WO2023233603A1 - Terminal, base station, and wireless communication method - Google Patents

Terminal, base station, and wireless communication method Download PDF

Info

Publication number
WO2023233603A1
WO2023233603A1 PCT/JP2022/022404 JP2022022404W WO2023233603A1 WO 2023233603 A1 WO2023233603 A1 WO 2023233603A1 JP 2022022404 W JP2022022404 W JP 2022022404W WO 2023233603 A1 WO2023233603 A1 WO 2023233603A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
transmission
pdsch
pusch
configuration
Prior art date
Application number
PCT/JP2022/022404
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/022404 priority Critical patent/WO2023233603A1/en
Publication of WO2023233603A1 publication Critical patent/WO2023233603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present disclosure relates to a terminal, a base station, and a wireless communication method.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • a successor system to LTE is also being considered with the aim of further increasing the bandwidth and speed of LTE.
  • Successor systems to LTE include, for example, LTE-Advanced (LTE-A), Future Radio Access (FRA), 5th generation mobile communication system (5G), 5G plus (5G+), Radio Access Technology (New-RAT), New There is a system called Radio (NR).
  • Non-Patent Document 1 various wireless technologies and network architectures are being studied in order to meet the requirements of achieving a throughput of 10 Gbps or more and reducing the delay in the wireless section to 1 ms or less (for example, Non-Patent Document 1). .
  • NR in NR, as an example of various wireless technologies, a method that does not perform dynamic scheduling (no scheduling using dynamic grant) is being considered.
  • One aspect of the present disclosure provides a terminal, a base station, and a wireless communication method that can improve communication efficiency.
  • a terminal transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or receives an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) using a single-codeword or a two-codeword. and a transmitting/receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit.
  • CG PUSCH Configured Grant Physical Uplink Schered Channel
  • SPS PDSCH Semi-Persistent Scheduling Downlink Shared Channel
  • a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel).
  • CG PUSCH Configured Grant Physical Uplink Schered Channel
  • SPS PDSCH Semi-Persistent Scheduling Downlink Shared Channel
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of a base station according to an embodiment.
  • 1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment.
  • FIG. FIG. 3 is a diagram showing an example of HARQ-ACK CB.
  • FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of Proposal 2.
  • FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of Option 2 of Proposal 2.
  • FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of Option 2-1 of Proposal 2.
  • FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of option 2-2 of proposal 2.
  • FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of option 2-2A of proposal 2.
  • FIG. 6 is a diagram showing an example of HARQ-ACK CB of Option 2-2B of Proposal 2.
  • FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of option 3 of proposal 2.
  • FIG. 4 is a diagram illustrating an example of HARQ-ACK CB of Option 4 of Proposal 2.
  • FIG. 4 is a diagram showing an example of proposal 4.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a terminal and a base station according to an embodiment.
  • 1 is a diagram showing an example of the configuration of a vehicle in an embodiment of the present invention.
  • Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, an existing NR, but is not limited to an existing NR.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
  • the wireless communication system may be a wireless communication system compliant with New Radio (NR). Further, the wireless communication system may be a wireless communication system according to a method called 5G, Beyond 5G, 5G Evolution, or 6G. Illustratively, the wireless communication system may be a wireless communication system that follows a system called URLLC and/or IIoT.
  • NR New Radio
  • NG-RAN Next Generation-Radio Access Network
  • NG-RAN includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • 5GC 5G-compliant core network
  • NG-RAN and 5GC may also be simply expressed as "networks.”
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, where the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Furthermore, a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
  • TTI Transmission Time Interval
  • At least one of the base station 10 and the terminal 20 supports Massive MIMO (Multiple-Input Multiple-Output), which generates a highly directional beam (BM) by controlling radio signals transmitted from multiple antenna elements. You may respond. Furthermore, at least one of the base station 10 and the terminal 20 may support carrier aggregation (CA) in which a plurality of component carriers (CCs) are bundled together. Further, at least one of the base station 10 and the terminal 20 may support dual connectivity (DC) or the like in which communication is performed between the terminal 20 and each of the plurality of base stations 10.
  • Massive MIMO Multiple-Input Multiple-Output
  • BM highly directional beam
  • DC dual connectivity
  • a wireless communication system may support multiple frequency bands.
  • the wireless communication system supports Frequency Range (FR) 1 and FR2.
  • FR Frequency Range
  • the frequency bands of each FR are as follows. ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15kHz, 30kHz or 60kHz is used, and a bandwidth (BW) of 5MHz to 100MHz may be used.
  • SCS Sub-Carrier Spacing
  • FR2 is, for example, a higher frequency than FR1.
  • a 60kHz or 120kHz SCS may be used and a bandwidth (BW) of 50MHz to 400MHz.
  • FR2 may include a 240kHz SCS.
  • the wireless communication system in this embodiment may support a frequency band higher than the FR2 frequency band.
  • the wireless communication system in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz.
  • Such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • a time division duplex (TDD) slot configuration pattern may be set.
  • the slot setting pattern there are slots for transmitting DL signals, slots for transmitting UL signals, slots in which DL signals, UL signals, and guard symbols are mixed, and slots in which the signal to be transmitted is changed to flexible.
  • a pattern indicating the order of two or more slots may be defined.
  • channel estimation of PUSCH can be performed using demodulation reference signals (DMRS) for each slot, but in addition, DMRS assigned to each of multiple slots can be estimated.
  • PUSCH (or PUCCH) channel estimation can be performed using Such channel estimation may be referred to as joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • the terminal 20 may transmit DMRS assigned to each of the plurality of slots in a plurality of slots so that the base station 10 can perform joint channel estimation using DMRS.
  • an enhanced function may be added to the feedback function from the terminal 20 to the base station 10.
  • enhanced functionality of terminal feedback for HARQ-ACK Hybrid automatic repeat request acknowledgment
  • HARQ-ACK Hybrid automatic repeat request acknowledgment
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the base station 10 may be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB).
  • the base station 10 may be considered as a device included in a network to which the terminal 20 connects.
  • the base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20.
  • multiple CCs component carriers
  • carrier aggregation one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS. Further, the synchronization signal may be SSB.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on the DL, and receives control signals or data from the terminal 20 on the UL. Note that here, what is transmitted on control channels such as PUCCH and PDCCH is called a control signal, and what is transmitted on shared channels such as PUSCH and PDSCH is called data. It is.
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may also be called user equipment (UE).
  • UE user equipment
  • the terminal 20 may notify the base station 10 of terminal capability information (UE capability) that defines information regarding the capability of the terminal.
  • UE capability terminal capability information
  • the configurations of the base station 10 and the terminal 20 will be explained.
  • the configurations of base station 10 and terminal 20 described below are examples of functions related to this embodiment.
  • the base station 10 and the terminal 20 may have functions not shown. Further, as long as the function executes the operation according to the present embodiment, the functional division and/or the name of the functional unit is not limited.
  • FIG. 2 is a block diagram showing an example of the configuration of base station 10 according to this embodiment.
  • Base station 10 includes, for example, a transmitter 101, a receiver 102, and a controller 103.
  • the base station 10 communicates with the terminal 20 (see FIG. 3) wirelessly.
  • the transmitter 101 transmits the DL signal to the terminal 20.
  • the transmitter 101 transmits a DL signal under the control of the controller 103.
  • the DL signal may include, for example, a downlink data signal and control information (for example, DCI). Further, the DL signal may include information indicating scheduling regarding signal transmission of the terminal 20 (for example, UL grant). Further, the DL signal may include upper layer control information (for example, Radio Resource Control (RRC) control information). Further, the DL signal may include a reference signal.
  • DCI downlink data signal and control information
  • the DL signal may include information indicating scheduling regarding signal transmission of the terminal 20 (for example, UL grant).
  • the DL signal may include upper layer control information (for example, Radio Resource Control (RRC) control information). Further, the DL signal may include a reference signal.
  • RRC Radio Resource Control
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • the data channel may include a PDSCH (Physical Downlink Shared Channel)
  • the control channel may include a PDCCH (Physical Downlink Control Channel).
  • the base station 10 transmits control information to the terminal 20 using the PDCCH, and transmits a downlink data signal using the PDSCH.
  • reference signals included in the DL signal include demodulation reference signal (DMRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), and Sounding Reference Signal (SRS). ), and a Positioning Reference Signal (PRS) for position information.
  • DMRS demodulation reference signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • reference signals such as DMRS and PTRS are used for demodulating downlink data signals and are transmitted using PDSCH.
  • the receiving unit 102 receives the UL signal transmitted from the terminal 20.
  • the receiving unit 102 receives a UL signal under the control of the control unit 103.
  • the control unit 103 controls the communication operation of the base station 10, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
  • control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
  • control unit 103 determines the resources (or channels) used for transmitting and receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 20 and/or the data and control information obtained from the upper layer. and/or allocate resources used for transmitting and receiving UL signals. Information regarding the allocated resources may be included in the control information transmitted to the terminal 20.
  • control unit 103 determines the PDSCH transmission method and/or the PUSCH transmission method (reception method at the base station 10), generates information regarding the determined transmission method, and transmits the information from the transmission unit 101. . Further, the control unit 103 performs transmission control and/or reception control based on the determined PDSCH transmission method and/or PUSCH transmission method. For example, the control unit 103 may receive feedback information (for example, HARQ-ACK) generated based on the PDSCH transmission method via the reception unit 102, and may perform retransmission control based on the feedback information. .
  • feedback information for example, HARQ-ACK
  • FIG. 3 is a block diagram showing an example of the configuration of terminal 20 according to this embodiment.
  • the terminal 20 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203.
  • the terminal 20 communicates with the base station 10 wirelessly, for example.
  • the receiving unit 201 receives the DL signal transmitted from the base station 10. For example, the receiving unit 201 receives a DL signal under the control of the control unit 203.
  • the transmitter 202 transmits the UL signal to the base station 10. For example, the transmitter 202 transmits a UL signal under the control of the controller 203.
  • the UL signal may include, for example, an uplink data signal and control information (for example, UCI).
  • control information for example, UCI
  • information regarding the processing capability of the terminal 20 eg, UE capability
  • the UL signal may include a reference signal.
  • Channels used for transmitting UL signals include, for example, data channels and control channels.
  • the data channel includes PUSCH (Physical Uplink Shared Channel)
  • the control channel includes PUCCH (Physical Uplink Control Channel).
  • the terminal 20 receives control information from the base station 10 using the PUCCH, and transmits an uplink data signal using the PUSCH.
  • the reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRS, and PRS.
  • reference signals such as DMRS and PTRS are used for demodulating uplink data signals and are transmitted using an uplink channel (for example, PUSCH).
  • the control unit 203 controls communication operations of the terminal 20, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
  • control unit 203 controls the transmission of information fed back to the base station 10.
  • the information fed back to the base station 10 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). good.
  • Information fed back to the base station 10 may be included in the UCI.
  • the UCI is transmitted on PUCCH resources.
  • control unit 203 acquires information regarding the PDSCH transmission method (the reception method in the terminal 20) and/or the PUSCH transmission method, and performs transmission control and/or reception control based on the acquired information.
  • the control section 203 may generate feedback information (for example, HARQ-ACK) based on the PDSCH transmission method, and perform control to transmit the generated feedback information via the transmission section 202.
  • feedback information for example, HARQ-ACK
  • channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above.
  • channels used for transmitting DL signals and channels used for transmitting UL signals may include RACH (Random Access Channel) and PBCH (Physical Broadcast Channel).
  • the RACH may be used, for example, to transmit DCI including a Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • CG PUSCH is a method of performing UL transmission using PUSCH based on a UL grant (for example, may be called a Configured Grant, Configured UL Grant, etc.) configured by an upper layer.
  • a UL grant for example, may be called a Configured Grant, Configured UL Grant, etc.
  • UL resources have already been allocated to the terminal 20, and the terminal 20 can spontaneously perform UL transmission using the configured resources, so low-delay communication can be expected.
  • Type 1 CG PUSCH Activation/deactivation of Type 1 CG PUSCH depends only on RRC-configuration and does not depend on DCI.
  • parameters used for uplink transmission also referred to as CG parameters, CG configuration (Configured Grant Configuration) information, etc.
  • the parameters of Type 1 CG PUSCH are provided by "ConfiguredGrantConfig", “pusch-Config” and “rrc-ConfiguredUplinkGrant”. That is, the base station 10 uses "ConfiguredGrantConfig", “pusch-Config” and “rrc-ConfiguredUplinkGrant” to instruct the terminal 20 about parameters for uplink transmission.
  • the terminal 20 stores the received parameters as a configuration grant.
  • the terminal 20 determines that one or more configuration grants have been triggered (or activated), and transmits the configured resources (referred to as CG resources, transmission occasions, etc.). ), PUSCH transmission may be performed without dynamic grants.
  • Type 2 CG PUSCH Activation/deactivation of Type 2 CG PUSCH depends on RRC-configuration and DCI.
  • One DCI can only activate one CG PUSCH and can deactivate multiple CG PUSCHs.
  • parameters used for uplink transmission are set in the terminal 20 using upper layer signaling. Further, some of the parameters used for uplink transmission are notified to the terminal by DCI.
  • the transmission parameters of Type 2 CG PUSCH are provided by “ConfiguredGrantConfig”, “pusch-Config” and “activation DCI”. That is, the base station 10 uses "ConfiguredGrantConfig,” “pusch-Config,” and "activation DCI" to instruct the terminal 20 about uplink transmission parameters.
  • Terminal 20 stores the received parameters.
  • the terminal 20 determines that one or more configuration grants have been triggered (or activated), and uses the resources configured in the upper layer. may be used to perform PUSCH transmission without dynamic grants.
  • the activation DCI may be CRC (Cyclic Redundancy Check) scrambled with a predetermined identifier (for example, CS-RNTI: Configured Scheduling RNTI). Note that the activation DCI may be used to control deactivation, retransmission, etc. of the configuration grant.
  • the terminal 20 releases or deactivates the resource (PUSCH) corresponding to the Configured Grant based on the DCI that deactivates the Configured Grant or the expiration of a predetermined timer (the elapse of a predetermined time). deactivate)).
  • PUSCH resource
  • a predetermined timer the elapse of a predetermined time. deactivate
  • CG configuration the configuration of CG PUSCH may be abbreviated as "CG configuration”.
  • SPS PDSCH ⁇ SPS PDSCH> Next, SPS PDSCH will be explained.
  • periodic resources for downlink (DL) Semi-Persistent Scheduling (SPS) are configured by an upper layer.
  • Activation/deactivation (release) of transmission using the resource in the SPS PDSCH depends on the activation DCI.
  • the activation DCI may be CRC (Cyclic Redundancy Check) scrambled using a predetermined identifier (for example, CS-RNTI: Configured Scheduling RNTI).
  • parameters used for downlink transmission (which may also be referred to as SPS parameters, semi-persistent scheduling configuration information, etc.) are set in the terminal 20 using upper layer signaling. Further, some of the parameters used for downlink transmission are notified to the terminal by DCI. Specifically, the transmission parameters of SPS PDSCH are provided by “sps-Config” and “activation DCI”. That is, the base station 10 uses “sps-Config” and "activation DCI" to instruct the terminal 20 about downlink transmission parameters. Terminal 20 stores the received parameters.
  • the configuration of SPS PDSCH may be abbreviated as "SPS configuration”.
  • CGC-CG parameters (group) the parameters in ConfiguredGrantConfig (hereinafter referred to as "CGC-CG parameters (group)") for Type 1 and/or Type 2 CG PUSCH are as follows. Note that when CGC-CG parameters are provided by both ConfiguredGrantConfig and pushch-Config, the terminal 20 may apply the CGC-CG parameters indicated in ConfiguredGrantConfig to PUSCH transmission. Furthermore, if there is a CGC-CG parameter that is not provided by ConfiguredGrantConfig, the terminal 20 may apply the CGC-CG parameter indicated by pushch-Config to PUSCH transmission.
  • - periodicity Used to indicate the period of PUSCH transmission corresponding to the set grant.
  • - repK Used to indicate the number of repeated PUSCH transmissions.
  • - repK-RV Used to indicate information regarding the redundancy version of repeated PUSCH transmission.
  • -frequencyHopping Used to effectively set either intra-slot frequency hopping or inter-slot frequency hopping. If the field is not present, frequency hopping may not be applied.
  • - cg-DMRS-Configuration Used to indicate the DMRS configuration of PUSCH corresponding to the set grant.
  • - mcs-Table Used to indicate the MSC table that the terminal 20 uses for PUSCH without transform precoding.
  • terminal 20 may use a 64QAM table.
  • - mcs-TableTransformPrecoder Used to indicate the MSC table used by the terminal 20 for PUSCH with transform precoding. If the field is not present, terminal 20 may use a 64QAM table.
  • - uci-OnPUSCH Used to indicate information regarding UCI transmission using PUSCH.
  • -resourceAllocation Used to indicate that one of 'resource allocation type 0', 'resource allocation type 1', and 'dynamic switch' is set.
  • - rbg-Size Used to indicate the RBG size of PUSCH.
  • - powerControlLoopToUse Used to indicate a closed control loop applied to PUSCH transmission.
  • - p0-PUSCH-Alpha Used to calculate PUSCH transmission power.
  • transformPrecoder Used to indicate whether transform precoding is selected for PUSCH transmission.
  • phy-PriorityIndex Used to indicate the PHY priority of CG PUSCH in at least PHY layer collision processing. Note that value p0 indicates low priority, and value p1 indicates high priority.
  • - cg-nrofHARQ-Process Used to indicate the HARQ process number.
  • ⁇ cg-nrofSlots Used to indicate the number of allocated slots set in the grant period following the time instance set in the grant offset.
  • -betaOffsetCG-UCI Used to indicate the beta offset of CG-UCI in CG-PUSCH.
  • ⁇ configuredGrantTimer Used to indicate the initial value of the configured grant timer as a multiple of periodicity. If cg-RetransmissonTimer is set, and the HARQ process is shared between different configured grants on the same BWP, the periodicity of the configuredGrantTimer is set to the same value for the configurations that share the HARQ process on this BWP. .
  • rrc-ConfiguredUplinkGrant (hereinafter referred to as "rrc-CUG-CG parameters (group)") for Type 1 CG PUSCH are as follows. Note that rrc-ConfiguredUplinkGrant is used to indicate grant information configured in Type 1 CG PUSCH.
  • timeDomainOffset Used to indicate the offset associated with the system frame numbered 0.
  • timeDomainAllocation Used to indicate the combination of the PUSCH mapping type, the PUSCH start symbol, and the number of consecutively allocated symbols.
  • frequencyDomainAllocation Used to indicate PUSCH frequency resource allocation.
  • antennaPort Used to indicate antenna port information for PUSCH transmission.
  • dmrs-SeqInitialization Identifier used for scrambling of DMRS sequence for PUSCH transmission.
  • precodingAndNumberOfLayers Used to indicate precoding and the number of layers for PUSCH transmission.
  • - srs-ResourceIndicator Used to indicate the SRS (Sounding Reference Signal) resource used.
  • - mcsAndTBS Used to indicate modulation order, target coding rate, and transport block size.
  • -frequencyHoppingOffset Used to indicate the value of frequency hopping offset.
  • - pathlossReferenceIndex Used to indicate the reference signal used for PUSCH path loss estimation.
  • pushch-RepTypeIndicator Used to indicate whether the terminal 20 follows the operation for PUSCH repetition type A or the operation for PUSCH repetition type B for each Type 1 configured grant configuration. value pusch-RepTypeA enables "PUSCH repetition type A", and value pusch-RepTypeB enables "PUSCH repetition type B".
  • -frequencyHoppingPUSCH-RepTypeB Used to indicate the frequency hopping method of Type 1 CG when pushch-RepTypeIndicator is set to "pusch-RepTypeB". Value interRepetition enables "Inter-repetition frequency hopping" and value interSlot enables "Inter-slot frequency hopping". Note that if this field does not exist, frequency hopping will not be enabled in Type 1 CG.
  • DCI-CG parameters (group) include the following:
  • - timeDomainAllocation Used to indicate the combination of starting symbol and length and PUSCH mapping type.
  • -frequencyDomainAllocation Used to indicate frequency domain resource allocation.
  • MCS index Used to indicate the MCS (Modulation and Coding Scheme) index.
  • antenna port indication Used to indicate the antenna port.
  • precoding and number of layers indication Used to indicate precoding and the number of layers.
  • SRS resource indicator Used to indicate resources for SRS (Sounding Reference Signal).
  • power control related parameter indication Used to indicate parameters related to transmission power control.
  • SPS-Config (hereinafter referred to as "SC-SPS parameter(s)") for SPS PDSCH include the following.
  • - periodicity Used to indicate the period of SPS PDSCH.
  • - n1PUCCH-AN HARQ-ACK (Hybrid automatic repeat request acknowledgment) for SPS PDSCH Used to indicate PUCCH resources.
  • - mcs-Table Used to indicate the MCS table applied to reception of SPS PDSCH.
  • - pdsch-AggregationFactor Used to indicate the number of repeated PDSCH transmissions.
  • DCI-SPS parameters (group) include the following.
  • timeDomainAllocation Used to indicate the combination of starting symbol and length and PDSCH mapping type.
  • frequencyDomainAllocation Used to indicate frequency domain resource allocation.
  • MCS index Used to indicate the MCS (Modulation and Coding Scheme) index.
  • TCI state indication Used to indicate the state of TCI (Transmission Configuration Indicator) for PDSCH.
  • antenna port indication Used to indicate the antenna port.
  • HARQ-ACK Used to indicate the priority of HARQ-ACK.
  • K1 Used to indicate the number of slots from the slot in which data is scheduled on the PDSCH to the slot in which HARQ-ACK for the PDSCH is transmitted.
  • - PDSCH/PUSCH length Used to indicate the length of PDSCH and/or PUSCH.
  • -number of PRBs Used to indicate the number of PRBs (Physical Resource Blocks).
  • PUSCH PUSCH
  • CG PUSCH Configured Grant
  • SPS Semi-Persistent
  • Non-Patent Document 2 the configuration of CG PUSCH (Configured Grant Physical Uplink Shared Channel) and the configuration of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is defined (for example, Non-Patent Document 2).
  • CG PUSCH and SPS PDSCH are determined by RRC (Radio Resource Control) configuration and activation DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • NR is considering various technologies for methods called Ultra-Reliable and Low Latency Communications (URLLC) and Industrial Internet of Things (IIoT).
  • URLLC Ultra-Reliable and Low Latency Communications
  • IIoT Industrial Internet of Things
  • extended reality such as virtual reality (VR) and mixed reality (MX) will be considered, and XR scenarios, requirements, key performance indicators (KPI) and Evaluation methods are being considered.
  • the targeted requirements for XR are to consider aspects of capacity, latency, mobility, and energy savings. Furthermore, the above considerations are being continued in Release 18 as well.
  • XR As a consideration item regarding XR, matters related to improving the capacity specific to XR are being considered.
  • This study considers mechanisms that provide more efficient resource allocation and scheduling for the characteristics of XR services.
  • the characteristics of the XR service include characteristics such as periodicity, multiflow, jitter, delay, and reliability.
  • this study calls for expansion of SPS and CG, and expansion of dynamic scheduling and grants.
  • TB is a unit of an information bit sequence, and may be, for example, at least one of a unit of an information bit sequence allocated to one subframe or a unit of scheduling. If the TBS (Transport Block Size) exceeds a predetermined threshold (for example, 6144 bits), the TB is divided into one or more segments (Code Block), and encoding is performed in segment units (Code block division: Code Block Size). Block Segmentation). Each Code Block is concatenated as a CW (Code Word). Scrambling, data modulation, etc. are performed on the codeword.
  • TBS Transport Block Size
  • a predetermined threshold for example, 6144 bits
  • the retransmission control unit When a TB is composed of one or more Code Blocks, the retransmission control unit is assumed to be at least one of a Code Block, a CBG including multiple Code Blocks, a TB, and multiple bundled TBs.
  • the terminal performs error detection for each retransmission control unit, generates a bit indicating A/N (hereinafter also referred to as HARQ-ACK bit), and feeds it back (transmits) to the radio base station.
  • HARQ-ACK bit bit indicating A/N
  • downlink transmission and uplink transmission to which CBG is applied and HARQ-ACK CB to which CBG is applied.
  • 2 TB and SPS HARQ-ACK will be explained.
  • downlink transmission and uplink transmission to which CBG is applied are described as CBG based PDSCH transmission and CBG based PUSCH transmission, respectively.
  • PDSCH transmission is an operation on the base station side
  • a terminal performs a PDSCH reception operation in the downlink. Therefore, PDSCH transmission may be considered as PDSCH reception at the terminal.
  • a terminal supporting CBG based PDSCH transmission may be considered to mean that the terminal supports CBG based PDSCH reception.
  • CBG based PDSCH transmission Section 5.1.7 of TS 38.214 describes CBG based PDSCH transmission.
  • CBG-based PDSCH transmission and HARQ-ACK feedback for CBG-based PDSCH transmission are supported in the case of scheduling one PDSCH.
