WO2023234169A1 - Method and device for feeding power to battery incorporated in toolholder - Google Patents

Method and device for feeding power to battery incorporated in toolholder Download PDF

Info

Publication number
WO2023234169A1
WO2023234169A1 PCT/JP2023/019498 JP2023019498W WO2023234169A1 WO 2023234169 A1 WO2023234169 A1 WO 2023234169A1 JP 2023019498 W JP2023019498 W JP 2023019498W WO 2023234169 A1 WO2023234169 A1 WO 2023234169A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
tool holder
battery
tool
transmission unit
Prior art date
Application number
PCT/JP2023/019498
Other languages
French (fr)
Japanese (ja)
Inventor
憲吾 山本
浩二 村上
雅史 荒木
亮 松田
Original Assignee
株式会社山本金属製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本金属製作所 filed Critical 株式会社山本金属製作所
Publication of WO2023234169A1 publication Critical patent/WO2023234169A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply method and a power supply device to a tool holder built-in battery.
  • Patent Document 1 As a power supply method and a power supply device to a tool holder built-in battery, the one disclosed in Patent Document 1 is known. This document describes that the built-in battery is charged by a charging type in which external power is obtained through a charging terminal/cable.
  • the first feature of the method of supplying power to a battery built in a tool holder according to the present invention is that it includes a tool holder that holds a tool for processing, and this tool holder is attached to the main shaft of a processing machine.
  • Each of the tool holders includes a sensor that senses the state of the tool, a processing unit that processes the sensing results of the sensor and transmits the results to the outside via communication, and a battery that drives the processing unit.
  • the power transmission unit generates an alternating magnetic field
  • the power receiving unit converts the alternating magnetic field into a current using a power receiving coil and supplies power to the battery in a non-contact manner
  • the power transmission unit generates an alternating magnetic field.
  • the power receiving coil of the sensing tool holder attached to the main shaft is excited by the alternating magnetic field to supply power to the battery;
  • the workpiece to be processed by the tool is a conductor, and a device for removing cutting waste from the workpiece is provided between the power transmission unit and the power reception unit.
  • the tool holder containing the battery is attached to the main shaft of the processing machine, and the device for removing cutting waste from the workpiece is connected to the power transmission unit and the power reception unit.
  • This converts the alternating magnetic field from the power transmission unit located opposite the power receiving unit inside the tool holder into an electric current, while removing cutting waste during machining, which consumes the most power. Power is supplied to the battery without contact, making effective wireless power supply possible.
  • the cutting waste removing device is configured to remove cutting waste that is generated during machining using the main spindle and that adheres to the vicinity of the power receiving coil provided on the power transmission unit and the sensing tool holder. may be cleaned by the flow of the liquid or gas.
  • the cutting waste removal device may be configured to remove cutting waste generated during machining using the spindle and adhering to the vicinity of the power receiving coil provided in the power transmission unit and the sensing tool holder by contact with a wiper or a brush. good.
  • the tool holder is arranged between the tool holding part and the power receiving unit to prevent the cutting waste from coming close to the power receiving coil side.
  • a step or flange having a small diameter may be formed.
  • the power transmitting surface of the power transmitting unit may be arranged around the central axis, parallel to this central axis, and most downwardly.
  • the power transmission unit is a magnet provided to face the sensing tool holder attached to the main shaft, and the power transmission unit generates the alternating magnetic field by relative rotation between the magnet and the power receiving coil as the sensing tool holder rotates. It may also be something that generates.
  • the power supply device for the tool holder built-in battery used in the power supply method for the tool holder built-in battery described in any of the characteristic methods described above is characterized by comprising a power transmission unit, and this power transmission unit generates an alternating magnetic field.
  • the power receiving unit converts an alternating magnetic field into a current using a power receiving coil and supplies power to the battery in a non-contact manner, and the power transmitting unit is provided so as to be able to face the sensing tool holder attached to the main shaft.
  • the power receiving coil of the sensing tool holder attached to the main shaft is excited by the alternating magnetic field to supply power to the battery, and the workpiece to be processed by the tool is a conductor.
  • a device for removing cutting waste from the workpiece is provided between the power transmission unit and the power reception unit.
  • the feature of the method of feeding power to a battery built in a tool holder according to the second aspect of the present invention is that it includes a plurality of tool holders that hold tools for processing, and the tool holders are selectively attached to the main shaft of a processing machine.
  • the tool holder includes a holder storage section for storing the tool holder when the tool is not in use, and one of the tool holders includes a sensor that senses the state of the tool, and processes the sensing results of the sensor and transmits them to the outside via communication.
  • a sensing tool holder comprising a processing section for the sensing tool holder and a battery for driving the processing section, and a method for supplying power to the battery in the sensing tool holder, the sensing tool holder being provided separately from the tool holder.
  • the power transmitting unit includes a power transmitting unit and a power receiving unit provided in the tool holder, the power transmitting unit generates an alternating magnetic field, and the power receiving unit converts the magnetic waves of the alternating magnetic field into a current using a power receiving coil and supplies power to the battery.
  • the power transmission unit is provided so as to be able to face the sensing tool holder stored in the holder storage section, and the power receiving coil of the sensing tool holder stored in the holder storage section is excited by the alternating magnetic field. and the power is supplied to the battery in a non-contact manner, the workpiece to be processed by the tool is a conductor, and the power is supplied by the power transmission unit while the tool holder is stored in the holder storage section.
  • the power supply is performed after removing the cutting waste that adheres between the power transmission unit and the power receiving unit from among the cutting waste that is generated during processing of the workpiece and that adheres between the power transmission unit and the power reception unit. It's good to do.
  • the tool holder containing the battery is selectively attached to the main shaft of the processing machine, there is provided a holder for storing the tool holder when the tool is not in use. It has a storage section. Therefore, in the second aspect of the present invention, the time when the tool holder is stored in the holder storage section is effectively utilized, and the power transmission unit is placed in a position that can face the power receiving unit in the tool holder stored in the tool holder storage section. The alternating magnetic field of the tool is converted into an electric current and power is supplied to the battery inside the tool holder without contact. Furthermore, before this contactless power feeding, the cutting waste removal device removes the cutting waste between the power transmitting unit and the power receiving unit in advance, thereby improving the power feeding efficiency.
  • the removal device cleans the cutting waste with a flow of liquid or gas.
  • the removal device may remove the cutting waste by contact with a wiper or a brush.
  • the tool holder forms a step or a flange between the tool holding part and the power receiving unit, the diameter of which becomes smaller as the tool holding part approaches the power receiving coil in order to prevent the cutting waste from approaching the power receiving coil side. You may.
  • the power transmission unit may be one that generates the alternating magnetic field using an oscillator and a power transmission coil.
  • the power supply device for the tool holder built-in battery used in the above characteristic method is characterized by a tool holder that holds the tool for machining, a sensor that senses the state of the tool, and a sensor that processes the sensing results and sends them to the outside.
  • the power transmission unit includes a processing unit for transmitting data through communication, a battery for driving the processing unit, a power transmission unit provided separately from the tool holder, and a power reception unit provided in the tool holder, and the power transmission unit receives an alternating magnetic field.
  • the power receiving unit converts the magnetic waves of the alternating magnetic field into current using a power receiving coil and supplies power to the battery, and the power transmitting unit faces the sensing tool holder stored in the holder storage section.
  • the power receiving coil of the sensing tool holder stored in the holder storage section is excited by the alternating magnetic field, and power is supplied to the battery in a non-contact manner.
  • the workpiece to be processed is a conductor, and power is supplied by the power transmission unit while the tool holder is stored in the holder storage section.
  • the power supply is performed after removing the cutting waste that adheres between the power transmission unit and the power receiving unit by a removal device for cutting waste that is generated during processing of the workpiece. You may also do this.
  • FIG. 2 is a block diagram showing the configuration of a power transmission unit and a power reception unit according to the first and second aspects of the present invention. 2 is a diagram showing a pattern of inclusions used in an experiment using the power transmission/reception unit of FIG. 1.
  • FIG. FIG. 2 is a block diagram showing the configuration of a wireless power supply device according to the first and second aspects of the present invention.
  • 1 is a schematic front view of a processing machine equipped with a wireless power supply device according to a first aspect of the present invention.
  • FIG. 5 is a side view of FIG. 4; 5 is a sectional view taken along line AA in FIG. 4.
  • FIG. FIG. 2 is a schematic front view of a processing machine equipped with a wireless power supply device according to a second aspect of the present invention.
  • FIG. 5 is a side view of FIG. 4; 6 is a side view showing another embodiment of FIG. 5.
  • FIG. FIG. 3 is a side view showing the arrangement of the tool holder and the power transmission unit when the main axis of the processing machine is oriented in a substantially horizontal direction in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example in which the power transmission unit in the first embodiment of the present invention is a magnet provided so as to be able to face the sensing tool holder attached to the main shaft.
