WO2023234035A1 - Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program - Google Patents

Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program Download PDF

Info

Publication number
WO2023234035A1
WO2023234035A1 PCT/JP2023/018472 JP2023018472W WO2023234035A1 WO 2023234035 A1 WO2023234035 A1 WO 2023234035A1 JP 2023018472 W JP2023018472 W JP 2023018472W WO 2023234035 A1 WO2023234035 A1 WO 2023234035A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing
color
light
coloring member
amount
Prior art date
Application number
PCT/JP2023/018472
Other languages
French (fr)
Japanese (ja)
Inventor
善朗 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023234035A1 publication Critical patent/WO2023234035A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present disclosure relates to a control device, an energy measurement device, a control method, an energy measurement method, a control program, and an energy measurement program.
  • a coloring member that develops color depending on energy such as applied pressure, heat, and ultraviolet rays.
  • a coloring member there is, for example, Prescale (registered trademark) (manufactured by Fuji Film Co., Ltd.), which can obtain a coloring density depending on the applied pressure.
  • pressure measurement is performed based on an image representing a colored member included in a photographed image obtained by placing a pressure measurement sheet (for example, prescale) on a calibration sheet.
  • a pressure measurement sheet for example, prescale
  • Photographed images of colored members may be affected by the photographing environment, such as the lighting environment in which the photograph is taken, the characteristics of the photographing device, the photographing angle, and the photographing distance. Therefore, in order to improve measurement accuracy, it is necessary to It is desired to suppress the impact of
  • the present disclosure provides a control device, an energy measurement device, a control method, an energy measurement method, a control program, and a control device, an energy measurement device, a control method, an energy measurement method, a control program, and an energy measurement device that can obtain a captured image in which the influence of shooting environment light is suppressed when photographing a color-forming member for measuring energy. and energy measurement programs.
  • a control device includes at least one processor, and when a coloring member that develops color with a density distribution according to an applied energy amount is photographed by a photographing device, the processor controls the amount of photographing environment light. Control is performed to irradiate photographing light from the irradiation device to suppress the influence.
  • the processor may control the irradiation device to emit photographing light regardless of the amount of photographing light.
  • the amount of photographing light emitted by the irradiation device may be larger than the amount of photographing environment light.
  • a fourth aspect of the present disclosure is that in the first aspect, when the illuminance due to the photographing environment light is X lux, the luminous flux of the photographing light is 0.1 ⁇ X lumens or more and 0.5 ⁇ X lumens or less. Good too.
  • the processor controls the irradiation device to emit photographing light when photographing the color-forming member, and controls the photographing environment light when photographing the color-forming member. Control may be performed to irradiate photographing light from the irradiation device depending on the situation.
  • a sixth aspect of the present disclosure is that in the first aspect, when the processor receives an irradiation prohibition instruction that prohibits the irradiation of photographing light from the irradiation device, the processor controls the irradiation of the photographing light instead of controlling the irradiation device to irradiate the photographing light. Control may be performed to prohibit light irradiation.
  • An energy measuring device includes at least one processor, and when a coloring member that develops a color with a density distribution according to the applied energy amount is photographed by a photographing device, A control device that controls the irradiation of photographing light from the irradiation device in order to suppress the effects of coloring acquires a color-forming member image representing the color-forming member photographed with the photographing light irradiated from the irradiation device onto the color-forming member. Then, the amount of energy applied to the coloring member is derived based on the color of the coloring member image using data in which the relationship between the amount of energy applied to the coloring member and the color of the coloring member image is determined in advance.
  • a control method provides a method for irradiating photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device. This is a method in which a computer executes the process of controlling the irradiation from the device.
  • An energy measuring method is such that when a coloring member that develops color with a density distribution according to the amount of applied energy is photographed using a photographing device, photographing light is used to suppress the influence of photographing environment light.
  • a control device that controls the irradiation from the irradiation device acquires a coloring member image representing the coloring member photographed while the coloring member is irradiated with photographic light from the irradiation device, and calculates the amount of energy applied to the coloring member.
  • a computer executes a process of deriving the amount of energy applied to the coloring member based on the color of the coloring member image, using data in which the relationship between the color of the coloring member image and the color of the coloring member image is determined in advance.
  • a control program irradiates photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device.
  • the computer executes the process of controlling the irradiation from the device.
  • An energy measurement program provides a method for controlling photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device.
  • a control device that controls the irradiation from the irradiation device acquires a coloring member image representing the coloring member photographed while the coloring member is irradiated with photographic light from the irradiation device, and calculates the amount of energy applied to the coloring member.
  • a computer is caused to perform a process of deriving the amount of energy applied to the coloring member based on the color of the coloring member image using data in which a relationship between the coloring member image and the color of the coloring member image is determined in advance.
  • control device the energy measurement device, the control method, the energy measurement method, the control program, and the energy measurement program according to the present disclosure are configured to be able to detect the influence of the photographing environment light in photographing a color-forming member for measuring energy. It is possible to obtain a photographed image in which the effects are suppressed.
  • FIG. 1 is a configuration diagram schematically showing an example of the overall configuration of an energy measurement system according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram showing how a photographed image is photographed. It is a figure showing an example of a calibration member.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of a smartphone.
  • FIG. 2 is a block diagram showing an example of a functional configuration of a smartphone.
  • 3 is a flowchart illustrating an example of irradiation control processing.
  • FIG. 3 is a diagram for explaining an example of a screen displayed on a display. It is a flowchart which shows an example of measurement processing.
  • FIG. 1 shows a configuration diagram showing an example of the overall configuration of an energy measurement system 1 according to the present exemplary embodiment.
  • the energy measurement system 1 of this exemplary embodiment includes a server 4, a database 6, and a smartphone 10.
  • the server 4 and the smartphone 10 are connected to each other via a wired or wireless network so that they can communicate with each other.
  • the energy measurement system 1 of this exemplary embodiment measures the amount of energy using a coloring member 30 that develops color with a density distribution depending on the amount of applied energy when energy such as pressure, heat, and ultraviolet rays is applied. It is a system for Specifically, with the flash 12 of the smartphone 10 turned on and the photographing light F irradiated, the coloring member 30 to which energy has been applied is photographed by the camera 11, and from the photographed image 8 obtained by photographing. The amount of energy applied to the coloring member 30 is derived.
  • the camera 11 of the smartphone 10 of this exemplary embodiment is an example of the photographing device of the present disclosure
  • the flash 12 is an example of the irradiation device.
  • the smartphone 10 of the present disclosure is an example of the control device and energy measurement device of the present disclosure.
  • Prescale registered trademark (manufactured by Fujifilm Corporation), which develops color with a density distribution depending on the amount of applied pressure, can be used.
  • Prescale is a sheet-like support coated with a coloring agent containing microcapsules containing a colorless dye and a color developer.
  • the coloring agent contains multiple types of microcapsules having different sizes and strengths, the amount of microcapsules destroyed varies depending on the applied pressure, and the coloring density also varies. Therefore, by observing the color density, the magnitude and pressure distribution of the pressure applied to the prescale can be measured.
  • the coloring member 30 may include Thermoscale (trade name) (manufactured by Fujifilm Corporation), which develops color with a density distribution depending on the amount of heat applied, and a thermoscale, which develops color with a density distribution depending on the amount of ultraviolet light applied.
  • UV scale (trade name) (manufactured by Fuji Film Corporation) or the like may be applied.
  • the server 4 of this exemplary embodiment is a general-purpose computer in which a software program that provides the functionality of a database management system (DBMS) is installed.
  • the server 4 acquires the captured image 8 and the amount of energy derived from the captured image 8 from the smartphone 10 and stores it in the database 6.
  • the connection form between the server 4 and the database 6 is not particularly limited; for example, they may be connected via a data bus, or may be connected via a network such as NAS (Network Attached Storage) or SAN (Storage Area Network). It may also be in the form of
  • the coloring member 30 placed on the calibration member 20 is irradiated with the photographing light F from the flash 12 of the smartphone 10. Then, a photograph is taken using the camera 11 of the smartphone 10. Thereby, the smartphone 10 acquires a photographed image 8 including the calibration member 20 and the coloring member 30.
  • the photographed image 8 may be affected by the lighting environment in which the picture is taken, the characteristics of the camera 11, the photographing angle, the photographing distance, and the like.
  • the calibration member 20 is for correcting these influences on the photographed image 8.
  • the calibration member 20 of this exemplary embodiment will be described in detail.
  • the calibration member 20 is, for example, a support made of paper, resin, etc., and formed into a sheet or plate shape. Note that FIG. 3 shows a state in which the coloring member 30 is placed on the calibration member 20, and the surface of the calibration member 20 that is photographed with the coloring member 30 placed thereon (hereinafter referred to as (referred to as "imaging surface 20S") is shown.
  • the imaging surface 20S includes a first area 20A where the coloring member 30 is placed and a second area 20B where a plurality of patches 25 are placed.
  • the first area 20A in this exemplary embodiment is a central area of the imaging surface 20S, and is surrounded by a frame 21.
  • the second area 20B is an area around the first area 20A on the imaging surface 20S. In other words, the second area 20B is an area outside the frame 21 on the imaging surface 20S.
  • the smartphone 10 of the energy measurement system 1 of this exemplary embodiment corrects the distortion, tilt, and size of the captured image 8 using the frame 21 shown on the imaging surface 20S of the calibration member 20 (details will be described later). .
  • the frame 21 that is, the first area 20A
  • the accuracy of correcting the distortion, tilt, and size of the photographed image 8 can be improved, so it is preferable that the frame 21 is rectangular.
  • the photographing surface 20S includes a plurality of patches 25 extending along each side of the rectangular frame 21.
  • a pair of first patch groups 22A and 22B are arranged at opposing positions with the first region 20A interposed therebetween.
  • At least one of the first patch groups 22A and 22B includes a plurality of patches 25 of different colors.
  • at least one of the first patch groups 22A and 22B may include a plurality of patches 25 having the same hue and different density. In other words, the colors of the plurality of patches 25 included in at least one of the first patch groups 22A and 22B may be different from each other.
  • the color and number of patches 25 included in the first patch group 22A may be the same as or different from the color and number of patches 25 included in the first patch group 22B.
  • the first patch groups 22A and 22B include a plurality of patches 25 arranged in the X direction and the Y direction. Note that it is preferable that the number of patches 25 arranged in the X direction (16 in the example of FIG. 3) is greater than the number of patches 25 arranged in the Y direction (2 in the example of FIG. 3).
  • a pair of second patch groups 24A and 24B are arranged at opposing positions with the first region 20A interposed therebetween.
  • At least one of the second patch groups 24A and 24B includes a plurality of patches 25 of different colors.
  • at least one of the second patch groups 24A and 24B may include a plurality of patches 25 having the same hue and different density. In other words, the colors of the plurality of patches 25 included in at least one of the second patch groups 24A and 24B may be different from each other.
  • the color and number of patches 25 included in the second patch group 24A may be the same as or different from the color and number of patches 25 included in the second patch group 24B.
  • the second patch groups 24A and 24B include a plurality of patches 25 arranged in the X direction and the Y direction. Note that it is preferable that the number of patches 25 arranged in the Y direction (24 in the example of FIG. 3) is greater than the number of patches 25 arranged in the X direction (2 in the example of FIG. 3).
  • the number of patches 25 included in each of the first patch groups 22A and 22B and the number of patches 25 included in each of the second patch groups 24A and 24B may be the same or different.
  • the number of patches 25 included in each of the first patch groups 22A and 22B is 32
  • the number of patches 25 included in each of the second patch groups 24A and 24B is 48.
  • the color of at least one patch 25 included in at least one of the first patch groups 22A and 22B may be the same as the color of at least one patch 25 included in at least one of the second patch groups 24A and 24B.
  • a patch 25 having the same color as a patch 25 included in at least one of the first patch groups 22A and 22B may be included in at least one of the second patch groups 24A and 24B.
  • the plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B may have the same size, shape, and angle, respectively.
  • the plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B have the same size and angle. It has a rectangular shape.
  • the imaging surface 20S also includes a first patch group and a second patch group included in at least one combination of the first patch group and second patch group that are adjacent to each other in the circumferential direction of the first area 20A. Preferably, it includes a blank area located in between. "A combination of a first patch group and a second patch group that are adjacent to each other in the circumferential direction of the first region 20A" specifically refers to a combination of the first patch group 22A and the second patch group 24A, the first patch group 22A and the second patch group 24B, a combination of the first patch group 22B and the second patch group 24A, and a combination of the first patch group 22B and the second patch group 24B.
  • the imaging surface 20S includes four blank areas arranged between each of the first patch group and the second patch group (i.e., all of the four combinations described above) that are adjacent to each other in the circumferential direction of the first area 20A. Contains 26.
  • the photographing surface 20S includes a figure 27 arranged in a blank area 26 arranged between the first patch group and the second patch group.
  • This graphic 27 is used to indicate the range that should be included in the angle of view when the user photographs the calibration member 20 and the coloring member 30. Therefore, in order to make it easy to understand the range to be included in the angle of view, it is preferable that the photographing surface 20S includes four figures 27 arranged in each of the four blank areas 26, as shown in FIG. In the example shown in FIG. 3, the four figures 27 placed in each of the four blank areas 26 are similar to each other.
  • the photographed image 8 is photographed by the camera 11 at a photographing position where the four figures 27 placed in each of the blank areas 26 fit within the angle of view, the first patch group 22A and 22B and the second patch group 24A and 24B are formed. , and the coloring member 30 placed in the first area 20A can be photographed so as to fit within the angle of view.
  • the image representing the coloring member 30 included in the photographed image 8 (hereinafter referred to as the "coloring member image”) is affected by the photographing environment such as the lighting environment in which the photographing is performed, the characteristics of the camera 11, the photographing angle, and the photographing distance. .
  • the light irradiated onto the coloring member 30 has a large influence on the color tone of the coloring member image included in the photographed image 8.
  • the amount and wavelength of the light that is applied to the coloring member 30 during photographing is different depending on the photographing environment (hereinafter referred to as "photographing environment light”).
  • the coloring member images included in the photographed image 8 may have different hues.
  • the color tone of the coloring member image included in the photographed image 8 is affected by the photographing environment light.
  • the smartphone 10 of this exemplary embodiment performs control to emit photographing light F from the flash 12 to suppress the influence of photographing environment light.
  • the influence of environmental light on the color tone of a coloring member image included in a photographed image 8 is reduced.
  • the light emitted from the flash 12 and used for photographing the coloring member 30 is referred to as "photographing light” (photographing light F), and light emitted from natural light or workplace lighting, etc.
  • photography environment light Light based on the environment and not caused by the flash 12 is referred to as "photography environment light.”
  • the photographing light F for suppressing the influence of the photographing environment light for example, light having a larger amount of light than the photographing environment light can be mentioned. Further, when the illuminance of the photographing environment light is X lux, if the illuminance of the photographing light F is less than X lux, the influence of the photographing environment light becomes relatively large.
  • an actual value measured at the place where the coloring member 30 is photographed may be used, or an estimated value may be used, for example, based on the illuminance according to the illuminance standards specified by JIS etc. .
  • the illuminance standards specified by JIS etc. For example, according to the general lighting standards of the JIS Z9110 standard, for example, 2000 lux is required for instrument panels and control panels in control rooms, precision instruments, manufacturing of electronic parts, and extremely detailed work in printing factories; , 1000 lux for detailed visual work such as drafting room, sorting and inspection in a textile factory, typesetting and proofreading in a printing factory, and analysis in a chemical factory, and normal visual work in general manufacturing processes, etc. In this case, 500 lux is set as the illuminance standard.
  • the luminous flux of the photographing light F is preferably 200 lumens or more and 1000 lumens or less. Further, when the illuminance of the photographing environment light is 1000 lux, the luminous flux of the photographing light F is preferably 100 lumens or more and 500 lumens or less. Further, when the illuminance of the photographing environment light is 500 lux, the luminous flux of the photographing light F is preferably 50 lumens or more and 250 lumens or less.
  • the smartphone 10 includes a CPU (Central Processing Unit) 80, a nonvolatile storage section 82, and a memory 81 as a temporary storage area.
