WO2023234228A1 - Gripper - Google Patents

Gripper Download PDF

Info

Publication number
WO2023234228A1
WO2023234228A1 PCT/JP2023/019805 JP2023019805W WO2023234228A1 WO 2023234228 A1 WO2023234228 A1 WO 2023234228A1 JP 2023019805 W JP2023019805 W JP 2023019805W WO 2023234228 A1 WO2023234228 A1 WO 2023234228A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
gripper
gripping
region
parallel
Prior art date
Application number
PCT/JP2023/019805
Other languages
French (fr)
Japanese (ja)
Inventor
邦幸 川端
豊 堀野
創 吉川
竜馬 橋本
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2023234228A1 publication Critical patent/WO2023234228A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a gripper that is provided at the tip of a robot arm and directly grips an object.
  • Patent Document 1 discloses a technique of providing a cushioning material at the tip of the arm
  • Patent Document 2 discloses a technique of making the arm itself flexible. There is.
  • Patent Document 1 there is a limit to the external force that the cushioning material itself can absorb, so if the object is very soft, there is a risk of damage.
  • Patent Document 2 may increase the manufacturing cost of the arm part itself.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a gripper that can grip a soft object without damaging it at a low cost.
  • the present invention for solving the above problems is a gripper disposed at the tip of a robot arm for gripping an object, the gripper comprising: a pair of overhangs for gripping the object; It is integrally provided with a connecting part to be connected.
  • the projecting portion and the connecting portion are each made of an elastic member having a gap portion continuous in the gripping direction for gripping the object, and at least a part of the connecting portion is made of a plurality of elastic members stacked in the gripping direction.
  • the soft region has wall portions, and the wall portions adjacent in the gripping direction in the soft region are stacked with a phase shift in a cross direction intersecting the gripping direction. .
  • the soft regions are stacked with a phase shift so that the wall portions do not overlap in the gripping direction, the soft regions can be flexibly deformed. Therefore, since the gripper is capable of gripping a soft object, even a soft object can be gripped without damaging the object. Furthermore, since the gripper has the overhanging portion and the connecting portion integrally formed, manufacturing costs can be suppressed.
  • the overhanging portion and the connecting portion are formed by forming a parallel cross layer in which elastic wire rods are crossed in two directions, the X-axis direction and the Y-axis direction, in a parallel cross shape, in the Z-axis direction.
  • the soft region is formed by laminating layers in which the parallel layers adjacent in the Z-axis direction are laminated with a phase shift in at least one of the X-axis direction and the Y-axis direction. preferable. According to such a configuration, the flexibility of the gripper is improved. Furthermore, when an external force is applied to the gripper from the robot arm, the soft region deforms only in the Z direction and does not deform (bulge, etc.) in the XY plane. Therefore, since the object does not come into contact with anything other than the protruding portion, it becomes even less likely to be damaged.
  • the gripper of the present invention hard regions are provided at both ends in the Z-axis direction that contact the gripping portion of the robot arm, and the hard regions are formed between the parallel layers adjacent to each other in the Z-axis direction. It is preferable that the layers are stacked while maintaining the same phase in the X-axis direction and the Y-axis direction. According to such a configuration, the gripper can be stably gripped by the gripping part of the robot arm, and the external force of the robot arm can be reliably transmitted to the connecting part.
  • the hard region is provided in the entire region corresponding to the shape of the connecting portion at both ends in the Z-axis direction. According to such a configuration, the connecting part becomes difficult to twist, the gripper can be gripped by the gripping part of the robot arm in a more stable state, and the external force of the robot arm can be evenly transmitted to the connecting part. I can do it.
  • the projecting portion and the connecting portion be integrally formed using a 3D printer. According to such a configuration, the gripper can be manufactured in an accurate shape easily and at low cost.
  • the gripper according to the present invention it is possible to grip a soft object without damaging it, and it exhibits the excellent effect of being able to be manufactured at low cost.
  • FIG. 1 is a perspective view showing a gripper according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which the gripper according to the first embodiment of the present invention is gripped by the tip of a robot arm.
  • FIG. 1 is a diagram showing a gripper according to a first embodiment of the present invention, in which (a) is a side view showing a normal state, and (b) is a side view showing a compressed state.
  • FIG. 3 is an enlarged plan view showing a hard region of the gripper according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged plan view showing a soft region of the gripper according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view taken along the line vi-vi in FIG. 4 showing a hard region of the gripper according to the first embodiment of the present invention.
  • FIG. 6 is a sectional view taken along the line vii-vii in FIG. 5 showing the soft region of the gripper according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view showing a hard region of the gripper according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view showing a soft region of the gripper according to the first embodiment of the present invention. It is a perspective view showing a gripper concerning a second embodiment of the present invention.
  • FIG. 12(a) is a side view which showed the normal state
  • FIG. 12(b) is a side view which showed the compressed state.
  • 12(a) is an enlarged plan view
  • FIG. 12(b) is a sectional view taken along line xii-xii in FIG. 12(a), showing a soft region of a gripper according to a first modification.
  • 13(a) is an enlarged plan view
  • FIG. 13(b) is a sectional view taken along line xiii-xiii in FIG. 13(a), showing a soft region of a gripper according to a second modification.
  • a gripper 1 is for directly gripping a soft object 2 (see FIG. 2) such as food.
  • the gripper 1 is arranged at the tip of the robot arm 3, and is held between the gripping mechanisms 4 at the tip of the robot arm 3 (see FIG. 2).
  • the gripping mechanism 4 includes a rotating portion 5 and a pair of gripping portions 6, 6 protruding from the rotating portion 5.
  • the gripping parts 6, 6 are formed in a rectangular plate shape, and are provided so as to be able to approach and separate from each other. The gripping parts 6, 6 grip the gripper 1 and compress the gripper 1 by coming close to each other.
  • the compression direction of the gripper 1 (the direction of approaching and separating the gripping parts 6, 6) is the Z-axis direction, and each part is defined based on this Z-axis direction and the X-axis direction and Y-axis direction orthogonal to the Z-axis direction. The configuration of is explained.
  • the gripper 1 includes a pair of projecting portions 10, 10 and a connecting portion 11, and has a U-shape when viewed from the side.
  • the projecting portion 10 is a portion that grips the object 2 from both sides in the Z-axis direction, and has a rectangular plate shape that extends parallel to a plane including the X-axis and the Y-axis.
  • the projecting portions 10 project from both ends of the connecting portion 11 in the Z-axis direction along the X-axis direction.
  • the mutually opposing surfaces of the projecting portions 10 serve as gripping surfaces for gripping the object 2. This gripping surface may be planar or may be formed into an uneven shape depending on the shape of the object 2.
  • the connecting portion 11 is a portion that connects the pair of projecting portions 10, 10, and is formed in a rectangular parallelepiped shape.
  • the overhanging portion 10 is continuously and integrally formed on the side surface of the connecting portion 11 on the side of the overhanging portion 10 .
  • the width dimension of the connecting portion 11 in the Y-axis direction is equivalent to the width dimension of the overhang portion 10 in the Y-axis direction.
  • the gripper 1 including the projecting portion 10 and the connecting portion 11 is an elastic gripper having a gap 22 (see FIGS. 4 and 5) that is continuous in the gripping direction (Z-axis direction) for gripping the object 2 (see FIG. 2).
  • the elastic member is divided into a soft region 20 and a hard region 21.
  • the soft region 20 is softer than the hard region 21 and is soft enough to be compressed and deformed by the gripping force of the gripping mechanism 4 of the robot arm 3.
  • the soft region 20 includes wall portions stacked in the gripping direction (Z-axis direction).
  • the walls of the soft region 20 are laminated with a phase shift in a cross direction (X-axis direction and/or Y-axis direction) that intersects the gripping direction (Z-axis direction).
  • the hard region 21 is soft and cannot be compressed and deformed by the clamping force of the gripping mechanism 4.
  • the hard region 21 includes wall portions stacked in the gripping direction (Z-axis direction).
  • the wall portions of the hard region 21 are laminated so as to maintain the same phase in the intersecting directions (X-axis direction and Y-axis direction) that intersect with the gripping direction (Z-axis direction).
  • the soft region 20 is arranged at least in a part of the connecting portion 11.
  • the soft region 20 is arranged in a part of both the overhanging part 10 and the connecting part 11.
  • a soft region 20 is provided at the inner portion in the Z-axis direction of the overhang portion 10
  • a hard region 21 is provided at the outer portion in the Z-axis direction. That is, a soft region 20 is provided at the contact portion of the overhang 10 that grips the object 2, and a hard region 21 is provided at the outer portion opposite to the contact portion.
  • Hard regions 21 are provided at both ends of the connecting portion 11 in the Z-axis direction, and a soft region 20 is provided between the hard regions 21 at both ends.
  • the hard region 21 is provided over the entire region corresponding to the cross-sectional shape of the connecting portion 11 .
  • hard regions 21 are formed at both ends of the connecting portion 11 in the Z-axis direction at portions that are gripped by the gripping portion 6 .
  • the thickness dimension (thickness dimension in the Z-axis direction) of the hard region 21 of the overhanging part 10 and the thickness dimension (thickness dimension in the Z-axis direction) of the hard region 21 of the connecting part 11 are the same.
  • the region 21 is continuous and integrally formed.
  • the overhanging portion 10 and the connecting portion 11 are made of a parallel cross layer 24 in which elastic wire rods 23 are crossed in two directions, the X-axis direction and the Y-axis direction, and assembled in a parallel cross shape. Consists of layers stacked in the axial direction. Two types of wire rods 23 are provided, one extending in the X-axis direction and the other extending in the Y-axis direction.
  • An X-axis wire layer 25 composed of wires 23 extending in the X-axis direction and a Y-axis wire layer 26 composed of wires 23 extending in the Y-axis direction are alternately laminated along the Z-axis direction. ing.
  • the wire rods 23 are arranged parallel to each other at predetermined intervals in the Y direction at equal pitches L1.
  • the wire rods 23 are arranged parallel to each other at predetermined intervals in the X direction at equal pitches L1.
  • the arrangement pitch L1 of the wire rods 23 in the X-axis wire rod layer 25 is the same as the arrangement pitch L1 of the wire rods 23 in the Y-axis wire rod layer 26.
  • One layer of X-axis wire material 25 and one layer of Y-axis wire material 26 are combined in a state where they are adjacent to each other in the Z-axis direction, thereby forming one layer of parallel cross layer 24.