  • FIG. 9 is a side view showing another embodiment of FIG. 8 in the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the vicinity of the tat showing a modified example of FIG.
  • FIG. 8 is a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 using fixed electrodes in the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 in which wireless power supply is performed at the buffer position P3 in the second embodiment of the present invention.
  • the power transmission unit 10 converts direct current supplied from a DC power supply 11 into alternating current using a switching circuit in an alternating current power supply circuit 12, drives a substrate pattern coil (power transmission coil) 14 with a matching circuit (oscillator) 13, and generates an alternating magnetic field. Then, wireless power supply is performed using magnetic waves MF. These symbols 12 and 13 are constructed on a substrate 15.
  • the magnetic wave MF is received by an NFC (near field communication) coil (power receiving coil) 21, converted into alternating current by a matching circuit 22, passed through a rectification smoothing circuit 23 and a voltage adjustment circuit 24, A DC current with a voltage and current matching the load (battery) 25 is stored.
  • NFC near field communication
  • the magnetic wave MW crossing the cutting waste 100 causes an eddy current in the cutting waste, which reduces the power feeding efficiency by the magnetic wave MF.
  • a simulated cutting waste 100 was prepared and placed between the power transmitting coil 14 and the power receiving coil 21 as a power receiving load of 150 [ ⁇ ] instead of a battery as the load 25, and the current, voltage and We investigated power fluctuations.
  • condition C0 When the cutting waste 100 was not interposed (condition C0), the current was 30.2 [mA], the voltage was 4.82 [V], and the power was 145.6 [mW].
  • the material for (facet-shaped scraps) was spiral or arc-shaped scraps cut from pure iron, and the material for condition C3 was aluminum foil with a thickness of 11 [ ⁇ m].
  • Condition C3 assumes a case where powdery cutting waste adheres to one surface.
  • the pasting range of these cutting chips is a rectangular area measuring 15 mm in length and 45 mm in width, and the size of one square is 5*5 mm.
  • the processing machine 1 includes a main body 2 having a main shaft 2a connected to a motor, and a turret 4 functioning as a holder storage section 3.
  • the tool holder 30 has a main body part 30a that stores each functional member described below, a chuck part 30b that holds various tools 7, and a shank part 30c that is attached to the main shaft 21a.
  • the chuck section 30b is equipped with a sensor 34 that detects temperature, vibration, acceleration, etc. generated during machining with the tool 7, and information on the tool 7 processed by the processing section 31, which includes a sensing section 31a and a communication section 31b. is wirelessly transmitted to the receiving unit 39 via the radio wave RW through the transmitting antenna 33, and the state of the tool 7 is monitored.
  • These functions are maintained by the battery 32, and the power receiving unit 20 is responsible for charging the battery 32.
  • a nickel metal hydride battery can be used as a secondary battery, and a manganese battery, an alkaline manganese battery, a lithium battery, etc. can also be used as a primary battery.
  • members 21 to 24 of the power receiving unit 20 are mounted on the substrate of the processing section 31.
  • FIG. 6 shows an example of the arrangement of each functional member according to the first embodiment of the present invention in the main body 30a of the tool holder 30, and FIG.
  • An example of the arrangement of functional members is shown.
  • the processing section 31 and the battery 32 are arranged side by side on the rotation axis Z at the center of the main body section 30a, and the transmitting antenna 33 and the receiving coil 21 are arranged diagonally with respect to the rotation axis Z. It is desirable to arrange it so that the moment is not eccentric.
  • the power transmitting coil 14 be disposed at a position facing the power receiving coil 21 with the tool holder 30 stored in the turret 4 . For this reason, it is preferable that the power receiving coil 21 is distributed and provided at a plurality of angular positions around the rotation axis Z.
  • the cutting waste removing device 50 it is preferable to provide a flange 60 with a larger diameter than the chuck part 30b between the chuck part 30b and the main body part 30a.
  • This flange 60 has a function of repelling not only powdered cutting waste 100 but also particularly faceted cutting waste 100 toward the tool 7 side. Therefore, the chuck portion 30b, which is the holding portion of the tool 7, may be formed as a step having a smaller diameter, and in this case, the upper side of the step may be the main body portion 30a.
  • the flange 60 is superior overall.
  • the power transmission unit 10 and the removal device 50 are provided near the main shaft 2a at the lower part of the main body 2.
  • the removal device 50 includes a nozzle 51 that sprays fluid such as liquid and/or gas between the power transmission unit 10 and the power reception unit 20, and a fluid supply section 51a.
  • the fluid supply section 51a and the power source, the nozzle 51, and the power receiving unit 20 are connected by a cable 55 such as an electric cable or a fluid tube.
  • the cable etc. 55 is relayed to only one location by the repeater 56, but it may be branched at the repeater 56 and the nozzles 51 may be arranged at multiple locations.
  • the repeater 56 may include a rotary fluid coupling and electrodes.
  • cutting waste 100 may be removed from between the outer surface of main body portion 30a and power transmission unit 10 using cutting oil or lubricant during processing.
  • the turret 4 is equipped with a plurality of tool pots (registered trademark) (not shown) around the turret 4.
  • the removal device 50 includes a nozzle 51 that sprays fluid such as liquid and/or gas between the power transmission unit 10 and the power reception unit 20, and a fluid supply section 51a.
  • the fluid supply section 51a and the power source, the nozzle 51, and the power receiving unit 20 are connected by a cable 55 such as an electric cable or a fluid tube.
  • the cable etc. 55 is branched by a repeater 56 and connected to multiple locations.
  • the repeater 56 is preferably provided with a rotary fluid coupling and electrodes.
  • the nozzle 51 can inject fluid to the facing portion of the outer surface of the main body portion 30a and the power transmission coil 14 of the power transmission unit 10, and can effectively eliminate smaller-diameter cutting debris 100 that may adhere between them.
  • the fluid may be air or other gas alone, or a mixture of gas and fluid.
  • the removal device 50 may be provided on the turret 4 as shown in FIGS. It may be set in In this case, it is preferable to remove the cutting waste 100 from the outer surface of the main body portion 30a using cutting oil or a lubricant during machining.
  • a nozzle 51 is used as the removal device 50.
  • a wiper 52 for removing cutting waste 100 adhering to the side surface of the power transmission coil 14 of the power transmission unit 10 may be used.
  • the wiper 52 may include a member made of rubber, soft resin, or the like, and is preferably driven by a wiper drive unit 52a having a rotating motor or a linear reciprocating mechanism.
  • the wiper portion may contact not only the side surface of the power transmission coil 14 of the power transmission unit 10, but also both the same surface and the outer surface of the main body portion 30a.
  • cutting waste can also be removed by the wiper 52 by utilizing the rotation of the main body portion 30a.
  • FIG. 10 is a side view showing the arrangement of the tool holder and the power transmission unit 10 when the central axis Z of rotation of the main shaft 2 of the processing machine 1 is oriented in a substantially horizontal direction in another embodiment of the first invention. It is.
  • the lower surface of the power transmission unit 10 is approximately parallel to the surface of the power transmission coil 14 formed as a substrate pattern, and this surface is defined as a power transmission surface 10x.
  • the central axis Z and the power transmission surface 10x are arranged in parallel, and the power transmission surface 10x is arranged so as to face most downward. With this arrangement, cutting waste is most difficult to accumulate on this power transmission surface 10x due to the influence of gravity, so this power transmission surface 10x itself also functions as the removal device 50.
  • the power transmission surface 10x is preferably arranged around the central axis Z, parallel to the central axis, and most downwardly.
  • FIG. 11 is a cross-sectional view showing an example in which the power transmission unit 10 in another embodiment of the first invention is a magnet 16 provided so as to be able to face a sensing tool holder attached to a main shaft.
  • This power transmission unit 10 generates an alternating magnetic field and magnetic waves through relative rotation between the magnet 16 and the power receiving coil 21 as the sensing tool holder 30 rotates around the central axis Z. Even if the cutting waste adheres to the magnet 16, the magnetic lines of force are only slightly damaged, so it is preferable to remove the cutting waste adhering to the main body portion 30a using the removing device 50 such as the nozzle 51.
  • the power transmission unit 10 and removal device 50 may be provided on the turret 4, or may be movable independently of the turret 4, or may be fixed.
  • the power supply device may be configured to supply power to the power transmission unit 10 using a movable contact, and the power transmission unit 10 may be moved so as to face only the pod in which the tool holder 30 is stored.
  • the power supply line 57 includes a positive line 57a and a ground line 57b, to which power transmission units 10a to 10d are connected via movable contacts T1.
  • the power transmission units 10a to 10d rotate around the turret 4 from the empty pot P2 until they appropriately confront the tool holder holding pot P1, and wireless power is supplied at each position.
  • the removal devices 50 are provided at each of the power transmission units 10a to 10d to remove cutting waste.
  • FIG. 15 shows a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 using fixed electrodes according to another embodiment of the second invention, in which the power transmission units 10a to 10d are connected to the fixed contacts T2. It is also possible to connect to the power supply through the supply line 57 and operate only the power transmission units 10a to 10d at the portions of the tool holder 30 that face the stored pod P1. Furthermore, as shown in FIG. 16, a buffer position P3 separate from the turret 4 may be used as a storage section, and the power transmission unit 10 may be provided only at this position for charging.
  • nozzle 51 shown in FIGS. 4 and 5 or 7 and 8 and the wiper 52 shown in FIG. 7 may be implemented in combination. It's okay.
  • the present invention provides a tool holder for supplying power to a battery in a sensing tool holder, which includes a sensor that senses the state of a tool, and a processing unit that processes the sensing results of the sensor and transmits the results to the outside via communication. It can be used as a power supply method and a power supply device to the built-in battery.
  • the workpiece and the cutting waste 100 are made of a conductive material, but insofar as the accumulation of the cutting waste 100 obstructs the wireless power supply, the workpiece and the cutting waste 100 are made of a non-conductive material. It is also possible to implement this method for things.