  • the smartphone 10 also includes a display 84 such as a liquid crystal display, an input section 88, a network I/F (Interface) 86, a camera 11, and a flash 12.
  • the CPU 80, storage unit 82, memory 81, display 84, input unit 88, network I/F 86, camera 11, and flash 12 are connected to each other via a bus 89 such as a system bus and a control bus so that they can exchange various information. has been done.
  • the storage unit 82 is realized by, for example, a storage medium such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), and a flash memory.
  • the storage unit 82 stores an irradiation control program 83A and a measurement program 83B.
  • the CPU 80 reads the irradiation control program 83A from the storage unit 82, loads it into the memory 81, and executes the loaded irradiation control program 83A. Further, the CPU 80 reads the measurement program 83B from the storage unit 82, expands it into the memory 81, and executes the expanded measurement program 83B.
  • the CPU 80 is an example of the processor of the control device of the present disclosure, and is also an example of the processor of the energy measurement device of the present disclosure.
  • the irradiation control program 83A of the present exemplary embodiment is an example of the control program of the present disclosure
  • the measurement program 83B is an example of the energy measurement program of the present disclosure.
  • the input unit 88 is for receiving user operations, and is, for example, a touch panel, buttons, keyboard, mouse, etc.
  • the camera 11 of this exemplary embodiment employs a touch panel display in which the display 84 and the input section 88 are integrated.
  • the network I/F 86 performs wired or wireless communication with the server 4 and other external devices (not shown).
  • the camera 11 has a plurality of sensors having different spectral sensitivities, and under the control of the CPU 80, the sensor photographs a subject and outputs an image signal of the photographed image 8.
  • the smartphone 10 includes an irradiation control section 90.
  • the CPU 80 functions as the irradiation control section 90 by executing the irradiation control program 83A.
  • the irradiation control unit 90 has a function of controlling irradiation of the flash 12 with the photographing light F for suppressing the influence of photographing environment light when photographing the coloring member 30 with the camera 11.
  • the camera 11 has at least two modes for photographing: a coloring member photographing mode in which the coloring member 30 is photographed, and a normal photographing mode in which normal photographing is performed.
  • the flash 12 is controlled by the irradiation control section 90.
  • the irradiation control section 90 controls the irradiation of the photographing light F by the flash 12.
  • the irradiation control unit 90 controls the irradiation of the photographing light F by the flash 12 in accordance with a user's instruction.
  • the forced light emission mode is a light emission mode in which the flash 12 is turned on to irradiate the photographic subject with the photographic light F regardless of the photographing environment light.
  • the normal light emission mode is a light emission mode in which the flash 12 is turned on according to the shooting environment light and the shooting light F is emitted onto the shooting subject. If the light intensity of the shooting environment light is sufficient, the flash 12 is not turned on. , the photographing light F is not irradiated onto the photographing subject.
  • the irradiation control unit 90 performs the shooting according to the set flash mode. Controls irradiation/non-irradiation of light F.
  • the user uses the input unit 88 to instruct the activation of the camera 11 and the shooting mode.
  • the smartphone 10 starts the camera 11.
  • the smartphone 10 sets the received shooting mode.
  • the irradiation control process shown in FIG. 6 is executed by the CPU 80 executing the irradiation control program 83A.
  • the irradiation control process is executed, for example, in response to activation of the camera 11.
  • step S10 the irradiation control unit 90 determines whether the photographing mode is a coloring member photographing mode in which photographing of the coloring member 30 is executed. If the set photographing mode is not the coloring member photographing mode, for example, if the normal photographing mode is set, the determination in step S10 becomes a negative determination, and the irradiation control process shown in FIG. 6 ends. In this case, since it is the normal photographing mode, the flash 12 is turned on in a light emission mode according to the user's instruction, and the photographing light F is emitted. On the other hand, if the set photographing mode is the coloring member photographing mode, the determination in step S10 is affirmative, and the process moves to step S12.
  • step S12 the irradiation control unit 90 sets the forced light emission mode as the light emission mode of the flash 12.
  • the forced flash mode is set in this way, as described above, when photographing is performed using the camera 11, the flash 12 is turned on and the photographing light F is irradiated onto the photographic subject. Therefore, a photographed image 8 is obtained in which the coloring member 30 is irradiated with the photographing light F.
  • the irradiation control process shown in FIG. 6 ends.
  • the smartphone 10 includes an acquisition section 92, a correction section 94, a derivation section 96, and a measurement control section 98.
  • the CPU 80 executes the measurement program 83B, the CPU 80 functions as the acquisition section 92, the correction section 94, the derivation section 96, and the measurement control section 98.
  • the acquisition unit 92 acquires a photographed image 8 including an image representing the calibration member 20 (hereinafter referred to as a “calibration member image”) and a coloring member image of the coloring member 30, taken by the camera 11.
  • a photographed image 8 including an image representing the calibration member 20 (hereinafter referred to as a “calibration member image”) and a coloring member image of the coloring member 30, taken by the camera 11.
  • the correction unit 94 extracts an image representing the frame 21 (hereinafter referred to as a "frame image") from the captured image 8, and corrects distortion, tilt, and size of the captured image 8 based on the shape of the extracted frame image. Correct at least one.
  • a method for extracting a frame image a known method using edge extraction processing in an image or the like can be applied as appropriate. Specifically, when the frame 21 is rectangular, the frame image is also rectangular, and the correction unit 94 performs projective transformation, affine transformation, etc. so that the four corners of the frame image extracted from the photographed image 8 are each 90 degrees. to correct the distortion, tilt, and size of the photographed image 8.
  • the correction unit 94 performs calibration on the captured image 8 acquired by the acquisition unit 92 using an image representing the patch 25 included in the captured image 8 (hereinafter referred to as a “patch image”). Specifically, the correction unit 94 corrects the captured image 8 based on the color of the patch image of the patch 25 included in the first patch group 22A and 22B and the second patch group 24A and 24 included in the captured image 8. The color (for example, at least one of hue and density) of the included coloring member image is calibrated. As a calibration method, any known method can be applied as appropriate.
  • a reference color is stored in advance in the storage unit 82 for each patch 25 included in the calibration member 20, and the correction unit 94 adjusts the color of the photographed image 8 to adjust the color of the plurality of patches included in the photographed image 8. Match the color of each image to its respective reference color.
  • each of the first patch groups 22A and 22B and the second patch groups 24A and 24B may include patches 25 of the same color.
  • the patches 25 that are originally formed in the same color may appear to have different colors on the photographed image 8 due to the influence of the photographing environment such as the lighting environment in which the photograph is taken, the characteristics of the camera 11, the photographing angle, and the photographing distance.
  • the correction unit 94 may adjust the color of the photographed image 8 so that the average color of the patch images corresponding to the patches 25 formed of the same color matches the reference color.
  • the correction unit 94 may adjust the color of the photographed image 8 so that the color of the patch image closest to the reference color among the patches 25 formed with the same color matches the reference color. good.
  • correction unit 94 may perform calibration using some of the patch images of the plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B. .
  • the correction unit 94 may change the patch 25 used for calibration depending on the type of coloring member 30.
  • prescales as an example of the coloring member 30 are manufactured in a plurality of types with different measurable pressure ranges, such as those for low pressure, medium pressure, and high pressure.
  • a thermoscale, a UV scale, etc. can also be used in addition to the prescale.
  • the correction unit 94 adjusts the type of the coloring member 30 according to the coloring member image among the patch images of the plurality of patches 25 included in the first patch group 22A and 22B and the second patch group 24A and 24B. Calibration may be performed using patch images of some of the patches 25 determined in advance. The correspondence between the type of coloring member 30 and the patch 25 used for calibration may be stored in the storage unit 82 in advance, for example.
  • the type of the photographed coloring member 30 may be inputted by the user via the input unit 88, or an identification code indicating the type of the coloring member 30 may be attached to the coloring member 30, and the correction unit 94 may input the type of the coloring member 30 photographed. It may be specified by reading the identification code from the image 8.
  • the correction unit 94 corrects the distortion, tilt, size, and color of the photographed image 8, thereby adjusting the lighting environment in which the photograph is performed, the characteristics of the camera 11, etc. that may occur when the user performs photographing. It is possible to correct the influence of the photographing environment, such as the photographing angle and photographing distance.
  • the influence of the photographing environment light is suppressed by performing photographing with the camera 11 while the coloring member 30 is irradiated with the photographing light F by the flash 12.
  • the captured image 8 captured by the camera 11 becomes an image in which the influence of the above-mentioned shooting environment, particularly the shooting environment light, is reduced. Therefore, according to the present exemplary embodiment, it is possible to appropriately reduce or eliminate the process of correcting the coloring member image described above, and the processing load related to the correction process can be reduced.
  • the deriving unit 96 derives the amount of energy applied to the coloring member 30 based on the color of the coloring member image after calibration by the correction unit 94. Specifically, data in which the relationship between the amount of energy applied to the coloring member 30 and the color of the coloring member 30 is predetermined is stored in advance in the storage unit 82, and the deriving unit 96 uses the data. , the color of the coloring member image included in the photographed image 8 may be converted into an amount of energy. Note that data in which the relationship between the amount of energy applied to the coloring member 30 and the color of the coloring member 30 is determined in advance may be prepared in advance for each type of coloring member 30 and stored in the storage unit 82.
  • the derivation unit 96 may derive various indicators regarding the amount of energy applied to the coloring member 30.
  • Various indicators include, for example, the energy distribution obtained by deriving the amount of energy for each pixel of the colored image corresponding to the colored area of the colored member 30 (hereinafter referred to as "colored area"), and the energy amount of the colored area. These are representative values such as the maximum value, minimum value, average value, and median value.
  • the area of the coloring region the proportion of the area of the coloring region whose energy amount is within a predetermined range, the uniformity of the energy amount of the coloring region, and the load of the coloring region (area of the coloring region and energy product of the average values of quantities), etc.
  • Another example is the degree of agreement or deviation from the standard when a standard is predetermined regarding the degree of coloring (ie, energy amount and energy distribution) of the coloring member 30.
  • the measurement control unit 98 controls the display 84 to display the photographed image 8 whose distortion, inclination, size, and color have been corrected by the correction unit 94 and various indicators related to the energy amount derived by the derivation unit 96. conduct.
  • FIG. 7 shows an example of a screen D displayed on the display 84 by the measurement control unit 98. On the screen D, the coloring member image 31 in the photographed image 8 and various indicators related to the amount of energy derived from the coloring member image 31 are displayed.
  • the measurement control unit 98 may extract the coloring member image 31 from the photographed image 8 and control the image to be displayed on the display 84.
  • the "pressure area” on screen D shown in FIG. 7 means the area of the above-mentioned coloring region.
  • Average pressure means the average value of the energy amount in the above coloring region.
  • Load means the product of pressurized area and average pressure.
  • Uniformity of pressure values means uniformity of pressure values in the coloring region.
  • the measurement control unit 98 may receive input of supplementary information regarding the photographed image 8.
  • Screen D displays the type of coloring member 30, pressure type, room temperature, and humidity as an example of additional information regarding the photographed image 8, and displays a pull-down menu P for accepting input thereof.
  • pressure types include instantaneous pressure, which indicates the magnitude of the pressure instantaneously applied to the prescale, and continuous pressure, which indicates the time integral of the magnitude of the pressure continuously applied to the prescale, etc.
  • additional information includes identification information of the calibration member 20, the coloring member 30, the user who applied energy to the coloring member 30, the user who photographed the coloring member 30, and the user's evaluation result regarding the amount of energy. , and various test conditions.
  • the measurement control unit 98 transmits at least one of the photographed image 8 before correction by the correction unit 94, the photographed image 8 after correction, the coloring member image 31, and the coloring member image 31 after correction to the network I/F 86. to the server 4 via. Furthermore, the measurement control unit 98 transmits to the server 4 various indicators related to the amount of energy derived by the derivation unit 96 and the incidental information inputted.
  • the server 4 stores information received from the smartphone 10 (measurement control unit 98) in the database 6 in association with the captured image 8.
  • the measurement process shown in FIG. 8 is executed by the CPU 80 executing the measurement program 83B.
  • the measurement process is executed, for example, when the user issues an instruction to start execution via the input unit 88.
  • step S100 the acquisition unit 92 acquires the photographed image 8, which is photographed by the camera 11 and includes the calibration member image of the calibration member 20 and the coloring member image 31 of the coloring member 30.
  • the correction unit 94 extracts the frame image of the frame 21 from the captured image 8 acquired in step S100, and corrects the distortion, inclination, and tilt of the captured image 8 based on the shape of the extracted frame image. Correct at least one of the sizes.
  • the correction unit 94 calibrates the color of the photographed image 8 (particularly the coloring member image 31 included in the photographed image 8) using the patch image included in the photographed image 8 corrected in step S102. I do.
  • the derivation unit 96 derives the amount of energy applied to the coloring member 30 based on the color of the coloring member image 31 calibrated in step S104 above.
  • the measurement control unit 98 controls the display 84 to display the coloring member image 31 calibrated in the above step S104 and the energy amount derived in the above step S106. Through this control, screen D shown in FIG. 7 is displayed on the display 84.
  • the process of step S108 ends, the information processing shown in FIG. 8 ends.
  • the irradiation control unit 90 of the smartphone 10 of the above embodiment suppresses the influence of the photographing environment light when the camera 11 photographs the coloring member 30 that develops color with a density distribution according to the amount of applied energy. Control is performed to irradiate photographing light F from the flash 12 for the purpose of photographing.
  • the smartphone 10 of the above embodiment when photographing the coloring member 30, the flash 12 irradiates the photographing light F onto the coloring member 30, so that the influence of the photographing environment light can be suppressed. . Therefore, according to the smartphone 10 of the above embodiment, when photographing a coloring member for measuring energy, it is possible to obtain a photographed image in which the influence of the photographing environment light is reduced.
  • the photographing light F is forcedly, that is, always irradiated from the flash 12 onto the photographing target (coloring member 30) during photographing by the camera 11. It was.
  • the invention is not limited to this embodiment, and even in the color-forming member photographing mode, if the user inputs an instruction to prohibit the irradiation of the photographing light F through the input unit 88, the irradiation control unit 90 controls the irradiation of the photographing light F from the flash 12. Control may be performed to prohibit irradiation.
  • the photographing device is not limited to the camera 11 provided in the smartphone 10.
  • a digital camera or the like provided separately from the smartphone 10 may be used as the photographing device.
  • the photographing device and the energy measuring device may be separate bodies.
  • the irradiation device is not limited to the flash 12 provided in the smartphone 10.
  • a light provided separately from the smartphone 10 may be used as the irradiation device.
  • the smartphone 10 is applied as an example of the control device and energy measurement device of the present disclosure has been described above, each of the control device and the energy measurement device is not limited to the smartphone 10.
  • a tablet terminal, a wearable terminal, a personal computer, etc. may be applied as each of the control device and the energy measurement device.
  • the control device of this indication and the energy measurement device were integrated as the smart phone 10 above, the control device and the energy measurement device of this indication may be separate bodies.
  • the hardware of processing units such as the irradiation control unit 90, the acquisition unit 92, the correction unit 94, the derivation unit 96, and the measurement control unit 98
  • the various processors mentioned above include the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, as well as circuits that are manufactured after manufacturing, such as FPGA (Field Programmable Gate Array).
  • a programmable logic device which is a processor whose configuration can be changed, and a dedicated electrical device, which is a processor with a circuit configuration specifically designed to execute a specific process, such as an ASIC (Application Specific Integrated Circuit) Includes circuits, etc.
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs, or a combination of a CPU and an FPGA). combination). Further, the plurality of processing units may be configured with one processor.
  • one processor is configured with a combination of one or more CPUs and software, as typified by computers such as a client and a server.
  • a processor functions as multiple processing units.
  • processors that use a single IC (Integrated Circuit) chip, such as System On Chip (SoC), which implements the functions of an entire system including multiple processing units. be.
  • SoC System On Chip
  • various processing units are configured using one or more of the various processors described above as a hardware structure.
  • circuitry that is a combination of circuit elements such as semiconductor elements can be used.
  • each of the irradiation control program 83A and the measurement program 83B is stored (installed) in the storage unit 82 in advance, but the present invention is not limited to this.
  • Each of the irradiation control program 83A and the measurement program 83B is recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. It may also be provided in a different format.
  • each of the irradiation control program 83A and the measurement program 83B may be downloaded from an external device via a network. That is, the program (program product) described in this exemplary embodiment may be provided in a recording medium or may be distributed from an external computer.

