WO2023233665A1 - Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases - Google Patents

Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases Download PDF

Info

Publication number
WO2023233665A1
WO2023233665A1 PCT/JP2022/022682 JP2022022682W WO2023233665A1 WO 2023233665 A1 WO2023233665 A1 WO 2023233665A1 JP 2022022682 W JP2022022682 W JP 2022022682W WO 2023233665 A1 WO2023233665 A1 WO 2023233665A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibronectin
cells
lilrb4
acid sequence
amino acid
Prior art date
Application number
PCT/JP2022/022682
Other languages
French (fr)
Japanese (ja)
Inventor
俊行 高井
ミジ ソ
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2022/022682 priority Critical patent/WO2023233665A1/en
Priority to PCT/JP2023/013315 priority patent/WO2023233791A1/en
Publication of WO2023233665A1 publication Critical patent/WO2023233665A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases.
  • LILRB4 Leukocyte Ig-like receptor B4, hereinafter also referred to as B4
  • B4 an immunosuppressive receptor
  • the physiological ligand of B4 is fibronectin, and it has been reported that a substance that inhibits the binding of B4 and fibronectin is effective in treating immune checkpoint-related diseases (Patent Document 2).
  • Fibronectin (hereinafter also referred to as FN) is a glycoprotein of approximately 259 kDa that exists in the extracellular matrix (hereinafter also referred to as ECM), cell surfaces, and body fluids. Fibronectin is divided into six regions (domains) by treatment with thermolysin, a proteolytic enzyme. These are based on their specific molecular binding ability. Fibrin/Heparin binding region (Fibrin/Heparin binding-FN), 2. Collagen binding region (Collagen binding-FN), 3. Heparin binding region (Heparin binding-FN), 4. cell/integrin-binding-domain (CBD)-FN; 5. 6.
  • FN is composed of multiple domains that differ in their ability to bind to physiological molecules.
  • SLE systemic lupus erythematosus
  • RA rheumatoid arthritis
  • fluctuations in FN concentration in plasma and body fluids have been observed. It has been reported that domain analysis that evaluates FN fragmentation using monoclonal antibodies is useful for diagnosing or evaluating the severity of diseases (Non-Patent Documents 1 to 3).
  • the Fibrin/Heparin binding-FN concentration was 24 ⁇ 12 ⁇ g/ml (p ⁇ 0.003) for SLE and 36 ⁇ 22 ⁇ g/ml (p ⁇ 0.003) for RA compared to healthy subjects (61 ⁇ 18 ⁇ g/ml). .00002) and is expected to be used for diagnosis. Furthermore, it has been reported that FN promotes the metastatic ability and invasive ability of lung cancer cell lines (Non-Patent Document 4).
  • Various cells within a living body maintain homeostasis while exerting functions such as activation, proliferation, migration, and migration as necessary.
  • cells In order to maintain this homeostasis and function, cells have focal adhesion with extracellular matrices and other molecules such as collagen, fibronectin, laminin, and proteoglycans on the surfaces of cells and tissues in the surrounding environment. It is necessary to form localized structures called plaques, adhere to cells, and introduce signals into their own cells.
  • the receptors mainly used for the formation of this focal adhesion are a group of molecules collectively called integrins (hereinafter also referred to as ITG), and the most upstream part of the signal introduced into the cell is two types of tyrosine kinases.
  • Non-patent Document 5 Activation by phosphorylation of focal adhesion kinase (FAK), which induces reorganization of actin filaments, and activation by phosphorylation of Spleen tyrosine kinase (Syk), which has the ability to induce inflammation. It has been reported (Non-patent Document 5).
  • FAK focal adhesion kinase
  • Syk Spleen tyrosine kinase
  • Non-Patent Document 6 It has been reported that FN as a B4 ligand binds to ITG, and that in the structure of FN, it is RGD in the middle part of FN that binds to ITG (Non-Patent Document 7), and that the ⁇ V of ITG binds to ITG. It has been reported that the ⁇ 3 chain is a ligand for mouse B4, and that the binding of ITG and B4 suppresses the activity of mouse bone marrow-derived mast cells BMMC (Non-Patent Document 8).
  • amyloid ⁇ excreted from microglial cells which are one of the immune cells, is known to accumulate in the brain and cause chronic inflammation, causing dementia. It has been reported that it may be a cause of chronic inflammation within the body (Non-patent Documents 9 to 11).
  • the purpose of the present invention is to provide an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases.
  • the present inventors demonstrated that activation of immune cells caused by fibronectin binding to integrin on the surface of immune cells is suppressed by binding of fibronectin to LILRB4 on the surface of immune cells. I found out. Based on this finding, we discovered that a substance that inhibits the binding between fibronectin and LILRB4 can release the inhibition of immune cell activation caused by fibronectin by LILRB4, activate immune cells, and induce inflammation-inducing effects in immune cells. The present invention was completed based on the discovery that a substance that inhibits the binding between LILRB4 and fibronectin is useful as an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases. The present invention includes the following aspects.
  • An activator for immune cells containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
  • the immune cell activator according to [1], wherein the activation of the immune cells is an inflammation-inducing effect of the immune cells.
  • the activity of the immune cell according to [2], wherein the inflammatory action of the immune cell is due to release of suppression by the immunosuppressive receptor LILRB4 against the inflammatory action of the immune cell based on integrin activation. agent.
  • the immune cell activator according to [3], wherein the activation of the integrin is due to binding of fibronectin to the integrin.
  • the immune cell according to any one of [1] to [4], wherein the fibronectin binds to the immunosuppressive receptor LILRB4 via the amino acid sequence shown by SEQ ID NO: 1 in the fibronectin. activator.
  • the substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog
  • the immune cell activator according to any one of [5].
  • a peptide with binding ability (c) A peptide comprising an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1, and having the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4 [9] Said The immune cell activator according to any one of [1] to [8], wherein the immune cell is selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells. [10] A therapeutic agent for immune cell-related inflammatory diseases containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
  • the substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog, [10] or The therapeutic agent according to [11].
  • fibronectin analog is any one of the following peptides (a) to (c).
  • a peptide with binding ability (c) A peptide comprising an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1, and having the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4 [15] Said The therapeutic agent according to any one of [10] to [14], wherein the immune cells are selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells. [16] The immune cell-related inflammatory disease is selected from the group consisting of neurodegenerative diseases, mental developmental disorders, schizophrenia, autism spectrum disorders, atherosclerosis, and infectious diseases, [10] The therapeutic agent according to any one of [15]. [17] The therapeutic agent according to [16], wherein the neurodegenerative disease is selected from the group consisting of Alzheimer's disease, dementia, cerebral infarction, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.
  • an agent for activating immune cells and a therapeutic agent for immune cell-related inflammatory diseases can be provided.
  • FIG. 2 is a diagram showing the mechanism of activation of immune cells and the pro-inflammatory effect by fibronectin and integrins, and the suppression of the activation and pro-inflammatory effect of immune cells by LILRB4.
  • FIG. 2 is a diagram showing the results of co-immunoprecipitation assay in Example 1. Intraperitoneal resident F4/80 hi macrophages of wild-type mice and gp48-deficient mice, thioglycollate-induced peritoneal F4/80 hi macrophages, splenic F4/80 hi macrophages, mouse macrophage cell line RAW264.7, and human monocytes FIG.
  • FIG. 2 is a diagram showing the results of examining the expression profile of LILRB4/gp49, integrin, and fibronectin in cell line THP-1 by flow cytometry analysis.
  • WT indicates a wild-type mouse
  • KO indicates a gp48-deficient mouse.
  • the results of examining the expression of gp49 on mouse macrophage cell line RAW264.7 cells and gp49B-deficient mouse macrophage cell line RAW264.7 cells by flow cytometry are shown. Fig.
  • FIG. 2 is a diagram showing the results of examining the confocal signal correlation between gp49, fibronectin, and integrin ⁇ 1 chain on fibronectin-binding peritoneal resident macrophages using confocal laser scanning microscopy analysis, and calculating Pearson's correlation coefficient. .
  • the signal correlation between gp49, fibronectin, and integrin ⁇ 1 chain on fibronectin-binding peritoneal resident macrophages was investigated using confocal laser scanning microscopy analysis, and the results of calculating Pearson's correlation coefficient and Mandel's correlation coefficient are shown. This is a diagram.
  • micrographs showing the adhesion of induced peritoneal macrophages to fibronectin-coated or non-coated glass coverslips observed over time. This is a graph obtained by randomly selecting cells, digitizing micrographs of each cell, and calculating the vertical and horizontal lengths of induced peritoneal macrophages adhered to fibronectin-coated or uncoated glass coverslips. . Graphs are shown comparing the cell size of induced peritoneal macrophages adhered to fibronectin-coated or uncoated glass coverslips, respectively. FIG.
  • FIG. 3 is a diagram showing the correlation between the confocal signal of integrin ⁇ 1 and the confocal signal of gp49 on non-fibronectin tethering-induced macrophages adhered to fibronectin-uncoated or fibronectin-coated glass using Pearson's correlation coefficient. Results of western blotting analysis of tyrosine phosphorylation of FAK and Syk in fibronectin-coated culture dishes or non-fibronectin-coated culture dishes of wild-type human monocytic cell line THP-1 cells and LILRB4-deficient human monocytic cell line THP-1 cells.
  • the upper figure shows Western blotting of phosphorylated FAK and total FAK
  • the lower figure shows Western blotting of phosphorylated Syk and total Syk, respectively.
  • the results of Western blotting analysis of tyrosine phosphorylation of FAK and Syk in fibronectin-coated culture dishes or non-fibronectin-coated culture dishes of wild-type mouse macrophage cell line RAW264.7 cells and LILRB4-deficient mouse macrophage cell line RAW264.7 cells are shown.
  • This is a diagram.
  • the upper figure shows Western blotting of phosphorylated FAK and total FAK
  • the lower figure shows Western blotting of phosphorylated Syk and total Syk, respectively.
  • FIG. 2 is a diagram showing the gating process of CD11c + MHC-II high bone marrow-derived cultured dendritic cells (BMDC) for flow cytometric analysis of cell surface expression of gp49, integrin, and fibronectin.
  • FSC indicates forward scattering
  • SSC indicates side scattering
  • A indicates area
  • H indicates height
  • PE indicates phycoerythrin.
  • the PE profile represents a base level for further analysis.
  • the CD11c + MHC-II high BMDCs obtained by the gating in FIG.
  • FIG. 3 is a diagram showing the gating process of spleen CD3 ⁇ CD19 ⁇ CD11c + MHC-II high dendritic cells (DC) in flow cytometry analysis of cell surface expression of gp49, integrin, and fibronectin.
  • FIG. 2 is a diagram showing cell surface expression of gp49, integrin ⁇ and ⁇ chains, FN30, and FN module III (FNIII) analyzed by flow cytometry of mouse bone marrow-derived dendritic cells BMDC and spleen dendritic cells (DC).
  • FIG. 3 is a diagram showing the results of analysis of surface expression.
  • WT indicates BMDCs isolated from a wild-type mouse
  • gp49BKO indicates BMDCs isolated from a gp49B-deficient mouse.
  • B shows the results of analyzing mouse peritoneal macrophages as a positive control and BMDC for cell surface expression of FN30 and FNIII by flow cytometry.
  • FIG. 2 is a diagram showing the correlation between gp49B and integrin ⁇ 1 signals on BMDC and the correlation between the signals of MHC class I ⁇ chain and ⁇ 2 microglobulin ( ⁇ 2 m) as a positive control.
  • FIG. 3 shows Western blot analysis of tyrosine phosphorylation of FAK after stimulation of BMDCs prepared from wild-type or gp49B-deficient mice with plate-bound immobilized fibronectin (FN). The upper figure shows phosphorylated FAK, and the lower figure shows total FAK.
  • FIG. 3 shows Western blot analysis of tyrosine phosphorylated Syk after stimulation of BMDCs isolated from wild-type mice or gp49B-deficient mice with immobilized FN.
  • BMDC WT indicates BMDC prepared from a wild-type mouse
  • BMDC gp49B ⁇ / ⁇ indicates BMDC prepared from a gp48-deficient mouse.
  • Integrin ⁇ 1 and gp49B on the surface of mouse NK cells were stained with fluorescently labeled antibodies, observed with a confocal laser scanning fluorescence microscope, the obtained confocal signals were digitized, and the Pearson coefficient between signal intensities was calculated.
  • FIG. 1 is a graph showing the amount of inflammatory cytokine TNF- ⁇ secreted from microglial cells isolated from wild-type mice or gp49B gene-deficient mice.
  • FIG. 3 is a diagram showing the results of measuring the long axis length of each microglial cell isolated from a wild-type mouse or a gp49B gene-deficient mouse.
  • WT indicates the results of microglial cells isolated from wild-type mice
  • KO indicates the results of microglial cells isolated from gp49B gene-deficient mice.
  • the immune cell activator of the present invention contains a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 as an active ingredient.
  • Fibronectin can bind to LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in the fibronectin. That is, the amino acid sequence represented by SEQ ID NO: 1 is the target sequence of LILRB4 in fibronectin.
  • Substances that inhibit the binding between fibronectin and LILRB4 are not particularly limited as long as they have the activity of inhibiting the binding between fibronectin and LILRB4, but anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, fibronectin Examples include analog.
  • the anti-fibronectin antibody may be either a monoclonal antibody or a polyclonal antibody as long as it reacts with fibronectin, but monoclonal antibodies are preferably used.
  • the antibody can be produced by a well-known method. For example, in the production of polyclonal antibodies, mice, rats, hamsters, rabbits, goats, sheep, chickens, and the like are used as animals to be immunized. Antiserum can be obtained from serum after the antigen is administered subcutaneously, intradermally, intraperitoneally, etc. to an animal once or multiple times. When using proteins or peptides as antigens, it is more preferable to immunize with a mixture with a replacement fluid that has an immunostimulatory effect.
  • monoclonal antibodies for the production of monoclonal antibodies, known methods for producing monoclonal antibodies can be used, for example, "Monoclonal Antibodies” co-authored by Kaoaki Nagasune and Hiroshi Terada, Hirokawa Shoten (1990), and by James W. Golding, "Monoclonal Antibody", 3rd edition, Academic Press, 1996. Monoclonal antibodies can also be produced by DNA immunization, as described in Nature 1992 Mar 12; 356 152-154 and J. It can be produced with reference to Immunol Methods Mar 1; 249 147-154.
  • fibronectin or a partial fragment thereof peptide
  • a vector incorporating cDNA encoding fibronectin or a partial fragment thereof can be used.
  • a peptide containing the amino acid sequence represented by SEQ ID NO: 1 which is the target sequence of LILRB4 in fibronectin.
  • a fibronectin vector which is a construct containing a gene encoding a peptide containing the amino acid sequence represented by SEQ ID NO: 1, can be used as an optimal antigen gene for immunization.
  • the above-mentioned gene constructs are introduced into an animal (mouse, or This can be carried out by subcutaneously injecting it into a rat, etc.) and allowing it to be taken up into the cells.
  • the anti-fibronectin monoclonal antibody can be produced by culturing a hybridoma prepared according to a conventional method and separating it from the culture supernatant, or by administering the hybridoma to a compatible mammal and collecting it as ascites fluid. Furthermore, the anti-fibronectin monoclonal antibody can also be produced using known genetic recombination techniques. Specifically, the monoclonal antibody produced by the hybridoma prepared above and the gene encoding the antibody are cloned, a vector containing the gene is prepared, and this is introduced into a host cell and transformed. It can be produced by obtaining cells expressing fibronectin antibodies and culturing them. The cells, vector types, cell types, culture conditions, etc. used for this preparation are within the technical scope of those skilled in the art, and appropriate conditions can be set as appropriate.
  • the antibody can be further purified and used if necessary.
  • Methods for purifying and isolating antibodies include conventionally known methods, such as salting out such as ammonium sulfate precipitation, gel filtration using Sephadex, ion exchange chromatography, and affinity purification using protein A columns. It will be done.
  • anti-fibronectin antibodies examples include F(ab') 2 , F(ab) 2 , Fab', Fab, Fv, scFv, variants thereof, and fusion proteins or fusions containing the antibody portion of the anti-fibronectin antibody. Examples include peptides.
  • Anti-fibronectin antibody derivatives can be produced according to known methods for producing antibody derivatives.
  • the anti-fibronectin antibody or its derivative binds to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin or a partial sequence thereof.
  • the anti-fibronectin antibody or its derivative inhibits the binding between fibronectin and LILRB4 by binding to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin or a partial sequence thereof. be able to.
  • the anti-LILRB4 antibody may be either a monoclonal antibody or a polyclonal antibody as long as it binds to LILRB4, but monoclonal antibodies are preferably used.
  • the anti-LILRB4 antibody can be produced by the same method as the anti-fibronectin antibody.
  • a vector incorporating the LILRB4 protein, a partial fragment thereof (peptide), or a cDNA encoding the LILRB4 protein can be used.
  • a full-length LILRB4 vector which is a construct containing the full-length human LILRB4 gene, is the optimal antigen gene for immunization.
  • the partial region of the LILRB4 sequence is preferably a region of LILRB4 (fibronectin binding site) where the amino acid sequence represented by SEQ ID NO: 1, which is the target sequence of LILRB4 in fibronectin, binds to LILRB4.
  • the above-mentioned gene constructs are introduced into an animal (mouse, or This can be carried out by subcutaneously injecting it into a rat, etc.) and allowing it to be taken up into the cells.
  • the anti-LILRB4 antibody can be purified by the same method as the anti-fibronectin antibody.
  • the derivatives of the anti-LILRB4 antibody include, for example, F(ab') 2 , F(ab) 2 , Fab', Fab, Fv, scFv, variants thereof, fusion proteins containing the antibody portion of the anti-LILRB4 antibody, or Examples include fusion peptides.
  • the anti-LILRB4 antibody or its derivative can inhibit fibronectin from binding to LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in fibronectin.
  • Inhibition of binding between fibronectin and LILRB4 can be performed by evaluating inhibition of binding of fibronectin to cells expressing LILRB4.
  • Cells expressing LILRB4 are not particularly limited as long as they express LILRB4, but include, for example, spleen cells, peripheral blood leukocytes, bone marrow cells, brain cells, or B cells isolated therefrom. , plasma cells, monocytes/macrophages, dendritic cells, eosinophils, basophils, neutrophils, mast cells, activated T cells, microglial cells, and the like.
  • LILRB4 The nucleotide sequence and amino acid sequence of LILRB4 can be found from the database provided by the National Center for Biotechnology Information (NCBI). In the case of human (Homo sapiens) LILRB4, for example, Entrez Gene ID is 11006 (as of June 17, 2019), RefSeq Protein ID is NP_001265355.2, NP_001265356.2, NP_001 265357.2, NP_001265358.2, NP_001265359.2 (isoform 1 -5).
  • NCBI National Center for Biotechnology Information
  • LILRB4 For mouse (Mus musculus) LILRB4, Gene ID is 14728 (as of June 24, 2016) and NP_038560.1, and for rat (Rattus norvegicus) LILRB4, Gene ID is 292594 (as of April 18, 2019). (as of date) , RefSeq Protein ID is NP_001013916, and other animals are also known to have LILRB4.
  • the LILRB4 is not limited to the above LILRB4, and other LILRB4 are also included in the LILRB4 in the present invention.
  • the base sequence and amino acid sequence of fibronectin can be found from the database provided by the National Center for Biotechnology Information (NCBI).
  • NCBI National Center for Biotechnology Information
  • fibronectin for example, Entrez Gene ID is 2335, RefSeq Protein ID is NP_997647, NP_001352447, XP_005246463, etc.
  • Gene ID is 14268
  • rat Rostus norvegicus
  • Gene ID is 25661
  • RefSeq Protein ID is NP_062016. known to have bronectin .
  • the fibronectin in the present invention is not limited to the above-mentioned fibronectin, and other fibronectins are also included in the fibronectin in the present invention.
  • Fibronectin activates immune cells by releasing LILRB4-induced suppression of immune cell activation based on ITG activation.
  • the mechanism is shown in Figure 1.
  • Fibronectin binds to the ⁇ chain of ITG primarily through the RGD sequence in fibronectin.
  • Syk Spleen tyrosine kinase
  • FAK focal adhesion kinase
  • Ru When FAK is phosphorylated, it induces actin filament reorganization and functions such as cell adhesion, cell growth, and migration.
  • proinflammatory effects such as secretion of inflammatory cytokines are induced.
  • Fibronectin binds to LILRB4 present on the cell surface of immune cells via the amino acid sequence represented by SEQ ID NO: 1 in fibronectin (hereinafter also referred to as FN30).
  • FN30 fibronectin
  • the immunoreceptor inhibitory effect of LILRB4 is induced by Src family kinases (hereinafter referred to as SFKs) by the same mechanism that phosphorylates Syk when fibronectin binds.
  • SFKs Src family kinases
  • the tyrosine motif (ITIM) is phosphorylated, and the proinflammatory effect caused by Syk phosphorylation is suppressed through the action of dephosphorylating enzymes such as SHP-1.
  • Substances that inhibit the binding of fibronectin to LILRB4 release the suppression by fibronectin of the proinflammatory effect caused by Syk phosphorylation induced by fibronectin binding to ITG by inhibiting the binding of fibronectin to LILRB4. By doing so, it induces the pro-inflammatory action of immune cells.
  • substances that inhibit the binding of fibronectin to LILRB4 inhibit the binding of fibronectin to LILRB4 through FN30 in fibronectin, thereby inhibiting the binding of fibronectin to ITG through the RGD sequence of fibronectin.
  • Activation of ITG activates immune cells and induces inflammatory effects of immune cells.
  • fibronectin activates ITG present on the surface of immune cells, but as immune cells adhere to other cells, tissues, and organ walls, fibronectin-binding properties can be activated in immune cells even in the absence of fibronectin.
  • ITG can be activated non-specifically to ITG or other ITGs. Therefore, the substance of the present invention that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 can activate immune cells even in the absence of fibronectin.
  • LILB4 present on the surface of the immune cells comes into close proximity with ITG, thereby suppressing activation of the immune cells by LILRB4 of ITG. Therefore, substances that inhibit the binding between fibronectin and the immunosuppressive receptor LILRB4 can activate immune cells by releasing the suppression of immune cells by LILRB4 even in the absence of fibronectin. can.
  • immune cells are not particularly limited as long as they are cells involved in immunity; examples include myeloid cells such as macrophages, microglia cells, and dendritic cells; lymphoid cells such as NK cells, T cells, and B cells.
  • Cells include monocytes, granulocytes, mast cells, basophils, etc., but macrophages, microglial cells, dendritic cells, and NK cells are preferred.
  • the fibronectin analog includes any fibronectin analog as long as it has the effect of inhibiting the binding between fibronectin and LILRB4, and for example, any of the following (a) to (c). Two peptides are mentioned.
  • a peptide comprising the amino acid sequence represented by SEQ ID NO: 1 (b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4.
  • a peptide with binding ability (c) A peptide that includes an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1 and has the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4.
  • the identity of the amino acid sequence is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 98% or more. Furthermore, the number of deletions, substitutions, or additions in the above amino acid sequence is preferably 1 to 5, more preferably 1 to 4, even more preferably 1 to 3, and even more preferably 1 to 2. Amino acid sequence identity can be determined by BLAST searches provided on the GenBank database.
  • the fibronectin analog may be a fibronectin analog obtained by fusing any one of the peptides (a) to (c) with the Fc region of immunoglobulin G.
  • the fibronectin analog can be produced by a known method, for example, by genetic recombination technology.
  • the immune cell activator of the present invention contains a substance that inhibits the binding between fibronectin and LILRB4 as an active ingredient, and may further contain a pharmaceutically acceptable carrier and additives.
  • Examples of carriers and additives include water, saline, phosphate buffer, dextrose, glycerol, pharmaceutically acceptable organic solvents such as ethanol, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, Sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol , stearic acid, human serum albumin, mannitol, sorbitol, lactose, surfactants, and the like, but are not limited to these.
  • pharmaceutically acceptable organic solvents such as ethanol, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethyl
  • the immune cell activator of the present invention can be in various forms, such as a liquid (for example, an injection), a dispersion, a suspension, a tablet, a pill, a powder, a suppository, and the like.
  • a preferred embodiment is an injection, which is preferably administered parenterally (eg, intravenously, transdermally, intraperitoneally, intramuscularly).
  • the immune cell activator of the present invention can be used as a therapeutic agent for immune cell-related inflammatory diseases.
  • the dosage for activating immune cells of the present invention is, for example, 0.025 to 50 mg/kg, preferably 0.1 to 50 mg/kg, more preferably 0.1 to 25 mg/kg, even more preferably 0. .1 to 10 mg/kg or 0.1 to 3 mg/kg, but is not limited thereto.
  • the therapeutic agent for immune cell-related inflammatory diseases of the present invention contains a substance that inhibits the binding between fibronectin and LILRB4 as an active ingredient.
  • Substances that inhibit the binding between fibronectin and LILRB4 are not particularly limited as long as they have the activity of inhibiting the binding between fibronectin and LILRB4, but anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, fibronectin Examples include analog.
  • Anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, and fibronectin analogs include those described above.
  • immune cell-related inflammatory diseases are not particularly limited as long as they are inflammatory diseases in which immune cells are involved, but examples include neurodegenerative diseases, mental developmental disorders, schizophrenia, autism spectrum disorders, and chyme. Examples include arteriosclerosis and infectious diseases.
  • Neurodegenerative diseases are not particularly limited as long as they are caused by neurodegeneration, but include Alzheimer's disease, dementia, cerebral infarction, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and the like.
  • fibronectin binds to the ⁇ chain of ITG through the RGD sequence in fibronectin.
  • fibronectin binds to ITG via the RGD sequence in fibronectin, phosphorylation of Syk and FAK downstream of ITG is induced.
  • FAK is phosphorylated, it induces actin filament reorganization and functions such as cell adhesion, cell growth, and migration.
  • SAk is phosphorylated, proinflammatory effects such as secretion of inflammatory cytokines are induced.
  • Fibronectin binds to LILRB4 present on the cell surface of immune cells via FN30 represented by SEQ ID NO: 1 in fibronectin.
  • fibronectin binds to LILRB4 via FN30
  • the binding of fibronectin activates ITG, which activates SFK, phosphorylates the immunoreceptor inhibitory tyrosine motif (ITIM) of LILRB4, and phosphorylates Syk.
  • ITIM immunoreceptor inhibitory tyrosine motif
  • the pro-inflammatory effect of immune cells is induced, and the pro-inflammatory effect such as secretion of inflammatory cytokines is induced.
  • substances that inhibit the binding of fibronectin to LILRB4 inhibit the binding of fibronectin to LILRB4 through FN30 in fibronectin, thereby inhibiting the binding of fibronectin to ITG through the RGD sequence of fibronectin. Activation of ITG induces pro-inflammatory effects.
  • amyloid- ⁇ When immune cells are activated and their pro-inflammatory action is induced, for example, amyloid- ⁇ is phagocytosed by immune cells in the brain, and accumulation of amyloid- ⁇ in the brain is suppressed, leading to Alzheimer's disease. It can treat neurodegenerative diseases such as dementia and dementia.
  • macrophages accumulate in vascular endothelial cells in an attempt to phagocytose cholesterol, etc., but they are unable to sufficiently remove this and become foamy macrophages that remain locally aggregated. The lumen of blood vessels narrows, causing atherosclerosis.
  • the formation of macrophages is prevented, and the activated macrophages remove cholesterol and prevent narrowing of the vascular lumen, resulting in atherosclerosis.
  • pathogenic bacteria may not be sufficiently removed by immune cells such as macrophages, or inflamed tissue may not be sufficiently repaired, resulting in a prolonged chronic inflammatory state.
  • by activating immune cells such as macrophages chronic inflammation is relieved and sufficient inflammation is induced to achieve complete removal of pathogens and sufficient tissue repair. can treat infections.
  • fibronectin activates ITG present on the surface of immune cells, but due to adhesion of immune cells, even in the absence of fibronectin, immune cells activate non-specific ITGs that bind to fibronectin and other ITGs. can activate ITG in immune cells and induce pro-inflammatory effects. Therefore, the substance of the present invention that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 can induce the proinflammatory action of immune cells even in the absence of fibronectin.
  • LILB4 present on the surface of the immune cells comes into a close relationship with ITG, thereby suppressing the activation of the immune cells by LILRB4 of ITG and suppressing the inflammation-inducing effect of the immune cells. Therefore, a substance that inhibits the binding of fibronectin to the immunosuppressive receptor LILRB4 releases the suppression of immune cells by LILRB4 in immune cells even in the absence of fibronectin, activates immune cells, and exerts proinflammatory effects. By inducing immune cells, it is possible to treat immune cell-related inflammatory diseases.
  • the immune cells are not particularly limited as long as they are cells involved in immunity; for example, myeloid cells such as macrophages, microglial cells, and dendritic cells; NK cells; , T cells, B cells, and other lymphoid cells; monocytes, granulocytes, mast cells, basophils, etc., but macrophages, microglial cells, dendritic cells, and NK cells are preferred.
  • the therapeutic agent for immune cell-related inflammatory diseases of the present invention may further contain pharmaceutically acceptable carriers and additives.
  • Pharmaceutically acceptable carriers and additives include those mentioned above.
  • the therapeutic agent for immune cell-related inflammatory diseases of the present invention can be in various forms, such as solutions (eg, injections), dispersions, suspensions, tablets, pills, powders, suppositories, and the like.
  • a preferred embodiment is an injection, which is preferably administered parenterally (eg, intravenously, transdermally, intraperitoneally, intramuscularly).
  • the dosage of the therapeutic agent for immune cell-related inflammatory diseases of the present invention is, for example, 0.025 to 50 mg/kg, preferably 0.1 to 50 mg/kg, more preferably 0.1 to 25 mg/kg, and It can be preferably 0.1 to 10 mg/kg or 0.1 to 3 mg/kg, but is not limited thereto.
  • Example 1 Formation of LILRB4, fibronectin, and integrin complexes in macrophages A possible complex between gp49B (LILRB4 in mice), fibronectin (hereinafter referred to as FN), and integrins in bone marrow-derived macrophages was determined by co-immunoprecipitation assay. Body formation was monitored. Co-immunoprecipitation assay was performed by the following method.
  • Bone marrow cells derived from C57BL/6 (B6) mice were isolated for differentiation of bone marrow-derived macrophages (BMM) based on a previous report (Weischenfeldt & Porse 2018; doi: 10.1101/pdb.prot5080). .
  • the obtained bone marrow cells (2 ⁇ 10 7 cells) were seeded in a 10 cm dish and cultured for 6 days in ⁇ -MEM medium supplemented with 10% FCS and 20 ng/ml M-CSF, and then mature BMM was lysed in a non-denaturing manner.
  • the obtained immune complex was resuspended in 1x SDS sample buffer, and anti-ILT3 antibody (ab231813, manufactured by Abcam), anti-FN antibody (F3648, manufactured by Sigma-Aldrich), and anti-integrin ⁇ 1 antibody (GTX128839) were added. , manufactured by GeneTex) for Western blotting analysis.
  • the results of the co-immunoprecipitation assay are shown in Figure 2. As shown in FIG. 2, the immunoprecipitated sample with anti-FN antibody contained integrin ⁇ 1 and gp49B, suggesting a direct or indirect association of the three molecules of FN, integrin ⁇ 1 , and gp49B.
  • mice intraperitoneal resident F4/80 hi macrophages thioglycollate-induced peritoneal F4/80 hi macrophages, splenic F4/80 hi macrophages
  • mice used were wild-type mice and gp48-deficient mice prepared based on a previous report (Kasai S et al. Eur J Immunol 2008;38:2426-2437).
  • peritoneal induced macrophages with a purity of 90% or more were collected. These cells were incubated with anti-LILRB4 antibody (clone ZM4.1, clone #293623; manufactured by Thermo Fisher Scientific), anti-gp49 antibody (manufactured by Santa-Cruz Biotechnology), and anti-integrin subunit ⁇ 5 antibody (manufactured by BioLegend).
  • anti-LILRB4 antibody clone ZM4.1, clone #293623; manufactured by Thermo Fisher Scientific
  • anti-gp49 antibody manufactured by Santa-Cruz Biotechnology
  • anti-integrin subunit ⁇ 5 antibody manufactured by BioLegend
  • Anti-integrin ⁇ V antibody (manufactured by BioLegend), anti-integrin ⁇ 1 antibody (manufactured by Merck Millipore, Thermo Fisher Scientific, Sigma-Aldrich), anti-integrin ⁇ 3 antibody (manufactured by BioLegend), anti-FN 30 antibodies ( WO2021/029318) and stained with anti-FNIII 1-7 antibody (manufactured by Thermo Fisher Scientific).
  • FIG. 3 strong expression of integrin ⁇ V , ⁇ 1 and ⁇ 3 chains, gp49, FN30 and FNIII 1-7 was detected in mouse intraperitoneal resident macrophages.
  • gp49 expression signals were decreased in cells from gp49B-deficient mice. This indicates that the majority of the gp49 expression signal is the gp49B isoform rather than the gp49A.
  • mouse-induced peritoneal macrophages expression of integrin ⁇ 5 , ⁇ V and ⁇ 1 chain, and gp49 was detected, but FN30 was not detected and FNIII 1-7 was hardly detected.
  • gp49 signals were shown to be mostly derived from gp49B.
  • the expression of gp49 on mouse macrophage cell line RAW264.7 cells and gp49B-deficient mouse macrophage cell line RAW264.7 cells was examined by flow cytometry. The results are shown in FIG. As shown in Figure 4, the gp49 expression signal was decreased in gp49B-deficient RAW264.7 cells. This indicates that the gp49 signal is mainly a gp49B signal. Furthermore, as shown in FIG. 3, expression of LILRB4, integrin ⁇ 5 and ⁇ 1 chain was detected on the THP-1 cell surface, but FN30 or FNIII 1-7 was not detected.
  • LILRB4/gp49B expression is negligible in splenic macrophages, but detected in primary/induced macrophages as well as monocyte/macrophage cell lines.
  • the expression profile of the integrin subunits that constitute the major FN-binding integrins was characteristic for each type of primary cell or cell line. Surface FN was exceptionally strongly detected on peritoneal resident macrophages, but all other cells had little, if any, tethered FN on their surface.
  • Example 2 Signal correlation between gp49B, FN, and integrin on macrophages
  • the signal correlation between gp49, FN, and integrin ⁇ 1 chain on FN-bound peritoneal resident macrophages was analyzed using confocal laser scanning microscopy. It was investigated by. Confocal laser scanning microscopy analysis was performed as follows. Cells were seeded in a glass bottom dish (manufactured by Matsunami, polylysine coated, dish diameter 35 mm, glass diameter 14 mm ⁇ , glass thickness No. 1S/1.5 (0.16-0.19 mm), #D11131H) and cultured for 1 hour. did.
  • the cells were seeded in a medium containing 35 g glycerol in 100 ml of PBS, and then subjected to a Leica SP8, Olympus FV3000, or Nikon A1 confocal microscope. Tested in 2-D under the system. Confocal images of cells were also analyzed by SP8, FV3000 or Nikon A-1 3D (z-axis) analysis software. The statistical analysis was performed using GraphPad Prism® 6 (Version 6.0; manufactured by GraphPad Software) or R software (ver 4.1.0, manufactured by Lucent Technologies), and was performed using at least three independent experiments. Based on the results. Data were expressed as mean ⁇ SEM or ⁇ SD. Data were compared for statistical differences on Pearson's correlation coefficient using a two-tailed test, two-tailed paired Student's t-test. p ⁇ 0.05 was considered statistically significant.
  • Example 3 Regarding the effect of immobilized FN on integrin-gp49 signal correlation
  • Cell adhesion to plastic or glass plates is caused by the interaction between the plastic/glass surface and cell adhesion molecules such as integrins and cell non-adhesion molecules such as gp49B. This is thought to include non-specific interactions. Cell activation is initiated even when adhesion-specific integrins are involved in non-specific adhesion.
  • cell adhesion to FN-rich matrices is mediated by FN-binding integrins. Therefore, we next investigated how immobilized FN affects the adhesion-inducing integrin-gp49 signal correlation.
  • FIGS. 7A to 7C show the adhesion of FN-poor peritoneal-induced macrophages to FN-coated and uncoated glass coverslips over time. The results are shown in FIGS. 7A to 7C.
  • Figure 7A is a photograph of microscopic observation over time
  • Figure 7B is a graph of digitized micrographs of randomly selected cells
  • the vertical and horizontal lengths are calculated.
  • Figure 7C is a graph of the cell size calculated by ⁇ ( The graph is calculated as (horizontal length) 2 + (vertical length) 2 ⁇ and compares cells adhered to FN-coated or non-coated glass.
  • FIG. 7A microscopic observation revealed that macrophages began to adhere to the glass 1 hour after seeding.
  • Example 4 As shown in Figure 1, cell adhesion following integrin activation directly induces downstream phosphorylation of FAK and Syk by Src family kinases, leading to classical signaling (cell adhesion, growth and migration signals, respectively). transduction), triggering pro-inflammatory signaling. Therefore, we investigated as follows whether phosphorylation of FAK and Syk could be regulated after integrin binding to FN in the presence or absence of LILRB4/gp49B.
  • FN-negative human monocytic cell line THP-1 cells were seeded onto FN-coated culture dishes, incubated, and cell lysates for Western blot analysis were prepared as in Example 1.
  • control wild-type THP-1 cells and LILRB4-deficient THP-1 cells were stimulated with FN or BSA immobilized on a dish, or an uncoated dish, and tyrosine phosphorylation of FAK or Syk was examined by Western blot analysis. Ta.
  • the results are shown in FIG. 9A.
  • FIG. 9A As shown in Figure 9A, in wild-type THP-1 cells, significant tyrosine phosphorylation of Syk was induced when cells adhered to FN-coated dishes, whereas phosphorylation of FAK was less pronounced.
  • Example 5 Expression profile of integrins, FN, and gp49B on bone marrow-derived cultured dendritic cells (BMDCs) Major FN-binding integrins on the surface of mouse BMDCs, namely integrins ⁇ 5 , ⁇ V , ⁇ 1 and ⁇ 3 ,
  • BMDCs bone marrow-derived cultured dendritic cells
  • spleen cells and bone marrow cells were prepared from the spleen, femur, and tibia of C57BL/6 mice, respectively, and red blood cells were dissolved and removed with a solution of 155 mM NH 4 Cl, 10 mM KHCO 3 , and 0.1 mM EDTA.
  • BMDCs bone marrow-derived cultured dendritic cells
  • FBS heat-inactivated fetal bovine serum
  • 1mM sodium pyruvate 1mM sodium pyruvate
  • 50 ⁇ M 2-mercaptoethanol 50 ⁇ M 2-mercaptoethanol
  • 100U/ml penicillin Sigma- Aldrich
  • 100 ⁇ g/ml streptomycin Sigma-Aldrich
  • 20 ng/ml GM-CSF PeproTech
  • the floating/low-adhesive cells were collected by pipetting, sorted into lymphocytes and singlets, and then sorted and purified to contain mainly MHC class II-high CD11c + cells and few MHC class II-low cells.
  • a population containing the following was obtained (Fig. 10A, Fig. 10B). Hereinafter, this population will be referred to as the class II-high population.
  • analysis of non-planktonic and adherent cells on day 6 of culture revealed that most of them were MHC class II-low compared to MHC class II-high planktonic and low-adherent BMDCs. It was revealed that these were immature BMDCs (Fig. 10B).
  • this population will be referred to as the MHC class II-low population.
  • MHC class II-low population microscopic observation revealed cells rich in dendrites in the floating/low-adhesion cell population, which are relatively mature BMDCs compared to adherent immature BMDCs. This is a typical characteristic of
  • primary dendritic cells primary DC
  • FIG. 10D primary dendritic cells were isolated from splenocytes by selecting CD3 ⁇ CD19 ⁇ CD11c high MHC class II high cells.
  • FIGS. 11 and 12 As shown in Figure 11, the MHC class II-high population was positive for surface gp49, integrins ⁇ 5 , ⁇ V , and ⁇ 1 but negative for integrin ⁇ 3 , FN30, and FNIII. Met. Expression of gp49 is not necessarily strong, and as shown in FIG. 12, when BMDCs prepared from gp49B-deficient mice were used, gp49B isoform expression was dominant, but gp49A isoform expression was not.
  • integrin ⁇ 5 , ⁇ V , ⁇ 1 and ⁇ 3 subunits were found in the MHC class II-low population. Note that in the MHC class II-low population, integrin ⁇ 1 expression was low, but integrin ⁇ 3 was weakly positive in contrast to the BMDCs of the MHC class II-high population. gp49B expression was evident in the MHC class II-low population as well as in the MHC class II-high population. The MHC class II-low population is also negative for FN30 and FNIII 1-7 , indicating that the MHC class II-low population, like the MHC class II-high population, is tethered to the cell surface ( tethering) indicates that it does not have FN. Regarding splenic CD11c + DCs, integrin subunits ⁇ V , ⁇ 1 , and ⁇ 3 were positive, but gp49, FN30, and FNIII expression were negative.
  • Example 6 Examination of the correlation between gp49B and integrin ⁇ 1 signals on BMDC
  • the fluorescence signals of gp49B and integrin ⁇ 1 on the BMDC surface were measured using a confocal laser scanning microscope.
  • the signal correlation between MHC class I ⁇ chain and ⁇ 2 microglobulin ( ⁇ 2 m) was analyzed. The results are shown in FIG.
  • Example 7 Relationship between LILRB4/gp49B and integrin in NK cells that do not have FN tethered to the cell surface CD3 ⁇ NK1.1 + CD49b + was detected from spleen cells of C57BL/6 mice using BD FACS Aria TM III. The cells were isolated as NK cells and cultured for 7 days in the presence of recombinant human IL-2 (800 U/ml). On the 7th day, 1 ng/ml of IL-12 was added, and 2 days after the addition, integrin ⁇ 1 and gp49B on the NK cell surface were stained with fluorescently labeled antibodies, and confocal laser scanning was performed in the same manner as in Example 2.
  • Example 8 Suppressive effect of LILRB4/gp49 in microglial cells that do not have FN tethered to the cell surface Wild type (WT) and gp49-deficient mice (KO) of C57BL/6 mice 0-2 days old The cerebrum was removed, shredded and treated with trypsin, then seeded in a culture dish, and 14 days later the cells were collected by shaking. The expression of microglia-specific molecules CD11b and P2RY12 was confirmed for the collected cells by flow cytometry and immunohistochemistry. The microglial cells obtained above were seeded on an FN-coated culture dish or a FN-uncoated culture dish, and the morphology of the cells was observed under a microscope after 24 hours.
  • WT Wild type
  • KO gp49-deficient mice
  • microglial cells isolated from wild-type mice and LILRB4 gene-deficient mice have different morphology when seeded, and microglial cells derived from wild-type mice have a ramified morphology.
  • microglial cells derived from LILRB4-deficient mice had a predominant form with more activated short processes (amoeboid).
  • the supernatant was collected, and the inflammatory cytokine TNF- ⁇ contained in the supernatant was measured by ELISA. The results are shown in FIG.
  • microglial cells isolated from wild-type mice and LILRB4 gene-deficient mice had different long axis lengths when seeded on FN-uncoated and FN-coated plates. It is clear that most of the cells are in the Ramified form (in resting phase), which spreads out for a long time, whereas the microglial cells isolated from LILRB4-deficient mice are mostly in the Amoeboid form (in the activated state), where they adhere without spreading. became.
  • LILRB4-deficient microglial cells are no longer suppressed by LILRB4-FN and are in a more activated state.
  • the long axis length is longer when seeded on FN-coated plates than on non-FN-coated plates, so inactivation of microglial cells by LILRB4-FN is The involvement of FN-binding integrin was suggested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Psychiatry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Psychology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Zoology (AREA)
  • Hospice & Palliative Care (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided are: an immunocyte activator containing, as an active ingredient, a substance which inhibits the binding of fibronectin and an immunosuppressive receptor LILRB4; and a therapeutic agent for immunocyte-related inflammatory diseases, the therapeutic agent containing, as an active ingredient, a substance which inhibits the binding of fibronectin and an immunosuppressive receptor LILRB4.

