WO2023233889A1 - Measurement apparatus, measurement circuit, and measurement method - Google Patents

Measurement apparatus, measurement circuit, and measurement method Download PDF

Info

Publication number
WO2023233889A1
WO2023233889A1 PCT/JP2023/016762 JP2023016762W WO2023233889A1 WO 2023233889 A1 WO2023233889 A1 WO 2023233889A1 JP 2023016762 W JP2023016762 W JP 2023016762W WO 2023233889 A1 WO2023233889 A1 WO 2023233889A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
triangular wave
output voltage
measured
Prior art date
Application number
PCT/JP2023/016762
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 田丸
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023233889A1 publication Critical patent/WO2023233889A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables

Definitions

  • the present invention relates to a technique for measuring capacitance components and resistance components of an object to be measured.
  • VT Voltage Torque
  • MRAM Magnetic RAM
  • the dielectric constant of the tunnel barrier layer is important, so a VT-MRAM test cell is formed on a wafer and this is connected to a parallel plate.
  • a capacitor and calculate the dielectric constant from its capacitance That is, as schematically shown in FIG. 1, it is assumed that a metal layer 30, a dielectric layer 40, and a metal layer 50 are formed between the electrode 10 on the upper surface and the electrode 20 on the lower surface. be able to.
  • devices formed on a wafer are electrically connected using a high frequency probe, and the coaxial GND side of such a probe is grounded.
  • the capacitance of a VT-MRAM test cell is approximately several tens to hundreds of fF, it is required to measure the capacitance with an accuracy of several fF or less.
  • the tunnel barrier layer of the VT-MRAM is not a perfect insulator, and a finite tunnel current flows through it. Therefore, in measuring the dielectric constant of VT-MRAM, it is required to measure the capacitance and resistance, that is, the complex impedance, of a single-side grounded device with high precision.
  • Non-Patent Document 1 discloses a measurement method using an oscilloscope, the simplest method generally called the IV method. In this method, the current detection method determines the overall accuracy and band.
  • the current detection method determines the overall accuracy and band.
  • Non-Patent Document 2 discloses a measurement method called the Advanced IV method, which is a measurement method in which an option for a grounding device is added to an impedance analyzer. Specifically, by inserting a high-speed, high-precision current-to-voltage conversion amplifier into the ground side of the DUT without using a current transformer, it is possible to measure single-side grounded devices over a wider band and with higher accuracy than the conventional IV method. are doing. However, even in this Advanced IV method, the stray capacitance of the cable connecting the measurement device and the DUT is corrected by calibration, the frequency characteristics of the current detection circuit are corrected by calibration, and the DUT is It is necessary to perform absolute value calibration.
  • an object of the present invention is to provide a new technique for easily measuring the capacitance and resistance of a device under test that is grounded on one side.
  • a circuit that outputs an output voltage corresponding to a current flowing through the device under test in response to application of a triangular wave voltage to the device under test whose one side is grounded;
  • a measuring device is provided, which includes: a device that performs at least one of the above two processes;
  • a probe for applying a triangular wave voltage to an object to be measured whose one side is grounded A measuring method using a measuring device including a device that includes a circuit that outputs an output voltage according to a current flowing through the device, the device separating the probe connected to the circuit from the object to be measured.
  • the measuring method described above is provided, including the step of performing at least one of the fourth processing of calculating a resistance component contained in the measurement object.
  • a first terminal for inputting a triangular wave voltage
  • a second terminal for applying a triangular wave voltage to an object to be measured whose one side is grounded, and A circuit that outputs an output voltage corresponding to the current flowing through the object under test in response to the applied voltage
  • a third terminal for outputting to a device that calculates at least one of the values.
  • the waveform of the output voltage from a circuit that outputs an output voltage corresponding to the current flowing through the object under test in response to application of a triangular wave voltage to the object under test whose one side is grounded.
  • a program for causing a processor to execute at least one of the second processing is provided.
  • FIG. 3 is a diagram illustrating an example of an object to be measured whose one side is grounded.
  • 1 is a diagram showing an example of a system configuration according to an embodiment of the present invention. It is a figure which shows an example of various voltage waveforms.
  • FIG. 3 is a diagram showing an example of an output waveform of a circuit.
  • FIG. 3 is a diagram showing a specific example of the configuration of a circuit. It is a figure showing the flow of a measurement method.
  • FIG. 3 is a diagram for explaining a measurement method.
  • FIG. 3 is a diagram for explaining a measurement method.
  • FIG. 7 is a diagram showing a circuit configuration of a modified example.
  • FIG. 2 shows a configuration example of a measuring device according to this embodiment.
  • the measuring device according to the present embodiment includes a circuit 100, a digital oscilloscope 200, and a triangular wave generation circuit 300, which are the main components of the present embodiment.
  • the equivalent circuit of the device under test 400 is a complex impedance Z DUT in which a resistance component Rp due to leakage current and a capacitance component Cp are connected in parallel, one being connected to the circuit 100 and the other being grounded. It is assumed that The device under test 400 is not limited to the VT-MRAM shown in FIG. 1.
  • the circuit 100 has a terminal A connected to a probe that is brought into contact with the object to be measured 400, a terminal B connected to the triangular wave generation circuit 300, a negative input connected to the terminal A, and a positive input connected to the terminal B. Outputs the difference between the operational amplifier 110 that is input, the resistor Rf that connects the output C of the operational amplifier 110 and the negative input, and the voltage VB of the triangular wave input from the terminal B from the voltage VC of the output C of the operational amplifier 110. and a terminal D connected to a digital oscilloscope 200.
  • the triangular wave generation circuit 300 outputs a triangular wave voltage VB having an amplitude A (pp) and a frequency f as shown in FIG. 3A(a), for example.
  • the operational amplifier 110 is an ideal operational amplifier, the voltages of the negative and positive inputs are always the same, so the voltage VB is also applied to the device under test 400, and the current IZ is applied to the device under test 400. flows.
  • This voltage V C has a waveform in which GI Z is superimposed on the triangular wave voltage V B , as schematically shown in FIG. 3A(b).
  • the voltage VD increases rapidly at first and then gradually increases, but after the maximum point of the triangular wave (half period 1/(2f)), it suddenly decreases. , and then gradually decreases.
  • the digital oscilloscope 200 measures and analyzes the waveform as shown in FIG. 3A(c) obtained from the terminal D of the circuit 100, and determines the steps at the timing when the voltage of the triangular wave changes from decreasing to increasing or from increasing to decreasing.
  • the height V h and the slope inclination dV D /dt after the transient response converges are measured. Specifically, this will be explained using FIG. 3B, which is an enlarged version of FIG. 3A(c).
  • the period 1/f of the triangular wave is T
  • the half period is T/2
  • the slope after the transient response converges in the first half of the triangular wave is a straight line L1
  • the slope after the transient response converges in the second half of the triangular wave is a straight line L2 .
  • (a -b) becomes the step height V h .
  • the first half is affected by the transient response, but in the second half, the transient response converges. Therefore, the inclination of the slope can be obtained by performing linear fitting on the latter half.
  • the slope of L 1 the slope of -L 2 , but if the waveform of the voltage V D is not completely symmetrical, then , their average ⁇ slope of L 1 ⁇ slope of L 2 ⁇ /2 measures the slope slope.
  • VD is expressed as follows.
  • the first term on the right side of this equation represents proportionality, and the second term represents differentiation.
  • the step height and slope inclination in the waveform of voltage VD are given by the following equations.
  • V h 4AfR f Cp (2)
  • the actual operational amplifier 110 has finite frequency characteristics, and when the slope of the triangular wave VB changes from positive to negative or from negative to positive, a transient response appears in the voltage VD . However, even in such a case, after the transient response converges, it converges to the waveform shown by the dotted line in FIG. 2) and (3).
  • the impedance near this value has relatively good accuracy, but as it deviates from this value, the accuracy deteriorates.
  • the impedance is determined by comparing it with the internal resistance R f , but since this R f can be a resistor of any value, it is possible to Even the object 400 to be measured can be measured with high accuracy.
  • the first circuit X which includes an operational amplifier 110 and a resistor R f , is the same as in FIG. corresponds to That is, terminal B is connected to one end of the first resistor R1 , and the other end of the first resistor R1 is connected to one end of the second resistor R1 and the negative input of the operational amplifier 150. ing. The positive input of the operational amplifier 150 is grounded. Further, the other end of the second resistor R1 is connected to the output of the operational amplifier 150 and one end of the first resistor R2 . The other end of this first resistor R2 is connected to the terminal D and one end of the second resistor R2 , and the other end of the second resistor R2 is connected to the output of the operational amplifier 110 and the resistor Rf. connected to one end of the
  • terminal A of the circuit 110 and the probe have finite capacitance and leakage resistance. It is preferable to remove it and measure the capacitance component and resistance component of only the object to be measured 400.
  • a measurement method as shown in FIG. 5 is adopted. That is, the digital oscilloscope 200 measures the output waveform of the circuit 100 with the probe connected to the terminal A separated from the device under test 400 (DUT) and the probe 500 outputting a triangular wave voltage (step S1). As schematically shown in FIG. 6(a), the probe 500 is not in contact with the object to be measured 400, but is in a separated state. Then, a waveform of the voltage VD as schematically shown in FIG. 6(b) is obtained. The digital oscilloscope 200 measures the step height V h0 and slope inclination dV D0 /dt (after convergence) in such a waveform.
  • the digital oscilloscope 200 determines, from the measurement results in step S1, capacitance components and resistance components other than the object to be measured, that is, background capacitance components Ci and background resistance components of the input terminals of the operational amplifier 110, connectors, wiring, probes, etc. Ri is calculated (step S3).
  • the digital oscilloscope 200 performs a second measurement of the output waveform of the circuit 100 (step S5).
  • the probe 500 is brought into contact with the object to be measured 400.
  • a waveform of the voltage VD as schematically shown in FIG. 7(b) is obtained.
  • the digital oscilloscope 200 measures the step height V h1 and slope inclination dV D1 /dt (after convergence) in such a waveform.
  • the digital oscilloscope 200 calculates the capacitance component Cp and the resistance component Rp of the device under test 400 (DUT) from the calculation result in step S3 and the second measurement result in step S5 (step S7).
  • step S7 Cp and Rp are calculated by substituting known numerical values including Ci and Ri into the following formulas.
  • V h1 4AfR f (Ci+Cp) (6)
  • Measuring the capacitance Ci and resistance Ri of the terminal A of the circuit 100 and the probe 500 with the probe 500 floating above the object to be measured 400 using such a measurement method is a 0 (zero) point in a general LCR meter or impedance analyzer. This corresponds to the OPEN correction that determines the However, these measuring instruments require two additional corrections to determine how the two variables, amplitude and phase, change with the complex impedance of the object under test, that is, resistance and capacitance. This is SHORT/LOAD correction.
  • the resistance Rp and the capacitance Cp of the device under test 400 are separated into the step height and slope inclination of the observed waveform, and the coefficients indicating their dependence also depend on the circuit constants and input signal constants. Since it is uniquely determined, there is no need to perform SHORT/LOAD correction, and only the 0 (zero) point needs to be determined by OPEN correction. That is, the effort required for measurement can be reduced.
  • circuit 100 The actual circuit for realizing the functions of circuit 100 described above is not limited to that described above.
  • the first circuit X in FIG. 5 may be replaced with a circuit as shown in FIG. 8.
  • a positive input of the operational amplifier 610 is connected to a terminal B, and a negative input is connected to a terminal A connected to the object under test 400.
  • the capacitor C 1 and the resistor R 11 are connected in parallel, one end of which is connected to the negative input of the operational amplifier 610, and the other end connected to the output of the operational amplifier 610.
  • a capacitor C 2 and a resistor R 12 are also connected in parallel, one end of which is connected to the output of the operational amplifier, and the other end connected to the negative input of the operational amplifier 620.
  • the positive input of operational amplifier 620 is connected to terminal B.
  • One end of a resistor R 13 is further connected to the negative input of the operational amplifier 620 , and the other end of the resistor R 13 is connected to the output of the operational amplifier 620 .
  • circuit configuration may be adopted to achieve the same function and obtain more preferable characteristics.
  • the present invention is not limited thereto. Various modifications and changes can be made to the present invention within the scope of the present invention as set forth in the claims.
  • other circuit configurations that achieve the same functionality may be employed.
  • the circuit 100 and the triangular wave generation circuit 300 are shown as separate devices, but in some cases they may be integrated.
  • digital oscilloscope 200 may be any other device that performs the measurements and analyzes described above on the output of circuit 100.
  • the digital oscilloscope 200 and other devices having the functions described above include a memory and a microprocessor, and the microprocessor uses the memory to execute a program to implement the functions described above. It may be configured by a dedicated circuit.
  • the measuring device includes (A) a circuit that outputs an output voltage according to a current flowing through the object to be measured in response to application of a triangular wave voltage to the object to be measured whose one side is grounded; and (B) The first process calculates the capacitance component included in the DUT based on the height of the step in the output voltage waveform, and the resistance component included in the DUT is calculated based on the slope inclination of the output voltage waveform. and a device that performs at least one of the second processes.
  • the height of the step in the output voltage waveform corresponds to the step that occurs at the change point of the voltage increase/decrease in the triangular wave
  • the slope corresponds to the slope after the transient response converges due to the change in voltage increase/decrease in the triangular wave.
  • the circuit described above outputs a second voltage in which a first voltage proportional to the current flowing through the object under test is superimposed on the triangular wave voltage in response to the application of the triangular wave voltage. and a second circuit that outputs the first voltage as an output voltage by subtracting the triangular wave voltage from the second voltage. By doing so, it is possible to improve the accuracy of measuring the waveform of the output voltage.
  • the device when a probe for applying a triangular wave voltage to the object to be measured is connected to the above circuit, the device (b1) separates the probe from the object to be measured. a process of obtaining a first output voltage from the circuit while outputting a triangular wave voltage, and calculating a background capacitance component based on the height of the step in the waveform of the first output voltage; (b2) with the probe in contact with the object to be measured and outputting a triangular wave voltage from the probe; a process of acquiring a second output voltage from the circuit, and calculating a capacitance component included in the device under test based on the step height in the waveform of the second output voltage and the background capacitance component; At least one of a process of calculating a resistance component included in the object to be measured may be performed based on the inclination of the slope in the waveform of the second output voltage and the background resistance component. In this way, the capacitance component and resistance component of the object to be measured can be measured
  • the measurement device described above may include a triangular wave generator that generates a triangular wave voltage.
  • the measurement method includes (A) a probe for applying a triangular wave voltage to an object to be measured whose one side is grounded; and a probe for applying a triangular wave voltage to the object to be measured; A measurement method using a measuring device including a circuit that outputs an output voltage according to a current flowing through the object to be measured, the device separating a probe connected to the circuit from the object to be measured. A first process of acquiring a first output voltage from the circuit while outputting a triangular wave voltage from the probe, and calculating a background capacitance component based on the height of the step in the waveform of the first output voltage.
  • the measurement circuit has (A) a first terminal for inputting a triangular wave voltage, and (B) a terminal for applying a triangular wave voltage to an object to be measured whose one side is grounded. (C) a circuit that outputs an output voltage according to the current flowing through the object under test in response to the application of a triangular wave voltage, and (D) an output voltage that analyzes the waveform of the output voltage. and a third terminal for outputting to a device that calculates at least one of a capacitance component and a resistance component of the object to be measured.
  • the first voltage that is proportional to the current flowing through the object to be measured in response to the application of the triangular wave voltage outputs a second voltage that is superimposed on the triangular wave voltage. and a second circuit that outputs the first voltage as an output voltage by subtracting the triangular wave voltage from the second voltage.
  • the program according to this embodiment provides a processor with a waveform of an output voltage from a circuit that outputs an output voltage corresponding to a current flowing through the device under test in response to application of a triangular wave voltage to the device under test, which is grounded on one side.
  • the first process calculates the capacitance component included in the DUT based on the step height in the step, and the second process calculates the resistance component included in the DUT based on the slope of the output voltage waveform. This is to execute at least one of the following processes.