Abstract

A control device comprising at least one processor, wherein the processor performs control to cause an imaging light to be shined from an illumination device, said imaging light being for suppressing the influence of imaging environment light when an imaging device is used to image a coloring member that colors in a darkness distribution corresponding to the quantity of applied energy.

Description

制御装置、エネルギー測定装置、制御方法、エネルギー測定方法、制御プログラム、及びエネルギー測定プログラムControl device, energy measurement device, control method, energy measurement method, control program, and energy measurement program
 本開示は、制御装置、エネルギー測定装置、制御方法、エネルギー測定方法、制御プログラム、及びエネルギー測定プログラムに関する。 The present disclosure relates to a control device, an energy measurement device, a control method, an energy measurement method, a control program, and an energy measurement program.
 従来、印加された圧力、熱、及び紫外線等のエネルギーに応じて発色する発色部材を用いて、エネルギー量を測定する技術が知られている。このような発色部材としては、例えば、印加される圧力に応じた発色濃度が得られるプレスケール(登録商標)(富士フイルム株式会社製)がある。 Conventionally, there is a known technique for measuring the amount of energy using a coloring member that develops color depending on energy such as applied pressure, heat, and ultraviolet rays. As such a coloring member, there is, for example, Prescale (registered trademark) (manufactured by Fuji Film Co., Ltd.), which can obtain a coloring density depending on the applied pressure.
 例えば、国際公開2021/235364号には、キャリブレーションシート上に圧力測定シート(例えばプレスケール)を配置して撮影して得られた撮影画像に含まれる発色部材を表す画像に基づいて、圧力測定シートの濃度値を圧力値に変換する技術が記載されている。 For example, in International Publication No. 2021/235364, pressure measurement is performed based on an image representing a colored member included in a photographed image obtained by placing a pressure measurement sheet (for example, prescale) on a calibration sheet. Techniques are described for converting sheet density values into pressure values.
 発色部材を撮影した撮影画像は、撮影が行われる照明環境、撮影装置の特性、撮影角度、及び撮影距離等の撮影環境の影響を受けることがあるため、測定精度を高めるためには、撮影環境の影響を抑制することが望まれている。 Photographed images of colored members may be affected by the photographing environment, such as the lighting environment in which the photograph is taken, the characteristics of the photographing device, the photographing angle, and the photographing distance. Therefore, in order to improve measurement accuracy, it is necessary to It is desired to suppress the impact of
 本開示は、エネルギーの測定を行うための発色部材の撮影において、撮影環境光の影響が抑制された撮影画像を得ることができる制御装置、エネルギー測定装置、制御方法、エネルギー測定方法、制御プログラム、及びエネルギー測定プログラムを提供する。 The present disclosure provides a control device, an energy measurement device, a control method, an energy measurement method, a control program, and a control device, an energy measurement device, a control method, an energy measurement method, a control program, and an energy measurement device that can obtain a captured image in which the influence of shooting environment light is suppressed when photographing a color-forming member for measuring energy. and energy measurement programs.
 本開示の第1の態様の制御装置は、少なくとも1つのプロセッサを備え、プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う。 A control device according to a first aspect of the present disclosure includes at least one processor, and when a coloring member that develops color with a density distribution according to an applied energy amount is photographed by a photographing device, the processor controls the amount of photographing environment light. Control is performed to irradiate photographing light from the irradiation device to suppress the influence.
 本開示の第2の態様は、第1の態様において、プロセッサは、撮影光の光量にかかわらず、照射装置により撮影光を照射させる制御を行ってもよい。 In a second aspect of the present disclosure, in the first aspect, the processor may control the irradiation device to emit photographing light regardless of the amount of photographing light.
 本開示の第3の態様は、第1の態様において、照射装置が照射する撮影光の光量は、撮影環境光の光量よりも大きくてもよい。 In a third aspect of the present disclosure, in the first aspect, the amount of photographing light emitted by the irradiation device may be larger than the amount of photographing environment light.
 本開示の第4の態様は、第1の態様において、撮影環境光による照度がXルクスの場合、撮影光の光束は、0.1×Xルーメン以上、0.5×Xルーメン以下であってもよい。 A fourth aspect of the present disclosure is that in the first aspect, when the illuminance due to the photographing environment light is X lux, the luminous flux of the photographing light is 0.1×X lumens or more and 0.5×X lumens or less. Good too.
 本開示の第5の態様は、第1の態様において、プロセッサは、発色部材を撮影する場合は、照射装置から撮影光を照射させる制御を行い、発色部材以外を撮影する場合は、撮影環境光に応じて照射装置から撮影光を照射させる制御を行ってもよい。 In a fifth aspect of the present disclosure, in the first aspect, the processor controls the irradiation device to emit photographing light when photographing the color-forming member, and controls the photographing environment light when photographing the color-forming member. Control may be performed to irradiate photographing light from the irradiation device depending on the situation.
 本開示の第6の態様は、第1の態様において、プロセッサは、照射装置から撮影光の照射を禁止する照射禁止指示を受け付けた場合、撮影光を照射装置から照射させる制御に代えて、撮影光の照射を禁止する制御を行ってもよい。 A sixth aspect of the present disclosure is that in the first aspect, when the processor receives an irradiation prohibition instruction that prohibits the irradiation of photographing light from the irradiation device, the processor controls the irradiation of the photographing light instead of controlling the irradiation device to irradiate the photographing light. Control may be performed to prohibit light irradiation.
 本開示の第7の態様のエネルギー測定装置は、少なくとも1つのプロセッサを備え、プロセッサは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、照射装置から撮影光を発色部材に対して照射させた状態で撮影された発色部材を表す発色部材画像を取得し、発色部材に印加されたエネルギー量と発色部材画像の色との関係が予め定められたデータを用いて、発色部材画像の色に基づき、発色部材に印加されたエネルギー量を導出する。 An energy measuring device according to a seventh aspect of the present disclosure includes at least one processor, and when a coloring member that develops a color with a density distribution according to the applied energy amount is photographed by a photographing device, A control device that controls the irradiation of photographing light from the irradiation device in order to suppress the effects of coloring acquires a color-forming member image representing the color-forming member photographed with the photographing light irradiated from the irradiation device onto the color-forming member. Then, the amount of energy applied to the coloring member is derived based on the color of the coloring member image using data in which the relationship between the amount of energy applied to the coloring member and the color of the coloring member image is determined in advance.
 本開示の第8の態様の制御方法は、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う処理をコンピュータが実行する方法である。 A control method according to an eighth aspect of the present disclosure provides a method for irradiating photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device. This is a method in which a computer executes the process of controlling the irradiation from the device.
 本開示の第9の態様のエネルギー測定方法は、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、照射装置から撮影光を発色部材に対して照射させた状態で撮影された発色部材を表す発色部材画像を取得し、発色部材に印加されたエネルギー量と発色部材画像の色との関係が予め定められたデータを用いて、発色部材画像の色に基づき、発色部材に印加されたエネルギー量を導出する処理をコンピュータが実行する方法である。 An energy measuring method according to a ninth aspect of the present disclosure is such that when a coloring member that develops color with a density distribution according to the amount of applied energy is photographed using a photographing device, photographing light is used to suppress the influence of photographing environment light. A control device that controls the irradiation from the irradiation device acquires a coloring member image representing the coloring member photographed while the coloring member is irradiated with photographic light from the irradiation device, and calculates the amount of energy applied to the coloring member. In this method, a computer executes a process of deriving the amount of energy applied to the coloring member based on the color of the coloring member image, using data in which the relationship between the color of the coloring member image and the color of the coloring member image is determined in advance.
 本開示の第10の態様の制御プログラムは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う処理をコンピュータに実行させる。 A control program according to a tenth aspect of the present disclosure irradiates photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device. The computer executes the process of controlling the irradiation from the device.
 本開示の第11の態様のエネルギー測定プログラムは、印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、照射装置から撮影光を発色部材に対して照射させた状態で撮影された発色部材を表す発色部材画像を取得し、発色部材に印加されたエネルギー量と発色部材画像の色との関係が予め定められたデータを用いて、発色部材画像の色に基づき、発色部材に印加されたエネルギー量を導出する処理をコンピュータに実行させる。 An energy measurement program according to an eleventh aspect of the present disclosure provides a method for controlling photographing light for suppressing the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device. A control device that controls the irradiation from the irradiation device acquires a coloring member image representing the coloring member photographed while the coloring member is irradiated with photographic light from the irradiation device, and calculates the amount of energy applied to the coloring member. A computer is caused to perform a process of deriving the amount of energy applied to the coloring member based on the color of the coloring member image using data in which a relationship between the coloring member image and the color of the coloring member image is determined in advance.
 上記態様によれば、本開示の制御装置、エネルギー測定装置、制御方法、エネルギー測定方法、制御プログラム、及びエネルギー測定プログラムは、エネルギーの測定を行うための発色部材の撮影において、撮影環境光の影響が抑制された撮影画像を得ることができる。 According to the above aspects, the control device, the energy measurement device, the control method, the energy measurement method, the control program, and the energy measurement program according to the present disclosure are configured to be able to detect the influence of the photographing environment light in photographing a color-forming member for measuring energy. It is possible to obtain a photographed image in which the effects are suppressed.
例示的実施形態のエネルギー測定システムにおける全体の構成の一例を概略的に表した構成図である。FIG. 1 is a configuration diagram schematically showing an example of the overall configuration of an energy measurement system according to an exemplary embodiment. 撮影画像の撮影の様子を示す概略図である。FIG. 3 is a schematic diagram showing how a photographed image is photographed. キャリブレーション部材の一例を示す図である。It is a figure showing an example of a calibration member. スマートフォンのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of a smartphone. スマートフォンの機能的な構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a functional configuration of a smartphone. 照射制御処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of irradiation control processing. ディスプレイに表示される画面の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a screen displayed on a display. 測定処理の一例を示すフローチャートである。It is a flowchart which shows an example of measurement processing.
 以下、図面を参照して本開示の例示的実施形態を詳細に説明する。なお、本例示的実施形態は本開示の技術を限定するものではない。 Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the drawings. Note that this exemplary embodiment does not limit the technology of the present disclosure.
 まず、本例示的実施形態のエネルギー測定システムにおける、全体の構成の一例について説明する。図1には、本例示的実施形態のエネルギー測定システム1における、全体の構成の一例を表す構成図が示されている。図1に示すように、本例示的実施形態のエネルギー測定システム1は、サーバ4と、データベース6と、スマートフォン10と、を備える。サーバ4とスマートフォン10とは、有線又は無線のネットワークを介して互いに通信可能な状態で接続されている。 First, an example of the overall configuration of the energy measurement system of this exemplary embodiment will be described. FIG. 1 shows a configuration diagram showing an example of the overall configuration of an energy measurement system 1 according to the present exemplary embodiment. As shown in FIG. 1, the energy measurement system 1 of this exemplary embodiment includes a server 4, a database 6, and a smartphone 10. The server 4 and the smartphone 10 are connected to each other via a wired or wireless network so that they can communicate with each other.
 本例示的実施形態のエネルギー測定システム1は、圧力、熱、及び紫外線等のエネルギーが印加されると印加されたエネルギー量に応じた濃度分布で発色する発色部材30を用いて、エネルギー量を測定するためのシステムである。具体的には、スマートフォン10のフラッシュ12を点灯させて撮影光Fを照射させた状態で、カメラ11によりエネルギーが印加された後の発色部材30を撮影し、撮影によって得られた撮影画像8から発色部材30に印加されたエネルギー量を導出する。本例示的実施形態のスマートフォン10のカメラ11が本開示の撮影装置の一例であり、フラッシュ12が照射装置の一例である。また、本開示のスマートフォン10が本開示の制御装置及びエネルギー測定装置の一例である。 The energy measurement system 1 of this exemplary embodiment measures the amount of energy using a coloring member 30 that develops color with a density distribution depending on the amount of applied energy when energy such as pressure, heat, and ultraviolet rays is applied. It is a system for Specifically, with the flash 12 of the smartphone 10 turned on and the photographing light F irradiated, the coloring member 30 to which energy has been applied is photographed by the camera 11, and from the photographed image 8 obtained by photographing. The amount of energy applied to the coloring member 30 is derived. The camera 11 of the smartphone 10 of this exemplary embodiment is an example of the photographing device of the present disclosure, and the flash 12 is an example of the irradiation device. Furthermore, the smartphone 10 of the present disclosure is an example of the control device and energy measurement device of the present disclosure.
 発色部材30としては、例えば、印加された圧力量に応じた濃度分布で発色するプレスケール(登録商標)(富士フイルム株式会社製)を適用することができる。プレスケールは、無色染料が含まれるマイクロカプセルを含む発色剤と、顕色剤とがシート状の支持体に塗布されたものである。プレスケールに圧力が印加されると、マイクロカプセルが破壊されて無色染料が顕色剤に吸着し、発色する。また、発色剤は、大きさ及び強度が異なる複数種のマイクロカプセルを含有しているため、印加される圧力に応じて破壊されるマイクロカプセルの量が異なり、発色濃度も異なる。したがって、発色濃度を観察することにより、プレスケールに印加された圧力の大きさ及び圧力分布等を測定することができる。 As the coloring member 30, for example, Prescale (registered trademark) (manufactured by Fujifilm Corporation), which develops color with a density distribution depending on the amount of applied pressure, can be used. Prescale is a sheet-like support coated with a coloring agent containing microcapsules containing a colorless dye and a color developer. When pressure is applied to the prescale, the microcapsules are destroyed and the colorless dye is adsorbed to the developer, producing color. Furthermore, since the coloring agent contains multiple types of microcapsules having different sizes and strengths, the amount of microcapsules destroyed varies depending on the applied pressure, and the coloring density also varies. Therefore, by observing the color density, the magnitude and pressure distribution of the pressure applied to the prescale can be measured.
 また例えば、発色部材30としては、印加された熱量に応じた濃度分布で発色するサーモスケール(商品名)(富士フイルム株式会社製)、及び、印加された紫外線の光量に応じた濃度分布で発色するUVスケール(商品名)(富士フイルム株式会社製)等を適用してもよい。 For example, the coloring member 30 may include Thermoscale (trade name) (manufactured by Fujifilm Corporation), which develops color with a density distribution depending on the amount of heat applied, and a thermoscale, which develops color with a density distribution depending on the amount of ultraviolet light applied. UV scale (trade name) (manufactured by Fuji Film Corporation) or the like may be applied.
 本例示的実施形態のサーバ4は、汎用のコンピュータにデータベース管理システム(DataBase Management System:DBMS)の機能を提供するソフトウェアプログラムがインストールされたものである。サーバ4は、スマートフォン10から、撮影画像8、及び撮影画像8から導出されたエネルギー量を取得し、データベース6に格納する。なお、サーバ4とデータベース6との接続形態は特に限定されず、例えば、データバスによって接続される形態でもよいし、NAS(Network Attached Storage)及びSAN(Storage Area Network)等のネットワークを介して接続される形態でもよい。 The server 4 of this exemplary embodiment is a general-purpose computer in which a software program that provides the functionality of a database management system (DBMS) is installed. The server 4 acquires the captured image 8 and the amount of energy derived from the captured image 8 from the smartphone 10 and stores it in the database 6. Note that the connection form between the server 4 and the database 6 is not particularly limited; for example, they may be connected via a data bus, or may be connected via a network such as NAS (Network Attached Storage) or SAN (Storage Area Network). It may also be in the form of