Description

免疫細胞の活性化剤、及び免疫細胞関連炎症疾患の治療剤Immune cell activator and therapeutic agent for immune cell-related inflammatory diseases
 本発明は免疫細胞の活性化剤、及び免疫細胞関連炎症疾患の治療剤に関する。 The present invention relates to an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases.
 免疫抑制性受容体であるLILRB4(白血球Ig様受容体(Leukocyte Ig-like receptor)B4、以下、B4とも称する)は、感染又は自己免疫に由来する炎症性疾患を判定できることが報告されている(特許文献1)。 It has been reported that LILRB4 (Leukocyte Ig-like receptor B4, hereinafter also referred to as B4), which is an immunosuppressive receptor, can determine inflammatory diseases derived from infection or autoimmunity ( Patent Document 1).
 また、B4の生理的リガンドは、フィブロネクチンであり、B4とフィブロネクチンの結合を阻害する物質が、免疫チェックポイント関連疾患の治療に有効であることが報告されている(特許文献2)。 Furthermore, the physiological ligand of B4 is fibronectin, and it has been reported that a substance that inhibits the binding of B4 and fibronectin is effective in treating immune checkpoint-related diseases (Patent Document 2).
 フィブロネクチン(Fibronectin;以下、FNとも称する)は細胞外マトリックス(Extracellular Matrix;以下、ECMとも称する)、細胞表面上および体液中に存在する約259kDaの糖蛋白である。フィブロネクチンはタンパク分解酵素であるサーモリシン(thermolysin)処理により6つの領域(ドメイン)に分割される。これらはそれぞれの特異的な分子結合能をもとに1.フィブリン・ヘパリン結合領域(Fibrin/Heparin binding-FN)、2.コラーゲン結合領域(Collagen binding-FN)、3.ヘパリン結合領域(Heparin binding-FN)、4.細胞/インテグリン結合領域(cell/integrin-binding-domain(CBD)-FN)、5.第二ヘパリン結合領域(second Heparin binding-FN)、6.第二フィブリン結合領域(second Fibrin binding-FN)と呼称されている。このように、FNは生理的分子への結合能を異にする複数のドメインから構成される。これまで、全身性エリテマトーデス(Systemic Lupus Erythematosus;SLE)やリウマチ関節炎(Rheumatoid Arthritis;RA)といった一部の自己免疫疾患では血漿中や体液(例えば、関節液)中のFN濃度の変動がみられるほか、モノクローナル抗体を用いてFNの断片化(fragmentation)を評価するドメイン解析が、疾患の診断ないし重症度評価に有用であると報告されている(非特許文献1~3)。特に、Fibrin/Heparin binding-FN濃度は健常人(61±18μg/ml)との比較で、SLEは24±12μg/ml(p<0.003)、RAは36±22μg/ml(p<0.00002)であり、診断への活用が見込まれる。また、FNが肺癌細胞株の転移能と浸潤能を促進することが報告されている(非特許文献4)。 Fibronectin (hereinafter also referred to as FN) is a glycoprotein of approximately 259 kDa that exists in the extracellular matrix (hereinafter also referred to as ECM), cell surfaces, and body fluids. Fibronectin is divided into six regions (domains) by treatment with thermolysin, a proteolytic enzyme. These are based on their specific molecular binding ability. Fibrin/Heparin binding region (Fibrin/Heparin binding-FN), 2. Collagen binding region (Collagen binding-FN), 3. Heparin binding region (Heparin binding-FN), 4. cell/integrin-binding-domain (CBD)-FN; 5. 6. second heparin binding region (second Heparin binding-FN); It is called the second fibrin binding region (second fibrin binding-FN). Thus, FN is composed of multiple domains that differ in their ability to bind to physiological molecules. Until now, in some autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), fluctuations in FN concentration in plasma and body fluids (e.g. joint fluid) have been observed. It has been reported that domain analysis that evaluates FN fragmentation using monoclonal antibodies is useful for diagnosing or evaluating the severity of diseases (Non-Patent Documents 1 to 3). In particular, the Fibrin/Heparin binding-FN concentration was 24±12μg/ml (p<0.003) for SLE and 36±22μg/ml (p<0.003) for RA compared to healthy subjects (61±18μg/ml). .00002) and is expected to be used for diagnosis. Furthermore, it has been reported that FN promotes the metastatic ability and invasive ability of lung cancer cell lines (Non-Patent Document 4).
 生体内の各種細胞は、恒常性を保ちながら、必要に応じて活性化、増殖、移動・遊走等の機能を発揮する。この恒常性の維持と機能のために、細胞は周辺環境中の細胞・組織の表面上にある、コラーゲン、フィブロネクチン、ラミニン、プロテオグリカン等からなる細胞外マトリクスやその他の分子群と、Focal adhesion(接着斑)と呼ばれる限局した構造を形成して接着し、自身の細胞内にシグナルを導入する必要がある。
 この接着斑の形成に主に利用されている受容体は、インテグリン(以下、ITGとも称する)と総称される分子群であり、細胞内に導入されるシグナルの最上流部は2種のチロシンキナーゼの活性化であり、アクチンフィラメントの再構成を誘導するFocal adhesion kinase(FAK)のリン酸化による活性化及び炎症を誘発する能力をもつSpleen tyrosine kinase(Syk)のリン酸化による活性化であることが報告されている(非特許文献5)。
Various cells within a living body maintain homeostasis while exerting functions such as activation, proliferation, migration, and migration as necessary. In order to maintain this homeostasis and function, cells have focal adhesion with extracellular matrices and other molecules such as collagen, fibronectin, laminin, and proteoglycans on the surfaces of cells and tissues in the surrounding environment. It is necessary to form localized structures called plaques, adhere to cells, and introduce signals into their own cells.
The receptors mainly used for the formation of this focal adhesion are a group of molecules collectively called integrins (hereinafter also referred to as ITG), and the most upstream part of the signal introduced into the cell is two types of tyrosine kinases. Activation by phosphorylation of focal adhesion kinase (FAK), which induces reorganization of actin filaments, and activation by phosphorylation of Spleen tyrosine kinase (Syk), which has the ability to induce inflammation. It has been reported (Non-patent Document 5).
 ITGは細胞の成長、シグナリング、サイトカイン分泌に関与することが知られている(非特許文献6)。B4のリガンドとしてのFNはITGと結合し、FNの構造中、ITGと結合するのはFNの中間部分のRGDであることが報告されており(非特許文献7)、また、ITGのαβ鎖がマウスB4のリガンドであり、ITGとB4の結合はマウス骨髄由来肥満細胞BMMCの活性を抑制することが報告されている(非特許文献8)。 ITG is known to be involved in cell growth, signaling, and cytokine secretion (Non-Patent Document 6). It has been reported that FN as a B4 ligand binds to ITG, and that in the structure of FN, it is RGD in the middle part of FN that binds to ITG (Non-Patent Document 7), and that the α V of ITG binds to ITG. It has been reported that the β3 chain is a ligand for mouse B4, and that the binding of ITG and B4 suppresses the activity of mouse bone marrow-derived mast cells BMMC (Non-Patent Document 8).
 また、免疫細胞の一つであるミクログリア細胞から排出されるアミロイドβは、脳内において蓄積して慢性炎症を引き起こし、認知症の原因となることが知られており、ミクログリア細胞においてB4は、脳内において慢性炎症の原因である可能性があることが報告されている(非特許文献9~11) In addition, amyloid β excreted from microglial cells, which are one of the immune cells, is known to accumulate in the brain and cause chronic inflammation, causing dementia. It has been reported that it may be a cause of chronic inflammation within the body (Non-patent Documents 9 to 11).
 これまでITG等による接着斑形成後のシグナルを抑制する分子は知られていない。そのため、癌等を対象に、ITG分子そのものを標的にした創薬の例は多く知られているが、ITGを抑制する分子を標的にした創薬については知られていない。また、ミクログリア細胞をはじめとする免疫細胞のシグナル伝達におけるB4の役割は知られていない。 Up to now, no molecules are known that suppress signals after the formation of focal adhesions such as ITG. Therefore, many examples of drug discovery targeting cancer and the like that target the ITG molecule itself are known, but drug discovery that targets molecules that suppress ITG is not known. Furthermore, the role of B4 in signal transduction of immune cells including microglial cells is unknown.
特開2018-25554号公報Japanese Patent Application Publication No. 2018-25554 国際公開第2021/029318号International Publication No. 2021/029318
 本発明は、免疫細胞の活性化剤、及び免疫細胞関連炎症疾患の治療剤を提供することを目的とする。 The purpose of the present invention is to provide an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases.
 本発明者らは、免疫細胞において、フィブロネクチンが免疫細胞表面上のインテグリンと結合することにより生じる免疫細胞の活性化が、フィブロネクチンが、免疫細胞表面上のLILRB4と結合することにより抑制されていることを見出した。本知見に基づき、フィブロネクチンとLILRB4との結合を阻害する物質により、フィブロネクチンのLILRB4による免疫細胞の活性化の抑制を解除して免疫細胞を活性化でき、免疫細胞の炎症誘発作用を惹起できることを見出し、LILRB4とフィブロネクチンの結合を阻害する物質が、免疫細胞の活性化剤、及び免疫細胞関連炎症疾患の治療剤として有用であることを見出し、本発明を完成させた。
 本発明は以下の態様を含む。
[1] フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質を有効成分として含有する免疫細胞の活性化剤。
[2] 前記免疫細胞の活性化が、免疫細胞の炎症誘発作用である、[1]に記載の免疫細胞の活性化剤。
[3] 前記免疫細胞の炎症誘発作用が、インテグリンの活性化に基づく免疫細胞の炎症誘発作用に対する免疫抑制性受容体LILRB4による抑制の解除によるものである、[2]に記載の免疫細胞の活性化剤。
[4] 前記インテグリンの活性化が、フィブロネクチンのインテグリンへの結合によるものである、[3]に記載の免疫細胞の活性化剤。
[5] 前記フィブロネクチンが、前記フィブロネクチン中の配列番号1で示されるアミノ酸配列を介して、免疫抑制性受容体LILRB4と結合する、[1]~[4]のいずれか一項に記載の免疫細胞の活性化剤。
[6] 前記フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質が、抗フィブロネクチン抗体又はその誘導体、抗免疫抑制性受容体LILRB4抗体又はその誘導体、若しくはフィブロネクチンアナログである、[1]~[5]のいずれか一項に記載の免疫細胞の活性化剤。
[7] 前記抗フィブロネクチン抗体又はその誘導体が、フィブロネクチン中の配列番号1で示されるアミノ酸配列と結合する、[6]に記載の免疫細胞の活性化剤。
[8] 前記フィブロネクチンアナログが、以下の(a)~(c)のいずれか一つのペプチドである、[6]に記載の免疫細胞の活性化剤。
(a)配列番号1で表されるアミノ酸配列を含むペプチド、
(b)配列番号1で表されるアミノ酸配列において、1~数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド、
(c)配列番号1で表されるアミノ酸配列において、80%以上の同一性を有するアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド
[9] 前記免疫細胞が、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞からなる群から選択される、[1]~[8]のいずれか一項に記載の免疫細胞の活性化剤。
[10] フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質を有効成分として含有する免疫細胞関連炎症疾患の治療剤。
[11] 前記フィブロネクチンが、前記フィブロネクチン中の配列番号1で表されるアミノ酸配列を介して、免疫抑制性受容体LILRB4と結合する、[10]に記載の治療剤。
[12] 前記フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質が、抗フィブロネクチン抗体又はその誘導体、抗免疫抑制性受容体LILRB4抗体又はその誘導体、若しくはフィブロネクチンアナログである、[10]又は[11]に記載の治療剤。
[13] 前記抗フィブロネクチン抗体又はその誘導体が、フィブロネクチン中の配列番号1で表されるアミノ酸配列と結合する、[12]に記載の治療剤。
[14] 前記フィブロネクチンアナログが、以下の(a)~(c)のいずれか一つのペプチドである、[12]に記載の治療剤。
(a)配列番号1で表されるアミノ酸配列を含むペプチド、
(b)配列番号1で表されるアミノ酸配列において、1~数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド、
(c)配列番号1で表されるアミノ酸配列において、80%以上の同一性を有するアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド
[15] 前記免疫細胞が、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞からなる群から選択される、[10]~[14]のいずれか一項に記載の治療剤。
[16] 前記免疫細胞関連炎症疾患が、神経変性疾患、心の発達障害、統合失調症、自閉スペクトラム症、粥状動脈硬化症、及び感染症からなる群から選択される、[10]~[15]のいずれか一項に記載の治療剤。
[17] 前記神経変性疾患が、アルツハイマー病、認知症、脳梗塞、パーキンソン病、ハンチントン病、及び筋萎縮性側索硬化症からなる群から選択される、[16]に記載の治療剤。
The present inventors demonstrated that activation of immune cells caused by fibronectin binding to integrin on the surface of immune cells is suppressed by binding of fibronectin to LILRB4 on the surface of immune cells. I found out. Based on this finding, we discovered that a substance that inhibits the binding between fibronectin and LILRB4 can release the inhibition of immune cell activation caused by fibronectin by LILRB4, activate immune cells, and induce inflammation-inducing effects in immune cells. The present invention was completed based on the discovery that a substance that inhibits the binding between LILRB4 and fibronectin is useful as an activator for immune cells and a therapeutic agent for immune cell-related inflammatory diseases.
The present invention includes the following aspects.
[1] An activator for immune cells containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
[2] The immune cell activator according to [1], wherein the activation of the immune cells is an inflammation-inducing effect of the immune cells.
[3] The activity of the immune cell according to [2], wherein the inflammatory action of the immune cell is due to release of suppression by the immunosuppressive receptor LILRB4 against the inflammatory action of the immune cell based on integrin activation. agent.
[4] The immune cell activator according to [3], wherein the activation of the integrin is due to binding of fibronectin to the integrin.
[5] The immune cell according to any one of [1] to [4], wherein the fibronectin binds to the immunosuppressive receptor LILRB4 via the amino acid sequence shown by SEQ ID NO: 1 in the fibronectin. activator.
[6] The substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog [1] The immune cell activator according to any one of [5].
[7] The immune cell activator according to [6], wherein the anti-fibronectin antibody or its derivative binds to the amino acid sequence shown by SEQ ID NO: 1 in fibronectin.
[8] The immune cell activator according to [6], wherein the fibronectin analog is any one of the following peptides (a) to (c).
(a) A peptide comprising the amino acid sequence represented by SEQ ID NO: 1,
(b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4. a peptide with binding ability,
(c) A peptide comprising an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1, and having the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4 [9] Said The immune cell activator according to any one of [1] to [8], wherein the immune cell is selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells.
[10] A therapeutic agent for immune cell-related inflammatory diseases containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
[11] The therapeutic agent according to [10], wherein the fibronectin binds to the immunosuppressive receptor LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in the fibronectin.
[12] The substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog, [10] or The therapeutic agent according to [11].
[13] The therapeutic agent according to [12], wherein the anti-fibronectin antibody or its derivative binds to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin.
[14] The therapeutic agent according to [12], wherein the fibronectin analog is any one of the following peptides (a) to (c).
(a) A peptide comprising the amino acid sequence represented by SEQ ID NO: 1,
(b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4. a peptide with binding ability,
(c) A peptide comprising an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1, and having the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4 [15] Said The therapeutic agent according to any one of [10] to [14], wherein the immune cells are selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells.
[16] The immune cell-related inflammatory disease is selected from the group consisting of neurodegenerative diseases, mental developmental disorders, schizophrenia, autism spectrum disorders, atherosclerosis, and infectious diseases, [10] The therapeutic agent according to any one of [15].
[17] The therapeutic agent according to [16], wherein the neurodegenerative disease is selected from the group consisting of Alzheimer's disease, dementia, cerebral infarction, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.
 本発明によれば、免疫細胞の活性化剤、及び免疫細胞関連炎症疾患の治療剤を提供することができる。 According to the present invention, an agent for activating immune cells and a therapeutic agent for immune cell-related inflammatory diseases can be provided.
フィブロネクチンとインテグリンとによる免疫細胞の活性化と炎症誘発作用、及びLILRB4による免疫細胞の活性化及び炎症誘発作用の抑制の機序を示した図である。FIG. 2 is a diagram showing the mechanism of activation of immune cells and the pro-inflammatory effect by fibronectin and integrins, and the suppression of the activation and pro-inflammatory effect of immune cells by LILRB4. 実施例1の共免疫沈降アッセイの結果を示した図である。FIG. 2 is a diagram showing the results of co-immunoprecipitation assay in Example 1. 野生型マウス及びgp48欠損マウスの腹腔内常在F4/80hiマクロファージ、チオグリコレート誘発腹腔F4/80hiマクロファージ、脾臓F4/80hiマクロファージ、及び、マウスマクロファージ細胞株RAW264.7、並びにヒト単球細胞株THP-1におけるLILRB4/gp49、インテグリン及びフィブロネクチンの発現プロファイルをフローサイトメトリー解析により調べた結果を示した図である。WTは野生型マウス、KOはgp48欠損マウスをそれぞれ示す。Intraperitoneal resident F4/80 hi macrophages of wild-type mice and gp48-deficient mice, thioglycollate-induced peritoneal F4/80 hi macrophages, splenic F4/80 hi macrophages, mouse macrophage cell line RAW264.7, and human monocytes FIG. 2 is a diagram showing the results of examining the expression profile of LILRB4/gp49, integrin, and fibronectin in cell line THP-1 by flow cytometry analysis. WT indicates a wild-type mouse, and KO indicates a gp48-deficient mouse. マウスマクロファージ細胞株RAW264.7細胞及びgp49B欠損マウスマクロファージ細胞株RAW264.7細胞上のgp49の発現をフローサイトメトリーで調べた結果を示す。The results of examining the expression of gp49 on mouse macrophage cell line RAW264.7 cells and gp49B-deficient mouse macrophage cell line RAW264.7 cells by flow cytometry are shown. フィブロネクチン結合腹腔常在マクロファージ上のgp49、フィブロネクチン及びインテグリンβ鎖間の共焦点シグナル相関を、共焦点レーザー走査顕微鏡分析を用いて調べ、ピアソンの相関係数を算出した結果を示した図である。Fig. 2 is a diagram showing the results of examining the confocal signal correlation between gp49, fibronectin, and integrin β 1 chain on fibronectin-binding peritoneal resident macrophages using confocal laser scanning microscopy analysis, and calculating Pearson's correlation coefficient. . フィブロネクチン結合腹腔常在マクロファージ上のgp49、フィブロネクチン及びインテグリンβ鎖間のシグナル相関を、共焦点レーザー走査顕微鏡分析を用いて調べ、ピアソンの相関係数及びマンデルの相関係数を算出した結果を示した図である。The signal correlation between gp49, fibronectin, and integrin β 1 chain on fibronectin-binding peritoneal resident macrophages was investigated using confocal laser scanning microscopy analysis, and the results of calculating Pearson's correlation coefficient and Mandel's correlation coefficient are shown. This is a diagram. 誘発腹腔マクロファージのフィブロネクチン被覆又は非被覆ガラスカバーグラスへの接着を、経時的に観察した顕微鏡写真である。These are micrographs showing the adhesion of induced peritoneal macrophages to fibronectin-coated or non-coated glass coverslips observed over time. 誘発腹腔マクロファージのフィブロネクチン被覆又は非被覆ガラスカバーグラスへの接着した細胞について、ランダムに細胞を選択し、各細胞の顕微鏡写真をデジタル化し、縦の長さ及び横の長さを計算したグラフである。This is a graph obtained by randomly selecting cells, digitizing micrographs of each cell, and calculating the vertical and horizontal lengths of induced peritoneal macrophages adhered to fibronectin-coated or uncoated glass coverslips. . 誘発腹腔マクロファージのフィブロネクチン被覆又は非被覆ガラスカバーグラスへの接着した細胞について、細胞のサイズを、フィブロネクチン被覆又は非被覆ガラスに接着した細胞間で比較したグラフをそれぞれ示す。Graphs are shown comparing the cell size of induced peritoneal macrophages adhered to fibronectin-coated or uncoated glass coverslips, respectively. フィブロネクチン非被覆又はフィブロネクチン被覆ガラスに接着した非フィブロネクチン係留(テザリング)誘発マクロファージ上のインテグリンβの共焦点シグナルとgp49の共焦点シグナルとの相関をピアソンの相関係数で示した図である。FIG. 3 is a diagram showing the correlation between the confocal signal of integrin β 1 and the confocal signal of gp49 on non-fibronectin tethering-induced macrophages adhered to fibronectin-uncoated or fibronectin-coated glass using Pearson's correlation coefficient. 野生型ヒト単球細胞株THP-1細胞及びLILRB4欠損ヒト単球細胞株THP-1細胞のフィブロネクチン被覆培養ディッシュ又は非フィブロネクチン被覆培養ディッシュにおける、FAK及びSykのチロシンリン酸化をウエスタンブロッティングで分析した結果を示した図である。上図は、リン酸化FAKと全FAKのウエスタンブロッティングを、下図はリン酸化Sykと全Sykのウエスタンブロッティングをそれぞれ示す。Results of western blotting analysis of tyrosine phosphorylation of FAK and Syk in fibronectin-coated culture dishes or non-fibronectin-coated culture dishes of wild-type human monocytic cell line THP-1 cells and LILRB4-deficient human monocytic cell line THP-1 cells. FIG. The upper figure shows Western blotting of phosphorylated FAK and total FAK, and the lower figure shows Western blotting of phosphorylated Syk and total Syk, respectively. 野生型マウスマクロファージ細胞株RAW264.7細胞及びLILRB4欠損マウスマクロファージ細胞株RAW264.7細胞のフィブロネクチン被覆培養ディッシュ又は非フィブロネクチン被覆培養ディッシュにおける、FAK及びSykのチロシンリン酸化をウエスタンブロッティングで分析した結果を示した図である。上図は、リン酸化FAKと全FAKのウエスタンブロッティングを、下図はリン酸化Sykと全Sykのウエスタンブロッティングをそれぞれ示す。WTは野生型細胞、KOはLILRB4欠損細胞をそれぞれ示す。