovery that all the reaction raw materials can be converted into products without any problems.
The present invention will be explained in detail below.
 本発明の製造方法によれば、再生可能資源由来化合物を原料として高収率で所望の(メタ)アクリレート混合物を得ることができ、環境負荷低減に大きく貢献できる。
 本発明の製造方法で得られる有機相及び中和精製工程後の廃水に含まれる(メタ)アクリレート混合物は、いずれも硬化型組成物の原料となり、速硬化性を有し、その硬化物は、高硬度で、プラスチック基材への密着性に優れ、低カール性を有するため、インキ、コーティング剤及びレジスト材料等として好ましく使用できる。又、通常廃水として処分される中和精製工程後の廃水も硬化型組成物の原料となるため、廃水を廃棄する必要がなく、環境負荷低減が可能となる。
According to the production method of the present invention, a desired (meth)acrylate mixture can be obtained in high yield using a compound derived from renewable resources as a raw material, and can greatly contribute to reducing environmental load.
The (meth)acrylate mixture contained in the organic phase obtained by the production method of the present invention and the waste water after the neutralization and purification process serves as a raw material for a curable composition and has fast curing properties, and the cured product thereof is It has high hardness, excellent adhesion to plastic substrates, and low curling properties, so it can be preferably used as ink, coating agent, resist material, etc. In addition, since the wastewater after the neutralization and purification process, which is normally disposed of as wastewater, also serves as a raw material for the curable composition, there is no need to dispose of the wastewater, making it possible to reduce the environmental burden.
図1は、実施例1-1で得られた有機相のアクリレートの1H NMRチャートを意味する。FIG. 1 refers to a 1 H NMR chart of the organic phase acrylate obtained in Example 1-1. 図2は、実施例1-1で得られた水相のアクリレートの1H NMRチャートを意味する。FIG. 2 refers to a 1 H NMR chart of the aqueous phase acrylate obtained in Example 1-1.
 本発明は、下記工程1~3を順次実施する(メタ)アクリレート混合物の製造方法に関する。
・工程1:(メタ)アクリル酸と(A)3個以上の水酸基を有するアルコールを、酸触媒存在下で脱水エステル化反応を行い、水酸基価が55~175mgKOH/gである水酸基含有(メタ)アクリレートを含む反応液を得る工程
・工程2:下記工程2-1又は工程2-2を実施して、水酸基価55mgKOH/g以下である生成物を得る工程
 工程2-1;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、(C)ジオール及び(メタ)アクリル酸を添加して生成物を得る。
 工程2-2;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、及び(D)ヒドロキシアルキル(メタ)アクリレートを添加して生成物を得る。
・工程3:工程2で得られた反応液に、アンモニアの水溶液、及びアミン化合物の水溶液から選択される1種以上の中和剤により中和する工程
The present invention relates to a method for producing a (meth)acrylate mixture in which the following steps 1 to 3 are performed sequentially.
・Step 1: (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups are subjected to a dehydration esterification reaction in the presence of an acid catalyst to produce a hydroxyl group-containing (meth) having a hydroxyl value of 55 to 175 mgKOH/g. Step 2 of obtaining a reaction solution containing acrylate: Step 2-1 or step 2-2 below to obtain a product with a hydroxyl value of 55 mgKOH/g or less Step 2-1; (B) dicarboxylic acid, (C) diol, and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate to obtain a product.
Step 2-2: To the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1, (B) dicarboxylic acid and (D) hydroxyalkyl (meth)acrylate are added to obtain a product.
・Step 3: A step of neutralizing the reaction solution obtained in Step 2 with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
 前記工程2-1においては、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用することが好ましい。
 前記工程2としては、前記工程2-2を実施することが好ましい。
 又、前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含むことが好ましい。
In step 2-1, the diol (C) is preferably used in a molar ratio of 1 to 50 times the total mole of the dicarboxylic acid (B).
As the step 2, it is preferable to carry out the step 2-2.
In addition, at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
 本発明は、前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)当該(メタ)アクリレート混合物以外のエチレン性不飽和化合物〔以下、「(E)成分」という〕とを攪拌・混合する硬化型組成物の製造方法にも関する。 The present invention comprises a (meth)acrylate mixture obtained by sequentially performing steps 1 to 3, and (E) an ethylenically unsaturated compound other than the (meth)acrylate mixture [hereinafter referred to as "component (E)"]. ] It also relates to a method for producing a curable composition by stirring and mixing.
 前記硬化型組成物の製造方法において、前記工程2-1では、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用することが好ましい。
 又、前記工程2としては、前記工程2-2を実施することが好ましい。
 又、前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含むことが好ましい。
 又、前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分として、(E-1)(メタ)アクリロイル基を1個有する化合物〔以下、「(E-1)成分」という〕及び(E-2)2個以上の(メタ)アクリロイル基を有する化合物〔以下、「(E-2)成分」という〕を含む成分とを、
(メタ)アクリレート混合物40~100重量部、(E-1)成分0~20重量部、及び(E-2)成分0~40重量部を含む割合で攪拌・混合する製造方法が好ましい。
 さらに、前記工程1~3を順次実施した後、工程3で得られた有機相中及び/又は中和後の水相中の(メタ)アクリレート混合物を硬化型組成物の配合成分として使用する製造方法が好ましい。
In the method for producing the curable composition, in step 2-1, it is preferable to use the diol (C) in a molar ratio of 1 to 50 times the total mole of the dicarboxylic acid (B).
Further, as the step 2, it is preferable to carry out the step 2-2.
In addition, at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
Further, the (meth)acrylate mixture obtained by sequentially carrying out the above steps 1 to 3 and (E-1) a compound having one (meth)acryloyl group [hereinafter referred to as "(E-1)"] is used as the (E) component. 1) component"] and (E-2) a compound having two or more (meth)acryloyl groups [hereinafter referred to as "(E-2) component"],
A preferred production method involves stirring and mixing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2).
Furthermore, after performing steps 1 to 3 in sequence, the (meth)acrylate mixture obtained in step 3 in the organic phase and/or in the aqueous phase after neutralization is used as a component of a curable composition. The method is preferred.
 又、本発明は、前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分と、(F-1)光重合開始剤とを、攪拌・混合する製造方法であって、(メタ)アクリレート混合物及び(E)成分の合計100重量部に対して0.01~20重量部の(F-1)光重合開始剤を使用する活性エネルギー線硬化型組成物の製造方法にも関する。 Further, the present invention provides a manufacturing method in which the (meth)acrylate mixture obtained by sequentially performing the steps 1 to 3, the component (E), and the photopolymerization initiator (F-1) are stirred and mixed. An active energy ray-curable composition using 0.01 to 20 parts by weight of (F-1) photoinitiator based on a total of 100 parts by weight of the (meth)acrylate mixture and component (E). It also relates to the manufacturing method.
 前記活性エネルギー線硬化型組成物の製造方法において、前記工程2-1では、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用することが好ましい。
 又、前記工程2としては、前記工程2-2を実施することが好ましい。
 又、前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含むことが好ましい。
 又、前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分として、(E-1)成分及び(E-2)成分を含む成分を、
(メタ)アクリレート混合物40~100重量部、(E-1)成分0~20重量部、及び(E-2)成分0~40重量部を含む割合で攪拌・混合する製造方法が好ましい。
 さらに、前記工程1~3を順次実施した後、工程3で得られた有機相中及び/又は中和後の水相中の(メタ)アクリレート混合物を硬化型組成物の配合成分として使用する製造方法が好ましい。
 又、前記製造方法としては、インキ用活性エネルギー線硬化型組成物又はコーティング剤用活性エネルギー線硬化型組成物の製造方法が好ましい。
 以下、本発明を詳細に説明する。
In the method for producing the active energy ray-curable composition, in step 2-1, (C) diol may be used in a molar ratio of 1 to 50 times with respect to 1 mole of dicarboxylic acid (B) in total. preferable.
Further, as the step 2, it is preferable to carry out the step 2-2.
In addition, at least one of the above-mentioned (A) alcohols having three or more hydroxyl groups, (B) dicarboxylic acids, (C) diols, and (D) hydroxyalkyl (meth)acrylates is a renewable resource-derived compound. It is preferable to include.
In addition, the (meth)acrylate mixture obtained by sequentially carrying out the above steps 1 to 3, and a component containing the (E-1) component and (E-2) component as the (E) component,
A preferred production method involves stirring and mixing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2).
Furthermore, after performing steps 1 to 3 in sequence, the (meth)acrylate mixture obtained in step 3 in the organic phase and/or in the aqueous phase after neutralization is used as a component of a curable composition. The method is preferred.
Moreover, as the manufacturing method, a method for manufacturing an active energy ray-curable composition for ink or an active energy ray-curable composition for coating agent is preferable.
The present invention will be explained in detail below.
1.(メタ)アクリレート混合物の製造方法
 本発明においては、後記工程1~3を順次実施して得られた(メタ)アクリレート混合物を、単に「(メタ)アクリレート混合物」ともいう。
1. Method for producing (meth)acrylate mixture In the present invention, the (meth)acrylate mixture obtained by sequentially performing the steps 1 to 3 below is also simply referred to as "(meth)acrylate mixture."
1-1.工程1
 工程1は、(メタ)アクリル酸と(A)3個以上の水酸基を有するアルコール〔以下、「化合物(A)」という〕を、酸触媒存在下で脱水エステル化反応を行い、水酸基価が55~175mgKOH/gである水酸基含有(メタ)アクリレートを含む反応液を得る工程である。
1-1. Process 1
In step 1, (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups [hereinafter referred to as "compound (A)"] are subjected to a dehydration esterification reaction in the presence of an acid catalyst to obtain a hydroxyl value of 55. This is a step to obtain a reaction solution containing hydroxyl group-containing (meth)acrylate of ~175 mgKOH/g.
1-1-1.化合物(A)
 化合物(A)は、3個以上の水酸基を有するアルコールであり、種々の化合物を使用することができる。
 化合物(A)の具体例としては、グリセリン、ジグリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジトリメチロールプロパン及びジペンタエリスリトール等の3価以上のポリオール、これら3価以上のポリオールのアルキレンオキサイド付加物、並びに、トリス(2-ヒドロキシエチル)イソシアヌレート等が挙げられる。
 化合物(A)としては、再生可能資源由来化合物であることが好ましい。当該化合物の具体例としては、グリセリン、ジグリセリン、グリセリンのアルキレンオキサイド付加物、及びジグリセリンのアルキレンオキサイド付加物が挙げられ、ジグリセリンのアルキレンオキサイド付加物がより好ましい。
 尚、前記における、アルキレンオキサイド付加物の例としては、エチレンオキサイド付加物、プロピレンオキサイド付加物、並びに、エチレンオキサイド及びプロピレンオキサイド付加物等が挙げられる。
 尚、本発明において、再生可能資源由来化合物とは、再生可能資源構造を有する化合物であり、より具体的には、生物由来原料(バイオマス)、及び生物由来原料から製造された化合物を意味する。再生可能資源由来化合物としては、植物由来原料、及び植物由来原料から製造された化合物が好ましい。
1-1-1. Compound (A)
Compound (A) is an alcohol having three or more hydroxyl groups, and various compounds can be used.
Specific examples of compound (A) include trivalent or higher polyols such as glycerin, diglycerin, trimethylolpropane, trimethylolethane, pentaerythritol, ditrimethylolpropane, and dipentaerythritol, and alkylene oxides of these trivalent or higher polyols. Examples include adducts, tris(2-hydroxyethyl)isocyanurate, and the like.
The compound (A) is preferably a compound derived from renewable resources. Specific examples of the compound include glycerin, diglycerin, an alkylene oxide adduct of glycerin, and an alkylene oxide adduct of diglycerin, with the alkylene oxide adduct of diglycerin being more preferred.
In addition, examples of the alkylene oxide adducts mentioned above include ethylene oxide adducts, propylene oxide adducts, and ethylene oxide and propylene oxide adducts.
In the present invention, a compound derived from a renewable resource is a compound having a renewable resource structure, and more specifically refers to a biological raw material (biomass) and a compound produced from a biological raw material. As the renewable resource-derived compound, plant-derived raw materials and compounds produced from plant-derived raw materials are preferred.
1-1-2.脱水エステル化反応
 脱水エステル化反応としては、常法に従えば良く、酸触媒の存在下に、(メタ)アクリル酸及び化合物(A)を加熱・攪拌する方法が挙げられる。
1-1-2. Dehydration esterification reaction The dehydration esterification reaction may be carried out in a conventional manner, including a method of heating and stirring (meth)acrylic acid and compound (A) in the presence of an acid catalyst.
 (メタ)アクリル酸の使用割合は、目的とする(メタ)アクリレートとなるように、化合物(A)の全水酸基の合計1モルに対して0.05モル~20モルが好ましく、0.05モル~5モルがより好ましい。
 化合物(A)1モルに対しては、(メタ)アクリル酸の使用割合は、好ましくは0.625~0.875モルであり、より好ましくは0.7~0.8モルである。
The ratio of (meth)acrylic acid used is preferably 0.05 mol to 20 mol, and 0.05 mol based on the total 1 mol of all hydroxyl groups of compound (A) so as to obtain the desired (meth)acrylate. ~5 mol is more preferred.
The proportion of (meth)acrylic acid used is preferably 0.625 to 0.875 mol, more preferably 0.7 to 0.8 mol, per 1 mol of compound (A).
 酸触媒としては、硫酸、塩酸、リン酸及びフッ化ホウ酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸及びトリフルオロメタンスルホン酸等の有機スルホン酸、並びに強酸性カチオン型イオン交換樹脂等が挙げられる。
 酸触媒の使用割合としては、化合物(A)の全水酸基の合計1モルに対して0.05モル%~20モル%が好ましい。
Examples of acid catalysts include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and fluoroboric acid, organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid, and strong acidic cation type ion exchange resins. can be mentioned.
The proportion of the acid catalyst to be used is preferably 0.05 mol % to 20 mol % based on the total 1 mol of all hydroxyl groups of compound (A).
 脱水エステル化反応は、常法に従い実施すれば良い。
 反応温度は、使用する原料及び目的に応じて適宜設定すればよいが、反応時間の短縮重合防止の観点から65~140℃が好ましく、75~120℃がより好ましい。反応温度を65℃以上とすることでエステル化反応を迅速に行い、収率の低下を抑制することができ、一方、反応温度を140℃以下とすることで、(メタ)アクリル酸又は生成した(メタ)アクリレートの熱重合を抑制することができる。
The dehydration esterification reaction may be carried out according to a conventional method.