Abstract

This measurement apparatus has: a circuit 100 that, in response to application of a voltage in the form of triangle waves to a one-side-grounded object being measured, outputs an output voltage corresponding to an electric current flowing through the object being measured; and a device 200 that performs a first process for calculating a capacitance component included in the object being measured and a second process for calculating a resistance component included in the object being measured, on the basis of an inclination of a slope in a waveform of the output voltage.

Description

測定装置、測定用回路、及び測定方法Measuring device, measuring circuit, and measuring method
 本発明は、被測定物の容量成分や抵抗成分を測定するための技術に関する。 The present invention relates to a technique for measuring capacitance components and resistance components of an object to be measured.
 電子デバイスや電子回路の開発においては、片側接地されたコンポーネントの微小容量を測定する場面が多々生じる。例えば、電圧トルクMRAM(VT(Voltage Torque)-MRAM(Magnetoresistive Random Memory))においては、トンネル障壁層の誘電率が重要なため、ウェハ上にVT-MRAMのテストセルを形成し、これを平行平板コンデンサとみなしてその容量から誘電率を算出する。すなわち、図1に模式的に示すように、上面の電極10と、下面の電極20との間に、メタル層30と、誘電体層40と、メタル層50とが形成されているものとみなすことができる。一般にウェハ上に形成されたデバイスとは高周波プローブで電気接続するが、そのようなプローブは同軸のGND側が接地されている。また、VT-MRAMのテストセルの容量は、数十~数百fF程度であるため、数fF以下の精度で容量を測定することが求められている。さらに、VT-MRAMのトンネル障壁層は完全な絶縁体ではなく、有限のトンネル電流が流れる。従ってVT-MRAMの誘電率測定においては、片側接地デバイスの容量と抵抗、すなわち複素インピーダンスを高精度で測定することが求められている。 In the development of electronic devices and circuits, there are many situations where the minute capacitance of a component that is grounded on one side is measured. For example, in voltage torque MRAM (VT (Voltage Torque)-MRAM (Magnetoresistive Random Memory)), the dielectric constant of the tunnel barrier layer is important, so a VT-MRAM test cell is formed on a wafer and this is connected to a parallel plate. Regard it as a capacitor and calculate the dielectric constant from its capacitance. That is, as schematically shown in FIG. 1, it is assumed that a metal layer 30, a dielectric layer 40, and a metal layer 50 are formed between the electrode 10 on the upper surface and the electrode 20 on the lower surface. be able to. Generally, devices formed on a wafer are electrically connected using a high frequency probe, and the coaxial GND side of such a probe is grounded. Furthermore, since the capacitance of a VT-MRAM test cell is approximately several tens to hundreds of fF, it is required to measure the capacitance with an accuracy of several fF or less. Furthermore, the tunnel barrier layer of the VT-MRAM is not a perfect insulator, and a finite tunnel current flows through it. Therefore, in measuring the dielectric constant of VT-MRAM, it is required to measure the capacitance and resistance, that is, the complex impedance, of a single-side grounded device with high precision.
 このような測定については、例えば非特許文献1及び2に開示がある。非特許文献1は、オシロスコープを用いた測定方法であって、一般にI-V法と呼ばれる最もシンプルな方法を開示している。この方法においては、電流の検出方法が全体の精度や帯域を決める。電流経路に直列抵抗を入れ、その両端間の電圧を測る場合、被測定物(DUT:Device under Test)と抵抗の相互作用により、DUTに印加される電圧が変わってしまう。これを防ぐため電流トランスを使うこともあるが、その場合トランスの周波数特性が問題となる。 Such measurements are disclosed in Non-Patent Documents 1 and 2, for example. Non-Patent Document 1 discloses a measurement method using an oscilloscope, the simplest method generally called the IV method. In this method, the current detection method determines the overall accuracy and band. When a series resistor is inserted in a current path and the voltage across it is measured, the voltage applied to the DUT changes due to the interaction between the device under test (DUT) and the resistor. To prevent this, a current transformer is sometimes used, but in that case the frequency characteristics of the transformer become a problem.
 一方、非特許文献2は、インピーダンスアナライザに接地デバイス用オプションを追加した測定法であって、Advanced I-V法と呼ばれる方法を開示している。具体的には、電流トランスを使わず、高速、高精度な電流―電圧変換アンプをDUTの接地側に入れることにより、従来のI-V法よりもさらに広帯域、高精度で片側接地デバイスを測定している。しかしながら、このAdvanced I-V法においても、測定装置とDUT間を接続するケーブルの浮遊容量を校正により補正したり、電流検出回路の周波数特性を校正により補正したり、校正基板を用いてDUTの絶対値校正を行ったりすることが必要となる。 On the other hand, Non-Patent Document 2 discloses a measurement method called the Advanced IV method, which is a measurement method in which an option for a grounding device is added to an impedance analyzer. Specifically, by inserting a high-speed, high-precision current-to-voltage conversion amplifier into the ground side of the DUT without using a current transformer, it is possible to measure single-side grounded devices over a wider band and with higher accuracy than the conventional IV method. are doing. However, even in this Advanced IV method, the stray capacitance of the cable connecting the measurement device and the DUT is corrected by calibration, the frequency characteristics of the current detection circuit are corrected by calibration, and the DUT is It is necessary to perform absolute value calibration.
 このように、これらの従来方法では、片側接地された被測定物の容量や抵抗を測定する場合に、校正の手間がかかる。 As described above, in these conventional methods, when measuring the capacitance or resistance of an object to be measured that is grounded on one side, it takes time and effort for calibration.
 従って、本発明の目的は、一側面によれば、片側接地された被測定物の容量や抵抗を容易に測定するための新規な技術を提供することである。 Therefore, according to one aspect, an object of the present invention is to provide a new technique for easily measuring the capacitance and resistance of a device under test that is grounded on one side.
 本発明の一態様によれば、片側接地された被測定物に対する三角波の電圧の印加に応答して上記被測定物に流れる電流に応じた出力電圧を出力する回路と、上記出力電圧の波形におけるステップの高さに基づき、上記被測定物に含まれる容量成分を算出する第1の処理と、上記出力電圧の波形におけるスロープの傾きに基づき、上記被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う装置と、を有する測定装置が提供される。 According to one aspect of the present invention, there is provided a circuit that outputs an output voltage corresponding to a current flowing through the device under test in response to application of a triangular wave voltage to the device under test whose one side is grounded; A first process of calculating a capacitance component included in the object to be measured based on the height of the step, and a first process of calculating a resistance component included in the object to be measured based on the slope inclination of the waveform of the output voltage. A measuring device is provided, which includes: a device that performs at least one of the above two processes;
 本発明の他の態様によれば、片側接地された被測定物に対して三角波の電圧を印加するためのプローブと、上記被測定物に対する上記三角波の電圧の印加に応答して上記被測定物に流れる電流に応じた出力電圧を出力する回路と、を含む装置を有する測定装置を用いた測定方法であって、上記装置が、上記回路に接続された上記プローブを上記被測定物から離し上記プローブから上記三角波の電圧を出力した状態で、上記回路からの第1の出力電圧を取得し、上記第1の出力電圧の波形におけるステップの高さに基づきバックグラウンド容量成分を算出する第1の処理と、上記第1の出力電圧の波形におけるスロープの傾きに基づきバックグラウンド抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う工程と、上記装置が、上記回路に接続されたプローブを上記被測定物に接触させ上記プローブから上記三角波の電圧を出力した状態で、上記回路からの第2の出力電圧を取得し、上記第2の出力電圧の波形におけるステップの高さ及び上記バックグラウンド容量成分に基づき、上記被測定物に含まれる容量成分を算出する第3の処理と、上記回路からの第2の出力電圧の波形におけるスロープの傾き及び上記バックグラウンド抵抗成分に基づき、上記被測定物に含まれる抵抗成分を算出する第4の処理とのうち少なくともいずれかを行う工程と、を含む上記測定方法が提供される。 According to another aspect of the present invention, there is provided a probe for applying a triangular wave voltage to an object to be measured whose one side is grounded; A measuring method using a measuring device including a device that includes a circuit that outputs an output voltage according to a current flowing through the device, the device separating the probe connected to the circuit from the object to be measured. A first step of acquiring a first output voltage from the circuit while outputting the triangular wave voltage from the probe, and calculating a background capacitance component based on the height of the step in the waveform of the first output voltage. and a second process of calculating a background resistance component based on the inclination of the slope in the waveform of the first output voltage, and the device includes a probe connected to the circuit. is brought into contact with the object to be measured and the triangular wave voltage is output from the probe, and the second output voltage from the circuit is obtained, and the height of the step in the waveform of the second output voltage and the back A third process of calculating the capacitance component included in the object to be measured based on the ground capacitance component, and a third process of calculating the capacitance component included in the object to be measured based on the slope inclination of the waveform of the second output voltage from the circuit and the background resistance component. The measuring method described above is provided, including the step of performing at least one of the fourth processing of calculating a resistance component contained in the measurement object.