 本例示的実施形態のエネルギー測定システム1では、図2に示すように、キャリブレーション部材20の上に載置された発色部材30に対して、スマートフォン10のフラッシュ12から撮影光Fを照射した状態で、スマートフォン10のカメラ11により撮影を行う。これによりスマートフォン10は、キャリブレーション部材20と発色部材30とを含む撮影画像8を取得する。このようにユーザUが撮影を行う場合、撮影画像8は、撮影が行われる照明環境、カメラ11の特性、撮影角度、及び撮影距離等の影響を受けることがある。キャリブレーション部材20は、撮影画像8におけるこれらの影響を補正するためのものである。 In the energy measurement system 1 of this exemplary embodiment, as shown in FIG. 2, the coloring member 30 placed on the calibration member 20 is irradiated with the photographing light F from the flash 12 of the smartphone 10. Then, a photograph is taken using the camera 11 of the smartphone 10. Thereby, the smartphone 10 acquires a photographed image 8 including the calibration member 20 and the coloring member 30. When the user U takes a picture in this way, the photographed image 8 may be affected by the lighting environment in which the picture is taken, the characteristics of the camera 11, the photographing angle, the photographing distance, and the like. The calibration member 20 is for correcting these influences on the photographed image 8.
 図3を参照して、本例示的実施形態のキャリブレーション部材20について詳細に説明する。キャリブレーション部材20は、例えば、紙及び樹脂等を含んで構成される支持体が、シート状又は板状に形成されたものである。なお、図3は、キャリブレーション部材20の上に発色部材30が載置された状態を示しており、キャリブレーション部材20における、発色部材30が載置された状態で撮影される面(以下、「撮影面20S」という)が示されている。 With reference to FIG. 3, the calibration member 20 of this exemplary embodiment will be described in detail. The calibration member 20 is, for example, a support made of paper, resin, etc., and formed into a sheet or plate shape. Note that FIG. 3 shows a state in which the coloring member 30 is placed on the calibration member 20, and the surface of the calibration member 20 that is photographed with the coloring member 30 placed thereon (hereinafter referred to as (referred to as "imaging surface 20S") is shown.
 図3に示すように、撮影面20Sは、発色部材30が載置される第1領域20Aと、複数のパッチ25が配置された第2領域20Bとを含む。一例として本例示的実施形態の第1領域20Aは撮影面20Sの中央の領域であり、枠21により囲われている。また、第2領域20Bは、撮影面20Sにおける第1領域20Aの周囲の領域である。換言すると、第2領域20Bは、撮影面20Sにおける枠21外の領域である。 As shown in FIG. 3, the imaging surface 20S includes a first area 20A where the coloring member 30 is placed and a second area 20B where a plurality of patches 25 are placed. As an example, the first area 20A in this exemplary embodiment is a central area of the imaging surface 20S, and is surrounded by a frame 21. Further, the second area 20B is an area around the first area 20A on the imaging surface 20S. In other words, the second area 20B is an area outside the frame 21 on the imaging surface 20S.
 本例示的実施形態のエネルギー測定システム1のスマートフォン10は、キャリブレーション部材20の撮影面20Sに示された枠21によって、撮影画像8の歪み、傾き、及び大きさの補正を行う(詳細後述)。特に、枠21(すなわち第1領域20A)が矩形であれば、撮影画像8の歪み、傾き、及び大きさの補正の精度を向上することができるため、枠21は矩形であることが好ましい。 The smartphone 10 of the energy measurement system 1 of this exemplary embodiment corrects the distortion, tilt, and size of the captured image 8 using the frame 21 shown on the imaging surface 20S of the calibration member 20 (details will be described later). . In particular, if the frame 21 (that is, the first area 20A) is rectangular, the accuracy of correcting the distortion, tilt, and size of the photographed image 8 can be improved, so it is preferable that the frame 21 is rectangular.
 また、撮影面20Sは、矩形状の枠21の各辺に沿って延在する複数のパッチ25を含む。図3に示すように、一例として本例示的実施形態の第2領域20Bには、一対の第1パッチ群22A及び22Bが、第1領域20Aを挟んで対向する位置に配置されている。第1パッチ群22A及び22Bの少なくとも一方は、色が異なる複数のパッチ25を含んでいる。例えば、第1パッチ群22A及び22Bの少なくとも一方は、色相が同一で濃度が異なる複数のパッチ25を含んでいてもよい。換言すれば、第1パッチ群22A及び22Bの少なくとも一方に含まれる複数のパッチ25の色は、それぞれ異なっていてもよい。 Furthermore, the photographing surface 20S includes a plurality of patches 25 extending along each side of the rectangular frame 21. As shown in FIG. 3, as an example, in the second region 20B of this exemplary embodiment, a pair of first patch groups 22A and 22B are arranged at opposing positions with the first region 20A interposed therebetween. At least one of the first patch groups 22A and 22B includes a plurality of patches 25 of different colors. For example, at least one of the first patch groups 22A and 22B may include a plurality of patches 25 having the same hue and different density. In other words, the colors of the plurality of patches 25 included in at least one of the first patch groups 22A and 22B may be different from each other.
 第1パッチ群22Aに含まれるパッチ25の色及び数は、第1パッチ群22Bに含まれるパッチ25の色及び数と同じであってもよいし、異なっていてもよい。一例として本例示的実施形態のキャリブレーション部材20では、図3に示すように、第1パッチ群22Aに含まれるパッチ25の色及び数と、第1パッチ群22Bに含まれるパッチ25の色及び数とを同一としているが、各色のパッチ25の配置が異なっている。また、図3に示すように本例示的実施形態のキャリブレーション部材20では、第1パッチ群22A及び22Bは、X方向及びY方向に複数のパッチ25が配列されている。なお、X方向に配列されたパッチ25の数(図3の例では16個)が、Y方向に配列されたパッチ25の数(図3の例では2個)よりも多いことが好ましい。 The color and number of patches 25 included in the first patch group 22A may be the same as or different from the color and number of patches 25 included in the first patch group 22B. As an example, in the calibration member 20 of this exemplary embodiment, as shown in FIG. Although the numbers are the same, the arrangement of the patches 25 of each color is different. Further, as shown in FIG. 3, in the calibration member 20 of this exemplary embodiment, the first patch groups 22A and 22B include a plurality of patches 25 arranged in the X direction and the Y direction. Note that it is preferable that the number of patches 25 arranged in the X direction (16 in the example of FIG. 3) is greater than the number of patches 25 arranged in the Y direction (2 in the example of FIG. 3).
 また、図3に示すように、一例として本例示的実施形態の第2領域20Bには、一対の第2パッチ群24A及び24Bが、第1領域20Aを挟んで対向する位置に配置されている。第2パッチ群24A及び24Bの少なくとも一方は、色が異なる複数のパッチ25を含んでいる。例えば、第2パッチ群24A及び24Bの少なくとも一方は、色相が同一で濃度が異なる複数のパッチ25を含んでいてもよい。換言すれば、第2パッチ群24A及び24Bの少なくとも一方に含まれる複数のパッチ25の色は、それぞれ異なっていてもよい。 Further, as shown in FIG. 3, as an example, in the second region 20B of this exemplary embodiment, a pair of second patch groups 24A and 24B are arranged at opposing positions with the first region 20A interposed therebetween. . At least one of the second patch groups 24A and 24B includes a plurality of patches 25 of different colors. For example, at least one of the second patch groups 24A and 24B may include a plurality of patches 25 having the same hue and different density. In other words, the colors of the plurality of patches 25 included in at least one of the second patch groups 24A and 24B may be different from each other.
 第2パッチ群24Aに含まれるパッチ25の色及び数は、第2パッチ群24Bに含まれるパッチ25の色及び数と同じであってもよいし、異なっていてもよい。一例として本例示的実施形態のキャリブレーション部材20では、図3に示すように、第2パッチ群24Aに含まれるパッチ25の色及び数と、第2パッチ群24Bに含まれるパッチ25の色及び数とを同一としているが、各色のパッチ25の配置が異なっている。また、図3に示した本例示的実施形態のキャリブレーション部材20では、第2パッチ群24A及び24Bは、X方向及びY方向に複数のパッチ25が配列されている。なお、Y方向に配列されたパッチ25の数(図3の例では24個)が、X方向に配列されたパッチ25の数(図3の例では2個)よりも多いことが好ましい。 The color and number of patches 25 included in the second patch group 24A may be the same as or different from the color and number of patches 25 included in the second patch group 24B. As an example, in the calibration member 20 of this exemplary embodiment, as shown in FIG. Although the numbers are the same, the arrangement of the patches 25 of each color is different. Further, in the calibration member 20 of this exemplary embodiment shown in FIG. 3, the second patch groups 24A and 24B include a plurality of patches 25 arranged in the X direction and the Y direction. Note that it is preferable that the number of patches 25 arranged in the Y direction (24 in the example of FIG. 3) is greater than the number of patches 25 arranged in the X direction (2 in the example of FIG. 3).
 第1パッチ群22A及び22Bの各々に含まれるパッチ25の数と、第2パッチ群24A及び24Bの各々に含まれるパッチ25の数とは同一であってもよいし、異なっていてもよい。図3では、第1パッチ群22A及び22Bの各々に含まれるパッチ25の数は32個であり、第2パッチ群24A及び24Bの各々に含まれるパッチ25の数は48個である。 The number of patches 25 included in each of the first patch groups 22A and 22B and the number of patches 25 included in each of the second patch groups 24A and 24B may be the same or different. In FIG. 3, the number of patches 25 included in each of the first patch groups 22A and 22B is 32, and the number of patches 25 included in each of the second patch groups 24A and 24B is 48.
 第1パッチ群22A及び22Bの少なくとも一方に含まれる少なくとも1つのパッチ25の色は、第2パッチ群24A及び24Bの少なくとも一方に含まれる少なくとも1つのパッチ25の色と同一であってもよい。換言すれば、第1パッチ群22A及び22Bの少なくとも一方に含まれるパッチ25と同一の色のパッチ25が、第2パッチ群24A及び24Bの少なくとも一方に含まれていてもよい。第1パッチ群22A及び22Bの少なくとも一方と第2パッチ群24A及び24Bの少なくとも一方とに同一の色のパッチ25が含まれることによって、スマートフォン10による撮影画像8のキャリブレーションの精度を向上することができる(詳細後述)。 The color of at least one patch 25 included in at least one of the first patch groups 22A and 22B may be the same as the color of at least one patch 25 included in at least one of the second patch groups 24A and 24B. In other words, a patch 25 having the same color as a patch 25 included in at least one of the first patch groups 22A and 22B may be included in at least one of the second patch groups 24A and 24B. By including patches 25 of the same color in at least one of the first patch groups 22A and 22B and at least one of the second patch groups 24A and 24B, the accuracy of calibration of the captured image 8 by the smartphone 10 is improved. (Details will be explained later).
 第1パッチ群22A及び22B、並びに第2パッチ群24A及び24Bの各々に含まれる複数のパッチ25は、それぞれ大きさ、形状、及び角度のうち少なくとも1つが同一であってもよい。なお、本例示的実施形態では、図3に示すように、第1パッチ群22A及び22B、並びに第2パッチ群24A及び24Bの各々に含まれる複数のパッチ25は、それぞれ大きさ及び角度が同一の矩形状を有している。 The plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B may have the same size, shape, and angle, respectively. In this exemplary embodiment, as shown in FIG. 3, the plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B have the same size and angle. It has a rectangular shape.
 また、撮影面20Sは、第1領域20Aの周方向に隣り合う第1パッチ群と第2パッチ群との組合せのうち、少なくとも1つの組合せに含まれる第1パッチ群と第2パッチ群との間に配置された空白領域を含むことが好ましい。「第1領域20Aの周方向に隣り合う第1パッチ群と第2パッチ群との組合せ」とは、具体的には、第1パッチ群22Aと第2パッチ群24Aの組合せ、第1パッチ群22Aと第2パッチ群24Bの組合せ、第1パッチ群22Bと第2パッチ群24Aの組合せ、及び第1パッチ群22Bと第2パッチ群24Bの組合せ、の4つである。図3では、撮影面20Sが、第1領域20Aの周方向に隣り合う第1パッチ群と第2パッチ群とのそれぞれ(すなわち上記4つの組合せの全て)の間に配置された4つの空白領域26を含む。 The imaging surface 20S also includes a first patch group and a second patch group included in at least one combination of the first patch group and second patch group that are adjacent to each other in the circumferential direction of the first area 20A. Preferably, it includes a blank area located in between. "A combination of a first patch group and a second patch group that are adjacent to each other in the circumferential direction of the first region 20A" specifically refers to a combination of the first patch group 22A and the second patch group 24A, the first patch group 22A and the second patch group 24B, a combination of the first patch group 22B and the second patch group 24A, and a combination of the first patch group 22B and the second patch group 24B. In FIG. 3, the imaging surface 20S includes four blank areas arranged between each of the first patch group and the second patch group (i.e., all of the four combinations described above) that are adjacent to each other in the circumferential direction of the first area 20A. Contains 26.
 また、撮影面20Sは、第1パッチ群と第2パッチ群との間に配置された空白領域26に配置された図形27を含むことが好ましい。この図形27は、ユーザがキャリブレーション部材20及び発色部材30を撮影する場合に、画角に収めるべき範囲を示すためのものである。したがって、画角に収めるべき範囲が分かりやすいよう、撮影面20Sは、図3に示すように4つの空白領域26のそれぞれに配置された4つの図形27を含むことが好ましい。図3に示した例では、4つの空白領域26のそれぞれに配置された4つの図形27は、互いに相似形である。この空白領域26のそれぞれに配置された4つの図形27が画角に収まる撮影位置でカメラ11により撮影画像8を撮影すれば、第1パッチ群22A及び22Bと、第2パッチ群24A及び24Bと、第1領域20Aに載置された発色部材30と、を画角に収まるように撮影することができる。 Furthermore, it is preferable that the photographing surface 20S includes a figure 27 arranged in a blank area 26 arranged between the first patch group and the second patch group. This graphic 27 is used to indicate the range that should be included in the angle of view when the user photographs the calibration member 20 and the coloring member 30. Therefore, in order to make it easy to understand the range to be included in the angle of view, it is preferable that the photographing surface 20S includes four figures 27 arranged in each of the four blank areas 26, as shown in FIG. In the example shown in FIG. 3, the four figures 27 placed in each of the four blank areas 26 are similar to each other. If the photographed image 8 is photographed by the camera 11 at a photographing position where the four figures 27 placed in each of the blank areas 26 fit within the angle of view, the first patch group 22A and 22B and the second patch group 24A and 24B are formed. , and the coloring member 30 placed in the first area 20A can be photographed so as to fit within the angle of view.
 撮影画像8に含まれる発色部材30を表す画像(以下、「発色部材画像」という)は、撮影が行われる照明環境、カメラ11の特性、撮影角度、及び撮影距離等の撮影環境の影響を受ける。特に、発色部材30に照射される光が、撮影画像8に含まれる発色部材画像の色味に与える影響が大きい。具体的には、撮影の際に発色部材30に照射される撮影環境に応じた光(以下、「撮影環境光」という)の光量や波長が異なることにより、同一の発色部材30を撮影した場合であっても、撮影画像8に含まれる発色部材画像の色味が異なる場合がある。換言すると、撮影画像8に含まれる発色部材画像の色味は、撮影環境光の影響をうける。 The image representing the coloring member 30 included in the photographed image 8 (hereinafter referred to as the "coloring member image") is affected by the photographing environment such as the lighting environment in which the photographing is performed, the characteristics of the camera 11, the photographing angle, and the photographing distance. . In particular, the light irradiated onto the coloring member 30 has a large influence on the color tone of the coloring member image included in the photographed image 8. Specifically, when the same coloring member 30 is photographed, the amount and wavelength of the light that is applied to the coloring member 30 during photographing is different depending on the photographing environment (hereinafter referred to as "photographing environment light"). Even in this case, the coloring member images included in the photographed image 8 may have different hues. In other words, the color tone of the coloring member image included in the photographed image 8 is affected by the photographing environment light.
 そこで、本例示的実施形態のスマートフォン10は、カメラ11により発色部材30の撮影を行う場合、撮影環境光の影響を抑制するための撮影光Fをフラッシュ12から照射させる制御を行うことにより、撮影環境光が、撮影画像8に含まれる発色部材画像の色味に与える影響を低減させる。なお、本例示的実施形態では、フラッシュ12から照射され、発色部材30の撮影に用いられる光を「撮影光」(撮影光F)といい、自然光や作業場の照明から照射される光等、撮影環境に基づいた光であって、フラッシュ12に起因しない光を「撮影環境光」という。 Therefore, when photographing the coloring member 30 with the camera 11, the smartphone 10 of this exemplary embodiment performs control to emit photographing light F from the flash 12 to suppress the influence of photographing environment light. The influence of environmental light on the color tone of a coloring member image included in a photographed image 8 is reduced. In this exemplary embodiment, the light emitted from the flash 12 and used for photographing the coloring member 30 is referred to as "photographing light" (photographing light F), and light emitted from natural light or workplace lighting, etc. Light based on the environment and not caused by the flash 12 is referred to as "photography environment light."
 撮影環境光の影響を抑制するための撮影光Fとしては、例えば、撮影環境光の光量よりも大きな光量の光が挙げられる。また、撮影環境光による照度がXルクスの場合、撮影光Fによる照度がXルクス未満では、撮影環境光の影響が比較的大きくなってしまう。 As the photographing light F for suppressing the influence of the photographing environment light, for example, light having a larger amount of light than the photographing environment light can be mentioned. Further, when the illuminance of the photographing environment light is X lux, if the illuminance of the photographing light F is less than X lux, the influence of the photographing environment light becomes relatively large.
 また、撮影光Fによる照度が5Xルクスを超える場合、撮影画像8にいわゆる白飛びが生じる懸念がある。そのため、発色部材30における撮影光Fの照度は、Xルクス以上、5Xルクス以下であることが好ましい。そのため、約0.1平方メートル(面積A平方メートル)をXルクス以上、5Xルクス以下で照明するための撮影光Fの光束Yルーメンは、下記(1)式より0.1Xルーメン以上、0.5Xルーメン以下が好ましい。
 