The reaction temperature may be appropriately set depending on the raw materials used and the purpose, but from the viewpoint of shortening the reaction time and preventing polymerization, the reaction temperature is preferably 65 to 140°C, more preferably 75 to 120°C. By setting the reaction temperature to 65°C or higher, the esterification reaction can be carried out quickly and a decrease in yield can be suppressed. On the other hand, by setting the reaction temperature to 140°C or lower, (meth)acrylic acid or the produced Thermal polymerization of (meth)acrylate can be suppressed.
 脱水エステル化反応に際しては、脱水エステル化反応で生成する水を、水との溶解度が低い有機溶媒と共沸させながら脱水を促進することが好ましい。
 好ましい有機溶媒としては、例えばトルエン、ベンゼン及びキシレン等の芳香族炭化水素化合物、ヘキサン及びヘプタン等の脂肪族炭化水素化合物、シクロヘキサン及びメチルシクロヘキサン等の脂環族炭化水素、トリクロロエチレン及びテトラクロロエチレン等の塩素系炭化水素化合物、並びにメチルエチルケトン等のケトン等が挙げられる。
 有機溶媒の使用量は、反応液中の有機溶媒濃度が30~60重量%となる割合、より好ましくは40~50重量%となる割合が好ましい。
In the dehydration esterification reaction, it is preferable to promote dehydration while azeotropically distilling the water produced in the dehydration esterification reaction with an organic solvent having low solubility in water.
Preferred organic solvents include aromatic hydrocarbon compounds such as toluene, benzene, and xylene, aliphatic hydrocarbon compounds such as hexane and heptane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and chlorine-based solvents such as trichlorethylene and tetrachloroethylene. Examples include hydrocarbon compounds and ketones such as methyl ethyl ketone.
The amount of organic solvent used is preferably such that the organic solvent concentration in the reaction solution is 30 to 60% by weight, more preferably 40 to 50% by weight.
 脱水エステル化反応では、(メタ)アクリロイル基の重合を防止する目的で、重合禁止剤を使用することが好ましく、さらには含酸素ガスを反応液に導入してもよい。
 重合禁止剤としては、例えば、ハイドロキノン、tert-ブチルハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール、ベンゾキノン、フェノチアジン、及びN-オキシル化合物等の有機系重合禁止剤;塩化銅及び硫酸銅等の無機系重合禁止剤;並びにジブチルジチオカルバミン酸銅等の有機塩系重合禁止剤等が挙げられる。
 重合禁止剤は、一種を単独で使用しても又は二種以上を任意に組み合わせて使用しても良い。
 重合禁止剤の割合としては、反応液中に5~20,000wtppmが好ましく、より好ましくは25~3,000wtppmである。
 含酸素ガスとしては、例えば空気、酸素と窒素の混合ガス、並びに酸素とヘリウムの混合ガス等が挙げられる。
In the dehydration esterification reaction, it is preferable to use a polymerization inhibitor for the purpose of preventing polymerization of the (meth)acryloyl group, and furthermore, an oxygen-containing gas may be introduced into the reaction solution.
Examples of the polymerization inhibitor include hydroquinone, tert-butylhydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, benzoquinone, phenothiazine, and organic polymerization inhibitors such as N-oxyl compounds; inorganic polymerization inhibitors such as copper chloride and copper sulfate; and organic salt polymerization inhibitors such as copper dibutyldithiocarbamate.
The polymerization inhibitors may be used alone or in any combination of two or more.
The proportion of the polymerization inhibitor in the reaction solution is preferably 5 to 20,000 wtppm, more preferably 25 to 3,000 wtppm.
Examples of the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, and a mixed gas of oxygen and helium.
 工程1では、水酸基価が55~175mgKOH/gである反応液を得るものであり、好ましくは、105~115mgKOH/gである反応液を得るのであり、当該水酸基価となるように反応を停止する。
 反応液の水酸基価が175mgKOH/gを超過すると、工程2において架橋性を有する(メタ)アクリレートの生成してしまい、ゲル化したり、撹拌が困難になる恐れがある。一方、反応液の水酸基価が55mgKOH/gに満たないと、最終生成物に含まれる目的とする(メタ)アクリレートの割合が大幅に減少してしまう。
 尚、本発明において、水酸基価とは、JIS K 0070に準じて測定した値を意味する。
In step 1, a reaction solution with a hydroxyl value of 55 to 175 mgKOH/g is obtained, preferably a reaction solution with a hydroxyl value of 105 to 115 mgKOH/g is obtained, and the reaction is stopped to reach the hydroxyl value. .
If the hydroxyl value of the reaction solution exceeds 175 mgKOH/g, crosslinkable (meth)acrylate will be produced in Step 2, which may cause gelation or make stirring difficult. On the other hand, if the hydroxyl value of the reaction solution is less than 55 mgKOH/g, the proportion of the target (meth)acrylate contained in the final product will decrease significantly.
In the present invention, the hydroxyl value means a value measured according to JIS K 0070.
1-2.工程2
 工程2は、下記工程2-1又は工程2-2を実施して、水酸基価55mgKOH/g以下である生成物を得る工程である。
 工程2-1;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸〔以下、「化合物(B)」という〕、(C)ジオール〔以下、「化合物(C)」という〕及び(メタ)アクリル酸を添加して生成物を得る。
 工程2-2;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、化合物(B)、及び(D)ヒドロキシアルキル(メタ)アクリレート〔以下、「化合物(D)」という〕を添加して生成物を得る。
1-2. Process 2
Step 2 is a step of performing Step 2-1 or Step 2-2 below to obtain a product having a hydroxyl value of 55 mgKOH/g or less.
Step 2-1; Add (B) dicarboxylic acid [hereinafter referred to as "compound (B)"], (C) diol [hereinafter referred to as "compound (B)"] to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1. C)] and (meth)acrylic acid to obtain the product.
Step 2-2; Compound (B) and (D) hydroxyalkyl (meth)acrylate [hereinafter referred to as "compound (D)"] are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1. Add to obtain the product.
1-2-1.工程2-1
 工程2-1では、工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、化合物(B)、化合物(C)及び(メタ)アクリル酸を添加して脱水エステル化反応を実施する。
 以下、化合物(B)、化合物(C)及び反応方法について説明する。
1-2-1. Process 2-1
In step 2-1, compound (B), compound (C), and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1 to carry out a dehydration esterification reaction. .
Compound (B), compound (C), and reaction method will be explained below.
1-2-1-1.化合物(B)
 化合物(B)は、ジカルボン酸であり、種々の化合物を使用することができる。
 化合物(B)の具体例としては、イタコン酸、コハク酸、フマル酸、及びアジピン酸等の脂肪族ジカルボン酸、テレフタル酸等の芳香族ジカルボン酸、並びに2,5-フランジカルボン酸等複素環骨格を有するジカルボン酸等が挙げられる。
 化合物(B)としては、再生可能資源由来化合物であることが好ましい。当該化合物の具体例としては、イタコン酸、コハク酸、フマル酸、アジピン酸、及び2,5-フランジカルボン酸等が挙げられ、イタコン酸がより好ましい。
1-2-1-1. Compound (B)
Compound (B) is a dicarboxylic acid, and various compounds can be used.
Specific examples of compound (B) include aliphatic dicarboxylic acids such as itaconic acid, succinic acid, fumaric acid, and adipic acid, aromatic dicarboxylic acids such as terephthalic acid, and heterocyclic skeletons such as 2,5-furandicarboxylic acid. Examples include dicarboxylic acids having the following.
The compound (B) is preferably a compound derived from renewable resources. Specific examples of the compound include itaconic acid, succinic acid, fumaric acid, adipic acid, and 2,5-furandicarboxylic acid, with itaconic acid being more preferred.
 化合物(B)の使用割合としては、工程1で得られた反応液の水酸基合計モル数の1モルに対して、0.8~50倍モルが好ましく、より好ましくは0.9~1.1倍モルである。化合物(B)の使用割合が0.8倍モル未満であると、(メタ)アクリレート混合物中の(メタ)アクリレートにポリエステルユニットを有する(メタ)アクリレートの割合が低下し、親水性の高い成分が増加し、反応液を水洗する工程で水に溶解してしまい、原料ロスの原因となる。化合物(B)の使用割合が50倍モルより大きいと、(メタ)アクリレート混合物中のアクリレート当量が減少し、得られる組成物硬化物の硬度の低下につながることがある。 The proportion of compound (B) to be used is preferably 0.8 to 50 times, more preferably 0.9 to 1.1 times, per mole of the total number of moles of hydroxyl groups in the reaction solution obtained in step 1. It is twice the mole. When the proportion of compound (B) used is less than 0.8 times the mole, the proportion of (meth)acrylate having polyester units in the (meth)acrylate mixture decreases, and the highly hydrophilic component The amount increases and dissolves in water during the process of washing the reaction solution with water, causing loss of raw materials. When the proportion of compound (B) used is more than 50 times the molar ratio, the acrylate equivalent in the (meth)acrylate mixture decreases, which may lead to a decrease in the hardness of the resulting cured composition.
1-2-1-2.化合物(C)
 化合物(C)は、ジオールであり、種々の化合物を使用することができる。
 化合物(C)の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、及びネオペンチルグリコール等の脂肪族ジオール、2,5-テトラヒドロフランジメタノール等の環状エーテルのジオール、並びに2,5-フランジメタノール等の複素環骨格を有するジオール等が挙げられる。
 化合物(C)としては、再生可能資源由来化合物であることが好ましい。当該化合物の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、2,5-テトラヒドロフランジメタノール、及び2,5-フランジメタノール等が挙げられる。
1-2-1-2. Compound (C)
Compound (C) is a diol, and various compounds can be used.
Specific examples of compound (C) include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyl glycol, and cyclic ether diols such as 2,5-tetrahydrofurandimethanol. , and diols having a heterocyclic skeleton such as 2,5-furandimethanol.
The compound (C) is preferably a compound derived from renewable resources. Specific examples of such compounds include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 2,5-tetrahydrofurandimethanol, and 2,5-furandimethanol.
 化合物(C)の使用割合としては、化合物(B)1モルに対して1~50倍モルが好ましく、より好ましくは1.3~1.5倍モルである。化合物(C)の使用割合が1倍モル未満であると、目的とするポリエステルジオールの割合が減少したり、副生物であるジカルボン酸モノエステルが生成する割合が上昇し、さらには、ジカルボン酸モノエステルは反応液を水洗する工程で水に溶解するため、原料のロスの原因となることがある。化合物(C)の使用割合が50倍モルより大きいと、目的とする(メタ)アクリレートの割合が減少し、その結果、反応物のアクリレート当量が減少してしまい、組成物硬化物の硬度の低下につながることがある。 The usage ratio of compound (C) is preferably 1 to 50 times, more preferably 1.3 to 1.5 times, per mole of compound (B). If the proportion of compound (C) used is less than 1 mole, the proportion of the target polyester diol will decrease, the proportion of dicarboxylic acid monoester as a by-product will increase, and furthermore, the proportion of dicarboxylic acid monoester produced as a by-product will increase. Since the ester dissolves in water during the process of washing the reaction solution with water, it may cause loss of raw materials. If the ratio of compound (C) used is more than 50 times the mole, the ratio of the target (meth)acrylate will decrease, resulting in a decrease in the acrylate equivalent of the reactant, resulting in a decrease in the hardness of the cured product of the composition. It may lead to
1-2-1-3.工程2-1における反応
 工程2-1において追加する(メタ)アクリル酸の割合としては、化合物(C)1モルに対して1.0~1.2倍モルが好ましい。
1-2-1-3. The ratio of (meth)acrylic acid added in reaction step 2-1 in step 2-1 is preferably 1.0 to 1.2 moles per mole of compound (C).
 工程2-1を停止する、生成物の水酸基価としては55mgKOH/g以下とし、35mgKOH/g以下が好ましい。生成物の水酸基価が55mgKOH/gを超過すると、親水性成分が多く残り、目的とする(メタ)アクリレートの収率が低くなる。 The hydroxyl value of the product at which step 2-1 is stopped is 55 mgKOH/g or less, preferably 35 mgKOH/g or less. When the hydroxyl value of the product exceeds 55 mgKOH/g, a large amount of hydrophilic components remain, resulting in a low yield of the desired (meth)acrylate.
 工程2-1では、工程1の反応物に含まれる酸触媒により、酸とアルコールの脱水エステル化反応が進行し、種々の化合物による反応が進行する。
 工程2-1における反応温度としては、75~110℃が好ましく、より好ましくは85~100℃である。
In step 2-1, the acid catalyst contained in the reactant of step 1 causes a dehydration esterification reaction between an acid and an alcohol to proceed, and reactions with various compounds proceed.
The reaction temperature in step 2-1 is preferably 75 to 110°C, more preferably 85 to 100°C.
 工程2-1における、酸とアルコールの脱水エステル化反応としては、具体的には、(メタ)アクリル酸とアルコールの脱水エステル化反応、化合物(B)及び化合物(C)の脱水エステル化反応等が進行し、主な反応の例を以下の(2-1-1)~(2-1-6)に挙げる。
(2-1-1)工程1で得られた水酸基含有(メタ)アクリレート〔以下、「水酸基含有(メタ)アクリレート(1)」という〕と(メタ)アクリル酸の反応による、水酸基を有しない(メタ)アクリレート、及び水酸基含有(メタ)アクリレート〔以下、「水酸基含有(メタ)アクリレート(2)」という〕の生成
(2-1-2)化合物(B)と化合物(C)との反応によりポリエステルジオール〔以下、ポリエステルジオール(2)という〕が生成し、ポリエステルジオール(2)と(メタ)アクリル酸の反応によるポリエステル(メタ)アクリレートの生成
(2-1-3)水酸基含有(メタ)アクリレート(1)、又は水酸基含有(メタ)アクリレート(2)と、化合物(B)の反応による(メタ)アクリレートの生成
(2-1-4)ポリエステルジオール(2)と、化合物(B)の反応による(メタ)アクリレートの生成
(2-1-5)水酸基含有(メタ)アクリレート(1)、水酸基含有(メタ)アクリレート(2)、及び/又はポリエステルジオール(2)と、化合物(B)との反応による(メタ)アクリレートの生成
(2-1-6)化合物(C)と、(メタ)アクリル酸との反応による(メタ)アクリレートの生成
Specifically, the dehydration esterification reaction of acid and alcohol in step 2-1 includes dehydration esterification reaction of (meth)acrylic acid and alcohol, dehydration esterification reaction of compound (B) and compound (C), etc. progresses, and examples of the main reactions are listed below (2-1-1) to (2-1-6).