 本発明のその他の態様によれば、三角波の電圧を入力するための第1の端子と、片側接地された被測定物に対して三角波の電圧を印加するための第2の端子と、上記三角波の電圧の印加に応答して上記被測定物に流れる電流に応じた出力電圧を出力する回路と、上記出力電圧を、その出力電圧の波形を解析して被測定物の容量成分と抵抗成分の少なくともいずれかを算出する装置に対して出力するための第3の端子とを有する測定用回路が提供される。 According to another aspect of the present invention, a first terminal for inputting a triangular wave voltage, a second terminal for applying a triangular wave voltage to an object to be measured whose one side is grounded, and A circuit that outputs an output voltage corresponding to the current flowing through the object under test in response to the applied voltage; and a third terminal for outputting to a device that calculates at least one of the values.
 本発明のその他の態様によれば、片側接地された被測定物に対する三角波の電圧の印加に応答して上記被測定物に流れる電流に応じた出力電圧を出力する回路からの上記出力電圧の波形におけるステップの高さに基づき、上記被測定物に含まれる容量成分を算出する第1の処理と、上記出力電圧の波形におけるスロープの傾きに基づき、上記被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを、プロセッサに実行させるためのプログラムが提供される。 According to another aspect of the present invention, the waveform of the output voltage from a circuit that outputs an output voltage corresponding to the current flowing through the object under test in response to application of a triangular wave voltage to the object under test whose one side is grounded. a first process of calculating a capacitance component included in the object to be measured based on the height of the step; and calculating a resistance component included in the object to be measured based on the slope inclination of the waveform of the output voltage. A program for causing a processor to execute at least one of the second processing is provided.
 一側面によれば、片側接地された被測定物の容量や抵抗を容易に測定できるようになる。 According to one aspect, it becomes possible to easily measure the capacitance and resistance of an object to be measured that is grounded on one side.
片側接地された被測定物の一例を示す図である。FIG. 3 is a diagram illustrating an example of an object to be measured whose one side is grounded. 本発明の実施の形態に係るシステム構成例を示す図である。1 is a diagram showing an example of a system configuration according to an embodiment of the present invention. 各種電圧波形の一例を示す図である。It is a figure which shows an example of various voltage waveforms. 回路の出力波形の一例を示す図である。FIG. 3 is a diagram showing an example of an output waveform of a circuit. 回路の具体的構成例を示す図である。FIG. 3 is a diagram showing a specific example of the configuration of a circuit. 測定方法の流れを示す図である。It is a figure showing the flow of a measurement method. 測定方法を説明するための図である。FIG. 3 is a diagram for explaining a measurement method. 測定方法を説明するための図である。FIG. 3 is a diagram for explaining a measurement method. 変形例の回路構成を示す図である。FIG. 7 is a diagram showing a circuit configuration of a modified example.
 以下、図面に基づいて本発明の一実施形態を説明する。なお、複数の図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。 Hereinafter, one embodiment of the present invention will be described based on the drawings. Note that the same reference numerals are given to elements that are common among a plurality of drawings, and repeated detailed explanations of the elements will be omitted.
 図2に本実施の形態に係る測定装置の構成例を示す。図2を参照するに、本実施の形態に係る測定装置は、本実施の形態における主要構成要素である回路100と、デジタルオシロスコープ200と、三角波発生回路300とを含む。なお、被測定物400の等価回路は、複素インピーダンスZDUTとして、リーク電流による抵抗成分Rpと容量成分Cpとが並列に接続されたものであり、一方は回路100に接続され、他方は接地されているものとする。被測定物400は、図1に示したようなVT-MRAMだけに限定されるものではない。 FIG. 2 shows a configuration example of a measuring device according to this embodiment. Referring to FIG. 2, the measuring device according to the present embodiment includes a circuit 100, a digital oscilloscope 200, and a triangular wave generation circuit 300, which are the main components of the present embodiment. The equivalent circuit of the device under test 400 is a complex impedance Z DUT in which a resistance component Rp due to leakage current and a capacitance component Cp are connected in parallel, one being connected to the circuit 100 and the other being grounded. It is assumed that The device under test 400 is not limited to the VT-MRAM shown in FIG. 1.
 回路100は、被測定物400に接触させるプローブに接続される端子Aと、三角波発生回路300に接続される端子Bと、端子Aに負極側入力が接続され且つ端子Bに正極側入力が接続されるオペアンプ110と、オペアンプ110の出力Cと負極側入力とを接続する抵抗Rと、オペアンプ110の出力Cの電圧Vから端子Bから入力される三角波の電圧Vとの差を出力する減算回路120と、デジタルオシロスコープ200に接続される端子Dとを有する。 The circuit 100 has a terminal A connected to a probe that is brought into contact with the object to be measured 400, a terminal B connected to the triangular wave generation circuit 300, a negative input connected to the terminal A, and a positive input connected to the terminal B. Outputs the difference between the operational amplifier 110 that is input, the resistor Rf that connects the output C of the operational amplifier 110 and the negative input, and the voltage VB of the triangular wave input from the terminal B from the voltage VC of the output C of the operational amplifier 110. and a terminal D connected to a digital oscilloscope 200.
 三角波発生回路300は、例えば、図3A(a)に示すような振幅A(pp)と周波数fを有する三角波の電圧Vを出力する。オペアンプ110が理想的オペアンプであるとすると、負極側入力と正極側入力の電圧は常に同じになるので、被測定物400にも電圧Vが印加され、被測定物400には、電流Iが流れる。オペアンプ110の出力Cには、電流Iに対する比例定数をG(=R)とすると、電圧V=GI+Vが生ずる。この電圧Vは、図3A(b)に模式的に示すように、三角波の電圧Vに対して、GIが重畳された波形となる。このようにおおよその波形は三角波であるが、電圧の極小点と極大点付近には、オペアンプ110が有限の周波数特性を有することから生ずる過渡応答による歪みも含まれている。そして、減算回路120は、電圧V-電圧V=(GI+V)-V=GIを電圧Vとして出力する。電圧Vは、図3A(c)に模式的に示すように、最初は急激な増加の後に徐々に増加するが、三角波の極大点(半周期1/(2f))以降では急に減少し、その後さらに徐々に減少するというような波形となる。 The triangular wave generation circuit 300 outputs a triangular wave voltage VB having an amplitude A (pp) and a frequency f as shown in FIG. 3A(a), for example. Assuming that the operational amplifier 110 is an ideal operational amplifier, the voltages of the negative and positive inputs are always the same, so the voltage VB is also applied to the device under test 400, and the current IZ is applied to the device under test 400. flows. At the output C of the operational amplifier 110, a voltage V C =GI Z +V B is generated, where G (=R f ) is a proportional constant to the current I Z. This voltage V C has a waveform in which GI Z is superimposed on the triangular wave voltage V B , as schematically shown in FIG. 3A(b). As described above, although the approximate waveform is a triangular wave, distortion due to a transient response caused by the operational amplifier 110 having finite frequency characteristics is also included near the minimum and maximum points of the voltage. Then, the subtraction circuit 120 outputs the voltage V C −voltage V B =(GI Z +V B )−V B =GI Z as the voltage V D. As schematically shown in Fig. 3A(c), the voltage VD increases rapidly at first and then gradually increases, but after the maximum point of the triangular wave (half period 1/(2f)), it suddenly decreases. , and then gradually decreases.
 すなわち、デジタルオシロスコープ200は、回路100の端子Dから取得する、図3A(c)に示すような波形を測定及び分析して、三角波の電圧が減少から増加又は増加から減少に転ずるタイミングにおけるステップの高さVと、過渡応答の収束後のスロープの傾きdV/dtを測定する。具体的には、図3A(c)を拡大した図3Bを用いて説明する。三角波の周期1/fをTとして、半周期をT/2とし、三角波の前半における過渡応答収束後のスロープを直線L、三角波の後半における過渡応答収束後のスロープを直線Lとする。このとき、t=T/2と直線Lとの交点a(T/2,a)と、t=T/2と直線Lとの交点b(T/2,b)とから、(a-b)が、ステップの高さVとなる。なお、電圧Vの波形が完全に対称なら、t=0又はTと直線Lとの交点c(0又はT,c)と、t=0又はTと直線Lとの交点d(0又はT,d)とから得られる(c-d)も、(a-b)と同じになる。しかしながら、実際には三角波の微小なひずみや、回路の微小な非線形性により、電圧Vの波形は完全な対称形にはならないので、それらの平均{(a-b)+(c-d)}/2を電圧Vとして用いるのが好ましい。 That is, the digital oscilloscope 200 measures and analyzes the waveform as shown in FIG. 3A(c) obtained from the terminal D of the circuit 100, and determines the steps at the timing when the voltage of the triangular wave changes from decreasing to increasing or from increasing to decreasing. The height V h and the slope inclination dV D /dt after the transient response converges are measured. Specifically, this will be explained using FIG. 3B, which is an enlarged version of FIG. 3A(c). The period 1/f of the triangular wave is T, the half period is T/2, the slope after the transient response converges in the first half of the triangular wave is a straight line L1 , and the slope after the transient response converges in the second half of the triangular wave is a straight line L2 . At this time, from the intersection a (T/2, a) between t=T/2 and straight line L 1 and the intersection b (T/2, b) between t=T/2 and straight line L 2 , (a -b) becomes the step height V h . Note that if the waveform of the voltage VD is completely symmetrical, the intersection point c (0 or T, c) between t=0 or T and the straight line L1 , and the intersection point d(0 or T, c) between t=0 or T and the straight line L2 . Or (cd) obtained from T, d) is also the same as (ab). However, in reality, the waveform of voltage VD is not completely symmetrical due to minute distortion of the triangular wave and minute nonlinearity of the circuit, so their average {(a-b)+(c-d) }/2 is preferably used as the voltage V h .