Abstract

[Problem] To provide a method and a device for feeding power to a battery incorporated in a toolholder, with which it is possible to reasonably improve the problem of power feeding to a battery incorporated in a toolholder. [Solution] The present invention comprises: a power transmission unit 10 which is provided so as to be separated from a toolholder; and a power reception unit 20 which is provided to the toolholder. The power transmission unit generates an alternating magnetic field. The power reception unit converts the alternating magnetic field into electric current by means of a power reception coil, and feeds power to a battery in a non-contact manner. The power transmission unit is provided so as to be capable of facing a sensing toolholder 30 that is mounted on a main spindle, and performs power feeding to the battery by exciting the power reception coil of the sensing toolholder mounted on the main spindle with the alternating magnetic field. A workpiece to be machined by a tool is of a conductive material, and a removal device 50 for machining chips from the workpiece is provided between the power transmission unit and the power reception unit.

Description

ツールホルダー内蔵バッテリーへの給電方法及び給電装置Power supply method and power supply device to the tool holder built-in battery
 本発明は、ツールホルダー内蔵バッテリーへの給電方法及び給電装置に関する。 The present invention relates to a power supply method and a power supply device to a tool holder built-in battery.
 ツールホルダー内蔵バッテリーへの給電方法及び給電装置としては、特許文献1のものが知られている。同文献では、内蔵される電池への充電は、充電用の端子・ケーブルを通じて外部電力を得る充電型である旨が記載されている。 As a power supply method and a power supply device to a tool holder built-in battery, the one disclosed in Patent Document 1 is known. This document describes that the built-in battery is charged by a charging type in which external power is obtained through a charging terminal/cable.
 しかし、このような端子を用いたツールホルダーの内蔵バッテリーに給電を行うには、切削油は潤滑材などの液体、切削くず等が付着すると接触不良を発生するおそれもあり、加工機から退避させた状態で充電を行うのが通常である。そして、都度充電の問題を解決すべくバッテリーの容量を増大させるにも、加工機の動作性能の担保の制約より、限界がある。 However, in order to supply power to the built-in battery of a tool holder using such a terminal, the cutting oil must be evacuated from the processing machine, as there is a risk of poor contact if liquid such as lubricant or cutting debris adheres to the cutting oil. It is normal to charge the battery in the same state. Furthermore, there is a limit to increasing the capacity of the battery to solve the problem of recharging each time, due to constraints on ensuring the operational performance of the processing machine.
特開2020-104237号公報JP2020-104237A
 かかる従来の実情に鑑みて、本発明は、ツールホルダー内蔵バッテリーへの給電の問題を合理的に改善しうるツールホルダー内蔵バッテリーへの給電方法及び給電装置を提供することを目的とする。 In view of the conventional situation, it is an object of the present invention to provide a method and a power feeding device for a battery built in a tool holder, which can rationally improve the problem of power feeding to a battery built into a tool holder.
《第一の本発明》
 上記目的を達成するため、第一の本発明に係るツールホルダー内蔵バッテリーへの給電方法の特徴は、加工のためのツールを保持するツールホルダーを備え、このツールホルダーは加工機の主軸に装着されるものであり、前記ツールホルダーのいずれかはツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備えるセンシングツールホルダーであり、このセンシングツールホルダー内の前記バッテリーに非接触で電力を供給するための方法であって、前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界を電流に変換し前記バッテリーへの給電を非接触で行うものであり、前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられており、前記主軸に取り付けられた前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を行うものであり、前記ツールにより加工される被加工物が導電体であり、前記送電ユニットと受電ユニットとの間に被加工物の切削くずの除去装置を設けたことにある。
《First invention》
In order to achieve the above object, the first feature of the method of supplying power to a battery built in a tool holder according to the present invention is that it includes a tool holder that holds a tool for processing, and this tool holder is attached to the main shaft of a processing machine. Each of the tool holders includes a sensor that senses the state of the tool, a processing unit that processes the sensing results of the sensor and transmits the results to the outside via communication, and a battery that drives the processing unit. A sensing tool holder, and a method for contactlessly supplying power to the battery in the sensing tool holder, the method comprising: a power transmission unit provided separately from the tool holder; and a power reception unit provided in the tool holder. The power transmission unit generates an alternating magnetic field, the power receiving unit converts the alternating magnetic field into a current using a power receiving coil and supplies power to the battery in a non-contact manner, and the power transmission unit generates an alternating magnetic field. The power receiving coil of the sensing tool holder attached to the main shaft is excited by the alternating magnetic field to supply power to the battery; The workpiece to be processed by the tool is a conductor, and a device for removing cutting waste from the workpiece is provided between the power transmission unit and the power reception unit.
 第一の本発明に係るツールホルダー内蔵バッテリーへの給電方法では、バッテリーを内蔵するツールホルダーが、加工機の主軸に装着されており、被加工物の切削くずの除去装置を送電ユニットと受電ユニットとの間に設けることで最も電力を消費する加工中に切削くずを除去しながら、ツールホルダー内の受電ユニットに対向する位置に設けた送電ユニットからの交番磁界を電流に変換しツールホルダー内のバッテリーに非接触で給電することとし、効果的な無線給電を可能としている。 In the first method of supplying power to a tool holder built-in battery according to the present invention, the tool holder containing the battery is attached to the main shaft of the processing machine, and the device for removing cutting waste from the workpiece is connected to the power transmission unit and the power reception unit. This converts the alternating magnetic field from the power transmission unit located opposite the power receiving unit inside the tool holder into an electric current, while removing cutting waste during machining, which consumes the most power. Power is supplied to the battery without contact, making effective wireless power supply possible.
 上記において、第一の本発明の給電方法において、前記切削くずの除去装置は、前記主軸を利用した加工時に発生し前記送電ユニット及び前記センシングツールホルダーに設けた受電コイルの近傍に付着する切削くずを前記液体若しくは気体の流動により洗浄するものでもよい。 In the above, in the power feeding method of the first aspect of the present invention, the cutting waste removing device is configured to remove cutting waste that is generated during machining using the main spindle and that adheres to the vicinity of the power receiving coil provided on the power transmission unit and the sensing tool holder. may be cleaned by the flow of the liquid or gas.
 また、前記切削くずの除去装置は、前記主軸を利用した加工時に発生し前記送電ユニット及び前記センシングツールホルダーに設けた受電コイルの近傍に付着する切削くずをワイパー若しくはブラシの接触で除去するものでもよい。 Further, the cutting waste removal device may be configured to remove cutting waste generated during machining using the spindle and adhering to the vicinity of the power receiving coil provided in the power transmission unit and the sensing tool holder by contact with a wiper or a brush. good.
 さらに、前記切削くずの除去装置として、前記ツールホルダーが前記ツールの保持部と前記受電ユニットとの間に、前記切削くずが前記受電コイル側に近接することを防ぐため、ツールの前記保持部ほど小径となる段差またはフランジを形成してもよい。 Furthermore, as the cutting waste removal device, the tool holder is arranged between the tool holding part and the power receiving unit to prevent the cutting waste from coming close to the power receiving coil side. A step or flange having a small diameter may be formed.
 前記主軸の回転の中心軸が垂直以外の方向に配向されるときは、前記送電ユニットの送電面は前記中心軸の周りにこの中心軸と平行に且つ最も下向きになるように配置するとよい。 When the central axis of rotation of the main shaft is oriented in a direction other than vertically, the power transmitting surface of the power transmitting unit may be arranged around the central axis, parallel to this central axis, and most downwardly.
 前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられた磁石であり、前記送電ユニットは前記センシングツールホルダーの回転に伴う前記磁石と受電コイルとの相対回転により前記交番磁界を発生させるものとしてもよい。 The power transmission unit is a magnet provided to face the sensing tool holder attached to the main shaft, and the power transmission unit generates the alternating magnetic field by relative rotation between the magnet and the power receiving coil as the sensing tool holder rotates. It may also be something that generates.
 一方、上記いずれかの特徴方法に記載のツールホルダー内蔵バッテリーへの給電方法に用いるためのツールホルダー内蔵バッテリーへの給電装置の特徴は、送電ユニットを備え、この送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界を電流に変換し前記バッテリーへの給電を非接触で行うものであり、前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられており、前記主軸に取り付けられた前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を行うものであり、前記ツールにより加工される被加工物が導電体であり、前記送電ユニットと受電ユニットとの間に被加工物の切削くずの除去装置を設けたことにある。 On the other hand, the power supply device for the tool holder built-in battery used in the power supply method for the tool holder built-in battery described in any of the characteristic methods described above is characterized by comprising a power transmission unit, and this power transmission unit generates an alternating magnetic field. The power receiving unit converts an alternating magnetic field into a current using a power receiving coil and supplies power to the battery in a non-contact manner, and the power transmitting unit is provided so as to be able to face the sensing tool holder attached to the main shaft. The power receiving coil of the sensing tool holder attached to the main shaft is excited by the alternating magnetic field to supply power to the battery, and the workpiece to be processed by the tool is a conductor. A device for removing cutting waste from the workpiece is provided between the power transmission unit and the power reception unit.
《第二の本発明》
 また、第二の本発明に係るツールホルダー内蔵バッテリーへの給電方法の特徴は、加工のためのツールを保持するツールホルダーを複数備え、このツールホルダーは加工機の主軸に選択的に装着されるものであり、ツールホルダーをツールの非使用時に保管するホルダー保管部を備え、前記ツールホルダーのいずれかはツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備えるセンシングツールホルダーであり、このセンシングツールホルダー内の前記バッテリーに電力を供給するための方法であって、前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界の磁波を電流に変換し前記バッテリーに給電するものであり、前記送電ユニットは前記ホルダー保管部に保管された前記センシングツールホルダーに対向可能に設けられており、このホルダー保管部に保管された前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を非接触で行うものであり、前記ツールにより加工される被加工物が導電体であり、前記ツールホルダーを前記ホルダー保管部に保管中に前記送電ユニットによる給電を行うことにある。
《Second invention》