(2-1-1) The reaction between the hydroxyl group-containing (meth)acrylate obtained in Step 1 [hereinafter referred to as "hydroxyl group-containing (meth)acrylate (1)"] and (meth)acrylic acid ( Production of meth)acrylate and hydroxyl group-containing (meth)acrylate [hereinafter referred to as "hydroxyl group-containing (meth)acrylate (2)"]
(2-1-2) Polyester diol [hereinafter referred to as polyester diol (2)] is produced by the reaction between compound (B) and compound (C), and by the reaction between polyester diol (2) and (meth)acrylic acid. Production of polyester (meth)acrylate
(2-1-3) Production of (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1) or hydroxyl group-containing (meth)acrylate (2) and compound (B)
(2-1-4) Production of (meth)acrylate by reaction of polyester diol (2) and compound (B)
(2-1-5) Production of (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1), hydroxyl group-containing (meth)acrylate (2), and/or polyester diol (2) with compound (B) Generate
(2-1-6) Production of (meth)acrylate by reaction of compound (C) and (meth)acrylic acid
 又、化合物(A)、化合物(B)及び化合物(C)の少なくとも1つ以上が再生可能資源由来化合物である場合は、得られる(メタ)アクリレート混合物は、再生可能資源由来化合物に該当する。 Furthermore, when at least one of compound (A), compound (B), and compound (C) is a renewable resource-derived compound, the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound.
1-2-2.工程2-2
 工程2-2では、工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、化合物(B)、及び化合物(D)を添加して脱水エステル化反応を実施する。
 以下、化合物(B)、化合物(D)及び反応方法について説明する。
1-2-2. Process 2-2
In step 2-2, compound (B) and compound (D) are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in step 1 to carry out a dehydration esterification reaction.
Compound (B), compound (D), and reaction method will be explained below.
1-2-2-1.化合物(B)
 化合物(B)は、ジカルボン酸であり、種々の化合物を使用することができ、その具体例としては、前記と同様の化合物が挙げられる。
 化合物(B)としては、再生可能資源由来化合物であることが好ましく、その具体例としては、前記と同様の化合物が挙げられる。
1-2-2-1. Compound (B)
Compound (B) is a dicarboxylic acid, and various compounds can be used, specific examples of which include the same compounds as mentioned above.
The compound (B) is preferably a compound derived from renewable resources, and specific examples thereof include the same compounds as mentioned above.
 化合物(B)の使用割合としては、工程1で得られた反応液の水酸基合計モル数の1モルに対して、0.8~50倍モルが好ましく、より好ましくは0.9~1.1倍モルである。化合物(B)の使用割合が0.8倍モル未満であると、(メタ)アクリレート混合物中の(メタ)アクリレートにポリエステルユニットを有する(メタ)アクリレートの割合が低下し、親水性の高い成分が増加し、反応液を水洗する工程で水に溶解してしまい、原料ロスの原因となる。化合物(B)の使用割合が50倍モルより大きいと、(メタ)アクリレート混合物中のアクリレート当量が減少し、得られる組成物硬化物の硬度の低下につながることがある。 The proportion of compound (B) to be used is preferably 0.8 to 50 times, more preferably 0.9 to 1.1 times, per mole of the total number of moles of hydroxyl groups in the reaction solution obtained in step 1. It is twice the mole. When the proportion of compound (B) used is less than 0.8 times the mole, the proportion of (meth)acrylate having polyester units in the (meth)acrylate mixture decreases, and the highly hydrophilic component The amount increases and dissolves in water during the process of washing the reaction solution with water, causing loss of raw materials. When the proportion of compound (B) used is more than 50 times the molar ratio, the acrylate equivalent in the (meth)acrylate mixture decreases, which may lead to a decrease in the hardness of the resulting cured composition.
1-2-2-2.化合物(D)
 化合物(D)は、ヒドロキシアルキル(メタ)アクリレートであり、種々の化合物を使用することができる。
 化合物(D)の具体例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、及びヒドロキシブチル(メタ)アクリレート等が挙げられる。
 化合物(D)としては、再生可能資源由来化合物であることが好ましい。当該化合物の具体例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、及びヒドロキシブチル(メタ)アクリレート等が挙げられ、ヒドロキシブチル(メタ)アクリレートがより好ましい。
1-2-2-2. Compound (D)
Compound (D) is a hydroxyalkyl (meth)acrylate, and various compounds can be used.
Specific examples of compound (D) include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
The compound (D) is preferably a compound derived from renewable resources. Specific examples of the compound include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate, with hydroxybutyl (meth)acrylate being more preferred.
 化合物(D)の使用割合としては、工程1の残(メタ)アクリル酸と化合物(B)の総モル数に対して1.0~2.0が好ましく、より好ましくは1.0~1.5である。化合物(D)の使用割合が1.0未満であると、ジカルボン酸のモノエステルが多く生成し、硬化性が悪化してしまう。化合物(D)の使用割合が2.0より大きいと、ジ(メタ)アクリレートが多く生成し硬化性が悪化してしまう。 The ratio of compound (D) to be used is preferably 1.0 to 2.0, more preferably 1.0 to 1.0, based on the total number of moles of the remaining (meth)acrylic acid from step 1 and compound (B). It is 5. If the ratio of compound (D) used is less than 1.0, a large amount of monoester of dicarboxylic acid will be produced, resulting in poor curability. If the ratio of compound (D) used is greater than 2.0, a large amount of di(meth)acrylate will be produced, resulting in poor curability.
1-2-2-3.工程2-2における反応
 工程2-2を停止する、生成物の水酸基価としては55mgKOH/g以下とし、35mgKOH/g以下が好ましい。生成物の水酸基価が55mgKOH/gを超過すると、親水性成分が多く残り、目的とする(メタ)アクリレートの収率が低くなる。
1-2-2-3. The hydroxyl value of the product that terminates reaction step 2-2 in step 2-2 is 55 mgKOH/g or less, preferably 35 mgKOH/g or less. When the hydroxyl value of the product exceeds 55 mgKOH/g, a large amount of hydrophilic components remain, resulting in a low yield of the desired (meth)acrylate.
 工程2-2では、工程1の反応物に含まれる酸触媒により、酸とアルコールの脱水エステル化反応が進行し、種々の化合物による反応が進行する。
 工程2-2における反応温度としては、75~110℃が好ましく、より好ましくは85~100℃である。
In Step 2-2, the acid catalyst contained in the reactant of Step 1 causes a dehydration esterification reaction between the acid and the alcohol, and reactions with various compounds proceed.
The reaction temperature in step 2-2 is preferably 75 to 110°C, more preferably 85 to 100°C.
 工程2-2における、酸とアルコールの脱水エステル化反応においては、下記(2-2-1)が進行し、副反応として、下記(2-2-2)が進行する。
(2-2-1)水酸基含有(メタ)アクリレート(1)、化合物(B)及び化合物(D)の反応による(メタ)アクリレートの生成。
(2-2-2)水酸基含有(メタ)アクリレート(1)、及び化合物(B)の反応によるカルボキシ基含有(メタ)アクリレートの生成。
In the dehydration esterification reaction of acid and alcohol in step 2-2, the following (2-2-1) proceeds, and the following (2-2-2) proceeds as a side reaction.
(2-2-1) Production of (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1), compound (B), and compound (D).
(2-2-2) Production of carboxy group-containing (meth)acrylate by reaction of hydroxyl group-containing (meth)acrylate (1) and compound (B).
 又、化合物(A)、化合物(B)及び化合物(D)の少なくとも1つ以上が再生可能資源由来化合物である場合は、得られる(メタ)アクリレート混合物は、再生可能資源由来化合物に該当する。 Furthermore, when at least one of compound (A), compound (B), and compound (D) is a renewable resource-derived compound, the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound.
 本発明においては、工程2として工程2-2を実施することが、得られる(メタ)アクリレート混合物が、硬化性に優れ、得られる硬化物が、硬度、密着性、及び低カール性等の物性に優れるため好ましい。 In the present invention, by performing Step 2-2 as Step 2, the obtained (meth)acrylate mixture has excellent curability, and the obtained cured product has physical properties such as hardness, adhesion, and low curling property. It is preferable because it has excellent properties.
1-3.工程3
 工程3は、工程2で得られた反応液に、アンモニアの水溶液、及びアミン化合物の水溶液から選択される1種以上の中和剤により、反応液中の酸性成分を中和する工程である。
1-3. Process 3
Step 3 is a step in which acidic components in the reaction solution obtained in Step 2 are neutralized with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
 工程2で得られた反応液には、生成物である(メタ)アクリレート混合物の他、未反応(メタ)アクリル酸及び酸触媒等の酸性成分を含む。工程3の中和処理は、反応液中の未反応(メタ)アクリル酸及び酸触媒等の酸性成分を除去する目的で行われる。
 中和処理の方法としては、反応液とアルカリ水溶液である中和剤を接触させて行われ、具体的には常法に従って行えばよく、例えば、反応液に中和剤を添加し、攪拌及び混合する方法等が挙げられる。
 中和剤におけるアミン化合物としては、エチルアミン、エチレンジアミン、ジエチルアミン、ピロリジン、ピぺリジン、トリエチルアミン、及びピリジン等が挙げられる。
 本発明においては、中和剤として、アンモニアの水溶液、又は/及びアミン化合物の水溶液を使用する。本発明では、中和剤として、水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属塩、並びに水酸化カルシウム等のアルカリ土類金属塩を使用しないため、最終的に得られる製品中や廃水中に金属化合物を含まない、いわゆる金属フリーとすることができる。
The reaction solution obtained in step 2 contains acidic components such as unreacted (meth)acrylic acid and an acid catalyst in addition to the (meth)acrylate mixture that is the product. The neutralization treatment in step 3 is performed for the purpose of removing acidic components such as unreacted (meth)acrylic acid and acid catalyst in the reaction solution.
The neutralization treatment is carried out by bringing the reaction solution into contact with a neutralizing agent, which is an alkaline aqueous solution. Specifically, it may be carried out according to a conventional method. For example, the neutralizing agent is added to the reaction solution, stirring and Examples include a method of mixing.
Examples of the amine compound in the neutralizing agent include ethylamine, ethylenediamine, diethylamine, pyrrolidine, piperidine, triethylamine, and pyridine.
In the present invention, an aqueous solution of ammonia and/or an aqueous solution of an amine compound is used as the neutralizing agent. In the present invention, since alkali metal salts such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and alkaline earth metal salts such as calcium hydroxide are not used as neutralizing agents, Wastewater can be made so-called metal-free, meaning that it does not contain metal compounds.
 工程3においては、アンモニアの水溶液とアンモニウム塩の水溶液、又はアミン化合物の水溶液とアンモニウム塩の水溶液を併用するのが好ましい。
 ここで、アンモニウム塩としては硫酸アンモニウム等が挙げられる。
In step 3, it is preferable to use an aqueous solution of ammonia and an aqueous solution of an ammonium salt, or an aqueous solution of an amine compound and an aqueous solution of an ammonium salt.
Here, examples of the ammonium salt include ammonium sulfate and the like.
 アンモニアの水溶液、及びアミン化合物の水溶液の濃度としては、目的に応じて適宜設定すれば良く、1~50重量%が好ましく、より好ましくは10~20重量%である。
 中和剤の使用割合としては、有機相の酸価の値、好ましく予備水洗後の有機相の酸価の値の1~1.5倍の塩基価、となるように調整するのが好ましい。
The concentrations of the ammonia aqueous solution and the amine compound aqueous solution may be appropriately set depending on the purpose, and are preferably 1 to 50% by weight, more preferably 10 to 20% by weight.
The proportion of the neutralizing agent used is preferably adjusted so that the base value is 1 to 1.5 times the acid value of the organic phase, preferably 1 to 1.5 times the acid value of the organic phase after preliminary water washing.
 中和工程である工程3を実施するに当たっては、工程3を実施する前に、工程2で得られた反応液に有機溶剤を加えて希釈したり、予備水洗を行うことが好ましい。 When carrying out Step 3, which is a neutralization step, it is preferable to add an organic solvent to dilute the reaction solution obtained in Step 2 or to perform preliminary water washing before carrying out Step 3.
 希釈に使用する有機溶剤としては、工程1及び2で使用した有機溶媒と同じ化合物であることが好ましい。
 有機溶剤の希釈割合としては希釈後の有機溶媒及び有機溶剤の合計濃度が50~70重量%となるように調整するのが好ましい。
The organic solvent used for dilution is preferably the same compound as the organic solvent used in steps 1 and 2.
The dilution ratio of the organic solvent is preferably adjusted so that the total concentration of the organic solvent and the organic solvent after dilution is 50 to 70% by weight.
 予備水洗に使用する水洗剤としては、蒸留水、及び精製水等を用いるのが好ましい。水洗処理は1回のみ行なってもよいし、または複数回行ってもよい 。 As the water detergent used for preliminary washing, it is preferable to use distilled water, purified water, etc. The water washing treatment may be performed only once, or may be performed multiple times.
 水洗剤としては、比重差を付けるため、必要に応じてアンモニウム塩やナトリウム塩の水溶液を併用することができる。具体的には、硫酸アンモニウム、硫酸アンモニウムナトリウム、及び塩化ナトリウム等が挙げられ、金属フリーの目的では硫酸アンモニウムがより好ましい。
 水洗処理は、目的に応じて1回のみでも、複数回行ってもよい 。
As an aqueous detergent, an aqueous solution of ammonium salt or sodium salt can be used in combination, if necessary, in order to create a difference in specific gravity. Specific examples include ammonium sulfate, sodium ammonium sulfate, and sodium chloride, with ammonium sulfate being more preferred for the purpose of being metal-free.
The water washing treatment may be performed only once or multiple times depending on the purpose.
 前記中和処理後の液は、有機相及び水相に2層に分離し、有機相の方が水相より比重が低いため、上層に有機相が下層に水相に分離される。
 下層の水相を抜き出し、有機相と分離する。
 分離された有機相の使用方法は、有機相の内容に応じて適宜選択すれば良い。分離された有機相の使用方法としては、そのまま硬化型組成物の原料として使用する方法、有機溶剤を蒸留除去した後、硬化型組成物の原料として使用する方法等が挙げられる。
 抜き出した水相の使用方法としては、水相の内容に応じて適宜選択すれば良い。抜き出した水相の使用方法としては、そのまま硬化型組成物の原料として使用する方法、水を蒸留等で除去した後、硬化型組成物の原料として使用する方法、及び廃棄処理を行う方法等が挙げられる。
The liquid after the neutralization treatment is separated into two layers, an organic phase and an aqueous phase, and since the organic phase has a lower specific gravity than the aqueous phase, the organic phase is separated into the upper layer and the lower aqueous phase.