  • the case of scheduling one PDSCH is, for example, the case where DCI 1_1 can schedule only one PDSCH, and the PDSCH is scheduled by DCI 1_1 when "PDSCH-CodeBlockGroupTransmission" is set in the serving cell. be.
  • CBG based PUSCH transmission Section 6.1.5 of TS 38.214 describes CBG based PUSCH transmission.
  • CBG based PUSCH transmission is divided into the case of CG PUSCH, the case of PUSCH scheduled by DCI 0_0 or DCI 0_2, and the case of PUSCH scheduled by DCI 0_1 when the SCS is 480kHz or 960kHz and DCI 0_1 can schedule multiple PUSCH. It is not supported in three cases: the case of one or more PUSCHs, and the case of multiple PUSCHs scheduled by DCI 0_1 when the SCS is 120kHz and DCI 0_1 schedules multiple PUSCHs.
  • CBG based PUSCH transmission is supported in the case of scheduling one specific PUSCH and in the case of scheduling multiple specific PUSCHs.
  • the case of scheduling one specific PUSCH is, for example, when DCI 0_1 can schedule only one PDSCH and "PUSCH-CodeBlockGroupTransmission" is set in the serving cell. This is the case of PDSCH.
  • the case where specific multiple PUSCHs are scheduled is, for example, when the SCS is 120kHz and DCI 0_1 can schedule multiple PUSCHs, but when DCI 0_1 schedules only one PUSCH and "PUSCH-CodeBlockGroupTransmission" is This is the case of one PUSCH scheduled by DCI 0_1 when configured in the serving cell.
  • CBG based HARQ-ACK CB Section 9.1.1 of TS 38.213 describes the behavior of the CBG based HARQ-ACK codebook (CB) determination.
  • the terminal When the terminal is given “PDSCH-CodeBlockGroupTransmission” for the serving cell, the terminal receives the PDSCH scheduled by DCI 1_1. The received PDSCH includes one or more CBGs of TB. Additionally, the terminal is given "maxCodeBlockGroupsPerTransportBlock". "maxCodeBlockGroupsPerTransportBlock" indicates the maximum number of CBGs for generating HARQ-ACK information bits for TB reception in the serving cell.
  • Type 2 SPS HARQ-ACK CB A case in which HARQ-ACK feedback for one or more SPS PDSCH receptions, with no corresponding PDCCH, is multiplexed with HARQ-ACK feedback for dynamically scheduled PDSCHs and/or SPS PDSCH releases. is assumed. In this case, HARQ-ACK feedback for one or more SPS PDSCH receptions with no corresponding PDCCH is different from HARQ-ACK feedback for dynamically scheduled PDSCH and/or SPS PDSCH release. Will be added later.
  • FIG. 4 is a diagram showing an example of HARQ-ACK CB.
  • Figure 4 shows “HARQ-ACK for TB based DG PDSCH”, “HARQ-ACK for CBG based DG PDSCH”, and “HARQ-ACK for SPS PDSCH” included in HARQ-ACK CB. It will be done.
  • the horizontal direction in FIG. 4 represents the order (or arrangement order) defined in the data structure of the HARQ-ACK CB.
  • HARQ-ACK CB "HARQ-ACK for TB based DG PDSCH” is listed first, and then "HARQ-ACK for CBG based DG PDSCH” is listed. Note that this order does not have to correspond to the HARQ-ACK processing order and the HARQ-ACK transmission order.
  • HARQ-ACK for TB based DG PDSCH corresponds to the HARQ-ACK codebook for TB based DG PDSCH
  • HARQ-ACK for CBG based DG PDSCH corresponds to the HARQ-ACK codebook for CBG based DG PDSCH
  • HARQ-ACK for SPS PDSCH corresponds to the codebook of HARQ-ACK for SPS PDSCH.
  • CBs of the HARQ-ACK CB may be referred to as sub-codebooks.
  • the configuration of a part of the HARQ-ACK CB and the configuration that includes HARQ-ACK information may be expressed in a different notation that indicates where the information is stored (for example, another notation such as field, segment, or slot). May be replaced.
  • the configuration included in the sub-codebook may be described as a field.
  • HARQ-ACK information (for example, bits) is stored in ascending order of DL slot index for each SPS configuration index of a certain serving cell index. ordered.
  • fields such as "DL slot index #n" and “DL slot index #n+i” are arranged in order in "SPS configuration index #1" of "Cell index #1".
  • Cell index #1 is a field that includes HARQ-ACK corresponding to index #1 of the serving cell
  • SPS configuration index #1 includes HARQ-ACK that corresponds to index #1 of SPS configuration.
  • DL slot index #n is a field that includes HARQ-ACK corresponding to DL slot index #n.
  • index X may be an integer of 0 or more, or an integer of 1 or more.
  • indexes of adjacent fields may be continuous values or non-consecutive values.
  • number of fields in each figure including FIG. 4 is an example, and the present disclosure is not limited thereto.
  • the number of fields included in a certain CB or sub-codebook may be one.
  • the HARQ-ACK information is ordered in ascending order of the SPS configuration index for each serving cell index.
  • fields such as "SPS configuration index #1" and "SPS configuration index #2” are lined up in order in "Cell index #1.”
  • the HARQ-ACK information is ordered in ascending order of serving cell index.
  • fields such as "Cell index #1" and “Cell index #2” are arranged in order in "HARQ-ACK for SPS PDSCH.”
  • NR supports CBG based PDSCH transmission, CBG based PUSCH transmission, and two-codeword PDSCH for dynamically scheduled PDSCH and PUSCH.
  • communication efficiency can be expected to improve in the case of dynamically scheduled PDSCH and PUSCH.
  • SPS PDSCH transmission with CBG applied or CBG applied It is desirable to support CG PUSCH transmission, SPS PDSCH transmission using two-codeword, or CG PUSCH transmission using two-codeword.
  • CBG based SPS PDSCH transmission SPS PDSCH transmission to which CBG is applied
  • CG PUSCH transmission to which CBG is applied may be described as “CBG based CG PUSCH transmission”.
  • CBG based CG PUSCH transmission SPS PDSCH transmission to which CBG is applied
  • SPS PDSCH transmission to which two-codeword is applied may be written as "two-codeword SPS PDSCH transmission"
  • CG PUSCH transmission to which two-codeword is applied may be written to "two-codeword CG PUSCH transmission”.
  • One aspect of the present disclosure describes how communication efficiency can be improved by applying CBG and/or 2 TB in SPS and CG as an example of scheduling different from dynamic scheduling.
  • Proposal 1 proposes criteria for determining whether the terminal 20 should apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • Alt 1 the terminal 20 uses existing upper layer parameters (RRC parameters) that are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, for example, PDSCH-CodeBlockGroupTransmission/CG PUSCH for SPS PDSCH.
  • RRC parameters are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, for example, PDSCH-CodeBlockGroupTransmission/CG PUSCH for SPS PDSCH.
  • the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise applies TB based SPS PDSCH transmission may also be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell, and otherwise applies TB based CG PUSCH transmission may also be applied.
  • the terminal 20 sets another upper layer parameter (RRC parameter) that is configuration information for enabling CBG based transmission in SPS PDSCH/CG PUSCH in PDSCH-ServingCellConfig or PUSCH-ServingCellConfig, for example, Based on SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmission, set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • RRC parameter is another upper layer parameter that is configuration information for enabling CBG based transmission in SPS PDSCH/CG PUSCH in PDSCH-ServingCellConfig or PUSCH-ServingCellConfig, for example, Based on SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmission, set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise applies TB based SPS PDSCH transmission may be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell; based CG PUSCH transmission may be applied.
  • the terminal 20 uses upper layer parameters (RRC parameters), which are individual information set for each SPS configuration or CG configuration, and are setting information for enabling CBG based transmission in SPS PDSCH/CG PUSCH. For example, based on SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmission, it is set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • RRC parameters are individual information set for each SPS configuration or CG configuration, and are setting information for enabling CBG based transmission in SPS PDSCH/CG PUSCH.
  • the terminal 20 applies CBG based SPS PDSCH transmission to the SPS configuration, and otherwise applies TB based SPS PDSCH transmission may also be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration; otherwise, TB based CG PUSCH transmission may also be applied.
  • Alt 4 is a combination of Alt 1 and Alt 2. That is, in Alt 4, the terminal 20 uses existing upper layer parameters (RRC parameters) that are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, and in PDSCH-ServingCellConfig or PUSCH-ServingCellConfig. Based on another upper layer parameter (RRC parameter) that is the configuration information for enabling DG PDSCH/DG PUSCH, it is possible to select between CBG based SPS PDSCH/CG PUSCH transmission and TB based SPS PDSCH/CG PUSCH transmission. Set whether to apply.
  • RRC parameters are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH
  • RRC parameter another upper layer parameter that is the configuration information for enabling DG PDSCH/DG PUSCH
  • the terminal 20 applies CBG based SPS PDSCH transmission to all SPS configurations on the serving cell, and applies CBG based SPS PDSCH transmission to all SPS configurations on the serving cell. In some cases, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to all CG configurations on the serving cell, and applies CBG based CG PUSCH transmission to all CG configurations on the serving cell. In some cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise In this case, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell, and In other cases, TB based CG PUSCH transmission may be applied.
  • Alt 5 is a combination of Alt 1 and Alt 3. That is, in Alt 5, the terminal 20 uses existing upper layer parameters (RRC parameters), which are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, and individual settings for each SPS configuration or CG configuration.
  • RRC parameters upper layer parameters
  • RRC parameters upper layer parameters
  • the terminal 20 transmits the CBG-based SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 transmits the CBG to the CG configuration. based CG PUSCH transmission, otherwise TB based CG PUSCH transmission may be applied.
  • the terminal 20 applies CBG based SPS PDSCH transmission to the SPS configuration; otherwise, , TB based SPS PDSCH transmission may be applied.
  • the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration; otherwise, may apply TB based CG PUSCH transmission.
  • Alt 6 may be a combination of any of Alts 1 to 5 and the activation DCI format.
  • PDSCH-CodeBlockGroupTransmission is set and an SPS configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 uses CBG for the SPS configuration. based SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission is set and CG configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration and applies it to the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures the SPS configuration. In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-CodeBlockGroupTransmission setting and the activation of the CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 configures the CBG based CG PUSCH transmission for the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
  • terminal 20 uses CBG based for SPS configuration. SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied.
  • terminal 20 applies CBG based CG PUSCH transmission to CG configuration, and otherwise In this case, TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures the SPS configuration when at least one of the PDSCH-ServingCellConfig setting and the SPS configuration activation using DCI format 1_1 or DCI 0_1 is performed. In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-ServingCellConfig setting and the activation of CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 configures CBG based CG PUSCH transmission for CG configuration. otherwise, TB based CG PUSCH transmission may be applied.
  • SPS-PDSCH-codeBlockGroupTransmission is set to SPS configuration and SPS configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied.
  • terminal 20 transmits CBG based CG PUSCH transmission for the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 has at least one of the following: setting SPS-PDSCH-codeBlockGroupTransmission to SPS configuration, and activating SPS configuration by DCI format 1_1 or DCI 0_1.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 can perform For SPS configuration, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied.
  • CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the serving cell and CG configuration is activated by DCI format 1_1 or DCI 0_1, terminal 20 configures CBG for CG configuration. based CG PUSCH transmission, otherwise TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures at least one of the following: setting PDSCH-CodeBlockGroupTransmission, setting SPS-PDSCH-codeBlockGroupTransmission to the serving cell, and activating SPS configuration using DCI format 1_1 or DCI 0_1.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 when at least one of the settings of PUSCH-CodeBlockGroupTransmission, the setting of CG-PUSCH-codeBlockGroupTransmission to the serving cell, and the activation of CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 performs CG For the configuration, CBG based CG PUSCH transmission may be applied, and in other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 is configured when both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission are set to SPS configuration, and SPS configuration is activated by DCI format 1_1 or DCI 0_1.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the CG configuration, and the CG configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 , CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 can configure at least PDSCH-CodeBlockGroupTransmission, SPS-PDSCH-codeBlockGroupTransmission to SPS configuration, and activation of SPS configuration by DCI format 1_1 or DCI 0_1. If one is implemented, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, when at least one of the following is performed, the terminal 20 sets PUSCH-CodeBlockGroupTransmission, sets CG-PUSCH-codeBlockGroupTransmission to CG configuration, and activates CG configuration by DCI format 1_1 or DCI 0_1. CBG based CG PUSCH transmission may be applied to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
  • Alt 7 may be a combination of any of Alts 1 to 5 and the DCI field in activation DCI.
  • the terminal 20 is configured with PDSCH-CodeBlockGroupTransmission and the SPS configuration is activated with a DCI format that has a DCI field indicating CBG based SPS PDSCH transmission.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission is set and a CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission
  • the terminal 20 transmits CBG based CG to the CG configuration.
  • PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures at least one of the PDSCH-CodeBlockGroupTransmission and the activation of the SPS configuration in a DCI format with a DCI field indicating CBG based SPS PDSCH transmission.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 configures the CG configuration. In other cases, CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 is configured with PDSCH-ServingCellConfig and the SPS configuration is activated with a DCI format that has a DCI field indicating CBG based SPS PDSCH transmission.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied.
  • PUSCH-ServingCellConfig is set and the CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission
  • the terminal 20 transmits CBG based CG PUSCH to the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures at least one of the PDSCH-ServingCellConfig and the activation of the SPS configuration in the DCI format with the DCI field indicating CBG based SPS PDSCH transmission.
  • CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 configures the CG configuration. , CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 is configured with SPS configuration according to the DCI format in which SPS-PDSCH-codeBlockGroupTransmission is set to SPS configuration and has a DCI field indicating CBG based SPS PDSCH transmission. If activated, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 sets SPS-PDSCH-codeBlockGroupTransmission to the SPS configuration, and configures the SPS configuration according to the DCI format with the DCI field indicating CBG based SPS PDSCH transmission. If at least one of the activations has been performed, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • the terminal 20 may apply to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 has both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission set in the serving cell, and has a DCI field indicating CBG based SPS PDSCH transmission. If the SPS configuration is activated by the DCI format, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the serving cell, and the CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission.
  • CBG based CG PUSCH transmission may be applied, and in other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 has a DCI field indicating the setting of PDSCH-CodeBlockGroupTransmission, the setting of SPS-PDSCH-codeBlockGroupTransmission to the serving cell, and the CBG based SPS PDSCH transmission. If at least one of the activations of the SPS configuration in DCI format has been performed, apply CBG based SPS PDSCH transmission to the SPS configuration, otherwise apply TB based SPS PDSCH transmission. Good too.
  • the terminal 20 performs at least one of the following: setting PUSCH-CodeBlockGroupTransmission, setting CG-PUSCH-codeBlockGroupTransmission to the serving cell, and activating CG configuration in a DCI format with a DCI field indicating CBG based CG PUSCH transmission. If so, CBG based CG PUSCH transmission may be applied to the CG configuration; otherwise, TB based CG PUSCH transmission may be applied.
  • the terminal 20 has the DCI field indicating CBG based SPS PDSCH transmission that both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission are set to SPS configuration. If the SPS configuration is activated using the DCI format, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied.
  • PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the CG configuration, and the CG configuration is activated using the DCI format that has a DCI field indicating CBG based CG PUSCH transmission
  • the terminal 20 , CBG based CG PUSCH transmission may be applied to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
  • the terminal 20 configures the PDSCH-CodeBlockGroupTransmission, the SPS-PDSCH-codeBlockGroupTransmission to the SPS configuration, and the DCI field indicating CBG based SPS PDSCH transmission. If at least one activation of an SPS configuration with a DCI format has been performed, apply CBG based SPS PDSCH transmission to that SPS configuration, otherwise apply TB based SPS PDSCH transmission. You may.
  • the terminal 20 performs at least one of the following: setting PUSCH-CodeBlockGroupTransmission, setting CG-PUSCH-codeBlockGroupTransmission to CG configuration, and activating CG configuration in a DCI format with a DCI field indicating CBG based CG PUSCH transmission. If implemented, CBG based CG PUSCH transmission may be applied to the CG configuration; otherwise, TB based CG PUSCH transmission may be applied.
  • the maximum value of CBG per 1 TB of SPS PDSCH or CG PUSCH may be set as follows.
  • CBG based SPS PDSCH/CG PUSCH transmission can be applied to SPS/CG configuration for XR traffic
  • TB based SPS PDSCH/CG PUSCH transmission can be applied to SPS/CG configuration for URLLC traffic.
  • Proposal 2 describes HARQ-ACK CB for CBG based SPS PDSCH.
  • the HARQ-ACK bit included in the HARQ-ACK CB for SPS PDSCH will be referred to as "SPS HARQ-ACK bit.”
  • TB based SPS PDSCH and CBG based SPS PDSCH may be collectively referred to as SPS PDSCH.
  • TB based DG PDSCH and CBG based DG PDSCH may be collectively referred to as DG PDSCH.
  • TB based SPS PDSCH and TB based DG PDSCH may be collectively referred to as TB based PDSCH.
  • CBG based SPS PDSCH and CBG based DG PDSCH may be collectively referred to as CBG based PDSCH.
  • FIG. 5 is a diagram showing an example of HARQ-ACK CB of Proposal 2.
  • “HARQ-ACK for TB based DG PDSCH” corresponds to a sub-codebook that includes HARQ-ACK for TB based DG PDSCH
  • “HARQ-ACK for CBG based DG PDSCH” corresponds to the sub-codebook including HARQ-ACK for CBG based DG PDSCH.
  • HARQ-ACK for SPS PDSCH (including TB and CBG based SPS) means HARQ-ACK for TB based SPS PDSCH and/or HARQ-ACK for CBG based SPS PDSCH.
  • HARQ-ACK for SPS PDSCH refers to an example that includes both HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH.
  • HARQ-ACK for SPS PDSCH does not need to include at least one of HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH.
  • HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)” may be abbreviated as “HARQ-ACK for SPS PDSCH” or "SPS HARQ-ACK CB.”
  • the SPS HARQ-ACK CB construction procedure described using FIG. 4 is reused as the HARQ-ACK CB construction procedure for CBG based SPS PDSCH.
  • the number of HARQ-ACK bits may differ between the HARQ-ACK CB for CBG based SPS PDSCH and the HARQ-ACK CB for TB based SPS PDSCH.
  • elements other than the number of HARQ-ACK bits are It may be common between the HARQ-ACK CB for SPS PDSCH and the HARQ-ACK CB for TB based SPS PDSCH.
  • Elements other than the number of HARQ-ACK bits include, for example, a convention regarding the order of HARQ-ACK information (eg, fields) in the HARQ-ACK CB.
  • the order of the SPS HARQ-ACK bits (field order) in the SPS HARQ-ACK CB is based first on the ascending order of the cell index of the serving cell, and then in the ascending order of the index of the SPS configuration in each of the serving cell indices.
  • DL slots may then be based on ascending indexes of the DL slots in each of the indexes of the SPS configuration.
  • This SPS HARQ-ACK bit order (field order) may be common between the HARQ-ACK CB for CBG-based SPS PDSCH and the HARQ-ACK CB for TB-based SPS PDSCH.
  • cells are classified into cells that perform TB based SPS PDSCH transmission and cells that perform CBG based SPS PDSCH transmission.
  • HARQ-ACK for SPS PDSCH there is first a field corresponding to a cell that performs only TB based SPS PDSCH transmission, and then a field corresponding to a cell that performs only CBG based SPS PDSCH transmission. exists.
  • a field corresponding to a cell that performs only TB based SPS PDSCH transmission may include only the HARQ-ACK bit for the TB based SPS PDSCH received from a cell that performs only TB based SPS PDSCH transmission.
  • the field corresponding to a cell that only performs CBG based SPS PDSCH transmission may include only the HARQ-ACK bit for CBG based SPS PDSCH received from a cell that only performs CBG based SPS PDSCH transmission. handle.
  • a cell that only performs TB based SPS PDSCH transmission may correspond to a cell that performs TB based SPS PDSCH transmission but does not perform CBG based SPS PDSCH transmission.
  • a cell that only performs CBG based SPS PDSCH transmission may correspond to a cell that performs CBG based SPS PDSCH transmission but does not perform TB based SPS PDSCH transmission.
  • the number of cells that perform only TB-based SPS PDSCH transmission may be one or multiple. Furthermore, if there are multiple cells that perform only TB based SPS PDSCH transmission, a set of multiple cells may be configured. There is no particular limitation on the order of cells that perform only TB based SPS PDSCH transmission.
  • the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4 may be reused.
  • the order of multiple cells that only perform TB based SPS PDSCH transmission is first based on the order of cell index of the serving cell, then based on the order of index of SPS configuration, and then based on order of index of DL slot. good.
  • the order of multiple cells that perform only TB based SPS PDSCH transmission is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then the order of the DL slots. May be based on ascending index order.
  • FIG. 6 is a diagram showing an example of HARQ-ACK CB of Option 2 of Proposal 2.
  • option 2 as shown in FIG. 6, in “HARQ-ACK for SPS PDSCH", "Cell with only TB based SPS” exists first, and then "Cell with only CBG based SPS” exists.
  • Cell with only TB based SPS corresponds to a field that only includes HARQ-ACK for TB based SPS PDSCH
  • “Cell with only CBG based SPS” includes only HARQ-ACK for CBG based SPS PDSCH May correspond to the field.
  • Cell with only TB based SPS and “Cell with only CBG based SPS” each show an example, but “Cell with only TB based SPS” and “Cell with only CBG” based SPS” may be two or more.
  • the order of the fields included in "Cell with only TB based SPS” is first based on the order of the cell index of the serving cell, "Cell index #i_1" and “Cell index #i_2". There is. The order of the fields included in "Cell index #i_1” is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1” and “SPS configuration index #j_2.” Next, the order of the cells included in "SPS configuration index #j_1" is based on the order of the DL slot index, as shown by "DL slot index #n_1" and "DL slot index #n_2".
  • the order of the cells included in "Cell index #i_2" may be based on the order of the index of the SPS configuration. Further, the order of cells included in "SPS configuration index #j_2" may be based on the order of DL slot indexes.
  • a cell that performs only CBG-based SPS PDSCH transmission may be configured as a set of multiple cells.
  • the order of the cells is not particularly limited. For example, any of the following options 2-1 and 2-2 may be adopted.
  • the order of multiple fields included in a cell that only performs CBG based SPS PDSCH transmission reuses the existing ordering principle.
  • the existing ordering principle may be the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4.
  • the order of fields included in a cell that only performs CBG based SPS PDSCH transmission is first based on the order of the cell index of the serving cell, then based on the order of the index of the SPS configuration, and then the order of the index of the DL slot.
  • the order of multiple fields included in a cell that only performs CBG based SPS PDSCH transmission is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then , may be based on ascending order of DL slot index.
  • FIG. 7 is a diagram showing an example of HARQ-ACK CB of option 2-1 of proposal 2.
  • option 2-1 in “HARQ-ACK for SPS PDSCH”, “Cell with only TB based SPS” exists first, and then “Cell with only CBG based SPS” exists, as in the example in Figure 6. exist.
  • Cell with only TB based SPS corresponds to a field that only includes HARQ-ACK for TB based SPS PDSCH
  • “Cell with only CBG based SPS” includes only HARQ-ACK for CBG based SPS PDSCH May correspond to the field.
  • Cell with only TB based SPS and “Cell with only CBG based SPS” each show an example, but “Cell with only TB based SPS” and “Cell with only CBG based SPS” may be two or more.
  • the order of the fields included in "Cell with only CBG based SPS” is first based on the order of the cell index of the serving cell, "Cell index #i_1" and “Cell index #i_2". There is. The order of the fields included in “Cell index #i_1” is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1” and “SPS configuration index #j_2.” Next, the order of the fields included in "SPS configuration index #j_1” is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2.”
  • the order of the fields included in “Cell index #i_2” may be based on the order of the SPS configuration index. Further, the order of the fields included in “SPS configuration index #j_2” may be based on the order of the DL slot index.
  • the order of fields included in a cell performing CBG based SPS PDSCH transmission may be initially based on the order of the cell index of the serving cell.
  • the order of multiple fields included in a cell that performs CBG based SPS PDSCH transmission is that fields corresponding to the SPS configuration of TB based transmission are arranged first, and then fields corresponding to the SPS configuration of CBG based transmission are arranged. The fields are lined up. In this case, among the fields corresponding to the cell index of a certain serving cell, the SPS configuration field for TB based transmission is arranged first, and then the SPS configuration field for CBG based transmission is arranged next.
  • the existing ordering principle may be the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4.
  • the order of fields among the fields corresponding to an index of a certain SPS configuration of a TB based transmission may be based first on the order of the index of the SPS configuration and then on the order of the index of the DL slot.
  • the order of the fields within the fields corresponding to the index of a certain SPS configuration of a TB based transmission is first based on the ascending index of the SPS configuration, and then based on the ascending index of the DL slot. It's fine.
  • FIG. 8 is a diagram showing an example of HARQ-ACK CB of option 2-2 of proposal 2.
  • option 2-2 as shown in Figure 8, in "HARQ-ACK for SPS PDSCH", "Cell with only TB based SPS” exists first, and then "Cell with CBG based SPS” exists. .