 Y=X×A ・・・(1)
 
Furthermore, if the illuminance of the photographing light F exceeds 5X lux, there is a concern that so-called overexposure may occur in the photographed image 8. Therefore, it is preferable that the illuminance of the photographing light F in the coloring member 30 is not less than X lux and not more than 5X lux. Therefore, the luminous flux Y lumens of the photographing light F to illuminate approximately 0.1 square meter (area A square meter) with X lux or more and 5X lux or less is 0.1X lumen or more and 0.5X lumen from the following formula (1). The following are preferred.

Y=X×A...(1)
 撮影環境光の照度は、発色部材30の撮影を行う場所の実測値を用いてもよいし、例えば、JIS等により規定されている照度基準に応じた照度に基づいた推定値を用いてもよい。例えば、JIS Z9110規格の照明基準総則によれば、例えば、制御室等の計器盤及び制御盤、精密機器、電子部品の製造、及び印刷工場での極めて細かい作業を行う場合は2000ルクス、設計室、製図室、繊維工場での選別、検査、印刷工場での植字、校正、及び化学工場での分析等細かい視作業を行う場合は1000ルクス、一般の製造工程等での普通の視作業を行う場合は500ルクスが照度基準として定められている。 For the illuminance of the photographing environment light, an actual value measured at the place where the coloring member 30 is photographed may be used, or an estimated value may be used, for example, based on the illuminance according to the illuminance standards specified by JIS etc. . For example, according to the general lighting standards of the JIS Z9110 standard, for example, 2000 lux is required for instrument panels and control panels in control rooms, precision instruments, manufacturing of electronic parts, and extremely detailed work in printing factories; , 1000 lux for detailed visual work such as drafting room, sorting and inspection in a textile factory, typesetting and proofreading in a printing factory, and analysis in a chemical factory, and normal visual work in general manufacturing processes, etc. In this case, 500 lux is set as the illuminance standard.
 従って、撮影環境光の照度が2000ルクスの場合、撮影光Fの光束は、200ルーメン以上、1000ルーメン以下が好ましい。また、撮影環境光の照度が1000ルクスの場合、撮影光Fの光束は、100ルーメン以上、500ルーメン以下が好ましい。また、撮影環境光の照度が500ルクスの場合、撮影光Fの光束は、50ルーメン以上、250ルーメン以下が好ましい。 Therefore, when the illuminance of the photographing environment light is 2000 lux, the luminous flux of the photographing light F is preferably 200 lumens or more and 1000 lumens or less. Further, when the illuminance of the photographing environment light is 1000 lux, the luminous flux of the photographing light F is preferably 100 lumens or more and 500 lumens or less. Further, when the illuminance of the photographing environment light is 500 lux, the luminous flux of the photographing light F is preferably 50 lumens or more and 250 lumens or less.
 次に、本例示的実施形態のスマートフォン10について詳細に説明する。まず、図4を参照して、スマートフォン10のハードウェア構成の一例を説明する。図4に示すように、スマートフォン10は、CPU(Central Processing Unit)80、不揮発性の記憶部82、及び一時記憶領域としてのメモリ81を含む。また、スマートフォン10は、液晶ディスプレイ等のディスプレイ84、入力部88、ネットワークI/F(Interface)86、カメラ11、及びフラッシュ12を含む。CPU80、記憶部82、メモリ81、ディスプレイ84、入力部88、ネットワークI/F86、カメラ11及びフラッシュ12は、システムバス及びコントロールバス等のバス89を介して相互に各種情報の授受が可能に接続されている。 Next, the smartphone 10 of this exemplary embodiment will be described in detail. First, an example of the hardware configuration of the smartphone 10 will be described with reference to FIG. 4. As shown in FIG. 4, the smartphone 10 includes a CPU (Central Processing Unit) 80, a nonvolatile storage section 82, and a memory 81 as a temporary storage area. The smartphone 10 also includes a display 84 such as a liquid crystal display, an input section 88, a network I/F (Interface) 86, a camera 11, and a flash 12. The CPU 80, storage unit 82, memory 81, display 84, input unit 88, network I/F 86, camera 11, and flash 12 are connected to each other via a bus 89 such as a system bus and a control bus so that they can exchange various information. has been done.
 記憶部82は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、及びフラッシュメモリ等の記憶媒体によって実現される。記憶部82には、照射制御プログラム83A及び測定プログラム83Bが記憶される。CPU80は、記憶部82から照射制御プログラム83Aを読み出してメモリ81に展開し、展開した照射制御プログラム83Aを実行する。また、CPU80は、記憶部82から測定プログラム83Bを読み出してメモリ81に展開し、展開した測定プログラム83Bを実行する。CPU80が本開示の制御装置のプロセッサの一例であり、また、本開示のエネルギー測定装置のプロセッサの一例でもある。また、本例示的実施形態の照射制御プログラム83Aが本開示の制御プログラムの一例であり、測定プログラム83Bが本開示のエネルギー測定プログラムの一例である。 The storage unit 82 is realized by, for example, a storage medium such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), and a flash memory. The storage unit 82 stores an irradiation control program 83A and a measurement program 83B. The CPU 80 reads the irradiation control program 83A from the storage unit 82, loads it into the memory 81, and executes the loaded irradiation control program 83A. Further, the CPU 80 reads the measurement program 83B from the storage unit 82, expands it into the memory 81, and executes the expanded measurement program 83B. The CPU 80 is an example of the processor of the control device of the present disclosure, and is also an example of the processor of the energy measurement device of the present disclosure. Further, the irradiation control program 83A of the present exemplary embodiment is an example of the control program of the present disclosure, and the measurement program 83B is an example of the energy measurement program of the present disclosure.
 入力部88は、ユーザの操作を受け付けるためのものであり、例えばタッチパネル、ボタン、キーボード、及びマウス等である。なお、一例として本例示的実施形態のカメラ11では、ディスプレイ84及び入力部88を一体化したタッチパネルディスプレイを採用している。ネットワークI/F86は、サーバ4及びその他外部装置(図示省略)との有線又は無線通信を行う。カメラ11は、互いに異なる複数の分光感度を有するセンサを有し、CPU80の制御により、センサにより被写体を撮影して、その撮影画像8の画像信号を出力する。 The input unit 88 is for receiving user operations, and is, for example, a touch panel, buttons, keyboard, mouse, etc. As an example, the camera 11 of this exemplary embodiment employs a touch panel display in which the display 84 and the input section 88 are integrated. The network I/F 86 performs wired or wireless communication with the server 4 and other external devices (not shown). The camera 11 has a plurality of sensors having different spectral sensitivities, and under the control of the CPU 80, the sensor photographs a subject and outputs an image signal of the photographed image 8.
 次に、図5を参照して、スマートフォン10による撮影における撮影光Fの照射の制御に関する機能的な構成の一例について説明する。図5に示すように、スマートフォン10は、照射制御部90を備える。CPU80が照射制御プログラム83Aを実行することにより、CPU80が照射制御部90として機能する。 Next, with reference to FIG. 5, an example of a functional configuration regarding control of irradiation of photographing light F during photographing with the smartphone 10 will be described. As shown in FIG. 5, the smartphone 10 includes an irradiation control section 90. The CPU 80 functions as the irradiation control section 90 by executing the irradiation control program 83A.
 照射制御部90は、発色部材30をカメラ11により撮影する場合に、撮影環境光の影響を抑制するための撮影光Fをフラッシュ12から照射させる制御を行う機能を有する。 The irradiation control unit 90 has a function of controlling irradiation of the flash 12 with the photographing light F for suppressing the influence of photographing environment light when photographing the coloring member 30 with the camera 11.
 図6を参照して、本例示的実施形態に係るスマートフォン10におけるフラッシュ12の照射制御に関する作用を説明する。本例示的実施形態では、カメラ11による撮影を行うモードとして、発色部材30の撮影を行う発色部材撮影モード、及び通常の撮影を行う通常撮影モードの少なくとも二つのモードを有する。発色部材撮影モードでは、照射制御部90によりフラッシュ12の制御が行われる。換言すると、発色部材撮影モードでは、照射制御部90がフラッシュ12による撮影光Fの照射の制御を行う。一方、通常撮影モードでは、照射制御部90は、ユーザの指示に応じてフラッシュ12による撮影光Fの照射の制御を行う。なお、本例示的実施形態では、フラッシュ12による撮影光Fの照射に関するモードとして、強制発光モード及び通常発光モードの少なくとも2つの発光モードを有する。強制発光モードは、撮影環境光にかかわらずフラッシュ12を点灯させて撮影光Fを撮影対象に対して照射する発光モードである。通常発光モードは、撮影環境光に応じてフラッシュ12を点灯させて撮影光Fを撮影対象に対して照射する発光モードであり、撮影環境光の光量が十分である場合、フラッシュ12は点灯されず、撮影対象に撮影光Fが照射されない。一例として本例示的実施形態では、通常撮影モードが設定されている場合、ユーザにより強制発光モード及び通常発光モードのいずれかが設定され、設定された発光モードに応じて、照射制御部90が撮影光Fの照射/非照射を制御する。 With reference to FIG. 6, the operation related to illumination control of the flash 12 in the smartphone 10 according to the present exemplary embodiment will be described. In this exemplary embodiment, the camera 11 has at least two modes for photographing: a coloring member photographing mode in which the coloring member 30 is photographed, and a normal photographing mode in which normal photographing is performed. In the coloring member photographing mode, the flash 12 is controlled by the irradiation control section 90. In other words, in the coloring member photographing mode, the irradiation control section 90 controls the irradiation of the photographing light F by the flash 12. On the other hand, in the normal photographing mode, the irradiation control unit 90 controls the irradiation of the photographing light F by the flash 12 in accordance with a user's instruction. Note that in this exemplary embodiment, there are at least two light emission modes, a forced light emission mode and a normal light emission mode, as modes related to irradiation of the photographing light F by the flash 12. The forced light emission mode is a light emission mode in which the flash 12 is turned on to irradiate the photographic subject with the photographic light F regardless of the photographing environment light. The normal light emission mode is a light emission mode in which the flash 12 is turned on according to the shooting environment light and the shooting light F is emitted onto the shooting subject.If the light intensity of the shooting environment light is sufficient, the flash 12 is not turned on. , the photographing light F is not irradiated onto the photographing subject. As an example, in this exemplary embodiment, when the normal shooting mode is set, either the forced flash mode or the normal flash mode is set by the user, and the irradiation control unit 90 performs the shooting according to the set flash mode. Controls irradiation/non-irradiation of light F.
 一例として本例示的実施形態では、ユーザが入力部88により、カメラ11の起動の指示、及び撮影モードの指示を行う。スマートフォン10は、カメラ11の起動の指示を受け付けると、カメラ11を起動させる。また、スマートフォン10は、撮影モードの指示を受け付けると、受け付けた撮影モードの設定を行う。 As an example, in this exemplary embodiment, the user uses the input unit 88 to instruct the activation of the camera 11 and the shooting mode. Upon receiving the instruction to start the camera 11, the smartphone 10 starts the camera 11. Moreover, upon receiving the instruction of the shooting mode, the smartphone 10 sets the received shooting mode.
 スマートフォン10において、CPU80が照射制御プログラム83Aを実行することによって、図6に示す照射制御処理が実行される。照射制御処理は、例えば、カメラ11の起動に応じて実行される。 In the smartphone 10, the irradiation control process shown in FIG. 6 is executed by the CPU 80 executing the irradiation control program 83A. The irradiation control process is executed, for example, in response to activation of the camera 11.
 ステップS10で、照射制御部90は、撮影モードが、発色部材30の撮影を実行する発色部材撮影モードであるか否かを判定する。設定されている撮影モードが発色部材撮影モードではない場合、例えば、通常撮影モードが設定されている場合、ステップS10の判定が否定判定となり、図6に示した照射制御処理が終了する。この場合、通常撮影モードであるため、ユーザの指示に応じた発光モードでフラッシュ12が点灯し撮影光Fの照射が行われる。一方、設定されている撮影モードが発色部材撮影モードである場合、ステップS10の判定が肯定判定となり、ステップS12へ移行する。 In step S10, the irradiation control unit 90 determines whether the photographing mode is a coloring member photographing mode in which photographing of the coloring member 30 is executed. If the set photographing mode is not the coloring member photographing mode, for example, if the normal photographing mode is set, the determination in step S10 becomes a negative determination, and the irradiation control process shown in FIG. 6 ends. In this case, since it is the normal photographing mode, the flash 12 is turned on in a light emission mode according to the user's instruction, and the photographing light F is emitted. On the other hand, if the set photographing mode is the coloring member photographing mode, the determination in step S10 is affirmative, and the process moves to step S12.
 ステップS12で、照射制御部90は、フラッシュ12の発光モードとして強制発光モードを設定する。このように強制発光モードが設定されている場合、上述したように、カメラ11により撮影を行う際に、フラッシュ12が点灯し、撮影光Fが撮影対象に対して照射される。従って、発色部材30に対して撮影光Fを照射した状態で撮影された撮影画像8が得られる。ステップS12の処理が終了すると、図6に示した照射制御処理が終了する。 In step S12, the irradiation control unit 90 sets the forced light emission mode as the light emission mode of the flash 12. When the forced flash mode is set in this way, as described above, when photographing is performed using the camera 11, the flash 12 is turned on and the photographing light F is irradiated onto the photographic subject. Therefore, a photographed image 8 is obtained in which the coloring member 30 is irradiated with the photographing light F. When the process of step S12 ends, the irradiation control process shown in FIG. 6 ends.
 次に、図5を参照して、スマートフォン10によるエネルギーの測定に関する機能的な構成の一例について説明する。図5に示すように、スマートフォン10は、取得部92、補正部94、導出部96、及び測定制御部98を備える。CPU80が測定プログラム83Bを実行することにより、CPU80が取得部92、補正部94、導出部96、及び測定制御部98の各機能部として機能する。 Next, with reference to FIG. 5, an example of a functional configuration regarding energy measurement by the smartphone 10 will be described. As shown in FIG. 5, the smartphone 10 includes an acquisition section 92, a correction section 94, a derivation section 96, and a measurement control section 98. When the CPU 80 executes the measurement program 83B, the CPU 80 functions as the acquisition section 92, the correction section 94, the derivation section 96, and the measurement control section 98.
 取得部92は、カメラ11により撮影された、キャリブレーション部材20を表す画像(以下、「キャリブレーション部材画像」という)及び発色部材30の発色部材画像を含む撮影画像8を取得する。 The acquisition unit 92 acquires a photographed image 8 including an image representing the calibration member 20 (hereinafter referred to as a “calibration member image”) and a coloring member image of the coloring member 30, taken by the camera 11.
 補正部94は、撮影画像8から枠21を表す画像(以下、「枠画像」という)を抽出し、抽出した枠画像の形状に基づいて、撮影画像8の歪み、傾き、及び大きさのうち少なくとも1つを補正する。枠画像の抽出方法としては、画像におけるエッジ抽出処理等を用いた公知の方法を適宜適用できる。具体的には、枠21が矩形である場合、枠画像も矩形となり、補正部94は、撮影画像8から抽出した枠画像の4つの角がそれぞれ90度となるよう、射影変換及びアフィン変換等を行って、撮影画像8の歪み、傾き及び大きさを補正する。 The correction unit 94 extracts an image representing the frame 21 (hereinafter referred to as a "frame image") from the captured image 8, and corrects distortion, tilt, and size of the captured image 8 based on the shape of the extracted frame image. Correct at least one. As a method for extracting a frame image, a known method using edge extraction processing in an image or the like can be applied as appropriate. Specifically, when the frame 21 is rectangular, the frame image is also rectangular, and the correction unit 94 performs projective transformation, affine transformation, etc. so that the four corners of the frame image extracted from the photographed image 8 are each 90 degrees. to correct the distortion, tilt, and size of the photographed image 8.
 また、補正部94は、取得部92により取得された撮影画像8について、撮影画像8に含まれるパッチ25を表す画像(以下、「パッチ画像」という)を用いてキャリブレーションを行う。具体的には、補正部94は、撮影画像8に含まれる第1パッチ群22A及び22B、及び第2パッチ群24A及び24各々に含まれるパッチ25のパッチ画像の色に基づき、撮影画像8に含まれる発色部材画像の色(例えば色相及び濃度の少なくとも一方)のキャリブレーションを行う。キャリブレーションの方法としては、公知の方法を適宜適用できる。例えば、キャリブレーション部材20に含まれるパッチ25ごとに基準色を予め記憶部82に記憶しておき、補正部94は、撮影画像8の色を調整して、撮影画像8に含まれる複数のパッチ画像毎の色を、それぞれの基準色に一致させる。 Furthermore, the correction unit 94 performs calibration on the captured image 8 acquired by the acquisition unit 92 using an image representing the patch 25 included in the captured image 8 (hereinafter referred to as a “patch image”). Specifically, the correction unit 94 corrects the captured image 8 based on the color of the patch image of the patch 25 included in the first patch group 22A and 22B and the second patch group 24A and 24 included in the captured image 8. The color (for example, at least one of hue and density) of the included coloring member image is calibrated. As a calibration method, any known method can be applied as appropriate. For example, a reference color is stored in advance in the storage unit 82 for each patch 25 included in the calibration member 20, and the correction unit 94 adjusts the color of the photographed image 8 to adjust the color of the plurality of patches included in the photographed image 8. Match the color of each image to its respective reference color.
 また、上述したように、第1パッチ群22A及び22B、並びに第2パッチ群24A及び24Bの各々には、それぞれ同一の色のパッチ25が含まれていてもよい。この場合、撮影が行われる照明環境、カメラ11の特性、撮影角度、及び撮影距離等の撮影環境の影響によって、本来は同一の色で形成されたパッチ25が、撮影画像8上ではそれぞれ異なる色で発現されることがある。そこで例えば、補正部94は、同一の色で形成されたパッチ25に対応するパッチ画像の平均の色が、基準色に一致するよう、撮影画像8の色を調整してもよい。また例えば、補正部94は、同一の色で形成されたパッチ25のうち、パッチ画像の色が最も基準色に近い色が、基準色に一致するよう、撮影画像8の色を調整してもよい。 Furthermore, as described above, each of the first patch groups 22A and 22B and the second patch groups 24A and 24B may include patches 25 of the same color. In this case, the patches 25 that are originally formed in the same color may appear to have different colors on the photographed image 8 due to the influence of the photographing environment such as the lighting environment in which the photograph is taken, the characteristics of the camera 11, the photographing angle, and the photographing distance. It may be expressed in Therefore, for example, the correction unit 94 may adjust the color of the photographed image 8 so that the average color of the patch images corresponding to the patches 25 formed of the same color matches the reference color. For example, the correction unit 94 may adjust the color of the photographed image 8 so that the color of the patch image closest to the reference color among the patches 25 formed with the same color matches the reference color. good.
 なお、補正部94は、第1パッチ群22A及び22B及び第2パッチ群24A及び24Bの各々に含まれる複数のパッチ25のパッチ画像うち一部のパッチ画像を用いてキャリブレーションを行ってもよい。 Note that the correction unit 94 may perform calibration using some of the patch images of the plurality of patches 25 included in each of the first patch groups 22A and 22B and the second patch groups 24A and 24B. .
 また例えば、補正部94は、キャリブレーションに用いるパッチ25を、発色部材30の種類に応じて異ならせてもよい。例えば、発色部材30の一例としてのプレスケールは、低圧用、中圧用、及び高圧用等の、測定可能な圧力の範囲が異なる複数の品種が製造されている。また例えば、上述したように発色部材30としては、プレスケールの他にサーモスケール及びUVスケール等を用いることもできる。 For example, the correction unit 94 may change the patch 25 used for calibration depending on the type of coloring member 30. For example, prescales as an example of the coloring member 30 are manufactured in a plurality of types with different measurable pressure ranges, such as those for low pressure, medium pressure, and high pressure. For example, as described above, as the coloring member 30, a thermoscale, a UV scale, etc. can also be used in addition to the prescale.
 そこで、補正部94は、第1パッチ群22A及び22Bと、第2パッチ群24A及び24Bとに含まれる複数のパッチ25のパッチ画像のうち、発色部材画像に応じた発色部材30の種類に応じて予め定められた一部のパッチ25のパッチ画像を用いてキャリブレーションを行ってもよい。発色部材30の種類とキャリブレーションに用いるパッチ25との対応関係は、例えば予め記憶部82に記憶されていてもよい。撮影した発色部材30の種類は、例えば、ユーザが入力部88を介して入力してもよいし、発色部材30の種類を示す識別コードを発色部材30に付しておき、補正部94が撮影画像8から当該識別コードを読み取ることで特定してもよい。 Therefore, the correction unit 94 adjusts the type of the coloring member 30 according to the coloring member image among the patch images of the plurality of patches 25 included in the first patch group 22A and 22B and the second patch group 24A and 24B. Calibration may be performed using patch images of some of the patches 25 determined in advance. The correspondence between the type of coloring member 30 and the patch 25 used for calibration may be stored in the storage unit 82 in advance, for example. The type of the photographed coloring member 30 may be inputted by the user via the input unit 88, or an identification code indicating the type of the coloring member 30 may be attached to the coloring member 30, and the correction unit 94 may input the type of the coloring member 30 photographed. It may be specified by reading the identification code from the image 8.