 なお、t=0からt=T/2までの期間又はt=T/2からt=Tまでの期間において、前半部分は過渡応答の影響があるが、後半部分になれば過渡応答が収束するので、後半部分に対して直線フィッティングを行うことで、スロープの傾きが得られる。上でも述べたように、電圧Vの波形が完全に対称なら、Lの傾き=-Lの傾きになっているが、電圧Vの波形が完全な対称形にはならない場合には、それらの平均{Lの傾き-Lの傾き}/2により、スロープの傾きを測定する。 In addition, in the period from t=0 to t=T/2 or from t=T/2 to t=T, the first half is affected by the transient response, but in the second half, the transient response converges. Therefore, the inclination of the slope can be obtained by performing linear fitting on the latter half. As mentioned above, if the waveform of the voltage V D is completely symmetrical, the slope of L 1 = the slope of -L 2 , but if the waveform of the voltage V D is not completely symmetrical, then , their average {slope of L 1 − slope of L 2 }/2 measures the slope slope.
 より具体的に電圧Vについて説明すると、以下のように表される。
Figure JPOXMLDOC01-appb-M000001
 この式の右辺第1項は比例、第2項は微分を表している。端子Bに入力される三角波は、周波数f、振幅A(pp)であるので、電圧Vの波形におけるステップの高さ及びスロープの傾きは、以下の式で与えられる。
 V=4AfRCp    (2)
Figure JPOXMLDOC01-appb-M000002
More specifically, the voltage VD is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
The first term on the right side of this equation represents proportionality, and the second term represents differentiation. Since the triangular wave input to terminal B has frequency f and amplitude A (pp), the step height and slope inclination in the waveform of voltage VD are given by the following equations.
V h =4AfR f Cp (2)
Figure JPOXMLDOC01-appb-M000002
 すなわち、電圧Vの波形におけるステップの高さ及びスロープの傾きは、それぞれCp及びRpに依存するため、被測定物400のこれらの値を独立して算出することが出来る。上でも述べたように、実際のオペアンプ110は有限の周波数特性を持っており、三角波Vの傾きが、正から負、負から正に切り替わった際、電圧Vに過渡応答が現れる。しかし、そのような場合でも、過渡応答が収束した後は図3A(c)中の点線で示される波形に収束し、収束後のスロープの傾き、及びステップの高さは上で述べた式(2)及び(3)で表される。 That is, since the height of the step and the slope of the waveform of the voltage VD depend on Cp and Rp, respectively, these values of the device under test 400 can be calculated independently. As mentioned above, the actual operational amplifier 110 has finite frequency characteristics, and when the slope of the triangular wave VB changes from positive to negative or from negative to positive, a transient response appears in the voltage VD . However, even in such a case, after the transient response converges, it converges to the waveform shown by the dotted line in FIG. 2) and (3).
 本実施の形態によれば、従来のI-V法又はAdvanced I-V法と比較し、以下のような利点がある。
1)従来の測定法は、正弦波を被測定物に印加し、電流の複素振幅を測定して、そこから被測定物の複素インピーダンスを求める。しかしながら、測定器と被測定物の距離が離れていると、ケーブルや直列に入る電流検出抵抗のため、電流の複素振幅、すなわち絶対値および位相はCp及びRp両方から影響を受ける。そのため、それらを分離するためには、既知のインピーダンスを持つ標準デバイスにより校正する必要がある。一方、本実施の形態では、CpとRpが、それぞれステップの高さ及びスロープの傾きと、独立して現れる。また、その大きさもA、f及びRという既知の量で全て決まるため、校正の必要がない。
2)本実施の形態では、回路100を被測定物400の近くに配置することにより、ケーブルの長さの影響を除去することが出来る。その場合、短いケーブルは一つの容量として扱えるため、その容量を予め測って引くことにより、容易に0点補正が出来る。これは、従来の装置におけるOPEN校正に対応するが、従来の装置では本体と被測定物が離れているため、ケーブルが非常に大きな容量を持っており、またその曲げなどにより容量が変化するため、0点補正の精度が悪化する。
3)Advanced I-V法では、OPEN、SHORT、LOAD校正を行い、装置の各部浮遊容量や回路の周波数特性などを全て補正する。このLOADに使われるのは50Ωであるため、この値近傍のインピーダンスは比較的精度が良いが、この値から離れると精度が悪くなる。一方、本実施の形態では、内部抵抗Rとの比較でインピーダンスを求めるが、このRは任意の値の抵抗を使えるため、被測定物400に合わせてRを変えることにより、どのような被測定物400でも高精度で測定することが可能である。
According to this embodiment, there are the following advantages compared to the conventional IV method or the Advanced IV method.
1) In the conventional measurement method, a sine wave is applied to the object under test, the complex amplitude of the current is measured, and the complex impedance of the object under test is determined from there. However, if the distance between the measuring instrument and the object to be measured is large, the complex amplitude, that is, the absolute value and phase of the current, will be influenced by both Cp and Rp due to the cable and the current detection resistor connected in series. Therefore, in order to separate them, it is necessary to calibrate them using a standard device with known impedance. On the other hand, in this embodiment, Cp and Rp appear independently of the step height and slope inclination, respectively. Furthermore, since the magnitudes thereof are all determined by known quantities A, f, and Rf , there is no need for calibration.
2) In this embodiment, by arranging the circuit 100 near the object under test 400, the influence of the length of the cable can be removed. In that case, since a short cable can be treated as one capacity, zero point correction can be easily performed by measuring and subtracting the capacity in advance. This corresponds to OPEN calibration in conventional equipment, but in conventional equipment, the main body and the object to be measured are separated, the cable has a very large capacity, and the capacity changes due to bending etc. , the accuracy of zero point correction deteriorates.
3) In the Advanced IV method, OPEN, SHORT, and LOAD calibrations are performed to correct all stray capacitances in each part of the device and frequency characteristics of the circuit. Since 50Ω is used for this LOAD, the impedance near this value has relatively good accuracy, but as it deviates from this value, the accuracy deteriorates. On the other hand, in this embodiment, the impedance is determined by comparing it with the internal resistance R f , but since this R f can be a resistor of any value, it is possible to Even the object 400 to be measured can be measured with high accuracy.
 なお、図2に示した回路100の具体的構成例を図4に示す。オペアンプ110と抵抗Rを含む第1の回路Xは、図2と同じであるが、オペアンプ150と2つの抵抗Rと2つの抵抗Rとを含む第2の回路Yは、減算回路120に対応する。すなわち、端子Bは、1つ目の抵抗Rの一端に接続され、1つ目の抵抗Rの他端は、2つ目の抵抗Rの一端とオペアンプ150の負極側入力に接続されている。オペアンプ150の正極側入力は接地されている。また、2つ目の抵抗Rの他端は、オペアンプ150の出力と、1つ目の抵抗Rの一端に接続されている。この1つ目の抵抗Rの他端は、端子Dと、2つ目の抵抗Rの一端に接続され、2つ目の抵抗Rの他端は、オペアンプ110の出力及び抵抗Rの一端に接続されている。 Note that a specific configuration example of the circuit 100 shown in FIG. 2 is shown in FIG. The first circuit X, which includes an operational amplifier 110 and a resistor R f , is the same as in FIG. corresponds to That is, terminal B is connected to one end of the first resistor R1 , and the other end of the first resistor R1 is connected to one end of the second resistor R1 and the negative input of the operational amplifier 150. ing. The positive input of the operational amplifier 150 is grounded. Further, the other end of the second resistor R1 is connected to the output of the operational amplifier 150 and one end of the first resistor R2 . The other end of this first resistor R2 is connected to the terminal D and one end of the second resistor R2 , and the other end of the second resistor R2 is connected to the output of the operational amplifier 110 and the resistor Rf. connected to one end of the
 端子Aをプローブに接続して、回路100と被測定物400の距離を可能な限り短くした場合であっても、回路110の端子Aやプローブは有限の容量及びリーク抵抗を持つため、これを除去して、被測定物400だけの容量成分及び抵抗成分を測定することが好ましい。 Even if terminal A is connected to the probe to shorten the distance between the circuit 100 and the object under test 400 as much as possible, terminal A of the circuit 110 and the probe have finite capacitance and leakage resistance. It is preferable to remove it and measure the capacitance component and resistance component of only the object to be measured 400.
 このため、本実施の形態では、図5に示すような測定方法を採用する。すなわち、端子Aに接続されたプローブを被測定物400(DUT)から離しプローブ500から三角波の電圧を出力した状態で、デジタルオシロスコープ200は、回路100の出力波形の測定を行う(ステップS1)。図6(a)に模式的に示すように、プローブ500は、被測定物400に接触させずに、離した状態とする。そうすると、図6(b)に模式的に示すような電圧Vの波形が得られる。デジタルオシロスコープ200において、このような波形におけるステップの高さVh0及びスロープの傾きdVD0/dt(収束後)を測定する。そして、デジタルオシロスコープ200は、ステップS1の測定結果から、被測定物以外の容量成分及び抵抗成分、つまり、オペアンプ110の入力端子、コネクタ、配線、プローブ等のバックグラウンド容量成分Ci及びバックグラウンド抵抗成分Riを、算出する(ステップS3)。 Therefore, in this embodiment, a measurement method as shown in FIG. 5 is adopted. That is, the digital oscilloscope 200 measures the output waveform of the circuit 100 with the probe connected to the terminal A separated from the device under test 400 (DUT) and the probe 500 outputting a triangular wave voltage (step S1). As schematically shown in FIG. 6(a), the probe 500 is not in contact with the object to be measured 400, but is in a separated state. Then, a waveform of the voltage VD as schematically shown in FIG. 6(b) is obtained. The digital oscilloscope 200 measures the step height V h0 and slope inclination dV D0 /dt (after convergence) in such a waveform. Then, the digital oscilloscope 200 determines, from the measurement results in step S1, capacitance components and resistance components other than the object to be measured, that is, background capacitance components Ci and background resistance components of the input terminals of the operational amplifier 110, connectors, wiring, probes, etc. Ri is calculated (step S3).