  • “Cell with only CBG based SPS” in FIG. 7 is replaced with "Cell with CBG based SPS” in FIG. 8.
  • “Cell with only TB based SPS” corresponds to the field that contains only HARQ-ACK for TB based SPS PDSCH
  • Cell with CBG based SPS corresponds to the field that contains HARQ-ACK for CBG based SPS PDSCH. You can handle it.
  • Cell with only TB based SPS and “Cell with CBG based SPS” each show an example, but “Cell with only TB based SPS” and “Cell with CBG based SPS” ” may be two or more.
  • the order of the fields included in "Cell with CBG based SPS” is first based on the order of the cell index of the serving cell, "Cell index #i_1" and then "Cell index #i_2". .
  • “TB based SPS configuration” is listed first, followed by "CBG based SPS configuration”.
  • “TB based SPS configuration” corresponds to SPS configuration of TB based transmission
  • “CBG based SPS configuration” corresponds to SPS configuration of CBG based transmission.
  • the order of the fields included in "TB based SPS configuration” is based on the order of the index of SPS configuration, as shown in "SPS configuration index #j_1" and “SPS configuration index #j_2".
  • the order of the cells included in "SPS configuration index #j_1” is based on the order of the DL slot index, as shown by "DL slot index #m_1" and "DL slot index #m_2".
  • Cell index #i_2 “TB based SPS configuration” may be listed in the same way as in “Cell index #i_1”, followed by “CBG based SPS configuration”. . Further, the order of the fields included in “SPS configuration index #j_2” may be based on the order of the DL slot index.
  • CBG based SPS configuration which is omitted in FIG. 8
  • any order of option 2-2A and option 2-2B below may be adopted.
  • the order of the fields included in "CBG based SPS configuration" may be based first on the index order of the SPS configuration and then on the order of the DL slot index.
  • the order of the SPS configuration indexes may be in ascending order or in descending order.
  • the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
  • FIG. 9 is a diagram showing an example of option 2-2A of proposal 2.
  • "TB based SPS configuration” is listed, followed by "CBG based SPS configuration”.
  • "TB based SPS configuration” and "CBG based SPS configuration” shown in FIG. 9 are fields corresponding to the cell index of a certain serving cell (for example, corresponding to "Cell index #i_1") field).
  • the order of the fields included in "CBG based SPS configuration” is based on the order of the SPS configuration index, as shown in “SPS configuration index #k_1", “SPS configuration index #k_2”, and so on. There is.
  • the order of the fields included in "SPS configuration index #k_1” is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2.”
  • the order of the fields included in "SPS configuration index #j_2" may be based on the order of the DL slot index.
  • the order of the SPS configuration index may be ascending index order or descending index order.
  • the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
  • the order of the fields included in "CBG based SPS configuration" is first based on the specific number order for the HARQ-ACK CB, then based on the index order of the SPS configuration, and then based on the order of the index of the DL May be based on slot index order.
  • the order of the specific numbers regarding HARQ-ACK may be in ascending order or in descending order of the specific numbers regarding HARQ-ACK.
  • the order of the indexes of the SPS configuration may be in ascending order of the index or may be in descending order.
  • the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
  • the specific number regarding HARQ-ACK CB may be, for example, the number of CBGs, the number of CBGs per TB, or the number of HARQ-ACK bits.
  • the number of CBGs is the number of CBGs per PDSCH for the SPS configuration.
  • the number of CBGs per TB is the number of CBGs per TB per PDSCH for the SPS configuration.
  • the number of CBGs may be replaced by the maximum number of CBGs.
  • the number of HARQ-ACK bits is the number of HARQ-ACK bits per PDSCH for the SPS configuration.
  • FIG. 10 is a diagram showing an example of option 2-2B of proposal 2.
  • "TB based SPS configuration” is lined up, followed by "CBG based SPS configuration”.
  • "TB based SPS configuration” and "CBG based SPS configuration” shown in FIG. 10 are fields corresponding to the cell index of a certain serving cell (for example, corresponding to "Cell index #i_1") field).
  • SPS configuration with (maximum) N_1 CBGs corresponds to the field where the maximum number of CBGs for the SPS configuration is N_1
  • SPS configuration with (maximum) N_2 CBGs corresponds to the field where the maximum number of CBGs for the SPS configuration is N_1 corresponds to the field where is N_2.
  • N_2 may be larger than N_1.
  • the order of the fields in "SPS configuration with (maximum) N_1 CBGs" is then based on the order of the SPS configuration index, as shown in "SPS configuration index #k_1", “SPS configuration index #k_2”, and so on. There is. Next, the order of the cells included in "SPS configuration index #k_1” is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2.”
  • the order is first based on the cell index of the serving cell, but the field corresponding to TB based SPS configuration exists before the field corresponding to CBG based SPS configuration in the ordering within the same cell. .
  • the TB based SPS configuration they are ordered in the order of the index of the SPS configuration, and then in the order of the index of the DL slot.
  • the order is placed in the order of the index of the SPS configuration, and then in the order of the index of the DL slot.
  • FIG. 11 is a diagram showing an example of option 3 of proposal 2.
  • the order of the fields in "HARQ-ACK for SPS PDSCH" in FIG. 11 is first based on the order of the cell index of the serving cell.
  • Cell index #i_1 "TB based SPS configuration” exists before "CBG based SPS configuration”.
  • “TB based SPS configuration” and “CBG based SPS configuration” are included in the field whose cell index is #i_1.
  • the order of the fields included in "TB based SPS configuration” is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1" and "SPS configuration index #j_2".
  • the order of the fields included in "SPS configuration index #j_1” is based on the order of the DL slot index, as indicated by "DL slot index #m_1" and "DL slot index #m_2.”
  • the order of fields included in “CBG based SPS configuration” may be the same as the order of fields included in "TB based SPS configuration".
  • the order of the fields included in “CBG based SPS configuration” may be based first on the order of the index of the SPS configuration and then on the order of the index of the DL slot.
  • option 3 corresponds to a cell that performs only TB based SPS PDSCH transmission
  • cell with only TB based SPS corresponds to a cell that performs only CBG based SPS PDSCH transmission.
  • Differences in cell behavior are first taken into account and classified, and then ordered according to the index of each cell, as shown in “only CBG based SPS”.
  • option 3 does not take cell differences into account when ordering based on the order of cell indexes.
  • the codebook for SPS PDSCH includes one or both of HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH. Included examples are shown.
  • a sub-codebook for TB based SPS PDSCH and a sub-codebook for CBG based SPS PDSCH are distinguished.
  • the sub-codebook for TB based SPS PDSCH includes HARQ-ACK for TB based SPS PDSCH.
  • the sub-codebook for CBG based SPS PDSCH includes HARQ-ACK for CBG based SPS PDSCH.
  • the sub-codebook for TB based SPS PDSCH may be written as TB based SPS sub-codebook, or may be written in other notations.
  • the sub-codebook for CBG based SPS PDSCH may be written as CBG based SPS sub-codebook, or may be written using other notations.
  • the positional relationship (for example, order) of the sub-codebook for TB based SPS PDSCH, the sub-codebook for CBG based SPS PDSCH, the sub-codebook for TB based DG PDSCH, and the sub-codebook for CBG based DG PDSCH is particularly , but not limited to.
  • option 4-1 or option 4-2 below may be adopted.
  • the sub-codebook for TB based SPS PDSCH and the sub-codebook for CBG based SPS PDSCH are added after the codebook for DG PDSCH.
  • the codebook for DG PDSCH corresponds to both the codebook for TB based DG PDSCH and the codebook for CBG based DG PDSCH.
  • the codebook for DG PDSCH includes HARQ-ACK for DG PDSCH.
  • the sub-codebook for TB based SPS PDSCH and the sub-codebook for CBG based SPS PDSCH are added after the HARQ-ACK for DG PDSCH (which may be referred to as DG HARQ-ACK).
  • a configuration may be adopted in which a sub-codebook for SPS PDSCH is added after the codebook for DG PDSCH.
  • the codebook for TB based DG PDSCH is arranged first, followed by the codebook for CBG based DG PDSCH, the sub-codebook for TB based SPS PDSCH, and the sub-codebook for CBG based SPS PDSCH. codebooks are arranged in order.
  • the sub-codebook for TB based SPS PDSCH is added after the codebook for TB based DG PDSCH, and the sub-codebook for CBG based SPS PDSCH is added after the codebook for CBG based DG PDSCH.
  • the sub-codebook for TB based SPS PDSCH may be added before the codebook for CBG based DG PDSCH.
  • Option 4-2 may adopt a configuration in which a sub-codebook for CBG based PDSCH is added after the sub-codebook for TB based PDSCH.
  • the codebook for TB based DG PDSCH is arranged first, followed by the sub-codebook for TB based SPS PDSCH, the codebook for CBG based DG PDSCH, and the sub-codebook for CBG based SPS PDSCH. codebooks are arranged in order.
  • FIG. 12 is a diagram showing an example of option 4 of proposal 2.
  • FIG. 12 shows an example of the order in the CB of each of the above-mentioned options 4-1 and 4-2.
  • the construction method of the TB based SPS sub-codebook and the CBG based SPS sub-codebook is not particularly limited.
  • any of the methods shown in options 2 and/or 3 may be utilized.
  • any of the methods shown in options 2 and/or 3 may be used.
  • the number of HARQ-ACK bits per SPS PDSCH is 1 for the TB based SPS configuration.
  • the number of HARQ-ACK bits per SPS PDSCH or the number of HARQ-ACK bits per TB is M for the CBG based SPS configuration.
  • M may be an integer greater than or equal to 0. Further, M may be defined by any of Alt.1 to Alt.3 below.
  • M may be the same for all CBG based SPS configurations of all serving cells.
  • M may be the maximum value in a particular set of values.
  • the specific set of values is the set of number of CBGs (or maximum number of CBGs) for SPS of all serving cells.
  • the specific set of values is a set of the number of CBGs (or the maximum number of CBGs) for the SPS of all serving cells and all CBG-based SPS configurations of each cell.
  • the set of specific values does not have to be limited to these. Further, the number of values included in the specific value set may be one or more.
  • M is not limited to the maximum value in a specific set of values.
  • M may be a value determined based on a specific set of values.
  • M may be one of the minimum value, average value, and median value in a particular set of values.
  • M may be defined by arithmetic processing based on the values included in a specific value set and/or the number of included values.
  • M may be the same value for CBG based SPS configurations of the same serving cell. In this case, M may be different or the same for CBG based SPS configurations of different serving cells.
  • M may be the maximum value among a certain set of values.
  • the particular set of values is a set of the number of CBGs (or maximum number of CBGs) for SPS configured for a certain cell. If option 1 of proposal 1 above is applied, even if the particular set of values is the set of number of CBGs (or maximum number of CBGs) for SPS configured for a certain cell. good.
  • the set of specific values in a certain cell is a set of the number of CBGs (or the maximum number of CBGs) for SPS of all CBG-based SPS configurations of the cell. If option 2 of proposal 1 above is applied, the set of specific values may be the set of the number of CBGs (or the maximum number of CBGs) for the SPS of all CBG-based SPS configurations of the cell. .
  • the set of specific values does not have to be limited to these. Further, the number of values included in the specific value set may be one or more.
  • M may be different from each other or the same for each CBG based SPS configuration of the same serving cell. Furthermore, M may be different or the same for each of the CBG based SPS configurations of different serving cells.
  • M For each CBG-based SPS configuration of each serving cell, M may be the number of CBGs (or the maximum number of CBGs) for the SPS configuration.
  • the HARQ-ACK CB including the HARQ-ACK for the CBG based SPS PDSCH can be constructed in an appropriate format, so the feedback of the HARQ-ACK can be efficiently performed.
  • HARQ-ACK for CBG based SPS PDSCH may be It is distinguished from ACK and included in HARQ-ACK CB.
  • a base station that receives such a HARQ-ACK CB can perform appropriate retransmission control, etc., thereby improving communication efficiency.
  • each option of proposal 2 described above may be replaced with descending order.
  • ascending order and descending order may be mixed.
  • the order of a plurality of cells may be based on the ascending order of the SPS configuration index and the descending order of the DL slots.
  • the HARQ-ACK CB is generated by the terminal, which construction procedure in Proposal 2 above is used to generate it may be determined by the terminal or may be instructed by the base station. However, it may be defined by the specifications.
  • Proposal 3 proposes dynamic/adaptive updating of the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • the terminal 20 may dynamically update the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH according to instructions from the base station 10, or update the application of CBG based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH according to instructions from the base station 10. It may be updated adaptively according to a semi-static pattern.
  • the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH to the terminal 20 by DCI. may be instructed. In this case, the following variations are possible.
  • a new DCI format is prepared, and the base station 10 uses this new DCI format to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. You can instruct updates.
  • the new DCI format may have a new RNTI (Radio Network Temporary Identifier), or may have an existing RNTI without a new RNTI.
  • the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using an existing DCI format with a new RNTI. You may give instructions.
  • the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using an existing DCI format with an existing RNTI. You may give instructions.
  • a new field may be provided, and information indicating update of application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission may be written in the new field. Further, there may be a plurality of new fields.
  • information indicating an update of the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission may be written in an unused field among the existing fields. Further, there may be a plurality of unused fields. In this case, the values of certain fields among the existing unused fields may be used to re-format the DCI format for the purpose of dynamically updating the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission. Used to indicate whether or not to interpret.
  • the terminal 20 can determine whether to update the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission by reinterpreting the DCI format.
  • a new MAC CE is prepared, and the base station 10 uses this new MAC CE to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. You can instruct updates.
  • the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using the existing MAC CE with new octets. You may give instructions.
  • the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using the existing MAC CE with existing octets. You may give instructions. In this case, the reserved bit is used to indicate whether the MAC CE is interpreted for the purpose of updating CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
  • the range in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is dynamically updated may be for each SPS/CG configuration by one DCI/MAC CE.
  • the base station 10 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission in the SPS/CG configuration to the terminal 20 using an index indicating the target SPS/CG configuration. You may also instruct the update of .
  • the index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
  • the index may be implicitly indicated to the terminal 20.
  • the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
  • a separate indication field/bit may be set for every SPS/CG configuration.
  • the range in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is dynamically updated may be for each group of SPS/CG configuration by one DCI/MAC CE.
  • a common indication field/bit for the group of SPS/CG configurations may be set.
  • the base station 10 informs the terminal 20 of the CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG transmission in the SPS/CG configuration, using an index indicating the group of the target SPS/CG configuration. Dynamic updating of the application of PUSCH transmission may be instructed.
  • the index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
  • the index may be implicitly indicated to the terminal 20.
  • the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
  • Alt 1 the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission based on the index value of SPS/CG occasion.
  • N is an integer greater than or equal to 1
  • X1 is an integer greater than or equal to 2
  • Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are integers greater than or equal to 1 and less than or equal to (X1-1), respectively. , are different numbers from each other.
  • X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
  • different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
  • Alt 2 the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission based on the index value of the slot of SPS/CG occasion.
  • M is an integer greater than or equal to 1
  • X1 is an integer greater than or equal to 2
  • Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are each an integer greater than or equal to 0 and less than or equal to (X1-1). and are different numbers from each other.
  • X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
  • different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
  • the terminal 20 may include one SPS configuration only in either the "TB based SPS configuration" part or the "CBG based SPS configuration” part.
  • the terminal 20 may determine which portion includes the SPS configuration based on whether CBG based SPS PDSCH transmission is enabled in the SPS configuration.
  • the terminal 20 may include the SPS configuration in the "CBG based SPS configuration".
  • the terminal 20 may include the SPS configuration in the "TB based SPS configuration" in other cases.
  • the terminal 20 determines the part to include the SPS configuration of HARQ-ACK reported in the HARQ-ACK CB, based on the presence or absence of CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission for SPS PDSCH. It's okay.
  • the terminal 20 transmits the SPS PDSCH of the SPS configuration with the HARQ-ACK included in the same HARQ-ACK PUCCH to the TB based SPS PDSCH transmission or the SPS with the HARQ-ACK that should be reported to the same HARQ-ACK CB. Report in the "CBG/TB based SPS configuration" block, regardless of whether there is a configuration.
  • the terminal 20 may include the SPS configuration in the "TB/CBG based SPS configuration" in other cases. That is, if there is a HARQ-ACK for CBG based SPS PDSCH transmission, the SPS PDSCH of the SPS configuration is reported in the CBG based SPS configuration block, and if there is no HARQ-ACK, the SPS PDSCH of the SPS configuration is reported. Report within a TB based SPS configuration block.
  • the SPS PDSCH of the SPS configuration is reported in the TB based SPS configuration block, and if there is no HARQ-ACK, the SPS PDSCH of the SPS configuration is reported. in a CBG based SPS configuration block.
  • Alt 2 In Alt 2, if there is a TB based SPS PDSCH and a CBG based SPS PDSCH of an SPS configuration that has HARQ-ACK to be reported in the HARQ-ACK CB, the terminal 20 converts the SPS configuration into the "TB based SPS configuration" part. and “CBG based SPS configuration” part.
  • HARQ-ACK of only SPS PDSCH with TB based SPS PDSCH transmission is included.
  • SPS configuration in the "TB based SPS configuration” part HARQ-ACK only for SPS PDSCH with CBG based SPS PDSCH transmission is included.
  • Alt 1 the terminal 20 includes HARQ-ACKs for SPS PDSCHs of the same SPS configuration reported on the same PUCCH in the same sub-codebook.
  • the terminal 20 includes SPS PDSCH HARQ-ACK in the TB based sub-codebook or in the CBG based sub-codebook based on whether CBG based SPS PDSCH/CG PUSCH transmission is enabled in the SPS configuration. set.
  • the terminal 20 includes HARQ-ACK of SPS PDSCH in the CBG based sub-codebook. Otherwise, the terminal 20 includes the HARQ-ACK of the SPS PDSCH in the TB based sub-codebook.
  • the terminal 20 determines the HARQ-ACK of the SPS PDSCH based on whether there is a CBG based SPS PDSCH transmission/TB based SPS PDSCH transmission for the SPS PDSCH in the SPS configuration that has the HARQ-ACK that should be reported in the HARQ-ACK CB. Set whether to include ACK in TB based sub-codebook or CBG based sub-codebook.
  • the terminal 20 includes the HARQ-ACK for the SPS PDSCH in the SPS configuration in the CBG based sub-codebook. Otherwise, the terminal 20 includes HARQ-ACK for SPS PDSCH in the TB based sub-codebook.
  • the terminal 20 includes the HARQ-ACK for the SPS PDSCH of the SPS configuration in the TB based sub-codebook. Otherwise, the terminal 20 includes HARQ-ACK for SPS PDSCH in the CBG based sub-codebook.
  • Alt 2 the terminal 20 includes HARQ-ACKs for SPS PDSCHs of the same SPS configuration reported on the same PUCCH in separate sub-codebooks.
  • the terminal 20 includes HARQ-ACK for SPS PDSCH of TB based SPS PDSCH transmission in the TB based sub-codebook, and includes HARQ-ACK for SPS PDSCH of CBG based SPS PDSCH transmission in the CBG based sub-codebook.
  • the terminal 20 takes into account the change in TB based SPS PDSCH transmission or CBG based SPS PDSCH transmission. Set the number of HARQ-ACK bits for each SPS PDSCH.
  • the number of HARQ-ACK bits in the CBG based SPS configuration described in Proposal 2 may be reused to set the number of HARQ-ACK bits (i.e., M bits).
  • set the number of HARQ-ACK bits in CBG based SPS configuration to 1 bit or M bits (i.e., the same as the number of HARQ-ACK bits in CBG based SPS DSCH in the same SPS configuration). May be set.
  • SPS config#1 is included in the CBG based SPS configuration part. Also, both SPS PDSCHs in the two slots are in the position of SPS config#1.
  • SPS config#1 is included in both the TB based SPS configuration part and the CBG based SPS configuration part in FIG. 13.
  • the TB based SPS configuration part only the first PDSCH slot exists in the SPS config#1 position.
  • the CBG based SPS configuration part only the second PDSCH slot exists at the position of SPS config#1.
  • Proposal 4 when supporting up to two codewords per 1 TB in SPS PDSCH or CG PUSCH, whether the terminal 20 applies single-codeword or two-codeword to SPS PDSCH/CG PUSCH. We propose the criteria for setting the criteria.
  • Alt 1 the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations.
  • RRC parameters that are information, for example, maxNrofCodeWordsSpsPdsch/maxNrofCodeWordsCgPusch, it is set whether to apply single-codeword or two-codeword to the SPS/CG configuration.
  • the terminal 20 may receive two-codeword for the SPS configuration, and otherwise may receive single-codeword. Similarly, the terminal 20 may transmit two-codewords for the CG configuration if maxNrofCodeWordsCgPusch indicates two-codewords, and otherwise transmit single-codewords.
  • the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations. Based on the combination of upper layer parameters (RRC parameters) and activation DCI format, it is set whether to apply single-codeword or two-codeword to the SPS/CG configuration.
  • RRC parameters upper layer parameters
  • activation DCI format it is set whether to apply single-codeword or two-codeword to the SPS/CG configuration.
  • the terminal 20 receives a two-codeword for the SPS configuration if maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field of the activation DCI format indicates a specific DCI format (e.g., DCI 1_1); In other cases, a single-codeword may be received.
  • the terminal 20 sends two-codeword for CG configuration if maxNrofCodeWordsCgPusch indicates two-codeword and a specific field of activation DCI format indicates a specific DCI format (e.g., DCI 1_1). , otherwise a single-codeword may be sent.
  • the terminal 20 configures the SPS configuration A two-codeword may be received for each case, and a single-codeword may be received for all other cases.
  • the terminal 20 uses the CG Two-codewords may be sent for configuration, and single-codewords may be sent in other cases.
  • the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations.
  • RRC parameters upper layer parameters
  • the terminal 20 will receive two-codeword for the SPS configuration if maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword, otherwise may receive a single-codeword.
  • maxNrofCodeWordsCgPusch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword
  • the terminal 20 sends two-codeword for the CG configuration; In some cases, a single-codeword may be sent.
  • the terminal 20 configures two-codeword for the SPS configuration. otherwise, a single-codeword may be received.
  • maxNrofCodeWordsCgPusch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword is satisfied
  • the terminal 20 determines that the CG configuration is two-codeword. codeword, otherwise a single-codeword may be sent.
  • the specific field within the activation DCI may be a new DCI field, an existing DCI field, or a combination of fields indicating predefined values (for example, the MCS field and the RV field).
  • the MCS/NDI/RV fields of the 1st TB and 2nd TB in the activation DCI are set for each codeword of SPS PDSCH/CG PUSCH. Each applies.
  • Proposal 5 describes HARQ-ACK CB in SPS PDSCH to which two transport blocks (2-TB) are applied, for example, HARQ-ACK CB for 2-TB based SPS PDSCH. Note that 2-TB may be replaced with 2-codeword (CW).
  • the SPS HARQ-ACK CB construction procedure described using FIG. 4 is reused as the HARQ-ACK CB construction procedure for 2-TB based SPS PDSCH.
  • the number of HARQ-ACK bits may differ between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH.
  • the number of HARQ-ACK bits differs between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH
  • factors other than the number of HARQ-ACK bits may be common between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH.
  • Elements other than the number of HARQ-ACK bits include, for example, a convention regarding the order of fields (or HARQ-ACKs included in the fields) constituting the CB.
  • the SPS HARQ-ACK bit order (field order) in the 2-TB SPS HARQ-ACK CB is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then: May be based on ascending order of DL slot index.
  • the order of the SPS HARQ-ACK bits may be the same between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH.
  • Option 2 of proposal 5 may adopt a similar order as option 2 of proposal 2.
  • option 2 of proposal 5 in option 2 of proposal 5, in option 2 of proposal 2, "TB based SPS configuration" is replaced with “single-codeword based SPS configuration” and "CBG based SPS configuration” is replaced with "two-codeword based SPS configuration”.
  • a replaced configuration may be adopted.
  • Option 3 of proposal 5 may adopt a similar order as option 3 of proposal 2.
  • option 3 of proposal 5 in option 3 of proposal 2, "TB based SPS configuration” is replaced with “single-codeword based SPS configuration”, and "CBG based SPS configuration” is replaced with "two-codeword based SPS configuration”.
  • a replaced configuration may be adopted.
  • the number of HARQ-ACK bits for each SPS PDSCH in each option of Proposal 5 described above will be explained.
  • the number of HARQ-ACK bits for each SPS PDSCH may be defined by any of Alt.1 to Alt.3 below.
  • the number of HARQ-ACK bits per SPS PDSCH may be the same value for all SPS PDSCHs in all cells.
  • the number of HARQ-ACK bits for any SPS PDSCH in any cell may be 2 if there is at least one SPS PDSCH configured to transmit at most 2 codewords across all cells. Otherwise, the number of HARQ-ACK bits for any SPS PDSCH in any cell may be 1. This may not be the case, for example, if there is no SPS PDSCH configured to transmit a maximum of 2 codewords across all cells.