  • a square frame portion is formed by the wire rods 23 extending in the X-axis direction and the wire rods 23 extending in the Y-axis direction.
  • a small space 22a having a square shape in a plan view is formed by the frame made of the wire rod 23, and this small space 22a is connected in the Z-axis direction to form the cavity 22.
  • Each wire rod 23 serves as a wall portion that partitions the cavity 22.
  • a plurality of such parallel cross layers 24 are stacked in the Z-axis direction to form the overhang portion 10 and the connecting portion 11.
  • the material filling rate (ratio of the volume of the wire rod 23 to the volume of the parallel cross layer 24) is in the range of 5 to 95% (preferably 10 to 50%).
  • the material filling rate of the soft region 20 may be changed in the Z-axis direction.
  • the material filling rate is in the range of 5 to 100% (preferably 25 to 100%).
  • the parallel layers 24, 24 adjacent to each other in the Z-axis direction have a phase shift in at least one of the X-axis direction and the Y-axis direction. Laminated in condition.
  • the parallel layers 24, 24 adjacent to each other in the Z-axis direction have a phase shift in both the X-axis direction and the Y-axis direction.
  • the double cross layers 24, 24 adjacent in the Z-axis direction are in a phase shifted state by a distance L2, which is half the arrangement pitch L1 of the wire rods 23, in the X-axis direction and the Y-axis direction.
  • first double layer 24 below the first double layer 24 (hereinafter referred to as "24a" when distinguishing from the second double layer 24 to be described later), there is a second double layer offset by a distance L2 in the X-axis direction and the Y-axis direction.
  • a parallel layer 24 (hereinafter referred to as "24b" to distinguish from the first double layer 24a) is adjacent thereto.
  • a parallel cross layer 24 further offset by a distance L2 in the X-axis direction and the Y-axis direction is adjacent to the lower side of the second parallel cross layer 24b. This parallel layer 24 is in the same phase as the first parallel layer 24a.
  • first parallel cross layers 24a and second parallel cross layers 24b are alternately stacked along the Z-axis direction.
  • each wire rod 23 when compressed along the Z-axis direction, each wire rod 23 is elastically deformed and curved in the first parallel cross layer 24a and the second parallel cross layer 24b, Since the soft region 20 enters another gap 22 adjacent in the Z-axis direction, the length of the soft region 20 in the Z-axis direction becomes smaller.
  • the compression rate of the soft region 20 of this embodiment is 50%, and the length of the soft region 20 in the Z-axis direction can be compressed to approximately half (see (b) of FIG. 3).
  • the wire rod 23 is arranged over the entire length in the Z-axis direction. Therefore, even if the hard region 21 is compressed along the Z-axis direction, only the elastic deformation of the wire rod 23 is compressed because the wire rods 23 are continuously arranged without gaps at the intersecting positions. Therefore, deformation in the Z-axis direction in the hard region 21 is small.
  • a structure may be adopted in which the void portion 22 is filled with the same material as the wire rod 23. In this case, the material filling rate in the hard region 21 is 100%.
  • the gripper 1 having the soft region 20 and hard region 21 configured as described above is formed from a single elastic material using a 3D printer.
  • 3D printers for example, three-dimensional modeling apparatuses that manufacture objects based on three-dimensional design data are known.
  • Various methods have been proposed and commercialized as methods for such three-dimensional modeling devices, such as stereolithography, powder sintering, inkjet methods, and molten resin extrusion methods.
  • Materials such as photocurable resins, thermoplastic resins, metals, and plaster are commonly used as materials for three-dimensional modeling.
  • elastic resin is used.
  • the gripper 1 of this embodiment since the intermediate portion in the Z-axis direction of the connecting portion 11 is constituted by the soft region 20, it can be compressively deformed in the Z-axis direction.
  • the wire rods 23 are stacked with a phase shift so that they do not overlap in the Z-axis direction, so the wire rods 23 are elastically deformed into a curved shape. Therefore, the soft region 20 can be flexibly deformed.
  • the gripper 1 is soft and can grip the object 2, even a soft object can be gripped without damaging it.
  • the parallel cross layer 24 is formed by intersecting elastic wire rods 23 in two directions, the X-axis direction and the Y-axis direction, in a parallel cross shape
  • the soft region 20 is formed by intersecting the elastic wires 23 in two directions, the X-axis direction and the Y-axis direction. Since the layers 24 and 24 are laminated with a phase shift in the X-axis direction and the Y-axis direction, the flexibility of the gripper 1 is improved. Furthermore, when an external force is applied to the gripper 1 from the robot arm 3, the soft region 20 deforms only in the Z direction and does not deform (bulge, etc.) in the XY plane. Therefore, since the object 2 does not come into contact with anything other than the projecting portion 10, it becomes even less likely to be damaged.
  • the wire rod 23 is elastically deformed within the cavity 22, so when the external force of the robot arm is released from the compressed state, the gripper 1 returns to its original shape. Therefore, the gripper 1 can be repeatedly used for gripping and releasing by the robot arm 3.
  • both ends of the gripper 1 will not be deformed even if the gripper 1 is pinched by the gripping portion 6. It's difficult. Therefore, the gripper 1 can be stably gripped by the gripping part 6, and the external force of the robot arm can be reliably transmitted to the connecting part. Furthermore, since the hard region 21 is provided over the entire area corresponding to the shape of the connecting portion 11, the connecting portion is less likely to be twisted, and the external force of the robot arm 3 can be evenly transmitted to the connecting portion 11. can.
  • the gripper 1 of this embodiment is integrally formed using a 3D printer, the gripper 1 can be easily manufactured in an accurate shape at low cost. In addition, it is possible to quickly produce a replacement product in case of functional deterioration. Furthermore, products with design changes can be easily manufactured.
  • the gripper 1a according to the present embodiment differs from the first embodiment in that a hard region 21 is provided at the center of the connecting portion 11 in the Z-axis direction.
  • the central hard region 21 is a portion that serves as a spacer to prevent the pair of projecting portions 10, 10 from coming closer than a certain distance.
  • the hard region 21 is formed over the entire cross section of the connecting portion 11 .
  • the dimension of the central hard region 21 in the Z-axis direction is determined as appropriate depending on the shape of the object 2.
  • the length in the Z-axis direction of the compressed state of the soft regions 20, 20 on both sides of the central hard region 21 and the length of the hard region 21 in the Z-axis direction is the length that will not damage the object 2. Set it so that it is the same. Note that other configurations are the same as those in the first embodiment, so the same reference numerals are given and explanations are omitted.
  • the gripper 1a of the second embodiment in addition to obtaining the same effects as those of the first embodiment, damage to the object 2 can be prevented because the projecting portions 10, 10 do not approach closer than a predetermined distance. It has the effect of being able to.
  • the soft region 20a differs from the first embodiment in the phase shift ratio of the double cross layer 24. Specifically, the ratio of the phase shift distance to the arrangement pitch of the wire rods 23 is different.
  • the parallel layers 24, 24 adjacent in the Z-axis direction are shifted in phase by a distance L4, which is one third of the arrangement pitch L3 of the wire rods 23, in the X-axis direction and the Y-axis direction. It is in a state where it has.
  • the parallel cross layer 24 includes a first double cross layer 24a, a second double cross layer 24b, and a third double cross layer 24c stacked in order along the Z-axis direction.
  • each wire rod 23 in the first parallel cross layer 24a, the second parallel cross layer 24b, and the third parallel cross layer 24c Since it is elastically deformed and curved and enters the gap 22 of the other cross layer 24, the length in the Z-axis direction becomes smaller.
  • the compression ratio of the soft region 20a in this modification is 66%, and the length of the soft region 20a in the Z-axis direction can be compressed to approximately one-third.
  • the soft region according to the second modification will be described with reference to FIG. 13.
  • the ratio of the phase shift of the double cross layer 24 is different from that in the first embodiment and the second embodiment.
  • the parallel layers 24, 24 adjacent to each other in the Z-axis direction are spaced at a distance of one quarter of the arrangement pitch L5 of the wire rods 23 in the X-axis direction and the Y-axis direction.
  • the state is such that there is a phase shift of L6.
  • the X-axis A second parallel layer 24 (hereinafter referred to as "24b" to distinguish from the first double layer 24a and the third and fourth double cross layers 24 to be described later) is offset by a distance L6 in the Y-axis direction and the Y-axis direction. Adjacent.
  • a third double layer 24 (hereinafter referred to as the first double layer 24a, second double layer 24b, and later described) is further offset by a distance L4 in the X-axis direction and the Y-axis direction. (referred to as "24c" to distinguish it from the fourth parallel layer 24) is adjacent thereto.
  • a third double layer 24 (hereinafter referred to as the first double layer 24a, second double layer 24b, and (referred to as "24d" to distinguish it from the third Igata layer 24c) is adjacent thereto.
  • a parallel cross layer 24 further offset by a distance L4 in the X-axis direction and the Y-axis direction is adjacent to the lower side of the fourth parallel cross layer 24d.
  • This parallel layer 24 is in the same phase as the first parallel layer 24a. That is, the parallel cross layer 24 includes a first double cross layer 24a, a second double cross layer 24b, a third double cross layer 24c, and a fourth double cross layer 24d, which are stacked in order along the Z-axis direction.
  • each wire 23 when compressed along the Z-axis direction, the first double layer 24a, the second double layer 24b, the third double layer 24c, and the fourth double layer At 24d, each wire 23 is elastically deformed and curved and enters the void 22 of the other cross layer 24, so the length in the Z-axis direction becomes smaller.
  • the compression ratio of the soft region 20b in this modification is 75%, and the length of the soft region 20b in the Z-axis direction can be compressed to approximately one-fourth.
  • the ratio of the distance of the phase shift of the parallel cross layer 24 to the arrangement pitch of the wire rods 23 is not limited to the above embodiments and modified examples, and can be changed as appropriate.
  • the present invention is not limited to the above embodiments, and design changes can be made as appropriate without departing from the spirit of the present invention.
  • the hard regions 21 provided at both ends in the Z-axis direction are formed across the projecting portion 10 and the connecting portion 11, but the hard region 21 is not limited to this.
  • the hard regions 21 may be formed only at both ends corresponding to the connecting portions 11.
  • the parallel layer 24 of the soft region 20 is laminated with a phase shift in both the X-axis direction and the Y-axis direction.
  • a state may also be provided in which there is a phase shift only in the direction.
  • the wire rods 23 are assembled in a square grid shape, but the wire rods 23 are not limited to this.
  • the wire may be combined with other polygons such as a rectangular grid shape, hexagon, or octagon.
  • voids may be appropriately arranged in parallel inside the overhanging portion and the connecting portion without using the wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