The lower aqueous phase is drawn off and separated from the organic phase.
The method for using the separated organic phase may be appropriately selected depending on the contents of the organic phase. Examples of how to use the separated organic phase include using it as it is as a raw material for a curable composition, and using it as a raw material for a curable composition after distilling off the organic solvent.
The method for using the extracted aqueous phase may be appropriately selected depending on the contents of the aqueous phase. The extracted aqueous phase can be used as it is as a raw material for a curable composition, after water is removed by distillation etc., it can be used as a raw material for a curable composition, or it can be disposed of. Can be mentioned.
1-4.(メタ)アクリレート混合物の使用方法
 本発明の製造方法で得られる(メタ)アクリレート混合物は、工程3の中和工程で得られる有機相の(メタ)アクリレート混合物を使用することも、水相の(メタ)アクリレート混合物を使用することもできる。
1-4. Method of using (meth)acrylate mixture The ( meth)acrylate mixture obtained by the production method of the present invention can be either the (meth)acrylate mixture in the organic phase obtained in the neutralization step of step 3 or the (meth)acrylate mixture in the aqueous phase. It is also possible to use meth)acrylate mixtures.
 工程2-1を経て工程3を実施した有機相に含まれる(メタ)アクリレート混合物の例としては、以下の(O-1-1)~(O-1-5)等が挙げられる。
(O-1-1)工程1で得られた水酸基を有しない(メタ)アクリレート、工程2で得られた水酸基を有しない(メタ)アクリレート
(O-1-2)ポリエステルジオール(2)と(メタ)アクリル酸の反応による水酸基を有しないポリエステルジ(メタ)アクリレート
(O-1-3)水酸基含有(メタ)アクリレート(1)、及び/又は水酸基含有(メタ)アクリレート(2)と、化合物(B)との反応による水酸基を有しない(メタ)アクリレート
(O-1-4)水酸基含有(メタ)アクリレート(1)、水酸基含有(メタ)アクリレート(2)、及び/又はポリエステルジオール(2)と、化合物(B)との反応による水酸基を有しない(メタ)アクリレート
(O-1-5)化合物(C)と(メタ)アクリル酸の反応による水酸基を有しないジ(メタ)アクリレート
Examples of the (meth)acrylate mixture contained in the organic phase subjected to Step 2-1 and then Step 3 include the following (O-1-1) to (O-1-5).
(O-1-1) (Meth)acrylate without hydroxyl group obtained in Step 1, (meth)acrylate without hydroxyl group obtained in Step 2
(O-1-2) Polyester di(meth)acrylate without hydroxyl group produced by reaction of polyester diol (2) and (meth)acrylic acid
(O-1-3) (meth)acrylate without hydroxyl group resulting from reaction of hydroxyl group-containing (meth)acrylate (1) and/or hydroxyl group-containing (meth)acrylate (2) with compound (B)
(O-1-4) Hydroxyl group-containing (meth)acrylate (1), hydroxyl group-containing (meth)acrylate (2), and/or polyester diol (2) reacted with compound (B), which does not have a hydroxyl group ( Meta) acrylate
(O-1-5) Di(meth)acrylate without hydroxyl group produced by reaction of compound (C) and (meth)acrylic acid
 工程2-1を経て工程3を実施した水相に含まれる(メタ)アクリレート混合物は、水酸基及び(メタ)アクリロイル基を有する化合物、並びにカルボキシ基及び(メタ)アクリロイル基を有する化合物等であり、その例としては、以下の(W-1-1)~(W-1-5)等が挙げられる。尚、カルボキシ基及び(メタ)アクリロイル基を有する化合物は、水相中では、アンモニウム塩、又はアミン化合物の塩として存在している。
(W-1-1)水酸基含有(メタ)アクリレート(1)、水酸基含有(メタ)アクリレート(2)
(W-1-2)ポリエステルジオール(2)と(メタ)アクリル酸の反応による水酸基含有ポリエステルモノ(メタ)アクリレート
(W-1-3)化合物(B)と(メタ)アクリル酸の反応による水酸基含有モノ(メタ)アクリレート
(W-1-4)水酸基含有(メタ)アクリレート(1)、又は水酸基含有(メタ)アクリレート(2)と、化合物(B)の反応によるカルボキシ基含有モノ(メタ)アクリレート
(W-1-5)未反応(メタ)アクリル酸
The (meth)acrylate mixture contained in the aqueous phase after Step 2-1 and Step 3 is a compound having a hydroxyl group and a (meth)acryloyl group, a compound having a carboxy group and a (meth)acryloyl group, etc. Examples include (W-1-1) to (W-1-5) below. Note that the compound having a carboxyl group and a (meth)acryloyl group exists as an ammonium salt or a salt of an amine compound in the aqueous phase.
(W-1-1) Hydroxyl group-containing (meth)acrylate (1), hydroxyl group-containing (meth)acrylate (2)
(W-1-2) Hydroxyl group-containing polyester mono(meth)acrylate produced by reaction of polyester diol (2) and (meth)acrylic acid
(W-1-3) Hydroxyl group-containing mono(meth)acrylate produced by reaction of compound (B) and (meth)acrylic acid
(W-1-4) Carboxy group-containing mono(meth)acrylate obtained by reacting hydroxyl group-containing (meth)acrylate (1) or hydroxyl group-containing (meth)acrylate (2) with compound (B)
(W-1-5) Unreacted (meth)acrylic acid
 工程2-2を経て工程3を実施した有機相に含まれる(メタ)アクリレート混合物の例としては、以下の(O-2-1)及び(O-2-2)等が挙げられる。
(O-2-1)工程1で得られた水酸基を有しない(メタ)アクリレート
(O-2-2)水酸基含有(メタ)アクリレート(1)、化合物(B)及び化合物(D)の反応による(メタ)アクリレート
Examples of the (meth)acrylate mixture contained in the organic phase subjected to Step 3 through Step 2-2 include the following (O-2-1) and (O-2-2).
(O-2-1) (Meth)acrylate without hydroxyl group obtained in step 1
(O-2-2) (Meth)acrylate obtained by reaction of hydroxyl group-containing (meth)acrylate (1), compound (B) and compound (D)
 工程2-2を経て工程3を実施した水相に含まれる(メタ)アクリレート混合物は、水酸基及び(メタ)アクリロイル基を有する化合物、並びにカルボキシ基及び(メタ)アクリロイル基を有する化合物等であり、その例としては、以下の(W-2-1)~(W-2-4)等が挙げられる。尚、カルボキシ基及び(メタ)アクリロイル基を有する化合物は、水相中では、アンモニウム塩、又はアミン化合物の塩として存在している。
(W-2-1)水酸基含有(メタ)アクリレート(1)
(W-2-2)水酸基含有(メタ)アクリレート(1)と化合物(B)の反応によるカルボキシ基含有(メタ)アクリレート
(W-2-3)化合物(B)と化合物(C)の反応によるカルボキシ基含有モノ(メタ)アクリレート
(W-2-4)未反応(メタ)アクリル酸
The (meth)acrylate mixture contained in the aqueous phase after Step 2-2 and Step 3 is a compound having a hydroxyl group and a (meth)acryloyl group, a compound having a carboxy group and a (meth)acryloyl group, etc. Examples include (W-2-1) to (W-2-4) below. Note that the compound having a carboxyl group and a (meth)acryloyl group exists as an ammonium salt or a salt of an amine compound in the aqueous phase.
(W-2-1) Hydroxyl group-containing (meth)acrylate (1)
(W-2-2) Carboxy group-containing (meth)acrylate obtained by reaction of hydroxyl group-containing (meth)acrylate (1) and compound (B)
(W-2-3) Carboxy group-containing mono(meth)acrylate obtained by reaction of compound (B) and compound (C)
(W-2-4) Unreacted (meth)acrylic acid
 この場合、(メタ)アクリレート混合物を含む有機相又は水相は、そのまま使用することもでき、又、有機相又は水相の有機溶媒又は水を除去した後の(メタ)アクリレート混合物を使用することもできる。 In this case, the organic phase or aqueous phase containing the (meth)acrylate mixture can be used as is, or the (meth)acrylate mixture after removing the organic solvent or water from the organic phase or aqueous phase can be used. You can also do it.
2.硬化型組成物
 本発明の製造方法により得られた(メタ)アクリレート混合物は、従来(メタ)アクリレートが使用されている種々の用途に使用することができる。
 例えば、塗料等のコーティング剤、インキ、接着剤、レジスト、充填剤及び成形材料等の用途において、組成物の主成分、架橋成分、又は反応性希釈剤成分等として各種工業用途に好適に使用することができる。成形材料としては、フィルム及びシート等の形状に加工して使用することもでき、フィルム及びシートとしては、光学レンズ等の光学用途に使用することができる。
 本発明の製造方法により得られた(メタ)アクリレート混合物は、硬化型組成物の成分として使用することが好ましく、その用途としては、コーティング剤及びインキとしてより好ましく使用することができる。
2. Curable Composition The (meth)acrylate mixture obtained by the production method of the present invention can be used in various applications in which (meth)acrylates have conventionally been used.
For example, it is suitably used in various industrial applications as a main component of a composition, a crosslinking component, or a reactive diluent component in applications such as coating agents such as paints, inks, adhesives, resists, fillers, and molding materials. be able to. As a molding material, it can also be used by processing it into shapes such as films and sheets, and the films and sheets can be used for optical applications such as optical lenses.
The (meth)acrylate mixture obtained by the production method of the present invention is preferably used as a component of a curable composition, and more preferably used as a coating agent and ink.
 本発明の製造方法で得られる(メタ)アクリレート混合物は、工程3の中和工程で得られる有機相の成分を使用することも、水相の成分を使用することもできる。
 この場合、(メタ)アクリレート混合物を含む有機相又は水相をそのまま使用することもでき、又、有機相又は水相の有機溶媒又は水を蒸発させた後の(メタ)アクリレート混合物を使用することもできる。
For the (meth)acrylate mixture obtained by the production method of the present invention, the components of the organic phase obtained in the neutralization step of step 3 can be used, or the components of the aqueous phase can be used.
In this case, the organic phase or aqueous phase containing the (meth)acrylate mixture can be used as is, or the (meth)acrylate mixture after evaporating the organic solvent or water in the organic phase or aqueous phase can be used. You can also do it.
 (メタ)アクリレート混合物を含む有機相をそのまま使用する場合は、有機溶媒系の組成物となり、(メタ)アクリレート混合物を含む水相をそのまま使用する場合は、水系の組成物となる。 If the organic phase containing the (meth)acrylate mixture is used as is, the composition will be an organic solvent-based composition, and if the aqueous phase containing the (meth)acrylate mixture is used as it is, the composition will be an aqueous composition.
 本発明の製造方法により得られた(メタ)アクリレート混合物を硬化型組成物の成分として使用する場合、硬化型組成物で使用される各種成分を配合することができる。
 具体例としては、本発明の製造方法により得られた(メタ)アクリレート混合物以外のエチレン性不飽和化合物〔以下、「(E)成分」という〕、及び重合開始剤〔以下、「(F)成分」という〕等が挙げられる。
When the (meth)acrylate mixture obtained by the production method of the present invention is used as a component of a curable composition, various components used in the curable composition can be blended.
Specific examples include ethylenically unsaturated compounds other than the (meth)acrylate mixture obtained by the production method of the present invention [hereinafter referred to as "component (E)"], and polymerization initiators [hereinafter referred to as "component (F)"] ”] etc.
2-1.(E)成分
 (E)成分としては、(メタ)アクリロイル基を1個有する化合物〔以下、「(E-1)成分」という〕、及び(メタ)アクリロイル基を2個以上有する化合物〔以下、「(E-2)成分」という〕等が挙げることができる。
2-1. Component (E) Component (E) includes a compound having one (meth)acryloyl group [hereinafter referred to as "component (E-1)"], and a compound having two or more (meth)acryloyl groups [hereinafter referred to as "component (E-1)"]. "component (E-2)"], etc.
2-1-1.(E-1)成分
 (E-1)成分は1分子中に(メタ)アクリロイル基を1個有する化合物である。
 (E-1)成分の具体例としては、1個の(メタ)アクリロイル基を有する(メタ)アクリレート(以下、「単官能(メタ)アクリレート」という)、及び1個の(メタ)アクリロイル基を有する(メタ)アクリルアミド化合物(以下、「単官能(メタ)アクリルアミド」という)等が挙げられる。
2-1-1. Component (E-1) Component (E-1) is a compound having one (meth)acryloyl group in one molecule.
Specific examples of component (E-1) include (meth)acrylate having one (meth)acryloyl group (hereinafter referred to as "monofunctional (meth)acrylate"); (meth)acrylamide compounds (hereinafter referred to as "monofunctional (meth)acrylamide"), etc.
 単官能(メタ)アクリレートの具体例としては、
メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;
シクロヘキシル(メタ)アクリレート、メンチルアクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環式基を有する単官能(メタ)アクリレート;
グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート等の環状エーテル基を有する単官能(メタ)アクリレート;
ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、o-フェニルフェノキシ(メタ)アクリレート及びp-クミルフェノールエチレン(メタ)アクリレート等の芳香族単官能(メタ)アクリレート;
(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等のマレイミド基を有する単官能(メタ)アクリレート;
(メタ)アクリロイルモルホリン;
エチルカルビトール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート等のアルキルカルビトール(メタ)アクリレート等のアルコキシアルキル基を有する単官能(メタ)アクリレート;並びに
3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン及び3-(メタ)アクリロキシプロピルメチルジエトキシシラン及び3-(メタ)アクリロキシプロピルトリエトキシシラン等のアルコキシ基含有単官能(メタ)アクリレート等を挙げることができる。
Specific examples of monofunctional (meth)acrylates include:
Methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, lauryl ( Alkyl (meth)acrylates such as meth)acrylate and stearyl (meth)acrylate;
Cyclohexyl (meth)acrylate, menthyl acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate ) Monofunctional (meth)acrylates having alicyclic groups such as acrylates;
Glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, cyclohexane spiro-2-(1,3-dioxolane) Monofunctional (meth)acrylates having a cyclic ether group such as -4-yl)methyl (meth)acrylate and 3-ethyl-3-oxetanylmethyl (meth)acrylate;
Aromatic monofunctional (meth)acrylates such as benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, o-phenylphenoxy (meth)acrylate and p-cumylphenolethylene (meth)acrylate;
Monofunctional (meth)acrylates having a maleimide group such as (meth)acryloyloxyethylhexahydrophthalimide;
(meth)acryloylmorpholine;
Monofunctional (meth)acrylates having an alkoxyalkyl group such as alkyl carbitol (meth)acrylates such as ethyl carbitol (meth)acrylate and 2-ethylhexyl carbitol (meth)acrylate; and 3-(meth)acryloxypropylmethyl Alkoxy group-containing monofunctional (meth)acrylates such as dimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, and 3-(meth)acryloxypropyltriethoxysilane etc. can be mentioned.