Moreover, the feature of the method of feeding power to a battery built in a tool holder according to the second aspect of the present invention is that it includes a plurality of tool holders that hold tools for processing, and the tool holders are selectively attached to the main shaft of a processing machine. The tool holder includes a holder storage section for storing the tool holder when the tool is not in use, and one of the tool holders includes a sensor that senses the state of the tool, and processes the sensing results of the sensor and transmits them to the outside via communication. A sensing tool holder comprising a processing section for the sensing tool holder and a battery for driving the processing section, and a method for supplying power to the battery in the sensing tool holder, the sensing tool holder being provided separately from the tool holder. The power transmitting unit includes a power transmitting unit and a power receiving unit provided in the tool holder, the power transmitting unit generates an alternating magnetic field, and the power receiving unit converts the magnetic waves of the alternating magnetic field into a current using a power receiving coil and supplies power to the battery. The power transmission unit is provided so as to be able to face the sensing tool holder stored in the holder storage section, and the power receiving coil of the sensing tool holder stored in the holder storage section is excited by the alternating magnetic field. and the power is supplied to the battery in a non-contact manner, the workpiece to be processed by the tool is a conductor, and the power is supplied by the power transmission unit while the tool holder is stored in the holder storage section. There is a particular thing.
 上記特徴において、前記被加工物の加工時に発生する切削くずのうち前記送電ユニット及び前記受電ユニットの間に付着する切削くずの除去装置により同間に付着した前記切削くずを除去した後前記給電を行うとよい。 In the above feature, the power supply is performed after removing the cutting waste that adheres between the power transmission unit and the power receiving unit from among the cutting waste that is generated during processing of the workpiece and that adheres between the power transmission unit and the power reception unit. It's good to do.
 第二の本発明に係るツールホルダー内蔵バッテリーへの給電方法では、バッテリーを内蔵するツールホルダーが、加工機の主軸に選択的に装着されているため、ツールの非使用時にツールホルダーを保管するホルダー保管部を有している。このため第二の本発明では、ツールホルダーをホルダー保管部に保管している時間を有効に活用し、ツールホルダー保管部に保管されたツールホルダー内の受電ユニットに対向可能な位置の送電ユニットからの交番磁界を電流に変換しツールホルダー内のバッテリーに非接触で給電することとしている。また、この非接触給電の前に切削くずの除去装置により送電ユニットと受電ユニットとの間の切削くずを事前除去することで給電効率を向上させている。 In the second method of supplying power to a tool holder built-in battery according to the present invention, since the tool holder containing the battery is selectively attached to the main shaft of the processing machine, there is provided a holder for storing the tool holder when the tool is not in use. It has a storage section. Therefore, in the second aspect of the present invention, the time when the tool holder is stored in the holder storage section is effectively utilized, and the power transmission unit is placed in a position that can face the power receiving unit in the tool holder stored in the tool holder storage section. The alternating magnetic field of the tool is converted into an electric current and power is supplied to the battery inside the tool holder without contact. Furthermore, before this contactless power feeding, the cutting waste removal device removes the cutting waste between the power transmitting unit and the power receiving unit in advance, thereby improving the power feeding efficiency.
 また、前記除去装置が、前記切削くずを液体または気体の流動により洗浄するものであるとよい。若しくは、前記除去装置が、前記切削くずをワイパーまたはブラシの接触により除去するものであってもよい。さらに、前記ツールホルダーが前記ツールの保持部と前記受電ユニットとの間に、前記切削くずが前記受電コイル側に近接することを防ぐため、ツールの前記保持部ほど小径となる段差またはフランジを形成してもよい。 Furthermore, it is preferable that the removal device cleans the cutting waste with a flow of liquid or gas. Alternatively, the removal device may remove the cutting waste by contact with a wiper or a brush. Furthermore, the tool holder forms a step or a flange between the tool holding part and the power receiving unit, the diameter of which becomes smaller as the tool holding part approaches the power receiving coil in order to prevent the cutting waste from approaching the power receiving coil side. You may.
 上記特徴において、前記送電ユニットは発振器及び送電コイルにより前記交番磁界を発生させるものが利用できる。 In the above feature, the power transmission unit may be one that generates the alternating magnetic field using an oscillator and a power transmission coil.
 一方、上記特徴方法に用いるツールホルダー内蔵バッテリーへの給電装置の特徴は、加工のためのツールを保持するツールホルダーと、ツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備え、前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界の磁波を電流に変換し前記バッテリーに給電するものであり、前記送電ユニットは前記ホルダー保管部に保管された前記センシングツールホルダーに対向可能に設けられており、このホルダー保管部に保管された前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を非接触で行うものであり、前記ツールにより加工される被加工物が導電体であり、前記ツールホルダーを前記ホルダー保管部に保管中に前記送電ユニットによる給電を行うものである。 On the other hand, the power supply device for the tool holder built-in battery used in the above characteristic method is characterized by a tool holder that holds the tool for machining, a sensor that senses the state of the tool, and a sensor that processes the sensing results and sends them to the outside. The power transmission unit includes a processing unit for transmitting data through communication, a battery for driving the processing unit, a power transmission unit provided separately from the tool holder, and a power reception unit provided in the tool holder, and the power transmission unit receives an alternating magnetic field. The power receiving unit converts the magnetic waves of the alternating magnetic field into current using a power receiving coil and supplies power to the battery, and the power transmitting unit faces the sensing tool holder stored in the holder storage section. The power receiving coil of the sensing tool holder stored in the holder storage section is excited by the alternating magnetic field, and power is supplied to the battery in a non-contact manner. The workpiece to be processed is a conductor, and power is supplied by the power transmission unit while the tool holder is stored in the holder storage section.
 同特徴装置において、前記被加工物の加工時に発生する切削くずのうち前記送電ユニット及び前記受電ユニットの間に付着する切削くずの除去装置により同間に付着した前記切削くずを除去した後前記給電を行うようにしてもよい。 In the apparatus having the same characteristics, the power supply is performed after removing the cutting waste that adheres between the power transmission unit and the power receiving unit by a removal device for cutting waste that is generated during processing of the workpiece. You may also do this.
 上記第一及び第二の本発明に係るツールホルダー内蔵バッテリーへの給電方法及び給電装置の特徴によれば、ツールホルダー内蔵バッテリーへの給電の問題を合理的に改善しうるに至った。 According to the above-mentioned first and second features of the power supply method and power supply device for the tool holder built-in battery according to the present invention, it has become possible to rationally improve the problem of power supply to the tool holder built-in battery.
 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will become clear from the following embodiments section.
第一及び第二の本発明に係る送電ユニット及び受電ユニットの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a power transmission unit and a power reception unit according to the first and second aspects of the present invention. 図1の送受電ユニットを利用した実験に用いた介在物のパターンを示す図である。2 is a diagram showing a pattern of inclusions used in an experiment using the power transmission/reception unit of FIG. 1. FIG. 第一及び第二の本発明に係る無線給電装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a wireless power supply device according to the first and second aspects of the present invention. 第一の本発明に係る無線給電装置を備えた加工機の概略正面図である。1 is a schematic front view of a processing machine equipped with a wireless power supply device according to a first aspect of the present invention. 図4の側面図である。FIG. 5 is a side view of FIG. 4; 図4のA-A線断面図である。5 is a sectional view taken along line AA in FIG. 4. FIG. 第二の本発明に係る無線給電装置を備えた加工機の概略正面図である。FIG. 2 is a schematic front view of a processing machine equipped with a wireless power supply device according to a second aspect of the present invention. 図4の側面図である。FIG. 5 is a side view of FIG. 4; 図5の別実施形態を示す側面図である。6 is a side view showing another embodiment of FIG. 5. FIG. 第一の本発明の実施形態における加工機の主軸が略水平方向に配向された場合のツールホルダーと送電ユニットとの配置を示す側面図である。FIG. 3 is a side view showing the arrangement of the tool holder and the power transmission unit when the main axis of the processing machine is oriented in a substantially horizontal direction in the first embodiment of the present invention. 第一の本発明の実施形態における送電ユニットが主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられた磁石である例を示す横断面図である。FIG. 3 is a cross-sectional view showing an example in which the power transmission unit in the first embodiment of the present invention is a magnet provided so as to be able to face the sensing tool holder attached to the main shaft. 第二の本発明の実施形態における図8の別実施形態を示す側面図である。FIG. 9 is a side view showing another embodiment of FIG. 8 in the second embodiment of the present invention. 第二の本発明の実施形態における可動電極を用いた図7の改変例を示すタット近傍の概略図である。FIG. 8 is a schematic diagram of the vicinity of the tat showing a modified example of FIG. 7 using a movable electrode in the second embodiment of the present invention. 第二の本発明の実施形態における固定電極を用いた図7の改変例を示すタレット近傍の概略図である。FIG. 8 is a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 using fixed electrodes in the second embodiment of the present invention. 第二の本発明の実施形態におけるバッファ位置P3での無線給電を行う図7の改変例を示すタレット近傍の概略図である。FIG. 8 is a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 in which wireless power supply is performed at the buffer position P3 in the second embodiment of the present invention.
 次に、適宜添付図面を参照しながら、第一及び第二の本発明をさらに詳しく説明する。 Next, the first and second aspects of the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
 まず、第一及び第二の本発明の給電装置9のうち、送電ユニット10及び受電ユニット20を有する給電ユニット8について、図1,2を参照しながら、基本構成と切削くずの影響について説明し、切削くずの除去装置50の目的を確認する。 First, among the power supply devices 9 of the first and second embodiments of the present invention, the basic configuration and the influence of cutting waste will be explained with reference to FIGS. , confirm the purpose of the cutting waste removal device 50.
 送電ユニット10は、DC電源11より供給された直流を交流電力供給回路12においてスイッチング回路により交流化し、マッチング回路(発振器)13で基板パターンコイル(送電コイル)14を駆動し、交番磁界を発生させて、磁波MFにより無線給電を行う。これら符号12,13は基板15上に構成されている。 The power transmission unit 10 converts direct current supplied from a DC power supply 11 into alternating current using a switching circuit in an alternating current power supply circuit 12, drives a substrate pattern coil (power transmission coil) 14 with a matching circuit (oscillator) 13, and generates an alternating magnetic field. Then, wireless power supply is performed using magnetic waves MF. These symbols 12 and 13 are constructed on a substrate 15.
 一方、受電ユニット20においては、上記磁波MFをNFC(近距離無線通信)コイル(受電コイル)21により受信してマッチング回路22により交流電流化し、整流平滑化回路23及び電圧調整回路24を経て、負荷(バッテリー)25に合わせた電圧、電流の直流電流を蓄電する。 On the other hand, in the power receiving unit 20, the magnetic wave MF is received by an NFC (near field communication) coil (power receiving coil) 21, converted into alternating current by a matching circuit 22, passed through a rectification smoothing circuit 23 and a voltage adjustment circuit 24, A DC current with a voltage and current matching the load (battery) 25 is stored.