  • the number of HARQ-ACK bits for each SPS PDSCH may have the same value for SPS configurations of the same serving cell. In this case, M may be different or the same for SPS configurations of different serving cells. If there is at least one SPS PDSCH configured to transmit a maximum of two codewords in a certain cell, the number of HARQ-ACK bits for any SPS PDSCH in the cell may be two. Otherwise, the number of HARQ-ACK bits for any SPS PDSCH of the cell may be 1. A case where this is not the case may be, for example, a case where there is no SPS PDSCH configured to transmit a maximum of two codewords in the cell.
  • the number of HARQ-ACK bits for each SPS PDSCH may be different or the same for different SPS configurations. For example, if an SPS configuration is configured to transmit a maximum of 2 codewords, the number of HARQ-ACK bits for the SPS PDSCH of the SPS configuration may be 2. Otherwise, the number of HARQ-ACK bits for the SPS PDSCH of the SPS configuration may be 1. Otherwise, for example, the SPS configuration may not be configured to transmit a maximum of 2 codewords.
  • a HARQ-ACK CB including HARQ-ACK in a 2-TB SPS PDSCH can be constructed in an appropriate format, so that feedback of HARQ-ACK can be performed efficiently. For example, if different TB numbers of SPS PDSCH transmissions are performed in a cell, HARQ-ACK for 2 TB SPS PDSCH transmission may ) and is included in the HARQ-ACK CB. A base station that receives such a HARQ-ACK CB can perform appropriate retransmission control, etc., thereby improving communication efficiency.
  • the HARQ-ACK CB is generated by the terminal, which construction procedure in Proposal 5 above is used to generate it may be determined by the terminal or may be instructed by the base station. However, it may be defined by the specifications.
  • Proposal 6 proposes dynamic/adaptive updating of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
  • the terminal 20 may dynamically update the application of a single-codeword or two-codeword to the SPS PDSCH/CG PUSCH according to instructions from the base station 10, or may update the application of a single-codeword or two-codeword to the SPS PDSCH/CG PUSCH adaptively according to a preset semi-static pattern. May be updated.
  • the base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword to SPS PDSCH/CG PUSCH by using DCI.
  • the following variations are possible.
  • a new DCI format is prepared, and the base station 10 may use this new DCI format to instruct the update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
  • the new DCI format may have a new RNTI (Radio Network Temporary Identifier), or may have an existing RNTI without a new RNTI.
  • RNTI Radio Network Temporary Identifier
  • the base station 10 may use the existing DCI format with a new RNTI to indicate the update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
  • the base station 10 may use the existing DCI format with the existing RNTI to indicate the update of single-codeword or two-codeword application for the SPS PDSCH/CG PUSCH.
  • a new field may be provided, and information indicating update of application of single-codeword or two-codeword may be written in the new field. Further, there may be a plurality of new fields.
  • information indicating the update of the application of a single-codeword or two-codeword may be written into an unused field among the existing fields. Further, there may be a plurality of unused fields. In this case, the value of a particular field among the existing unused fields is used to indicate whether to reinterpret the DCI format for the purpose of dynamically updating single-codeword or two-codeword applications. Ru.
  • the terminal 20 can determine whether to update the application of a single-codeword or two-codeword by reinterpreting the DCI format.
  • the base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword to SPS PDSCH/CG PUSCH by using MAC CE.
  • the following variations are possible.
  • a new MAC CE is prepared, and the base station 10 may use this new MAC CE to instruct update of single-codeword or two-codeword application to SPS PDSCH/CG PUSCH.
  • the base station 10 may use the existing MAC CE with new octets to indicate update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
  • the base station 10 may use the existing MAC CE with existing octets to indicate the update of single-codeword or two-codeword application for the SPS PDSCH/CG PUSCH.
  • reserved bits are used to indicate whether the MAC CE is interpreted for single-codeword or two-codeword update purposes.
  • the range in which the application of single-codeword or two-codeword is dynamically updated may be for each SPS/CG configuration by one DCI/MAC CE.
  • the base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword in the target SPS/CG configuration using an index indicating the target SPS/CG configuration.
  • the index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
  • the index may be implicitly indicated to the terminal 20.
  • the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
  • the range in which the application of single-codeword or two-codeword is dynamically updated may be all (activated) SPS/CG configurations by one DCI/MAC CE.
  • a separate indication field/bit may be set for every SPS/CG configuration.
  • the range in which the application of single-codeword or two-codeword is dynamically updated may be for each group of SPS/CG configuration by one DCI/MAC CE.
  • a common indication field/bit for the group of SPS/CG configurations may be set.
  • the base station 10 dynamically updates the application of single-codeword or two-codeword in the SPS/CG configuration to the terminal 20 using the index indicating the group of the target SPS/CG configuration. You may give instructions.
  • the index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
  • the index may be implicitly indicated to the terminal 20.
  • the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
  • Alt 1 the terminal 20 applies a single-codeword or two-codeword based on the index value of SPS/CG occasion.
  • N is an integer greater than or equal to 1
  • X1 is an integer greater than or equal to 2
  • Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are integers greater than or equal to 1 and less than or equal to (X1-1), respectively. , are different numbers from each other.
  • X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
  • different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
  • Alt 2 the terminal 20 applies a single-codeword or two-codeword based on the index value of the SPS/CG occasion slot.
  • M is an integer greater than or equal to 1
  • X1 is an integer greater than or equal to 2
  • Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are each an integer greater than or equal to 0 and less than or equal to (X1-1). and are different numbers from each other.
  • X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
  • different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
  • one of a plurality of options is applied to one setting.
  • which of a plurality of options and/or which of a plurality of choices is applied may be determined in the following manner.
  • the upper layer parameters may be RRC parameters, MAC CE (Media Access Control Control Element), or a combination thereof.
  • the terminal may assume that CBG based SPS transmission and two-codeword SPS transmission are enabled at the same time. In other words, if one of CBG based SPS transmission and two-codeword SPS transmission is enabled, the terminal does not have to assume that the other will be enabled. Additionally, the terminal may assume that CBG based SPS transmission and two-codeword SPS transmission are enabled at the same time.
  • the terminal may not assume that CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission are enabled at the same time. In other words, if one of CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission is enabled, the terminal does not need to assume that the other will be enabled. Furthermore, the terminal may assume that CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission are enabled at the same time.
  • CBG based SPS transmission and two-codeword SPS transmission may be supported simultaneously.
  • the number of HARQ-ACK bits for SPS PDSCH when two codewords SPS transmission and CBG based transmission are enabled at the same time may be 2 ⁇ M.
  • M may be determined in the same manner as the number M of HARQ-ACK bits shown in Proposal 2 above, for example.
  • the number of HARQ-ACK bits for SPS PDSCH when two codeword SPS transmission and CBG-based transmission are enabled at the same time is the number of HARQ-ACK bits for CBG-based transmission shown in Proposal 2 and the number of HARQ-ACK bits for CBG-based transmission shown in Proposal 5. It may be determined based on two codewords and the number of HARQ-ACK bits for SPS transmission.
  • CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission may be supported simultaneously.
  • the UE capability indicating the capability of the UE may include the following information indicating the capability of the UE.
  • the information indicating the capability of the UE may correspond to information defining the capability of the UE.
  • one UE capability indicating one of the following items may be notified, or one UE capability indicating multiple items may be notified.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure.
  • the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control units 103, 203, etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof.
  • Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G fourth generation mobile communication system
  • 5G 5th generation mobile communication system
  • the present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • ⁇ Base station operation> The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • ⁇ Input/output direction> Information etc. can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed.
  • radio resources may be indicated by an index.
  • Base Station In this disclosure, "Base Station (BS),""wireless base station,””fixedstation,” "NodeB,””eNodeB(eNB),”"gNodeB(gNB),”""""accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
  • carrier “component carrier”, etc. may be used interchangeably.
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
  • RRHs small indoor base stations
  • Communication services may also be provided by a remote radio head).
  • the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the terminal 200 may have the functions that the base station 100 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 100 may have the functions that the terminal 200 described above has.
  • FIG. 15 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • transmission of CG PUSCH Configured Grant Physical Uplink Schered Channel
  • SPS PDSCH Semi-Persistent Scheduling Downlink Shared Channel
  • a terminal includes the following.
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • control unit may control the setting of whether to transmit the CG PUSCH and/or receive the SPS PDSCH based on the TB standard or the CBG standard based on upper layer parameters. good. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use the TB standard or the CBG standard.
  • control unit controls the transmission of the CG PUSCH and/or the reception of the SPS PDSCH based on the TB standard based on upper layer parameters and/or the format or DCI field of activation DCI (Downlink Control Information). You may control the settings as to whether this is done or based on the CBG standard. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use the TB standard or the CBG standard.
  • control unit may dynamically/adaptively update the set TB standard or the CBG standard.
  • control unit may dynamically/adaptively update the set TB standard or the CBG standard.
  • these can be dynamically/adaptive updated.
  • a base station includes a control unit that configures whether the data is to be transmitted or based on a CBG (Code Block Group) standard, and a transmitter that notifies information indicating the setting.
  • CBG Code Block Group
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel). ) on the basis of TB (Transport Block) or CBG (Code Block Group), and transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings.
  • XR Extended Reality
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • transmission of CG PUSCH Configured Grant Physical Uplink Schered Channel
  • SPS PDSCH Semi-Persistent Scheduling Downlink Shared Channel
  • a terminal includes a control unit that controls settings for codewords, and a transmitting and receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit.
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • control unit controls settings of whether to transmit the CG PUSCH and/or receive the SPS PDSCH using the single-codeword or the two-codeword based on upper layer parameters. It's okay. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use a single-codeword or based on the CBG standard.
  • control unit controls the transmission of the CG PUSCH and/or the reception of the SPS PDSCH based on the upper layer parameters and/or the format or DCI field of activation DCI (Downlink Control Information). You may control the setting of whether to perform this with or with the above-mentioned two-codeword. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use a single-codeword or based on the CBG standard.
  • control unit may dynamically/adaptively update the set single-codeword or two-codeword. According to this embodiment, when applying either a single-codeword or two-codeword in SPS PDSCH/CG PUSCH, these can be dynamically/adaptive updated.
  • transmission of CG PUSCH Configured Grant Physical Uplink Schered Channel
  • SPS PDSCH Semi-Persistent Scheduling Downlink Shared Channel
  • a base station includes a control unit that sets whether to perform the codeword, and a transmitter that notifies information indicating the setting.
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel). ) is set as whether to be received using a single-codeword or two-codeword, and based on the setting, the CG PUSCH is transmitted and/or the SPS PDSCH is received.
  • XR Extended Reality
  • CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
  • a control unit that generates an acknowledgment for a transmission signal transmitted based on quasi-static scheduling in a format according to a transmission method of the transmission signal;
  • a terminal including a transmitter that transmits data.
  • an acknowledgment response e.g. HARQ -ACK CB
  • examples of the transmission method of the transmission signal are a method of applying CBG and a method of applying TB, but the present disclosure is not limited to these.
  • the control unit may generate the acknowledgment in a differentiated format depending on the cell using the transmission method.
  • the serving cells are classified into cells that perform TB based SPS PDSCH transmission and cells that perform CBG based SPS PDSCH transmission, and then, in HARQ-ACK CB, the HARQ corresponding to each of the classified cells is -HARQ-ACK CB can be constructed in a format that differentiates ACK.
  • feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
  • the acknowledgment includes a first cell that uses a first transmission method and does not use a second transmission method among the transmission methods, and a first cell that does not use the first transmission method;
  • the second cell using the second transmission method may have a different format.
  • the serving cell is a cell that performs only TB based SPS PDSCH transmission (for example, a cell that performs TB based SPS PDSCH transmission and does not perform CBG based SPS PDSCH transmission), and a cell that performs only CBG based SPS PDSCH transmission.
  • HARQ-ACK CB distinguish HARQ-ACK corresponding to each classified cell.
  • the acknowledgment includes a third cell using a first transmission method and not using a second transmission method, and at least one of the first transmission method and the second transmission method. It may have a format differentiated into a fourth cell using .
  • the serving cell is divided into a cell that performs only TB based SPS PDSCH transmission (for example, a cell that performs TB based SPS PDSCH transmission but not CBG based SPS PDSCH transmission) and a cell that does not perform this (for example, a cell that performs TB based SPS PDSCH transmission).
  • HARQ -ACK CB can be constructed. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
  • the receiving unit receives an acknowledgment for a transmission signal transmitted based on quasi-static scheduling, the acknowledgment having a format according to a transmission method of the transmission signal. and a control unit that controls retransmission based on the acknowledgment.
  • the acknowledgment can be constructed in an appropriate format depending on whether the transmission method of the transmission signal transmitted based on quasi-static scheduling is applying CBG or applying TB. Since HARQ-ACK feedback and retransmission control based on HARQ-ACK can be appropriately performed, communication efficiency can be improved.
  • an acknowledgment for a transmission signal transmitted based on quasi-static scheduling is generated in a format according to a transmission method of the transmission signal, and the acknowledgment is transmitted.
  • a wireless communication method is provided.
  • the acknowledgment can be constructed in an appropriate format depending on whether the transmission method of the transmission signal transmitted based on quasi-static scheduling is applying CBG or applying TB. Since HARQ-ACK feedback and retransmission control based on HARQ-ACK can be appropriately performed, communication efficiency can be improved.
  • control unit generates an acknowledgment response to a transmission signal transmitted based on quasi-static scheduling in a format according to the number of transport blocks of the transmission signal;
  • a terminal is provided, including a transmitter that transmits an acknowledgment.
  • the above configuration allows acknowledgments (e.g. HARQ-ACK CB) to be sent in an appropriate format depending on the number of transport blocks (TB) of transmitted signals based on quasi-static scheduling (e.g. SPS).
  • HARQ-ACK CB acknowledgments
  • TB transport blocks
  • SPS quasi-static scheduling
  • the control unit may generate the acknowledgment having a differentiated format depending on a cell using the number of transport blocks.
  • the serving cells are classified according to the number of TBs used, and then the HARQ-ACK CB is transmitted in a format that distinguishes HARQ-ACKs corresponding to each of the classified cells. Can be built. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
  • the number of TBs was 1 or 2, but the present disclosure is not limited thereto. For example, the number of TBs may be 3 or more.
  • the acknowledgment includes a first cell using a first number of transport blocks and a second cell using a second number of transport blocks different from the first number of transport blocks. It may have a format differentiated into two cells.
  • the serving cell is divided into a cell that uses 1 TB (for example, a cell that performs 1 TB based SPS PDSCH transmission) and a cell that uses 2 TB (for example, a cell that performs 2 TB based SPS PDSCH transmission).
  • the HARQ-ACK CB can be constructed in a format that differentiates the HARQ-ACK corresponding to each of the classified cells. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
  • a size of an acknowledgment for the transmitted signal of a first number of transport blocks is less than or equal to a size of an acknowledgment for the transmitted signal of a second number of transport blocks. It's okay.
  • the serving cell is adjusted such that the size of the HARQ-ACK for a 1 TB based SPS PDSCH using 1 TB is smaller than the HARQ-ACK size for a 2 TB based SPS PDSCH using 2 TB. Therefore, HARQ-ACK CB can be constructed according to the size of the transmitted data. Thereby, it is possible to appropriately perform HARQ-ACK feedback according to the size of the transmitted data, thereby improving communication efficiency.
  • an acknowledgment for a transmission signal transmitted based on quasi-static scheduling the acknowledgment having a format according to the number of transport blocks of the transmission signal is received. and a control unit that controls retransmission based on the acknowledgment.
  • the acknowledgment can be constructed in an appropriate format according to the number of transport blocks of the transmitted signal transmitted based on quasi-static scheduling, so that feedback of HARQ-ACK and retransmission based on HARQ-ACK can be achieved. Since control can be performed appropriately, communication efficiency can be improved.
  • an acknowledgment for a transmission signal transmitted based on quasi-static scheduling is generated in a format according to the number of transport blocks of the transmission signal, and the acknowledgment is A wireless communication method is provided for transmitting.
  • the acknowledgment can be constructed in an appropriate format according to the number of transport blocks of the transmitted signal transmitted based on quasi-static scheduling, so that feedback of HARQ-ACK and retransmission based on HARQ-ACK can be achieved. Since control can be performed appropriately, communication efficiency can be improved.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
  • any reference to elements using the designations "first,””second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
  • the present disclosure is useful for wireless communication systems.
  • base station 20 terminal 101, 202 transmitter 102, 201 receiver 103, 203 controller 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal is equipped with: a control unit for controlling settings in a manner such that Configured Grant Physical Uplink Shared Channel (CG PUSCH) transmission and/or Semi-Persistent Scheduling Downlink Shared Channel (SPS PDSCH) receipt are performed via single-codeword execution or two-codeword execution; and a transmitting/receiving unit for executing the CG PUSCH transmission and/or SPS PDSCH receipt on the basis of the control unit settings.

Description

端末、基地局、および、無線通信方法Terminal, base station, and wireless communication method
 本開示は、端末、基地局、および、無線通信方法に関する。 The present disclosure relates to a terminal, a base station, and a wireless communication method.
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。 Long Term Evolution (LTE) has been specified in the Universal Mobile Telecommunication System (UMTS) network with the aim of achieving even higher data rates and lower latency. In addition, a successor system to LTE is also being considered with the aim of further increasing the bandwidth and speed of LTE. Successor systems to LTE include, for example, LTE-Advanced (LTE-A), Future Radio Access (FRA), 5th generation mobile communication system (5G), 5G plus (5G+), Radio Access Technology (New-RAT), New There is a system called Radio (NR).
 5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば、非特許文献1)。 In 5G, various wireless technologies and network architectures are being studied in order to meet the requirements of achieving a throughput of 10 Gbps or more and reducing the delay in the wireless section to 1 ms or less (for example, Non-Patent Document 1). .
 NRでは、様々な無線技術の一例として、動的にスケジューリングを行わない(dynamic grantにてスケジューリングされない)方法が検討されている。 In NR, as an example of various wireless technologies, a method that does not perform dynamic scheduling (no scheduling using dynamic grant) is being considered.
 動的にスケジューリングされない場合において、通信効率を向上させる方法については十分に検討されていない。 Methods for improving communication efficiency in cases where dynamic scheduling is not performed have not been sufficiently studied.
 本開示の一態様は、通信効率を向上させることができる端末、基地局および無線通信方法を提供する。 One aspect of the present disclosure provides a terminal, a base station, and a wireless communication method that can improve communication efficiency.
 本開示の一態様に係る端末は、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかの設定を制御する制御部と、前記制御部の設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う送受信部と、を具備する。 A terminal according to an aspect of the present disclosure transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or receives an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) using a single-codeword or a two-codeword. and a transmitting/receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit.
 本開示の一態様に係る無線通信方法は、Extended Reality(XR)のデータを送受信する端末が、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかを設定し、前記設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う。 In a wireless communication method according to one aspect of the present disclosure, a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel). The CG PUSCH is transmitted and/or the SPS PDSCH is received based on the settings.
一実施の形態に係る無線通信システムを説明するための図である。FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment. 一実施の形態に係る基地局の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a base station according to an embodiment. 一実施の形態に係る端末の構成の一例を示すブロック図である。1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment. FIG. HARQ-ACK CBの一例を示す図である。FIG. 3 is a diagram showing an example of HARQ-ACK CB. 提案2のHARQ-ACK CBの一例を示す図である。FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of Proposal 2. 提案2のオプション2のHARQ-ACK CBの一例を示す図である。FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of Option 2 of Proposal 2. 提案2のオプション2-1のHARQ-ACK CBの一例を示す図である。FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of Option 2-1 of Proposal 2. 提案2のオプション2-2のHARQ-ACK CBの一例を示す図である。FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of option 2-2 of proposal 2. 提案2のオプション2-2AのHARQ-ACK CBの一例を示す図である。FIG. 7 is a diagram illustrating an example of HARQ-ACK CB of option 2-2A of proposal 2. 提案2のオプション2-2BのHARQ-ACK CBの一例を示す図である。FIG. 6 is a diagram showing an example of HARQ-ACK CB of Option 2-2B of Proposal 2. 提案2のオプション3のHARQ-ACK CBの一例を示す図である。FIG. 6 is a diagram illustrating an example of HARQ-ACK CB of option 3 of proposal 2. 提案2のオプション4のHARQ-ACK CBの一例を示す図である。FIG. 4 is a diagram illustrating an example of HARQ-ACK CB of Option 4 of Proposal 2. 提案4の一例を示す図である。FIG. 4 is a diagram showing an example of proposal 4. 一実施の形態に係る端末及び基地局のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the hardware configuration of a terminal and a base station according to an embodiment. 本発明の実施の形態における車両の構成の一例を示す図である。1 is a diagram showing an example of the configuration of a vehicle in an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。当該既存技術は、例えば既存のNRであるが、既存のNRに限られない。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. The existing technology is, for example, an existing NR, but is not limited to an existing NR.
 また、本明細書では、PUSCH、PDSCH、RRC(Radio Resource Control)、MAC(媒体アクセス制御)、DCI(Downlink Control Information)等の既存のNRあるいはLTEの仕様書で使用されている用語を用いているが、本明細書で使用するチャネル名、プロトコル名、信号名、機能名等で表わされるものが別の名前で呼ばれてもよい。 In addition, in this specification, terms used in existing NR or LTE specifications such as PUSCH, PDSCH, RRC (Radio Resource Control), MAC (Media Access Control), and DCI (Downlink Control Information) are used. However, the channel names, protocol names, signal names, function names, etc. used in this specification may be called by other names.
 <システム構成>
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
<System configuration>
FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. A wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
 無線通信システムは、New Radio(NR)に従った無線通信システムであってよい。また、無線通信システムは、5G、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。例示的に、無線通信システムは、URLLC及び/又はIIoTと呼ばれる方式に従った無線通信システムであってよい。 The wireless communication system may be a wireless communication system compliant with New Radio (NR). Further, the wireless communication system may be a wireless communication system according to a method called 5G, Beyond 5G, 5G Evolution, or 6G. Illustratively, the wireless communication system may be a wireless communication system that follows a system called URLLC and/or IIoT.
 また、無線通信システムは、Next Generation-Radio Access Network(以下、NG-RAN)を含んでもよい。NG-RANは、複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RANおよび5GCは、単に「ネットワーク」と表現されてもよい。 Additionally, the wireless communication system may include Next Generation-Radio Access Network (hereinafter referred to as NG-RAN). NG-RAN includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN and 5GC may also be simply expressed as "networks."
 無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。 The physical resources of a radio signal are defined in the time domain and the frequency domain, where the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Furthermore, a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
 基地局10及び端末20の少なくとも一方は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビーム(BM)を生成するMassive MIMO(Multiple-Input Multiple-Output)に対応してもよい。また、基地局10及び端末20の少なくとも一方は、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)に対応してもよい。また、基地局10及び端末20の少なくとも一方は、端末20と複数の基地局10それぞれとの間において通信を行うデュアルコネクティビティ(DC)などに対応してもよい。 At least one of the base station 10 and the terminal 20 supports Massive MIMO (Multiple-Input Multiple-Output), which generates a highly directional beam (BM) by controlling radio signals transmitted from multiple antenna elements. You may respond. Furthermore, at least one of the base station 10 and the terminal 20 may support carrier aggregation (CA) in which a plurality of component carriers (CCs) are bundled together. Further, at least one of the base station 10 and the terminal 20 may support dual connectivity (DC) or the like in which communication is performed between the terminal 20 and each of the plurality of base stations 10.
 無線通信システムは、複数の周波数帯に対応してよい。例えば、無線通信システムは、Frequency Range(FR)1及びFR2に対応する。各FRの周波数帯は、例えば、次のとおりである。
  ・FR1:410MHz~7.125GHz
  ・FR2:24.25GHz~52.6GHz
A wireless communication system may support multiple frequency bands. For example, the wireless communication system supports Frequency Range (FR) 1 and FR2. For example, the frequency bands of each FR are as follows.
・FR1: 410MHz to 7.125GHz
・FR2: 24.25GHz to 52.6GHz
 FR1では、15kHz、30kHzまたは60kHzのSub-Carrier Spacing(SCS)が用いられ、5MHz~100MHzの帯域幅(BW)が用いられてもよい。FR2は、例えば、FR1よりも高い周波数である。FR2では、60kHzまたは120kHzのSCSが用いられ、50MHz~400MHzの帯域幅(BW)が用いられてもよい。また、FR2では、240kHzのSCSが含まれてもよい。 In FR1, Sub-Carrier Spacing (SCS) of 15kHz, 30kHz or 60kHz is used, and a bandwidth (BW) of 5MHz to 100MHz may be used. FR2 is, for example, a higher frequency than FR1. In FR2, a 60kHz or 120kHz SCS may be used and a bandwidth (BW) of 50MHz to 400MHz. Furthermore, FR2 may include a 240kHz SCS.