 このように、補正部94が撮影画像8の歪み、傾き、大きさ、及び色の補正を行うことによって、ユーザが撮影を行う場合に生じ得る、撮影が行われる照明環境、カメラ11の特性、撮影角度、及び撮影距離等の撮影環境の影響を補正することができる。 In this way, the correction unit 94 corrects the distortion, tilt, size, and color of the photographed image 8, thereby adjusting the lighting environment in which the photograph is performed, the characteristics of the camera 11, etc. that may occur when the user performs photographing. It is possible to correct the influence of the photographing environment, such as the photographing angle and photographing distance.
 なお、本例示的実施形態では、上述したようにフラッシュ12により撮影光Fを発色部材30に対して照射した状態でカメラ11により撮影を行うことで、撮影環境光の影響を抑制している。これにより、本例示的実施形態では、カメラ11により撮影された撮影画像8は、上述した撮影環境、特に撮影環境光の影響が低減された画像となる。従って、本例示的実施形態によれば、上述した発色部材画像を補正する処理等を適宜、低減、または削除することができ、補正の処理に係る処理負荷等低減することができる。 Note that in this exemplary embodiment, as described above, the influence of the photographing environment light is suppressed by performing photographing with the camera 11 while the coloring member 30 is irradiated with the photographing light F by the flash 12. As a result, in this exemplary embodiment, the captured image 8 captured by the camera 11 becomes an image in which the influence of the above-mentioned shooting environment, particularly the shooting environment light, is reduced. Therefore, according to the present exemplary embodiment, it is possible to appropriately reduce or eliminate the process of correcting the coloring member image described above, and the processing load related to the correction process can be reduced.
 導出部96は、補正部94によるキャリブレーション後の発色部材画像の色に基づき、発色部材30に印加されたエネルギー量を導出する。具体的には、発色部材30に印加されたエネルギー量と発色部材30の色との関係が予め定められたデータを予め記憶部82に記憶しておき、導出部96は、当該データを用いて、撮影画像8に含まれる発色部材画像の色をエネルギー量に変換してもよい。なお、発色部材30に印加されたエネルギー量と発色部材30の色との関係が予め定められたデータは、発色部材30の種類毎に予め用意され、記憶部82に記憶されていてもよい。 The deriving unit 96 derives the amount of energy applied to the coloring member 30 based on the color of the coloring member image after calibration by the correction unit 94. Specifically, data in which the relationship between the amount of energy applied to the coloring member 30 and the color of the coloring member 30 is predetermined is stored in advance in the storage unit 82, and the deriving unit 96 uses the data. , the color of the coloring member image included in the photographed image 8 may be converted into an amount of energy. Note that data in which the relationship between the amount of energy applied to the coloring member 30 and the color of the coloring member 30 is determined in advance may be prepared in advance for each type of coloring member 30 and stored in the storage unit 82.
 また、導出部96は、発色部材30に印加されたエネルギー量に関する各種指標を導出してもよい。各種指標とは、例えば、発色部材30の発色した領域(以下「発色領域」という)に対応する発色画像の画素毎にエネルギー量を導出することで求められるエネルギー分布、並びに、発色領域のエネルギー量の最大値、最小値、平均値、及び中央値等の代表値である。また例えば、発色領域の面積、発色領域のうちエネルギー量が予め定められた範囲に入っている面積の割合、発色領域のエネルギー量の均一性、並びに、発色領域の荷重(発色領域の面積とエネルギー量の平均値の積)等である。また例えば、発色部材30の発色度合(すなわちエネルギー量及びエネルギー分布)について基準が予め定められている場合の、当該基準との一致度合又は乖離度合である。 Additionally, the derivation unit 96 may derive various indicators regarding the amount of energy applied to the coloring member 30. Various indicators include, for example, the energy distribution obtained by deriving the amount of energy for each pixel of the colored image corresponding to the colored area of the colored member 30 (hereinafter referred to as "colored area"), and the energy amount of the colored area. These are representative values such as the maximum value, minimum value, average value, and median value. In addition, for example, the area of the coloring region, the proportion of the area of the coloring region whose energy amount is within a predetermined range, the uniformity of the energy amount of the coloring region, and the load of the coloring region (area of the coloring region and energy product of the average values of quantities), etc. Another example is the degree of agreement or deviation from the standard when a standard is predetermined regarding the degree of coloring (ie, energy amount and energy distribution) of the coloring member 30.
 測定制御部98は、補正部94により歪み、傾き、大きさ及び色が補正された後の撮影画像8、及び、導出部96により導出されたエネルギー量に関する各種指標をディスプレイ84に表示させる制御を行う。図7に、測定制御部98によってディスプレイ84に表示される画面Dの一例を示す。画面Dには、撮影画像8における発色部材画像31と、当該発色部材画像31から導出されたエネルギー量に関する各種指標と、が表示されている。 The measurement control unit 98 controls the display 84 to display the photographed image 8 whose distortion, inclination, size, and color have been corrected by the correction unit 94 and various indicators related to the energy amount derived by the derivation unit 96. conduct. FIG. 7 shows an example of a screen D displayed on the display 84 by the measurement control unit 98. On the screen D, the coloring member image 31 in the photographed image 8 and various indicators related to the amount of energy derived from the coloring member image 31 are displayed.
 画面Dに示すように、測定制御部98は、撮影画像8から発色部材画像31を抽出して、ディスプレイ84に表示させる制御を行ってもよい。なお、図7に示した画面Dにおける「加圧面積」は上記の発色領域の面積を意味する。「平均圧力」は上記の発色領域のエネルギー量の平均値を意味する。「荷重」は加圧面積と平均圧力との積を意味する。「圧力値の均一性」は、発色領域の圧力値の均一性を意味する。 As shown in screen D, the measurement control unit 98 may extract the coloring member image 31 from the photographed image 8 and control the image to be displayed on the display 84. Note that the "pressure area" on screen D shown in FIG. 7 means the area of the above-mentioned coloring region. "Average pressure" means the average value of the energy amount in the above coloring region. "Load" means the product of pressurized area and average pressure. "Uniformity of pressure values" means uniformity of pressure values in the coloring region.
 また、測定制御部98は、撮影画像8に関する付帯情報の入力を受け付けてもよい。画面Dにおいては、撮影画像8に関する付帯情報の一例として、発色部材30の品種、圧力種、室温、及び湿度を表示し、それらの入力を受け付けるためのプルダウンメニューPを表示している。なお、「圧力種」としては、プレスケールに瞬間的に加えられた圧力の大きさを示す瞬間圧、及び、プレスケールに持続的に加えられた圧力の大きさの時間積分を示す持続圧等がある。また例えば、付帯情報としては、キャリブレーション部材20、発色部材30、発色部材30にエネルギーを印加したユーザ、及び発色部材30の撮影を行ったユーザ等の識別情報、エネルギー量についてのユーザによる評価結果、並びに、各種検査条件等が挙げられる。 Additionally, the measurement control unit 98 may receive input of supplementary information regarding the photographed image 8. Screen D displays the type of coloring member 30, pressure type, room temperature, and humidity as an example of additional information regarding the photographed image 8, and displays a pull-down menu P for accepting input thereof. In addition, "pressure types" include instantaneous pressure, which indicates the magnitude of the pressure instantaneously applied to the prescale, and continuous pressure, which indicates the time integral of the magnitude of the pressure continuously applied to the prescale, etc. There is. For example, additional information includes identification information of the calibration member 20, the coloring member 30, the user who applied energy to the coloring member 30, the user who photographed the coloring member 30, and the user's evaluation result regarding the amount of energy. , and various test conditions.
 また、測定制御部98は、補正部94による補正前の撮影画像8、補正後の撮影画像8、発色部材画像31、及び補正後の発色部材画像31のうち少なくとも1つを、ネットワークI/F86を介してサーバ4に送信する。また、測定制御部98は、導出部96により導出されたエネルギー量に関する各種指標、及び入力を受け付けた付帯情報を、サーバ4に送信する。サーバ4は、スマートフォン10(測定制御部98)から受信した情報を、撮影画像8に対応付けてデータベース6に格納する。 Further, the measurement control unit 98 transmits at least one of the photographed image 8 before correction by the correction unit 94, the photographed image 8 after correction, the coloring member image 31, and the coloring member image 31 after correction to the network I/F 86. to the server 4 via. Furthermore, the measurement control unit 98 transmits to the server 4 various indicators related to the amount of energy derived by the derivation unit 96 and the incidental information inputted. The server 4 stores information received from the smartphone 10 (measurement control unit 98) in the database 6 in association with the captured image 8.
 次に、図8を参照して、本例示的実施形態に係るスマートフォン10の作用を説明する。スマートフォン10において、CPU80が測定プログラム83Bを実行することによって、図8に示す測定処理が実行される。測定処理は、例えば、ユーザにより入力部88を介して実行開始の指示があった場合に実行される。 Next, with reference to FIG. 8, the operation of the smartphone 10 according to the present exemplary embodiment will be described. In the smartphone 10, the measurement process shown in FIG. 8 is executed by the CPU 80 executing the measurement program 83B. The measurement process is executed, for example, when the user issues an instruction to start execution via the input unit 88.
 ステップS100で、取得部92は、カメラ11により撮影された、キャリブレーション部材20のキャリブレーション部材画像と発色部材30の発色部材画像31とを含む撮影画像8を取得する。次のステップS102で、補正部94は、上記ステップS100で取得された撮影画像8から枠21の枠画像を抽出し、抽出した枠画像の形状に基づいて、撮影画像8の歪み、傾き、及び大きさのうち少なくとも1つを補正する。次のステップS104で、補正部94は、上記ステップS102で補正した撮影画像8に含まれるパッチ画像を用いて、撮影画像8(特に撮影画像8に含まれる発色部材画像31)の色についてキャリブレーションを行う。 In step S100, the acquisition unit 92 acquires the photographed image 8, which is photographed by the camera 11 and includes the calibration member image of the calibration member 20 and the coloring member image 31 of the coloring member 30. In the next step S102, the correction unit 94 extracts the frame image of the frame 21 from the captured image 8 acquired in step S100, and corrects the distortion, inclination, and tilt of the captured image 8 based on the shape of the extracted frame image. Correct at least one of the sizes. In the next step S104, the correction unit 94 calibrates the color of the photographed image 8 (particularly the coloring member image 31 included in the photographed image 8) using the patch image included in the photographed image 8 corrected in step S102. I do.
 次のステップS106で、導出部96は、上記ステップS104でキャリブレーションされた発色部材画像31の色に基づき、発色部材30に印加されたエネルギー量を導出する。次のステップS108で、測定制御部98は、上記ステップS104でキャリブレーションされた発色部材画像31と、上記ステップS106で導出されたエネルギー量とをディスプレイ84に表示させる制御を行う。当該制御により、図7に示した画面Dがディスプレイ84に表示される。ステップS108の処理が終了すると、図8に示した情報処理が終了する。 In the next step S106, the derivation unit 96 derives the amount of energy applied to the coloring member 30 based on the color of the coloring member image 31 calibrated in step S104 above. In the next step S108, the measurement control unit 98 controls the display 84 to display the coloring member image 31 calibrated in the above step S104 and the energy amount derived in the above step S106. Through this control, screen D shown in FIG. 7 is displayed on the display 84. When the process of step S108 ends, the information processing shown in FIG. 8 ends.
 以上説明したように、上記形態のスマートフォン10の照射制御部90は、印加されたエネルギー量に応じた濃度分布で発色する発色部材30をカメラ11により撮影する場合に、撮影環境光の影響を抑制するための撮影光Fをフラッシュ12から照射させる制御を行う。 As described above, the irradiation control unit 90 of the smartphone 10 of the above embodiment suppresses the influence of the photographing environment light when the camera 11 photographs the coloring member 30 that develops color with a density distribution according to the amount of applied energy. Control is performed to irradiate photographing light F from the flash 12 for the purpose of photographing.
 このように、上記形態のスマートフォン10によれば、発色部材30の撮影を行う場合、フラッシュ12により撮影光Fを発色部材30に対して照射するため、撮影環境光の影響を抑制することができる。従って、上記形態のスマートフォン10によれば、エネルギーの測定を行うための発色部材の撮影において、撮影環境光の影響が低減された撮影画像を得ることができる。 As described above, according to the smartphone 10 of the above embodiment, when photographing the coloring member 30, the flash 12 irradiates the photographing light F onto the coloring member 30, so that the influence of the photographing environment light can be suppressed. . Therefore, according to the smartphone 10 of the above embodiment, when photographing a coloring member for measuring energy, it is possible to obtain a photographed image in which the influence of the photographing environment light is reduced.
 なお、上述したように、上記形態のスマートフォン10を用いることにより、撮影環境光の影響を抑制することができるため、キャリブレーション部材20を用いずにカメラ11による発色部材30の撮影を行ってもよい。 Note that, as described above, by using the smartphone 10 of the above configuration, the influence of the photographing environment light can be suppressed, so even if the coloring member 30 is photographed by the camera 11 without using the calibration member 20. good.
 なお、上記形態では、発色部材撮影モードでは、強制発光モードとすることにより、カメラ11による撮影において、強制的に、すなわち必ずフラッシュ12から撮影光Fを撮影対象(発色部材30)に照射する形態としていた。しかしながら、本形態に限定されず、発色部材撮影モードであっても、ユーザにより入力部88によって撮影光Fの照射の禁止指示を受け付けた場合、照射制御部90は、フラッシュ12から撮影光Fを照射するのを禁止する制御を行ってもよい、 In addition, in the above embodiment, in the coloring member photographing mode, by setting the forced light emission mode, the photographing light F is forcedly, that is, always irradiated from the flash 12 onto the photographing target (coloring member 30) during photographing by the camera 11. It was. However, the invention is not limited to this embodiment, and even in the color-forming member photographing mode, if the user inputs an instruction to prohibit the irradiation of the photographing light F through the input unit 88, the irradiation control unit 90 controls the irradiation of the photographing light F from the flash 12. Control may be performed to prohibit irradiation.
 また、上記では、本開示の撮影装置の一例として、スマートフォン10に備えられたカメラ11を適用した形態について説明したが、撮影装置は、スマートフォン10に備えられたカメラ11に限定されない。例えば、撮影装置として、スマートフォン10と別体で設けられたデジタルカメラ等を適用してもよい。また、上記では、本開示の撮影装置とエネルギー測定装置とがスマートフォン10として一体化された形態について説明したが、撮影装置とエネルギー測定装置とは、別体であってもよい。また、上記では、本開示の照射装置の一例として、スマートフォン10に備えられたフラッシュ12を適用した形態について説明したが、照射装置は、スマートフォン10に備えられたフラッシュ12に限定されない。例えば、照射装置として、スマートフォン10と別体で設けられたライト等を適用してもよい。また、上記では、本開示の制御装置及びエネルギー測定装置の一例として、スマートフォン10を適用した形態について説明したが、制御装置及びエネルギー測定装置の各々は、スマートフォン10に限定されない。例えば、制御装置及びエネルギー測定装置の各々として、タブレット端末、ウェアラブル端末、及びパーソナルコンピュータ等を適用してもよい。また、上記では、本開示の制御装置とエネルギー測定装置とがスマートフォン10として一体化された形態について説明したが、本開示の制御装置とエネルギー測定装置とは、別体であってもよい。 Moreover, although the embodiment in which the camera 11 provided in the smartphone 10 is applied as an example of the photographing device of the present disclosure has been described above, the photographing device is not limited to the camera 11 provided in the smartphone 10. For example, a digital camera or the like provided separately from the smartphone 10 may be used as the photographing device. In addition, although the above description has been made regarding the form in which the photographing device and the energy measuring device of the present disclosure are integrated as the smartphone 10, the photographing device and the energy measuring device may be separate bodies. Moreover, although the embodiment in which the flash 12 provided in the smartphone 10 is applied as an example of the irradiation device of the present disclosure has been described above, the irradiation device is not limited to the flash 12 provided in the smartphone 10. For example, a light provided separately from the smartphone 10 may be used as the irradiation device. Moreover, although the embodiment in which the smartphone 10 is applied as an example of the control device and energy measurement device of the present disclosure has been described above, each of the control device and the energy measurement device is not limited to the smartphone 10. For example, a tablet terminal, a wearable terminal, a personal computer, etc. may be applied as each of the control device and the energy measurement device. Moreover, although the control device of this indication and the energy measurement device were integrated as the smart phone 10 above, the control device and the energy measurement device of this indication may be separate bodies.
 また、上記例示的実施形態において、例えば、照射制御部90、取得部92、補正部94、導出部96、及び測定制御部98といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 In addition, in the above exemplary embodiment, for example, the hardware of processing units such as the irradiation control unit 90, the acquisition unit 92, the correction unit 94, the derivation unit 96, and the measurement control unit 98, As a structure, the following various processors can be used. As mentioned above, the various processors mentioned above include the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, as well as circuits that are manufactured after manufacturing, such as FPGA (Field Programmable Gate Array). A programmable logic device (PLD), which is a processor whose configuration can be changed, and a dedicated electrical device, which is a processor with a circuit configuration specifically designed to execute a specific process, such as an ASIC (Application Specific Integrated Circuit) Includes circuits, etc.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs, or a combination of a CPU and an FPGA). combination). Further, the plurality of processing units may be configured with one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring multiple processing units with one processor, firstly, one processor is configured with a combination of one or more CPUs and software, as typified by computers such as a client and a server. There is a form in which a processor functions as multiple processing units. Second, there are processors that use a single IC (Integrated Circuit) chip, such as System On Chip (SoC), which implements the functions of an entire system including multiple processing units. be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。 Furthermore, as the hardware structure of these various processors, more specifically, an electric circuit (circuitry) that is a combination of circuit elements such as semiconductor elements can be used.
 また、上記各例示的実施形態では、照射制御プログラム83A及び測定プログラム83Bが記憶部82に予め記憶(インストール)されている態様を説明したが、これに限定されない。照射制御プログラム83A及び測定プログラム83Bの各々は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、照射制御プログラム83A及び測定プログラム83Bの各々は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。つまり、本例示的実施形態で説明したプログラム(プログラム製品)は、記録媒体で提供するほか、外部のコンピュータから配信する形態であっても良い。 Further, in each of the exemplary embodiments described above, a mode has been described in which the irradiation control program 83A and the measurement program 83B are stored (installed) in the storage unit 82 in advance, but the present invention is not limited to this. Each of the irradiation control program 83A and the measurement program 83B is recorded on a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. It may also be provided in a different format. Further, each of the irradiation control program 83A and the measurement program 83B may be downloaded from an external device via a network. That is, the program (program product) described in this exemplary embodiment may be provided in a recording medium or may be distributed from an external computer.
 2022年6月3日付け日本出願:特願2022-091061の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2022-091061 dated June 3, 2022 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
1 エネルギー測定システム
4 サーバ
6 データベース
8 撮影画像
10 スマートフォン
11 カメラ
12 フラッシュ
20 キャリブレーション部材、20A 第1領域、20B 第2領域、20S 撮影面21 枠
22A、22B 第1パッチ群
24A、24B 第2パッチ群
25 パッチ
26 空白領域
27 図形
30 発色部材
31 発色部材画像
40 制御装置
80 CPU
81 メモリ
82 記憶部
83A 照射制御プログラム、83B 測定プログラム
84 ディスプレイ
86 ネットワークI/F
88 入力部
89 バス
90 照射制御部
92 取得部
94 補正部
96 導出部
98 制御部
D 画面
F 撮影光
P プルダウンメニュー
U ユーザ
1 Energy measurement system 4 Server 6 Database 8 Captured image 10 Smartphone 11 Camera 12 Flash 20 Calibration member, 20A First area, 20B Second area, 20S Photographing surface 21 Frame 22A, 22B First patch group 24A, 24B Second patch Group 25 Patch 26 Blank area 27 Figure 30 Coloring member 31 Coloring member image 40 Control device 80 CPU
81 Memory 82 Storage section 83A Irradiation control program, 83B Measurement program 84 Display 86 Network I/F
88 Input section 89 Bus 90 Irradiation control section 92 Acquisition section 94 Correction section 96 Derivation section 98 Control section D Screen F Photographing light P Pull-down menu U User