 上記給電ユニット8を用いた無線給電において、切削くず(屑)100が導電体であると、切削くず100を横切る磁波MWは切削くず内に渦電流を生じさせ、これが磁波MFによる給電効率を低下させることが懸念される。その影響を調査するため、負荷25 にバッテリーの代わりに受電側負荷 150 [Ω]として、模擬的に切削くず100を準備して送電コイル14及び受電コイル21の間に配置し、電流・電圧及び電力の変動を調査した。 In the wireless power supply using the power supply unit 8, if the cutting waste (waste) 100 is a conductor, the magnetic wave MW crossing the cutting waste 100 causes an eddy current in the cutting waste, which reduces the power feeding efficiency by the magnetic wave MF. There are concerns that this could lead to In order to investigate the effect, a simulated cutting waste 100 was prepared and placed between the power transmitting coil 14 and the power receiving coil 21 as a power receiving load of 150 [Ω] instead of a battery as the load 25, and the current, voltage and We investigated power fluctuations.
 切削くず100を介在させない場合(条件C0)は、電流 30.2[mA]、電圧4.82 [V]、電力145.6 [mW]であった。切削くず100を設ける場合は、切削屑 (長):条件C1-1~3、切削屑 (円):条件C2-1~3、Al箔:条件C3-1~3とした、条件C1,2(切り子状くず)の材料は、純鉄を切削した螺旋状または円弧状のくずであり、条件C3の材料は、厚さ11[μm] のアルミニウム箔であった。条件C3は粉末状の切削くずが一面に付着する場合を想定したものである。これらの切削くずの貼り付け範囲は縦15mm、横45mmの長方形領域であり、1マスの大きさは5*5mmである。 When the cutting waste 100 was not interposed (condition C0), the current was 30.2 [mA], the voltage was 4.82 [V], and the power was 145.6 [mW]. When providing cutting waste 100, cutting waste (long): conditions C1-1 to 3, cutting waste (circle): conditions C2-1 to 3, Al foil: conditions C3-1 to 3, conditions C1, 2. The material for (facet-shaped scraps) was spiral or arc-shaped scraps cut from pure iron, and the material for condition C3 was aluminum foil with a thickness of 11 [μm]. Condition C3 assumes a case where powdery cutting waste adheres to one surface. The pasting range of these cutting chips is a rectangular area measuring 15 mm in length and 45 mm in width, and the size of one square is 5*5 mm.
 条件C1,C2と条件C3との比較によれば、切り子状くずは箔に代表される粉末等が一面に付着したものより、間欠的に付着しても給電を阻害する傾向のあることがわかった。バッテリー32を内蔵するツールホルダー30が、加工機1の主軸2aに装着される第一の本発明の場合、バッテリー32への無線給電は、電力を最も消費する加工中になされることが合理的である。したがって、対策としては、受電コイル21近傍に切削くずが付着しないように、後述のフランジ60を設けたり、送電コイル14及び受電コイル21の間に介在する切削くずを加工中に除去するノズル51やワイパー・ブラシ52等の切削くずの除去装置50を設けることが効果的であることがわかる。また、バッテリー32を内蔵するツールホルダー30が、加工機1の主軸2aに装着され、ツールホルダー30を保管するホルダー保管部3を有している第二の本発明の場合でも、切削くずを加工中に除去する除去装置50を設けることが効果的であり、ツールホルダー30をホルダー保管部3に保管している時間を有効に活用し、切削くずの除去装置50を設けることにより切削くずを事前除去している。 A comparison between Conditions C1 and C2 and Condition C3 revealed that faceted debris, even if it adheres intermittently, has a tendency to impede power supply, compared to powder, etc., which is typified by foil, that adheres all over the surface. . In the case of the first invention in which the tool holder 30 containing the battery 32 is attached to the main shaft 2a of the processing machine 1, it is reasonable that the wireless power supply to the battery 32 is performed during the machining that consumes the most power. It is. Therefore, countermeasures include installing a flange 60 (described later) to prevent cutting waste from adhering to the vicinity of the power receiving coil 21, and installing a nozzle 51 to remove cutting waste interposed between the power transmitting coil 14 and the power receiving coil 21 during machining. It can be seen that it is effective to provide a cutting debris removal device 50, such as a wiper brush 52. Further, even in the case of the second invention in which the tool holder 30 containing the battery 32 is attached to the main shaft 2a of the processing machine 1 and has the holder storage section 3 for storing the tool holder 30, cutting waste is processed. It is effective to provide a removing device 50 for removing cutting waste inside the tool holder 30, and to make effective use of the time that the tool holder 30 is stored in the holder storage section 3. It is being removed.
 ここで、除去装置50としてノズル51を用いる第一の本発明の実施形態については図3~6、第二の本発明の実施形態については図3、図7~9を、参照しながら、説明する。加工機1は、モーターに接続された主軸2aを有する本体2と、ホルダー保管部3として機能するタレット4とを備えている。 Here, the first embodiment of the present invention using a nozzle 51 as the removal device 50 will be described with reference to FIGS. 3 to 6, and the second embodiment of the present invention will be described with reference to FIGS. 3 and 7 to 9. do. The processing machine 1 includes a main body 2 having a main shaft 2a connected to a motor, and a turret 4 functioning as a holder storage section 3.
 ツールホルダー30は、後述の各機能部材を収納する本体部30aと、各種ツール7を保持するチャック部30bと、前記主軸21aに取付けられるシャンク部30cとを有している。チャック部30bには、ツール7での加工に伴い発生する温度、振動、加速度等を検出するセンサー34を備え、センシング部31a、通信部31bを備えた処理部31で処理されたツール7の情報は、送信アンテナ33を通じて電波RWを通じて受信部39に無線送信され、ツール7の状態がモニタされる。これらの機能はバッテリー32により維持され、このバッテリー32に対する充電を前記受電ユニット20が担うこととなる。バッテリー32としては、例えば二次電池ではリチウムイオン電池の他、ニッケル水素電池も使用可能で、一次電池ではマンガン電池、アルカリマンガン電池、リチウム電池なども用いることができる。なお、受電ユニット20の符号21~24の部材は上記処理部31の基板に実装されている。 The tool holder 30 has a main body part 30a that stores each functional member described below, a chuck part 30b that holds various tools 7, and a shank part 30c that is attached to the main shaft 21a. The chuck section 30b is equipped with a sensor 34 that detects temperature, vibration, acceleration, etc. generated during machining with the tool 7, and information on the tool 7 processed by the processing section 31, which includes a sensing section 31a and a communication section 31b. is wirelessly transmitted to the receiving unit 39 via the radio wave RW through the transmitting antenna 33, and the state of the tool 7 is monitored. These functions are maintained by the battery 32, and the power receiving unit 20 is responsible for charging the battery 32. As the battery 32, for example, in addition to a lithium ion battery, a nickel metal hydride battery can be used as a secondary battery, and a manganese battery, an alkaline manganese battery, a lithium battery, etc. can also be used as a primary battery. Note that members 21 to 24 of the power receiving unit 20 are mounted on the substrate of the processing section 31.
 図6にはツールホルダー30の本体部30aにおける第一の本発明の実施形態の各機能部材の配置例、図9にはツールホルダー30の本体部30aにおける第一の本発明の実施形態の各機能部材の配置例、を示している。例えば、処理部31及びバッテリー32は本体部30aの中央側に回転軸Z上に並べて配置し、送信アンテナ33及び受電コイル21を回転軸Zの対角に配置して、回転軸Zまわりの回転モーメントが偏心しないように配置することが望ましい。送電コイル14は上記タレット4にツールホルダー30が保管された状態で、受電コイル21と対向する位置に配置することが望ましい。このため、受電コイル21は回転軸Z周りで複数角度位置に分散させて設けるとよい。 FIG. 6 shows an example of the arrangement of each functional member according to the first embodiment of the present invention in the main body 30a of the tool holder 30, and FIG. An example of the arrangement of functional members is shown. For example, the processing section 31 and the battery 32 are arranged side by side on the rotation axis Z at the center of the main body section 30a, and the transmitting antenna 33 and the receiving coil 21 are arranged diagonally with respect to the rotation axis Z. It is desirable to arrange it so that the moment is not eccentric. It is desirable that the power transmitting coil 14 be disposed at a position facing the power receiving coil 21 with the tool holder 30 stored in the turret 4 . For this reason, it is preferable that the power receiving coil 21 is distributed and provided at a plurality of angular positions around the rotation axis Z.
 ツールホルダー30を利用しての加工中に、切削くず100が発生し、本体部30aの外面に付着すると、無線給電を阻害することとなる。したがって、この事態を避けるために、切削くずの除去装置50として、チャック部30bと本体部30aとの間にチャック部30bよりも大経のフランジ60を設けるとよい。このフランジ60は粉末状の切削くず100のほか、特に切り子状の切削くず100をツール7側へ跳ね返す機能を有する。したがって、ツール7の保持部であるチャック部30bほど小径となる段差として形成してもよく、この場合は段差の上側を本体部30aとしてもよい。但し、本体部30aをより小径としたほうが回転モーメントの負荷は小さいため、上記フランジ60が総合的には優れている。 If cutting waste 100 is generated during processing using the tool holder 30 and adheres to the outer surface of the main body portion 30a, it will impede wireless power supply. Therefore, in order to avoid this situation, as the cutting waste removing device 50, it is preferable to provide a flange 60 with a larger diameter than the chuck part 30b between the chuck part 30b and the main body part 30a. This flange 60 has a function of repelling not only powdered cutting waste 100 but also particularly faceted cutting waste 100 toward the tool 7 side. Therefore, the chuck portion 30b, which is the holding portion of the tool 7, may be formed as a step having a smaller diameter, and in this case, the upper side of the step may be the main body portion 30a. However, since the rotational moment load is smaller when the main body portion 30a has a smaller diameter, the flange 60 is superior overall.
 第一の本発明の実施形態では、図3,4,5に示すように、送電ユニット10及び除去装置50は、本体2の下部で主軸2aの近傍に設けてある。除去装置50は、液体及び/又は気体などの流体を送電ユニット10及び受電ユニット20の間に吹き付けるノズル51、流体供給部51aを備えている。流体供給部51a及び電源と前記ノズル51及び受電ユニット20とは、電気ケーブル、流体チューブ等のケーブル等55により接続されている。この例では、ケーブル等55は中継器56により1箇所のみに中継されているが、中継器56で分岐して、ノズル51を複数個所に配置してもよい。中継器56は回転式の流体継ぎ手や電極を備えてもよい。また、加工中に切削油や潤滑剤を用いて切削くず100を本体部30aの外面と送電ユニット10の間から除去してもよい。 In the first embodiment of the present invention, as shown in FIGS. 3, 4, and 5, the power transmission unit 10 and the removal device 50 are provided near the main shaft 2a at the lower part of the main body 2. The removal device 50 includes a nozzle 51 that sprays fluid such as liquid and/or gas between the power transmission unit 10 and the power reception unit 20, and a fluid supply section 51a. The fluid supply section 51a and the power source, the nozzle 51, and the power receiving unit 20 are connected by a cable 55 such as an electric cable or a fluid tube. In this example, the cable etc. 55 is relayed to only one location by the repeater 56, but it may be branched at the repeater 56 and the nozzles 51 may be arranged at multiple locations. The repeater 56 may include a rotary fluid coupling and electrodes. Further, cutting waste 100 may be removed from between the outer surface of main body portion 30a and power transmission unit 10 using cutting oil or lubricant during processing.
 第二の本発明の実施形態では、図3,7,8に示すように、タレット4の周囲には図示省略する複数のツールポット(登録商標)を備えており、その一部の側面、同図面では2箇所に上記送電装置10及び除去装置50を備えている。除去装置50は、液体及び/又は気体などの流体を送電ユニット10及び受電ユニット20の間に吹き付けるノズル51、流体供給部51aを備えている。流体供給部51a及び電源と前記ノズル51及び受電ユニット20とは、電気ケーブル、流体チューブ等のケーブル等55により接続されている。この例では、ケーブル等55は中継器56により分岐されて、複数個所に接続されている。中継器56は回転式の流体継ぎ手や電極を備えるとよい。 In the second embodiment of the present invention, as shown in FIGS. 3, 7, and 8, the turret 4 is equipped with a plurality of tool pots (registered trademark) (not shown) around the turret 4. In the drawing, the power transmission device 10 and the removal device 50 are provided at two locations. The removal device 50 includes a nozzle 51 that sprays fluid such as liquid and/or gas between the power transmission unit 10 and the power reception unit 20, and a fluid supply section 51a. The fluid supply section 51a and the power source, the nozzle 51, and the power receiving unit 20 are connected by a cable 55 such as an electric cable or a fluid tube. In this example, the cable etc. 55 is branched by a repeater 56 and connected to multiple locations. The repeater 56 is preferably provided with a rotary fluid coupling and electrodes.