 本実施の形態における無線通信システムは、FR2の周波数帯よりも高い周波数帯に対応してもよい。例えば、本実施の形態における無線通信システムは、52.6GHzを超え、114.25GHzまでの周波数帯に対応し得る。このような高周波数帯は、「FR2x」と呼ばれてもよい。 The wireless communication system in this embodiment may support a frequency band higher than the FR2 frequency band. For example, the wireless communication system in this embodiment can support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such high frequency bands may be referred to as "FR2x."
 また、上述した例よりも大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンクと下りリンクとの両方に適用されてもよいし、何れか一方に適用されてもよい。 In addition, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) than the above example is applied. It's okay. Further, DFT-S-OFDM may be applied to both the uplink and the downlink, or may be applied to either one.
 無線通信システムでは、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、スロット設定パターンにおいて、DL信号を送信するスロット、UL信号を送信するスロット、DL信号とUL信号とガードシンボルとが混在するスロット、及び、送信する信号がflexibleに変更されるスロットの中の2つ以上のスロットの順を示すパターンが、規定されてよい。 In a wireless communication system, a time division duplex (TDD) slot configuration pattern may be set. For example, in the slot setting pattern, there are slots for transmitting DL signals, slots for transmitting UL signals, slots in which DL signals, UL signals, and guard symbols are mixed, and slots in which the signal to be transmitted is changed to flexible. A pattern indicating the order of two or more slots may be defined.
 また、無線通信システムでは、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。この場合、端末20は、基地局10がDMRSを用いたJoint channel estimationを実行できるように、複数スロットにおいて、複数スロットのそれぞれに割り当てられたDMRSを送信してよい。 In addition, in wireless communication systems, channel estimation of PUSCH (or PUCCH (Physical Uplink Control Channel)) can be performed using demodulation reference signals (DMRS) for each slot, but in addition, DMRS assigned to each of multiple slots can be estimated. PUSCH (or PUCCH) channel estimation can be performed using Such channel estimation may be referred to as joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation. In this case, the terminal 20 may transmit DMRS assigned to each of the plurality of slots in a plurality of slots so that the base station 10 can perform joint channel estimation using DMRS.
 また、無線通信システムでは、基地局10に対する端末20からのフィードバック機能に強化された機能が追加されてよい。例えば、HARQ-ACK(Hybrid automatic repeat request Acknowledgement)に対する端末のフィードバックの強化された機能が追加されてよい。 Furthermore, in the wireless communication system, an enhanced function may be added to the feedback function from the terminal 20 to the base station 10. For example, enhanced functionality of terminal feedback for HARQ-ACK (Hybrid automatic repeat request acknowledgment) may be added.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。基地局10は、NG-RAN Node、ng-eNB、eNodeB(eNB)、又は、gNodeB(gNB)と呼ばれてもよい。また、基地局10は、端末20が接続するネットワークに含まれる装置と捉えてもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The base station 10 may be called an NG-RAN Node, ng-eNB, eNodeB (eNB), or gNodeB (gNB). Furthermore, the base station 10 may be considered as a device included in a network to which the terminal 20 connects.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセル(PCell, Primary Cell)と1以上のセカンダリセル(SCell, Secondary Cell)が使用される。 The base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20. In carrier aggregation, one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。また、同期信号がSSBであってもよい。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DLで制御信号又はデータを端末20に送信し、ULで制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, etc. to the terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. Further, the synchronization signal may be SSB. System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits control signals or data to the terminal 20 on the DL, and receives control signals or data from the terminal 20 on the UL. Note that here, what is transmitted on control channels such as PUCCH and PDCCH is called a control signal, and what is transmitted on shared channels such as PUSCH and PDSCH is called data. It is.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUser Equipment(UE)と呼んでもよい。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a M2M (Machine-to-Machine) communication module. As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may also be called user equipment (UE).
 なお、端末20は、端末の能力に関する情報を規定する端末能力情報(UE capability)を、基地局10へ通知してもよい。 Note that the terminal 20 may notify the base station 10 of terminal capability information (UE capability) that defines information regarding the capability of the terminal.
 次に、基地局10及び端末20の構成について説明する。なお、以下に説明する基地局10および端末20の構成は、本実施の形態に関連する機能の一例を示すものである。基地局10および端末20には、図示しない機能を有してもよい。また、本実施の形態に係る動作を実行する機能であれば、機能区分、及び/又は、機能部の名称は限定されない。 Next, the configurations of the base station 10 and the terminal 20 will be explained. Note that the configurations of base station 10 and terminal 20 described below are examples of functions related to this embodiment. The base station 10 and the terminal 20 may have functions not shown. Further, as long as the function executes the operation according to the present embodiment, the functional division and/or the name of the functional unit is not limited.
 <基地局の構成>
 図2は、本実施の形態に係る基地局10の構成の一例を示すブロック図である。基地局10は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局10は、端末20(図3参照)と無線によって通信する。
<Base station configuration>
FIG. 2 is a block diagram showing an example of the configuration of base station 10 according to this embodiment. Base station 10 includes, for example, a transmitter 101, a receiver 102, and a controller 103. The base station 10 communicates with the terminal 20 (see FIG. 3) wirelessly.
 送信部101は、DL信号を端末20へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。 The transmitter 101 transmits the DL signal to the terminal 20. For example, the transmitter 101 transmits a DL signal under the control of the controller 103.
 DL信号には、例えば、下りリンクのデータ信号、及び、制御情報(例えば、DCI)が含まれてよい。また、DL信号には、端末20の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)が含まれてよい。また、DL信号には、上位レイヤの制御情報(例えば、Radio Resource Control(RRC)の制御情報)が含まれてもよい。また、DL信号には、参照信号が含まれてもよい。 The DL signal may include, for example, a downlink data signal and control information (for example, DCI). Further, the DL signal may include information indicating scheduling regarding signal transmission of the terminal 20 (for example, UL grant). Further, the DL signal may include upper layer control information (for example, Radio Resource Control (RRC) control information). Further, the DL signal may include a reference signal.
 DL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PDSCH(Physical Downlink Shared Channel)が含まれ、制御チャネルには、PDCCH(Physical Downlink Control Channel)が含まれてよい。例えば、基地局10は、端末20に対して、PDCCHを用いて、制御情報を送信し、PDSCHを用いて、下りリンクのデータ信号を送信する。 Channels used for transmitting DL signals include, for example, data channels and control channels. For example, the data channel may include a PDSCH (Physical Downlink Shared Channel), and the control channel may include a PDCCH (Physical Downlink Control Channel). For example, the base station 10 transmits control information to the terminal 20 using the PDCCH, and transmits a downlink data signal using the PDSCH.
 DL信号に含まれる参照信号には、例えば、復調用参照信号(Demodulation Reference Signal(DMRS))、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)のいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、下りリンクのデータ信号の復調のために使用され、PDSCHを用いて送信される。 Examples of reference signals included in the DL signal include demodulation reference signal (DMRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), and Sounding Reference Signal (SRS). ), and a Positioning Reference Signal (PRS) for position information. For example, reference signals such as DMRS and PTRS are used for demodulating downlink data signals and are transmitted using PDSCH.
 受信部102は、端末20から送信されたUL信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。 The receiving unit 102 receives the UL signal transmitted from the terminal 20. For example, the receiving unit 102 receives a UL signal under the control of the control unit 103.
 制御部103は、送信部101の送信処理、及び、受信部102の受信処理を含む、基地局10の通信動作を制御する。 The control unit 103 controls the communication operation of the base station 10, including the transmission processing of the transmission unit 101 and the reception processing of the reception unit 102.
 例えば、制御部103は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータおよび制御情報等を上位レイヤへ出力する。 For example, the control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
 例えば、制御部103は、端末20から受信した信号(例えば、データおよび制御情報等)及び/又は上位レイヤから取得したデータおよび制御情報等に基づいて、DL信号の送受信に用いるリソース(又はチャネル)及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末20に送信する制御情報に含まれてよい。 For example, the control unit 103 determines the resources (or channels) used for transmitting and receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 20 and/or the data and control information obtained from the upper layer. and/or allocate resources used for transmitting and receiving UL signals. Information regarding the allocated resources may be included in the control information transmitted to the terminal 20.
 特に、制御部103は、PDSCHの送信方法、及び/又は、PUSCHの送信方法(基地局10における受信方法)を決定し、決定した送信方法に関する情報を生成し、送信部101から情報を送信する。また、制御部103は、決定したPDSCHの送信方法、及び/又は、PUSCHの送信方法に基づく送信制御及び/又は受信制御を行う。例えば、制御部103は、PDSCHの送信方法に基づいて生成されたフィードバック情報(例えば、HARQ-ACK)を、受信部102を介して受信し、フィードバック情報に基づいて、再送制御を行ってもよい。 In particular, the control unit 103 determines the PDSCH transmission method and/or the PUSCH transmission method (reception method at the base station 10), generates information regarding the determined transmission method, and transmits the information from the transmission unit 101. . Further, the control unit 103 performs transmission control and/or reception control based on the determined PDSCH transmission method and/or PUSCH transmission method. For example, the control unit 103 may receive feedback information (for example, HARQ-ACK) generated based on the PDSCH transmission method via the reception unit 102, and may perform retransmission control based on the feedback information. .
 <端末の構成>
 図3は、本実施の形態に係る端末20の構成の一例を示すブロック図である。端末20は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末20は、例えば、基地局10と無線によって通信する。
<Terminal configuration>
FIG. 3 is a block diagram showing an example of the configuration of terminal 20 according to this embodiment. The terminal 20 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203. The terminal 20 communicates with the base station 10 wirelessly, for example.
 受信部201は、基地局10から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。 The receiving unit 201 receives the DL signal transmitted from the base station 10. For example, the receiving unit 201 receives a DL signal under the control of the control unit 203.
 送信部202は、UL信号を基地局10へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。 The transmitter 202 transmits the UL signal to the base station 10. For example, the transmitter 202 transmits a UL signal under the control of the controller 203.
 UL信号には、例えば、上りリンクのデータ信号、及び、制御情報(例えば、UCI)が含まれてよい。例えば、端末20の処理能力に関する情報(例えば、UE capability)が含まれてよい。また、UL信号には、参照信号が含まれてもよい。 The UL signal may include, for example, an uplink data signal and control information (for example, UCI). For example, information regarding the processing capability of the terminal 20 (eg, UE capability) may be included. Further, the UL signal may include a reference signal.
 UL信号の送信に使用されるチャネルには、例えば、データチャネルと制御チャネルとが含まれる。例えば、データチャネルには、PUSCH(Physical Uplink Shared Channel)が含まれ、制御チャネルには、PUCCH(Physical Uplink Control Channel)が含まれる。例えば、端末20は、基地局10から、PUCCHを用いて、制御情報を受信し、PUSCHを用いて、上りリンクのデータ信号を送信する。 Channels used for transmitting UL signals include, for example, data channels and control channels. For example, the data channel includes PUSCH (Physical Uplink Shared Channel), and the control channel includes PUCCH (Physical Uplink Control Channel). For example, the terminal 20 receives control information from the base station 10 using the PUCCH, and transmits an uplink data signal using the PUSCH.
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRS、及び、PRSのいずれか少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、上りリンクのデータ信号の復調のために使用され、上りリンクチャネル(例えば、PUSCH)を用いて送信される。 The reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRS, and PRS. For example, reference signals such as DMRS and PTRS are used for demodulating uplink data signals and are transmitted using an uplink channel (for example, PUSCH).
 制御部203は、受信部201における受信処理、及び、送信部202における送信処理を含む、端末20の通信動作を制御する。 The control unit 203 controls communication operations of the terminal 20, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
 例えば、制御部203は、上位レイヤからデータおよび制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータおよび制御情報等を上位レイヤへ出力する。 For example, the control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
 例えば、制御部203は、基地局10へフィードバックする情報の送信を制御する。基地局10へフィードバックする情報は、例えば、HARQ-ACKを含んでもよいし、チャネル状態情(Channel. State Information(CSI))を含んでもよいし、スケジューリング要求(Scheduling Request(SR))を含んでもよい。基地局10へフィードバックする情報は、UCIに含まれてよい。UCIは、PUCCHのリソースにおいて送信される。 For example, the control unit 203 controls the transmission of information fed back to the base station 10. The information fed back to the base station 10 may include, for example, HARQ-ACK, channel state information (CSI), or scheduling request (SR). good. Information fed back to the base station 10 may be included in the UCI. The UCI is transmitted on PUCCH resources.
 特に、制御部203は、PDSCHの送信方法(端末20における受信方法)、及び/又は、PUSCHの送信方法に関する情報を取得し、取得した情報に基づいて送信制御及び/又は受信制御を行う。例えば、制御部203は、PDSCHの送信方法に基づいてフィードバック情報(例えば、HARQ-ACK)を生成し、生成したフィードバック情報を送信部202を介して送信する制御を行ってもよい。 In particular, the control unit 203 acquires information regarding the PDSCH transmission method (the reception method in the terminal 20) and/or the PUSCH transmission method, and performs transmission control and/or reception control based on the acquired information. For example, the control section 203 may generate feedback information (for example, HARQ-ACK) based on the PDSCH transmission method, and perform control to transmit the generated feedback information via the transmission section 202.
 なお、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、RACH(Random Access Channel)及びPBCH(Physical Broadcast Channel)が含まれてよい。RACHは、例えば、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDCIの送信に用いられてよい。 Note that the channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above. For example, channels used for transmitting DL signals and channels used for transmitting UL signals may include RACH (Random Access Channel) and PBCH (Physical Broadcast Channel). The RACH may be used, for example, to transmit DCI including a Random Access Radio Network Temporary Identifier (RA-RNTI).
 <CG PUSCH>
 次に、CG PUSCHについて説明する。CG PUSCHは、上位レイヤによって設定されたULグラント(例えば、設定グラント(Configured Grant)、Configured UL Grantなどと呼ばれてもよい)に基づいて、PUSCHを用いてUL送信を行う方法である。CG PUSCHは、端末20に対して既にULリソースが割り当てられており、端末20は設定されたリソースを用いて自発的にUL送信できるため、低遅延通信の実現が期待できる。
<CG PUSCH>
Next, CG PUSCH will be explained. CG PUSCH is a method of performing UL transmission using PUSCH based on a UL grant (for example, may be called a Configured Grant, Configured UL Grant, etc.) configured by an upper layer. For CG PUSCH, UL resources have already been allocated to the terminal 20, and the terminal 20 can spontaneously perform UL transmission using the configured resources, so low-delay communication can be expected.
 Release 16において、Type 1とType 2の2種類のCG PUSCHが規定された。 In Release 16, two types of CG PUSCH, Type 1 and Type 2, were specified.
 Type 1 CG PUSCHのアクティベート/デアクティベートは、RRC-configurationのみに依存して、DCIには依存しない。Type 1 CG PUSCHにおいて、上り送信に用いるパラメータ(CGパラメータ、CG構成(Configured Grant Configuration)情報などと呼ばれてもよい)は、上位レイヤシグナリングのみを用いて端末20に設定される。具体的には、Type 1 CG PUSCHのパラメータは、「ConfiguredGrantConfig」、「pusch-Config」および「rrc-ConfiguredUplinkGrant」によって提供される。すなわち、基地局10は、「ConfiguredGrantConfig」、「pusch-Config」および「rrc-ConfiguredUplinkGrant」を用いて、上り送信のパラメータを端末20に指示する。端末20は、該受信したパラメータを、設定グラントとしてストアする。 Activation/deactivation of Type 1 CG PUSCH depends only on RRC-configuration and does not depend on DCI. In Type 1 CG PUSCH, parameters used for uplink transmission (also referred to as CG parameters, CG configuration (Configured Grant Configuration) information, etc.) are set in the terminal 20 using only upper layer signaling. Specifically, the parameters of Type 1 CG PUSCH are provided by "ConfiguredGrantConfig", "pusch-Config" and "rrc-ConfiguredUplinkGrant". That is, the base station 10 uses "ConfiguredGrantConfig", "pusch-Config" and "rrc-ConfiguredUplinkGrant" to instruct the terminal 20 about parameters for uplink transmission. The terminal 20 stores the received parameters as a configuration grant.
 端末20は、Type 1 CG PUSCHがアクティベートされた場合、1つ又は複数の設定グラントがトリガ(又はアクティベート)されたと判断し、設定されたリソース(CGリソース、送信機会(transmission occasion)などと呼ばれてもよい)を用いて、動的グラント無しでPUSCH送信を行ってもよい。 When the Type 1 CG PUSCH is activated, the terminal 20 determines that one or more configuration grants have been triggered (or activated), and transmits the configured resources (referred to as CG resources, transmission occasions, etc.). ), PUSCH transmission may be performed without dynamic grants.
 Type 2 CG PUSCHのアクティベート/デアクティベートは、RRC-configurationおよびDCIに依存する。1つのDCIは、1つのCG PUSCHのみをアクティベートすることができ、複数のCG PUSCHをデアクティベートすることができる。Type 2 CG PUSCHにおいて、上り送信に用いるパラメータは、上位レイヤシグナリングを用いて端末20に設定される。また、上り送信に用いるパラメータの一部は、DCIによって端末に通知される。具体的には、Type 2 CG PUSCHの送信パラメータは、「ConfiguredGrantConfig」、「pusch-Config」および「activation DCI」によって提供される。すなわち、基地局10は、「ConfiguredGrantConfig」、「pusch-Config」および「activation DCI」を用いて、上り送信のパラメータを端末20に指示する。端末20は、該受信したパラメータをストアする。 Activation/deactivation of Type 2 CG PUSCH depends on RRC-configuration and DCI. One DCI can only activate one CG PUSCH and can deactivate multiple CG PUSCHs. In Type 2 CG PUSCH, parameters used for uplink transmission are set in the terminal 20 using upper layer signaling. Further, some of the parameters used for uplink transmission are notified to the terminal by DCI. Specifically, the transmission parameters of Type 2 CG PUSCH are provided by “ConfiguredGrantConfig”, “pusch-Config” and “activation DCI”. That is, the base station 10 uses "ConfiguredGrantConfig," "pusch-Config," and "activation DCI" to instruct the terminal 20 about uplink transmission parameters. Terminal 20 stores the received parameters.
 端末20は、Type 2 CG PUSCHがアクティベートされ、かつ、アクティべーション用DCIが通知された場合、1つ又は複数の設定グラントがトリガ(又はアクティベート)されたと判断し、上位レイヤで設定されたリソースを用いて、動的グラント無しでPUSCH送信を行ってもよい。当該アクティべーションDCIは、所定の識別子(例えば、CS-RNTI:Configured Scheduling RNTI)によってCRC(Cyclic Redundancy Check)スクランブルされてもよい。なお、当該アクティべーションDCIは、設定グラントのデアクティベーション、再送などの制御に用いられてもよい。 When the Type 2 CG PUSCH is activated and the activation DCI is notified, the terminal 20 determines that one or more configuration grants have been triggered (or activated), and uses the resources configured in the upper layer. may be used to perform PUSCH transmission without dynamic grants. The activation DCI may be CRC (Cyclic Redundancy Check) scrambled with a predetermined identifier (for example, CS-RNTI: Configured Scheduling RNTI). Note that the activation DCI may be used to control deactivation, retransmission, etc. of the configuration grant.
 また、端末20は、Configured GrantをデアクティベートするDCI又は所定のタイマの満了(所定時間の経過)に基づいて、当該Configured Grantに対応するリソース(PUSCH)を解放(リリース(release)、デアクティベート(deactivate)などと呼ばれてもよい)してもよい。なお、以下では、CG PUSCHのコンフィグレーションは、「CG configuration」と省略して記載される場合がある。 Furthermore, the terminal 20 releases or deactivates the resource (PUSCH) corresponding to the Configured Grant based on the DCI that deactivates the Configured Grant or the expiration of a predetermined timer (the elapse of a predetermined time). deactivate)). In addition, below, the configuration of CG PUSCH may be abbreviated as "CG configuration".
 <SPS PDSCH>
 次に、SPS PDSCHについて説明する。SPS PDSCHでは、上位レイヤによって、下りリンク(DL)のSemi-Persistent Scheduling(SPS)のための周期的なリソースが設定される。SPS PDSCHにおける、当該リソースを用いた送信のアクティベート/デアクティベート(リリース)は、アクティべーションDCIに依存する。当該activation DCIは、所定の識別子(例えば、CS-RNTI:Configured Scheduling RNTI)によってCRC(Cyclic Redundancy Check)スクランブルされてよい。
<SPS PDSCH>
Next, SPS PDSCH will be explained. In the SPS PDSCH, periodic resources for downlink (DL) Semi-Persistent Scheduling (SPS) are configured by an upper layer. Activation/deactivation (release) of transmission using the resource in the SPS PDSCH depends on the activation DCI. The activation DCI may be CRC (Cyclic Redundancy Check) scrambled using a predetermined identifier (for example, CS-RNTI: Configured Scheduling RNTI).
 SPS PDSCHにおいて、下り送信に用いるパラメータ(SPSパラメータ、SPS構成(Semi-Persistent Scheduling configuration)情報などと呼ばれてもよい)は、上位レイヤシグナリングを用いて端末20に設定される。また、下り送信に用いるパラメータの一部は、DCIによって端末に通知される。具体的には、SPS PDSCHの送信パラメータは、「sps-Config」および「activation DCI」によって提供される。すなわち、基地局10は、「sps-Config」および「activation DCI」を用いて、下り送信のパラメータを端末20に指示する。端末20は、該受信したパラメータをストアする。なお、以下では、SPS PDSCHのコンフィグレーションは、「SPS configuration」と省略して記載される場合がある。 In the SPS PDSCH, parameters used for downlink transmission (which may also be referred to as SPS parameters, semi-persistent scheduling configuration information, etc.) are set in the terminal 20 using upper layer signaling. Further, some of the parameters used for downlink transmission are notified to the terminal by DCI. Specifically, the transmission parameters of SPS PDSCH are provided by “sps-Config” and “activation DCI”. That is, the base station 10 uses "sps-Config" and "activation DCI" to instruct the terminal 20 about downlink transmission parameters. Terminal 20 stores the received parameters. In addition, below, the configuration of SPS PDSCH may be abbreviated as "SPS configuration".
 <CG PUSCHのパラメータ>
 Type 1 and/or Type 2 CG PUSCHに対する、ConfiguredGrantConfigの中のパラメータ(以下、「CGC-CGパラメータ(群)」という)には例えば以下のものがある。なお、CGC-CGパラメータが、ConfiguredGrantConfigとpusch-Configの両方によって提供される場合、端末20は、ConfiguredGrantConfigに示されるCGC-CGパラメータをPUSCH送信に適用してもよい。また、端末20は、ConfiguredGrantConfigによって提供されないCGC-CGパラメータがある場合には、pusch-Configに示されるCGC-CGパラメータをPUSCH送信に適用してもよい。
<CG PUSCH parameters>
For example, the parameters in ConfiguredGrantConfig (hereinafter referred to as "CGC-CG parameters (group)") for Type 1 and/or Type 2 CG PUSCH are as follows. Note that when CGC-CG parameters are provided by both ConfiguredGrantConfig and pushch-Config, the terminal 20 may apply the CGC-CG parameters indicated in ConfiguredGrantConfig to PUSCH transmission. Furthermore, if there is a CGC-CG parameter that is not provided by ConfiguredGrantConfig, the terminal 20 may apply the CGC-CG parameter indicated by pushch-Config to PUSCH transmission.
 (CGC-CGパラメータの例)
 ・periodicity:設定されるグラントに対応するPUSCH送信の周期を示すために用いられる。
 ・repK:繰り返しのPUSCH送信の回数を示すために用いられる。
 ・repK-RV:繰り返しのPUSCH送信のリダンダンシーバージョンに関する情報を示すために用いられる。
 ・frequencyHopping:スロット内周波数ホッピングとスロット間周波数ホッピングの何れかを有効にセットするために用いられる。該フィールドが存在しない場合、周波数ホッピングが適用されなくてもよい。
 ・cg-DMRS-Configuration:設定されるグラントに対応するPUSCHのDMRSコンフィギュレーションを示すために用いられる。
 ・mcs-Table:端末20がトランスフォームプリコーディングなしのPUSCHに使用するMSCテーブルを示すために用いられる。該フィールドが存在しない場合、端末20は、64QAMテーブルを使ってもよい。
 ・mcs-TableTransformPrecoder:端末20がトランスフォームプリコーディングを伴うPUSCHに使用するMSCテーブルを示すために用いられる。該フィールドが存在しない場合、端末20は、64QAMテーブルを使ってもよい。
 ・uci-OnPUSCH:PUSCHを用いたUCIの送信に関する情報を示すために用いられる。
 ・resourceAllocation:‘リソース割り当てタイプ0’、‘リソース割り当てタイプ1’、および、‘ダイナミックスイッチ’の内、何れかが設定されることを示すために用いられる。
 ・rbg-Size:PUSCHのRBGサイズを示すために用いられる。
 ・powerControlLoopToUse:PUSCH送信に適用する閉制御ループを示すために用いられる。
 ・p0-PUSCH-Alpha:PUSCH送信電力を計算するために用いられる。
 ・transformPrecoder:PUSCH送信に対してトランスフォームプリコーディングを選択するかどうかを示すために用いられる。
 ・phy-PriorityIndex:少なくともPHY層のコリジョン処理におけるCG PUSCHのPHY優先度を示すために用いられる。なお、value p0は低優先度、value p1は高優先度を示す。
 ・cg-nrofHARQ-Process:HARQプロセス番号を示すために用いられる。
 ・cg-nrofSlots:グラントオフセットで設定された時間インスタンスに続く、グラント周期で設定された割り当てスロット数を示すために用いられる。
 ・betaOffsetCG-UCI:CG-PUSCHにおけるCG-UCIのベータオフセットを示すために用いられる。
 ・configuredGrantTimer:設定されたグラントタイマーの初期値をperiodicityの倍数で示すために用いられる。cg-RetransmissonTimerが設定されている場合、同一BWP上の異なるconfigured grant間でHARQプロセスを共有する場合、configuredGrantTimerのperiodicityには、このBWP上のHARQ プロセスを共有するコンフィグレーションに同じ値が設定される。
(Example of CGC-CG parameters)
- periodicity: Used to indicate the period of PUSCH transmission corresponding to the set grant.