The results of Western blotting analysis of tyrosine phosphorylation of FAK and Syk in fibronectin-coated culture dishes or non-fibronectin-coated culture dishes of wild-type mouse macrophage cell line RAW264.7 cells and LILRB4-deficient mouse macrophage cell line RAW264.7 cells are shown. This is a diagram. The upper figure shows Western blotting of phosphorylated FAK and total FAK, and the lower figure shows Western blotting of phosphorylated Syk and total Syk, respectively. WT indicates wild-type cells, and KO indicates LILRB4-deficient cells. gp49、インテグリン及びフィブロネクチンの細胞表面発現のフローサイトメトリー解析のためのCD11cMHC-IIhigh骨髄由来培養樹状細胞(BMDC)のゲーティング工程を示した図である。FSCは前方散乱、SSCは側方散乱、Aは面積、Hは高さ、PEはフィコエリトリンをそれぞれ示す。PEプロファイルは、さらなる解析の基礎レベルを示す。FIG. 2 is a diagram showing the gating process of CD11c + MHC-II high bone marrow-derived cultured dendritic cells (BMDC) for flow cytometric analysis of cell surface expression of gp49, integrin, and fibronectin. FSC indicates forward scattering, SSC indicates side scattering, A indicates area, H indicates height, and PE indicates phycoerythrin. The PE profile represents a base level for further analysis. 図10Aのゲーティングにより得られたCD11cMHC-IIhighBMDCが、浮遊性・低接着性を有し、MHCクラス-II高集団(左図)と称される細胞として単離され、又、図10Aのゲーティングにより得られた残りの接着性CD11cMHC-IIhighBMDCも分離され、MHCクラス-II低集団(右図)と称される細胞として単離されたことを示した図である。The CD11c + MHC-II high BMDCs obtained by the gating in FIG. 10A were isolated as cells that were floating and had low adhesion and were referred to as MHC class-II high population (left figure), and The remaining adherent CD11c + MHC-II high BMDCs obtained by gating in Figure 10A were also separated and isolated as cells termed MHC class-II low population (right panel). be. ガラスカバーグラス(最大倍率×400、左図)上の浮遊性・非接着性BMDC、及びプラスチックディッシュ上の接着性BMDC(最大倍率×200、右図)の光学顕微鏡下での外観を示した写真である。矢印は、多くの樹状突起を有する典型的なCD11cMHCIIhighBMDCを示す。Photographs showing the appearance of floating non-adherent BMDCs on a glass cover glass (maximum magnification x 400, left image) and adherent BMDCs on a plastic dish (maximum magnification x 200, right image) under an optical microscope. It is. Arrows indicate typical CD11c + MHCII high BMDCs with many dendrites. gp49、インテグリン、及びフィブロネクチンの細胞表面発現のフローサイトメトリー解析における脾臓CD3CD19CD11cMHC-IIhigh樹状細胞(DC)のゲーティング工程を示した図である。FIG. 3 is a diagram showing the gating process of spleen CD3 CD19 CD11c + MHC-II high dendritic cells (DC) in flow cytometry analysis of cell surface expression of gp49, integrin, and fibronectin. マウス骨髄由来樹状細胞BMDC及び脾臓樹状細胞(DC)を、フローサイトメトリーにより、gp49、インテグリンα及びβ鎖、FN30、並びにFNモジュールIII(FNIII)の細胞表面発現について解析した図である。FIG. 2 is a diagram showing cell surface expression of gp49, integrin α and β chains, FN30, and FN module III (FNIII) analyzed by flow cytometry of mouse bone marrow-derived dendritic cells BMDC and spleen dendritic cells (DC). AはマウスBMDCにおける、gp49Bの発現レベルを決定するために、フローサイトメトリーにより、MHCクラス-II高集団(左側)及びMHCクラス-II低集団(右側)に発現しているgp49A及びgp49Bの細胞表面発現について分析した結果を示した図である。WTは、野生型マウスから単離したBMDC、gp49BKOは、gp49Bが欠損したマウスから単離したBMDCをそれぞれ示す。Bは陽性コントロールとしてのマウス腹膜マクロファージ、及びBMDCを、フローサイトメトリーによりFN30及びFNIIIの細胞表面発現について分析した結果を示す。A: Cells expressing gp49A and gp49B in MHC class-II high population (left) and MHC class-II low population (right) by flow cytometry to determine the expression level of gp49B in mouse BMDC. FIG. 3 is a diagram showing the results of analysis of surface expression. WT indicates BMDCs isolated from a wild-type mouse, and gp49BKO indicates BMDCs isolated from a gp49B-deficient mouse. B shows the results of analyzing mouse peritoneal macrophages as a positive control and BMDC for cell surface expression of FN30 and FNIII by flow cytometry. BMDC上のgp49Bとインテグリンβシグナル間の相関性と、陽性コントロールとしてMHCクラスIα鎖とβミクログロブリン(βm)とのシグナル間の相関性を示した図である。FIG. 2 is a diagram showing the correlation between gp49B and integrin β 1 signals on BMDC and the correlation between the signals of MHC class I α chain and β 2 microglobulin (β 2 m) as a positive control. 野生型マウス又はgp49B欠損マウスから調製したBMDCのプレート結合固定化フィブロネクチン(FN)による刺激後のFAKのチロシンリン酸化ウエスタンブロット分析を示した図である。上図は、リン酸化FAK、下図は全FAKをそれぞれ示す。FIG. 3 shows Western blot analysis of tyrosine phosphorylation of FAK after stimulation of BMDCs prepared from wild-type or gp49B-deficient mice with plate-bound immobilized fibronectin (FN). The upper figure shows phosphorylated FAK, and the lower figure shows total FAK. 野生型マウス又はgp49B欠損マウスから単離したBMDCの固定化FNによる刺激後のチロシンリン酸化Sykのウエスタンブロット分析を示した図である。上図は、リン酸化Syk、下図は全Sykをそれぞれ示す。BMDC WTは野生型マウスから調製したBMDC、BMDC gp49B-/-はgp48欠損マウスから調製したBMDCをそれぞれ示す。FIG. 3 shows Western blot analysis of tyrosine phosphorylated Syk after stimulation of BMDCs isolated from wild-type mice or gp49B-deficient mice with immobilized FN. The upper figure shows phosphorylated Syk, and the lower figure shows total Syk. BMDC WT indicates BMDC prepared from a wild-type mouse, and BMDC gp49B −/− indicates BMDC prepared from a gp48-deficient mouse. マウスNK細胞表面上のインテグリンβ及びgp49Bを蛍光ラベルした抗体により染色し、共焦点レーザー走査蛍光顕微鏡で観察し、得られた共焦点シグナルをデジタル化し、シグナル強度間のピアソン係数を算出した結果を示した図である。Integrin β 1 and gp49B on the surface of mouse NK cells were stained with fluorescently labeled antibodies, observed with a confocal laser scanning fluorescence microscope, the obtained confocal signals were digitized, and the Pearson coefficient between signal intensities was calculated. FIG. 野生型マウス又はgp49B遺伝子欠損マウスから単離したミクログリア細胞を、それぞれFN被覆プレートに播種して培養後、顕微鏡で細胞の形態を観察した写真である。This is a photograph in which microglial cells isolated from wild-type mice or gp49B gene-deficient mice were seeded onto FN-coated plates, cultured, and the morphology of the cells was observed using a microscope. 野生型マウス又はgp49B遺伝子欠損マウスから単離したミクログリア細胞から分泌される炎症性サイトカインTNF-αの分泌量を示したグラフである。1 is a graph showing the amount of inflammatory cytokine TNF-α secreted from microglial cells isolated from wild-type mice or gp49B gene-deficient mice. 野生型マウス又はgp49B遺伝子欠損マウスから単離した各ミクログリア細胞の長軸長を測定した結果を示した図である。WTは野生型マウスから単離したミクログリア細胞、KOはgp49B遺伝子欠損マウスから単離したミクログリア細胞の結果をそれぞれ示す。FIG. 3 is a diagram showing the results of measuring the long axis length of each microglial cell isolated from a wild-type mouse or a gp49B gene-deficient mouse. WT indicates the results of microglial cells isolated from wild-type mice, and KO indicates the results of microglial cells isolated from gp49B gene-deficient mice.
[免疫細胞の活性化剤]
 本発明の免疫細胞の活性化剤は、フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質を有効成分として含有する。フィブロネクチンは、前記フィブロネクチン中の配列番号1で表されるアミノ酸配列を介して、LILRB4と結合することができる。すなわち、配列番号1で表されるアミノ酸配列は、LILRB4のフィブロネクチン中の標的配列である。
 フィブロネクチンとLILRB4との結合を阻害する物質としては、フィブロネクチンとLILRB4との結合を阻害する活性を有する物質であれば特に制限はないが、抗フィブロネクチン抗体又はその誘導体、抗LILRB4抗体又はその誘導体、フィブロネクチンアナログ等が挙げられる。
[Immune cell activator]
The immune cell activator of the present invention contains a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 as an active ingredient. Fibronectin can bind to LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in the fibronectin. That is, the amino acid sequence represented by SEQ ID NO: 1 is the target sequence of LILRB4 in fibronectin.
Substances that inhibit the binding between fibronectin and LILRB4 are not particularly limited as long as they have the activity of inhibiting the binding between fibronectin and LILRB4, but anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, fibronectin Examples include analog.
 抗フィブロネクチン抗体としては、フィブロネクチンと反応する抗体であれば、モノクローナル抗体、ポリクローナル抗体のいずれでも良いが、モノクローナル抗体が好ましく用いられる。当該抗体の作製は周知の方法にて作製することができる。例えば、ポリクローナル抗体の作製には、免疫する動物としてマウス、ラット、ハムスター、ウサギ、ヤギ、ヒツジ、ニワトリなどが用いられる。抗血清は、抗原を動物の皮下、皮内、腹腔などに一回又は複数回投与した後、血清から得ることができる。タンパク質、ペプチドを抗原として用いる時は、免疫賦活効果を有する補液との混合物の免疫がより好ましい。 The anti-fibronectin antibody may be either a monoclonal antibody or a polyclonal antibody as long as it reacts with fibronectin, but monoclonal antibodies are preferably used. The antibody can be produced by a well-known method. For example, in the production of polyclonal antibodies, mice, rats, hamsters, rabbits, goats, sheep, chickens, and the like are used as animals to be immunized. Antiserum can be obtained from serum after the antigen is administered subcutaneously, intradermally, intraperitoneally, etc. to an animal once or multiple times. When using proteins or peptides as antigens, it is more preferable to immunize with a mixture with a replacement fluid that has an immunostimulatory effect.
 また、モノクローナル抗体の作製には、公知のモノクローナル抗体作製方法、例えば、長宗香明、寺田弘共著、「モノクローナル抗体」廣川書店(1990年)や、Jame W.Golding,“Monoclonal Antibody”,3rd edition,Academic Press,1996年に従い作製することができる。また、DNA免疫法によりモノクローナル抗体を作製することもでき、Nature 1992 Mar12;356 152-154やJ.Immunol Methods Mar 1;249 147-154を参考に作製することができる。 In addition, for the production of monoclonal antibodies, known methods for producing monoclonal antibodies can be used, for example, "Monoclonal Antibodies" co-authored by Kaoaki Nagasune and Hiroshi Terada, Hirokawa Shoten (1990), and by James W. Golding, "Monoclonal Antibody", 3rd edition, Academic Press, 1996. Monoclonal antibodies can also be produced by DNA immunization, as described in Nature 1992 Mar 12; 356 152-154 and J. It can be produced with reference to Immunol Methods Mar 1; 249 147-154.
 抗体作製に用いられる抗原としては、フィブロネクチン、又はその一部断片(ペプチド)、或いはフィブロネクチンまたはその一部断片をコードするcDNAを組み込んだベクターを用いることができる。フィブロネクチンとLILRB4との結合を阻害するモノクローナル抗体を得るためには、フィブロネクチン中のLILRB4の標的配列である配列番号1で表されるアミノ酸配列を含むペプチドを用いることが好ましい。配列番号1で表されるアミノ酸配列を含むペプチドをコードする遺伝子が入った構築物であるフィブロネクチンベクターが最適な免疫用抗原遺伝子として使用できる。DNA免疫法は、上記遺伝子構築物を単独又は混合して、免疫動物に対して様々な遺伝子導入法(例えば筋肉注射、エレクトロポレーション、遺伝子銃など)のいずれかを用いて、動物(マウス、又はラット等)の皮下に注入し、細胞内に取り込ませることにより実施できる。 As the antigen used for antibody production, fibronectin or a partial fragment thereof (peptide), or a vector incorporating cDNA encoding fibronectin or a partial fragment thereof can be used. In order to obtain a monoclonal antibody that inhibits the binding between fibronectin and LILRB4, it is preferable to use a peptide containing the amino acid sequence represented by SEQ ID NO: 1, which is the target sequence of LILRB4 in fibronectin. A fibronectin vector, which is a construct containing a gene encoding a peptide containing the amino acid sequence represented by SEQ ID NO: 1, can be used as an optimal antigen gene for immunization. In the DNA immunization method, the above-mentioned gene constructs are introduced into an animal (mouse, or This can be carried out by subcutaneously injecting it into a rat, etc.) and allowing it to be taken up into the cells.
 前記抗フィブロネクチンモノクローナル抗体は、常法に従い作成したハイブリドーマを培養し、培養上清から分離する方法、該ハイブリドーマをこれと適合性のある哺乳類動物に投与し、腹水として回収する方法により製造できる。また、前記抗フィブロネクチンモノクローナル抗体は、公知の遺伝子組換え技術を用いて作製することもできる。具体的には、前記で作製したハイブリドーマが生産するモノクローナル抗体、前記抗体をコードする遺伝子をクローニングし、前記遺伝子を含むベクターを作製し、これを宿主細胞に導入して形質転換させることによって、抗フィブロネクチン抗体を発現する細胞を取得し、これを細胞培養することにより作製することができる。この調製に使用される細胞、ベクターの種類、細胞の種類、培養条件等は、当業者の技術的範囲内であり、適宜適切な条件を設定することができる。 The anti-fibronectin monoclonal antibody can be produced by culturing a hybridoma prepared according to a conventional method and separating it from the culture supernatant, or by administering the hybridoma to a compatible mammal and collecting it as ascites fluid. Furthermore, the anti-fibronectin monoclonal antibody can also be produced using known genetic recombination techniques. Specifically, the monoclonal antibody produced by the hybridoma prepared above and the gene encoding the antibody are cloned, a vector containing the gene is prepared, and this is introduced into a host cell and transformed. It can be produced by obtaining cells expressing fibronectin antibodies and culturing them. The cells, vector types, cell types, culture conditions, etc. used for this preparation are within the technical scope of those skilled in the art, and appropriate conditions can be set as appropriate.
 抗体は、必要に応じてそれをより精製して使用することができる。抗体を精製・単離する手法としては、従来公知の方法、例えば、硫酸アンモニウム沈殿法などの塩析、セファデックスなどによるゲルろ過法、イオン交換クロマトグラフィ法、プロテインAカラムなどによるアフィニティ精製法等が挙げられる。 The antibody can be further purified and used if necessary. Methods for purifying and isolating antibodies include conventionally known methods, such as salting out such as ammonium sulfate precipitation, gel filtration using Sephadex, ion exchange chromatography, and affinity purification using protein A columns. It will be done.
 抗フィブロネクチン抗体の誘導体としては、例えば、前記抗フィブロネクチン抗体のF(ab’)、F(ab)、Fab’、Fab、Fv、scFv、それらの変異体、抗体部分を含む融合タンパク質又は融合ペプチド等が挙げられる。抗フィブロネクチン抗体の誘導体は、公知の抗体の誘導体の製造方法に従って製造することができる。 Examples of derivatives of anti-fibronectin antibodies include F(ab') 2 , F(ab) 2 , Fab', Fab, Fv, scFv, variants thereof, and fusion proteins or fusions containing the antibody portion of the anti-fibronectin antibody. Examples include peptides. Anti-fibronectin antibody derivatives can be produced according to known methods for producing antibody derivatives.
 抗フィブロネクチン抗体又はその誘導体は、フィブロネクチン中の配列番号1で表されるアミノ酸配列またはその部分配列に結合する。本発明の免疫細胞の活性化剤において、抗フィブロネクチン抗体又はその誘導体は、フィブロネクチン中の配列番号1で表されるアミノ酸配列またはその部分配列に結合することにより、フィブロネクチンとLILRB4との結合を阻害することができる。 The anti-fibronectin antibody or its derivative binds to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin or a partial sequence thereof. In the immune cell activator of the present invention, the anti-fibronectin antibody or its derivative inhibits the binding between fibronectin and LILRB4 by binding to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin or a partial sequence thereof. be able to.
 抗LILRB4抗体としては、LILRB4と結合する抗体であれば、モノクローナル抗体、ポリクローナル抗体のいずれでも良いが、モノクローナル抗体が好ましく用いられる。前記抗LILRB4抗体は前記抗フィブロネクチン抗体と同様の方法により作製することができる。 The anti-LILRB4 antibody may be either a monoclonal antibody or a polyclonal antibody as long as it binds to LILRB4, but monoclonal antibodies are preferably used. The anti-LILRB4 antibody can be produced by the same method as the anti-fibronectin antibody.
 抗LILRB4抗体作製に用いられる抗原としては、LILRB4タンパク質、又はその一部断片(ペプチド)、或いはLILRB4タンパクをコードするcDNAを組み込んだベクターを用いることができる。LILRB4の高次構造を認識するモノクローナル抗体を得るために、ヒトLILRB4全長遺伝子が入った構築物である全長LILRB4ベクターが最適な免疫用抗原遺伝子となるが、そのほか、LILRB4配列の一部領域が挿入された構築物も、免疫用抗原遺伝子として使用できる。LILRB4配列の一部領域としては、フィブロネクチン中のLILRB4の標的配列である、配列番号1で表されるアミノ酸配列が、LILRB4に結合するLILRB4の領域(フィブロネクチン結合部位)が好ましい。DNA免疫法は、上記遺伝子構築物を単独又は混合して、免疫動物に対して様々な遺伝子導入法(例えば筋肉注射、エレクトロポレーション、遺伝子銃など)のいずれかを用いて、動物(マウス、又はラット等)の皮下に注入し、細胞内に取り込ませることにより実施できる。 As the antigen used for anti-LILRB4 antibody production, a vector incorporating the LILRB4 protein, a partial fragment thereof (peptide), or a cDNA encoding the LILRB4 protein can be used. In order to obtain a monoclonal antibody that recognizes the higher-order structure of LILRB4, a full-length LILRB4 vector, which is a construct containing the full-length human LILRB4 gene, is the optimal antigen gene for immunization. These constructs can also be used as antigen genes for immunization. The partial region of the LILRB4 sequence is preferably a region of LILRB4 (fibronectin binding site) where the amino acid sequence represented by SEQ ID NO: 1, which is the target sequence of LILRB4 in fibronectin, binds to LILRB4. In the DNA immunization method, the above-mentioned gene constructs are introduced into an animal (mouse, or This can be carried out by subcutaneously injecting it into a rat, etc.) and allowing it to be taken up into the cells.
 前記抗LILRB4抗体の精製は、前記抗フィブロネクチン抗体と同様の方法により行うことができる。前記抗LILRB4抗体の誘導体としては、例えば、前記抗LILRB4抗体のF(ab’)、F(ab)、Fab’、Fab、Fv、scFv、それらの変異体、抗体部分を含む融合タンパク質又は融合ペプチド等が挙げられる。 The anti-LILRB4 antibody can be purified by the same method as the anti-fibronectin antibody. The derivatives of the anti-LILRB4 antibody include, for example, F(ab') 2 , F(ab) 2 , Fab', Fab, Fv, scFv, variants thereof, fusion proteins containing the antibody portion of the anti-LILRB4 antibody, or Examples include fusion peptides.
 本発明の免疫細胞の活性化剤において、抗LILRB4抗体又はその誘導体は、フィブロネクチンが、フィブロネクチン中の配列番号1で表されるアミノ酸配列を介してLILRB4に結合することを阻害することができる。 In the immune cell activator of the present invention, the anti-LILRB4 antibody or its derivative can inhibit fibronectin from binding to LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in fibronectin.
 フィブロネクチンとLILRB4の結合の阻害は、LILRB4を発現している細胞へのフィブロネクチンの結合を阻害することを評価することにより行うことができる。LILRB4を発現している細胞としては、LILRB4を発現している細胞であれば、特に制限はないが、例えば、脾臓細胞、末梢血白血球、骨髄細胞、脳細胞もしくはそれらから単離されたB細胞、形質細胞、単球・マクロファージ、樹状細胞、好酸球、好塩基球、好中球、マスト細胞、活性化T細胞、ミクログリア細胞等が挙げられる。 Inhibition of binding between fibronectin and LILRB4 can be performed by evaluating inhibition of binding of fibronectin to cells expressing LILRB4. Cells expressing LILRB4 are not particularly limited as long as they express LILRB4, but include, for example, spleen cells, peripheral blood leukocytes, bone marrow cells, brain cells, or B cells isolated therefrom. , plasma cells, monocytes/macrophages, dendritic cells, eosinophils, basophils, neutrophils, mast cells, activated T cells, microglial cells, and the like.
 LILRB4の塩基配列及びアミノ酸配列は、米国生物工学情報センター(NCBI)により提供されているデータベースから知ることができる。ヒト(Homo sapiens)LILRB4の場合、例えばEntrez GeneIDは11006(2019年6月17日時点)、RefSeq ProteinIDはNP_001265355.2、NP_001265356.2、NP_001265357.2、NP_001265358.2、NP_001265359.2(アイソフォーム1~5に相当)が挙げられる。マウス(Mus musculus)LILRB4としては、GeneIDは14728(2016年6月24日時点)、NP_038560.1が挙げられ、ラット(Rattus norvegicus)LILRB4としては、GeneIDは292594(2019年4月18日時点)、RefSeq ProteinIDはNP_001013916が挙げられ、他の動物もLILRB4を有することが知られている。上記のLILRB4には限定されず、他のLILRB4も本発明におけるLILRB4に含まれる。 The nucleotide sequence and amino acid sequence of LILRB4 can be found from the database provided by the National Center for Biotechnology Information (NCBI). In the case of human (Homo sapiens) LILRB4, for example, Entrez Gene ID is 11006 (as of June 17, 2019), RefSeq Protein ID is NP_001265355.2, NP_001265356.2, NP_001 265357.2, NP_001265358.2, NP_001265359.2 (isoform 1 -5). For mouse (Mus musculus) LILRB4, Gene ID is 14728 (as of June 24, 2016) and NP_038560.1, and for rat (Rattus norvegicus) LILRB4, Gene ID is 292594 (as of April 18, 2019). (as of date) , RefSeq Protein ID is NP_001013916, and other animals are also known to have LILRB4. The LILRB4 is not limited to the above LILRB4, and other LILRB4 are also included in the LILRB4 in the present invention.