 切り子として形成された切削くず100の大きなものは、先のフランジ60により本体部30a外面への付着が阻止される。ノズル51は、本体部30aの外面と送電ユニット10の送電コイル14との対向部に流体を噴射して、これらの間に付着しうる切削くず100のうちより小径のものを有効に排除しうるが、もちろん大きな細サイズのものも排除しうる。流体としては、切削油や潤滑剤のほか、空気その他のガスのみ、または、ガスと流体の混合物でもよい。 Large pieces of cutting waste 100 formed as facets are prevented from adhering to the outer surface of the main body portion 30a by the flange 60 at the front. The nozzle 51 can inject fluid to the facing portion of the outer surface of the main body portion 30a and the power transmission coil 14 of the power transmission unit 10, and can effectively eliminate smaller-diameter cutting debris 100 that may adhere between them. However, of course, large and thin sizes can also be excluded. In addition to cutting oil and lubricant, the fluid may be air or other gas alone, or a mixture of gas and fluid.
 なお、第二の本発明の実施形態において、図7~図9に示すように除去装置50は、タレット4に設けても良いが、破線で示すように、本体2の下部で主軸2aの近傍に設けても良い。この場合、加工中に切削油や潤滑剤を用いて切削くず100を本体部30aの外面から除去するとよい。 In the second embodiment of the present invention, the removal device 50 may be provided on the turret 4 as shown in FIGS. It may be set in In this case, it is preferable to remove the cutting waste 100 from the outer surface of the main body portion 30a using cutting oil or a lubricant during machining.
 第一及び第二の本発明の他の実施形態の可能性について、以下列挙する。なお、上記実施形態と同趣旨の部材については、同符号を附することとする。 Possibilities of other embodiments of the first and second inventions are listed below. Note that members having the same meaning as those in the above embodiment are given the same reference numerals.
 第一及び第二の本発明の他の実施形態では共に、除去装置50としてノズル51を用いたが、図3、9(第一の本発明の他の実施形態)及び図3、13(第二一の本発明の他の実施形態)に示すように送電ユニット10の送電コイル14側面に付着する切削くず100を除去するワイパー52を用いてもよい。このワイパー52は例えば、ゴムや軟質樹脂等で形成された部材を有するものを用いることができ、モーター等の回転や直動往復機構を有するワイパー駆動部52aにより駆動するとよい。ワイパー部は送電ユニット10の送電コイル14側面のみならず、同面と先の本体部30a外面との双方に接触させてもよい。加えて、第一の本発明の他の実施形態の場合、本体部30aの回転を利用してワイパー52で切削くずを除去することもできる。 In both the first and second embodiments of the present invention, a nozzle 51 is used as the removal device 50. As shown in No. 21 (another embodiment of the present invention), a wiper 52 for removing cutting waste 100 adhering to the side surface of the power transmission coil 14 of the power transmission unit 10 may be used. The wiper 52 may include a member made of rubber, soft resin, or the like, and is preferably driven by a wiper drive unit 52a having a rotating motor or a linear reciprocating mechanism. The wiper portion may contact not only the side surface of the power transmission coil 14 of the power transmission unit 10, but also both the same surface and the outer surface of the main body portion 30a. In addition, in the case of another embodiment of the first invention, cutting waste can also be removed by the wiper 52 by utilizing the rotation of the main body portion 30a.
 図10は、第一の本発明の他の実施形態における加工機1の主軸2の回転の中心軸Zが略水平方向に配向された場合のツールホルダーと送電ユニット10との配置を示す側面図である。送電ユニット10の下面は、基板パターンとして形成された先の送電コイル14の面と略平行であり、この面を送電面10xとする。本実施形態では、中心軸Zと送電面10xとが平行に配置され、且つ、送電面10xが最も下向きになるように配置されている。同配置により、切削くずは、重力の影響によりこの送電面10xに最も堆積しにくくなるため、この送電面10x自体も除去装置50として機能する。中心軸Z’が垂直以外の方向に配向されるときは、送電面10xは中心軸Zの周りにこの中心軸と平行に且つ最も下向きになるように配置されるとよい。 FIG. 10 is a side view showing the arrangement of the tool holder and the power transmission unit 10 when the central axis Z of rotation of the main shaft 2 of the processing machine 1 is oriented in a substantially horizontal direction in another embodiment of the first invention. It is. The lower surface of the power transmission unit 10 is approximately parallel to the surface of the power transmission coil 14 formed as a substrate pattern, and this surface is defined as a power transmission surface 10x. In this embodiment, the central axis Z and the power transmission surface 10x are arranged in parallel, and the power transmission surface 10x is arranged so as to face most downward. With this arrangement, cutting waste is most difficult to accumulate on this power transmission surface 10x due to the influence of gravity, so this power transmission surface 10x itself also functions as the removal device 50. When the central axis Z' is oriented in a direction other than vertically, the power transmission surface 10x is preferably arranged around the central axis Z, parallel to the central axis, and most downwardly.
 図11は、第一の本発明の他の実施形態における送電ユニット10が主軸に取り付けられたセンシングツールホルダーに対向可能に設けられた磁石16である例を示す横断面図である。この送電ユニット10はセンシングツールホルダー30の中心軸Z周りでの回転に伴う磁石16と受電コイル21との相対回転により交番磁界及び磁波を発生させるものである。切削くずが磁石16に付着しても、磁力線は損なわれる程度が低く、したがって、本体部30aに付着する切削くずをノズル51等の除去装置50で除去するとよい。受信ユニット20のマッチング回路22で回転数に合わせて共振を調整し,整流平滑化回路23を経て、ツエナーダイオード等で過電圧保護された電圧調整回路24で直流化するとよい。 FIG. 11 is a cross-sectional view showing an example in which the power transmission unit 10 in another embodiment of the first invention is a magnet 16 provided so as to be able to face a sensing tool holder attached to a main shaft. This power transmission unit 10 generates an alternating magnetic field and magnetic waves through relative rotation between the magnet 16 and the power receiving coil 21 as the sensing tool holder 30 rotates around the central axis Z. Even if the cutting waste adheres to the magnet 16, the magnetic lines of force are only slightly damaged, so it is preferable to remove the cutting waste adhering to the main body portion 30a using the removing device 50 such as the nozzle 51. It is preferable to adjust the resonance according to the rotational speed in the matching circuit 22 of the receiving unit 20, pass through the rectifying and smoothing circuit 23, and convert it to direct current in the voltage adjusting circuit 24 protected from overvoltage using a Zener diode or the like.
 また、第二の本発明の他の実施形態では、送電ユニット10及び除去装置50はタレット4に設けるほか、タレット4と独立させて可動とするか、固定とする方法がある。例えば、図14では、電源装置に対し可動接点で送電ユニット10に電源を供給するように構成し、ツールホルダー30の保管されたポッドのみに送電ユニット10を対向させるように移動させてもよい。同図14において、電力供給線57は、プラスライン57a及びアースライン57bを備え、これらに可動接点T1を介して、送電ユニット10a~dが接続されている。送電ユニット10a~dはタレット4周りで空きポットP2から適宜ツールホルダー保持ポットP1に対峙するまで回転移動し、それぞれの位置で無線給電が行われる。なお、図示しないが、除去装置50は送電ユニット10a~d位置にそれぞれ設けられて切削くずを除去する。 In other embodiments of the second invention, the power transmission unit 10 and removal device 50 may be provided on the turret 4, or may be movable independently of the turret 4, or may be fixed. For example, in FIG. 14, the power supply device may be configured to supply power to the power transmission unit 10 using a movable contact, and the power transmission unit 10 may be moved so as to face only the pod in which the tool holder 30 is stored. In FIG. 14, the power supply line 57 includes a positive line 57a and a ground line 57b, to which power transmission units 10a to 10d are connected via movable contacts T1. The power transmission units 10a to 10d rotate around the turret 4 from the empty pot P2 until they appropriately confront the tool holder holding pot P1, and wireless power is supplied at each position. Although not shown, the removal devices 50 are provided at each of the power transmission units 10a to 10d to remove cutting waste.
 また図15では、第二の本発明の他の実施形態における固定電極を用いた図7の改変例を示すタレット近傍の概略図が示されており、送電ユニット10a~dを固定接点T2で電力供給線57で電源に接続し、ツールホルダー30の保管されたポッドP1に対向する部位の送電ユニット10a~dのみを稼働させるようにしてもよい。さらには、図16に示すように、タレット4とは別のバッファ位置P3を保管部として、この位置のみに送電ユニット10を設けて充電させるようにしてもよい。 Further, FIG. 15 shows a schematic diagram of the vicinity of the turret showing a modified example of FIG. 7 using fixed electrodes according to another embodiment of the second invention, in which the power transmission units 10a to 10d are connected to the fixed contacts T2. It is also possible to connect to the power supply through the supply line 57 and operate only the power transmission units 10a to 10d at the portions of the tool holder 30 that face the stored pod P1. Furthermore, as shown in FIG. 16, a buffer position P3 separate from the turret 4 may be used as a storage section, and the power transmission unit 10 may be provided only at this position for charging.
 上記各実施形態は趣旨を逸脱しない限りそれぞれ組み合わせて実施することが可能であり、例えば、図4,5や図7,8で示すノズル51と、図7に示すワイパー52とを組み合わせて実施してもよい。 Each of the embodiments described above can be implemented in combination without departing from the spirit of the invention. For example, the nozzle 51 shown in FIGS. 4 and 5 or 7 and 8 and the wiper 52 shown in FIG. 7 may be implemented in combination. It's okay.
 本発明は、ツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部とを備えたセンシングツールホルダー内のバッテリーに電力を供給するためのツールホルダー内蔵バッテリーへの給電方法及び給電装置として利用することができる。本発明は、被切削物及び切削くず100が導電体のものについて実施したが、切削くず100が堆積することで上記無線給電を阻害する限りにおいて、被切削物及び切削くず100が非導電体のものについても実施することが可能である。 The present invention provides a tool holder for supplying power to a battery in a sensing tool holder, which includes a sensor that senses the state of a tool, and a processing unit that processes the sensing results of the sensor and transmits the results to the outside via communication. It can be used as a power supply method and a power supply device to the built-in battery. In the present invention, the workpiece and the cutting waste 100 are made of a conductive material, but insofar as the accumulation of the cutting waste 100 obstructs the wireless power supply, the workpiece and the cutting waste 100 are made of a non-conductive material. It is also possible to implement this method for things.
1:加工機、2:本体、2a:主軸、3:ホルダー保管部、4:タレット、7:ツール、8:給電ユニット、9:給電装置、10:送電ユニット、10a~d:送電ユニット、10x:送電面、11:DC電源、12:交流電力供給回路(スイッチングAC)、13:マッチング回路(発振器)、14:基板パターンコイル(送電コイル)、15:基板、16:磁石、20:受電ユニット、21:NFC(近距離無線通信)コイル(受電コイル)、22:マッチング回路、23:整流平滑化回路、24:電圧調整回路、25:負荷(バッテリー)、30:ツールホルダー、30a:本体部、30b:チャック部(保持部)、30c:シャンク部、31:処理部、31a:センシング部、31b:通信部、32:バッテリー、33:送信アンテナ、34:センサー、39:受信部、50:除去装置(付着防止装置)、51:ノズル、51a:流体供給部、52:ワイパー、52a:ワイパー駆動部、55:ケーブル等、56:中継器、57:電力供給線、57a:プラスライン、57b:アースライン、60:フランジ、100:切削くず(導電体)、RW:電波、MW:磁波、Z:回転軸、P1:ツールホルダー保持ポット、P2:空きポット、P3:バッファ位置、T1:可動接点、T2:固定接点、RW:電波、MW:磁波、Z:回転軸 1: Processing machine, 2: Main body, 2a: Spindle, 3: Holder storage section, 4: Turret, 7: Tool, 8: Power supply unit, 9: Power supply device, 10: Power transmission unit, 10a to d: Power transmission unit, 10x : Power transmission surface, 11: DC power supply, 12: AC power supply circuit (switching AC), 13: Matching circuit (oscillator), 14: Board pattern coil (power transmission coil), 15: Board, 16: Magnet, 20: Power receiving unit , 21: NFC (near field communication) coil (power receiving coil), 22: matching circuit, 23: rectification smoothing circuit, 24: voltage adjustment circuit, 25: load (battery), 30: tool holder, 30a: main body , 30b: Chuck part (holding part), 30c: Shank part, 31: Processing part, 31a: Sensing part, 31b: Communication part, 32: Battery, 33: Transmission antenna, 34: Sensor, 39: Receiving part, 50: Removal device (adhesion prevention device), 51: nozzle, 51a: fluid supply section, 52: wiper, 52a: wiper drive section, 55: cable etc., 56: repeater, 57: power supply line, 57a: positive line, 57b : Earth line, 60: Flange, 100: Cutting waste (conductor), RW: Radio wave, MW: Magnetic wave, Z: Rotating axis, P1: Tool holder holding pot, P2: Empty pot, P3: Buffer position, T1: Movable Contact, T2: Fixed contact, RW: Radio wave, MW: Magnetic wave, Z: Rotating axis