This gripper that can grip a soft object without damaging the same is manufactured at low cost. The present invention comprises, in an integrated manner, a pair of extension sections (10) that grip an object (2), and a connecting section (11) that connects the extension sections (10). The extension sections (10) and the connecting section (11) are configured from an elastic member having a gap section (22) that is continuous at least in the gripping direction in which the object (2) is gripped. At least a portion of the connecting section (11) is a soft region (20) having a plurality of wall sections that are layered in the gripping direction, and in the soft region (20), wall sections that neighbor one another in the gripping direction are layered in a condition of having a phase offset in an intersecting direction, which intersects the gripping direction. The extension sections (10) and the connecting section (11) comprise a configuration that results from layering, in a Z-axis direction, parallel-cross layers (24) in which linear materials (23) with elasticity have been crossed in the two directions of an X-axis direction and a Y-axis direction and assembled in a parallel-cross formation, and in the soft region (20), parallel-cross layers (24) that neighbor one another in the Z-axis direction are layered in a condition of having a phase offset in the directions of the X-axis direction and the Y-axis direction.

Description

グリッパgripper
 本発明は、ロボットアームの先端部に設けられ、直接対象物を把持するグリッパに関する。 The present invention relates to a gripper that is provided at the tip of a robot arm and directly grips an object.
 従来、様々な技術分野においてロボットが用いられており、各技術分野においてそのロボットを用いて対象物を把持して移動させている。把持する対象物は必ずしも強固なものではなく、例えば食品・医療分野においては、軟らかく破損しやすいものも対象物となり得る。そのような軟らかい対象物についても把持、移動を可能とするため、特許文献1ではアーム部先端に緩衝材を設ける技術が開示され、特許文献2ではアーム部自体を柔軟にする技術が開示されている。 Conventionally, robots have been used in various technical fields, and in each technical field, the robots are used to grasp and move objects. The object to be grasped is not necessarily strong; for example, in the food and medical fields, objects that are soft and easily damaged can also be objects. In order to enable grasping and movement of such soft objects, Patent Document 1 discloses a technique of providing a cushioning material at the tip of the arm, and Patent Document 2 discloses a technique of making the arm itself flexible. There is.
特開2021-112789号公報JP 2021-112789 Publication 特開2021-142582号公報JP 2021-142582 Publication
 しかしながら、特許文献1の技術では緩衝材自体が吸収できる外力には限界があるため、対象物が非常に軟質の場合は破損の恐れがある。一方、特許文献2の技術ではアーム部自体の製造コストが嵩む恐れがある。
 そこで本発明はかかる問題に鑑みてなされたものであり、軟質な対象物を破損することなく把持することができるグリッパを低コストで提供することを目的とする。
However, in the technique of Patent Document 1, there is a limit to the external force that the cushioning material itself can absorb, so if the object is very soft, there is a risk of damage. On the other hand, the technique disclosed in Patent Document 2 may increase the manufacturing cost of the arm part itself.
The present invention has been made in view of such problems, and an object of the present invention is to provide a gripper that can grip a soft object without damaging it at a low cost.
 前記課題を解決するための本発明は、ロボットアームの先端部に配置され、対象物を把持するためのグリッパであって、前記対象物を把持する一対の張出部と、前記張出部を連結する連結部とを一体的に備えている。前記張出部と前記連結部は、少なくとも前記対象物を把持する把持方向に連続する空隙部を有する弾性部材にて構成され、少なくとも前記連結部の一部は、前記把持方向に積層された複数の壁部を有する軟質領域であり、前記軟質領域において前記把持方向に隣り合う前記壁部が、前記把持方向と交差する交差方向において位相ずれを有した状態で積層されていることを特徴とする。 The present invention for solving the above problems is a gripper disposed at the tip of a robot arm for gripping an object, the gripper comprising: a pair of overhangs for gripping the object; It is integrally provided with a connecting part to be connected. The projecting portion and the connecting portion are each made of an elastic member having a gap portion continuous in the gripping direction for gripping the object, and at least a part of the connecting portion is made of a plurality of elastic members stacked in the gripping direction. The soft region has wall portions, and the wall portions adjacent in the gripping direction in the soft region are stacked with a phase shift in a cross direction intersecting the gripping direction. .
 本発明に係るグリッパによれば、軟質領域は壁部が把持方向において重ならないように位相ずれを有した状態で積層されているので、軟質領域が柔軟に変形することができる。したがって、グリッパは、柔らかく対象物を把持可能であるので、軟質な対象物であっても破損させることなく把持することができる。また、グリッパは、張出部と連結部とが一体に形成されているので、製造コストを抑制できる。 According to the gripper according to the present invention, since the soft regions are stacked with a phase shift so that the wall portions do not overlap in the gripping direction, the soft regions can be flexibly deformed. Therefore, since the gripper is capable of gripping a soft object, even a soft object can be gripped without damaging the object. Furthermore, since the gripper has the overhanging portion and the connecting portion integrally formed, manufacturing costs can be suppressed.
 そして、本発明のグリッパにおいては、前記張出部および前記連結部は、弾性を有する線材をX軸方向とY軸方向の2方向で交差させて井桁状に組んだ井桁層をZ軸方向に積層させたものからなり、前記軟質領域は、Z軸方向に隣り合う前記井桁層同士がX軸方向とY軸方向の少なくとも何れかの方向において位相ずれを有した状態で積層されているものが好ましい。このような構成によれば、グリッパの柔軟性が向上する。さらに、グリッパにロボットアームからの外力が加わった時に、軟質領域は、Z方向のみで変形し、XY面での変形(膨れ等)は起こさない。このため、対象物は張出部以外と接触しないので、より一層破損し難くなる。 In the gripper of the present invention, the overhanging portion and the connecting portion are formed by forming a parallel cross layer in which elastic wire rods are crossed in two directions, the X-axis direction and the Y-axis direction, in a parallel cross shape, in the Z-axis direction. The soft region is formed by laminating layers in which the parallel layers adjacent in the Z-axis direction are laminated with a phase shift in at least one of the X-axis direction and the Y-axis direction. preferable. According to such a configuration, the flexibility of the gripper is improved. Furthermore, when an external force is applied to the gripper from the robot arm, the soft region deforms only in the Z direction and does not deform (bulge, etc.) in the XY plane. Therefore, since the object does not come into contact with anything other than the protruding portion, it becomes even less likely to be damaged.
 また、本発明のグリッパにおいては、前記ロボットアームの把持部に当接するZ軸方向の両端部には、硬質領域が設けられており、前記硬質領域は、Z軸方向に隣り合う前記井桁層同士がX軸方向とY軸方向において同位相を保って積層されているものが好ましい。このような構成によれば、ロボットアームの把持部にグリッパを安定した状態で把持させることができるとともに、ロボットアームの外力を連結部に確実に伝達することができる。 Further, in the gripper of the present invention, hard regions are provided at both ends in the Z-axis direction that contact the gripping portion of the robot arm, and the hard regions are formed between the parallel layers adjacent to each other in the Z-axis direction. It is preferable that the layers are stacked while maintaining the same phase in the X-axis direction and the Y-axis direction. According to such a configuration, the gripper can be stably gripped by the gripping part of the robot arm, and the external force of the robot arm can be reliably transmitted to the connecting part.
 さらに、本発明のグリッパにおいては、前記硬質領域は、前記Z軸方向の両端部において前記連結部の形状に対応する領域の全体に設けられているものが好ましい。このような構成によれば、連結部が捻じれ難くなり、ロボットアームの把持部にグリッパをより一層安定した状態で把持させることができるとともに、ロボットアームの外力を連結部に均等に伝達することができる。 Furthermore, in the gripper of the present invention, it is preferable that the hard region is provided in the entire region corresponding to the shape of the connecting portion at both ends in the Z-axis direction. According to such a configuration, the connecting part becomes difficult to twist, the gripper can be gripped by the gripping part of the robot arm in a more stable state, and the external force of the robot arm can be evenly transmitted to the connecting part. I can do it.
 また、本発明のグリッパにおいては、前記張出部および前記連結部は、3Dプリンタにて一体形成されるものが好ましい。このような構成によれば、グリッパを正確な形状で容易且つ低コストで製作することができる。 Furthermore, in the gripper of the present invention, it is preferable that the projecting portion and the connecting portion be integrally formed using a 3D printer. According to such a configuration, the gripper can be manufactured in an accurate shape easily and at low cost.
 本発明に係るグリッパによれば、軟質な対象物を破損することなく把持することができるとともに、低コストで製造可能となるという優れた効果を発揮する。 According to the gripper according to the present invention, it is possible to grip a soft object without damaging it, and it exhibits the excellent effect of being able to be manufactured at low cost.
本発明の第一実施形態に係るグリッパを示した斜視図である。FIG. 1 is a perspective view showing a gripper according to a first embodiment of the present invention. 本発明の第一実施形態に係るグリッパをロボットアームの先端部で把持した状態を示した斜視図である。FIG. 2 is a perspective view showing a state in which the gripper according to the first embodiment of the present invention is gripped by the tip of a robot arm. 本発明の第一実施形態に係るグリッパを示した図であって、(a)は通常状態を示した側面図、(b)は圧縮状態を示した側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a gripper according to a first embodiment of the present invention, in which (a) is a side view showing a normal state, and (b) is a side view showing a compressed state. 本発明の第一実施形態に係るグリッパの硬質領域を示した拡大平面図である。FIG. 3 is an enlarged plan view showing a hard region of the gripper according to the first embodiment of the present invention. 本発明の第一実施形態に係るグリッパの軟質領域を示した拡大平面図である。FIG. 3 is an enlarged plan view showing a soft region of the gripper according to the first embodiment of the present invention. 本発明の第一実施形態に係るグリッパの硬質領域を示した図4のvi-vi線断面図である。FIG. 5 is a sectional view taken along the line vi-vi in FIG. 4 showing a hard region of the gripper according to the first embodiment of the present invention. 本発明の第一実施形態に係るグリッパの軟質領域を示した図5のvii-vii線断面図である。FIG. 6 is a sectional view taken along the line vii-vii in FIG. 5 showing the soft region of the gripper according to the first embodiment of the present invention. 本発明の第一実施形態に係るグリッパの硬質領域を示した拡大斜視図である。FIG. 2 is an enlarged perspective view showing a hard region of the gripper according to the first embodiment of the present invention. 本発明の第一実施形態に係るグリッパの軟質領域を示した拡大斜視図である。FIG. 2 is an enlarged perspective view showing a soft region of the gripper according to the first embodiment of the present invention. 本発明の第二実施形態に係るグリッパを示した斜視図である。It is a perspective view showing a gripper concerning a second embodiment of the present invention. 本発明の第二実施形態に係るグリッパを示した図であって、(a)は通常状態を示した側面図、(b)は圧縮状態を示した側面図である。It is a figure which showed the gripper based on the second embodiment of this invention, Comprising: (a) is a side view which showed the normal state, (b) is a side view which showed the compressed state. 第一変形例に係るグリッパの軟質領域を示した図であって、(a)は拡大平面図、(b)は図12(a)のxii-xii線断面図である。12(a) is an enlarged plan view, and FIG. 12(b) is a sectional view taken along line xii-xii in FIG. 12(a), showing a soft region of a gripper according to a first modification. 第二変形例に係るグリッパの軟質領域を示した図であって、(a)は拡大平面図、(b)は図13(a)のxiii-xiii線断面図である。13(a) is an enlarged plan view, and FIG. 13(b) is a sectional view taken along line xiii-xiii in FIG. 13(a), showing a soft region of a gripper according to a second modification.