- repK: Used to indicate the number of repeated PUSCH transmissions.
- repK-RV: Used to indicate information regarding the redundancy version of repeated PUSCH transmission.
-frequencyHopping: Used to effectively set either intra-slot frequency hopping or inter-slot frequency hopping. If the field is not present, frequency hopping may not be applied.
- cg-DMRS-Configuration: Used to indicate the DMRS configuration of PUSCH corresponding to the set grant.
- mcs-Table: Used to indicate the MSC table that the terminal 20 uses for PUSCH without transform precoding. If the field is not present, terminal 20 may use a 64QAM table.
- mcs-TableTransformPrecoder: Used to indicate the MSC table used by the terminal 20 for PUSCH with transform precoding. If the field is not present, terminal 20 may use a 64QAM table.
- uci-OnPUSCH: Used to indicate information regarding UCI transmission using PUSCH.
-resourceAllocation: Used to indicate that one of 'resource allocation type 0', 'resource allocation type 1', and 'dynamic switch' is set.
- rbg-Size: Used to indicate the RBG size of PUSCH.
- powerControlLoopToUse: Used to indicate a closed control loop applied to PUSCH transmission.
- p0-PUSCH-Alpha: Used to calculate PUSCH transmission power.
- transformPrecoder: Used to indicate whether transform precoding is selected for PUSCH transmission.
- phy-PriorityIndex: Used to indicate the PHY priority of CG PUSCH in at least PHY layer collision processing. Note that value p0 indicates low priority, and value p1 indicates high priority.
- cg-nrofHARQ-Process: Used to indicate the HARQ process number.
・cg-nrofSlots: Used to indicate the number of allocated slots set in the grant period following the time instance set in the grant offset.
-betaOffsetCG-UCI: Used to indicate the beta offset of CG-UCI in CG-PUSCH.
・configuredGrantTimer: Used to indicate the initial value of the configured grant timer as a multiple of periodicity. If cg-RetransmissonTimer is set, and the HARQ process is shared between different configured grants on the same BWP, the periodicity of the configuredGrantTimer is set to the same value for the configurations that share the HARQ process on this BWP. .
 Type 1 CG PUSCHに対する、rrc- ConfiguredUplinkGrantの中のパラメータ(以下、「rrc-CUG-CGパラメータ(群)」という)には例えば以下のものがある。なお、rrc-ConfiguredUplinkGrantは、Type 1 CG PUSCHで設定されるグラントの情報を示すために用いられる。 For example, the parameters in rrc-ConfiguredUplinkGrant (hereinafter referred to as "rrc-CUG-CG parameters (group)") for Type 1 CG PUSCH are as follows. Note that rrc-ConfiguredUplinkGrant is used to indicate grant information configured in Type 1 CG PUSCH.
 (rrc-CUG-CGパラメータの例)
 ・timeDomainOffset:番号0のシステムフレームと関連するオフセットを示すために用いられる。
 ・timeDomainAllocation:PUSCHのマッピングタイプとPUSCHのスタートシンボルと連続的な割り当てられるシンボル数の組み合わせを示すために用いられる。
 ・frequencyDomainAllocation:PUSCHの周波数リソース割り当てを示すために用いられる。
 ・antennaPort:PUSCH送信に対するアンテナポート情報を示すために用いられる。
 ・dmrs-SeqInitialization: PUSCH送信のためのDMRSシーケンスのスクランブリングに用いられる識別子。
 ・precodingAndNumberOfLayers:PUSCH送信のためのプリコーディングとレイアの数を示すために用いられる。
 ・srs-ResourceIndicator:使われるSRS(Sounding Reference Signal)リソースを示すために用いられる。
 ・mcsAndTBS:変調次数、目標コーディングレート、トランスポートブロックのサイズを示すために用いられる。
 ・frequencyHoppingOffset:周波数ホッピングオフセットの値を示すために用いられる。
 ・pathlossReferenceIndex:PUSCHパスロス推定に用いられる参照信号を示すために用いられる。
 ・pusch-RepTypeIndicator:端末20が、Type 1 configured grant configuration毎に、PUSCH repetition type Aのための動作とPUSCH repetition type Bのための動作のどちらに従うかを示すために用いられる。valuepusch-RepTypeA は「PUSCH repetition type A」を有効にし、value pusch-RepTypeB は「PUSCH repetition type B」を有効にする。
 ・frequencyHoppingPUSCH-RepTypeB:pusch-RepTypeIndicator が「pusch-RepTypeB」に設定された場合のType 1 CGの周波数ホッピング方式を示すために用いられる。Value interRepetitionは「Inter-repetition frequency hopping」を有効にし、value interSlotは「Inter-slot frequency hopping」を有効にする。なお、このフィールドが存在しない場合、Type 1 CGでは周波数ホッピングは有効にならない。
(Example of rrc-CUG-CG parameters)
- timeDomainOffset: Used to indicate the offset associated with the system frame numbered 0.
-timeDomainAllocation: Used to indicate the combination of the PUSCH mapping type, the PUSCH start symbol, and the number of consecutively allocated symbols.
-frequencyDomainAllocation: Used to indicate PUSCH frequency resource allocation.
- antennaPort: Used to indicate antenna port information for PUSCH transmission.
- dmrs-SeqInitialization: Identifier used for scrambling of DMRS sequence for PUSCH transmission.
- precodingAndNumberOfLayers: Used to indicate precoding and the number of layers for PUSCH transmission.
- srs-ResourceIndicator: Used to indicate the SRS (Sounding Reference Signal) resource used.
- mcsAndTBS: Used to indicate modulation order, target coding rate, and transport block size.
-frequencyHoppingOffset: Used to indicate the value of frequency hopping offset.
- pathlossReferenceIndex: Used to indicate the reference signal used for PUSCH path loss estimation.
- pushch-RepTypeIndicator: Used to indicate whether the terminal 20 follows the operation for PUSCH repetition type A or the operation for PUSCH repetition type B for each Type 1 configured grant configuration. value pusch-RepTypeA enables "PUSCH repetition type A", and value pusch-RepTypeB enables "PUSCH repetition type B".
-frequencyHoppingPUSCH-RepTypeB: Used to indicate the frequency hopping method of Type 1 CG when pushch-RepTypeIndicator is set to "pusch-RepTypeB". Value interRepetition enables "Inter-repetition frequency hopping" and value interSlot enables "Inter-slot frequency hopping". Note that if this field does not exist, frequency hopping will not be enabled in Type 1 CG.
 Type 2 CG PUSCHに対する、activation DCIにより指示されるパラメータ(以下、「DCI-CGパラメータ(群)」という)には例えば以下のものがある。 For example, the parameters specified by the activation DCI for Type 2 CG PUSCH (hereinafter referred to as "DCI-CG parameters (group)") include the following:
 (DCI-CGパラメータの例)
 ・timeDomainAllocation:開始シンボルと長さの組み合わせとPUSCHマッピングタイプを示すために用いられる。
 ・frequencyDomainAllocation:周波数領域のリソース割り当てを示すために用いられる。
 ・MCS index:MCS(Modulation and Coding Scheme)のインデックスを示すために用いられる。
 ・antenna port indication:アンテナポートを示すために用いられる。
 ・precoding and number of layers indication:プリコーディングとレイヤ数を示すために用いられる。
 ・SRS resource indicator:SRS(Sounding Reference Signal)のためのリソースを示すために用いられる。
 ・power control related parameter indication:送信電力制御に関するパラメータを示すために用いられる。
(Example of DCI-CG parameters)
- timeDomainAllocation: Used to indicate the combination of starting symbol and length and PUSCH mapping type.
-frequencyDomainAllocation: Used to indicate frequency domain resource allocation.
・MCS index: Used to indicate the MCS (Modulation and Coding Scheme) index.
- antenna port indication: Used to indicate the antenna port.
- precoding and number of layers indication: Used to indicate precoding and the number of layers.
-SRS resource indicator: Used to indicate resources for SRS (Sounding Reference Signal).
- power control related parameter indication: Used to indicate parameters related to transmission power control.
 <SPS PDSCHのパラメータ>
 SPS PDSCHに対する、SPS-Configの中のパラメータ(以下、「SC-SPSパラメータ(群)」という)には例えば以下のものがある。
<SPS PDSCH parameters>
For example, the parameters in SPS-Config (hereinafter referred to as "SC-SPS parameter(s)") for SPS PDSCH include the following.
 (SC-SPSパラメータの例)
 ・periodicity:SPS PDSCHの周期を示すために用いられる。
 ・n1PUCCH-AN:SPS PDSCHためのHARQ-ACK(Hybrid automatic repeat request Acknowledgement) PUCCHリソースを示すために用いられる。
 ・mcs-Table:SPS PDSCHの受信に適用されるMCSテーブルを示すために用いられる。
 ・pdsch-AggregationFactor:繰り返しのPDSCH送信の回数を示すために用いられる。
(Example of SC-SPS parameters)
- periodicity: Used to indicate the period of SPS PDSCH.
- n1PUCCH-AN: HARQ-ACK (Hybrid automatic repeat request acknowledgment) for SPS PDSCH Used to indicate PUCCH resources.
- mcs-Table: Used to indicate the MCS table applied to reception of SPS PDSCH.
- pdsch-AggregationFactor: Used to indicate the number of repeated PDSCH transmissions.
 SPS PDSCHに対する、activation DCIにより指示されるパラメータ(以下、「DCI-SPSパラメータ(群)」という)には例えば以下のものがある。 For example, the parameters instructed by the activation DCI for the SPS PDSCH (hereinafter referred to as "DCI-SPS parameters (group)") include the following.
 (DCI-SPSパラメータの例)
 ・timeDomainAllocation:開始シンボルと長さの組み合わせとPDSCHマッピングタイプを示すために用いられる。
 ・frequencyDomainAllocation:周波数領域のリソース割り当てを示すために用いられる。
 ・MCS index:MCS(Modulation and Coding Scheme)のインデックスを示すために用いられる。
 ・TCI state indication:PDSCHのためのTCI(Transmission Configuration Indicator)の状態を示すために用いられる。
 ・antenna port indication:アンテナポートを示すために用いられる。
 ・priority of HARQ-ACK:HARQ-ACKの優先度を示すために用いられる。
 ・K1:データがPDSCH上でスケジューリングされるスロットから当該PDSCHに対するHARQ-ACKが送信されるスロットまでのスロット数を示すために用いられる。
(Example of DCI-SPS parameters)
- timeDomainAllocation: Used to indicate the combination of starting symbol and length and PDSCH mapping type.
-frequencyDomainAllocation: Used to indicate frequency domain resource allocation.
・MCS index: Used to indicate the MCS (Modulation and Coding Scheme) index.
- TCI state indication: Used to indicate the state of TCI (Transmission Configuration Indicator) for PDSCH.
- antenna port indication: Used to indicate the antenna port.
-Priority of HARQ-ACK: Used to indicate the priority of HARQ-ACK.
- K1: Used to indicate the number of slots from the slot in which data is scheduled on the PDSCH to the slot in which HARQ-ACK for the PDSCH is transmitted.
 <その他のパラメータ>
 基地局10から端末20に通知される上記以外のパラメータ(以下、「other-CG/SPSパラメータ(群)」という)には例えば以下のものがある。
<Other parameters>
Parameters other than the above (hereinafter referred to as "other-CG/SPS parameters (group)") that are notified from the base station 10 to the terminal 20 include, for example, the following.
 (other-CG/SPSパラメータの例)
 ・PDSCH/PUSCH length:PDSCH及び/又はPUSCHの長さを示すために用いられる。
 ・number of PRBs:PRB(Physical Resource Block)数を示すために用いられる。
(Example of other-CG/SPS parameters)
- PDSCH/PUSCH length: Used to indicate the length of PDSCH and/or PUSCH.
-number of PRBs: Used to indicate the number of PRBs (Physical Resource Blocks).
 <本開示に至った経緯>
 NRでは、動的なスケジューリングとは異なるスケジューリングの一例として、上りリンク(UL)において、CG(Configured Grant)に基づくPUSCH(CG PUSCH)が検討され、下りリンク(DL)において、SPS(Semi-Persistent Scheduling)に基づくPDSCH(SPS PDSCH)が検討されている。
<The circumstances that led to this disclosure>
In NR, as an example of scheduling different from dynamic scheduling, PUSCH (CG PUSCH) based on CG (Configured Grant) is considered in uplink (UL), and SPS (Semi-Persistent (SPS PDSCH) is being considered.
 Release 16において、CG PUSCH(Configured Grant Physical Uplink Shared Channel)のコンフィグレーションおよびSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)のコンフィグレーションが規定されている(例えば、非特許文献2)。 In Release 16, the configuration of CG PUSCH (Configured Grant Physical Uplink Shared Channel) and the configuration of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is defined (for example, Non-Patent Document 2).
 また、Release 16において、CG PUSCHのパラメータ及びSPS PDSCHのパラメータは、RRC(Radio Resource Control)コンフィグレーションやactivation DCI(Downlink Control Information)によって決定されることが規定されている。 Additionally, in Release 16, it is specified that the parameters of CG PUSCH and SPS PDSCH are determined by RRC (Radio Resource Control) configuration and activation DCI (Downlink Control Information).
 また、NRでは、Release 17において、Ultra-Reliable and Low Latency Communications(URLLC)及びIndustrial Internet of Things(IIoT)と呼ばれる方式についての様々な技術が検討されている。 Additionally, in Release 17, NR is considering various technologies for methods called Ultra-Reliable and Low Latency Communications (URLLC) and Industrial Internet of Things (IIoT).
 Release 17では、バーチャルリアリティ(VR)、複合現実(mixed reality:MX)等の拡張現実(Extended Reality:XR)について検討され、XRのシナリオ、要件、主要業績評価指標(Key Performance Indicator:KPI)および評価方法が検討されている。XRの目標とする要件として、容量、レイテンシー(遅延)、可動性および省エネの側面を考慮することとされている。さらに、Release 18においても、上記の検討が継続的に行われている。 In Release 17, extended reality (XR) such as virtual reality (VR) and mixed reality (MX) will be considered, and XR scenarios, requirements, key performance indicators (KPI) and Evaluation methods are being considered. The targeted requirements for XR are to consider aspects of capacity, latency, mobility, and energy savings. Furthermore, the above considerations are being continued in Release 18 as well.
 XRに関する検討項目として、XR特有のキャパシティの改善に関する事項が検討されている。この検討では、XRサービスの特性に対して、より効率的なリソース割当とスケジューリングとを提供するメカニズムが検討されている。ここで、XRサービスの特性とは、周期性、マルチフロー、ジッター、遅延、信頼性などの特性である。例えば、この検討では、SPS及びCGの拡張、及び、動的なスケジューリング及びグラントの拡張が望まれている。 As a consideration item regarding XR, matters related to improving the capacity specific to XR are being considered. This study considers mechanisms that provide more efficient resource allocation and scheduling for the characteristics of XR services. Here, the characteristics of the XR service include characteristics such as periodicity, multiflow, jitter, delay, and reliability. For example, this study calls for expansion of SPS and CG, and expansion of dynamic scheduling and grants.
 以下では、SPS及びCGの拡張の一例として、CBG(Code Block Group)を適用する拡張、及び、2 TB(Transport Block)を適用する拡張を説明する。なお、TBとは、情報ビット系列の単位であり、例えば、1サブフレームに割り当てられる情報ビット系列の単位や、スケジューリングの単位の少なくとも一つであってもよい。TBS(Transport Block Size)が所定の閾値(例えば、6144ビット)を超える場合、TBを一以上のセグメント(Code Block))に分割し、セグメント単位での符号化が行われる(コードブロック分割:Code Block Segmentation)。各Code Blockは、CW(Code Word)として連結される。コードワードに対しては、スクランブリング、データ変調等が行われる。TBが一以上のCode Blockで構成される場合、再送制御単位としては、Code Block、複数のCode Blockを含むCBG、TB、バンドリングされた複数のTBの少なくとも一つが想定される。端末は、再送制御単位毎に誤り検出を行い、A/Nを示すビット(以下、HARQ-ACKビットともいう)を生成して、無線基地局にフィードバック(送信)する。 Below, as examples of SPS and CG expansion, an expansion that applies CBG (Code Block Group) and an expansion that applies 2 TB (Transport Block) will be explained. Note that TB is a unit of an information bit sequence, and may be, for example, at least one of a unit of an information bit sequence allocated to one subframe or a unit of scheduling. If the TBS (Transport Block Size) exceeds a predetermined threshold (for example, 6144 bits), the TB is divided into one or more segments (Code Block), and encoding is performed in segment units (Code block division: Code Block Size). Block Segmentation). Each Code Block is concatenated as a CW (Code Word). Scrambling, data modulation, etc. are performed on the codeword. When a TB is composed of one or more Code Blocks, the retransmission control unit is assumed to be at least one of a Code Block, a CBG including multiple Code Blocks, a TB, and multiple bundled TBs. The terminal performs error detection for each retransmission control unit, generates a bit indicating A/N (hereinafter also referred to as HARQ-ACK bit), and feeds it back (transmits) to the radio base station.
 はじめに、CBGを適用する下り送信及び上り送信と、CBGを適用するHARQ-ACK CBについて説明する。次に、2 TB、及び、SPS HARQ-ACKについて説明する。なお、以下の説明において、CBGを適用する下り送信及び上り送信は、それぞれ、CBG based PDSCH transmission及びCBG based PUSCH transmissionと記載される。なお、PDSCH transmissionは、基地局側の動作である一方で、端末は、下りリンクにおいて、PDSCHの受信動作を行う。そのため、PDSCH transmissionは、端末におけるPDSCH receptionと捉えてもよい。例えば、端末がCBG based PDSCH transmissionをサポートすることは、端末が、CBG based PDSCH receptionをサポートすることと捉えてもよい。 First, we will explain downlink transmission and uplink transmission to which CBG is applied, and HARQ-ACK CB to which CBG is applied. Next, 2 TB and SPS HARQ-ACK will be explained. Note that in the following description, downlink transmission and uplink transmission to which CBG is applied are described as CBG based PDSCH transmission and CBG based PUSCH transmission, respectively. Note that while PDSCH transmission is an operation on the base station side, a terminal performs a PDSCH reception operation in the downlink. Therefore, PDSCH transmission may be considered as PDSCH reception at the terminal. For example, a terminal supporting CBG based PDSCH transmission may be considered to mean that the terminal supports CBG based PDSCH reception.
 (CBG based PDSCH transmission)
 TS 38.214の5.1.7節には、CBG based PDSCH transmissionについて示される。CBG based PDSCH transmission及びCBG based PDSCH transmissionに対するHARQ-ACKのフィードバックは、SPS PDSCHのケースと、DCI 1_0またはDCI 1_2によってスケジューリングされたPDSCHのケースと、DCI 1_1が複数のPDSCHをスケジューリングできる場合のDCI 1_1によってスケジューリングされた1以上のPDSCHのケースと、の3通りのケースではサポートされていない。
(CBG based PDSCH transmission)
Section 5.1.7 of TS 38.214 describes CBG based PDSCH transmission. CBG based PDSCH transmission and HARQ-ACK feedback for CBG based PDSCH transmission in the case of SPS PDSCH and the case of PDSCH scheduled by DCI 1_0 or DCI 1_2, and in the case of DCI 1_1 when DCI 1_1 can schedule multiple PDSCHs. It is not supported in three cases: one or more PDSCHs scheduled by
 一方で、CBG based PDSCH transmission及びCBG based PDSCH transmissionに対するHARQ-ACKのフィードバックは、1つのPDSCHをスケジューリングするケースではサポートされている。1つのPDSCHをスケジューリングするケースとは、例えば、DCI 1_1が1つのPDSCHのみをスケジューリング可能であり、「PDSCH-CodeBlockGroupTransmission」が、サービングセルに設定されている場合のDCI 1_1によってスケジューリングされるPDSCHのケースである。 On the other hand, CBG-based PDSCH transmission and HARQ-ACK feedback for CBG-based PDSCH transmission are supported in the case of scheduling one PDSCH. The case of scheduling one PDSCH is, for example, the case where DCI 1_1 can schedule only one PDSCH, and the PDSCH is scheduled by DCI 1_1 when "PDSCH-CodeBlockGroupTransmission" is set in the serving cell. be.
 (CBG based PUSCH transmission )
 TS 38.214の6.1.5節には、CBG based PUSCH transmissionについて示される。CBG based PUSCH transmissionは、CG PUSCHのケースと、DCI 0_0又はDCI 0_2によってスケジューリングされるPUSCHのケースと、SCSが480kHzまたは960kHzであり、DCI 0_1が複数のPUSCHをスケジューリングできる場合のDCI 0_1によってスケジューリングされた1以上のPUSCHのケースと、SCSが120kHzであり、DCI 0_1が複数のPUSCHをスケジューリングした場合のDCI 0_1によってスケジューリングされた複数のPUSCHのケースとの3通りのケースではサポートされていない。
(CBG based PUSCH transmission)
Section 6.1.5 of TS 38.214 describes CBG based PUSCH transmission. CBG based PUSCH transmission is divided into the case of CG PUSCH, the case of PUSCH scheduled by DCI 0_0 or DCI 0_2, and the case of PUSCH scheduled by DCI 0_1 when the SCS is 480kHz or 960kHz and DCI 0_1 can schedule multiple PUSCH. It is not supported in three cases: the case of one or more PUSCHs, and the case of multiple PUSCHs scheduled by DCI 0_1 when the SCS is 120kHz and DCI 0_1 schedules multiple PUSCHs.
 一方で、CBG based PUSCH transmissionは、特定の1つのPUSCHをスケジューリングするケース、及び、特定の複数のPUSCHをスケジューリングするケースにおいて、サポートされる。特定の1つのPUSCHをスケジューリングするケースとは、例えば、DCI 0_1が1つのPDSCHのみをスケジューリング可能であり、「PUSCH-CodeBlockGroupTransmission」が、サービングセルに設定されている場合のDCI 0_1によってスケジューリングされる1つのPDSCHのケースである。また、特定の複数のPUSCHをスケジューリングするケースとは、例えば、SCSが120kHzであり、DCI 0_1が複数のPUSCHをスケジューリング可能だが、DCI 0_1が1つのPUSCHのみをスケジューリングし、「PUSCH-CodeBlockGroupTransmission」がサービングセルに設定されている場合のDCI 0_1によってスケジューリングされる1つのPUSCHのケースである。 On the other hand, CBG based PUSCH transmission is supported in the case of scheduling one specific PUSCH and in the case of scheduling multiple specific PUSCHs. The case of scheduling one specific PUSCH is, for example, when DCI 0_1 can schedule only one PDSCH and "PUSCH-CodeBlockGroupTransmission" is set in the serving cell. This is the case of PDSCH. In addition, the case where specific multiple PUSCHs are scheduled is, for example, when the SCS is 120kHz and DCI 0_1 can schedule multiple PUSCHs, but when DCI 0_1 schedules only one PUSCH and "PUSCH-CodeBlockGroupTransmission" is This is the case of one PUSCH scheduled by DCI 0_1 when configured in the serving cell.
 (CBG based HARQ-ACK CB )
 TS 38.213の9.1.1節には、CBG based HARQ-ACK codebook(CB)の決定の動作について示される。端末は、サービングセルに対して、「PDSCH-CodeBlockGroupTransmission」が与えられる場合、端末は、DCI 1_1によってスケジューリングされるPDSCHを受信する。受信するPDSCHは、TBの1以上のCBGを含む。また、端末は、「maxCodeBlockGroupsPerTransportBlock」が与えられる。「maxCodeBlockGroupsPerTransportBlock」は、当該サービングセルにおけるTB受信に対するHARQ-ACK情報ビットを生成するためのCBGの最大数を指示する。
(CBG based HARQ-ACK CB)
Section 9.1.1 of TS 38.213 describes the behavior of the CBG based HARQ-ACK codebook (CB) determination. When the terminal is given “PDSCH-CodeBlockGroupTransmission” for the serving cell, the terminal receives the PDSCH scheduled by DCI 1_1. The received PDSCH includes one or more CBGs of TB. Additionally, the terminal is given "maxCodeBlockGroupsPerTransportBlock". "maxCodeBlockGroupsPerTransportBlock" indicates the maximum number of CBGs for generating HARQ-ACK information bits for TB reception in the serving cell.