Claims (11)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う
     制御装置。
    comprising at least one processor;
    The processor includes:
    A control device that performs control to irradiate photographing light from an irradiation device to suppress the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of applied energy using a photographing device.
  2.  前記プロセッサは、
     前記撮影光の光量にかかわらず、前記照射装置により前記撮影光を照射させる制御を行う
     請求項1に記載の制御装置。
    The processor includes:
    The control device according to claim 1, wherein the irradiation device performs control to irradiate the photographing light regardless of the amount of the photographing light.
  3.  前記照射装置が照射する前記撮影光の光量は、前記撮影環境光の光量よりも大きい
     請求項1に記載の制御装置。
    The control device according to claim 1, wherein the amount of the photographing light emitted by the irradiation device is larger than the amount of the photographing environment light.
  4.  前記撮影環境光による照度がXルクスの場合、
     前記撮影光の光束は、0.1×Xルーメン以上、0.5×Xルーメン以下である
     請求項1に記載の制御装置。
    When the illuminance due to the photographing environment light is X lux,
    The control device according to claim 1, wherein the luminous flux of the photographing light is greater than or equal to 0.1×X lumens and less than or equal to 0.5×X lumens.
  5.  前記プロセッサは、
     前記発色部材を撮影する場合は、前記照射装置から前記撮影光を照射させる制御を行い、
     前記発色部材以外を撮影する場合は、前記撮影環境光に応じて前記照射装置から前記撮影光を照射させる制御を行う
     請求項1に記載の制御装置。
    The processor includes:
    When photographing the coloring member, control is performed to irradiate the photographing light from the irradiation device,
    The control device according to claim 1, wherein when photographing a part other than the coloring member, control is performed to irradiate the photographing light from the irradiation device according to the photographing environment light.
  6.  前記プロセッサは、
     照射装置から前記撮影光の照射を禁止する照射禁止指示を受け付けた場合、
     前記撮影光を前記照射装置から照射させる制御に代えて、前記撮影光の照射を禁止する制御を行う
     請求項1に記載の制御装置。
    The processor includes:
    When receiving an irradiation prohibition instruction to prohibit irradiation of the photographing light from the irradiation device,
    The control device according to claim 1, wherein instead of the control to cause the irradiation device to emit the photography light, control is performed to prohibit the irradiation of the photography light.
  7.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、前記照射装置から前記撮影光を前記発色部材に対して照射させた状態で撮影された前記発色部材を表す発色部材画像を取得し、
     前記発色部材に印加されたエネルギー量と前記発色部材画像の色との関係が予め定められたデータを用いて、前記発色部材画像の色に基づき、前記発色部材に印加されたエネルギー量を導出する
     エネルギー測定装置。
    comprising at least one processor;
    The processor includes:
    When a color-forming member that develops color with a density distribution according to the applied energy amount is photographed by a photographing device, the control device controls the irradiation device to emit photographing light to suppress the influence of photographing environment light. Obtaining a color-forming member image representing the color-forming member photographed while the color-forming member is irradiated with the photographing light from an irradiation device;
    Deriving the amount of energy applied to the coloring member based on the color of the coloring member image using data in which a relationship between the amount of energy applied to the coloring member and the color of the coloring member image is determined in advance. Energy measuring device.
  8.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う
     処理をコンピュータが実行する制御方法。
    A computer executes a process that controls the irradiation device to emit photographing light to suppress the influence of photographing environment light when photographing a coloring member that develops color with a density distribution according to the amount of energy applied using a photographing device. control method.
  9.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、前記照射装置から前記撮影光を前記発色部材に対して照射させた状態で撮影された前記発色部材を表す発色部材画像を取得し、
     前記発色部材に印加されたエネルギー量と前記発色部材画像の色との関係が予め定められたデータを用いて、前記発色部材画像の色に基づき、前記発色部材に印加されたエネルギー量を導出する
     処理をコンピュータが実行するエネルギー測定方法。
    When a color-forming member that develops color with a density distribution according to the applied energy amount is photographed by a photographing device, the control device controls the irradiation device to emit photographing light to suppress the influence of photographing environment light. Obtaining a color-forming member image representing the color-forming member photographed while the color-forming member is irradiated with the photographing light from an irradiation device;
    Deriving the amount of energy applied to the coloring member based on the color of the coloring member image using data in which a relationship between the amount of energy applied to the coloring member and the color of the coloring member image is determined in advance. An energy measurement method in which processing is performed by a computer.
  10.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う
     処理をコンピュータに実行させるための制御プログラム。
    When a coloring member that develops color with a density distribution according to the amount of energy applied is photographed using a photographing device, a computer executes a process that controls the irradiation device to emit photographing light to suppress the influence of the photographing environment light. control program to do this.
  11.  印加されたエネルギー量に応じた濃度分布で発色する発色部材を撮影装置により撮影する場合に、撮影環境光の影響を抑制するための撮影光を照射装置から照射させる制御を行う制御装置により、前記照射装置から前記撮影光を前記発色部材に対して照射させた状態で撮影された前記発色部材を表す発色部材画像を取得し、
     前記発色部材に印加されたエネルギー量と前記発色部材画像の色との関係が予め定められたデータを用いて、前記発色部材画像の色に基づき、前記発色部材に印加されたエネルギー量を導出する
     処理をコンピュータに実行させるためのエネルギー測定プログラム。
    When a color-forming member that develops color with a density distribution according to the applied energy amount is photographed by a photographing device, the control device controls the irradiation device to emit photographing light to suppress the influence of photographing environment light. Obtaining a color-forming member image representing the color-forming member photographed while the color-forming member is irradiated with the photographing light from an irradiation device;
    Deriving the amount of energy applied to the coloring member based on the color of the coloring member image using data in which a relationship between the amount of energy applied to the coloring member and the color of the coloring member image is determined in advance. An energy measurement program that allows a computer to perform processing.
PCT/JP2023/018472 2022-06-03 2023-05-17 Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program WO2023234035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091061 2022-06-03
JP2022091061 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234035A1 true WO2023234035A1 (en) 2023-12-07