 単官能(メタ)アクリルアミド化合物の具体例としては、N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-n-ヘキシル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド;並びにN,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド及びN,N-ジヘキシル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド等が挙げられる。 Specific examples of monofunctional (meth)acrylamide compounds include N-methyl (meth)acrylamide, Nn-propyl (meth)acrylamide, N-isopropyl (meth)acrylamide, Nn-butyl (meth)acrylamide, N- N-alkyl (meth)acrylamide such as -sec-butyl (meth)acrylamide, N-t-butyl (meth)acrylamide, N-n-hexyl (meth)acrylamide; N- such as N-hydroxyethyl (meth)acrylamide Hydroxyalkyl (meth)acrylamide; and N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide Acrylamide, N,N-di-n-propyl (meth)acrylamide, N,N-diisopropyl (meth)acrylamide, N,N-di-n-butyl (meth)acrylamide, N,N-dihexyl (meth)acrylamide, etc. Examples include N,N-dialkyl (meth)acrylamide and the like.
 (E-1)成分としては、再生可能資源由来原料から製造された再生可能資源由来化合物が好ましい。
 当該化合物の具体例としては、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、メンチルアクリレート、及びイソボルニル(メタ)アクリレート等が挙げられる。
 (E-1)成分の含有割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量中に0~20重量部含まれるのが好ましい。
Component (E-1) is preferably a renewable resource-derived compound produced from a renewable resource-derived raw material.
Specific examples of the compound include octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, menthyl acrylate, and isobornyl (meth)acrylate.
The content ratio of component (E-1) may be appropriately set depending on the purpose, and it is preferably contained in the total amount of curable components from 0 to 20 parts by weight.
2-1-2.(E-2)成分
 (E-2)成分は(メタ)アクリロイル基を2個以上有する化合物である。
 (E-2)成分において、2個の(メタ)アクリロイル基を有する化合物としては、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート及びノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジオールのジ(メタ)アクリレート;
ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;
グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールのジ(メタ)アクリレート、ジトリメチロールプロパンのジ(メタ)アクリレート及びジペンタエリスリトールのジ(メタ)アクリレート等のポリオールジ(メタ)アクリレート;
グリセロールアルキレンオキサイド付加物のジ(メタ)アクリレート、ペンタエリスリトールアルキレンオキサイド付加物のジ(メタ)アクリレート、ジトリメチロールプロパンアルキレンオキサイド付加物のジ(メタ)アクリレート、ジペンタエリスリトールアルキレンオキサイド付加物のジ(メタ)アクリレート等のポリオールアルキレンオキサイド付加物のジ(メタ)アクリレート;
イソシアヌル酸アルキレンオキサイド付加物のジ(メタ)アクリレート;
ペンタエリスリトールジ(メタ)アクリレートと有機ポリイソシアネートとのウレタン(メタ)アクリレート;
トリシクロデカンジメチロールジ(メタ)アクリレート等の脂環族ジオールのジ(メタ)アクリレート;
ビスフェノールAのアルキレンオキサイド付加物のジ(メタ)アクリレート及びビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート等のビスフェノール系化合物のアルキレンオキサイド付加物のジ(メタ)アクリレート等が挙げられる。
 尚、前記における、アルキレンオキサイド付加物の例としては、エチレンオキサイド付加物、プロピレンオキサイド付加物、並びに、エチレンオキサイド及びプロピレンオキサイド付加物等が挙げられる。
2-1-2. (E-2) Component (E-2) Component is a compound having two or more (meth)acryloyl groups.
In component (E-2), examples of compounds having two (meth)acryloyl groups include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. meth)acrylates and di(meth)acrylates of aliphatic diols such as nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate;
Diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, etc. polyalkylene glycol di(meth)acrylate;
Polyol di(meth)acrylate such as glycerin di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di(meth)acrylate, ditrimethylolpropane di(meth)acrylate and dipentaerythritol di(meth)acrylate ) acrylate;
Di(meth)acrylate of glycerol alkylene oxide adduct, Di(meth)acrylate of pentaerythritol alkylene oxide adduct, Di(meth)acrylate of ditrimethylolpropane alkylene oxide adduct, Di(meth)acrylate of dipentaerythritol alkylene oxide adduct. ) Di(meth)acrylates of polyol alkylene oxide adducts such as acrylates;
Di(meth)acrylate of isocyanuric acid alkylene oxide adduct;
Urethane (meth)acrylate of pentaerythritol di(meth)acrylate and organic polyisocyanate;
Di(meth)acrylate of alicyclic diol such as tricyclodecane dimethylol di(meth)acrylate;
Examples include di(meth)acrylates of alkylene oxide adducts of bisphenol compounds, such as di(meth)acrylates of alkylene oxide adducts of bisphenol A and di(meth)acrylates of alkylene oxide adducts of bisphenol F.
In addition, examples of the alkylene oxide adducts mentioned above include ethylene oxide adducts, propylene oxide adducts, and ethylene oxide and propylene oxide adducts.
 3個以上の(メタ)アクリロイル基を有する化合物としては、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールのトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンのトリ又はテトラ(メタ)アクリレート及びジペンタエリスリトールのトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート;
グリセロールアルキレンオキサイド付加物のトリ(メタ)アクリレート、ペンタエリスリトールアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジグリセリンアルキレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールアルキレンオキサイド付加物のトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールアルキレンオキサイド付加物のポリ(メタ)アクリレート;
イソシアヌル酸アルキレンオキサイド付加物のトリ(メタ)アクリレート;並びに、
ペンタエリスリトールトリ(メタ)アクリレート等の水酸基を有し3個以上の(メタ)アクリロイル基を有する化合物と有機ポリイソシアネートとの反応物であるウレタン(メタ)アクリレート等を挙げることができる。
 前記における、アルキレンオキサイド付加物の例としては、エチレンオキサイド付加物、プロピレンオキサイド付加物、並びに、エチレンオキサイド及びプロピレンオキサイド付加物等が挙げられる。
 又、前記有機ポリイソシアネートとしては、トリレンジイソシアネート、1,6-ヘキサンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルイソシアネート、1,6-ヘキサンジイソシアネート3量体、水素化トリレンジイソシアネート、水素化4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、パラフェニレンジイソシアネート、トリレンジイソシアネート2量体、1,5-ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート相互付加物、4,4’-ジシクロヘキシルメタンジイソシアネート、トリメチロールプロパントリス(トリレンジイソシアネート)付加物及びイソホロンジイソシアネート等を挙げることができる。
Examples of compounds having three or more (meth)acryloyl groups include glycerin tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri- or tetra(meth)acrylate, ditrimethylolpropane tri- or polyol poly(meth)acrylates such as tri-, tetra-, penta- or hexa(meth)acrylates of tetra(meth)acrylate and dipentaerythritol;
Tri(meth)acrylate of glycerol alkylene oxide adduct, tri- or tetra(meth)acrylate of pentaerythritol alkylene oxide adduct, tri- or tetra(meth)acrylate of ditrimethylolpropane alkylene oxide adduct, diglycerol alkylene oxide adduct Poly(meth)acrylates of polyol alkylene oxide adducts such as tetra(meth)acrylate, dipentaerythritol alkylene oxide adducts tri, tetra, penta or hexa(meth)acrylate;
Tri(meth)acrylate of isocyanuric acid alkylene oxide adduct; and
Examples include urethane (meth)acrylate, which is a reaction product of a compound having a hydroxyl group and three or more (meth)acryloyl groups, such as pentaerythritol tri(meth)acrylate, and an organic polyisocyanate.
Examples of the alkylene oxide adducts mentioned above include ethylene oxide adducts, propylene oxide adducts, and ethylene oxide and propylene oxide adducts.
Further, as the organic polyisocyanate, tolylene diisocyanate, 1,6-hexane diisocyanate, 4,4'-diphenylmethane diisocyanate, polymethylene polyphenylisocyanate, 1,6-hexane diisocyanate trimer, hydrogenated tolylene diisocyanate, Hydrogenated 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, paraphenylene diisocyanate, tolylene diisocyanate dimer, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate interadduct, 4,4'- Examples include dicyclohexylmethane diisocyanate, trimethylolpropane tris(tolylene diisocyanate) adduct, and isophorone diisocyanate.
 (E-2)成分としては、オリゴマーを使用することもでき、ジオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であるウレタン(メタ)アクリレート、及びエポキシ(メタ)アクリレート等を挙げることができる。 As the component (E-2), oligomers can also be used, and examples include urethane (meth)acrylate, which is a reaction product of diol, organic polyisocyanate, and hydroxyl group-containing (meth)acrylate, and epoxy (meth)acrylate. I can do it.
 (E-2)成分としては、再生可能資源由来原料から製造された再生可能資源由来化合物が好ましい。
 当該化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセロールアルキレンオキサイド付加物のジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、及びジグリセリンアルキレンオキサイド付加物のテトラ(メタ)アクリレート等が挙げられる。
 (E-2)成分の含有割合としては、目的に応じて適宜設定すれば良く、(メタ)アクリレート混合物及び(E)成分(以下、(メタ)アクリレート混合物及び(E)成分をまとめて、「硬化性成分」という)合計量中に0~40重量部含まれるのが好ましい。
Component (E-2) is preferably a renewable resource-derived compound produced from a renewable resource-derived raw material.
Specific examples of such compounds include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, di(meth)acrylate of glycerol alkylene oxide adducts, and glycerol triacrylate. Examples include (meth)acrylate and tetra(meth)acrylate of diglycerin alkylene oxide adduct.
The content ratio of the (E-2) component may be set as appropriate depending on the purpose. It is preferably contained in the total amount of 0 to 40 parts by weight (referred to as "curable component").
2-2.(F)成分
 (F)成分は、重合開始剤である。
 硬化型組成物を活性エネルギー線硬化型組成物として使用する場合、特に、可視光線又は紫外線硬化型組成物とする場合、組成物に光重合開始剤〔以下、「(F-1)成分」という〕を配合する。尚、電子線硬化型組成物とする場合は、光重合開始剤を必ずしも配合する必要はない。
 (F-1)成分は、活性エネルギー線の照射によってラジカルを発生し、エチレン性不飽和基を有する化合物の重合を開始する化合物である。
2-2. Component (F) Component (F) is a polymerization initiator.
When the curable composition is used as an active energy ray curable composition, particularly when it is used as a visible light or ultraviolet ray curable composition, a photopolymerization initiator [hereinafter referred to as "component (F-1)"] is added to the composition. ]. In addition, when preparing an electron beam curable composition, it is not necessarily necessary to add a photopolymerization initiator.
Component (F-1) is a compound that generates radicals upon irradiation with active energy rays and initiates polymerization of a compound having an ethylenically unsaturated group.
 (F-1)成分の具体例としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン、3,6-ビス(2-メチル-2-モルフォリノプロピオニル)-9-n-オクチルカルバゾール、フェニルグリオキシ酸メチル、エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イルオキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
Specific examples of component (F-1) include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenyl Propan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, oligo 2-hydroxy-2-methyl-1-[4- (1-methylvinyl)phenyl]propanone, 2-hydroxy-1-[4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl]-2-methylpropan-1-one, 2-methyl- 1-[4-(Methylthio)]phenyl-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino- 2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)butan-1-one, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n- Aromatic ketone compounds such as octylcarbazole, methyl phenylglyoxylate, ethyl anthraquinone and phenanthrenequinone;
Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 4-(methylphenylthio)phenylphenylmethane, methyl-2-benzophenone, 1- [4-(4-Benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis Benzophenone compounds such as (diethylamino)benzophenone and 4-methoxy-4'-dimethylaminobenzophenone;
Bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl(2,4,6-trimethylbenzoyl)phenylphosphine and bis(2,6 acylphosphine oxide compounds such as -dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide;
Thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3-[3,4-dimethyl-9-oxo-9H-thioxanthon-2-yloxy]-2- Examples include thioxanthone compounds such as hydroxypropyl-N,N,N-trimethylammonium chloride and fluorothioxanthone.
 本発明の製造方法で得られる(メタ)アクリレートとして、工程3の中和工程で得られる有機相内の成分を使用する場合、(F-1)成分としては、α-ヒドロキシフェニルケトン類が、大気下において、薄膜のコーティングであっても表面硬化性が良好で好ましく、具体的には、1-ヒドロキシシクロヘキシルフェニルケトン、及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンがより好ましい。 When using the component in the organic phase obtained in the neutralization step of step 3 as the (meth)acrylate obtained by the production method of the present invention, the component (F-1) is α-hydroxyphenyl ketones, In the atmosphere, even a thin film coating has good surface hardening properties and is preferred. Specifically, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propan-1-one are preferred. More preferred.
 本発明の製造方法で得られる(メタ)アクリレートとして、工程3の中和工程で得られる水相内の成分を使用する場合、(F-1)成分としては、水との相溶性に優れる点で、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、フェニルグリオキシ酸メチルが好ましい。 When using the component in the aqueous phase obtained in the neutralization step of step 3 as the (meth)acrylate obtained by the production method of the present invention, the component (F-1) has excellent compatibility with water. and 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, phenyl Methyl glyoxylate is preferred.
 硬化型組成物を熱硬化型組成物として使用する場合、組成物に熱重合開始剤〔以下、「(F-2)成分」〕を配合する。
 (F-2)成分としては、種々の化合物を使用することができ、有機過酸化物及びアゾ系化合物等が挙げられる。
When the curable composition is used as a thermosetting composition, a thermal polymerization initiator [hereinafter referred to as "component (F-2)"] is blended into the composition.
As component (F-2), various compounds can be used, including organic peroxides and azo compounds.