 (two-TB)
 TS 38.214の5.1.3.2節等には、two-TBについて示される。Rel-15/16/17では、two-codeword transmissionが、DCI 1_1によってスケジューリングされるPDSCHに対してサポートされている。一方で、two-codeword transmissionは、SPS PDSCHに対してサポートされていない。また、two-codeword transmissionは、DCI 1_0又はDCI 1_2によってスケジューリングされるPDSCHに対してサポートされていない。また、PUSCHに対するtwo-codeword transmissionは、Rel-18のMIMOにおいて検討されている。
(two-TB)
Section 5.1.3.2 of TS 38.214 etc. describes two-TB. In Rel-15/16/17, two-codeword transmission is supported for PDSCH scheduled by DCI 1_1. On the other hand, two-codeword transmission is not supported for SPS PDSCH. Also, two-codeword transmission is not supported for PDSCHs scheduled by DCI 1_0 or DCI 1_2. Furthermore, two-codeword transmission for PUSCH is being considered in Rel-18 MIMO.
 上位レイヤのパラメータ「maxNrofCodeWordsScheduledByDCI」が、two codeword transmissionが有効(enable)であることを示すケースでは、対応するTBに対して、MCSを示すパラメータIMCS=26であり、RVを示すパラメータrvid=1であるならば、2つのTBのうち、1つが、DCI 1_1によって無効(disable)にされる。両方のTBが有効である場合、2つのTB(TB1及びTB2)は、それぞれ、CW0及びCW1にマッピングされる。また、1つのTBのみが有効である場合、有効なTBは、常に最初のCWにマッピングされる。つまり、最大で2つのcodeword送信が、RRCによって有効になった場合、DCIは、1つのTBを動的に無効にしてもよい。なお、DCI 1_1は、各TBに対するMCS、NDI、及び、RVを指示するフィールドを有する。 In the case where the upper layer parameter "maxNrofCodeWordsScheduledByDCI" indicates that two codeword transmission is enabled, for the corresponding TB, the parameter I indicating MCS = 26 and the parameter rv id = indicating RV. If 1, one of the two TBs is disabled by DCI 1_1. If both TBs are valid, the two TBs (TB1 and TB2) are mapped to CW0 and CW1, respectively. Also, if only one TB is valid, the valid TB is always mapped to the first CW. That is, if at most two codeword transmissions are enabled by RRC, the DCI may dynamically disable one TB. Note that DCI 1_1 has fields that indicate MCS, NDI, and RV for each TB.
 (Type 2 SPS HARQ-ACK CB)
 1又は複数のSPS PDSCH receptionに対するHARQ-ACK feedbackであって、対応するPDCCHが無いHARQ-ACK feedbackが、動的にスケジューリングされたPDSCH及び/又はSPS PDSCH releaseに対するHARQ-ACK feedbackと多重されるケースが想定される。このケースでは、1又は複数のSPS PDSCH receptionに対するHARQ-ACK feedbackであって、対応するPDCCHが無いHARQ-ACK feedbackが、動的にスケジューリングされたPDSCH及び/又はSPS PDSCH releaseに対するHARQ-ACK feedbackの後に追加される。
(Type 2 SPS HARQ-ACK CB)
A case in which HARQ-ACK feedback for one or more SPS PDSCH receptions, with no corresponding PDCCH, is multiplexed with HARQ-ACK feedback for dynamically scheduled PDSCHs and/or SPS PDSCH releases. is assumed. In this case, HARQ-ACK feedback for one or more SPS PDSCH receptions with no corresponding PDCCH is different from HARQ-ACK feedback for dynamically scheduled PDSCH and/or SPS PDSCH release. Will be added later.
 図4は、HARQ-ACK CBの一例を示す図である。図4には、HARQ-ACK CBに含まれる「HARQ-ACK for TB based DG PDSCH」と、「HARQ-ACK for CBG based DG PDSCH」と、「HARQ-ACK for SPS PDSCH」とが、順に、示される。なお、図4の横方向は、HARQ-ACK CBのデータ構造において規定される順序(又は配置順)を表す。例えば、図4の例では、HARQ-ACK CBにおいて、先に「HARQ-ACK for TB based DG PDSCH」が並び、次に、「HARQ-ACK for CBG based DG PDSCH」が並ぶ。なお、この順序は、HARQ-ACKの処理順、HARQ-ACKの送信順に対応していなくてよい。 FIG. 4 is a diagram showing an example of HARQ-ACK CB. Figure 4 shows “HARQ-ACK for TB based DG PDSCH”, “HARQ-ACK for CBG based DG PDSCH”, and “HARQ-ACK for SPS PDSCH” included in HARQ-ACK CB. It will be done. Note that the horizontal direction in FIG. 4 represents the order (or arrangement order) defined in the data structure of the HARQ-ACK CB. For example, in the example of FIG. 4, in HARQ-ACK CB, "HARQ-ACK for TB based DG PDSCH" is listed first, and then "HARQ-ACK for CBG based DG PDSCH" is listed. Note that this order does not have to correspond to the HARQ-ACK processing order and the HARQ-ACK transmission order.
 「HARQ-ACK for TB based DG PDSCH」は、TB based DG PDSCHに対するHARQ-ACKのcodebookに対応し、「HARQ-ACK for CBG based DG PDSCH」は、CBG based DG PDSCHに対するHARQ-ACKのcodebookに対応し、「HARQ-ACK for SPS PDSCH」は、SPS PDSCHに対するHARQ-ACKのcodebookに対応する。 "HARQ-ACK for TB based DG PDSCH" corresponds to the HARQ-ACK codebook for TB based DG PDSCH, "HARQ-ACK for CBG based DG PDSCH" corresponds to the HARQ-ACK codebook for CBG based DG PDSCH However, "HARQ-ACK for SPS PDSCH" corresponds to the codebook of HARQ-ACK for SPS PDSCH.
 なお、HARQ-ACK CBの一部のCBは、sub-codebookと称されてもよい。また、例えば、HARQ-ACK CBの一部の構成であり、HARQ-ACKの情報を含む構成は、情報を格納する場所を示す別の表記(例えば、フィールド、segment、slotといった別の表記)に置き換えられてもよい。なお、以下では、sub-codebookに含まれる構成は、フィールドと記載される場合がある。 Note that some CBs of the HARQ-ACK CB may be referred to as sub-codebooks. Also, for example, the configuration of a part of the HARQ-ACK CB and the configuration that includes HARQ-ACK information may be expressed in a different notation that indicates where the information is stored (for example, another notation such as field, segment, or slot). May be replaced. Note that below, the configuration included in the sub-codebook may be described as a field.
 また、図4に示すように、「HARQ-ACK for SPS PDSCH」では、或るサービングセルインデックスのSPS configurationのインデックス毎に、DLスロットのインデックスの昇順で、HARQ-ACKの情報(例えば、ビット)が順序付けられる。図4の例では、「Cell index #1」の「SPS configuration index #1」において、「DL slot index #n」、「DL slot index #n+i」等のフィールドが、順に並んでいる。なお、「Cell index #1」は、サービングセルのインデックス#1に対応するHARQ-ACKを含むフィールドであり、「SPS configuration index #1」は、SPS configurationのインデックス#1に対応するHARQ-ACKを含むフィールドであり、「DL slot index #n」は、DLスロットのインデックス#nに対応するHARQ-ACKを含むフィールドである。 In addition, as shown in Figure 4, in "HARQ-ACK for SPS PDSCH", HARQ-ACK information (for example, bits) is stored in ascending order of DL slot index for each SPS configuration index of a certain serving cell index. ordered. In the example of FIG. 4, fields such as "DL slot index #n" and "DL slot index #n+i" are arranged in order in "SPS configuration index #1" of "Cell index #1". Note that "Cell index #1" is a field that includes HARQ-ACK corresponding to index #1 of the serving cell, and "SPS configuration index #1" includes HARQ-ACK that corresponds to index #1 of SPS configuration. "DL slot index #n" is a field that includes HARQ-ACK corresponding to DL slot index #n.
 なお、図4を含む各図、および、以下の説明における「#X」は、インデックスを示す。Xは、0以上の整数であってもよいし、1以上の整数であってもよい。また、以下の説明において、インデックスが数字ではない例では、隣り合うフィールドのインデックスは、連続した値であってもよいし、連続していない値であってもよい。また、図4を含む各図におけるフィールドの数は、一例であり、本開示はこれらに限定されない。例えば、或るCB又はsub-codebookに含まれるフィールドの数は、1つであってもよい。 Note that "#X" in each figure including FIG. 4 and in the following description indicates an index. X may be an integer of 0 or more, or an integer of 1 or more. Furthermore, in the following description, in an example where the index is not a number, the indexes of adjacent fields may be continuous values or non-consecutive values. Further, the number of fields in each figure including FIG. 4 is an example, and the present disclosure is not limited thereto. For example, the number of fields included in a certain CB or sub-codebook may be one.
 次に、サービングセルのインデックス毎にSPS configurationのインデックスの昇順で、HARQ-ACKの情報が順序付けられる。図4の例では、「Cell index #1」において、「SPS configuration index #1」、「SPS configuration index #2」等のフィールドが、順に並んでいる。 Next, the HARQ-ACK information is ordered in ascending order of the SPS configuration index for each serving cell index. In the example of FIG. 4, fields such as "SPS configuration index #1" and "SPS configuration index #2" are lined up in order in "Cell index #1."
 次に、サービングセルインデックスの昇順で、HARQ-ACKの情報が順序付けられる。図4の例では、「HARQ-ACK for SPS PDSCH」において、「Cell index #1」、「Cell index#2」等のフィールドが、順に並んでいる。 Next, the HARQ-ACK information is ordered in ascending order of serving cell index. In the example of FIG. 4, fields such as "Cell index #1" and "Cell index #2" are arranged in order in "HARQ-ACK for SPS PDSCH."
 上述の通り、NRでは、動的にスケジューリングされたPDSCH及びPUSCHに対して、CBG based PDSCH transmission、CBG based PUSCH transmission及びtwo-codeword PDSCHがサポートされている。これらによって、動的にスケジューリングされたPDSCH及びPUSCHのケースでは、通信効率の向上が期待できる。 As mentioned above, NR supports CBG based PDSCH transmission, CBG based PUSCH transmission, and two-codeword PDSCH for dynamically scheduled PDSCH and PUSCH. As a result, communication efficiency can be expected to improve in the case of dynamically scheduled PDSCH and PUSCH.
 Rel-18にて、XRトラフィックに対して、大きいサイズのパケットサイズを有するTB送信のために、SPS PDSCHが使用されるといったケースを考えた場合、CBGを適用したSPS PDSCH送信又はCBGを適用したCG PUSCH送信、並びに、two-codewordを適用したSPS PDSCH送信又はtwo-codewordを適用したCG PUSCH送信をサポートすることが望まれる。 Considering the case where SPS PDSCH is used for TB transmission with a large packet size for XR traffic in Rel-18, SPS PDSCH transmission with CBG applied or CBG applied It is desirable to support CG PUSCH transmission, SPS PDSCH transmission using two-codeword, or CG PUSCH transmission using two-codeword.
 なお、以下では、CBGを適用したSPS PDSCH送信は、「CBG based SPS PDSCH transmission」と記載され、CBGを適用したCG PUSCH送信は、「CBG based CG PUSCH transmission」と記載される場合がある。また、それらを合わせて、「CBG based CG PUSCH/CG PUSCH transmission」と記載される場合がある。 In addition, below, SPS PDSCH transmission to which CBG is applied may be described as "CBG based SPS PDSCH transmission", and CG PUSCH transmission to which CBG is applied may be described as "CBG based CG PUSCH transmission". In addition, these may be collectively written as "CBG based CG PUSCH/CG PUSCH transmission."
 また、two-codewordを適用したSPS PDSCH送信は、「two-codeword SPS PDSCH transmission」と記載され、two-codewordを適用したCG PUSCH送信は、「two-codeword CG PUSCH transmission」と記載される場合がある。 In addition, SPS PDSCH transmission to which two-codeword is applied may be written as "two-codeword SPS PDSCH transmission", and CG PUSCH transmission to which two-codeword is applied may be written to "two-codeword CG PUSCH transmission". be.
 本開示の一態様は、動的なスケジューリングと異なるスケジューリングの一例として、SPS及びCGにおいて、CBG及び/又は2 TBを適用することによって、通信効率を向上させることができる方法を説明する。 One aspect of the present disclosure describes how communication efficiency can be improved by applying CBG and/or 2 TB in SPS and CG as an example of scheduling different from dynamic scheduling.
 <提案1>
 提案1では、端末20が、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定するための判断基準について提案する。
<Proposal 1>
Proposal 1 proposes criteria for determining whether the terminal 20 should apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
 (Alt 1)
 Alt 1では、端末20が、DG PDSCH/DG PUSCHにおいてCBG based transmissionを有効にするための設定情報である既存の上位レイヤパラメータ(RRCパラメータ)、例えば、SPS PDSCHのためのPDSCH-CodeBlockGroupTransmission/CG PUSCHのためのPUSCH-CodeBlockGroupTransmissionに基づいて、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定する。
(Alt 1)
In Alt 1, the terminal 20 uses existing upper layer parameters (RRC parameters) that are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, for example, PDSCH-CodeBlockGroupTransmission/CG PUSCH for SPS PDSCH. Set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission based on PUSCH-CodeBlockGroupTransmission for.
 例えば、端末20は、PDSCH-CodeBlockGroupTransmissionがサービングセルに設定されている場合には、サービングセル上のあらゆるSPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionがサービングセルに設定されている場合には、サービングセル上のあらゆるCG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, if PDSCH-CodeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise applies TB based SPS PDSCH transmission may also be applied. Similarly, if PUSCH-CodeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell, and otherwise applies TB based CG PUSCH transmission may also be applied.
 Alt 1によれば、CBG based SPS PDSCH/CG PUSCH transmissionの適用の有無を、既存のRRCパラメータを用いて行うので、シグナリングのオーバヘッドを少なくできる。 According to Alt 1, whether or not to apply CBG based SPS PDSCH/CG PUSCH transmission is determined using existing RRC parameters, so signaling overhead can be reduced.
 (Alt 2)
 Alt 2では、端末20が、PDSCH-ServingCellConfig内またはPUSCH-ServingCellConfig内の、SPS PDSCH/CG PUSCHにおいてCBG based transmissionを有効にするための設定情報である別の上位レイヤパラメータ(RRCパラメータ)、例えば、SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmissionに基づいて、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定する。
(Alt 2)
In Alt 2, the terminal 20 sets another upper layer parameter (RRC parameter) that is configuration information for enabling CBG based transmission in SPS PDSCH/CG PUSCH in PDSCH-ServingCellConfig or PUSCH-ServingCellConfig, for example, Based on SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmission, set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
 例えば、端末20は、SPS-PDSCH-codeBlockGroupTransmissionがサービングセルに設定されている場合には、サービングセル上のあらゆるSPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionがサービングセルに設定されている場合には、サービングセル上のあらゆるCG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, if SPS-PDSCH-codeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise applies TB based SPS PDSCH transmission may be applied. Similarly, if CG-PUSCH-codeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell; based CG PUSCH transmission may be applied.
 (Alt 3)
 Alt 3では、端末20が、SPS configurationまたはCG configuration毎に設定される個別の情報であってSPS PDSCH/CG PUSCHにおいてCBG based transmissionを有効にするための設定情報である上位レイヤパラメータ(RRCパラメータ)、例えば、SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmissionに基づいて、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定する。
(Alt 3)
In Alt 3, the terminal 20 uses upper layer parameters (RRC parameters), which are individual information set for each SPS configuration or CG configuration, and are setting information for enabling CBG based transmission in SPS PDSCH/CG PUSCH. For example, based on SPS-PDSCH-codeBlockGroupTransmission/CG-PUSCH-codeBlockGroupTransmission, it is set whether to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
 例えば、端末20は、SPS-PDSCH-codeBlockGroupTransmissionがSPS configurationに設定されている場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionがCG configurationに設定されている場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, if SPS-PDSCH-codeBlockGroupTransmission is set to SPS configuration, the terminal 20 applies CBG based SPS PDSCH transmission to the SPS configuration, and otherwise applies TB based SPS PDSCH transmission may also be applied. Similarly, if CG-PUSCH-codeBlockGroupTransmission is set to CG configuration, the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration; otherwise, TB based CG PUSCH transmission may also be applied.
 (Alt 4)
 Alt 4は、Alt 1とAlt 2の組み合わせである。すなわち、Alt 4では、端末20が、DG PDSCH/DG PUSCHにおいてCBG based transmissionを有効にするための設定情報である既存の上位レイヤパラメータ(RRCパラメータ)、及び、PDSCH-ServingCellConfig内またはPUSCH-ServingCellConfig内の、DG PDSCH/DG PUSCHを有効にするための設定情報である別の上位レイヤパラメータ(RRCパラメータ)に基づいて、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定する。
(Alt 4)
Alt 4 is a combination of Alt 1 and Alt 2. That is, in Alt 4, the terminal 20 uses existing upper layer parameters (RRC parameters) that are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, and in PDSCH-ServingCellConfig or PUSCH-ServingCellConfig. Based on another upper layer parameter (RRC parameter) that is the configuration information for enabling DG PDSCH/DG PUSCH, it is possible to select between CBG based SPS PDSCH/CG PUSCH transmission and TB based SPS PDSCH/CG PUSCH transmission. Set whether to apply.
 例えば、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの両方がサービングセルに設定されている場合には、サービングセル上のあらゆるSPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの両方がサービングセルに設定されている場合には、サービングセル上のあらゆるCG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, if both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission are set in the serving cell, the terminal 20 applies CBG based SPS PDSCH transmission to all SPS configurations on the serving cell, and applies CBG based SPS PDSCH transmission to all SPS configurations on the serving cell. In some cases, TB based SPS PDSCH transmission may be applied. Similarly, if both PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the serving cell, the terminal 20 applies CBG based CG PUSCH transmission to all CG configurations on the serving cell, and applies CBG based CG PUSCH transmission to all CG configurations on the serving cell. In some cases, TB based CG PUSCH transmission may be applied.
 あるいは、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの少なくとも一方がサービングセルに設定されている場合には、サービングセル上のあらゆるSPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの少なくとも一方がサービングセルに設定されている場合には、サービングセル上のあらゆるCG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, if at least one of PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based SPS PDSCH transmission to every SPS configuration on the serving cell, and otherwise In this case, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission is set in the serving cell, the terminal 20 applies CBG based CG PUSCH transmission to every CG configuration on the serving cell, and In other cases, TB based CG PUSCH transmission may be applied.
 (Alt 5)
 Alt 5は、Alt 1とAlt 3の組み合わせである。すなわち、Alt 5では、端末20が、DG PDSCH/DG PUSCHにおいてCBG based transmissionを有効にするための設定情報である既存の上位レイヤパラメータ(RRCパラメータ)、及び、SPS configurationまたはCG configuration毎に個別の情報であってSPS PDSCH/CG PUSCHにおいてCBG based transmissionを有効にするための設定情報である上位レイヤパラメータ(RRCパラメータ)に基づいて、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionのどちらを適用するかを設定する。
(Alt 5)
Alt 5 is a combination of Alt 1 and Alt 3. That is, in Alt 5, the terminal 20 uses existing upper layer parameters (RRC parameters), which are configuration information for enabling CBG based transmission in DG PDSCH/DG PUSCH, and individual settings for each SPS configuration or CG configuration. CBG based SPS PDSCH/CG PUSCH transmission and TB based SPS PDSCH/CG PUSCH based on upper layer parameters (RRC parameters), which are configuration information for enabling CBG based transmission in SPS PDSCH/CG PUSCH. Set which transmission to apply.
 例えば、端末20は、PDSCH-CodeBlockGroupTransmissionが設定され、かつ、SPS configuration内のRRCパラメータ(例えばCbgEnable)が(例えば「有効」として)設定されている場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionが設定され、かつ、CG configuration内のRRCパラメータ(例えばCbgEnable)が(例えば「有効」として)設定されている場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, if PDSCH-CodeBlockGroupTransmission is set and the RRC parameter (for example, CbgEnable) in the SPS configuration is set (for example, as "enabled"), the terminal 20 transmits the CBG-based SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if PUSCH-CodeBlockGroupTransmission is set and the RRC parameter (for example, CbgEnable) in the CG configuration is set (for example, as "enabled"), the terminal 20 transmits the CBG to the CG configuration. based CG PUSCH transmission, otherwise TB based CG PUSCH transmission may be applied.
 あるいは、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS configuration内のRRCパラメータの少なくとも一方が設定されている場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG configuration内のRRCパラメータの少なくとも一方が設定されている場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, if at least one of PDSCH-CodeBlockGroupTransmission and RRC parameters in the SPS configuration is set, the terminal 20 applies CBG based SPS PDSCH transmission to the SPS configuration; otherwise, , TB based SPS PDSCH transmission may be applied. Similarly, if at least one of PUSCH-CodeBlockGroupTransmission and RRC parameters in the CG configuration is set, the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration; otherwise, may apply TB based CG PUSCH transmission.
 (Alt 6)
 Alt 6として、Alt 1乃至5のいずれかとactivation DCIフォーマットの組み合わせてもよい。
(Alt 6)
Alt 6 may be a combination of any of Alts 1 to 5 and the activation DCI format.
 例えば、Alt 1とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionが設定され、かつ、DCI format 1_1またはDCI 0_1によってSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionが設定され、かつ、DCI format 1_1またはDCI 0_1によってCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, as a combination of Alt 1 and activation DCI format, if PDSCH-CodeBlockGroupTransmission is set and an SPS configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 uses CBG for the SPS configuration. based SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if PUSCH-CodeBlockGroupTransmission is set and CG configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 applies CBG based CG PUSCH transmission to the CG configuration and applies it to the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 1とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、および、DCI format 1_1またはDCI 0_1によるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、および、DCI format 1_1またはDCI 0_1によるCG configurationのアクティベーションの少なくとも一方が実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 1 and activation DCI format, if at least one of the PDSCH-CodeBlockGroupTransmission setting and the activation of the SPS configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 configures the SPS configuration. In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-CodeBlockGroupTransmission setting and the activation of the CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 configures the CBG based CG PUSCH transmission for the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
 また、Alt 2とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-ServingCellConfigが設定され、かつ、DCI format 1_1またはDCI 0_1によってSPS configurationがアクティベートされた場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-ServingCellConfigが設定され、かつ、DCI format 1_1またはDCI 0_1によってCG configurationがアクティベートされた場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 In addition, as a combination of Alt 2 and activation DCI format, if PDSCH-ServingCellConfig is set and SPS configuration is activated by DCI format 1_1 or DCI 0_1, terminal 20 uses CBG based for SPS configuration. SPS PDSCH transmission may be applied; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if PUSCH-ServingCellConfig is set and CG configuration is activated by DCI format 1_1 or DCI 0_1, terminal 20 applies CBG based CG PUSCH transmission to CG configuration, and otherwise In this case, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 2とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-ServingCellConfigの設定、および、DCI format 1_1またはDCI 0_1によるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-ServingCellConfigの設定、および、DCI format 1_1またはDCI 0_1によるCG configurationのアクティベーションの少なくとも一方が実施された場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 2 and activation DCI format, the terminal 20 configures the SPS configuration when at least one of the PDSCH-ServingCellConfig setting and the SPS configuration activation using DCI format 1_1 or DCI 0_1 is performed. In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-ServingCellConfig setting and the activation of CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 configures CBG based CG PUSCH transmission for CG configuration. otherwise, TB based CG PUSCH transmission may be applied.
 また、Alt 3とactivation DCIフォーマットの組み合わせとして、端末20は、SPS-PDSCH-codeBlockGroupTransmissionがSPS configurationに設定され、かつ、DCI format 1_1またはDCI 0_1によってSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionがCG configurationに設定され、かつ、DCI format 1_1またはDCI 0_1によってCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Additionally, as a combination of Alt 3 and activation DCI format, if SPS-PDSCH-codeBlockGroupTransmission is set to SPS configuration and SPS configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 In other cases, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if CG-PUSCH-codeBlockGroupTransmission is set to CG configuration and CG configuration is activated by DCI format 1_1 or DCI 0_1, terminal 20 transmits CBG based CG PUSCH transmission for the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 3とactivation DCIフォーマットの組み合わせとして、端末20は、SPS-PDSCH-codeBlockGroupTransmissionのSPS configurationへの設定、および、DCI format 1_1またはDCI 0_1によるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionのCG configurationへの設定、および、DCI format 1_1またはDCI 0_1によるCG configurationのアクティベーションの少なくとも一方が実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 3 and activation DCI format, the terminal 20 has at least one of the following: setting SPS-PDSCH-codeBlockGroupTransmission to SPS configuration, and activating SPS configuration by DCI format 1_1 or DCI 0_1. In this case, CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the setting of CG-PUSCH-codeBlockGroupTransmission to the CG configuration and the activation of the CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 , CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 また、Alt 4とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの両方がサービングセルに設定され、かつ、DCI format 1_1またはDCI 0_1によってSPS configurationがアクティベートされた場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの両方がサービングセルに設定され、かつ、DCI format 1_1またはDCI 0_1によってCG configurationがアクティベートされた場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 In addition, as a combination of Alt 4 and activation DCI format, the terminal 20 can perform For SPS configuration, CBG based SPS PDSCH transmission may be applied, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if both PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the serving cell and CG configuration is activated by DCI format 1_1 or DCI 0_1, terminal 20 configures CBG for CG configuration. based CG PUSCH transmission, otherwise TB based CG PUSCH transmission may be applied.