 フィブロネクチンの塩基配列及びアミノ酸配列は、米国生物工学情報センター(NCBI)により提供されているデータベースから知ることができる。ヒト(Homo sapiens)フィブロネクチンの場合、例えばEntrez GeneIDは2335、RefSeq ProteinIDはNP_997647、NP_001352447、XP_005246463などが挙げられる。マウス(Mus musculus)フィブロネクチンとしては、GeneIDは14268が挙げられ、ラット(Rattus norvegicus)フィブロネクチンとしては、GeneIDは25661、RefSeq ProteinIDはNP_062016が挙げられ、他の動物もフィブロネクチンを有することが知られている。上記のフィブロネクチンには限定されず、他のフィブロネクチンも本発明におけるフィブロネクチンに含まれる。 The base sequence and amino acid sequence of fibronectin can be found from the database provided by the National Center for Biotechnology Information (NCBI). In the case of human (Homo sapiens) fibronectin, for example, Entrez Gene ID is 2335, RefSeq Protein ID is NP_997647, NP_001352447, XP_005246463, etc. For mouse (Mus musculus) fibronectin, Gene ID is 14268, and for rat (Rattus norvegicus) fibronectin, Gene ID is 25661 and RefSeq Protein ID is NP_062016. known to have bronectin . The fibronectin in the present invention is not limited to the above-mentioned fibronectin, and other fibronectins are also included in the fibronectin in the present invention.
 フィブロネクチンは、免疫細胞において、ITGの活性化に基づく免疫細胞の活性化に対するLILRB4による抑制の解除により、免疫細胞を活性化する。その機序を図1に示す。
 フィブロネクチンは、主としてフィブロネクチン中のRGD配列により、ITGのβ鎖と結合する。フィブロネクチンが、フィブロネクチン中のRGD配列を介してITGと結合すると、ITGの下流のSpleen tyrosine kinase(以下、Sykと称する)のリン酸化とFocal adhesion kinase(以下、FAKと称する)のリン酸化が誘導される。FAKがリン酸化されると、アクチンフィラメントの再構成を誘導し、細胞接着、細胞の成長や遊走等の機能が誘導される。一方、Sykがリン酸化されると、炎症性サイトカインの分泌等の炎症誘発作用が誘導される。
Fibronectin activates immune cells by releasing LILRB4-induced suppression of immune cell activation based on ITG activation. The mechanism is shown in Figure 1.
Fibronectin binds to the β chain of ITG primarily through the RGD sequence in fibronectin. When fibronectin binds to ITG via the RGD sequence in fibronectin, phosphorylation of Spleen tyrosine kinase (hereinafter referred to as Syk) and focal adhesion kinase (hereinafter referred to as FAK) downstream of ITG is induced. Ru. When FAK is phosphorylated, it induces actin filament reorganization and functions such as cell adhesion, cell growth, and migration. On the other hand, when Syk is phosphorylated, proinflammatory effects such as secretion of inflammatory cytokines are induced.
 フィブロネクチンは、フィブロネクチン中の配列番号1で表されるアミノ酸配列(以下、FN30とも称する)を介して、免疫細胞の細胞表面に存在するLILRB4と結合する。フィブロネクチンがFN30を介してLILRB4と結合すると、フィブロネクチンが結合することによりSykがリン酸化される機序と同じ機序で、Srcファミリーキナーゼ(以下、SFKと称する)により、LILRB4の免疫受容体抑制性チロシンモチーフ(ITIM)がリン酸化され、SHP-1などの脱リン酸化酵素のはたらきを介して、Sykのリン酸化により惹起される炎症誘発作用を抑制する。
 フィブロネクチンとLILRB4との結合を阻害する物質は、フィブロネクチンがLILRB4に結合することを阻害することにより、フィブロネクチンがITGと結合することにより誘導されるSykのリン酸化による炎症誘発作用に対するフィブロネクチンによる抑制を解除することにより、免疫細胞の炎症誘発作用を誘導する。言い換えれば、フィブロネクチンとLILRB4との結合を阻害する物質は、フィブロネクチンが、フィブロネクチン中のFN30を介してLILRB4と結合することを阻害することにより、フィブロネクチンのRGD配列を介したフィブロネクチンのITGへの結合によるITGの活性化により免疫細胞を活性化し、免疫細胞の炎症誘発作用を誘導する。
Fibronectin binds to LILRB4 present on the cell surface of immune cells via the amino acid sequence represented by SEQ ID NO: 1 in fibronectin (hereinafter also referred to as FN30). When fibronectin binds to LILRB4 via FN30, the immunoreceptor inhibitory effect of LILRB4 is induced by Src family kinases (hereinafter referred to as SFKs) by the same mechanism that phosphorylates Syk when fibronectin binds. The tyrosine motif (ITIM) is phosphorylated, and the proinflammatory effect caused by Syk phosphorylation is suppressed through the action of dephosphorylating enzymes such as SHP-1.
Substances that inhibit the binding of fibronectin to LILRB4 release the suppression by fibronectin of the proinflammatory effect caused by Syk phosphorylation induced by fibronectin binding to ITG by inhibiting the binding of fibronectin to LILRB4. By doing so, it induces the pro-inflammatory action of immune cells. In other words, substances that inhibit the binding of fibronectin to LILRB4 inhibit the binding of fibronectin to LILRB4 through FN30 in fibronectin, thereby inhibiting the binding of fibronectin to ITG through the RGD sequence of fibronectin. Activation of ITG activates immune cells and induces inflammatory effects of immune cells.
 上記の通り、フィブロネクチンにより免疫細胞表面に存在するITGが活性化されるが、免疫細胞が他の細胞や組織、器壁に接着することにより、フィブロネクチンがなくても、免疫細胞においてフィブロネクチン結合性のITGや他のITG等に非特異的にITGを活性化させることができる。従って、本発明のフィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質は、フィブロネクチンがない状況においても、免疫細胞を活性化させることができる。 As mentioned above, fibronectin activates ITG present on the surface of immune cells, but as immune cells adhere to other cells, tissues, and organ walls, fibronectin-binding properties can be activated in immune cells even in the absence of fibronectin. ITG can be activated non-specifically to ITG or other ITGs. Therefore, the substance of the present invention that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 can activate immune cells even in the absence of fibronectin.
 また、免疫細胞が接着すると、免疫細胞表面に存在するLILB4がITGと近接関係になることにより、ITGのLILRB4による免疫細胞の活性化が抑制される。従って、フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質は、フィブロネクチンがない状況においても、免疫細胞において、LILRB4による免疫細胞の抑制を解除することにより、免疫細胞を活性化することができる。 Furthermore, when immune cells adhere, LILB4 present on the surface of the immune cells comes into close proximity with ITG, thereby suppressing activation of the immune cells by LILRB4 of ITG. Therefore, substances that inhibit the binding between fibronectin and the immunosuppressive receptor LILRB4 can activate immune cells by releasing the suppression of immune cells by LILRB4 even in the absence of fibronectin. can.
 本発明において、免疫細胞としては、免疫に関与する細胞であれば特に制限はないが、例えば、マクロファージ、ミクログリア細胞、樹状細胞等の骨髄系細胞;NK細胞、T細胞、B細胞等のリンパ系細胞;単球、顆粒球、マスト細胞、好塩基球等が挙げられるが、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞が好ましい。 In the present invention, immune cells are not particularly limited as long as they are cells involved in immunity; examples include myeloid cells such as macrophages, microglia cells, and dendritic cells; lymphoid cells such as NK cells, T cells, and B cells. Cells include monocytes, granulocytes, mast cells, basophils, etc., but macrophages, microglial cells, dendritic cells, and NK cells are preferred.
 本発明において、フィブロネクチンアナログとしては、フィブロネクチンとLILRB4との結合を阻害する作用を有していれば、いかなるフィブロネクチンのアナログも包含するが、例えば、以下の(a)~(c)のいずれか一つのペプチドが挙げられる。
(a)配列番号1で表されるアミノ酸配列を含むペプチド、
(b)配列番号1で表されるアミノ酸配列において、1~数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド、
(c)配列番号1で表されるアミノ酸配列において、80%以上の同一性を有するアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド
In the present invention, the fibronectin analog includes any fibronectin analog as long as it has the effect of inhibiting the binding between fibronectin and LILRB4, and for example, any of the following (a) to (c). Two peptides are mentioned.
(a) A peptide comprising the amino acid sequence represented by SEQ ID NO: 1,
(b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4. a peptide with binding ability,
(c) A peptide that includes an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1 and has the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4.
 上記アミノ酸配列の同一性は、80%以上であるが、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、98%以上がさらに好ましい。また、上記のアミノ酸配列の欠失、置換若しくは付加の数は、1~5個が好ましく、1~4個がより好ましく、1~3個がさらに好ましく、1~2個がさらに好ましい。アミノ酸配列の同一性は、GenBankデータベース上で提供されるBLAST検索により求めることができる。 The identity of the amino acid sequence is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 98% or more. Furthermore, the number of deletions, substitutions, or additions in the above amino acid sequence is preferably 1 to 5, more preferably 1 to 4, even more preferably 1 to 3, and even more preferably 1 to 2. Amino acid sequence identity can be determined by BLAST searches provided on the GenBank database.
 前記フィブロネクチンアナログとしては、前記(a)~(c)のいずれか一つのペプチドと免疫グロブリンGのFc領域とが融合したフィブロネクチンアナログであってもよい。 The fibronectin analog may be a fibronectin analog obtained by fusing any one of the peptides (a) to (c) with the Fc region of immunoglobulin G.
 前記フィブロネクチンアナログは、公知の方法、例えば、遺伝子組換え技術によって作製することができる。 The fibronectin analog can be produced by a known method, for example, by genetic recombination technology.
 本発明の免疫細胞の活性化剤は、フィブロネクチンとLILRB4との結合を阻害する物質を有効成分として含み、さらに薬学的に許容できる担体や添加物を含んでいてもよい。 The immune cell activator of the present invention contains a substance that inhibits the binding between fibronectin and LILRB4 as an active ingredient, and may further contain a pharmaceutically acceptable carrier and additives.
 担体及び添加物の例としては、水、食塩水、リン酸緩衝液、デキストロース、グリセロール、エタノール等薬学的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、界面活性剤等が挙げられるがこれらに限定されない。 Examples of carriers and additives include water, saline, phosphate buffer, dextrose, glycerol, pharmaceutically acceptable organic solvents such as ethanol, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, Sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol , stearic acid, human serum albumin, mannitol, sorbitol, lactose, surfactants, and the like, but are not limited to these.
 本発明の免疫細胞の活性化剤は、様々な形態、例えば、液剤(例えば注射剤)、分散剤、懸濁剤、錠剤、丸剤、粉末剤、坐剤等とすることができる。好ましい態様は、注射剤であり、非経口(例えば、静脈内、経皮、腹腔内、筋内)で投与することが好ましい。 The immune cell activator of the present invention can be in various forms, such as a liquid (for example, an injection), a dispersion, a suspension, a tablet, a pill, a powder, a suppository, and the like. A preferred embodiment is an injection, which is preferably administered parenterally (eg, intravenously, transdermally, intraperitoneally, intramuscularly).
 本発明の免疫細胞の活性化剤は、免疫細胞関連炎症疾患の治療剤として用いることができる。
 本発明の免疫細胞の活性化の投与量は、例えば、0.025~50mg/kg、好ましくは0.1~50mg/kgであり、より好ましくは0.1~25mg/kg、さらに好ましくは0.1~10mg/kg又は0.1~3mg/kgとすることができるが、これに限定されない。
The immune cell activator of the present invention can be used as a therapeutic agent for immune cell-related inflammatory diseases.
The dosage for activating immune cells of the present invention is, for example, 0.025 to 50 mg/kg, preferably 0.1 to 50 mg/kg, more preferably 0.1 to 25 mg/kg, even more preferably 0. .1 to 10 mg/kg or 0.1 to 3 mg/kg, but is not limited thereto.
[免疫細胞関連炎症疾患の治療剤]
 本発明の免疫細胞関連炎症疾患の治療剤は、フィブロネクチンとLILRB4との結合を阻害する物質を有効成分として含有する。
 フィブロネクチンとLILRB4との結合を阻害する物質としては、フィブロネクチンとLILRB4との結合を阻害する活性を有する物質であれば特に制限はないが、抗フィブロネクチン抗体又はその誘導体、抗LILRB4抗体又はその誘導体、フィブロネクチンアナログ等が挙げられる。抗フィブロネクチン抗体又はその誘導体、抗LILRB4抗体又はその誘導体、及びフィブロネクチンアナログとしては、前記したものが挙げられる。
[Treatment agent for immune cell-related inflammatory diseases]
The therapeutic agent for immune cell-related inflammatory diseases of the present invention contains a substance that inhibits the binding between fibronectin and LILRB4 as an active ingredient.
Substances that inhibit the binding between fibronectin and LILRB4 are not particularly limited as long as they have the activity of inhibiting the binding between fibronectin and LILRB4, but anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, fibronectin Examples include analog. Anti-fibronectin antibodies or derivatives thereof, anti-LILRB4 antibodies or derivatives thereof, and fibronectin analogs include those described above.
 本発明において、免疫細胞関連炎症疾患としては、免疫細胞が関与する炎症疾患であれば、特に制限はないが、例えば、神経変性疾患、心の発達障害、統合失調症、自閉スペクトラム症、粥状動脈硬化症、感染症等が挙げられる。 In the present invention, immune cell-related inflammatory diseases are not particularly limited as long as they are inflammatory diseases in which immune cells are involved, but examples include neurodegenerative diseases, mental developmental disorders, schizophrenia, autism spectrum disorders, and chyme. Examples include arteriosclerosis and infectious diseases.
 神経変性疾患としては、神経変性が原因となる疾患であれば、特に制限はないが、アルツハイマー病、認知症、脳梗塞、パーキンソン病、ハンチントン病、筋萎縮性側索硬化症等が挙げられる。 Neurodegenerative diseases are not particularly limited as long as they are caused by neurodegeneration, but include Alzheimer's disease, dementia, cerebral infarction, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and the like.
 図1に示したように、フィブロネクチンは、フィブロネクチン中のRGD配列により、ITGのβ鎖と結合する。フィブロネクチンが、フィブロネクチン中のRGD配列を介してITGと結合すると、ITGの下流のSykのリン酸化とFAKのリン酸化が誘導される。FAKがリン酸化されると、アクチンフィラメントの再構成を誘導し、細胞接着、細胞の成長や遊走等の機能が誘導される。一方、Sykがリン酸化されると、炎症性サイトカインの分泌等の炎症誘発作用が誘導される。 As shown in Figure 1, fibronectin binds to the β chain of ITG through the RGD sequence in fibronectin. When fibronectin binds to ITG via the RGD sequence in fibronectin, phosphorylation of Syk and FAK downstream of ITG is induced. When FAK is phosphorylated, it induces actin filament reorganization and functions such as cell adhesion, cell growth, and migration. On the other hand, when Syk is phosphorylated, proinflammatory effects such as secretion of inflammatory cytokines are induced.
 フィブロネクチンは、フィブロネクチン中の配列番号1で表されるFN30を介して、免疫細胞の細胞表面に存在するLILRB4と結合する。フィブロネクチンがFN30を介してLILRB4と結合すると、フィブロネクチンが結合することによりITGが活性化するためSFKが活性化され、LILRB4の免疫受容体抑制性チロシンモチーフ(ITIM)がリン酸化され、Sykのリン酸化により惹起される炎症誘発作用を抑制する。
 フィブロネクチンとLILRB4との結合を阻害する物質は、フィブロネクチンがLILRB4に結合することを阻害することにより、フィブロネクチンがITGと結合することにより誘導されるSykのリン酸化による炎症誘発作用に対するフィブロネクチンによる抑制を解除することにより、免疫細胞の炎症誘発作用を誘導し、炎症性サイトカインの分泌等の炎症誘発作用を誘導する。言い換えれば、フィブロネクチンとLILRB4との結合を阻害する物質は、フィブロネクチンが、フィブロネクチン中のFN30を介してLILRB4と結合することを阻害することにより、フィブロネクチンのRGD配列を介したフィブロネクチンのITGへの結合によるITGの活性化により炎症誘発作用を誘導する。
Fibronectin binds to LILRB4 present on the cell surface of immune cells via FN30 represented by SEQ ID NO: 1 in fibronectin. When fibronectin binds to LILRB4 via FN30, the binding of fibronectin activates ITG, which activates SFK, phosphorylates the immunoreceptor inhibitory tyrosine motif (ITIM) of LILRB4, and phosphorylates Syk. suppresses the inflammatory effects caused by
Substances that inhibit the binding of fibronectin to LILRB4 release the suppression by fibronectin of the proinflammatory effect caused by Syk phosphorylation induced by fibronectin binding to ITG by inhibiting the binding of fibronectin to LILRB4. By doing so, the pro-inflammatory effect of immune cells is induced, and the pro-inflammatory effect such as secretion of inflammatory cytokines is induced. In other words, substances that inhibit the binding of fibronectin to LILRB4 inhibit the binding of fibronectin to LILRB4 through FN30 in fibronectin, thereby inhibiting the binding of fibronectin to ITG through the RGD sequence of fibronectin. Activation of ITG induces pro-inflammatory effects.
 免疫細胞が活性化され、免疫細胞の炎症誘発作用が誘導されると、例えば、脳内においては、アミロイドβが免疫細胞により貪食され、脳内におけるアミロイドβの蓄積が抑制されることにより、アルツハイマー病、認知症等の神経変性疾患を治療することができる。
 また、粥状動脈硬化症では、マクロファージが血管内皮細胞に蓄積したコレステロール等を貪食しようと集積するが、これを十分に除去できずに泡沫化マクロファージとなって局所に凝集したままとなり、このため血管内腔が狭窄して粥状動脈硬化を引き起こす。フィブロネクチンによるLILRB4の抑制を解除し、マクロファージが活性化されることにより、マクロファージの泡沫化を防ぎ、又、活性化されたマクロファージによりコレステロールを除去し、血管内腔の狭窄を防ぐことで粥状動脈硬化を治療することできる。
 また、慢性化した感染症では病原菌に対し、マクロファージ等の免疫細胞による除去が十分に行われなかったり、炎症組織の十分な修復が行われず慢性的な炎症状態が遷延したりする場合がある。このような場合、マクロファージ等の免疫細胞が活性化されることにより、慢性的な炎症が解除されて十分な炎症が惹起されることで病原菌の完全な除去や組織の十分な修復が達成されことにより感染症を治療することができる。
When immune cells are activated and their pro-inflammatory action is induced, for example, amyloid-β is phagocytosed by immune cells in the brain, and accumulation of amyloid-β in the brain is suppressed, leading to Alzheimer's disease. It can treat neurodegenerative diseases such as dementia and dementia.
In addition, in atherosclerosis, macrophages accumulate in vascular endothelial cells in an attempt to phagocytose cholesterol, etc., but they are unable to sufficiently remove this and become foamy macrophages that remain locally aggregated. The lumen of blood vessels narrows, causing atherosclerosis. By releasing the suppression of LILRB4 by fibronectin and activating macrophages, the formation of macrophages is prevented, and the activated macrophages remove cholesterol and prevent narrowing of the vascular lumen, resulting in atherosclerosis. Can treat sclerosis.
In addition, in chronic infections, pathogenic bacteria may not be sufficiently removed by immune cells such as macrophages, or inflamed tissue may not be sufficiently repaired, resulting in a prolonged chronic inflammatory state. In such cases, by activating immune cells such as macrophages, chronic inflammation is relieved and sufficient inflammation is induced to achieve complete removal of pathogens and sufficient tissue repair. can treat infections.
 上記の通り、フィブロネクチンにより免疫細胞表面に存在するITGが活性化されるが、免疫細胞が接着することにより、フィブロネクチンがなくても、免疫細胞においてフィブロネクチン結合性のITGや他のITG等に非特異的に免疫細胞においてITGを活性化させることができ、炎症誘発作用を誘導することができる。従って、本発明のフィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質は、フィブロネクチンがない状況においても、免疫細胞の炎症誘発作用を誘導することができる。 As mentioned above, fibronectin activates ITG present on the surface of immune cells, but due to adhesion of immune cells, even in the absence of fibronectin, immune cells activate non-specific ITGs that bind to fibronectin and other ITGs. can activate ITG in immune cells and induce pro-inflammatory effects. Therefore, the substance of the present invention that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 can induce the proinflammatory action of immune cells even in the absence of fibronectin.
 また、免疫細胞が接着すると、免疫細胞表面に存在するLILB4がITGと近接関係になることにより、ITGのLILRB4による免疫細胞の活性化が抑制され、免疫細胞の炎症誘発作用が抑制される。従って、フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質は、フィブロネクチンがない状況においても、免疫細胞において、LILRB4による免疫細胞の抑制を解除し、免疫細胞を活性化して炎症誘発作用を誘導することにより、免疫細胞関連炎症疾患を治療することが可能である。 Furthermore, when immune cells adhere, LILB4 present on the surface of the immune cells comes into a close relationship with ITG, thereby suppressing the activation of the immune cells by LILRB4 of ITG and suppressing the inflammation-inducing effect of the immune cells. Therefore, a substance that inhibits the binding of fibronectin to the immunosuppressive receptor LILRB4 releases the suppression of immune cells by LILRB4 in immune cells even in the absence of fibronectin, activates immune cells, and exerts proinflammatory effects. By inducing immune cells, it is possible to treat immune cell-related inflammatory diseases.
 本発明の免疫関連炎症性疾患の治療剤において、免疫細胞としては、免疫に関与する細胞であれば特に制限はないが、例えば、マクロファージ、ミクログリア細胞、樹状細胞等の骨髄系細胞;NK細胞、T細胞、B細胞等のリンパ系細胞;単球、顆粒球、マスト細胞、好塩基球等が挙げられるが、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞が好ましい。 In the therapeutic agent for immune-related inflammatory diseases of the present invention, the immune cells are not particularly limited as long as they are cells involved in immunity; for example, myeloid cells such as macrophages, microglial cells, and dendritic cells; NK cells; , T cells, B cells, and other lymphoid cells; monocytes, granulocytes, mast cells, basophils, etc., but macrophages, microglial cells, dendritic cells, and NK cells are preferred.
 本発明の免疫細胞関連炎症疾患の治療剤は、さらに薬学的に許容できる担体や添加物を含んでいてもよい。薬学的に許容できる担体及び添加物は、前記したものが挙げられる。 The therapeutic agent for immune cell-related inflammatory diseases of the present invention may further contain pharmaceutically acceptable carriers and additives. Pharmaceutically acceptable carriers and additives include those mentioned above.