Family

ID=89026489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018472 WO2023234035A1 (en) 2022-06-03 2023-05-17 Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program

Country Status (1)

Country Link
WO (1) WO2023234035A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094728A (en) * 1999-09-21 2001-04-06 Minolta Co Ltd Image input device
JP2019537740A (en) * 2016-12-07 2019-12-26 浙江吉利控股集団有限公司Zhejiang Geely Holding Group Co.,Ltd. Mobile terminal
WO2021235364A1 (en) * 2020-05-22 2021-11-25 富士フイルム株式会社 Surface pressure analysis device, method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094728A (en) * 1999-09-21 2001-04-06 Minolta Co Ltd Image input device
JP2019537740A (en) * 2016-12-07 2019-12-26 浙江吉利控股集団有限公司Zhejiang Geely Holding Group Co.,Ltd. Mobile terminal
WO2021235364A1 (en) * 2020-05-22 2021-11-25 富士フイルム株式会社 Surface pressure analysis device, method, and program

Similar Documents

Publication Publication Date Title
CN105049734B (en) It can carry out the license camera and shooting environmental detection method of shooting environmental shooting prompt
Nixon et al. Accurate device-independent colorimetric measurements using smartphones
EP1678485B1 (en) Method and ir-camera for determining the risk of condensation
US11398055B2 (en) Color evaluation device, color evaluation method, and indication object used in color evaluation method
JP6308431B2 (en) Energy measurement system, sheet marker and concentration measurement system
WO2023234035A1 (en) Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program
US20210281734A1 (en) Information processing apparatus, information processing method and computer readable medium
JP6148999B2 (en) Image forming apparatus, calibration program, and calibration system
CN109804731B (en) Substrate inspection apparatus and substrate inspection method using the same
TW202413895A (en) Control device, energy measurement device, control method, energy measurement method, control program, and energy measurement program
WO2023234036A1 (en) Image-capture assisting device, energy measuring device, energy measuring method, and energy measuring program
WO2023234148A1 (en) Calibration member, energy measuring device, energy measuring method, and energy measuring program
WO2023234247A1 (en) Calibration member, calibration device, calibration method, and calibration program
WO2023234248A1 (en) Calibration member, calibration device, calibration method and calibration program
WO2023243356A1 (en) Holding member, energy measuring device, energy measuring method, and energy measuring program
WO2023238777A1 (en) Information processing device, information processing method, and information processing program
WO2023234229A1 (en) Information processing device, information processing method, and information processing program
WO2023234230A1 (en) Information processing device, information processing method, and information processing program
WO2023238776A1 (en) Information processing system, information processing method, and information processing program
WO2023238778A1 (en) Information processing device, information processing method, and information processing program
Krüger et al. 71‐4: Imaging Luminance Measuring Devices (ILMDs)‐Characterization and Standardization with Respect to Display Measurements
TW202413896A (en) Calibration member, energy measurement device, energy measurement method, and energy measurement program
WO2024038778A1 (en) Information processing device, information processing method, and information processing program
TW202413905A (en) Holding member, energy measurement device, energy measurement method, and energy measurement program
WO2024038779A1 (en) Information processing device, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815794

Country of ref document: EP

Kind code of ref document: A1