 本発明の第一実施形態に係るグリッパを、添付した図面を参照しながら詳細に説明する。図1および図2に示すように、本実施形態に係るグリッパ1は、食品等の軟らかい対象物2(図2参照)を直接把持するためのものである。グリッパ1は、ロボットアーム3の先端部に配置されており、ロボットアーム3の先端部の把持機構4に挟まれている(図2参照)。把持機構4は、回動部5と、回動部5から張り出す一対の把持部6,6とを備えている。把持部6,6は、矩形板状に形成されており、互いに近接離反可能に設けられている。把持部6,6は、グリッパ1を挟持し、近接することでグリッパ1を圧縮する。本実施形態では、グリッパ1の圧縮方向(把持部6,6の近接離反方向)をZ軸方向とし、このZ軸方向と、Z軸方向に直交するX軸方向およびY軸方向を基に各部の構成を説明する。 A gripper according to a first embodiment of the present invention will be described in detail with reference to the attached drawings. As shown in FIGS. 1 and 2, a gripper 1 according to the present embodiment is for directly gripping a soft object 2 (see FIG. 2) such as food. The gripper 1 is arranged at the tip of the robot arm 3, and is held between the gripping mechanisms 4 at the tip of the robot arm 3 (see FIG. 2). The gripping mechanism 4 includes a rotating portion 5 and a pair of gripping portions 6, 6 protruding from the rotating portion 5. The gripping parts 6, 6 are formed in a rectangular plate shape, and are provided so as to be able to approach and separate from each other. The gripping parts 6, 6 grip the gripper 1 and compress the gripper 1 by coming close to each other. In this embodiment, the compression direction of the gripper 1 (the direction of approaching and separating the gripping parts 6, 6) is the Z-axis direction, and each part is defined based on this Z-axis direction and the X-axis direction and Y-axis direction orthogonal to the Z-axis direction. The configuration of is explained.
 図1乃至図3に示すように、グリッパ1は、一対の張出部10,10と連結部11とを備え、側面視でコ字形状を呈している。張出部10は、対象物2をZ軸方向両側から挟んで把持する部位であって、X軸およびY軸を含む平面と平行に広がる矩形板状を呈している。張出部10は、連結部11のZ軸方向両端部からX軸方向に沿ってそれぞれ張り出している。張出部10の互いに対向する面は、対象物2を掴む掴み面となる。この掴み面は、平面状であってもよいし、対象物2の形状に応じて凹凸状に形成してもよい。 As shown in FIGS. 1 to 3, the gripper 1 includes a pair of projecting portions 10, 10 and a connecting portion 11, and has a U-shape when viewed from the side. The projecting portion 10 is a portion that grips the object 2 from both sides in the Z-axis direction, and has a rectangular plate shape that extends parallel to a plane including the X-axis and the Y-axis. The projecting portions 10 project from both ends of the connecting portion 11 in the Z-axis direction along the X-axis direction. The mutually opposing surfaces of the projecting portions 10 serve as gripping surfaces for gripping the object 2. This gripping surface may be planar or may be formed into an uneven shape depending on the shape of the object 2.
 連結部11は、一対の張出部10,10を連結する部位であって、直方体形状に形成されている。連結部11の張出部10側の側面に、張出部10が連続して一体的に形成されている。連結部11のY軸方向の幅寸法は、張出部10のY軸方向の幅寸法と同等である。 The connecting portion 11 is a portion that connects the pair of projecting portions 10, 10, and is formed in a rectangular parallelepiped shape. The overhanging portion 10 is continuously and integrally formed on the side surface of the connecting portion 11 on the side of the overhanging portion 10 . The width dimension of the connecting portion 11 in the Y-axis direction is equivalent to the width dimension of the overhang portion 10 in the Y-axis direction.
 張出部10と連結部11とを備えたグリッパ1は、対象物2(図2参照)を把持する把持方向(Z軸方向)に連続する空隙部22(図4,5参照)を有する弾性部材にて構成されており、弾性部材は、軟質領域20と硬質領域21とに区分されている。軟質領域20は、硬質領域21よりも軟らかい部分であって、ロボットアーム3の把持機構4による挟持力によって圧縮変形可能な軟らかさである。軟質領域20は、把持方向(Z軸方向)に積層された壁部を備えている。軟質領域20の壁部は、把持方向(Z軸方向)と交差する交差方向(X軸方向または/およびY軸方向)において位相ずれを有した状態で積層されている。 The gripper 1 including the projecting portion 10 and the connecting portion 11 is an elastic gripper having a gap 22 (see FIGS. 4 and 5) that is continuous in the gripping direction (Z-axis direction) for gripping the object 2 (see FIG. 2). The elastic member is divided into a soft region 20 and a hard region 21. The soft region 20 is softer than the hard region 21 and is soft enough to be compressed and deformed by the gripping force of the gripping mechanism 4 of the robot arm 3. The soft region 20 includes wall portions stacked in the gripping direction (Z-axis direction). The walls of the soft region 20 are laminated with a phase shift in a cross direction (X-axis direction and/or Y-axis direction) that intersects the gripping direction (Z-axis direction).
 硬質領域21は、把持機構4による挟持力によって圧縮変形不能な軟らかさである。硬質領域21は、把持方向(Z軸方向)に積層された壁部を備えている。硬質領域21の壁部は、把持方向(Z軸方向)と交差する交差方向(X軸方向およびY軸方向)において同位相を保った状態で積層されている。 The hard region 21 is soft and cannot be compressed and deformed by the clamping force of the gripping mechanism 4. The hard region 21 includes wall portions stacked in the gripping direction (Z-axis direction). The wall portions of the hard region 21 are laminated so as to maintain the same phase in the intersecting directions (X-axis direction and Y-axis direction) that intersect with the gripping direction (Z-axis direction).
 軟質領域20は、少なくとも連結部11の一部に配置されている。本実施形態では、軟質領域20は、張出部10と連結部11の両方の一部に配置されている。具体的には、張出部10のZ軸方向内側部分には軟質領域20が設けられ、Z軸方向外側部分には硬質領域21が設けられている。つまり、張出部10の対象物2を把持する接触部分には軟質領域20が設けられ、接触部分とは反対の外側部分には硬質領域21が設けられている。 The soft region 20 is arranged at least in a part of the connecting portion 11. In this embodiment, the soft region 20 is arranged in a part of both the overhanging part 10 and the connecting part 11. Specifically, a soft region 20 is provided at the inner portion in the Z-axis direction of the overhang portion 10, and a hard region 21 is provided at the outer portion in the Z-axis direction. That is, a soft region 20 is provided at the contact portion of the overhang 10 that grips the object 2, and a hard region 21 is provided at the outer portion opposite to the contact portion.
 連結部11のZ軸方向両端部には、硬質領域21が設けられ、両端の硬質領域21の間には、軟質領域20が設けられている。硬質領域21は、連結部11の断面形状に対応する領域の全体に設けられている。つまり、連結部11のZ軸方向両端の、把持部6に把持される部分には硬質領域21が形成されている。張出部10の硬質領域21の厚さ寸法(Z軸方向の厚さ寸法)と、連結部11の硬質領域21の厚さ寸法(Z軸方向の厚さ寸法)は同等であり、各硬質領域21は連続して一体形成されている。 Hard regions 21 are provided at both ends of the connecting portion 11 in the Z-axis direction, and a soft region 20 is provided between the hard regions 21 at both ends. The hard region 21 is provided over the entire region corresponding to the cross-sectional shape of the connecting portion 11 . In other words, hard regions 21 are formed at both ends of the connecting portion 11 in the Z-axis direction at portions that are gripped by the gripping portion 6 . The thickness dimension (thickness dimension in the Z-axis direction) of the hard region 21 of the overhanging part 10 and the thickness dimension (thickness dimension in the Z-axis direction) of the hard region 21 of the connecting part 11 are the same. The region 21 is continuous and integrally formed.
 以下、張出部10と連結部11の具体的な構成を説明する。図4乃至図9に示すように、張出部10および連結部11は、弾性を有する線材23をX軸方向とY軸方向の2方向で交差させて井桁状に組んだ井桁層24をZ軸方向に積層させたものからなる。線材23は、X軸方向に延在するものと、Y軸方向に延在するものの二種類設けられている。X軸方向に延在する線材23で構成されたX軸線材層25と、Y軸方向に延在する線材23で構成されたY軸線材層26とがZ軸方向に沿って交互に積層されている。X軸線材層25では、線材23がY方向に所定の間隔をあけて等間隔ピッチL1で互いに平行に配置されている。Y軸線材層26では、線材23がX方向に所定の間隔をあけて等間隔ピッチL1で互いに平行に配置されている。X軸線材層25における線材23の配置ピッチL1は、Y軸線材層26における線材23の配置ピッチL1と同じである。一段のX軸線材層25と、一段のY軸線材層26とがZ軸方向に隣り合った状態で組み合わさって、一層の井桁層24が形成される。井桁層24を平面視すると、X軸方向に延在する線材23と、Y軸方向に延在する線材23とで正方形の枠部が形成される。線材23にて構成された枠部によって、平面視正方形の小空間22aが形成され、この小空間22aがZ軸方向に繋がって空隙部22となる。そして、各線材23が空隙部22を区画する壁部となっている。このような井桁層24がZ軸方向に複数層積層され、張出部10および連結部11が形成されている。 Hereinafter, the specific configuration of the overhanging portion 10 and the connecting portion 11 will be explained. As shown in FIGS. 4 to 9, the overhanging portion 10 and the connecting portion 11 are made of a parallel cross layer 24 in which elastic wire rods 23 are crossed in two directions, the X-axis direction and the Y-axis direction, and assembled in a parallel cross shape. Consists of layers stacked in the axial direction. Two types of wire rods 23 are provided, one extending in the X-axis direction and the other extending in the Y-axis direction. An X-axis wire layer 25 composed of wires 23 extending in the X-axis direction and a Y-axis wire layer 26 composed of wires 23 extending in the Y-axis direction are alternately laminated along the Z-axis direction. ing. In the X-axis wire rod layer 25, the wire rods 23 are arranged parallel to each other at predetermined intervals in the Y direction at equal pitches L1. In the Y-axis wire rod layer 26, the wire rods 23 are arranged parallel to each other at predetermined intervals in the X direction at equal pitches L1. The arrangement pitch L1 of the wire rods 23 in the X-axis wire rod layer 25 is the same as the arrangement pitch L1 of the wire rods 23 in the Y-axis wire rod layer 26. One layer of X-axis wire material 25 and one layer of Y-axis wire material 26 are combined in a state where they are adjacent to each other in the Z-axis direction, thereby forming one layer of parallel cross layer 24. When the parallel cross layer 24 is viewed from above, a square frame portion is formed by the wire rods 23 extending in the X-axis direction and the wire rods 23 extending in the Y-axis direction. A small space 22a having a square shape in a plan view is formed by the frame made of the wire rod 23, and this small space 22a is connected in the Z-axis direction to form the cavity 22. Each wire rod 23 serves as a wall portion that partitions the cavity 22. A plurality of such parallel cross layers 24 are stacked in the Z-axis direction to form the overhang portion 10 and the connecting portion 11.
 軟質領域20における井桁層24では、材料充填率(井桁層24の体積に占める線材23の体積の割合)が5~95%(好ましくは10~50%)の範囲となっている。軟質領域20の材料充填率は、Z軸方向に変化させるようにしてもよい。一方、硬質領域21における井桁層24では、材料充填率が5~100%(好ましくは25~100%)の範囲となっている。 In the parallel cross layer 24 in the soft region 20, the material filling rate (ratio of the volume of the wire rod 23 to the volume of the parallel cross layer 24) is in the range of 5 to 95% (preferably 10 to 50%). The material filling rate of the soft region 20 may be changed in the Z-axis direction. On the other hand, in the parallel cross layer 24 in the hard region 21, the material filling rate is in the range of 5 to 100% (preferably 25 to 100%).