 本発明の免疫細胞関連炎症疾患の治療剤は、様々な形態、例えば、液剤(例えば注射剤)、分散剤、懸濁剤、錠剤、丸剤、粉末剤、坐剤等とすることができる。好ましい態様は、注射剤であり、非経口(例えば、静脈内、経皮、腹腔内、筋内)で投与することが好ましい。 The therapeutic agent for immune cell-related inflammatory diseases of the present invention can be in various forms, such as solutions (eg, injections), dispersions, suspensions, tablets, pills, powders, suppositories, and the like. A preferred embodiment is an injection, which is preferably administered parenterally (eg, intravenously, transdermally, intraperitoneally, intramuscularly).
 本発明の免疫細胞関連炎症疾患の治療剤の投与量は、例えば、0.025~50mg/kg、好ましくは0.1~50mg/kgであり、より好ましくは0.1~25mg/kg、さらに好ましくは0.1~10mg/kg又は0.1~3mg/kgとすることができるが、これに限定されない。 The dosage of the therapeutic agent for immune cell-related inflammatory diseases of the present invention is, for example, 0.025 to 50 mg/kg, preferably 0.1 to 50 mg/kg, more preferably 0.1 to 25 mg/kg, and It can be preferably 0.1 to 10 mg/kg or 0.1 to 3 mg/kg, but is not limited thereto.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]マクロファージにおけるLILRB4、フィブロネクチン、及びインテグリン複合体の形成
 共免疫沈降アッセイにより、骨髄由来マクロファージにおけるgp49B(マウスにおけるLILRB4)、フィブロネクチン(以下、FNと称する)、及びインテグリン間の可能な複合体形成をモニターした。
 共免疫沈降アッセイは以下の方法により行った。
 C57BL/6(B6)マウス(CLEA社製)由来の骨髄細胞を、既報(Weischenfeldt & Porse 2018; doi: 10.1101/pdb.prot5080)に基づき、骨髄由来マクロファージ(BMM)の分化のために単離した。
 得られた骨髄細胞(2×10細胞)を10cmディッシュに播種し、10% FCS、20ng/ml M-CSFを添加したα-MEM培地中で6日間培養し、次いで成熟BMMを非変性溶解緩衝液(20mM Tris-HCl pH8、137mM NaCl、1%ノニデットP-40及び2mM EDTA)で溶解した。細胞溶解物(300μg/反応溶液)を2μgの抗FN抗体(F3648、Sigma-Aldrich社製)又はコントロールIgG(Santa Cruz社製)とインキュベートし、蛋白質-抗体複合体をダイナビーズ蛋白質G(Thermo Fisher Scientific社製)を用いて捕捉した。得られた免疫複合体を1×SDS試料緩衝液に再懸濁し、抗ILT3抗体(ab231813、Abcam社製)、抗FN抗体(F3648、Sigma-Aldrich社製)、及び抗インテグリンβ抗体(GTX128839、GeneTex社製)を用いてウエスタンブロッティング分析に供した。
 共免疫沈降アッセイの結果を図2に示す。図2に示したように、抗FN抗体による免疫沈降試料はインテグリンβとgp49Bを含んでおり、FN、インテグリンβ及びgp49Bの3分子の直接的または間接的会合が示唆された。
[Example 1] Formation of LILRB4, fibronectin, and integrin complexes in macrophages A possible complex between gp49B (LILRB4 in mice), fibronectin (hereinafter referred to as FN), and integrins in bone marrow-derived macrophages was determined by co-immunoprecipitation assay. Body formation was monitored.
Co-immunoprecipitation assay was performed by the following method.
Bone marrow cells derived from C57BL/6 (B6) mice (manufactured by CLEA) were isolated for differentiation of bone marrow-derived macrophages (BMM) based on a previous report (Weischenfeldt & Porse 2018; doi: 10.1101/pdb.prot5080). .
The obtained bone marrow cells (2 × 10 7 cells) were seeded in a 10 cm dish and cultured for 6 days in α-MEM medium supplemented with 10% FCS and 20 ng/ml M-CSF, and then mature BMM was lysed in a non-denaturing manner. It was dissolved in buffer (20mM Tris-HCl pH 8, 137mM NaCl, 1% Nonidet P-40 and 2mM EDTA). Cell lysate (300 μg/reaction solution) was incubated with 2 μg of anti-FN antibody (F3648, manufactured by Sigma-Aldrich) or control IgG (manufactured by Santa Cruz), and the protein-antibody complex was incubated with Dynabeads protein G (Thermo Fisher). (manufactured by Scientific). The obtained immune complex was resuspended in 1x SDS sample buffer, and anti-ILT3 antibody (ab231813, manufactured by Abcam), anti-FN antibody (F3648, manufactured by Sigma-Aldrich), and anti-integrin β 1 antibody (GTX128839) were added. , manufactured by GeneTex) for Western blotting analysis.
The results of the co-immunoprecipitation assay are shown in Figure 2. As shown in FIG. 2, the immunoprecipitated sample with anti-FN antibody contained integrin β 1 and gp49B, suggesting a direct or indirect association of the three molecules of FN, integrin β 1 , and gp49B.
 次に、gp49B、FN、及びインテグリンの複合体(トリプレット)形成の検証のため、マウス腹腔内常在F4/80hiマクロファージ、チオグリコレート誘発腹腔F4/80hiマクロファージ、脾臓F4/80hiマクロファージ、マウスマクロファージ細胞株RAW264.7及びヒト単球細胞株THP-1を含む、初代培養マクロファージ、単球細胞株及びマクロファージ細胞株の表面上のLILRB4/gp49B、FN結合インテグリンサブユニット、及びFNの発現プロファイルを調べた。マウス組織からの初代マクロファージの単離は、磁気細胞選別及び/またはフローサイトメトリー選別によって行った。マウスは野生型マウス及び既報(Kasai S et al. Eur J Immunol 2008;38:2426-2437)に基づき作製したgp48欠損マウスを用いた。 Next, to verify the formation of a complex (triplet) of gp49B, FN, and integrin, we examined mouse intraperitoneal resident F4/80 hi macrophages, thioglycollate-induced peritoneal F4/80 hi macrophages, splenic F4/80 hi macrophages, Expression profiles of LILRB4/gp49B, FN-binding integrin subunits, and FN on the surface of primary cultured macrophages, monocytic cell lines, and macrophage cell lines, including the mouse macrophage cell line RAW264.7 and the human monocytic cell line THP-1. I looked into it. Isolation of primary macrophages from mouse tissues was performed by magnetic cell sorting and/or flow cytometric sorting. The mice used were wild-type mice and gp48-deficient mice prepared based on a previous report (Kasai S et al. Eur J Immunol 2008;38:2426-2437).
 まず、90%以上の純度の腹腔誘発マクロファージを採取した。これらの細胞を、抗LILRB4抗体(クローン ZM4.1、クローン #293623;Thermo Fisher Scientific社製)及び抗gp49抗体(Santa-Cruz Biotechnology社製)、抗インテグリンサブユニットα抗体(BioLegend社製)、抗インテグリンα抗体(BioLegend社製)、抗インテグリンβ抗体(Merck Millipore社製、Thermo Fisher Scientific社製、Sigma-Aldrich社製)及び抗インテグリンβ抗体(BioLegend社製)、抗FN30抗体(WO2021/029318)、抗FNIII1-7抗体(Thermo Fisher Scientific社製)で染色した。その結果を図3に示す。図3に示したように、マウス腹腔内常在マクロファージにおいて、インテグリンα、β及びβ鎖、gp49、FN30及びFNIII1-7の強い発現を検出した。 First, peritoneal induced macrophages with a purity of 90% or more were collected. These cells were incubated with anti-LILRB4 antibody (clone ZM4.1, clone #293623; manufactured by Thermo Fisher Scientific), anti-gp49 antibody (manufactured by Santa-Cruz Biotechnology), and anti-integrin subunit α5 antibody (manufactured by BioLegend). ), Anti-integrin α V antibody (manufactured by BioLegend), anti-integrin β 1 antibody (manufactured by Merck Millipore, Thermo Fisher Scientific, Sigma-Aldrich), anti-integrin β 3 antibody (manufactured by BioLegend), anti-FN 30 antibodies ( WO2021/029318) and stained with anti-FNIII 1-7 antibody (manufactured by Thermo Fisher Scientific). The results are shown in FIG. As shown in FIG. 3, strong expression of integrin α V , β 1 and β 3 chains, gp49, FN30 and FNIII 1-7 was detected in mouse intraperitoneal resident macrophages.
 また、gp49発現シグナルはgp49B欠損マウスの細胞で減少した。これは、gp49発現シグナルの大部分がgp49Aではなくgp49Bアイソフォームであることを示している。マウス誘発腹腔マクロファージでは、インテグリンα、α及びβ鎖、及びgp49の発現が検出されたが、FN30は検出されず、FNIII1-7は殆ど検出されなかった。また、マウス腹腔内常在マクロファージと同様に、gp49シグナルは、大部分がgp49Bに由来することが示された。マウス脾臓F4/80マクロファージでは、インテグリンα及びβ鎖の発現は強かったが、gp49Bアイソフォームに由来するgp49シグナルは弱く、FN30もFNIII1-7も検出されなかった。RAW264.7細胞では、インテグリンα、α及びβ鎖、及びgp49の強い発現を検出したが、FN30またはFNIII1-7は検出されなかった。 Furthermore, gp49 expression signals were decreased in cells from gp49B-deficient mice. This indicates that the majority of the gp49 expression signal is the gp49B isoform rather than the gp49A. In mouse-induced peritoneal macrophages, expression of integrin α 5 , α V and β 1 chain, and gp49 was detected, but FN30 was not detected and FNIII 1-7 was hardly detected. Furthermore, similar to mouse intraperitoneal resident macrophages, gp49 signals were shown to be mostly derived from gp49B. In mouse splenic F4/80 macrophages, expression of integrin α V and β 1 chains was strong, but gp49 signals derived from the gp49B isoform were weak, and neither FN30 nor FNIII 1-7 was detected. In RAW264.7 cells, we detected strong expression of integrin α 5 , α V and β 1 chains, and gp49, but not FN30 or FNIII 1-7 .
 また、gp48Bの発現レベルを決定するために、マウスマクロファージ細胞株RAW264.7細胞及びgp49B欠損マウスマクロファージ細胞株RAW264.7細胞上のgp49の発現をフローサイトメトリーで調べた。その結果を図4に示す。図4に示したように、gp49発現シグナルはgp49B欠損RAW264.7細胞で減少した。これは、gp49シグナルは主にgp49Bのシグナルであることを示している。また、図3に示したように、THP-1細胞表面では、LILRB4、インテグリンα及びβ鎖の発現を検出したが、FN30またはFNIII1‐7は検出されなかった。
 これらの結果は、LILRB4/gp49Bの発現が、脾臓マクロファージではごくわずかであるが、単球/マクロファージ細胞株と同様に、初代/誘発マクロファージで検出されることを示している。主要なFN結合インテグリンを構成するインテグリンサブユニットの発現プロファイルは、初代細胞または細胞株の各タイプに特徴的であった。表面FNは、腹膜常在マクロファージ上で例外的に強く検出されたが、他のすべての細胞は、それらの表面上に係留FNを有しておらず、有していたとしても、少なかった。
Furthermore, in order to determine the expression level of gp48B, the expression of gp49 on mouse macrophage cell line RAW264.7 cells and gp49B-deficient mouse macrophage cell line RAW264.7 cells was examined by flow cytometry. The results are shown in FIG. As shown in Figure 4, the gp49 expression signal was decreased in gp49B-deficient RAW264.7 cells. This indicates that the gp49 signal is mainly a gp49B signal. Furthermore, as shown in FIG. 3, expression of LILRB4, integrin α5 and β1 chain was detected on the THP-1 cell surface, but FN30 or FNIII 1-7 was not detected.
These results indicate that LILRB4/gp49B expression is negligible in splenic macrophages, but detected in primary/induced macrophages as well as monocyte/macrophage cell lines. The expression profile of the integrin subunits that constitute the major FN-binding integrins was characteristic for each type of primary cell or cell line. Surface FN was exceptionally strongly detected on peritoneal resident macrophages, but all other cells had little, if any, tethered FN on their surface.
[実施例2]マクロファージ上のgp49B、FN、及びインテグリン間のシグナル相関
 次に、FN結合腹腔常在マクロファージ上のgp49、FN、及びインテグリンβ鎖間のシグナル相関を、共焦点レーザー走査顕微鏡分析により調べた。
 共焦点レーザー走査顕微鏡分析は以下のようにして行った。
 細胞をガラス底ディッシュ(Matsunami社製、ポリリジン被覆、ディッシュ直径35mm、ガラス直径14mmφ、ガラス厚No.1S/1.5(0.16~0.19mm)、#D11131H)に播種し、1時間培養した。細胞を、2%パラホルムアルデヒド(PFA)を用いて室温で1時間固定した。次に、固定細胞を、AlexaFluor546結合抗gp49(Santa Cruz社製、#5358A458F546)、AlexaFluor647結合抗インテグリンβ(ThermoFisher Scientific社製、MAB1997-AF647)、AlexaFluor488結合抗FN30、非結合抗FN(Invitrogen社製、#MA5-29279)、及びAlexaFluor488 AffiniPure F(ab’)フラグメントロバ抗ウサギIgG(H+L)で染色した。洗浄溶液(1% BSA含有PBS)で細胞をよく洗浄した後、細胞をPBS 100mlに35gグリセロールを含む培地に播種し、次いで、Leica社製SP8、Olympus社製FV3000又はNikon社製A1共焦点顕微鏡システムの下で2-Dで検査した。細胞の共焦点画像も、SP8、FV3000またはニコンA-1の3D(z軸)分析ソフトウェアによって解析した。なお、統計解析は、GraphPad Prism(登録商標)6(Version 6.0;GraphPad Software社製)またはRソフトウェア(ver4.1.0、ルーセント・テクノロジーズ社製)を用い、少なくとも3つの独立した実験の結果に基づいて行った。データは、平均値±SEMまたは±SDとして表示した。両側検定、両側対スチューデントのt検定を用いて、ピアソンの相関係数についての統計的差異についてデータを比較した。p <0.05を統計学的に有意であるとみなした。
[Example 2] Signal correlation between gp49B, FN, and integrin on macrophages Next, the signal correlation between gp49, FN, and integrin β 1 chain on FN-bound peritoneal resident macrophages was analyzed using confocal laser scanning microscopy. It was investigated by.
Confocal laser scanning microscopy analysis was performed as follows.
Cells were seeded in a glass bottom dish (manufactured by Matsunami, polylysine coated, dish diameter 35 mm, glass diameter 14 mmφ, glass thickness No. 1S/1.5 (0.16-0.19 mm), #D11131H) and cultured for 1 hour. did. Cells were fixed with 2% paraformaldehyde (PFA) for 1 hour at room temperature. Next, the fixed cells were treated with AlexaFluor546-conjugated anti-gp49 (manufactured by Santa Cruz, #5358A458F546), AlexaFluor647-conjugated anti-integrin β 1 (manufactured by ThermoFisher Scientific, MAB1997-AF647), Al exaFluor488-conjugated anti-FN30, unconjugated anti-FN (Invitrogen) Co., Ltd., #MA5-29279) and stained with AlexaFluor488 AffiniPure F(ab') 2 fragment donkey anti-rabbit IgG (H+L). After thoroughly washing the cells with a washing solution (PBS containing 1% BSA), the cells were seeded in a medium containing 35 g glycerol in 100 ml of PBS, and then subjected to a Leica SP8, Olympus FV3000, or Nikon A1 confocal microscope. Tested in 2-D under the system. Confocal images of cells were also analyzed by SP8, FV3000 or Nikon A-1 3D (z-axis) analysis software. The statistical analysis was performed using GraphPad Prism® 6 (Version 6.0; manufactured by GraphPad Software) or R software (ver 4.1.0, manufactured by Lucent Technologies), and was performed using at least three independent experiments. Based on the results. Data were expressed as mean ± SEM or ±SD. Data were compared for statistical differences on Pearson's correlation coefficient using a two-tailed test, two-tailed paired Student's t-test. p<0.05 was considered statistically significant.
 共焦点レーザー走査顕微鏡分析結果の統計解析の結果を図5に示す。図5に示したように、細胞輪郭の共焦点画像は、全ての組合せ、すなわち、FN30-gp49(r=0.231±0.096)、gp49-インテグリンβ(r=0.356±0.088)、及びインテグリンβ-FN30(r=0.320±0.093)の間で、有意なピアソンの相関があることが明らかとなった。
 上記の観察結果を確認するために、異なる共焦点システムを用いて、さらに2組の実験において相関値を分析した。その結果を図6に示す。図6に示したように、ピアソンとマンデルのr値は0.235~0.543であり、すべての組み合わせで正の相関を示した。これらの結果は、gp49B、FN30及びインテグリンβの一部(全てではない)が互いに空間的に近接した位置関係にあり、図1に示したように、FN結合マクロファージ上でgp49B-FN-インテグリン3量体複合体が形成されていることを示している。
The results of statistical analysis of the confocal laser scanning microscopy analysis results are shown in FIG. As shown in Figure 5, confocal images of cell contours showed that all combinations, namely FN30-gp49 (r=0.231±0.096), gp49-integrin β1 (r=0.356±0 .088) and integrin β 1 -FN30 (r=0.320±0.093).
To confirm the above observations, we further analyzed the correlation values in two sets of experiments using different confocal systems. The results are shown in FIG. As shown in FIG. 6, the Pearson and Mandel r values were 0.235 to 0.543, and all combinations showed positive correlation. These results indicate that some (but not all) of gp49B, FN30, and integrin β1 are spatially close to each other, and as shown in Fig. 1, gp49B-FN-integrin on FN-bound macrophages. This shows that a trimeric complex is formed.
[実施例3]固定化FNのインテグリン-gp49シグナル相関に対する影響について
 プラスチックまたはガラスプレートへの細胞接着は、プラスチック/ガラス表面と、インテグリンなどの細胞接着分子及びgp49Bなどの細胞非接着分子との間の非特異的相互作用を含むと考えられる。接着特異的インテグリンが非特異的接着に関与していた場合であっても、細胞の活性化は開始される。一方、FNに富むマトリックスへの細胞接着は、FN結合インテグリンによって媒介される。そこで、次に、固定化FNが接着誘導インテグリン-gp49シグナル相関にどのように影響するかを調べた。この目的のために、まず、FNが乏しい腹膜誘発マクロファージがFN被覆及び非被覆ガラスカバーグラスに経時的に接着することをモニターした。その結果を図7A~図7Cに示す。図7Aは経時的な顕微鏡観察写真、図7Bはランダムに選択した細胞について、顕微鏡写真をデジタル化し、縦の長さ及び横の長さを計算したグラフ、図7Cは細胞のサイズを√{(横の長さ)+(縦の長さ)}として計算し、FN被覆又は非被覆ガラスに接着した細胞間で比較したグラフを示す。図7Aに示したように、顕微鏡観察により、マクロファージを播種後1時間でガラスに接着し始めることが明らかとなった。一晩培養後、多くの細胞は典型的な紡錘体状の形状を示した。各細胞の面積を測定したところ、図7Bに示すように、1~3時間後に、FN被覆ガラス上では、非被覆ガラス上でよりも多くの細胞で拡散形状を示すことが分かった。特に、図7Cに示すように、1時間の時点で、細胞面積はFN被覆ガラスで有意に大きかった。
 これらの結果は、1時間までの培養で、FN結合インテグリンの寄与がFN被覆ガラスへの細胞接着において主であることを示唆した。この結果から、培養時間が長いほど、gp49Bを含む様々な細胞表面分子を介した非特異的接着の関与が大きくなると推測された。
[Example 3] Regarding the effect of immobilized FN on integrin-gp49 signal correlation Cell adhesion to plastic or glass plates is caused by the interaction between the plastic/glass surface and cell adhesion molecules such as integrins and cell non-adhesion molecules such as gp49B. This is thought to include non-specific interactions. Cell activation is initiated even when adhesion-specific integrins are involved in non-specific adhesion. On the other hand, cell adhesion to FN-rich matrices is mediated by FN-binding integrins. Therefore, we next investigated how immobilized FN affects the adhesion-inducing integrin-gp49 signal correlation. To this end, we first monitored the adhesion of FN-poor peritoneal-induced macrophages to FN-coated and uncoated glass coverslips over time. The results are shown in FIGS. 7A to 7C. Figure 7A is a photograph of microscopic observation over time, Figure 7B is a graph of digitized micrographs of randomly selected cells, and the vertical and horizontal lengths are calculated. Figure 7C is a graph of the cell size calculated by √{( The graph is calculated as (horizontal length) 2 + (vertical length) 2 } and compares cells adhered to FN-coated or non-coated glass. As shown in FIG. 7A, microscopic observation revealed that macrophages began to adhere to the glass 1 hour after seeding. After overnight culture, many cells showed a typical spindle-like shape. When the area of each cell was measured, it was found that after 1 to 3 hours, more cells on the FN-coated glass exhibited a diffuse shape than on the uncoated glass, as shown in FIG. 7B. Notably, as shown in Figure 7C, at the 1 hour time point, the cell area was significantly larger on the FN-coated glass.
These results suggested that the contribution of FN-bound integrins was predominant in cell adhesion to FN-coated glass for up to 1 hour of culture. From this result, it was inferred that the longer the culture time, the greater the involvement of nonspecific adhesion mediated by various cell surface molecules including gp49B.
 次に、実施例2と同様にして、培養1時間後に、FN非被覆ガラス又はFN被覆ガラスに接着した、非FN-係留(テザリング)誘発マクロファージ上のインテグリンβの共焦点シグナルとgp49の共焦点シグナルとの相関を調べた。なお、焦点面は、ガラスに接着した細胞の底部に設定し、細胞輪郭線上のシグナルを分析した。
 その結果、それぞれの細胞は、gp49及びインテグリンβについては、全体的に環状のシグナルを示し、図8に示したように、1時間後の焦点面において、非接着細胞と比較してgp49-インテグリンβシグナルの顕著な相関が認められた(r=0.449±0.160)。しかしながら、FN被覆ガラスに接着された細胞と非被覆ガラスに接着された細胞との間に有意差はなかった。このことから、1時間の培養でも、gp49Bを含む膜分子の焦点接着部位への非特異的接着のより大きな関与を示唆され、また、外因性FNの非存在下であっても、gp49B及びインテグリンのかなりの部分が焦点接着部位に近接していることが示唆された。
Next, in the same manner as in Example 2, after 1 hour of culture, the confocal signal of integrin β 1 and gp49 on non-FN-tethering-induced macrophages adhered to FN-uncoated glass or FN-coated glass. The correlation with the focal signal was investigated. The focal plane was set at the bottom of the cells adhered to the glass, and signals on the cell outline were analyzed.
As a result, each cell showed an overall circular signal for gp49 and integrin β1 , and as shown in Figure 8, in the focal plane after 1 hour, gp49- A significant correlation of integrin β 1 signals was observed (r=0.449±0.160). However, there was no significant difference between cells attached to FN-coated glass and cells attached to uncoated glass. This suggests a greater involvement of nonspecific adhesion of gp49B-containing membrane molecules to focal adhesion sites, even in the absence of exogenous FN, even in the absence of exogenous FN. It was suggested that a significant portion of the fibroblast was located close to the focal adhesion site.
[実施例4]
 図1に示したように、インテグリンの活性化に続く細胞接着は、SrcファミリーキナーゼによるFAK及びSykのリン酸化を直接下流で誘導し、それぞれ古典的シグナル伝達(細胞の接着、成長及び遊走のシグナル伝達)、炎症誘発シグナル伝達を引き起こす。そこで、LILRB4/gp49Bの存在下または非存在下で、インテグリンがFNに結合した後に、FAK及びSykのリン酸化が調節され得るかどうかを次のようにして検討した。
[Example 4]
As shown in Figure 1, cell adhesion following integrin activation directly induces downstream phosphorylation of FAK and Syk by Src family kinases, leading to classical signaling (cell adhesion, growth and migration signals, respectively). transduction), triggering pro-inflammatory signaling. Therefore, we investigated as follows whether phosphorylation of FAK and Syk could be regulated after integrin binding to FN in the presence or absence of LILRB4/gp49B.