Claims (15)

  1. 加工のためのツールを保持するツールホルダーを備え、このツールホルダーは加工機の主軸に装着されるものであり、前記ツールホルダーのいずれかはツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備えるセンシングツールホルダーであり、このセンシングツールホルダー内の前記バッテリーに非接触で電力を供給するためのツールホルダー内蔵バッテリーへの給電方法であって、
    前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界を電流に変換し前記バッテリーへの給電を非接触で行うものであり、前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられており、前記主軸に取り付けられた前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を行うものであり、前記ツールにより加工される被加工物が導電体であり、前記送電ユニットと受電ユニットとの間に被加工物の切削くずの除去装置を設けてあるツールホルダー内蔵バッテリーへの給電方法。
    The tool holder is equipped with a tool holder that holds a tool for processing, and this tool holder is attached to the main shaft of the processing machine, and one of the tool holders is equipped with a sensor that senses the state of the tool and a sensor that detects the sensing result of the sensor. This sensing tool holder is equipped with a processing unit for processing and transmitting the data to the outside via communication, and a battery for driving the processing unit, and a tool holder for supplying power to the battery in the sensing tool holder in a non-contact manner. A method of supplying power to the built-in battery,
    The power transmitting unit is provided separately from the tool holder, and the power receiving unit is provided in the tool holder. The power transmitting unit generates an alternating magnetic field, and the power receiving unit converts the alternating magnetic field into a current using a receiving coil. The power is supplied to the battery in a non-contact manner, and the power transmission unit is provided so as to be able to face the sensing tool holder attached to the main shaft, and the power transmission unit is provided to face the sensing tool holder attached to the main shaft. The power receiving coil is excited by the alternating magnetic field to supply power to the battery, the workpiece to be processed by the tool is a conductor, and the workpiece is placed between the power transmission unit and the power reception unit. How to supply power to a battery built into a tool holder that is equipped with a cutting waste removal device.
  2. 前記切削くずの除去装置は、前記主軸を利用した加工時に発生し前記送電ユニット及び前記センシングツールホルダーに設けた受電コイルの近傍に付着する切削くずを前記液体若しくは気体の流動により洗浄するものである前記請求項1記載のツールホルダー内蔵バッテリーへの給電方法。 The cutting waste removal device is for cleaning cutting waste generated during processing using the spindle and adhering to the power transmission unit and the power receiving coil provided in the sensing tool holder by the flow of the liquid or gas. A method for supplying power to a tool holder built-in battery according to claim 1.
  3. 前記切削くずの除去装置は、前記主軸を利用した加工時に発生し前記送電ユニット及び前記センシングツールホルダーに設けた受電コイルの近傍に付着する切削くずをワイパー若しくはブラシの接触で除去するものである前記請求項1記載のツールホルダー内蔵バッテリーへの給電方法。 The cutting waste removal device removes cutting waste generated during machining using the spindle and adhering to the power transmission unit and the power receiving coil provided in the sensing tool holder by contact with a wiper or a brush. A method for supplying power to a battery built into a tool holder according to claim 1.
  4. 前記切削くずの除去装置として、前記ツールホルダーが前記ツールの保持部と前記受電ユニットとの間に、前記切削くずが前記受電コイル側に近接することを防ぐため、ツールの前記保持部ほど小径となる段差またはフランジを形成してある請求項1記載のツールホルダー内蔵バッテリーへの給電方法。 As the cutting waste removal device, the tool holder is arranged between the holding part of the tool and the power receiving unit, and the diameter of the tool holder is smaller as the holding part of the tool increases in order to prevent the cutting waste from approaching the power receiving coil side. 2. The method for supplying power to a battery built in a tool holder according to claim 1, wherein a step or a flange is formed.
  5. 前記主軸の回転の中心軸が垂直以外の方向に配向され、前記送電ユニットの送電面は前記中心軸の周りにこの中心軸と平行に且つ最も下向きになるように配置されている請求項1記載のツールホルダー内蔵バッテリーへの給電方法。 2. The power transmitting surface of the power transmitting unit is arranged around the central axis in parallel with the central axis and facing downward most, wherein the central axis of rotation of the main shaft is oriented in a direction other than vertically, and the power transmitting surface of the power transmitting unit is arranged around the central axis in parallel with the central axis and facing downward most. How to supply power to the tool holder's built-in battery.
  6. 前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられた磁石であり、前記送電ユニットは前記センシングツールホルダーの回転に伴う前記磁石と受電コイルとの相対回転により前記交番磁界を発生させるものである請求項1~5のいずれかに記載のツールホルダー内蔵バッテリーへの給電方法。 The power transmission unit is a magnet provided to face the sensing tool holder attached to the main shaft, and the power transmission unit generates the alternating magnetic field by relative rotation between the magnet and the power receiving coil as the sensing tool holder rotates. The method for supplying power to a battery built into a tool holder according to any one of claims 1 to 5, wherein the method generates power.
  7. 請求項1~5のいずれかに記載のツールホルダー内蔵バッテリーへの給電方法に用いるためのツールホルダー内蔵バッテリーへの給電装置であって、
    送電ユニットを備え、この送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界を電流に変換し前記バッテリーへの給電を非接触で行うものであり、前記送電ユニットは前記主軸に取り付けられた前記センシングツールホルダーに対向可能に設けられており、前記主軸に取り付けられた前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を行うものであり、前記ツールにより加工される被加工物が導電体であり、前記送電ユニットと受電ユニットとの間に被加工物の切削くずの除去装置を設けてあるツールホルダー内蔵バッテリーへの給電装置。
    A power supply device for a tool holder built-in battery for use in the method for powering a tool holder built-in battery according to any one of claims 1 to 5,
    A power transmission unit is provided, the power transmission unit generates an alternating magnetic field, the power receiving unit converts the alternating magnetic field into a current using a power receiving coil, and supplies power to the battery in a non-contact manner. It is provided so as to be able to face the sensing tool holder attached to the main shaft, and excites the power receiving coil of the sensing tool holder attached to the main shaft with the alternating magnetic field to supply power to the battery. A power supply device for a battery built in a tool holder, wherein the workpiece to be processed by the tool is a conductor, and a device for removing cutting waste from the workpiece is provided between the power transmission unit and the power reception unit.
  8. 加工のためのツールを保持するツールホルダーを複数備え、このツールホルダーは加工機の主軸に選択的に装着されるものであり、ツールホルダーをツールの非使用時に保管するホルダー保管部を備え、前記ツールホルダーのいずれかはツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備えるセンシングツールホルダーであり、このセンシングツールホルダー内の前記バッテリーに電力を供給するためのツールホルダー内蔵バッテリーへの給電方法であって、前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界の磁波を電流に変換し前記バッテリーに給電するものであり、前記送電ユニットは前記ホルダー保管部に保管された前記センシングツールホルダーに対向可能に設けられており、このホルダー保管部に保管された前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を非接触で行うものであり、前記ツールにより加工される被加工物が導電体であり、前記ツールホルダーを前記ホルダー保管部に保管中に前記送電ユニットによる給電を行うツールホルダー内蔵バッテリーへの給電方法。 The tool holder is provided with a plurality of tool holders that hold tools for processing, and the tool holder is selectively attached to the main shaft of the processing machine, and the tool holder is provided with a holder storage section that stores the tool holder when the tool is not in use. One of the tool holders is a sensing tool holder that includes a sensor that senses the state of the tool, a processing unit that processes the sensing results of the sensor and transmits the results to the outside via communication, and a battery that drives the processing unit, A method for supplying power to a battery built in a tool holder for supplying power to the battery in the sensing tool holder, the method comprising: a power transmission unit provided separately from the tool holder; and a power reception unit provided in the tool holder. The power transmitting unit generates an alternating magnetic field, the power receiving unit converts the magnetic waves of the alternating magnetic field into a current using a power receiving coil, and supplies power to the battery, and the power transmitting unit is stored in the holder storage section. The power receiving coil of the sensing tool holder stored in the holder storage section is excited by the alternating magnetic field, and power is supplied to the battery in a non-contact manner. The workpiece to be processed by the tool is a conductor, and the power transmission unit supplies power to a tool holder built-in battery while the tool holder is stored in the holder storage section.
  9. 前記被加工物の加工時に発生する切削くずのうち前記送電ユニット及び前記受電ユニットの間に付着する切削くずの除去装置により同間に付着した前記切削くずを除去した後前記給電を行う請求項8記載のツールホルダー内蔵バッテリーへの給電方法。 8. The power supply is performed after removing the cutting waste that adheres between the power transmitting unit and the power receiving unit by a removal device for cutting waste that is generated during processing of the workpiece and that adheres between the power transmitting unit and the power receiving unit. How to power the battery built into the tool holder as described.
  10. 前記除去装置が、前記切削くずを液体または気体の流動により洗浄するものである請求項9記載のツールホルダー内蔵バッテリーへの給電方法。 10. The method for supplying power to a battery built in a tool holder according to claim 9, wherein the removing device cleans the cutting waste by flowing liquid or gas.
  11. 前記除去装置が、前記切削くずをワイパーまたはブラシの接触により除去するものである請求項9記載のツールホルダー内蔵バッテリーへの給電方法。 10. The method for supplying power to a battery built in a tool holder according to claim 9, wherein the removing device removes the cutting waste by contact with a wiper or a brush.
  12. 前記ツールホルダーが前記ツールの保持部と前記受電ユニットとの間に、前記切削くずが前記受電コイル側に近接することを防ぐため、ツールの前記保持部ほど小径となる段差またはフランジを形成してある請求項8記載のツールホルダー内蔵バッテリーへの給電方法。 The tool holder may form a step or a flange between the tool holding part and the power receiving unit, the diameter of which becomes smaller as the holding part of the tool approaches the power receiving coil, in order to prevent the cutting waste from approaching the power receiving coil side. A method for supplying power to a battery built in a tool holder according to claim 8.
  13. 前記送電ユニットは発振器及び送電コイルにより前記交番磁界を発生させるものである請求項8~12のいずれかに記載のツールホルダー内蔵バッテリーへの給電方法。 13. The method for powering a tool holder built-in battery according to claim 8, wherein the power transmission unit generates the alternating magnetic field using an oscillator and a power transmission coil.
  14. 請求項8~12のいずれかに記載のツールホルダー内蔵バッテリーへの給電方法に用いるツールホルダー内蔵バッテリーへの給電装置であって、
    加工のためのツールを保持するツールホルダーと、ツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備え、
    前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界の磁波を電流に変換し前記バッテリーに給電するものであり、前記送電ユニットは前記ホルダー保管部に保管された前記センシングツールホルダーに対向可能に設けられており、このホルダー保管部に保管された前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を非接触で行うものであり、
    前記ツールにより加工される被加工物が導電体であり、前記ツールホルダーを前記ホルダー保管部に保管中に前記送電ユニットによる給電を行うツールホルダー内蔵バッテリーへの給電装置。
    A device for feeding power to a battery built in a tool holder used in the method for feeding power to a battery built in a tool holder according to any one of claims 8 to 12,
    It is equipped with a tool holder that holds tools for processing, a sensor that senses the state of the tool, a processing section that processes the sensing results of this sensor and transmits them to the outside via communication, and a battery that drives the processing section. ,
    The power transmitting unit is provided separately from the tool holder, and the power receiving unit is provided in the tool holder. The power transmission unit is provided so as to be able to face the sensing tool holder stored in the holder storage section, and the power transmission unit is configured to face the sensing tool holder stored in the holder storage section. The power receiving coil is excited by the alternating magnetic field and power is supplied to the battery in a non-contact manner,
    A power supply device for a battery built in a tool holder, wherein a workpiece to be processed by the tool is a conductor, and the power transmission unit supplies power while the tool holder is stored in the holder storage section.
  15. 請求項8~12のいずれかに記載のツールホルダー内蔵バッテリーへの給電方法に用いるツールホルダー内蔵バッテリーへの給電装置であって、
    加工のためのツールを保持するツールホルダーと、ツールの状態をセンシングするセンサーと、このセンサーによるセンシング結果を処理し外部へ通信により伝達するための処理部と、同処理部を駆動させるバッテリーを備え、
    前記ツールホルダーと離隔して設けられる送電ユニットと、前記ツールホルダーに設けられる受電ユニットとを備え、送電ユニットは交番磁界を発生させるものであり、前記受電ユニットは受電コイルにより交番磁界の磁波を電流に変換し前記バッテリーに給電するものであり、前記送電ユニットは前記ホルダー保管部に保管された前記センシングツールホルダーに対向可能に設けられており、このホルダー保管部に保管された前記センシングツールホルダーの前記受電コイルを前記交番磁界で励磁し、前記バッテリーへの給電を非接触で行うものであり、
    前記ツールにより加工される被加工物が導電体であり、前記ツールホルダーを前記ホルダー保管部に保管中に前記送電ユニットによる給電を行い、
    前記被加工物の加工時に発生する切削くずのうち前記送電ユニット及び前記受電ユニットの間に付着する切削くずの除去装置により同間に付着した前記切削くずを除去した後前記給電を行うツールホルダー内蔵バッテリーへの給電装置。
    A device for feeding power to a battery built in a tool holder used in the method for feeding power to a battery built in a tool holder according to any one of claims 8 to 12,
    It is equipped with a tool holder that holds tools for processing, a sensor that senses the state of the tool, a processing section that processes the sensing results of this sensor and transmits them to the outside via communication, and a battery that drives the processing section. ,
    The power transmitting unit is provided separately from the tool holder, and the power receiving unit is provided in the tool holder. The power transmission unit is provided so as to be able to face the sensing tool holder stored in the holder storage section, and the power transmission unit is configured to face the sensing tool holder stored in the holder storage section. The power receiving coil is excited by the alternating magnetic field and power is supplied to the battery in a non-contact manner,
    The workpiece to be processed by the tool is a conductor, and the power transmission unit supplies power while the tool holder is stored in the holder storage section,
    A built-in tool holder that supplies the power after removing the cutting waste adhering between the power transmission unit and the power receiving unit by a removal device for cutting waste generated during processing of the workpiece, which adheres between the power transmission unit and the power reception unit. Power supply device to the battery.
PCT/JP2023/019498 2022-05-31 2023-05-25 Method and device for feeding power to battery incorporated in toolholder WO2023234169A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-089296 2022-05-31
JP2022-089297 2022-05-31
JP2022089297 2022-05-31
JP2022089296 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234169A1 true WO2023234169A1 (en) 2023-12-07