 軟質領域20は、図5,図7および図9に示すように、Z軸方向に隣り合う井桁層24,24同士がX軸方向とY軸方向の少なくとも何れかの方向において位相ずれを有した状態で積層されている。本実施形態では、Z軸方向に隣り合う井桁層24,24同士は、X軸方向とY軸方向との両方向に位相ずれを有した状態となっている。具体的には、Z軸方向に隣り合う井桁層24,24は、X軸方向およびY軸方向において、線材23の配置ピッチL1の半分の距離L2ずつ位相ずれを有した状態になっている。つまり、第一の井桁層24(以下、後記する第二の井桁層24と区別する場合に「24a」と称する)の下方に、X軸方向とY軸方向において距離L2ずつオフセットした第二の井桁層24(以下、第一の井桁層24aと区別する場合に「24b」と称する)が隣接している。第二の井桁層24bの下方には、さらにX軸方向とY軸方向において距離L2ずつオフセットした井桁層24が隣接している。この井桁層24は、第一の井桁層24aと同位相である。つまり、井桁層24は、Z軸方向に沿って、第一の井桁層24aと第二の井桁層24bとが交互に積層されている。このような構成の軟質領域20によれば、Z軸方向に沿って圧縮された際に、第一の井桁層24aと第二の井桁層24bにおいて、各線材23が弾性変形して湾曲し、他のZ軸方向に隣接する空隙部22に入り込むので、軟質領域20のZ軸方向の長さが小さくなる。具体的には、本実施形態の軟質領域20の圧縮率は50%であって、軟質領域20のZ軸方向の長さは略半分まで圧縮可能である(図3の(b)参照)。 In the soft region 20, as shown in FIGS. 5, 7, and 9, the parallel layers 24, 24 adjacent to each other in the Z-axis direction have a phase shift in at least one of the X-axis direction and the Y-axis direction. Laminated in condition. In this embodiment, the parallel layers 24, 24 adjacent to each other in the Z-axis direction have a phase shift in both the X-axis direction and the Y-axis direction. Specifically, the double cross layers 24, 24 adjacent in the Z-axis direction are in a phase shifted state by a distance L2, which is half the arrangement pitch L1 of the wire rods 23, in the X-axis direction and the Y-axis direction. That is, below the first double layer 24 (hereinafter referred to as "24a" when distinguishing from the second double layer 24 to be described later), there is a second double layer offset by a distance L2 in the X-axis direction and the Y-axis direction. A parallel layer 24 (hereinafter referred to as "24b" to distinguish from the first double layer 24a) is adjacent thereto. A parallel cross layer 24 further offset by a distance L2 in the X-axis direction and the Y-axis direction is adjacent to the lower side of the second parallel cross layer 24b. This parallel layer 24 is in the same phase as the first parallel layer 24a. That is, in the parallel cross layer 24, first parallel cross layers 24a and second parallel cross layers 24b are alternately stacked along the Z-axis direction. According to the soft region 20 having such a configuration, when compressed along the Z-axis direction, each wire rod 23 is elastically deformed and curved in the first parallel cross layer 24a and the second parallel cross layer 24b, Since the soft region 20 enters another gap 22 adjacent in the Z-axis direction, the length of the soft region 20 in the Z-axis direction becomes smaller. Specifically, the compression rate of the soft region 20 of this embodiment is 50%, and the length of the soft region 20 in the Z-axis direction can be compressed to approximately half (see (b) of FIG. 3).
 硬質領域21は、図4,図6および図8に示すように、Z軸方向に隣り合う井桁層24,24同士がX軸方向とY軸方向において、同位相を保って積層されている。つまり、X軸方向に延在する線材23の下方には、Y軸方向に延在する線材23を挟んで、同位相でX軸方向に延在する線材23が配置されている。Y軸方向に延在する線材23の下方には、X軸方向に延在する線材23を挟んで、同位相でY軸方向に延在する線材23が配置されている。これによって、X軸方向に延在する線材23とY軸方向に延在する線材23とが交差する位置においては、Z軸方向の全長に亘って線材23が配置されている。そのため、硬質領域21では、Z軸方向に沿って圧縮されても、交差位置においては線材23が隙間なく連続して配置されているので、線材23の弾性変形分しか圧縮されない。したがって、硬質領域21におけるZ軸方向の変形は小さい。なお、硬質領域21では、空隙部22に線材23と同一の材料を充填した構造としてもよい。この場合、硬質領域21における材料充填率は100%となる。 In the hard region 21, as shown in FIGS. 4, 6, and 8, parallel layers 24, 24 adjacent to each other in the Z-axis direction are laminated with the same phase maintained in the X-axis direction and the Y-axis direction. That is, below the wire rod 23 extending in the X-axis direction, the wire rods 23 extending in the X-axis direction are arranged in the same phase with the wire rod 23 extending in the Y-axis direction interposed therebetween. Below the wire 23 extending in the Y-axis direction, wires 23 extending in the Y-axis direction in the same phase are arranged with the wire 23 extending in the X-axis direction in between. Thereby, at the position where the wire rod 23 extending in the X-axis direction and the wire rod 23 extending in the Y-axis direction intersect, the wire rod 23 is arranged over the entire length in the Z-axis direction. Therefore, even if the hard region 21 is compressed along the Z-axis direction, only the elastic deformation of the wire rod 23 is compressed because the wire rods 23 are continuously arranged without gaps at the intersecting positions. Therefore, deformation in the Z-axis direction in the hard region 21 is small. In addition, in the hard region 21, a structure may be adopted in which the void portion 22 is filled with the same material as the wire rod 23. In this case, the material filling rate in the hard region 21 is 100%.
 以上のような構成の軟質領域20と硬質領域21とを備えたグリッパ1は、3Dプリンタにて単一の弾性材料にて形成される。3Dプリンタでは、たとえば、三次元設計データに基づいて造形物を製造する三次元造形装置が知られている。このような三次元造形装置の方式としては、光造形法、粉末焼結法、インクジェット法、溶融樹脂押し出し造形法など、様々な方式が提案され、製品化されている。三次元造形の材料として、光硬化樹脂、熱可塑性樹脂、金属、石膏といった材料が一般に用いられている。本実施形態では、弾性の樹脂が採用されている。 The gripper 1 having the soft region 20 and hard region 21 configured as described above is formed from a single elastic material using a 3D printer. Among 3D printers, for example, three-dimensional modeling apparatuses that manufacture objects based on three-dimensional design data are known. Various methods have been proposed and commercialized as methods for such three-dimensional modeling devices, such as stereolithography, powder sintering, inkjet methods, and molten resin extrusion methods. Materials such as photocurable resins, thermoplastic resins, metals, and plaster are commonly used as materials for three-dimensional modeling. In this embodiment, elastic resin is used.
 本実施形態のグリッパ1によれば、連結部11のZ軸方向中間部が軟質領域20にて構成されているので、Z軸方向に圧縮変形可能である。軟質領域20は、線材23がZ軸方向に重ならないように位相ずれを有した状態で積層されているので、線材23が湾曲状に弾性変形する。したがって、軟質領域20は柔軟に変形することができる。つまり、グリッパ1は、柔らかく対象物2を把持可能であるので、軟質な対象物であっても破損させることなく把持することができる。 According to the gripper 1 of this embodiment, since the intermediate portion in the Z-axis direction of the connecting portion 11 is constituted by the soft region 20, it can be compressively deformed in the Z-axis direction. In the soft region 20, the wire rods 23 are stacked with a phase shift so that they do not overlap in the Z-axis direction, so the wire rods 23 are elastically deformed into a curved shape. Therefore, the soft region 20 can be flexibly deformed. In other words, since the gripper 1 is soft and can grip the object 2, even a soft object can be gripped without damaging it.
 特に本実施形態では、弾性を有する線材23をX軸方向とY軸方向の2方向で交差させて井桁状に組んだ井桁層24を形成し、軟質領域20は、Z軸方向に隣り合う井桁層24,24同士がX軸方向とY軸方向において位相ずれを有した状態で積層されているので、グリッパ1の柔軟性が向上する。さらに、グリッパ1にロボットアーム3からの外力が加わった時に、軟質領域20は、Z方向のみで変形し、XY面での変形(膨れ等)は起こさない。このため、対象物2は張出部10以外と接触しないので、より一層破損し難くなる。 In particular, in this embodiment, the parallel cross layer 24 is formed by intersecting elastic wire rods 23 in two directions, the X-axis direction and the Y-axis direction, in a parallel cross shape, and the soft region 20 is formed by intersecting the elastic wires 23 in two directions, the X-axis direction and the Y-axis direction. Since the layers 24 and 24 are laminated with a phase shift in the X-axis direction and the Y-axis direction, the flexibility of the gripper 1 is improved. Furthermore, when an external force is applied to the gripper 1 from the robot arm 3, the soft region 20 deforms only in the Z direction and does not deform (bulge, etc.) in the XY plane. Therefore, since the object 2 does not come into contact with anything other than the projecting portion 10, it becomes even less likely to be damaged.
 また、軟質領域20では、線材23が空隙部22内で弾性変形するので、圧縮された状態からロボットアームの外力が解除された時に、グリッパ1が元の形状に戻る。したがって、グリッパ1は、ロボットアーム3による把持および解除の繰り返し使用が可能である。 Furthermore, in the soft region 20, the wire rod 23 is elastically deformed within the cavity 22, so when the external force of the robot arm is released from the compressed state, the gripper 1 returns to its original shape. Therefore, the gripper 1 can be repeatedly used for gripping and releasing by the robot arm 3.
 また、グリッパ1のZ軸方向の両端部の、ロボットアーム3の把持部6に当接する部分には、硬質領域21が設けられているので、把持部6で挟み込んでもグリッパ1の両端部が変形し難い。したがって、グリッパ1を安定した状態で把持部6に把持させることができるとともに、ロボットアームの外力を連結部に確実に伝達することができる。さらに、硬質領域21は、連結部11の形状に対応する領域の全体に設けられているので、連結部が捻じれ難くなるとともに、ロボットアーム3の外力を連結部11に均等に伝達することができる。 Furthermore, since hard regions 21 are provided in the portions of both ends of the gripper 1 in the Z-axis direction that contact the gripping portion 6 of the robot arm 3, both ends of the gripper 1 will not be deformed even if the gripper 1 is pinched by the gripping portion 6. It's difficult. Therefore, the gripper 1 can be stably gripped by the gripping part 6, and the external force of the robot arm can be reliably transmitted to the connecting part. Furthermore, since the hard region 21 is provided over the entire area corresponding to the shape of the connecting portion 11, the connecting portion is less likely to be twisted, and the external force of the robot arm 3 can be evenly transmitted to the connecting portion 11. can.
 また、本実施形態のグリッパ1は、3Dプリンタにて一体形成されているので、グリッパ1を正確な形状で容易且つ低コストで製作することができる。また、機能劣化時の交換品を早急に製作可能である。さらに、設計変更品を容易に製作することができる。 Furthermore, since the gripper 1 of this embodiment is integrally formed using a 3D printer, the gripper 1 can be easily manufactured in an accurate shape at low cost. In addition, it is possible to quickly produce a replacement product in case of functional deterioration. Furthermore, products with design changes can be easily manufactured.
 次に、本発明の第二実施形態に係るグリッパを、図10および図11を参照しながら詳細に説明する。図10および図11に示すように、本実施形態に係るグリッパ1aは、連結部11のZ軸方向中央部に、硬質領域21が設けられている点が第一実施形態と異なる。中央の硬質領域21は、一対の張出部10,10が一定距離を超えて近接しないようにするためのスペーサの役目を果たす部分である。硬質領域21は、連結部11の断面全体に亘って形成されている。中央の硬質領域21のZ軸方向の寸法は、対象物2の形状に応じて適宜決定される。具体的には、中央の硬質領域21の両側の軟質領域20,20の圧縮状態のZ軸方向長さと、硬質領域21のZ軸方向長さを合わせた寸法が、対象物2を破損させない長さとなるように設定する。
 なお、その他の構成については、第一実施形態と同様であるので、同じ符号を付して説明を省略する。