3.硬化型組成物の製造方法
 本発明は、硬化型組成物の製造方法にも関する。
 即ち、(メタ)アクリレート混合物と、(E)成分とを攪拌・混合する硬化型組成物の製造方法に関する。
3. Method for producing a curable composition The present invention also relates to a method for producing a curable composition.
That is, the present invention relates to a method for producing a curable composition in which a (meth)acrylate mixture and component (E) are stirred and mixed.
 又、本発明は、活性エネルギー線硬化型組成物の製造方法にも関する。
 即ち、(メタ)アクリレート混合物と、(E)成分と、(F-1)成分とを、攪拌・混合する製造方法であって、硬化性成分の合計100重量部に対して0.01~20重量部の(F)成分を使用する活性エネルギー線硬化型組成物の製造方法に関する。
The present invention also relates to a method for producing an active energy ray-curable composition.
That is, it is a manufacturing method in which a (meth)acrylate mixture, component (E), and component (F-1) are stirred and mixed, and 0.01 to 20 parts by weight of the curable components are mixed. The present invention relates to a method for producing an active energy ray-curable composition using parts by weight of component (F).
 前記組成物の製造方法においては、前記工程2-1において、化合物(B)の合計1モルに対して、化合物(C)を1~50倍モルの割合で使用することが好ましい。
 又、工程2として工程2-2を実施することが、得られる(メタ)アクリレート混合物が、硬化性に優れ、得られる硬化物が、硬度、密着性、及び低カール性等の物性に優れるため好ましい。
 又、化合物(A)、化合物(B)、化合物(C)及び化合物(D)の少なくともいずれか一つの化合物が再生可能資源由来化合物を含むことが好ましい。
In the method for producing the composition, in step 2-1, compound (C) is preferably used in a molar ratio of 1 to 50 times per mole of compound (B) in total.
In addition, by performing Step 2-2 as Step 2, the obtained (meth)acrylate mixture has excellent curability, and the obtained cured product has excellent physical properties such as hardness, adhesion, and low curling properties. preferable.
Further, it is preferable that at least one of compound (A), compound (B), compound (C), and compound (D) contains a compound derived from a renewable resource.
 又、前記組成物の製造方法としては、(メタ)アクリレート混合物と、(E)成分とを下記で示す割合で攪拌・混合する方法が好ましい。
(メタ)アクリレート混合物40~100重量部、(E)成分として(E-1)成分0~20重量部、(E-2)成分0~40重量部を含む
Moreover, as a method for producing the composition, a method of stirring and mixing the (meth)acrylate mixture and component (E) at the ratio shown below is preferable.
Contains 40 to 100 parts by weight of a (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2) as component (E).
 又、前記組成物の製造方法としては、前記工程1~3を順次実施した後、工程3で得られた有機相及び/又は中和後の水相中の(メタ)アクリレート混合物を、硬化型組成物の配合成分として使用する方法が好ましい。 In addition, as a method for producing the composition, after sequentially performing steps 1 to 3, the (meth)acrylate mixture in the organic phase obtained in step 3 and/or the neutralized aqueous phase is converted into a hardening type. Preferably, it is used as a component of a composition.
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。尚、本発明は、これらの実施例によって限定されるものではない。
 又、以下において、特に断りのない限り、「部」とは重量部を意味し、「%」とは重量%を意味する。
EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Note that the present invention is not limited to these Examples.
Further, in the following, unless otherwise specified, "part" means part by weight, and "%" means weight %.
 本製造例において、以下の条件で1H NMRを測定した。 In this production example, 1 H NMR was measured under the following conditions.
1H NMR測定条件>
装置:AVANCE III(Bruker製)
測定モード:シングルモード
溶媒:CDCl3
パルス角度:45度
試料濃度:4~6重量%濃度
積算回数:16回
< 1H NMR measurement conditions>
Equipment: AVANCE III (manufactured by Bruker)
Measurement mode: single mode Solvent: CDCl3
Pulse angle: 45 degrees Sample concentration: 4 to 6% by weight Number of concentration accumulations: 16 times
1.実施例〔アクリレート混合物の製造方法〕
1-1.実施例1-1
1)工程1
 還流管を設置した1Lの側管付き四口フラスコに、化合物(A)としてジグリセリンのエチレンオキサイド付加物196g〔花王(株)製、エマルゲンG2E-4。以下、「G2E4」という。〕、アクリル酸119g(アルコール中の全水酸基1モルに対して0.76モルの割合)、70%メタンスルホン酸(以下、「MSA」という)8.3g、塩化第二銅0.6g及びトルエン240gを投入した。
 含酸素ガス(酸素5容量%、窒素95容量%)をフラスコ内に吹き込みながら、反応液温度85~95℃で加熱攪拌した。反応の進行に伴って、生成する水をディーンスターク管で系外に取出しながら、11時間の脱水エステル化反応を行った。
 得られた反応物の水酸基価は61mgKOH/gであった。
1. Example [Method for producing acrylate mixture]
1-1. Example 1-1
1) Process 1
In a 1 L four-necked flask with a side tube equipped with a reflux tube, 196 g of an ethylene oxide adduct of diglycerin as compound (A) [manufactured by Kao Corporation, Emulgen G2E-4] was placed. Hereinafter, it will be referred to as "G2E4". ], 119 g of acrylic acid (ratio of 0.76 mol to 1 mol of total hydroxyl groups in alcohol), 8.3 g of 70% methanesulfonic acid (hereinafter referred to as "MSA"), 0.6 g of cupric chloride, and toluene. 240g was added.
While blowing oxygen-containing gas (5% by volume of oxygen, 95% by volume of nitrogen) into the flask, the reaction solution was heated and stirred at a temperature of 85 to 95°C. As the reaction progressed, the dehydration esterification reaction was carried out for 11 hours while the water produced was taken out of the system through a Dean-Stark tube.
The obtained reaction product had a hydroxyl value of 61 mgKOH/g.
2)工程2
 工程1の完了後、続けて一度常圧に戻したのちに、化合物(B)としてイタコン酸(以下、「ITA」という)71g、化合物(C)として1,4-ブタンジオール(以下、「BDOH」という)70g、アクリル酸(以下、「AA」という)56g、トルエン67gを追加し含酸素ガスをフラスコ内に吹き込みながら、反応液温度85~95℃で加熱攪拌した。反応の進行に伴って、生成する水をディーンスターク管で系外に取出しながら、13時間の脱水エステル化反応を行った。
2) Process 2
After completion of step 1, the pressure was returned to normal pressure, and 71 g of itaconic acid (hereinafter referred to as "ITA") was added as compound (B) and 1,4-butanediol (hereinafter referred to as "BDOH") as compound (C). ), 56 g of acrylic acid (hereinafter referred to as "AA"), and 67 g of toluene were added, and while oxygen-containing gas was blown into the flask, the reaction solution was heated and stirred at a temperature of 85 to 95°C. As the reaction progressed, the dehydration esterification reaction was carried out for 13 hours while the water produced was taken out of the system through a Dean-Stark tube.
3)工程3
 工程2の反応終了後に、トルエン389gを加えて希釈した。更に蒸留水106gを加えて撹拌し、静置した後に下層である水相を除去した。
 次に、10%アンモニア水53gと4%硫酸アンモニウム水53gを撹拌下に添加して十分に撹拌し、静置した後に下相380gを回収した。続いて、撹拌下で有機相に4%硫酸アンモニウム水178gを添加して撹拌し、静置した後に下層である水相を除去した。
 上層の有機相を減圧下に加熱してトルエンを留去した。得られたアクリレート混合物は248g(収率60%)であり、APHA、水酸基価、酸価、及び粘度の測定結果を表2に示す。
 得られた有機相のアクリレートの1H NMRチャートを図1に示し、得られた水相のアクリレートの1H NMRチャートを図2に示す。
3) Process 3
After the reaction in step 2 was completed, 389 g of toluene was added to dilute the reaction mixture. Furthermore, 106 g of distilled water was added, stirred, and left to stand, and then the lower aqueous phase was removed.
Next, 53 g of 10% aqueous ammonia and 53 g of 4% aqueous ammonium sulfate were added with stirring, sufficiently stirred, and left to stand, after which 380 g of the lower phase was collected. Subsequently, 178 g of 4% ammonium sulfate water was added to the organic phase while stirring, and after the mixture was allowed to stand still, the lower aqueous phase was removed.
The upper organic phase was heated under reduced pressure to distill off toluene. The obtained acrylate mixture weighed 248 g (yield 60%), and the measurement results of APHA, hydroxyl value, acid value, and viscosity are shown in Table 2.
A 1 H NMR chart of the obtained organic phase acrylate is shown in FIG. 1, and a 1 H NMR chart of the obtained aqueous phase acrylate is shown in FIG.
1-2.実施例1-2~1-7
 実施例1において、表1及び表2に示す原料及び割合を使用する以外は、実施例1同様の方法で工程1及び2を実施した。
 実施例1と同様に、トルエンによる希釈、蒸留水での洗浄、10%アンモニア水と4%硫酸アンモニウム水での中和と下相の回収、4%硫酸アンモニウム水での洗浄、脱溶を行い、工程3を実施した。
 中和時の水相は表2に示す量回収した。得られたアクリレート混合物の収量、APHA、酸価、及び粘度の測定結果を表2に示す。
1-2. Examples 1-2 to 1-7
In Example 1, Steps 1 and 2 were carried out in the same manner as in Example 1, except that the raw materials and proportions shown in Tables 1 and 2 were used.
In the same manner as in Example 1, dilution with toluene, washing with distilled water, neutralization with 10% ammonia water and 4% ammonium sulfate water, recovery of the lower phase, washing with 4% ammonium sulfate water, and desolvation were performed. 3 was carried out.
The amount of aqueous phase shown in Table 2 was collected during neutralization. Table 2 shows the measurement results of the yield, APHA, acid value, and viscosity of the obtained acrylate mixture.
1-3.比較例1-1
 実施例1において、表1及び表2に示す原料及び割合を使用する以外は、実施例1同様の方法で工程1及び2を実施した。
 工程2終了後に、トルエン389gを加えて希釈した。更に蒸留水106gを加えて撹拌し、静置した後に下層である水相を除去した。次に、20%水酸化ナトリウム水溶液126gを撹拌下に添加して十分に撹拌し、静置した後に下相243gを回収した。続いて、撹拌下で有機相に4%硫酸アンモニウム水207gを添加して撹拌し、静置した後に下層である水相を除去した。
 上層の有機相を減圧下に加熱してトルエンを留去した。得られたアクリレート混合物は340g(収率82%)だった。
1-3. Comparative example 1-1
In Example 1, Steps 1 and 2 were carried out in the same manner as in Example 1, except that the raw materials and proportions shown in Tables 1 and 2 were used.
After completing step 2, 389 g of toluene was added for dilution. Furthermore, 106 g of distilled water was added, stirred, and left to stand, and then the lower aqueous phase was removed. Next, 126 g of a 20% aqueous sodium hydroxide solution was added with stirring, sufficiently stirred, and left to stand, and then 243 g of the lower phase was collected. Subsequently, 207 g of 4% ammonium sulfate water was added to the organic phase while stirring, and after the mixture was allowed to stand still, the lower aqueous phase was removed.
The upper organic phase was heated under reduced pressure to distill off toluene. The amount of the acrylate mixture obtained was 340 g (yield: 82%).
1-4.比較例1-2
 還流管を設置した1Lの側管付き四口フラスコに、G2E4の117g、イタコン酸42g(アルコール中の全水酸基1モルに対して0.5モルの割合)、70%MSA13.5g、塩化第二銅0.6g及びトルエン381gを投入した。
 含酸素ガスをフラスコ内に吹き込みながら、反応液温度85~95℃で加熱攪拌した。反応の進行に伴って、生成する水をディーンスターク管で系外に取出しながら、6時間の脱水エステル化反応を行った。しかし、トルエンに不溶なゲルが生成し、そのゲルが撹拌翼に絡みつき撹拌が困難となったため、合成を停止した。留出水量から算出される反応率は30%だった。
1-4. Comparative example 1-2
In a 1 L four-necked flask with a side tube equipped with a reflux tube, 117 g of G2E4, 42 g of itaconic acid (0.5 mole per mole of total hydroxyl groups in the alcohol), 13.5 g of 70% MSA, and sulfuric chloride. 0.6 g of copper and 381 g of toluene were charged.
While blowing oxygen-containing gas into the flask, the reaction solution was heated and stirred at a temperature of 85 to 95°C. As the reaction progressed, the dehydration esterification reaction was carried out for 6 hours while the water produced was taken out of the system through a Dean-Stark tube. However, a gel insoluble in toluene was formed and the gel entangled with the stirring blades, making stirring difficult, so the synthesis was stopped. The reaction rate calculated from the amount of distilled water was 30%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1において、数字は仕込みの重量部数を意味し、略号は下記を意味する。
・AA:アクリル酸
◆化合物(A)
・G2E4:ジグリセリンエチレンオキシド変性アルコール、花王(株)製エマルゲンG2E-4(再生可能資源由来原料としてジグリセリン骨格含有)
・DGLY:ジグリセリン
・PER:ペンタエリスリトール
◆化合物(B)
・ITA:イタコン酸(Itaconix社製、再生可能資源由来原料)
◆酸触媒
・MSA:70%メタンスルホン酸水溶液
◆重合禁止剤
・CuCl2:塩化第二銅
◆有機溶媒
・TOL:トルエン
In Table 1 above, the numbers mean the parts by weight of the ingredients, and the abbreviations mean the following.
・AA: Acrylic acid
◆Compound (A)
・G2E4: Diglycerin ethylene oxide denatured alcohol, Emulgen G2E-4 manufactured by Kao Corporation (contains diglycerin skeleton as a raw material derived from renewable resources)
・DGLY: Diglycerin ・PER: Pentaerythritol
◆Compound (B)
・ITA: Itaconic acid (manufactured by Itaconix, raw material derived from renewable resources)
◆Acid catalyst /MSA: 70% methanesulfonic acid aqueous solution
◆Polymerization inhibitor /CuCl 2 : Cupric chloride
◆Organic solvent /TOL: Toluene
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2において、数字は仕込みの重量部数を意味し、略号は下記を意味する。収量の行の括弧内の数字は収率(%)を意味する。
◆化合物(B)
・SUC:コハク酸(Roquette社製、再生可能資源由来原料)
・FDC:2,5-フランジカルボン酸(Avantium社製、再生可能資源由来原料)
・ADI:アジピン酸(再生可能資源由来原料)
◆化合物(C)
・BDOH:1,4-ブタンジオール(BASF社製、再生可能資源由来原料)
・PDOH:1,3-プロパンジオール(Dupont Tate&Lyle社製、再生可能資源由来原料)
・FDM:2,5-フランジメタノール(オージー(株)製、再生可能資源由来原料)
・EG:エチレングリコール(Grenncol Taiwan社製、再生可能資源由来原料)
・TFM:2,5-テトラヒドロフランジメタノール(オージー(株)製、再生可能資源由来原料)
◆化合物(D)
・HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業(株)製)
In Table 2 above, the numbers mean parts by weight of the ingredients, and the abbreviations mean the following. The number in parentheses in the yield row means the yield (%).