 基本的な算式は、上で述べたとおりであるが、具体的に示すと以下のとおりである。
 Vh0=4AfRCi    (4)
Figure JPOXMLDOC01-appb-M000003
The basic formula is as described above, but the specific formula is as follows.
V h0 =4AfR f Ci (4)
Figure JPOXMLDOC01-appb-M000003
 次に、プローブ500を被測定物400(DUT)に接触させプローブ500から三角波の電圧を出力した状態で、デジタルオシロスコープ200は、回路100の出力波形の第2の測定を行う(ステップS5)。図7(a)に模式的に示すように、プローブ500を、被測定物400に接触させた状態にする。そうすると、図7(b)に模式的に示すような電圧Vの波形が得られる。デジタルオシロスコープ200において、このような波形におけるステップの高さVh1及びスロープの傾きdVD1/dt(収束後)を測定する。そして、デジタルオシロスコープ200は、ステップS3の算出結果とステップS5の第2の測定結果から、被測定物400(DUT)の容量成分Cp及び抵抗成分Rpを、算出する(ステップS7)。 Next, with the probe 500 in contact with the device under test 400 (DUT) and a triangular wave voltage being output from the probe 500, the digital oscilloscope 200 performs a second measurement of the output waveform of the circuit 100 (step S5). As schematically shown in FIG. 7(a), the probe 500 is brought into contact with the object to be measured 400. Then, a waveform of the voltage VD as schematically shown in FIG. 7(b) is obtained. The digital oscilloscope 200 measures the step height V h1 and slope inclination dV D1 /dt (after convergence) in such a waveform. Then, the digital oscilloscope 200 calculates the capacitance component Cp and the resistance component Rp of the device under test 400 (DUT) from the calculation result in step S3 and the second measurement result in step S5 (step S7).
 ステップS7では、以下の算式にて、Ci及びRiを含む既知の数値を代入すれば、Cp及びRpが算出される。
 Vh1=4AfR(Ci+Cp)    (6)
Figure JPOXMLDOC01-appb-M000004
In step S7, Cp and Rp are calculated by substituting known numerical values including Ci and Ri into the following formulas.
V h1 =4AfR f (Ci+Cp) (6)
Figure JPOXMLDOC01-appb-M000004
 このような測定方法にてプローブ500を被測定物400から浮かせて回路100の端子Aとプローブ500の容量Ci及び抵抗Riを測定することは、一般のLCRメーターやインピーダンスアナライザにおいて0(零)点を決めるOPEN補正に相当する。しかしこれらの測定器では、振幅と位相という2つの変数が被測定物の複素インピーダンス、すなわち抵抗と容量によってどう変化していくかを確定するため、追加で2点の補正が必要となる。これがSHORT/LOAD補正である。一方、本実施の形態では被測定物400の抵抗Rpと容量Cpがそれぞれ観測波形のステップの高さ及びスロープの傾きに分離され、またそれらの依存性を示す係数も回路定数や入力信号定数によって一意に決まるため、SHORT/LOAD補正をするが必要がなく、OPEN補正で0(零)点だけを決めればよい。すなわち、測定にかかる手間を削減できる。 Measuring the capacitance Ci and resistance Ri of the terminal A of the circuit 100 and the probe 500 with the probe 500 floating above the object to be measured 400 using such a measurement method is a 0 (zero) point in a general LCR meter or impedance analyzer. This corresponds to the OPEN correction that determines the However, these measuring instruments require two additional corrections to determine how the two variables, amplitude and phase, change with the complex impedance of the object under test, that is, resistance and capacitance. This is SHORT/LOAD correction. On the other hand, in this embodiment, the resistance Rp and the capacitance Cp of the device under test 400 are separated into the step height and slope inclination of the observed waveform, and the coefficients indicating their dependence also depend on the circuit constants and input signal constants. Since it is uniquely determined, there is no need to perform SHORT/LOAD correction, and only the 0 (zero) point needs to be determined by OPEN correction. That is, the effort required for measurement can be reduced.
[変形例]
 上で述べた回路100の機能を実現するための実際の回路は、上で述べたものに限定されない。例えば、ノイズを削減して周波数特性を良くするためには、図5の第1の回路Xを、図8に示すような回路に置換しても良い。
[Modified example]
The actual circuit for realizing the functions of circuit 100 described above is not limited to that described above. For example, in order to reduce noise and improve frequency characteristics, the first circuit X in FIG. 5 may be replaced with a circuit as shown in FIG. 8.
 具体的には、2つのオペアンプ610及び620と、2つのキャパシタC及びCと、3つの抵抗R11乃至R13とを含む。オペアンプ610の正極側入力は、端子Bに接続され、負極側入力は、被測定物400に接続される端子Aに接続される。キャパシタC及び抵抗R11は並列に接続されており、それらの一端はオペアンプ610の負極側入力に接続され、他端はオペアンプ610の出力に接続される。さらに、キャパシタC及び抵抗R12も並列に接続されており、それらの一端はオペアンプの出力に接続され、他端はオペアンプ620の負極側入力に接続される。オペアンプ620の正極側入力は、端子Bに接続される。オペアンプ620の負極側入力には、さらに抵抗R13の一端が接続され、抵抗R13の他端はオペアンプ620の出力に接続されており、オペアンプ620の出力は、減算回路120の入力である端子Cに接続される。 Specifically, it includes two operational amplifiers 610 and 620, two capacitors C 1 and C 2 , and three resistors R 11 to R 13 . A positive input of the operational amplifier 610 is connected to a terminal B, and a negative input is connected to a terminal A connected to the object under test 400. The capacitor C 1 and the resistor R 11 are connected in parallel, one end of which is connected to the negative input of the operational amplifier 610, and the other end connected to the output of the operational amplifier 610. Further, a capacitor C 2 and a resistor R 12 are also connected in parallel, one end of which is connected to the output of the operational amplifier, and the other end connected to the negative input of the operational amplifier 620. The positive input of operational amplifier 620 is connected to terminal B. One end of a resistor R 13 is further connected to the negative input of the operational amplifier 620 , and the other end of the resistor R 13 is connected to the output of the operational amplifier 620 . Connected to C.
 このような回路において、C11=C12なら周波数特性がフラットになる。なお、図5の第1の回路Xの場合、オペアンプ110の負極側入力に流れる電流をIinとし、正極側入力に印加される電圧をVinとし、オペアンプ110の出力電圧をVoutとすると、Vout=Vin+IinRとなる。一方、図8の回路では、Vout =Vin+IinR1113/R12となる。よって、R=R1113/R12とすれば、両者は機能的に同等となる。 In such a circuit, if C 1 R 11 =C 2 R 12 , the frequency characteristics will be flat. In the case of the first circuit X in FIG. 5, if the current flowing to the negative input of the operational amplifier 110 is Iin, the voltage applied to the positive input is Vin, and the output voltage of the operational amplifier 110 is Vout, then Vout= It becomes Vin+ IinRf . On the other hand, in the circuit of FIG. 8, Vout=Vin+ IinR11R13 / R12 . Therefore, if R f =R 11 R 13 /R 12 , then both will be functionally equivalent.
 これだけではなく、同一機能を実現し、より好ましい特性を得るための回路構成を採用しても良い。 In addition to this, a circuit configuration may be adopted to achieve the same function and obtain more preferable characteristics.
 以上本発明の実施の形態を説明したが、本発明はこれに限定されるものではない。本発明は、請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。上で述べたように、同一機能を実現する他の回路構成を採用しても良い。また、図2の装置構成例では、回路100と三角波発生回路300とが別装置として示されているが、場合によってはそれらが一体化される場合もある。さらに、デジタルオシロスコープ200は、回路100の出力に対して上で述べた測定及び分析を行う他の装置であっても良い。デジタルオシロスコープ200や上で述べた機能を有する他の装置は、メモリ及びマイクロプロセッサを含み、当該マイクロプロセッサが、メモリを用いて、上で述べた機能を実現するためのプログラムを実行するような構成であっても良いし、専用の回路にて構成される場合もある。 Although the embodiments of the present invention have been described above, the present invention is not limited thereto. Various modifications and changes can be made to the present invention within the scope of the present invention as set forth in the claims. As mentioned above, other circuit configurations that achieve the same functionality may be employed. Further, in the device configuration example of FIG. 2, the circuit 100 and the triangular wave generation circuit 300 are shown as separate devices, but in some cases they may be integrated. Additionally, digital oscilloscope 200 may be any other device that performs the measurements and analyzes described above on the output of circuit 100. The digital oscilloscope 200 and other devices having the functions described above include a memory and a microprocessor, and the microprocessor uses the memory to execute a program to implement the functions described above. It may be configured by a dedicated circuit.
 以上述べた実施の形態をまとめると以下のようになる。 The embodiments described above can be summarized as follows.
 本実施の形態に係る測定装置は、(A)片側接地された被測定物に対する三角波の電圧の印加に応答して被測定物に流れる電流に応じた出力電圧を出力する回路と、(B)出力電圧の波形におけるステップの高さに基づき、被測定物に含まれる容量成分を算出する第1の処理と、出力電圧の波形におけるスロープの傾きに基づき、被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う装置とを有する。 The measuring device according to the present embodiment includes (A) a circuit that outputs an output voltage according to a current flowing through the object to be measured in response to application of a triangular wave voltage to the object to be measured whose one side is grounded; and (B) The first process calculates the capacitance component included in the DUT based on the height of the step in the output voltage waveform, and the resistance component included in the DUT is calculated based on the slope inclination of the output voltage waveform. and a device that performs at least one of the second processes.