Next, a gripper according to a second embodiment of the present invention will be described in detail with reference to FIGS. 10 and 11. As shown in FIGS. 10 and 11, the gripper 1a according to the present embodiment differs from the first embodiment in that a hard region 21 is provided at the center of the connecting portion 11 in the Z-axis direction. The central hard region 21 is a portion that serves as a spacer to prevent the pair of projecting portions 10, 10 from coming closer than a certain distance. The hard region 21 is formed over the entire cross section of the connecting portion 11 . The dimension of the central hard region 21 in the Z-axis direction is determined as appropriate depending on the shape of the object 2. Specifically, the length in the Z-axis direction of the compressed state of the soft regions 20, 20 on both sides of the central hard region 21 and the length of the hard region 21 in the Z-axis direction is the length that will not damage the object 2. Set it so that it is the same.
Note that other configurations are the same as those in the first embodiment, so the same reference numerals are given and explanations are omitted.
 第二実施形態のグリッパ1aによれば、第一実施形態と同様の作用効果を得られる他に、張出部10,10が所定距離以上に近接しないので、対象物2の破損を防止することができるという作用効果を奏する。 According to the gripper 1a of the second embodiment, in addition to obtaining the same effects as those of the first embodiment, damage to the object 2 can be prevented because the projecting portions 10, 10 do not approach closer than a predetermined distance. It has the effect of being able to.
 次に、第一変形例に係る軟質領域について、図12を参照しながら説明する。図12の(a)および(b)に示すように、かかる軟質領域20aは、井桁層24の位相ずれの割合が第一実施形態と異なる。具体的には、線材23の配置ピッチに対する位相ずれの距離の割合が異なる。第一変形例の軟質領域20aでは、Z軸方向に隣り合う井桁層24,24は、X軸方向およびY軸方向において、線材23の配置ピッチL3の3分の1の距離L4ずつ位相ずれを有した状態になっている。つまり、第一の井桁層24(以下、後記する第二の井桁層24および第三の井桁層24と区別する場合に「24a」と称する)の下方に、X軸方向とY軸方向において距離L4ずつオフセットした第二の井桁層24(以下、第一の井桁層24aおよび後記する第三の井桁層24と区別する場合に「24b」と称する)が隣接している。そして、第二の井桁層24bの下方に、X軸方向とY軸方向においてさらに距離L4ずつオフセットした第三の井桁層24(以下、第一の井桁層24aおよび第二の井桁層24bと区別する場合に「24c」と称する)が隣接している。第三の井桁層24cの下方には、X軸方向とY軸方向においてさらに距離L4ずつオフセットした井桁層24が隣接している。この井桁層24は、第一の井桁層24aと同位相である。つまり、井桁層24は、Z軸方向に沿って、第一の井桁層24aと第二の井桁層24bと第三の井桁層24cとが順次積層されている。 Next, the soft region according to the first modification will be described with reference to FIG. 12. As shown in FIGS. 12A and 12B, the soft region 20a differs from the first embodiment in the phase shift ratio of the double cross layer 24. Specifically, the ratio of the phase shift distance to the arrangement pitch of the wire rods 23 is different. In the soft region 20a of the first modification, the parallel layers 24, 24 adjacent in the Z-axis direction are shifted in phase by a distance L4, which is one third of the arrangement pitch L3 of the wire rods 23, in the X-axis direction and the Y-axis direction. It is in a state where it has. In other words, there is a distance below the first Igeta layer 24 (hereinafter referred to as "24a" when distinguishing from the second Igeta layer 24 and the third Igeta layer 24 to be described later) in the X-axis direction and the Y-axis direction. A second parallel layer 24 (hereinafter referred to as "24b" when distinguishing from the first parallel layer 24a and the third parallel layer 24 to be described later) offset by L4 is adjacent. Then, below the second double layer 24b, a third double layer 24 (hereinafter, distinguished from the first double layer 24a and the second double layer 24b) is further offset by a distance L4 in the X-axis direction and the Y-axis direction. (referred to as "24c" in this case) are adjacent to each other. A parallel cross layer 24 that is further offset by a distance L4 in the X-axis direction and the Y-axis direction is adjacent to the third parallel cross layer 24c below. This parallel layer 24 is in the same phase as the first parallel layer 24a. That is, the parallel cross layer 24 includes a first double cross layer 24a, a second double cross layer 24b, and a third double cross layer 24c stacked in order along the Z-axis direction.
 このような構成の軟質領域20aによれば、Z軸方向に沿って圧縮された際に、第一の井桁層24a、第二の井桁層24bおよび第三の井桁層24cにおいて、各線材23が弾性変形して湾曲し、他の井桁層24の空隙部22に入り込むので、Z軸方向の長さが小さくなる。具体的には、本変形例の軟質領域20aの圧縮率は66%であって、軟質領域20aのZ軸方向の長さは略3分の1まで圧縮可能である。 According to the soft region 20a having such a configuration, when compressed along the Z-axis direction, each wire rod 23 in the first parallel cross layer 24a, the second parallel cross layer 24b, and the third parallel cross layer 24c Since it is elastically deformed and curved and enters the gap 22 of the other cross layer 24, the length in the Z-axis direction becomes smaller. Specifically, the compression ratio of the soft region 20a in this modification is 66%, and the length of the soft region 20a in the Z-axis direction can be compressed to approximately one-third.
 次に、第二変形例に係る軟質領域について、図13を参照しながら説明する。図13の(a)および(b)に示すように、かかる軟質領域20bは、井桁層24の位相ずれの割合が第一実施形態および第二実施形態と異なる。具体的には、第二変形例の軟質領域20bでは、Z軸方向に隣り合う井桁層24,24は、X軸方向およびY軸方向において、線材23の配置ピッチL5の4分の1の距離L6ずつ位相ずれを有した状態になっている。つまり、第一の井桁層24(以下、後記する第二の井桁層24、第二の井桁層24および第四の井桁層24と区別する場合に「24a」と称する)の下方に、X軸方向とY軸方向において距離L6ずつオフセットした第二の井桁層24(以下、第一の井桁層24aおよび後記する第三、第四の井桁層24と区別する場合に「24b」と称する)が隣接している。そして、第二の井桁層24bの下方に、X軸方向とY軸方向においてさらに距離L4ずつオフセットした第三の井桁層24(以下、第一の井桁層24a、第二の井桁層24bおよび後記する第四の井桁層24と区別する場合に「24c」と称する)が隣接している。さらに、第三の井桁層24cの下方に、X軸方向とY軸方向においてさらに距離L4ずつオフセットした第三の井桁層24(以下、第一の井桁層24a、第二の井桁層24bおよび第三の井桁層24cと区別する場合に「24d」と称する)が隣接している。第四の井桁層24dの下方には、X軸方向とY軸方向においてさらに距離L4ずつオフセットした井桁層24が隣接している。この井桁層24は、第一の井桁層24aと同位相である。つまり、井桁層24は、Z軸方向に沿って、第一の井桁層24aと第二の井桁層24bと第三の井桁層24cと第四の井桁層24dが順次積層されている。 Next, the soft region according to the second modification will be described with reference to FIG. 13. As shown in FIGS. 13(a) and 13(b), in the soft region 20b, the ratio of the phase shift of the double cross layer 24 is different from that in the first embodiment and the second embodiment. Specifically, in the soft region 20b of the second modification, the parallel layers 24, 24 adjacent to each other in the Z-axis direction are spaced at a distance of one quarter of the arrangement pitch L5 of the wire rods 23 in the X-axis direction and the Y-axis direction. The state is such that there is a phase shift of L6. In other words, the X-axis A second parallel layer 24 (hereinafter referred to as "24b" to distinguish from the first double layer 24a and the third and fourth double cross layers 24 to be described later) is offset by a distance L6 in the Y-axis direction and the Y-axis direction. Adjacent. Then, below the second double layer 24b, a third double layer 24 (hereinafter referred to as the first double layer 24a, second double layer 24b, and later described) is further offset by a distance L4 in the X-axis direction and the Y-axis direction. (referred to as "24c" to distinguish it from the fourth parallel layer 24) is adjacent thereto. Furthermore, below the third double layer 24c, a third double layer 24 (hereinafter referred to as the first double layer 24a, second double layer 24b, and (referred to as "24d" to distinguish it from the third Igata layer 24c) is adjacent thereto. A parallel cross layer 24 further offset by a distance L4 in the X-axis direction and the Y-axis direction is adjacent to the lower side of the fourth parallel cross layer 24d. This parallel layer 24 is in the same phase as the first parallel layer 24a. That is, the parallel cross layer 24 includes a first double cross layer 24a, a second double cross layer 24b, a third double cross layer 24c, and a fourth double cross layer 24d, which are stacked in order along the Z-axis direction.
 このような構成の軟質領域20aによれば、Z軸方向に沿って圧縮された際に、第一の井桁層24a、第二の井桁層24b、第三の井桁層24cおよび第四の井桁層24dにおいて、各線材23が弾性変形して湾曲し、他の井桁層24の空隙部22に入り込むので、Z軸方向の長さが小さくなる。具体的には、本変形例の軟質領域20bの圧縮率は75%であって、軟質領域20bのZ軸方向の長さは略4分の1まで圧縮可能である。 According to the soft region 20a having such a configuration, when compressed along the Z-axis direction, the first double layer 24a, the second double layer 24b, the third double layer 24c, and the fourth double layer At 24d, each wire 23 is elastically deformed and curved and enters the void 22 of the other cross layer 24, so the length in the Z-axis direction becomes smaller. Specifically, the compression ratio of the soft region 20b in this modification is 75%, and the length of the soft region 20b in the Z-axis direction can be compressed to approximately one-fourth.
 線材23の配置ピッチに対する井桁層24の位相ずれの距離の割合は、前記実施形態および変形例に限定されるものではなく、適宜変更可能である。 The ratio of the distance of the phase shift of the parallel cross layer 24 to the arrangement pitch of the wire rods 23 is not limited to the above embodiments and modified examples, and can be changed as appropriate.
 以上、本発明を実施するための形態について説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。たとえば、前記実施形態では、Z軸方向の両端部に設けられた硬質領域21は、張出部10と連結部11に亘って形成されているが、これに限定されるものではない。連結部11に対応する両端部のみに硬質領域21を形成してもよい。 Although the embodiments for implementing the present invention have been described above, the present invention is not limited to the above embodiments, and design changes can be made as appropriate without departing from the spirit of the present invention. For example, in the embodiment described above, the hard regions 21 provided at both ends in the Z-axis direction are formed across the projecting portion 10 and the connecting portion 11, but the hard region 21 is not limited to this. The hard regions 21 may be formed only at both ends corresponding to the connecting portions 11.
 また、前記実施形態では、軟質領域20の井桁層24は、X軸方向とY軸方向の両方で位相ずれを有した状態で積層させているが、X軸方向またはY軸方向のいずれか一方向のみで位相ずれを有した状態としてもよい。 Furthermore, in the embodiment described above, the parallel layer 24 of the soft region 20 is laminated with a phase shift in both the X-axis direction and the Y-axis direction. A state may also be provided in which there is a phase shift only in the direction.
 さらに、前記実施形態では、線材23が正方形の井桁状に組まれているが、これに限定されるものではない。たとえば、長方形の井桁状、六角形や八角形等、他の多角形に線材を組み合わせてもよい。また、線材を用いずに、張出部と連結部の内部に空隙部を適宜並列させてもよい。 Further, in the above embodiment, the wire rods 23 are assembled in a square grid shape, but the wire rods 23 are not limited to this. For example, the wire may be combined with other polygons such as a rectangular grid shape, hexagon, or octagon. Alternatively, voids may be appropriately arranged in parallel inside the overhanging portion and the connecting portion without using the wire.
 1   グリッパ
 2   対象物
 3   ロボットアーム
 10  張出部
 11  連結部
 20  軟質領域
 21  硬質領域
 22  空隙部
 23  線材(壁部)
 24  井桁層
1 Gripper 2 Object 3 Robot arm 10 Overhang portion 11 Connection portion 20 Soft region 21 Hard region 22 Gap portion 23 Wire rod (wall portion)
24 Igeta layer