◆Compound (B)
・SUC: Succinic acid (manufactured by Roquette, raw material derived from renewable resources)
・FDC: 2,5-furandicarboxylic acid (manufactured by Avantium, raw material derived from renewable resources)
・ADI: Adipic acid (raw material derived from renewable resources)
◆Compound (C)
・BDOH: 1,4-butanediol (manufactured by BASF, raw material derived from renewable resources)
・PDOH: 1,3-propanediol (manufactured by Dupont Tate & Lyle, raw material derived from renewable resources)
・FDM: 2,5-furandimethanol (manufactured by OG Co., Ltd., raw material derived from renewable resources)
・EG: Ethylene glycol (manufactured by Grenncol Taiwan, raw material derived from renewable resources)
・TFM: 2,5-tetrahydrofurandimethanol (manufactured by OG Co., Ltd., raw material derived from renewable resources)
◆Compound (D)
・HBA: 4-hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
液性評価
・APHA:JIS K 0071-1:2017に準じて測定した。
・水酸基価:JIS K 0070に準じて測定した。
・酸価:JIS K 0070に準じて測定した。
・粘度:E型粘度計(東機産業株式会社製「TV-22形粘度計」、コーンプレートタイプ)を使用して、25℃で測定した。
Liquid property evaluation /APHA: Measured according to JIS K 0071-1:2017.
- Hydroxyl value: Measured according to JIS K 0070.
- Acid value: Measured according to JIS K 0070.
- Viscosity: Measured at 25°C using an E-type viscometer (“TV-22 type viscometer” manufactured by Toki Sangyo Co., Ltd., cone plate type).
1-5.評価結果
 実施例1-1~1-7と比較して、比較例1-1で生成する反応物は、一定割合で架橋物を含み、又、生成物の親水性が高い。その結果、反応液にトルエンに不溶なゲルが生成し、それ以上の反応が困難となった。
1-5. Evaluation Results Compared to Examples 1-1 to 1-7, the reaction product produced in Comparative Example 1-1 contained a certain proportion of crosslinked products, and the product had high hydrophilicity. As a result, a toluene-insoluble gel was formed in the reaction solution, making further reaction difficult.
2.実施例〔活性エネルギー線硬化型組成物の製造〕
2-1.実施例2-1
 実施例1-1で製造し、有機相の脱溶媒後に得られたアクリレート混合物100重量部に対して(E-1)成分として1-ヒドロキシ-シクロヘキシル-フェニルケトン(IGM Resins社製 Omnirad 184、以下、「Omn184」という。)を5部添加し、60℃にて3時間撹拌・混合し組成物を得た。
2. Example [Production of active energy ray-curable composition]
2-1. Example 2-1
1-Hydroxy-cyclohexyl-phenyl ketone (manufactured by IGM Resins, Omnirad 184, hereinafter) was added as component (E-1) to 100 parts by weight of the acrylate mixture produced in Example 1-1 and obtained after desolvation of the organic phase. , referred to as "Omn184") was added thereto, and the mixture was stirred and mixed at 60° C. for 3 hours to obtain a composition.
2-2.実施例2-2~2-7〔活性エネルギー線硬化型無溶剤系組成物の製造〕
 実施例1-2~1-7で製造し、有機相の脱溶媒後に得られたアクリレート混合物を使用する以外は、実施例2-1と同様の方法で組成物を製造した。
2-2. Examples 2-2 to 2-7 [Production of active energy ray-curable solvent-free composition]
Compositions were produced in the same manner as in Example 2-1, except that the acrylate mixtures produced in Examples 1-2 to 1-7 and obtained after desolvation of the organic phase were used.
2-3.比較例2-1〔活性エネルギー線硬化型無溶剤系組成物の製造〕
 比較例1-1で製造し、脱溶媒後に得られたアクリレート混合物を使用する以外は、実施例2-1と同様の方法で組成物を製造した。
2-3. Comparative Example 2-1 [Production of active energy ray-curable solvent-free composition]
A composition was produced in the same manner as in Example 2-1, except that the acrylate mixture produced in Comparative Example 1-1 and obtained after solvent removal was used.
2-4.実施例3-1〔活性エネルギー線硬化型水分散組成物の製造〕
 実施例1-1で分離した水相中の固形分100部に対して(E-1)成分としてメチルベンゾイルフォルメート〔IGM Resins社製 Omnirad MBF。以下、「MBF」という。〕を5部添加し、60℃にて3時間撹拌・混合し水分散組成物を得た。
2-4. Example 3-1 [Production of active energy ray-curable water dispersion composition]
Methyl benzoyl formate [Omnirad MBF manufactured by IGM Resins] was added as component (E-1) to 100 parts of the solid content in the aqueous phase separated in Example 1-1. Hereinafter referred to as "MBF". ] was added and stirred and mixed at 60° C. for 3 hours to obtain an aqueous dispersion composition.
2-5.実施例3-2~同3-7〔活性エネルギー線硬化型水分散組成物の製造〕
 実施例1-2~1-7で分離した水相を使用する以外は、実施例3-1と同様の方法で組成物を製造した。
2-5. Examples 3-2 to 3-7 [Production of active energy ray-curable water dispersion composition]
Compositions were produced in the same manner as in Example 3-1, except that the aqueous phase separated in Examples 1-2 to 1-7 was used.
2-6.比較例3-1〔活性エネルギー線硬化型水分散組成物の製造〕
 比較例1-1で分離した水中の固形分100部に対して(E-1)成分としてMBFを5部添加し、60℃にて3時間撹拌・混合し水分散組成物を得た。
2-6. Comparative Example 3-1 [Production of active energy ray-curable water dispersion composition]
5 parts of MBF as component (E-1) was added to 100 parts of the solid content in the water separated in Comparative Example 1-1, and the mixture was stirred and mixed at 60° C. for 3 hours to obtain a water-dispersed composition.
3.硬化物評価方法
(1)試験体の製造
 得られた組成物を使用し、バーコーターを用い、10cm角に裁断した(株)東洋紡製の易接着PETフィルム〔コスモシャイン(登録商標)A4360、膜厚:100μm。以下、「A4360」という〕に塗工し、膜厚が10μmとなるよう塗工した。
 これを使用し、コンベアを備えた高圧水銀ランプ〔アイグラフィックス(株)製H06-L41〕を用いて、UV-Aランプ出力照度80W/cm、1パスあたりの照射強度290mW/cm2で照射エネルギーが400mJ/cm2の条件で紫外線を照射した。
3. Cured product evaluation method
(1) Production of test specimen Using the obtained composition, an easily adhesive PET film manufactured by Toyobo Co., Ltd. [Cosmoshine (registered trademark) A4360, film thickness: 100 μm] was cut into 10 cm square pieces using a bar coater. Hereinafter referred to as "A4360"], the coating was applied to a film thickness of 10 μm.
Using this, irradiate with a UV-A lamp output illuminance of 80 W/cm and irradiation intensity of 290 mW/cm 2 per pass using a high-pressure mercury lamp equipped with a conveyor [H06-L41 manufactured by Eye Graphics Co., Ltd.] Ultraviolet rays were irradiated at an energy of 400 mJ/cm 2 .
(2)硬化性
 1パス後に得られた試験体の硬化物を指触により、以下の評価基準で評価した。
○:表面にタックがない。
△:表面にわずかにタックがある。
×:表面にタックがある。
(2) Curing property The cured product of the test specimen obtained after one pass was evaluated by touch using the following evaluation criteria.
○: No tack on the surface.
Δ: Slight tackiness on the surface.
×: There is tack on the surface.
(3)硬化物外観
 得られた試験体の硬化物を目視により、以下の評価基準で評価した。
○:無色透明である。
△:わずかに白濁が見られる。
×:白濁が見られる。
(3) Appearance of cured product The cured product of the obtained test specimen was visually observed and evaluated according to the following evaluation criteria.
○: Colorless and transparent.
Δ: Slight cloudiness is observed.
×: Cloudiness is observed.
(4)鉛筆硬度
 JIS K 5600-5-4に従い、750g荷重にて評価を行った。
(4) Pencil hardness Evaluation was performed under a load of 750 g according to JIS K 5600-5-4.
(5)密着性
 試験体に、カッターナイフで縦横1mm間隔の切り込みを入れて、1mm×1mmの大きさの升目25個を形成し、この碁盤目上にニチバン(株)製#405のセロハンテープを貼り付けた後に強く剥がした。剥離後の残膜数を評価した。残膜数が多いほど密着性が良好であることを示す。
(5) On the adhesion test specimen, use a cutter knife to make incisions at 1 mm intervals vertically and horizontally to form 25 squares of 1 mm x 1 mm in size, and place #405 cellophane tape manufactured by Nichiban Co., Ltd. on the grid. After pasting it on, I peeled it off strongly. The number of remaining films after peeling was evaluated. The larger the number of remaining films, the better the adhesion.
(6)カール
得られた試験体の硬化物の4頂点の高さの平均を測定した。1.0mm以下が好ましい。
(6) Curl The average height of the four vertices of the cured product of the obtained test specimen was measured. It is preferably 1.0 mm or less.
4.評価結果
 評価結果を表3及び表4に示す。
4. Evaluation Results The evaluation results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2-1~2-7の組成物は、硬化性に優れ、その硬化物は、外観及び鉛筆硬度に優れるものであった。
 又、実施例3-1~3-7の水分散組成物は、硬化性に優れ、その硬化物は、外観、鉛筆硬度、密着性、及びカールはいずれも良好だった。
 一方、比較例3-1の水分散組成物は、ナトリウム塩が存在するため、硬化性が悪化し、その硬化物も外観が悪化し、鉛筆硬度、密着性、及びカールが評価できなかった。
 以上の結果から、実施例1-1~1-7では、仕込みの反応原料を全て硬化型組成物の原料へと変換できることが明らかである。当該発明によれば、環境負荷の大きい中和廃水の発生を防ぎ、かつ産業上有効な製造方法とすることができる。
The compositions of Examples 2-1 to 2-7 had excellent curability, and the cured products thereof had excellent appearance and pencil hardness.
Furthermore, the water-dispersed compositions of Examples 3-1 to 3-7 had excellent curability, and the cured products had good appearance, pencil hardness, adhesion, and curl.
On the other hand, the aqueous dispersion composition of Comparative Example 3-1 had poor curability due to the presence of the sodium salt, and the appearance of the cured product also deteriorated, making it impossible to evaluate pencil hardness, adhesion, and curl.
From the above results, it is clear that in Examples 1-1 to 1-7, all of the charged reaction raw materials can be converted into raw materials for the curable composition. According to the invention, it is possible to prevent the generation of neutralized wastewater that has a large environmental load, and to provide an industrially effective manufacturing method.
 本発明の製造方法は、再生可能資源由来化合物を原料として高収率で所望の(メタ)アクリレート混合物を得ることができ、得られる(メタ)アクリレート混合物は、再生可能資源由来化合物に該当し、環境負荷低減に大きく貢献できる。
 本発明の製造方法で得られる有機相及び中和精製工程後の廃水に含まれる(メタ)アクリレート混合物は、いずれも硬化型組成物等の原料として使用可能であり、当該硬化型組成物は、インキ、コーティング剤、レジスト剤、充填剤及び成形材料等として好ましく使用でき、コーティング剤及びインキとして、より好ましく使用することができる。
The production method of the present invention can obtain a desired (meth)acrylate mixture in high yield using a renewable resource-derived compound as a raw material, and the obtained (meth)acrylate mixture corresponds to a renewable resource-derived compound, It can greatly contribute to reducing environmental impact.
The (meth)acrylate mixture contained in the organic phase obtained by the production method of the present invention and the wastewater after the neutralization purification step can both be used as a raw material for a curable composition, etc., and the curable composition can be It can be preferably used as ink, coating agent, resist agent, filler, molding material, etc., and more preferably used as coating agent and ink.

Claims (18)

  1.  下記工程1~3を順次実施する(メタ)アクリレート混合物の製造方法。
    ・工程1:(メタ)アクリル酸と(A)3個以上の水酸基を有するアルコールを、酸触媒存在下で脱水エステル化反応を行い、水酸基価が55~175mgKOH/gである水酸基含有(メタ)アクリレートを含む反応液を得る工程
    ・工程2:下記工程2-1又は工程2-2を実施して、水酸基価55mgKOH/g以下である生成物を得る工程
     工程2-1;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、(C)ジオール及び(メタ)アクリル酸を添加して生成物を得る。
     工程2-2;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、及び(D)ヒドロキシアルキル(メタ)アクリレートを添加して生成物を得る。
    ・工程3:工程2で得られた反応液に、アンモニアの水溶液、及びアミン化合物の水溶液から選択される1種以上の中和剤により中和する工程
    A method for producing a (meth)acrylate mixture by sequentially carrying out the following steps 1 to 3.
    ・Step 1: (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups are subjected to a dehydration esterification reaction in the presence of an acid catalyst to produce a hydroxyl group-containing (meth) having a hydroxyl value of 55 to 175 mgKOH/g. Step 2 of obtaining a reaction solution containing acrylate: Step 2-1 or step 2-2 below to obtain a product with a hydroxyl value of 55 mgKOH/g or less Step 2-1; (B) dicarboxylic acid, (C) diol, and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate to obtain a product.
    Step 2-2: To the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1, (B) dicarboxylic acid and (D) hydroxyalkyl (meth)acrylate are added to obtain a product.
    ・Step 3: A step of neutralizing the reaction solution obtained in Step 2 with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
  2.  前記工程2-1において、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用する請求項1に記載の(メタ)アクリレート混合物の製造方法。 The method for producing a (meth)acrylate mixture according to claim 1, wherein in the step 2-1, the (C) diol is used in a ratio of 1 to 50 times the mole of the dicarboxylic acid (B).
  3.  前記工程2として、前記工程2-2を実施する請求項1に記載の(メタ)アクリレート混合物の製造方法。 The method for producing a (meth)acrylate mixture according to claim 1, wherein the step 2-2 is performed as the step 2.