 このような回路を用いることで、片側接地された被測定物の容量成分や抵抗成分を容易に測定できるようになる。なお、出力電圧の波形におけるステップの高さは、三角波における電圧増減の変化点において生ずる段差に対応し、スロープの傾きは、三角波における電圧増減の変化によって生ずる過渡応答の収束後の傾きに対応する。 By using such a circuit, it becomes possible to easily measure the capacitance and resistance components of an object under test that is grounded on one side. Note that the height of the step in the output voltage waveform corresponds to the step that occurs at the change point of the voltage increase/decrease in the triangular wave, and the slope corresponds to the slope after the transient response converges due to the change in voltage increase/decrease in the triangular wave. .
 なお、上で述べた回路が、三角波の電圧の印加に応答して被測定物に流れる電流に比例する第1の電圧が三角波の電圧に対して重畳された第2の電圧を出力する第1の回路と、第2の電圧から、三角波の電圧を差し引くことで、第1の電圧を出力電圧として出力する第2の回路とを含むようにしても良い。このようにすることで、出力電圧の波形に対する測定精度を上げることが出来るようになる。 Note that the circuit described above outputs a second voltage in which a first voltage proportional to the current flowing through the object under test is superimposed on the triangular wave voltage in response to the application of the triangular wave voltage. and a second circuit that outputs the first voltage as an output voltage by subtracting the triangular wave voltage from the second voltage. By doing so, it is possible to improve the accuracy of measuring the waveform of the output voltage.
 また、上記測定装置において、被測定物に対して三角波の電圧を印加するためのプローブが、上記回路に接続されている場合に、上記装置が、(b1)プローブを被測定物から離しプローブから三角波の電圧を出力した状態で、上記回路からの第1の出力電圧を取得し、上記第1の出力電圧の波形におけるステップの高さに基づきバックグラウンド容量成分を算出する処理と、上記第1の出力電圧の波形におけるスロープの傾きに基づきバックグラウンド抵抗成分を算出する処理とのうち少なくともいずれかを行い、(b2)プローブを被測定物に接触させプローブから三角波の電圧を出力した状態で、上記回路からの第2の出力電圧を取得し、上記第2の出力電圧の波形におけるステップの高さ及び上記バックグラウンド容量成分に基づき、被測定物に含まれる容量成分を算出する処理と、上記第2の出力電圧の波形におけるスロープの傾き及び上記バックグラウンド抵抗成分に基づき、被測定物に含まれる抵抗成分を算出する処理とのうち少なくともいずれかを行うようにしても良い。このようにすれば、プローブその他の浮遊容量などを除外した形で、精度良く被測定物の容量成分や抵抗成分を測定できるようになる。 In addition, in the above measurement device, when a probe for applying a triangular wave voltage to the object to be measured is connected to the above circuit, the device (b1) separates the probe from the object to be measured. a process of obtaining a first output voltage from the circuit while outputting a triangular wave voltage, and calculating a background capacitance component based on the height of the step in the waveform of the first output voltage; (b2) with the probe in contact with the object to be measured and outputting a triangular wave voltage from the probe; a process of acquiring a second output voltage from the circuit, and calculating a capacitance component included in the device under test based on the step height in the waveform of the second output voltage and the background capacitance component; At least one of a process of calculating a resistance component included in the object to be measured may be performed based on the inclination of the slope in the waveform of the second output voltage and the background resistance component. In this way, the capacitance component and resistance component of the object to be measured can be measured with high precision without stray capacitances such as those of the probe or the like being excluded.
 なお、上で述べた測定装置は、三角波の電圧を発生させる三角波発生器を含む場合もある。 Note that the measurement device described above may include a triangular wave generator that generates a triangular wave voltage.
 本実施の形態に係る測定方法は、(A)片側接地された被測定物に対して三角波の電圧を印加するためのプローブと、上記被測定物に対する三角波の電圧の印加に応答して上記被測定物に流れる電流に応じた出力電圧を出力する回路と、を含む装置を有する測定装置を用いた測定方法であって、上記装置が、上記回路に接続されたプローブを上記被測定物から離しプローブから三角波の電圧を出力した状態で、上記回路からの第1の出力電圧を取得し、上記第1の出力電圧の波形におけるステップの高さに基づきバックグラウンド容量成分を算出する第1の処理と、上記第1の出力電圧の波形におけるスロープの傾きに基づきバックグラウンド抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う工程と、(B)上記装置が、上記回路に接続されたプローブを被測定物に接触させ上記プローブから三角波の電圧を出力した状態で、上記回路からの第2の出力電圧を取得し、上記第2の波形におけるステップの高さ及び上記バックグラウンド容量成分に基づき、上記被測定物に含まれる容量成分を算出する第3の処理と、上記第2の出力電圧の波形におけるスロープの傾き及び上記バックグラウンド成分に基づき、上記被測定物に含まれる抵抗成分を算出する第4の処理とのうち少なくともいずれかを行う工程とを含む。 The measurement method according to the present embodiment includes (A) a probe for applying a triangular wave voltage to an object to be measured whose one side is grounded; and a probe for applying a triangular wave voltage to the object to be measured; A measurement method using a measuring device including a circuit that outputs an output voltage according to a current flowing through the object to be measured, the device separating a probe connected to the circuit from the object to be measured. A first process of acquiring a first output voltage from the circuit while outputting a triangular wave voltage from the probe, and calculating a background capacitance component based on the height of the step in the waveform of the first output voltage. and a second process of calculating a background resistance component based on the slope of the waveform of the first output voltage; (B) the device is connected to the circuit; With the probe in contact with the object to be measured and a triangular wave voltage being output from the probe, the second output voltage from the circuit is obtained, and the height of the step in the second waveform and the background capacitance component are calculated. a third process of calculating the capacitance component included in the object to be measured based on the above, and a resistance component included in the object to be measured based on the slope inclination of the waveform of the second output voltage and the background component. and a step of performing at least one of the fourth processing of calculating .
 このようにすることで、簡易な構成にて精度良く、片側接地された被測定物の容量成分や抵抗成分を測定できるようになる。 By doing this, it becomes possible to accurately measure the capacitance and resistance components of the object to be measured, which is grounded on one side, with a simple configuration.
 さらに、本実施の形態に係る測定用回路は、(A)三角波の電圧を入力するための第1の端子と、(B)片側接地された被測定物に対して三角波の電圧を印加するための第2の端子と、(C)三角波の電圧の印加に応答して被測定物に流れる電流に応じた出力電圧を出力する回路と、(D)出力電圧を、当該出力電圧の波形を解析して被測定物の容量成分と抵抗成分の少なくともいずれかを算出する装置に対して出力するための第3の端子とを有する。 Furthermore, the measurement circuit according to the present embodiment has (A) a first terminal for inputting a triangular wave voltage, and (B) a terminal for applying a triangular wave voltage to an object to be measured whose one side is grounded. (C) a circuit that outputs an output voltage according to the current flowing through the object under test in response to the application of a triangular wave voltage, and (D) an output voltage that analyzes the waveform of the output voltage. and a third terminal for outputting to a device that calculates at least one of a capacitance component and a resistance component of the object to be measured.
 測定用回路における上記回路についても、三角波の電圧の印加に応答して被測定物に流れる電流に比例する第1の電圧が三角波の電圧に対して重畳された第2の電圧を出力する第1の回路と、第2の電圧から、三角波の電圧を差し引くことで、第1の電圧を出力電圧として出力する第2の回路とを含むようにしても良い。 Regarding the above-mentioned circuit in the measurement circuit, the first voltage that is proportional to the current flowing through the object to be measured in response to the application of the triangular wave voltage outputs a second voltage that is superimposed on the triangular wave voltage. and a second circuit that outputs the first voltage as an output voltage by subtracting the triangular wave voltage from the second voltage.
 本実施の形態に係るプログラムは、プロセッサに、片側接地された被測定物に対する三角波の電圧の印加に応答して被測定物に流れる電流に応じた出力電圧を出力する回路からの出力電圧の波形におけるステップの高さに基づき、被測定物に含まれる容量成分を算出する第1の処理と、出力電圧の波形におけるスロープの傾きに基づき、被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを実行させるものである。 The program according to this embodiment provides a processor with a waveform of an output voltage from a circuit that outputs an output voltage corresponding to a current flowing through the device under test in response to application of a triangular wave voltage to the device under test, which is grounded on one side. The first process calculates the capacitance component included in the DUT based on the step height in the step, and the second process calculates the resistance component included in the DUT based on the slope of the output voltage waveform. This is to execute at least one of the following processes.
100 回路  
200 デジタルオシロスコープ
300 三角波発生回路
400 被測定物
500 プローブ
100 circuits
200 Digital oscilloscope 300 Triangular wave generation circuit 400 DUT 500 Probe