Claims (5)

  1.  ロボットアームの先端部に配置され、対象物を把持するためのグリッパであって、
     前記対象物を把持する一対の張出部と、前記張出部を連結する連結部とを一体的に備えており、
     前記張出部と前記連結部は、少なくとも前記対象物を把持する把持方向に連続する空隙部を有する弾性部材にて構成され、
     少なくとも前記連結部の一部は、前記把持方向に積層された複数の壁部を有する軟質領域であり、前記軟質領域において前記把持方向に隣り合う前記壁部が、前記把持方向と交差する交差方向において位相ずれを有した状態で積層されている
     ことを特徴とするグリッパ。
    A gripper placed at the tip of a robot arm to grip an object,
    It integrally includes a pair of projecting parts that grip the object and a connecting part that connects the projecting parts,
    The projecting portion and the connecting portion are made of an elastic member having a gap portion continuous in a gripping direction in which the object is gripped, and
    At least a portion of the connecting portion is a soft region having a plurality of wall portions stacked in the gripping direction, and the wall portions adjacent in the gripping direction in the soft region are arranged in a cross direction intersecting the gripping direction. A gripper characterized in that the grippers are laminated with a phase shift in the layers.
  2.  前記張出部および前記連結部は、弾性を有する線材をX軸方向とY軸方向の2方向で交差させて井桁状に組んだ井桁層をZ軸方向に積層させたものからなり、
     前記軟質領域は、Z軸方向に隣り合う前記井桁層同士がX軸方向とY軸方向の少なくとも何れかの方向において位相ずれを有した状態で積層されている
     ことを特徴とする請求項1に記載のグリッパ。
    The overhanging portion and the connecting portion are made of parallel layers in which elastic wire rods are crossed in two directions, the X-axis direction and the Y-axis direction, and assembled in a parallel cross-shape, and are laminated in the Z-axis direction,
    2. The soft region is characterized in that the parallel layers adjacent in the Z-axis direction are laminated with a phase shift in at least one of the X-axis direction and the Y-axis direction. Gripper as described.
  3.  前記ロボットアームの把持部に当接するZ軸方向の両端部には、硬質領域が設けられており、
     前記硬質領域は、Z軸方向に隣り合う前記井桁層同士がX軸方向とY軸方向において同位相を保って積層されている
     ことを特徴とする請求項2に記載のグリッパ。
    A hard region is provided at both ends in the Z-axis direction that abut the gripping portion of the robot arm,
    The gripper according to claim 2, wherein in the hard region, the parallel layers adjacent in the Z-axis direction are stacked with the same phase maintained in the X-axis direction and the Y-axis direction.
  4.  前記硬質領域は、前記Z軸方向の両端部において前記連結部の形状に対応する領域の全体に設けられている
     ことを特徴とする請求項3に記載のグリッパ。
    The gripper according to claim 3, wherein the hard region is provided in the entire region corresponding to the shape of the connecting portion at both ends in the Z-axis direction.
  5.  前記張出部および前記連結部は、3Dプリンタにて一体形成される
     ことを特徴とする請求項1または請求項2に記載のグリッパ。
    The gripper according to claim 1 or 2, wherein the projecting portion and the connecting portion are integrally formed using a 3D printer.
PCT/JP2023/019805 2022-06-02 2023-05-26 Gripper WO2023234228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022090141A JP2023177456A (en) 2022-06-02 2022-06-02 gripper
JP2022-090141 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023234228A1 true WO2023234228A1 (en) 2023-12-07