  4.  前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含む請求項1~請求項3のいずれか1項に記載の(メタ)アクリレート混合物の製造方法。 A claim in which at least one compound of (A) an alcohol having three or more hydroxyl groups, (B) a dicarboxylic acid, (C) a diol, and (D) a hydroxyalkyl (meth)acrylate contains a compound derived from a renewable resource. A method for producing a (meth)acrylate mixture according to any one of claims 1 to 3.
  5.  下記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)当該(メタ)アクリレート混合物以外のエチレン性不飽和化合物〔以下、「(E)成分」という〕とを攪拌・混合する硬化型組成物の製造方法。
    ・工程1:(メタ)アクリル酸と(A)3個以上の水酸基を有するアルコールを、酸触媒存在下で脱水エステル化反応を行い、水酸基価が55~175mgKOH/gである水酸基含有(メタ)アクリレートを含む反応液を得る工程
    ・工程2:下記工程2-1又は工程2-2を実施して、水酸基価55mgKOH/g以下である生成物を得る工程
     工程2-1;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、(C)ジオール及び(メタ)アクリル酸を添加して生成物を得る。
     工程2-2;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、及び(D)ヒドロキシアルキル(メタ)アクリレートを添加して生成物を得る。
    ・工程3:工程2で得られた反応液に、アンモニアの水溶液、及びアミン化合物の水溶液から選択される1種以上の中和剤により中和する工程
    Stirring the (meth)acrylate mixture obtained by sequentially performing the following steps 1 to 3 and (E) an ethylenically unsaturated compound other than the (meth)acrylate mixture [hereinafter referred to as "component (E)"]. - A method for producing a curable composition to be mixed.
    ・Step 1: (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups are subjected to a dehydration esterification reaction in the presence of an acid catalyst to produce a hydroxyl group-containing (meth) having a hydroxyl value of 55 to 175 mgKOH/g. Step 2 of obtaining a reaction solution containing acrylate: Step 2-1 or step 2-2 below to obtain a product with a hydroxyl value of 55 mgKOH/g or less Step 2-1; (B) dicarboxylic acid, (C) diol, and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate to obtain a product.
    Step 2-2: To the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1, (B) dicarboxylic acid and (D) hydroxyalkyl (meth)acrylate are added to obtain a product.
    ・Step 3: A step of neutralizing the reaction solution obtained in Step 2 with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
  6.  前記工程2-1において、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用する請求項5に記載の硬化型組成物の製造方法。 The method for producing a curable composition according to claim 5, wherein in the step 2-1, the diol (C) is used in a ratio of 1 to 50 times the mole of the dicarboxylic acid (B).
  7.  前記工程2として、前記工程2-2を実施する請求項5に記載の硬化型組成物の製造方法。 The method for producing a curable composition according to claim 5, wherein the step 2-2 is performed as the step 2.
  8.  前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含む請求項5~請求項7のいずれか1項に記載の硬化型組成物の製造方法。 A claim in which at least one compound of (A) an alcohol having three or more hydroxyl groups, (B) a dicarboxylic acid, (C) a diol, and (D) a hydroxyalkyl (meth)acrylate contains a compound derived from a renewable resource. A method for producing a curable composition according to any one of claims 5 to 7.
  9.  前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分として、(E-1)(メタ)アクリロイル基を1個有する化合物〔以下、「(E-1)成分」という〕及び(E-2)2個以上の(メタ)アクリロイル基を有する化合物〔以下、「(E-2)成分」という〕を含む成分とを、
    (メタ)アクリレート混合物40~100重量部、(E-1)成分0~20重量部、及び(E-2)成分0~40重量部を含む割合で攪拌・混合する
    請求項5~請求項8のいずれか1項に記載の硬化型組成物の製造方法。
    The (meth)acrylate mixture obtained by sequentially carrying out the above steps 1 to 3, and (E-1) a compound having one (meth)acryloyl group as the component (E) [hereinafter referred to as "(E-1)"] (hereinafter referred to as "component (E-2)")] and (E-2) a compound having two or more (meth)acryloyl groups [hereinafter referred to as "component (E-2)"],
    Claims 5 to 8 are stirred and mixed in a ratio containing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2). A method for producing a curable composition according to any one of the above.
  10.  前記工程1~3を順次実施した後、工程3で得られた有機相中及び/又は中和後の水相中の(メタ)アクリレート混合物を硬化型組成物の配合成分として使用する請求項5~請求項9のいずれか1項に記載の硬化型組成物の製造方法。 5. After sequentially performing steps 1 to 3, the (meth)acrylate mixture obtained in step 3 in the organic phase and/or in the neutralized aqueous phase is used as a component of the curable composition. - A method for producing a curable composition according to any one of claims 9 to 9.
  11.  下記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分と、(F-1)光重合開始剤とを、攪拌・混合する製造方法であって、(メタ)アクリレート混合物及び(E)成分の合計100重量部に対して0.01~20重量部の(F-1)光重合開始剤を使用する活性エネルギー線硬化型組成物の製造方法。
    ・工程1:(メタ)アクリル酸と(A)3個以上の水酸基を有するアルコールを、酸触媒存在下で脱水エステル化反応を行い、水酸基価が55~175mgKOH/gである水酸基含有(メタ)アクリレートを含む反応液を得る工程
    ・工程2:下記工程2-1又は工程2-2を実施して、水酸基価55mgKOH/g以下である生成物を得る工程
     工程2-1;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、(C)ジオール及び(メタ)アクリル酸を添加して生成物を得る。
     工程2-2;工程1で得られた水酸基含有(メタ)アクリレートを含む反応液に、(B)ジカルボン酸、及び(D)ヒドロキシアルキル(メタ)アクリレートを添加して生成物を得る。
    ・工程3:工程2で得られた反応液に、アンモニアの水溶液、及びアミン化合物の水溶液から選択される1種以上の中和剤により中和する工程
    A production method comprising stirring and mixing a (meth)acrylate mixture obtained by sequentially carrying out the following steps 1 to 3, component (E), and (F-1) a photopolymerization initiator, the method comprising: ) A method for producing an active energy ray-curable composition using 0.01 to 20 parts by weight of the photopolymerization initiator (F-1) based on a total of 100 parts by weight of the acrylate mixture and component (E).
    ・Step 1: (meth)acrylic acid and (A) an alcohol having three or more hydroxyl groups are subjected to a dehydration esterification reaction in the presence of an acid catalyst to produce a hydroxyl group-containing (meth) having a hydroxyl value of 55 to 175 mgKOH/g. Step 2 of obtaining a reaction solution containing acrylate: Step 2-1 or step 2-2 below to obtain a product with a hydroxyl value of 55 mgKOH/g or less Step 2-1; (B) dicarboxylic acid, (C) diol, and (meth)acrylic acid are added to the reaction solution containing the hydroxyl group-containing (meth)acrylate to obtain a product.
    Step 2-2: To the reaction solution containing the hydroxyl group-containing (meth)acrylate obtained in Step 1, (B) dicarboxylic acid and (D) hydroxyalkyl (meth)acrylate are added to obtain a product.
    ・Step 3: A step of neutralizing the reaction solution obtained in Step 2 with one or more neutralizing agents selected from an aqueous solution of ammonia and an aqueous solution of an amine compound.
  12.  前記工程2-1において、(B)ジカルボン酸の合計1モルに対して、(C)ジオールを1~50倍モルの割合で使用する請求項11に記載の活性エネルギー線硬化型組成物の製造方法。 Production of the active energy ray-curable composition according to claim 11, wherein in the step 2-1, the diol (C) is used in a ratio of 1 to 50 times in mole to a total of 1 mole of the dicarboxylic acid (B). Method.
  13.  前記工程2として、前記工程2-2を実施する請求項11に記載の活性エネルギー線硬化型組成物の製造方法。 The method for producing an active energy ray-curable composition according to claim 11, wherein the step 2-2 is performed as the step 2.
  14.  前記(A)3個以上の水酸基を有するアルコール、(B)ジカルボン酸、(C)ジオール及び(D)ヒドロキシアルキル(メタ)アクリレートの少なくともいずれか一つの化合物が、再生可能資源由来化合物を含む請求項11~請求項13のいずれか1項に記載の活性エネルギー線硬化型組成物の製造方法。 A claim in which at least one compound of (A) an alcohol having three or more hydroxyl groups, (B) a dicarboxylic acid, (C) a diol, and (D) a hydroxyalkyl (meth)acrylate contains a compound derived from a renewable resource. A method for producing an active energy ray-curable composition according to any one of claims 11 to 13.
  15.  前記工程1~3を順次実施して得られた(メタ)アクリレート混合物と、(E)成分として、(E-1)成分及び(E-2)成分を含む成分を、
    (メタ)アクリレート混合物40~100重量部、(E-1)成分0~20重量部、及び(E-2)成分0~40重量部を含む割合で攪拌・混合する
    請求項11~請求項14のいずれか1項に記載の活性エネルギー線硬化型組成物の製造方法。
    A (meth)acrylate mixture obtained by sequentially carrying out steps 1 to 3, and a component containing components (E-1) and (E-2) as component (E),
    Claims 11 to 14 are stirred and mixed in a ratio containing 40 to 100 parts by weight of the (meth)acrylate mixture, 0 to 20 parts by weight of component (E-1), and 0 to 40 parts by weight of component (E-2). A method for producing an active energy ray-curable composition according to any one of the above.
  16.  前記工程1~3を順次実施した後、工程3で得られた有機相中及び/又は中和後の水相中の(メタ)アクリレート混合物を硬化型組成物の配合成分として使用する請求項11~請求項15のいずれか1項に記載の活性エネルギー線硬化型組成物の製造方法。 11. After sequentially carrying out steps 1 to 3, the (meth)acrylate mixture in the organic phase obtained in step 3 and/or in the aqueous phase after neutralization is used as a component of the curable composition. - A method for producing an active energy ray-curable composition according to any one of claims 15 to 16.
  17.  請求項11~請求項16のいずれか1項に記載のインキ用活性エネルギー線硬化型組成物の製造方法。 A method for producing an active energy ray-curable composition for ink according to any one of claims 11 to 16.
  18.  請求項11~請求項16のいずれか1項に記載のコーティング剤用活性エネルギー線硬化型組成物の製造方法。 A method for producing an active energy ray-curable composition for a coating agent according to any one of claims 11 to 16.
PCT/JP2023/019834 2022-05-30 2023-05-29 Method for producing (meth)acrylate mixture and method for producing renewable resource-derived (meth)acrylate mixture WO2023234232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087303 2022-05-30
JP2022087303 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234232A1 true WO2023234232A1 (en) 2023-12-07

Family

ID=89025061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019834 WO2023234232A1 (en) 2022-05-30 2023-05-29 Method for producing (meth)acrylate mixture and method for producing renewable resource-derived (meth)acrylate mixture

Country Status (2)

Country Link
TW (1) TW202346397A (en)
WO (1) WO2023234232A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122452A1 (en) * 2022-12-06 2024-06-13 東亞合成株式会社 Method for producing (meth)acrylate mixture, method for producing curable composition, and method for producing active energy ray curable composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038065A (en) * 2000-07-25 2002-02-06 Printing Bureau Ministry Of Finance Resin composition for intaglio printing ink, ink composition made by using it and printed matter obtained therefrom
JP2019026800A (en) * 2017-08-03 2019-02-21 東亞合成株式会社 Curable composition
JP2019108426A (en) * 2017-12-15 2019-07-04 東亞合成株式会社 Active energy ray-curable adhesive composition, and laminate
JP2020193150A (en) * 2019-05-24 2020-12-03 東亞合成株式会社 Method for producing (meth)acrylate and method for preventing gelation of alkaline aqueous solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038065A (en) * 2000-07-25 2002-02-06 Printing Bureau Ministry Of Finance Resin composition for intaglio printing ink, ink composition made by using it and printed matter obtained therefrom
JP2019026800A (en) * 2017-08-03 2019-02-21 東亞合成株式会社 Curable composition
JP2019108426A (en) * 2017-12-15 2019-07-04 東亞合成株式会社 Active energy ray-curable adhesive composition, and laminate
JP2020193150A (en) * 2019-05-24 2020-12-03 東亞合成株式会社 Method for producing (meth)acrylate and method for preventing gelation of alkaline aqueous solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122452A1 (en) * 2022-12-06 2024-06-13 東亞合成株式会社 Method for producing (meth)acrylate mixture, method for producing curable composition, and method for producing active energy ray curable composition

Also Published As

Publication number Publication date
TW202346397A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US6767980B2 (en) Reactive diluent and curable resin composition
EP1505090B1 (en) Reactive diluent composition and curable resin composition
US7317061B2 (en) Self-photoinitiating water-dispersible acrylate ionomers and synthetic methods
WO2023234232A1 (en) Method for producing (meth)acrylate mixture and method for producing renewable resource-derived (meth)acrylate mixture
KR20160004300A (en) Urethane (meth)acrylate and active energy ray-curable resin composition
KR20150104151A (en) Aqueous resin dispersion and use of same
JP6349672B2 (en) Aqueous resin dispersion composition and use thereof
JP5089889B2 (en) Hard coating agent composition and molded article
JPWO2018021352A1 (en) Curing type composition
JP2017066347A (en) Curable composition
JP6699132B2 (en) Photocurable composition, laminated body using the same, and light guide plate
JPWO2018117062A1 (en) Curable composition
TW201841964A (en) Active energy ray-curable resin composition and coating agent
JPH1017812A (en) Ultraviolet-curable ink composition
JPWO2016006497A1 (en) Active energy ray-curable composition
KR101907532B1 (en) Unsaturated mixture resin part for putty and method for forming putty layer
JP6485446B2 (en) Active energy ray-curable coating agent composition
WO2022225041A1 (en) Curable composition, active-energy-ray-curable composition, and active-energy-ray-curable coating composition
WO2024122452A1 (en) Method for producing (meth)acrylate mixture, method for producing curable composition, and method for producing active energy ray curable composition
JPH1017788A (en) Metal painting composition of active energy ray curing type
JP6475571B2 (en) (Meth) acrylate compound and photosensitive resin composition
JPH08259623A (en) Production of reactive resin
JP2013023631A (en) Active energy ray-curable hard coat agent composition, cured coating film and molded article
JPH07101902A (en) Production of liquid polymerizable (meth)acrylate
JP3729036B2 (en) Aqueous crosslinkable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815989

Country of ref document: EP

Kind code of ref document: A1