Family

ID=89024907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019498 WO2023234169A1 (en) 2022-05-31 2023-05-25 Method and device for feeding power to battery incorporated in toolholder

Country Status (1)

Country Link
WO (1) WO2023234169A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10234138A (en) * 1997-02-19 1998-09-02 N T Eng Kk Charger and charging method for working machine
JP2020129953A (en) * 2019-02-12 2020-08-27 株式会社日立製作所 Power receiving unit, power transmitting unit, and wireless power supply device
WO2020241628A1 (en) * 2019-05-31 2020-12-03 京セラ株式会社 Cutting tool main body, cutting tool, and data collection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10234138A (en) * 1997-02-19 1998-09-02 N T Eng Kk Charger and charging method for working machine
JP2020129953A (en) * 2019-02-12 2020-08-27 株式会社日立製作所 Power receiving unit, power transmitting unit, and wireless power supply device
WO2020241628A1 (en) * 2019-05-31 2020-12-03 京セラ株式会社 Cutting tool main body, cutting tool, and data collection system

Similar Documents

Publication Publication Date Title
JP4856650B2 (en) Cutting or grinding equipment
TW201032971A (en) Systems, apparatus and methods for making an electrical connection to a robot and electrical end effector thereof
JP2014226032A (en) Battery pack, charging system to charge battery pack, and power tool having battery pack
CN111390311B (en) Milling cutter, ultrasonic electric spark milling equipment and milling method
WO2023234169A1 (en) Method and device for feeding power to battery incorporated in toolholder
JP2006237333A (en) Grinding method and apparatus of semiconductor wafer
WO2020241628A1 (en) Cutting tool main body, cutting tool, and data collection system
CN107253165B (en) Hand tool device with at least one charging coil
CN114728391B (en) Tool holder with at least one sensor
JP2017147784A (en) Non-contact charging system
JP2005329501A (en) Ultrasonic polishing tool and polishing device provided with the same
JP2003200333A (en) Wear detection device for cutting tool
CN101318358A (en) Cutting blade
JP4731247B2 (en) Cutting equipment
JP2009274182A (en) Machining device equipped with cutting tool
CN112658818B (en) Ultrasonic vibration auxiliary grinding device for ultra-precision machining of wafer
JP2005327838A (en) Processing device for plate-like electrode
WO2022172512A1 (en) Noncontact power supply device for tool holder
CN107214673B (en) Hand tool box holding device
CN218168735U (en) Ultrasonic spindle and ultrasonic machining apparatus
JP4977428B2 (en) Cutting equipment
CN110900860B (en) Mortar tank, cutting device and crystal bar cutting method
US20230014235A1 (en) Method and device for cutting electrode foils
CN215615697U (en) Case is placed to hand-held type electric welding with protection device
CN103887849B (en) Sense hand tool device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815927

Country of ref document: EP

Kind code of ref document: A1