Family

ID=89025027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019805 WO2023234228A1 (en) 2022-06-02 2023-05-26 Gripper

Country Status (2)

Country Link
JP (1) JP2023177456A (en)
WO (1) WO2023234228A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217439A (en) * 2014-05-13 2015-12-07 日本精工株式会社 Robot hand
JP2017185583A (en) * 2016-04-05 2017-10-12 国立研究開発法人産業技術総合研究所 Claw exchange mechanism of robot hand and claw exchange method using this claw exchange mechanism
US20190091880A1 (en) * 2017-09-25 2019-03-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Micro-gripper with one-piece structure
JP2020131646A (en) * 2019-02-25 2020-08-31 三菱重工業株式会社 Joint member and manufacturing method of joint member
JP2021138072A (en) * 2020-03-06 2021-09-16 武藤工業株式会社 Modeled object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217439A (en) * 2014-05-13 2015-12-07 日本精工株式会社 Robot hand
JP2017185583A (en) * 2016-04-05 2017-10-12 国立研究開発法人産業技術総合研究所 Claw exchange mechanism of robot hand and claw exchange method using this claw exchange mechanism
US20190091880A1 (en) * 2017-09-25 2019-03-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Micro-gripper with one-piece structure
JP2020131646A (en) * 2019-02-25 2020-08-31 三菱重工業株式会社 Joint member and manufacturing method of joint member
JP2021138072A (en) * 2020-03-06 2021-09-16 武藤工業株式会社 Modeled object

Also Published As

Publication number Publication date
JP2023177456A (en) 2023-12-14

Similar Documents

Publication Publication Date Title
JP6556652B2 (en) Three-dimensional modeling apparatus, control method thereof, and modeled object
EP2877325B1 (en) Apparatus and methods for modular soft robots
US11597101B2 (en) 3D-architected soft machines with topologically encoded actuation
JP2011112157A (en) Multijoint cable protection and guide device
WO2023234228A1 (en) Gripper
KR102514594B1 (en) Exterior package for flexible electrochemical device and electrochemical device including the exterior package
WO2008032434A1 (en) Block toy and process for producing the same
KR20180111253A (en) 3D printing method and printed 3D structure
WO2019235151A1 (en) Gripping device, and method for manufacturing resilient body
WO2021177029A1 (en) Shaped article
JP7342410B2 (en) air cushioning material
JP5909309B1 (en) Three-dimensional modeling apparatus and modeled object
CN218930279U (en) Compression-resistant deformation-resistant carton
CN217116129U (en) Electronic product frame structure
CN113420346B (en) Non-reciprocal bending mechanics metamaterial and design method thereof
CN111968504B (en) Display panel capable of being bent in solid state and display device
JP6298901B1 (en) CFRP member and lattice structure
KR20240068009A (en) 3d structure having inverse bcc structure with superior mechanical properties
JP2021093416A (en) Resin substrate for printed wiring board and method of manufacturing the same, and multilayered printed circuit board and method of manufacturing the same
KR20220105449A (en) Composite manufacturing method and composite manufactured thereby
KR20230114660A (en) A zero Poisson's ratio structure and a three-dimensional zero Poisson structure thereof
CN114406986A (en) Pneumatic variable-rigidity joint driver
JP2023136282A (en) Gripping device and method for manufacturing the same
JP2015009436A (en) Fiber-reinforced resin molding, and method for producing the same
JPH029623A (en) Spring-containing hose and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815985

Country of ref document: EP

Kind code of ref document: A1