Claims (8)

  1.  片側接地された被測定物に対する三角波の電圧の印加に応答して前記被測定物に流れる電流に応じた出力電圧を出力する回路と、
     前記出力電圧の波形におけるステップの高さに基づき、前記被測定物に含まれる容量成分を算出する第1の処理と、前記出力電圧の波形におけるスロープの傾きに基づき、前記被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う装置と、 を有する測定装置。
    a circuit that responds to application of a triangular wave voltage to an object to be measured whose one side is grounded and outputs an output voltage corresponding to a current flowing through the object to be measured;
    a first process of calculating a capacitance component included in the object to be measured based on the height of a step in the waveform of the output voltage; A measuring device comprising: a second process for calculating a resistance component; and a second process for calculating a resistance component.
  2.  前記回路が、
     前記三角波の電圧の印加に応答して前記被測定物に流れる電流に比例する第1の電圧が前記三角波の電圧に対して重畳された第2の電圧を出力する第1の回路と、
     前記第2の電圧から、前記三角波の電圧を差し引くことで、前記第1の電圧を前記出力電圧として出力する第2の回路と、
     を含む請求項1記載の測定装置。
    The circuit is
    a first circuit that outputs a second voltage in which a first voltage proportional to the current flowing through the object to be measured is superimposed on the triangular voltage in response to the application of the triangular wave voltage;
    a second circuit that outputs the first voltage as the output voltage by subtracting the triangular wave voltage from the second voltage;
    The measuring device according to claim 1, comprising:
  3.  前記被測定物に対して前記三角波の電圧を印加するためのプローブが、前記回路に接続されており、
     前記装置が、
     前記プローブを前記被測定物から離し前記プローブから前記三角波の電圧を出力した状態で、前記回路からの第1の出力電圧を取得し、前記第1の出力電圧の波形におけるステップの高さに基づきバックグラウンド容量成分を算出する処理と、前記第1の出力電圧の波形におけるスロープの傾きに基づきバックグラウンド抵抗成分を算出する処理とのうち少なくともいずれかを行い、
     前記プローブを前記被測定物に接触させ前記プローブから前記三角波の電圧を出力した状態で、前記回路からの第2の出力電圧を取得し、前記第2の出力電圧の波形におけるステップの高さ及び前記バックグラウンド容量成分に基づき、前記被測定物に含まれる容量成分を算出する処理と、前記第2の出力電圧の波形におけるスロープの傾き及び前記バックグラウンド抵抗成分に基づき、前記被測定物に含まれる抵抗成分を算出する処理とのうち少なくともいずれかを行う、
     請求項1又は2記載の測定装置。
    A probe for applying the triangular wave voltage to the object to be measured is connected to the circuit,
    The device is
    Obtain a first output voltage from the circuit while the probe is separated from the object to be measured and the triangular wave voltage is output from the probe, and based on the height of the step in the waveform of the first output voltage. performing at least one of a process of calculating a background capacitance component and a process of calculating a background resistance component based on the slope of the waveform of the first output voltage;
    Obtain the second output voltage from the circuit while the probe is in contact with the object to be measured and the triangular wave voltage is output from the probe, and determine the height of the step in the waveform of the second output voltage and A process of calculating a capacitance component included in the device under test based on the background capacitance component, and a process of calculating a capacitance component included in the device under test based on the slope inclination of the waveform of the second output voltage and the background resistance component. performing at least one of the following:
    The measuring device according to claim 1 or 2.
  4.  前記三角波の電圧を発生させる三角波発生器をさらに含む請求項3記載の測定装置。 The measuring device according to claim 3, further comprising a triangular wave generator that generates the triangular wave voltage.
  5.  前記三角波の電圧を発生させる三角波発生器をさらに含む請求項1又は2記載の測定装置。 The measuring device according to claim 1 or 2, further comprising a triangular wave generator that generates the triangular wave voltage.
  6.  片側接地された被測定物に対して三角波の電圧を印加するためのプローブと、前記被測定物に対する前記三角波の電圧の印加に応答して前記被測定物に流れる電流に応じた出力電圧を出力する回路と、を含む装置を有する測定装置を用いた測定方法であって、
     前記装置が、前記回路に接続された前記プローブを前記被測定物から離し前記プローブから前記三角波の電圧を出力した状態で、前記回路からの第1の出力電圧を取得し、前記第1の出力電圧の波形におけるステップの高さに基づきバックグラウンド容量成分を算出する第1の処理と、前記第1の出力電圧の波形におけるスロープの傾きに基づきバックグラウンド抵抗成分を算出する第2の処理とのうち少なくともいずれかを行う工程と、
     前記装置が、前記回路に接続されたプローブを前記被測定物に接触させ前記プローブから前記三角波の電圧を出力した状態で、前記回路からの第2の出力電圧を取得し、前記第2の出力電圧の波形におけるステップの高さ及び前記バックグラウンド容量成分に基づき、前記被測定物に含まれる容量成分を算出する第3の処理と、前記第2の出力電圧の波形におけるスロープの傾き及び前記バックグラウンド抵抗成分に基づき、前記被測定物に含まれる抵抗成分を算出する第4の処理とのうち少なくともいずれかを行う工程と、を含む前記測定方法。
    A probe for applying a triangular wave voltage to a device under test that is grounded on one side, and an output voltage corresponding to the current flowing through the device in response to the application of the triangular wave voltage to the device under test. A measuring method using a measuring device having a device including a circuit for
    The device obtains a first output voltage from the circuit while the probe connected to the circuit is separated from the object under test and the triangular wave voltage is output from the probe, and the device obtains the first output voltage from the circuit. A first process of calculating a background capacitance component based on the height of a step in the voltage waveform, and a second process of calculating a background resistance component based on the slope inclination of the first output voltage waveform. a step of performing at least one of the following;
    The apparatus obtains a second output voltage from the circuit in a state in which a probe connected to the circuit is brought into contact with the object under test and the probe outputs the triangular wave voltage, and outputs the second output voltage. a third process of calculating a capacitance component included in the object to be measured based on the height of the step in the voltage waveform and the background capacitance component; The measuring method includes the step of performing at least one of a fourth process of calculating a resistance component included in the object to be measured based on a ground resistance component.
  7.  三角波の電圧を入力するための第1の端子と、
     片側接地された被測定物に対して前記三角波の電圧を印加するための第2の端子と、
     前記三角波の電圧の印加に応答して前記被測定物に流れる電流に応じた出力電圧を出力する回路と、
     前記出力電圧を、当該出力電圧の波形を解析して前記被測定物の容量成分と抵抗成分の少なくともいずれかを算出する装置に対して出力するための第3の端子と、
     を有する測定用回路。
    a first terminal for inputting a triangular wave voltage;
    a second terminal for applying the triangular wave voltage to an object to be measured whose one side is grounded;
    a circuit that outputs an output voltage according to the current flowing through the object under test in response to the application of the triangular wave voltage;
    a third terminal for outputting the output voltage to a device that analyzes the waveform of the output voltage and calculates at least one of a capacitance component and a resistance component of the object to be measured;
    A measurement circuit with
  8.  片側接地された被測定物に対する三角波の電圧の印加に応答して前記被測定物に流れる電流に応じた出力電圧を出力する回路からの前記出力電圧の波形におけるステップの高さに基づき、前記被測定物に含まれる容量成分を算出する第1の処理と、前記出力電圧の波形におけるスロープの傾きに基づき、前記被測定物に含まれる抵抗成分を算出する第2の処理とのうち少なくともいずれかを、プロセッサに実行させるためのプログラム。