 FN陰性のヒト単球細胞株THP-1細胞を、FN被覆培養ディッシュに播種し、インキュベートして、実施例1と同様にして、ウエスタンブロット分析のための細胞溶解物を調製した。次に、コントロールの野生型THP-1細胞及びLILRB4欠損THP-1細胞の、ディッシュに固定化したFN又はBSA、若しくは非被覆ディッシュにより刺激し、FAK又はSykのチロシンリン酸化をウエスタンブロット分析で調べた。その結果を図9Aに示す。図9Aに示したように、野生型THP-1細胞では、細胞がFN被覆ディッシュに接着すると、Sykの顕著なチロシンリン酸化が誘導されたが、FAKのリン酸化はそれよりも明確ではなかった。また、LILRB4欠損THP-1はSykのリン酸化の増加が認められ、Sykのリン酸化がLILRB4によって負に調節されることが示唆された。
 さらに、ヒト単球細胞株THP-1細胞に代えて、マウスマクロファージ細胞株RAW264.7を用いて上記と同様にしてFAK及びSykのリン酸化を、ウエスタンブロッティングを用いて調べた。その結果を図9Bに示す。
 図9Bに示したように、マウスマクロファージ細胞株RAW264.7においても、細胞がFN被覆ディッシュに接着すると、Sykの顕著なチロシンリン酸化が誘導されたが、FAKのリン酸化はそれよりも明確ではなかった。また、LILRB4欠損RAW264.7はSykのリン酸化の増加が認められ、Sykのリン酸化がLILRB4によって負に調節されることが示唆された。
 これらの結果から、BILRB4/gp49Bは、FN結合インテグリンにより誘導されるSyk介在性炎症誘発シグナル伝達の調節因子として機能することが示された。
FN-negative human monocytic cell line THP-1 cells were seeded onto FN-coated culture dishes, incubated, and cell lysates for Western blot analysis were prepared as in Example 1. Next, control wild-type THP-1 cells and LILRB4-deficient THP-1 cells were stimulated with FN or BSA immobilized on a dish, or an uncoated dish, and tyrosine phosphorylation of FAK or Syk was examined by Western blot analysis. Ta. The results are shown in FIG. 9A. As shown in Figure 9A, in wild-type THP-1 cells, significant tyrosine phosphorylation of Syk was induced when cells adhered to FN-coated dishes, whereas phosphorylation of FAK was less pronounced. . Furthermore, increased Syk phosphorylation was observed in LILRB4-deficient THP-1, suggesting that Syk phosphorylation is negatively regulated by LILRB4.
Furthermore, the phosphorylation of FAK and Syk was examined using Western blotting in the same manner as above using the mouse macrophage cell line RAW264.7 instead of the human monocyte cell line THP-1 cells. The results are shown in FIG. 9B.
As shown in Figure 9B, in the murine macrophage cell line RAW264.7, significant tyrosine phosphorylation of Syk was also induced when cells adhered to FN-coated dishes, but phosphorylation of FAK was less pronounced. There wasn't. Furthermore, increased Syk phosphorylation was observed in LILRB4-deficient RAW264.7, suggesting that Syk phosphorylation is negatively regulated by LILRB4.
These results indicated that BILRB4/gp49B functions as a regulator of Syk-mediated proinflammatory signaling induced by FN-binding integrins.
[実施例5]骨髄由来培養樹状細胞(BMDC)上のインテグリン、FN、及びgp49Bの発現プロファイル
 マウスのBMDC表面上の主要FN結合インテグリン、すなわちインテグリンα、α、β及びβ、並びにFN及びgp49Bのサブユニットの発現プロファイルを次のようにして調べた。
 まず、C57BL/6マウスの脾臓、大腿骨及び脛骨から、それぞれ脾臓細胞及び骨髄細胞を調製し、赤血球を155mM NHCl、10mM KHCO及び0.1mM EDTA溶液で溶解し除去した。骨髄由来培養樹状細胞(BMDC)を調製するため、骨髄細胞を、熱不活化胎児ウシ血清(FBS、Biowest社製)、1mMピルビン酸ナトリウム、50μM 2-メルカプトエタノール、100U/mlペニシリン(Sigma-Aldrich社製)、100μg/mlストレプトマイシン(Sigma-Aldrich社製)、及び20ng/ml GM-CSF(PeproTech社製)を含むRPMI1640(Sigma-Aldrich社製)で、37℃、5%のCOを含む加湿環境下で培養した。4日目に培地交換を行い、6日目に、培養ボトルを回転させた後、浮遊・低接着性細胞を回収し、BMDCとした。
[Example 5] Expression profile of integrins, FN, and gp49B on bone marrow-derived cultured dendritic cells (BMDCs) Major FN-binding integrins on the surface of mouse BMDCs, namely integrins α 5 , α V , β 1 and β 3 , In addition, the expression profiles of FN and gp49B subunits were investigated as follows.
First, spleen cells and bone marrow cells were prepared from the spleen, femur, and tibia of C57BL/6 mice, respectively, and red blood cells were dissolved and removed with a solution of 155 mM NH 4 Cl, 10 mM KHCO 3 , and 0.1 mM EDTA. To prepare bone marrow-derived cultured dendritic cells (BMDCs), bone marrow cells were incubated with heat-inactivated fetal bovine serum (FBS, manufactured by Biowest), 1mM sodium pyruvate, 50μM 2-mercaptoethanol, and 100U/ml penicillin (Sigma- Aldrich), 100 μg/ml streptomycin (Sigma-Aldrich), and 20 ng/ml GM-CSF (PeproTech) using RPMI1640 (Sigma-Aldrich) at 37°C and 5% CO2. Cultured in a humidified environment containing On the 4th day, the culture medium was replaced, and on the 6th day, after rotating the culture bottle, floating/low-adhesion cells were collected and used as BMDCs.
 上記浮遊性・低接着性細胞をピペッティングにより収集し、リンパ球及びシングレットに選別し、次いで選別精製して、主にMHCクラスII-高CD11c細胞であって、少ないMHCクラスII-低細胞を含む集団を得た(図10A、図10B)。以下、この集団をクラスII-高集団と称する。並行して、培養6日目の非浮遊性・接着性細胞を分析した結果、それらの大部分が、MHCクラスII-高の浮遊性・低接着性BMDCと比較して、MHCクラスII-低の未熟型BMDCであることが明らかとなった(図10B)。以下、この集団をMHCクラスII-低集団と称する。
 図10Cに示したように、顕微鏡観察では、浮遊性・低接着性細胞集団に樹状突起に富む細胞が認められ、これは、接着性の未熟型BMDCと比較して、比較的成熟したBMDCの典型的な特徴である。また、図10Dに示したように、CD3CD19CD11chighMHCクラスIIhigh細胞を選別することにより、脾細胞から初代樹状細胞(primary DC)を単離した。
The floating/low-adhesive cells were collected by pipetting, sorted into lymphocytes and singlets, and then sorted and purified to contain mainly MHC class II-high CD11c + cells and few MHC class II-low cells. A population containing the following was obtained (Fig. 10A, Fig. 10B). Hereinafter, this population will be referred to as the class II-high population. In parallel, analysis of non-planktonic and adherent cells on day 6 of culture revealed that most of them were MHC class II-low compared to MHC class II-high planktonic and low-adherent BMDCs. It was revealed that these were immature BMDCs (Fig. 10B). Hereinafter, this population will be referred to as the MHC class II-low population.
As shown in Figure 10C, microscopic observation revealed cells rich in dendrites in the floating/low-adhesion cell population, which are relatively mature BMDCs compared to adherent immature BMDCs. This is a typical characteristic of Furthermore, as shown in FIG. 10D, primary dendritic cells (primary DC) were isolated from splenocytes by selecting CD3 CD19 CD11c high MHC class II high cells.
 次に、gp49、インテグリンサブユニット、FN30及びFNIII型リピート7-9(FNIII7-9)について、BMDCのフローサイトメトリー解析を行った。その結果を図11及び図12に示す。図11に示したように、MHCクラスII-高集団は表面gp49、インテグリンα、α、及びβに対して陽性であったが、インテグリンβ、FN30、及びFNIIIに対しては陰性であった。gp49の発現は必ずしも強くなく、図12に示したように、gp49B欠損マウスから調製したBMDCを用いた場合、gp49Bアイソフォーム発現は優性であったがgp49Aアイソフォーム発現は優性ではなかった。この結果から、gp49B及びFN結合インテグリンαβ及びαβは、MHCクラスII-高のBMDC上で発現するが、FNはBMDCに恒常的に結合していないと結論された。 Next, flow cytometry analysis of BMDC was performed for gp49, integrin subunit, FN30, and FNIII type repeat 7-9 (FNIII 7-9 ). The results are shown in FIGS. 11 and 12. As shown in Figure 11, the MHC class II-high population was positive for surface gp49, integrins α 5 , α V , and β 1 but negative for integrin β 3 , FN30, and FNIII. Met. Expression of gp49 is not necessarily strong, and as shown in FIG. 12, when BMDCs prepared from gp49B-deficient mice were used, gp49B isoform expression was dominant, but gp49A isoform expression was not. From this result, it was concluded that gp49B and FN-binding integrins α 5 β 1 and α V β 1 are expressed on MHC class II-high BMDCs, but that FN is not constitutively bound to BMDCs.
 同様に、インテグリンα、α、β及びβサブユニットの発現は、MHCクラスII-低集団で見出された。なお、MHCクラスII-低集団では、インテグリンβ発現は低かったが、インテグリンβはMHCクラスII-高集団のBMDCとは対照的に弱い陽性であった。gp49B発現はMHCクラスII-高集団と同様に、MHCクラスII-低集団でも明確であった。MHCクラスII-低集団はまた、FN30及びFNIII1-7に対しても陰性であり、このことは、MHCクラスII-低集団が、MHCクラスII-高集団と同様に細胞表面上に係留(テザリング)FNを持たないことを示している。脾臓CD11cDCに関しては、インテグリンサブユニットα、β、及びβは陽性であったが、gp49、FN30、及びFNIII発現は陰性であった。 Similarly, expression of integrin α 5 , α V , β 1 and β 3 subunits was found in the MHC class II-low population. Note that in the MHC class II-low population, integrin β 1 expression was low, but integrin β 3 was weakly positive in contrast to the BMDCs of the MHC class II-high population. gp49B expression was evident in the MHC class II-low population as well as in the MHC class II-high population. The MHC class II-low population is also negative for FN30 and FNIII 1-7 , indicating that the MHC class II-low population, like the MHC class II-high population, is tethered to the cell surface ( tethering) indicates that it does not have FN. Regarding splenic CD11c + DCs, integrin subunits α V , β 1 , and β 3 were positive, but gp49, FN30, and FNIII expression were negative.
[実施例6]BMDC上のgp49Bとインテグリンβシグナル間の相関の検討
 次に、実施例2と同様にして、共焦点レーザー走査顕微鏡により、BMDC表面上のgp49B及びインテグリンβの蛍光シグナルを調べた。
 まず、陽性コントロールとしてMHCクラスIα鎖とβミクログロブリン(βm)のシグナル相関を解析した。その結果を図13に示す。図13に示したように、MHCクラスIα鎖とβミクログロブリン(βm)のシグナルには、正の線形相関(ピアソンの相関r=0.594±0.179、平均±SD、n=6)があると判断された。次に、gp49B及びインテグリンβの蛍光シグナルを解析した。その結果、蛍光シグナル強度はかなり低かったが、蛍光シグナルプロファイルは、MHCクラスIα及びβmと同様に、gp49及びインテグリンβのいずれについても全体的に環状であった。
[Example 6] Examination of the correlation between gp49B and integrin β 1 signals on BMDC Next, in the same manner as in Example 2, the fluorescence signals of gp49B and integrin β 1 on the BMDC surface were measured using a confocal laser scanning microscope. Examined.
First, as a positive control, the signal correlation between MHC class I α chain and β 2 microglobulin (β 2 m) was analyzed. The results are shown in FIG. As shown in Figure 13, there is a positive linear correlation between the MHC class I α chain and β 2 microglobulin (β 2 m) signals (Pearson's correlation r = 0.594 ± 0.179, mean ± SD, n =6). Next, the fluorescent signals of gp49B and integrin β1 were analyzed. As a result, although the fluorescence signal intensity was quite low, the fluorescence signal profile was entirely circular for both gp49 and integrin β1 , as well as for MHC class Iα and β2m .
 次に、細胞輪郭上で観察されたシグナルについて、2つの蛍光色素間の相関を分析した。その結果を図13に示す。図13に示したように、gp49とインテグリンβに対するピアソンの相関は、予め設定した有意水準に達しなかったものの、弱い相関性を示し(r=0.194±0.071、平均±SD、n=6)、FN非存在下でもインテグリンとgp49Bの間に関連性が認められた。これは、gp49Bとインテグリン分子の一部とが細胞膜上の近傍にあることを示している。FN被覆ディッシュへの細胞接着などにより、FNがgp49Bとインテグリンとの間で架橋される場合、gp49Bとインテグリンの近接関係はより緊密となる。
 以上の結果から、インテグリンとgp49Bの共有のリガンドであるFNが存在しなくても、BMDC表面上のgp49Bとインテグリンβとは少なくとも部分的には空間的に近接していることが明らかとなった。
Next, the correlation between the two fluorescent dyes was analyzed for the signals observed on the cell contours. The results are shown in FIG. As shown in Figure 13, the Pearson correlation between gp49 and integrin β1 did not reach the preset significance level, but showed a weak correlation (r = 0.194 ± 0.071, mean ± SD, n=6), a relationship was observed between integrin and gp49B even in the absence of FN. This indicates that gp49B and some integrin molecules are located close to each other on the cell membrane. When FN is cross-linked between gp49B and integrin, such as by cell adhesion to a FN-coated dish, the proximity between gp49B and integrin becomes tighter.
From the above results, it is clear that gp49B and integrin β1 on the BMDC surface are at least partially in close spatial proximity even in the absence of FN, which is a shared ligand between integrin and gp49B. Ta.
[実施例7]BMDCにおけるSykのチロシンリン酸化
 次に、BMDC中のインテグリンへのFNの結合によって、リガンド活性化インテグリンの直接下流シグナルとして、FAKのリン酸化が誘導されるかどうかを検討した。具体的には以下の手順により検討した。
 野生型BMDC又はgp49B欠損BMDCを、それぞれFN被覆培養プレート上に播種して培養し、ウエスタンブロット分析のための細胞溶解物を調製した。次に、得られた細胞溶解物について、FAKとSykのリン酸化を調べた。その結果を図14A及び図14Bに示す。図14Aに示したように、BMDCの培養により、野生型BMDCにおいてFAKの実質的なチロシンリン酸化が誘導された。gp49B欠損BMDCにおいても、野生型BMDCのリン酸化に匹敵する実質的なFAKリン酸化が誘導された。この結果から、FAKは潜在的なgp49B媒介調節の直接的ターゲットではないことが示唆された。
[Example 7] Tyrosine phosphorylation of Syk in BMDCs Next, we investigated whether binding of FN to integrins in BMDCs induces phosphorylation of FAK as a direct downstream signal of ligand-activated integrins. Specifically, the study was conducted using the following steps.
Wild-type BMDCs or gp49B-deficient BMDCs were seeded and cultured on FN-coated culture plates, respectively, and cell lysates were prepared for Western blot analysis. Next, the phosphorylation of FAK and Syk was examined in the obtained cell lysate. The results are shown in FIGS. 14A and 14B. As shown in FIG. 14A, culturing BMDC induced substantial tyrosine phosphorylation of FAK in wild-type BMDC. Substantial FAK phosphorylation comparable to that of wild-type BMDC was also induced in gp49B-deficient BMDC. This result suggested that FAK is not a direct target of potential gp49B-mediated regulation.
 次に、固定化したFN上に播種したBMDCにおいて、Sykリン酸化がgp49Bにより調節されるかどうかを調べた。その結果を図14Bに示す。図14Bに示したように、リン酸化Sykレベルは、野生型BMDCのFN媒介刺激で増加したが、そのレベルはgp49B欠損BMDCでさらに増加し、野生型BMDCにおけるSykリン酸化への、直接的または間接的なgp49B媒介抑制が示唆された。
 以上の結果から固相化したFNは、直接下流FAK活性化を誘導したが、このFNインテグリン媒介シグナルは、gp49Bの有無によって影響されなかったことが明らかとなった。一方、FN-インテグリンを介したSykの炎症誘発作用は、図1に示すように、免疫受容体抑制性チロシンモチーフ(ITIM)が、BMDCにおけるインテグリンを介したSrcファミリーキナーゼ(SFK)の活性化によってリン酸化されるgp49Bによって抑制されることが明らかとなった。
Next, we investigated whether Syk phosphorylation is regulated by gp49B in BMDCs seeded on immobilized FN. The results are shown in FIG. 14B. As shown in Figure 14B, phosphorylated Syk levels were increased upon FN-mediated stimulation of wild-type BMDCs, but the levels were further increased in gp49B-deficient BMDCs, suggesting that direct or Indirect gp49B-mediated suppression was suggested.
The above results revealed that immobilized FN directly induced downstream FAK activation, but this FN integrin-mediated signal was not affected by the presence or absence of gp49B. On the other hand, as shown in Figure 1, the pro-inflammatory effect of Syk via FN-integrin is due to the activation of Src family kinase (SFK) by immunoreceptor inhibitory tyrosine motif (ITIM) in BMDC. It has been revealed that this is suppressed by phosphorylated gp49B.
[実施例7]細胞表面にFNを係留(テザリング)していないNK細胞におけるLILRB4/gp49Bとインテグリンの関係
 C57BL/6マウスの脾臓細胞から、BD FACS AriaTMIIIでCD3NK1.1CD49bの細胞をNK細胞として単離し、recombinant human IL-2(800U/ml)存在下で7日間培養した。7日目にIL-12を1ng/ml添加し、添加2日後に、NK細胞表面上のインテグリンβ及びgp49Bを蛍光ラベルした抗体により染色し、実施例2と同様にして、共焦点レーザー走査蛍光顕微鏡で観察し、ピアソン係数を算出した。その結果を図15に示す。
 図15に示したように、マクロファージや樹状細胞以上に、NK細胞では、インテグリンβとgp49Bのピアソン相関係数が顕著に高かった(r=0.44、n=15)。この結果から、NK細胞においては、細胞表面上でインテグリンβとgp49Bとが近接した位置関係にあることが明らかとなった。
[Example 7] Relationship between LILRB4/gp49B and integrin in NK cells that do not have FN tethered to the cell surface CD3 NK1.1 + CD49b + was detected from spleen cells of C57BL/6 mice using BD FACS Aria III. The cells were isolated as NK cells and cultured for 7 days in the presence of recombinant human IL-2 (800 U/ml). On the 7th day, 1 ng/ml of IL-12 was added, and 2 days after the addition, integrin β 1 and gp49B on the NK cell surface were stained with fluorescently labeled antibodies, and confocal laser scanning was performed in the same manner as in Example 2. It was observed with a fluorescence microscope and the Pearson coefficient was calculated. The results are shown in FIG.
As shown in FIG. 15, the Pearson correlation coefficient between integrin β 1 and gp49B was significantly higher in NK cells than in macrophages and dendritic cells (r=0.44, n=15). These results revealed that in NK cells, integrin β1 and gp49B are located in a close position on the cell surface.
[実施例8]細胞表面にFNを係留(テザリング)していないミクログリア細胞におけるLILRB4/gp49の抑制作用
 生後0-2日のC57BL/6マウスの野生型マウス(WT)及びgp49欠損マウス(KO)より大脳を摘出し、細断・トリプシン処理したのち培養ディッシュに播種し、14日後に振盪法により細胞を回収した。回収した細胞について、フローサイトメトリー及び免疫組織化学にてミクログリア特異的分子であるCD11b及びP2RY12の発現を確認した。
 上記で得られたミクログリア細胞を、FN被覆培養ディッシュ又はFN非被覆培養ディッシュに播種し、24時間後に顕微鏡で細胞の形態を観察した。その結果を図16に示す。図16に示したように、野生型マウスとLILRB4遺伝子欠損マウスとから単離したミクログリア細胞は、播種された際の形態が異なり、野生型マウス由来ミクログリア細胞は突起が伸展した形態(ramified)が主となるのに対し、LILRB4欠損マウス由来のミクログリア細胞は、より活性化した突起の短い形態(amoeboid)が優勢であった。次に、FN被覆培養ディッシュ又はFN非被覆培養ディッシュに播種後24時間後に、の上清を回収し、上清中に含まれる炎症性サイトカインであるTNF-αをELISA法により測定した。その結果を図17に示す。
 図17に示したように、FN被覆培養ディッシュに播種したミクログリア細胞では、炎症性サイトカインのマーカーの一つであるTNF-αの分泌が、野生型マウス由来のミクログリア細胞よりもLILRB4欠損マウス由来のミクログリア細胞の方が高かった。この結果から、ミクログリア細胞において、LILRB4が不活性化されることにより、LILRB4-FNによるミクログリア細胞の炎症誘発作用の抑制が解除されることが示唆された。
[Example 8] Suppressive effect of LILRB4/gp49 in microglial cells that do not have FN tethered to the cell surface Wild type (WT) and gp49-deficient mice (KO) of C57BL/6 mice 0-2 days old The cerebrum was removed, shredded and treated with trypsin, then seeded in a culture dish, and 14 days later the cells were collected by shaking. The expression of microglia-specific molecules CD11b and P2RY12 was confirmed for the collected cells by flow cytometry and immunohistochemistry.
The microglial cells obtained above were seeded on an FN-coated culture dish or a FN-uncoated culture dish, and the morphology of the cells was observed under a microscope after 24 hours. The results are shown in FIG. As shown in Figure 16, microglial cells isolated from wild-type mice and LILRB4 gene-deficient mice have different morphology when seeded, and microglial cells derived from wild-type mice have a ramified morphology. In contrast, microglial cells derived from LILRB4-deficient mice had a predominant form with more activated short processes (amoeboid). Next, 24 hours after seeding on FN-coated culture dishes or non-FN-coated culture dishes, the supernatant was collected, and the inflammatory cytokine TNF-α contained in the supernatant was measured by ELISA. The results are shown in FIG.
As shown in Figure 17, in microglial cells seeded on FN-coated culture dishes, secretion of TNF-α, which is one of the markers of inflammatory cytokines, was higher in microglial cells derived from LILRB4-deficient mice than in microglial cells derived from wild-type mice. It was higher in microglial cells. This result suggested that by inactivating LILRB4 in microglial cells, the suppression of the proinflammatory effect of microglial cells by LILRB4-FN is released.
 次に、各ミクログリア細胞について、顕微鏡画像を基に細胞の長軸長を実測した。その結果を図18に示す。図18に示したように、野生型マウス及びLILRB4遺伝子欠損マウスから単離したミクログリア細胞はFN非被覆及びFN被覆プレートに播種された際の長軸長が異なり、野生型マウスから単離したミクログリア細胞は長く伸展するRamified形態(休止期にある)の細胞が多いのに対し、LILRB4欠損ミマウスから単離したミクログリア細胞は進展することなく接着するAmoeboid形態(活性化状態)が多いことが明らかとなった。このことから、LILRB4欠損ミクログリア細胞ではLILRB4-FNによる抑制状態が解除され、より活性化状態にあることが示唆された。なお、図18に示したように、長軸長はFN被覆プレートに播種した方が、FN非被覆プレートに播種した場合よりも長くなることから、LILRB4-FNによるミクログリア細胞の不活性化は、FN結合性インテグリンの関与が示唆された。 Next, the long axis length of each microglial cell was measured based on the microscopic image. The results are shown in FIG. As shown in Figure 18, microglial cells isolated from wild-type mice and LILRB4 gene-deficient mice had different long axis lengths when seeded on FN-uncoated and FN-coated plates. It is clear that most of the cells are in the Ramified form (in resting phase), which spreads out for a long time, whereas the microglial cells isolated from LILRB4-deficient mice are mostly in the Amoeboid form (in the activated state), where they adhere without spreading. became. This suggests that LILRB4-deficient microglial cells are no longer suppressed by LILRB4-FN and are in a more activated state. As shown in Figure 18, the long axis length is longer when seeded on FN-coated plates than on non-FN-coated plates, so inactivation of microglial cells by LILRB4-FN is The involvement of FN-binding integrin was suggested.