     
    Based on the height of the step in the waveform of the output voltage from a circuit that outputs an output voltage corresponding to the current flowing through the device under test in response to the application of a triangular wave voltage to the device under test, which is grounded on one side, At least one of a first process of calculating a capacitance component included in the object to be measured, and a second process of calculating a resistance component included in the object to be measured based on the slope inclination of the waveform of the output voltage. A program that causes a processor to execute.

PCT/JP2023/016762 2022-06-02 2023-04-27 Measurement apparatus, measurement circuit, and measurement method WO2023233889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090176 2022-06-02
JP2022090176 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023233889A1 true WO2023233889A1 (en) 2023-12-07

Family

ID=89026124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016762 WO2023233889A1 (en) 2022-06-02 2023-04-27 Measurement apparatus, measurement circuit, and measurement method

Country Status (1)

Country Link
WO (1) WO2023233889A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092370A (en) * 2012-10-31 2014-05-19 Agilent Technologies Inc Volt-ampere characteristic generator
JP2014142266A (en) * 2013-01-24 2014-08-07 Tokyo Electron Ltd Testing device and plasma treatment device
US20150061720A1 (en) * 2013-08-30 2015-03-05 Keysight Technologies, Inc. System and apparatus for measuring capacitance
JP2016114571A (en) * 2014-12-18 2016-06-23 アイシン精機株式会社 Capacitance sensing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092370A (en) * 2012-10-31 2014-05-19 Agilent Technologies Inc Volt-ampere characteristic generator
JP2014142266A (en) * 2013-01-24 2014-08-07 Tokyo Electron Ltd Testing device and plasma treatment device
US20150061720A1 (en) * 2013-08-30 2015-03-05 Keysight Technologies, Inc. System and apparatus for measuring capacitance
JP2016114571A (en) * 2014-12-18 2016-06-23 アイシン精機株式会社 Capacitance sensing device

Similar Documents

Publication Publication Date Title
US7701227B2 (en) High precision voltage source for electrical impedance tomography
US20060114004A1 (en) Method for calibrating and de-embedding, set of devices for de-embedding and vector network analyzer
CN107076789B (en) System and method for measuring and determining noise parameters
US20090167332A1 (en) Electrical probe
US10890642B1 (en) Calibrating impedance measurement device
JP2003028900A (en) Non-contact voltage measurement method and apparatus
Kaczmarek The effect of distorted input voltage harmonics rms values on the frequency characteristics of ratio error and phase displacement of a wideband voltage divider
JP4344667B2 (en) Non-contact voltage measuring device
WO2023233889A1 (en) Measurement apparatus, measurement circuit, and measurement method
US6803776B2 (en) Current-comparator-based four-terminal resistance bridge for power frequencies
JP2007003407A (en) Method and apparatus for measuring impedance
Grubmüller et al. Characterization of a resistive voltage divider design for wideband power measurements
US7834641B1 (en) Phase-gain calibration of impedance/admittance meter
JP2004245584A (en) Two-terminal circuit element measuring equipment and contact checking method
US7397253B2 (en) Transmission line pulse (TLP) system calibration technique
JP2008243921A (en) Method for measuring capacity value and capacity-value measuring instrument
US9594101B2 (en) Apparatus for measuring the local electrical resistance of a surface
So et al. A computer-controlled current-comparator-based four-terminal resistance bridge for power frequencies
CN220691010U (en) Hall current sensor
Filipovic-Grcic et al. An Improved Method for Performance Testing of Partial Discharge Calibrators
CN112924849B (en) Error compensation calculation method applied to phase adjustment circuit
CN219935963U (en) Voltage and current measurement channel of digital bridge and digital bridge
Erkan et al. Active Guarded Wheatstone Bridge for High Resistance Measurements Up to 100 TΩ at TÜBİTAK UME
Narayana et al. Modification of the wheatstone-bridge for measurement of a process variable by a resistive transducer using lab VIEW
JP3421524B2 (en) How to measure capacitance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815650

Country of ref document: EP

Kind code of ref document: A1