Claims (17)

  1.  フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質を有効成分として含有する免疫細胞の活性化剤。 An activator for immune cells containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
  2.  前記免疫細胞の活性化が、免疫細胞の炎症誘発作用である、請求項1に記載の免疫細胞の活性化剤。 The immune cell activator according to claim 1, wherein the activation of the immune cells is an inflammation-inducing effect of the immune cells.
  3.  前記免疫細胞の炎症誘発作用が、インテグリンの活性化に基づく免疫細胞の炎症誘発作用に対する免疫抑制性受容体LILRB4による抑制の解除によるものである、請求項2に記載の免疫細胞の活性化剤。 The immune cell activator according to claim 2, wherein the immune cell inflammatory action is due to release of suppression by the immunosuppressive receptor LILRB4 against the immune cell inflammatory action based on integrin activation.
  4.  前記インテグリンの活性化が、フィブロネクチンのインテグリンへの結合によるものである、請求項3に記載の免疫細胞の活性化剤。 The immune cell activator according to claim 3, wherein the activation of the integrin is due to binding of fibronectin to the integrin.
  5.  前記フィブロネクチンが、前記フィブロネクチン中の配列番号1で示されるアミノ酸配列を介して、免疫抑制性受容体LILRB4と結合する、請求項1~4のいずれか一項に記載の免疫細胞の活性化剤。 The immune cell activator according to any one of claims 1 to 4, wherein the fibronectin binds to the immunosuppressive receptor LILRB4 via the amino acid sequence shown by SEQ ID NO: 1 in the fibronectin.
  6.  前記フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質が、抗フィブロネクチン抗体又はその誘導体、抗免疫抑制性受容体LILRB4抗体又はその誘導体、若しくはフィブロネクチンアナログである、請求項1~4のいずれか一項に記載の免疫細胞の活性化剤。 Any one of claims 1 to 4, wherein the substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog. The immune cell activator according to item 1.
  7.  前記抗フィブロネクチン抗体又はその誘導体が、フィブロネクチン中の配列番号1で示されるアミノ酸配列と結合する、請求項6に記載の免疫細胞の活性化剤。 The immune cell activating agent according to claim 6, wherein the anti-fibronectin antibody or its derivative binds to the amino acid sequence shown by SEQ ID NO: 1 in fibronectin.
  8.  前記フィブロネクチンアナログが、以下の(a)~(c)のいずれか一つのペプチドである、請求項6に記載の免疫細胞の活性化剤。
    (a)配列番号1で表されるアミノ酸配列を含むペプチド、
    (b)配列番号1で表されるアミノ酸配列において、1~数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド、
    (c)配列番号1で表されるアミノ酸配列において、80%以上の同一性を有するアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド
    The immune cell activating agent according to claim 6, wherein the fibronectin analog is a peptide of any one of the following (a) to (c).
    (a) A peptide comprising the amino acid sequence represented by SEQ ID NO: 1,
    (b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4. a peptide with binding ability,
    (c) A peptide that includes an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1 and has the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4.
  9.  前記免疫細胞が、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞からなる群から選択される、請求項1~4のいずれか一項に記載の免疫細胞の活性化剤。 The agent for activating immune cells according to any one of claims 1 to 4, wherein the immune cells are selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells.
  10.  フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質を有効成分として含有する免疫細胞関連炎症疾患の治療剤。 A therapeutic agent for immune cell-related inflammatory diseases containing as an active ingredient a substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4.
  11.  前記フィブロネクチンが、前記フィブロネクチン中の配列番号1で表されるアミノ酸配列を介して、免疫抑制性受容体LILRB4と結合する、請求項10に記載の治療剤。 The therapeutic agent according to claim 10, wherein the fibronectin binds to the immunosuppressive receptor LILRB4 via the amino acid sequence represented by SEQ ID NO: 1 in the fibronectin.
  12.  前記フィブロネクチンと免疫抑制性受容体LILRB4との結合を阻害する物質が、抗フィブロネクチン抗体又はその誘導体、抗免疫抑制性受容体LILRB4抗体又はその誘導体、若しくはフィブロネクチンアナログである、請求項10又は11に記載の治療剤。 12. The substance that inhibits the binding between fibronectin and the immunosuppressive receptor LILRB4 is an anti-fibronectin antibody or a derivative thereof, an anti-immunosuppressive receptor LILRB4 antibody or a derivative thereof, or a fibronectin analog. therapeutic agent.
  13.  前記抗フィブロネクチン抗体又はその誘導体が、フィブロネクチン中の配列番号1で表されるアミノ酸配列と結合する、請求項12に記載の治療剤。 The therapeutic agent according to claim 12, wherein the anti-fibronectin antibody or its derivative binds to the amino acid sequence represented by SEQ ID NO: 1 in fibronectin.
  14.  前記フィブロネクチンアナログが、以下の(a)~(c)のいずれか一つのペプチドである、請求項12に記載の治療剤。
    (a)配列番号1で表されるアミノ酸配列を含むペプチド、
    (b)配列番号1で表されるアミノ酸配列において、1~数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド、
    (c)配列番号1で表されるアミノ酸配列において、80%以上の同一性を有するアミノ酸配列を含み、且つ、免疫抑制性受容体LILRB4のフィブロネクチン結合部位に対し結合能を有するペプチド
    The therapeutic agent according to claim 12, wherein the fibronectin analog is any one of the following peptides (a) to (c).
    (a) A peptide comprising the amino acid sequence represented by SEQ ID NO: 1,
    (b) Contains an amino acid sequence in which one to several amino acids are deleted, inserted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1, and has a binding site for fibronectin of the immunosuppressive receptor LILRB4. a peptide with binding ability,
    (c) A peptide that includes an amino acid sequence having 80% or more identity in the amino acid sequence represented by SEQ ID NO: 1 and has the ability to bind to the fibronectin binding site of the immunosuppressive receptor LILRB4.
  15.  前記免疫細胞が、マクロファージ、ミクログリア細胞、樹状細胞、及びNK細胞からなる群から選択される、請求項10又は11に記載の治療剤。 The therapeutic agent according to claim 10 or 11, wherein the immune cells are selected from the group consisting of macrophages, microglial cells, dendritic cells, and NK cells.
  16.  前記免疫細胞関連炎症疾患が、神経変性疾患、心の発達障害、統合失調症、自閉スペクトラム症、粥状動脈硬化症、及び感染症からなる群から選択される、請求項10又は11に記載の治療剤。 12. The immune cell-related inflammatory disease is selected from the group consisting of neurodegenerative diseases, mental developmental disorders, schizophrenia, autism spectrum disorders, atherosclerosis, and infectious diseases. therapeutic agent.
  17.  前記神経変性疾患が、アルツハイマー病、認知症、脳梗塞、パーキンソン病、ハンチントン病、及び筋萎縮性側索硬化症からなる群から選択される、請求項16に記載の治療剤。 The therapeutic agent according to claim 16, wherein the neurodegenerative disease is selected from the group consisting of Alzheimer's disease, dementia, cerebral infarction, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.
PCT/JP2022/022682 2022-06-03 2022-06-03 Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases WO2023233665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/022682 WO2023233665A1 (en) 2022-06-03 2022-06-03 Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases
PCT/JP2023/013315 WO2023233791A1 (en) 2022-06-03 2023-03-30 Integrin activator and therapeutic agent for chronic inflammatory disease related to integrin activation inhibition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022682 WO2023233665A1 (en) 2022-06-03 2022-06-03 Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases

Publications (1)

Publication Number Publication Date
WO2023233665A1 true WO2023233665A1 (en) 2023-12-07

Family

ID=89026174

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/022682 WO2023233665A1 (en) 2022-06-03 2022-06-03 Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases
PCT/JP2023/013315 WO2023233791A1 (en) 2022-06-03 2023-03-30 Integrin activator and therapeutic agent for chronic inflammatory disease related to integrin activation inhibition

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013315 WO2023233791A1 (en) 2022-06-03 2023-03-30 Integrin activator and therapeutic agent for chronic inflammatory disease related to integrin activation inhibition

Country Status (1)

Country Link
WO (2) WO2023233665A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029318A1 (en) * 2019-08-13 2021-02-18 国立大学法人東北大学 Immune checkpoint inhibitor, therapeutic agent for immune checkpoint-related disease, immunosuppressant, anti-fibronectin antibody or derivative thereof, fibronectin analog, kit for detecting fibronectin or partial protein thereof, and method for detecting fibronectin or partial protein thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029318A1 (en) * 2019-08-13 2021-02-18 国立大学法人東北大学 Immune checkpoint inhibitor, therapeutic agent for immune checkpoint-related disease, immunosuppressant, anti-fibronectin antibody or derivative thereof, fibronectin analog, kit for detecting fibronectin or partial protein thereof, and method for detecting fibronectin or partial protein thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ITOI SO, TAKAHASHI NAOYUKI, SAITO HARUKA, MIYATA YUSUKE, SU MEI-TZU, KEZUKA DAI, ITAGAKI FUMIKA, ENDO SHOTA, FUJII HIROSHI, HARIGA: "Myeloid immune checkpoint ILT3/LILRB4/gp49B can co-tether fibronectin with integrin on macrophages", INTERNATIONAL IMMUNOLOGY JUN 2010, vol. 34, no. 8, 26 July 2022 (2022-07-26), pages 435 - 444, XP093116309, ISSN: 1460-2377, DOI: 10.1093/intimm/dxac023 *
SU MEI-TZU, INUI MASANORI, WONG YI LI, TAKAHASHI MAIKA, SUGAHARA-TOBINAI AKIKO, ONO KARIN, MIYAMOTO SHOTARO, MURAKAMI KEIICHI, ITO: "Blockade of checkpoint ILT3/LILRB4/gp49B binding to fibronectin ameliorates autoimmune disease in BXSB/ Yaa mice", DEPARTMENT OF EXPERIMENTAL IMMUNOLOGY, INSTITUTE OF DEVELOPMENT, AGING AND CANCER, TOHOKU UNIVERSITY , SENDAI 980-8575 , JAPAN, vol. 33, no. 8, 23 July 2021 (2021-07-23), pages 447 - 458, XP093063786, DOI: 10.1093/intimm/dxab028 *
TAKAHASHI NAOYUKI, ITOI SO, SU MEI-TZU, ENDO SHOTA, TAKAI TOSHIYUKI: "Co-localization of Fibronectin Receptors LILRB4/gp49B and Integrin on Dendritic Cell Surface", TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE., TOHOKU UNIVERSITY MEDICAL PRESS, SENDAI., JP, vol. 257, no. 3, 1 January 2022 (2022-01-01), JP , pages 171 - 180, XP093116311, ISSN: 0040-8727, DOI: 10.1620/tjem.2022.J014 *

Also Published As

Publication number Publication date
WO2023233791A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
Méndez-Enríquez et al. Mast cells and their progenitors in allergic asthma
Catalano The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis
Kyung Chang et al. Fibroblast‐like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin‐11
Granucci et al. The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia
US20210401940A1 (en) Isolated interleukin-34 polypeptide for use in preventing transplant rejection and treating autoimmune diseases
JP7140739B2 (en) Methods of treating fibrous carcinoma
JP2013506419A (en) Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptor and its use for the treatment of cancer
JP2018512164A (en) Methods for treating myeloproliferative disorders
Spurrell et al. Vav1 regulates the migration and adhesion of dendritic cells
Miralda et al. Siglec-9 is an inhibitory receptor on human mast cells in vitro
WO2023233665A1 (en) Immunocyte activator, and therapeutic agent for immunocyte-related inflammatory diseases
JP2019031535A (en) Use of m-csf for preventing or treating myeloid cytopenia and related complications
US20210393740A1 (en) Ptprs and proteoglycans in rheumatoid arthritis
Prajapati et al. An Update on the Emerging Role of Wnt/β-catenin, SYK, PI3K/AKT, and GM-CSF Signaling Pathways in Rheumatoid Arthritis
US20230338423A1 (en) Targetable immune checkpoint for immunotherapy
Ochs Proinflammatory CD20+ T cells: Their origin and therapeutic depletion in CNS-directed autoimmunity
Duan et al. Deletion of Tmem268 in mice suppresses anti-infectious immune responses by downregulating CD11b signaling
Lucas Expression and function of the atypical chemokine receptor CCRL1 in the thymus
Freitas et al. CXCR4 in Central and Peripheral Lymphoid Niches–Physiology, Pathology and Therapeutic Perspectives in Immune Deficiencies and Malignancies
Barak Unveiling key players in the CLL-microenvironment interplay
JP2022156430A (en) Allergy inhibitor and degranulation inhibitor
Wedeh Identification of Bromodomain-Containing Protein 4 (BRD4) as a Novel Marker and Epigenetic Target in Systemic Mastocytosis and Mast Cell Leukemia
Gauguet Normal and malignant lymphocyte migration: Glycosyltransferases and integrins in lymphocyte homing and CXCR4 inhibition of multiple myeloma
Horinouchi et al. Pristane-Induced Granulocyte Recruitment
Bryant The role of CXCR4/SDF-1 and VLA-4/VCAM-1 in migration of bystander-activated T cells: implications for rheumatoid arthritis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944942

Country of ref document: EP

Kind code of ref document: A1