 あるいは、Alt 4とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、SPS-PDSCH-codeBlockGroupTransmissionのサービングセルへの設定、および、DCI format 1_1またはDCI 0_1によるSPS configurationのアクティベーションの少なくとも一つが実施された場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、CG-PUSCH-codeBlockGroupTransmissionのサービングセルへの設定、および、DCI format 1_1またはDCI 0_1によるCG configurationのアクティベーションの少なくとも一つが実施された場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 4 and activation DCI format, the terminal 20 configures at least one of the following: setting PDSCH-CodeBlockGroupTransmission, setting SPS-PDSCH-codeBlockGroupTransmission to the serving cell, and activating SPS configuration using DCI format 1_1 or DCI 0_1. is implemented, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, when at least one of the settings of PUSCH-CodeBlockGroupTransmission, the setting of CG-PUSCH-codeBlockGroupTransmission to the serving cell, and the activation of CG configuration by DCI format 1_1 or DCI 0_1 is performed, the terminal 20 performs CG For the configuration, CBG based CG PUSCH transmission may be applied, and in other cases, TB based CG PUSCH transmission may be applied.
 また、Alt 5とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの両方がSPS configurationに設定され、かつ、DCI format 1_1またはDCI 0_1によってSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの両方がCG configurationに設定され、かつ、DCI format 1_1またはDCI 0_1によってCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 In addition, as a combination of Alt 5 and activation DCI format, the terminal 20 is configured when both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission are set to SPS configuration, and SPS configuration is activated by DCI format 1_1 or DCI 0_1. In this case, CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if both PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the CG configuration, and the CG configuration is activated by DCI format 1_1 or DCI 0_1, the terminal 20 , CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 5とactivation DCIフォーマットの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、SPS-PDSCH-codeBlockGroupTransmissionのSPS configurationへの設定、および、DCI format 1_1またはDCI 0_1によるSPS configurationのアクティベーションの少なくとも一つが実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、CG-PUSCH-codeBlockGroupTransmissionのCG configurationへの設定、および、DCI format 1_1またはDCI 0_1によるCG configurationのアクティベーションの少なくとも一つが実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 5 and activation DCI format, the terminal 20 can configure at least PDSCH-CodeBlockGroupTransmission, SPS-PDSCH-codeBlockGroupTransmission to SPS configuration, and activation of SPS configuration by DCI format 1_1 or DCI 0_1. If one is implemented, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, when at least one of the following is performed, the terminal 20 sets PUSCH-CodeBlockGroupTransmission, sets CG-PUSCH-codeBlockGroupTransmission to CG configuration, and activates CG configuration by DCI format 1_1 or DCI 0_1. CBG based CG PUSCH transmission may be applied to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
 (Alt 7)
 Alt 7として、Alt 1乃至5のいずれかとactivation DCIの中のDCIフィールドの組み合わせてもよい。
(Alt 7)
Alt 7 may be a combination of any of Alts 1 to 5 and the DCI field in activation DCI.
 例えば、Alt 1とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionが設定され、かつ、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionが設定され、かつ、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 For example, as a combination of Alt 1 and the DCI field in the activation DCI, if the terminal 20 is configured with PDSCH-CodeBlockGroupTransmission and the SPS configuration is activated with a DCI format that has a DCI field indicating CBG based SPS PDSCH transmission. In this case, CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if PUSCH-CodeBlockGroupTransmission is set and a CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission, the terminal 20 transmits CBG based CG to the CG configuration. PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 1とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、および、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、および、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるCG configurationのアクティベーションの少なくとも一方が実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 1 and the DCI field in the activation DCI, the terminal 20 configures at least one of the PDSCH-CodeBlockGroupTransmission and the activation of the SPS configuration in a DCI format with a DCI field indicating CBG based SPS PDSCH transmission. is implemented, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-CodeBlockGroupTransmission setting and the activation of a CG configuration in a DCI format that has a DCI field indicating CBG based CG PUSCH transmission is performed, the terminal 20 configures the CG configuration. In other cases, CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 また、Alt 2とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-ServingCellConfigが設定され、かつ、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりSPS configurationがアクティベートされた場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-ServingCellConfigが設定され、かつ、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりCG configurationがアクティベートされた場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Also, as a combination of Alt 2 and the DCI field in the activation DCI, if the terminal 20 is configured with PDSCH-ServingCellConfig and the SPS configuration is activated with a DCI format that has a DCI field indicating CBG based SPS PDSCH transmission. In some cases, CBG based SPS PDSCH transmission may be applied to the SPS configuration, and in other cases, TB based SPS PDSCH transmission may be applied. Similarly, if PUSCH-ServingCellConfig is set and the CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission, the terminal 20 transmits CBG based CG PUSCH to the CG configuration. In other cases, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 2とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-ServingCellConfigの設定、および、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-ServingCellConfigの設定、および、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるCG configurationのアクティベーションの少なくとも一方が実施された場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 2 and the DCI field in the activation DCI, the terminal 20 configures at least one of the PDSCH-ServingCellConfig and the activation of the SPS configuration in the DCI format with the DCI field indicating CBG based SPS PDSCH transmission. is implemented, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the PUSCH-ServingCellConfig setting and the activation of the CG configuration in the DCI format that has a DCI field indicating CBG based CG PUSCH transmission is performed, the terminal 20 configures the CG configuration. , CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 また、Alt 3とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、SPS-PDSCH-codeBlockGroupTransmissionがSPS configurationに設定され、かつ、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionがCG configurationに設定され、かつ、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 In addition, as a combination of Alt 3 and the DCI field in activation DCI, the terminal 20 is configured with SPS configuration according to the DCI format in which SPS-PDSCH-codeBlockGroupTransmission is set to SPS configuration and has a DCI field indicating CBG based SPS PDSCH transmission. If activated, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if CG-PUSCH-codeBlockGroupTransmission is set in a CG configuration and the CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission, the terminal 20 In other cases, CBG based CG PUSCH transmission may be applied; otherwise, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 3とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、SPS-PDSCH-codeBlockGroupTransmissionのSPS configurationへの設定、および、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるSPS configurationのアクティベーションの少なくとも一方が実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、CG-PUSCH-codeBlockGroupTransmissionのCG configurationへの設定、および、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるCG configurationのアクティベーションの少なくとも一方が実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 3 and the DCI field in the activation DCI, the terminal 20 sets SPS-PDSCH-codeBlockGroupTransmission to the SPS configuration, and configures the SPS configuration according to the DCI format with the DCI field indicating CBG based SPS PDSCH transmission. If at least one of the activations has been performed, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if at least one of the setting of CG-PUSCH-codeBlockGroupTransmission to the CG configuration and the activation of the CG configuration according to the DCI format having a DCI field indicating CBG based CG PUSCH transmission are performed, the terminal 20 , CBG based CG PUSCH transmission may be applied to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
 また、Alt 4とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの両方がサービングセルに設定され、かつ、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりSPS configurationがアクティベートされた場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの両方がサービングセルに設定され、かつ、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりCG configurationがアクティベートされた場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Additionally, as a combination of the DCI fields in Alt 4 and activation DCI, the terminal 20 has both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission set in the serving cell, and has a DCI field indicating CBG based SPS PDSCH transmission. If the SPS configuration is activated by the DCI format, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, in the terminal 20, if both PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the serving cell, and the CG configuration is activated using a DCI format that has a DCI field indicating CBG based CG PUSCH transmission, For CG configuration, CBG based CG PUSCH transmission may be applied, and in other cases, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 4とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、SPS-PDSCH-codeBlockGroupTransmissionのサービングセルへの設定、および、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるSPS configurationのアクティベーションの少なくとも一つが実施された場合には、SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、CG-PUSCH-codeBlockGroupTransmissionのサービングセルへの設定、および、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるCG configurationのアクティベーションの少なくとも一つが実施された場合には、CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of the DCI field in Alt 4 and activation DCI, the terminal 20 has a DCI field indicating the setting of PDSCH-CodeBlockGroupTransmission, the setting of SPS-PDSCH-codeBlockGroupTransmission to the serving cell, and the CBG based SPS PDSCH transmission. If at least one of the activations of the SPS configuration in DCI format has been performed, apply CBG based SPS PDSCH transmission to the SPS configuration, otherwise apply TB based SPS PDSCH transmission. Good too. Similarly, the terminal 20 performs at least one of the following: setting PUSCH-CodeBlockGroupTransmission, setting CG-PUSCH-codeBlockGroupTransmission to the serving cell, and activating CG configuration in a DCI format with a DCI field indicating CBG based CG PUSCH transmission. If so, CBG based CG PUSCH transmission may be applied to the CG configuration; otherwise, TB based CG PUSCH transmission may be applied.
 また、Alt 5とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionとSPS-PDSCH-codeBlockGroupTransmissionの両方がSPS configurationに設定され、かつ、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりSPS configurationがアクティベートされた場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionとCG-PUSCH-codeBlockGroupTransmissionの両方がCG configurationに設定され、かつ、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによりCG configurationがアクティベートされた場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Furthermore, as a combination of the DCI field in Alt 5 and activation DCI, the terminal 20 has the DCI field indicating CBG based SPS PDSCH transmission that both PDSCH-CodeBlockGroupTransmission and SPS-PDSCH-codeBlockGroupTransmission are set to SPS configuration. If the SPS configuration is activated using the DCI format, CBG based SPS PDSCH transmission may be applied to the SPS configuration; otherwise, TB based SPS PDSCH transmission may be applied. Similarly, if both PUSCH-CodeBlockGroupTransmission and CG-PUSCH-codeBlockGroupTransmission are set in the CG configuration, and the CG configuration is activated using the DCI format that has a DCI field indicating CBG based CG PUSCH transmission, the terminal 20 , CBG based CG PUSCH transmission may be applied to the CG configuration, and in other cases, TB based CG PUSCH transmission may be applied.
 あるいは、Alt 5とactivation DCIの中のDCIフィールドの組み合わせとして、端末20は、PDSCH-CodeBlockGroupTransmissionの設定、SPS-PDSCH-codeBlockGroupTransmissionのSPS configurationへの設定、および、CBG based SPS PDSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるSPS configurationのアクティベーションの少なくとも一つが実施された場合には、当該SPS configurationに対して、CBG based SPS PDSCH transmissionを適用し、それ以外の場合には、TB based SPS PDSCH transmissionを適用してもよい。同様に、端末20は、PUSCH-CodeBlockGroupTransmissionの設定、CG-PUSCH-codeBlockGroupTransmissionのCG configurationへの設定、および、CBG based CG PUSCH transmissionを示すDCIフィールドを持つDCIフォーマットによるCG configurationのアクティベーションの少なくとも一つが実施された場合には、当該CG configurationに対して、CBG based CG PUSCH transmissionを適用し、それ以外の場合には、TB based CG PUSCH transmissionを適用してもよい。 Alternatively, as a combination of Alt 5 and the DCI field in the activation DCI, the terminal 20 configures the PDSCH-CodeBlockGroupTransmission, the SPS-PDSCH-codeBlockGroupTransmission to the SPS configuration, and the DCI field indicating CBG based SPS PDSCH transmission. If at least one activation of an SPS configuration with a DCI format has been performed, apply CBG based SPS PDSCH transmission to that SPS configuration, otherwise apply TB based SPS PDSCH transmission. You may. Similarly, the terminal 20 performs at least one of the following: setting PUSCH-CodeBlockGroupTransmission, setting CG-PUSCH-codeBlockGroupTransmission to CG configuration, and activating CG configuration in a DCI format with a DCI field indicating CBG based CG PUSCH transmission. If implemented, CBG based CG PUSCH transmission may be applied to the CG configuration; otherwise, TB based CG PUSCH transmission may be applied.
 (SPS PDSCH/CG PUSCHのCBG数について)
 SPS PDSCHまたはCG PUSCHの1 TB当たりのCBGの最大値は、以下のようにして設定されてよい。
(About the number of CBG of SPS PDSCH/CG PUSCH)
The maximum value of CBG per 1 TB of SPS PDSCH or CG PUSCH may be set as follows.
 (オプション1)
 サービングセル上のSPS/CG configurationについて、CBG based SPS PDSCH/CG PUSCH transmissionが適用される場合、SPS PDSCHまたはCG PUSCHの1 TB当たりのCBGの最大値は、サービングセルごとに構成されるパラメータ(例えばN)により決定されてよい。
(Option 1)
For SPS/CG configuration on the serving cell, if CBG based SPS PDSCH/CG PUSCH transmission is applied, the maximum value of CBG per 1 TB of SPS PDSCH or CG PUSCH depends on the parameters configured for each serving cell (e.g. N) may be determined by
 (オプション2)
 各SPS/CG configurationについて、CBG based SPS PDSCH/CG PUSCH transmissionが適用される場合、SPS PDSCHまたはCG PUSCHの1 TB当たりのCBGの最大数は、SPS/CG configurationで設定されたパラメータ(例えばSPS/CG configuration#iのN_i)によって決定されてよい。
(Option 2)
For each SPS/CG configuration, if CBG based SPS PDSCH/CG PUSCH transmission is applied, the maximum number of CBGs per 1 TB of SPS PDSCH or CG PUSCH depends on the parameters set in the SPS/CG configuration (e.g. SPS/ N_i) of CG configuration #i).
 (効果)
 以上、説明した提案1によれば、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。例えば、1 TBを4つのコードブロックに分けて送信する場合、1つのコードブロックにのみ誤りが発生した際には、当該コードブロックのみを再送すればよいので、再送されるデータ量を、TB単位で送信する場合に比べて低減させることができる。
(effect)
According to Proposal 1 explained above, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which is quasi-static scheduling, so it is possible to reduce retransmission frequency, reduce delay, improve transmission efficiency, and Reliability can be ensured. For example, when transmitting 1 TB divided into 4 code blocks, if an error occurs in only one code block, only that code block needs to be retransmitted, so the amount of data to be retransmitted can be calculated in TB units. This can be reduced compared to the case of transmission using
 また、提案1によれば、SPS PDSCH/CG PUSCHにおいて、CBG based transmissionとTB based transmissionを適応的に切り替えることができる。例えば、XRトラフィック向けのSPS/CG configurationについてはCBG based SPS PDSCH/CG PUSCH transmissionを適用し、URLLCトラフィック向けのSPS/CG configurationについてはTB based SPS PDSCH/CG PUSCH transmissionを適用できる。 Furthermore, according to Proposal 1, it is possible to adaptively switch between CBG based transmission and TB based transmission in SPS PDSCH/CG PUSCH. For example, CBG based SPS PDSCH/CG PUSCH transmission can be applied to SPS/CG configuration for XR traffic, and TB based SPS PDSCH/CG PUSCH transmission can be applied to SPS/CG configuration for URLLC traffic.
 <提案2>
 提案2では、CBG based SPS PDSCHに対するHARQ-ACK CBについて説明する。以下では、SPS PDSCHに対するHARQ-ACK CBに含まれるHARQ-ACKビットは、「SPS HARQ-ACKビット」と記載される。
<Proposal 2>
Proposal 2 describes HARQ-ACK CB for CBG based SPS PDSCH. In the following, the HARQ-ACK bit included in the HARQ-ACK CB for SPS PDSCH will be referred to as "SPS HARQ-ACK bit."
 なお、TB based SPS PDSCH及びCBG based SPS PDSCHは、纏めて、SPS PDSCHと記載される場合がある。また、TB based DG PDSCH及びCBG based DG PDSCHは、纏めて、DG PDSCHと記載される場合がある。また、TB based SPS PDSCH及びTB based DG PDSCHは、纏めて、TB based PDSCHと記載される場合がある。CBG based SPS PDSCH及びCBG based DG PDSCHは、纏めて、CBG based PDSCHと記載される場合がある。 Note that TB based SPS PDSCH and CBG based SPS PDSCH may be collectively referred to as SPS PDSCH. Additionally, TB based DG PDSCH and CBG based DG PDSCH may be collectively referred to as DG PDSCH. Furthermore, TB based SPS PDSCH and TB based DG PDSCH may be collectively referred to as TB based PDSCH. CBG based SPS PDSCH and CBG based DG PDSCH may be collectively referred to as CBG based PDSCH.
 図5は、提案2のHARQ-ACK CBの一例を示す図である。図5に示すHARQ-ACK CBにおいて、「HARQ-ACK for TB based DG PDSCH」は、TB based DG PDSCHに対するHARQ-ACKを含むsub-codebookに対応し、「HARQ-ACK for CBG based DG PDSCH」は、CBG based DG PDSCHに対するHARQ-ACKを含むsub-codebookに対応する。そして、図5に示すHARQ-ACK CBにおいて、「HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)」は、TB based SPS PDSCHに対するHARQ-ACK、及び/又は、CBG based SPS PDSCHに対するHARQ-ACKを含むsub-codebookに対応する。 FIG. 5 is a diagram showing an example of HARQ-ACK CB of Proposal 2. In the HARQ-ACK CB shown in Figure 5, “HARQ-ACK for TB based DG PDSCH” corresponds to a sub-codebook that includes HARQ-ACK for TB based DG PDSCH, and “HARQ-ACK for CBG based DG PDSCH” , corresponds to the sub-codebook including HARQ-ACK for CBG based DG PDSCH. In the HARQ-ACK CB shown in Figure 5, "HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)" means HARQ-ACK for TB based SPS PDSCH and/or HARQ-ACK for CBG based SPS PDSCH. Supports sub-codebooks including ACK.
 なお、以下の説明では、「HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)」は、TB based SPS PDSCHに対するHARQ-ACK、及び、CBG based SPS PDSCHに対するHARQ-ACKの両方を含む例を示すが、「HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)」に、TB based SPS PDSCHに対するHARQ-ACK、及び、CBG based SPS PDSCHに対するHARQ-ACKの少なくとも一方が含まれなくてもよい。また、以下では、「HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)」は、「HARQ-ACK for SPS PDSCH」または「SPS HARQ-ACK CB」と略記する場合がある。 In the following explanation, "HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)" refers to an example that includes both HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH. However, "HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)" does not need to include at least one of HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH. . In addition, hereinafter, "HARQ-ACK for SPS PDSCH (including TB and CBG based SPS)" may be abbreviated as "HARQ-ACK for SPS PDSCH" or "SPS HARQ-ACK CB."
 図5に示す「HARQ-ACK for SPS PDSCH」の構成には、以下に示すオプションの1つに基づいた構成が採用されてよい。 For the configuration of "HARQ-ACK for SPS PDSCH" shown in FIG. 5, a configuration based on one of the options shown below may be adopted.
 (オプション1)
 オプション1では、図4を用いて説明したSPS HARQ-ACKのCBの構築手順が、CBG based SPS PDSCHに対するHARQ-ACKのCBの構築手順に再利用される。ここで、HARQ-ACKビット数のみが、CBG based SPS PDSCHに対するHARQ-ACK CBとTB based SPS PDSCHに対するHARQ-ACK CBとの間で異なってよい。別言すると、HARQ-ACKビット数が、CBG based SPS PDSCHに対するHARQ-ACK CBとTB based SPS PDSCHに対するHARQ-ACK CBとの間で異なる一方で、HARQ-ACKビット数以外の要素は、CBG based SPS PDSCHに対するHARQ-ACK CBとTB based SPS PDSCHに対するHARQ-ACK CBとの間で共通であってよい。HARQ-ACKビット数以外の要素には、例えば、HARQ-ACK CBにおける、HARQ-ACKの情報(例えば、フィールド)の順番に関する取り決めが含まれる。
(Option 1)
In option 1, the SPS HARQ-ACK CB construction procedure described using FIG. 4 is reused as the HARQ-ACK CB construction procedure for CBG based SPS PDSCH. Here, only the number of HARQ-ACK bits may differ between the HARQ-ACK CB for CBG based SPS PDSCH and the HARQ-ACK CB for TB based SPS PDSCH. In other words, while the number of HARQ-ACK bits is different between the HARQ-ACK CB for CBG based SPS PDSCH and the HARQ-ACK CB for TB based SPS PDSCH, elements other than the number of HARQ-ACK bits are It may be common between the HARQ-ACK CB for SPS PDSCH and the HARQ-ACK CB for TB based SPS PDSCH. Elements other than the number of HARQ-ACK bits include, for example, a convention regarding the order of HARQ-ACK information (eg, fields) in the HARQ-ACK CB.
 SPS HARQ-ACK CBにおけるSPS HARQ-ACKビットの順序(フィールドの順序)は、最初に、サービングセルのセルインデックスの昇順に基づき、次に、サービングセルのインデックスのそれぞれにて、SPS configurationのインデックスの昇順に基づき、次に、SPS configurationのインデックスのそれぞれにて、DLスロットのインデックスの昇順に基づいてよい。CBG based SPS PDSCHに対するHARQ-ACK CBとTB based SPS PDSCHに対するHARQ-ACK CBとの間で、このSPS HARQ-ACKビットの順序(フィールドの順序)が、共通であってもよい。 The order of the SPS HARQ-ACK bits (field order) in the SPS HARQ-ACK CB is based first on the ascending order of the cell index of the serving cell, and then in the ascending order of the index of the SPS configuration in each of the serving cell indices. DL slots may then be based on ascending indexes of the DL slots in each of the indexes of the SPS configuration. This SPS HARQ-ACK bit order (field order) may be common between the HARQ-ACK CB for CBG-based SPS PDSCH and the HARQ-ACK CB for TB-based SPS PDSCH.
 (オプション2)
 オプション2では、TB based SPS PDSCH transmissionを行うセルと、CBG based SPS PDSCH transmissionを行うセルとに分類される。例えば、オプション2では、HARQ-ACK for SPS PDSCHにおいて、最初に、TB based SPS PDSCH transmissionのみを行うセルに対応するフィールドが存在し、次に、CBG based SPS PDSCH transmissionのみを行うセルに対応するフィールドが存在する。ここで、例えば、TB based SPS PDSCH transmissionのみを行うセルに対応するフィールドには、TB based SPS PDSCH transmissionのみを行うセルから受信するTB based SPS PDSCHに対するHARQ-ACKビットのみが含まれてよい。また、CBG based SPS PDSCH transmissionのみを行うセルに対応するフィールドにとは、CBG based SPS PDSCH transmissionのみを行うセルから受信するCBG based SPS PDSCHに対するHARQ-ACKビットのみが含まれてよいを有するセルに対応する。
(Option 2)
In option 2, cells are classified into cells that perform TB based SPS PDSCH transmission and cells that perform CBG based SPS PDSCH transmission. For example, in option 2, in HARQ-ACK for SPS PDSCH, there is first a field corresponding to a cell that performs only TB based SPS PDSCH transmission, and then a field corresponding to a cell that performs only CBG based SPS PDSCH transmission. exists. Here, for example, a field corresponding to a cell that performs only TB based SPS PDSCH transmission may include only the HARQ-ACK bit for the TB based SPS PDSCH received from a cell that performs only TB based SPS PDSCH transmission. In addition, the field corresponding to a cell that only performs CBG based SPS PDSCH transmission may include only the HARQ-ACK bit for CBG based SPS PDSCH received from a cell that only performs CBG based SPS PDSCH transmission. handle.
 なお、TB based SPS PDSCH transmissionのみを行うセルとは、TB based SPS PDSCH transmissionを行い、CBG based SPS PDSCH transmissionを行わないセルに対応してもよい。また、CBG based SPS PDSCH transmissionのみを行うセルとは、CBG based SPS PDSCH transmissionを行い、TB based SPS PDSCH transmissionを行わないセルに対応してもよい。 Note that a cell that only performs TB based SPS PDSCH transmission may correspond to a cell that performs TB based SPS PDSCH transmission but does not perform CBG based SPS PDSCH transmission. Furthermore, a cell that only performs CBG based SPS PDSCH transmission may correspond to a cell that performs CBG based SPS PDSCH transmission but does not perform TB based SPS PDSCH transmission.
 なお、TB based SPS PDSCH transmissionのみを行うセルは、1つであっても、複数であってもよい。また、TB based SPS PDSCH transmissionのみを行うセルが複数存在する場合、複数のセルのセットが構成されてよい。TB based SPS PDSCH transmissionのみを行う複数のセルのセルの順序については、特に限定されない。 Note that the number of cells that perform only TB-based SPS PDSCH transmission may be one or multiple. Furthermore, if there are multiple cells that perform only TB based SPS PDSCH transmission, a set of multiple cells may be configured. There is no particular limitation on the order of cells that perform only TB based SPS PDSCH transmission.
 例えば、TB based SPS PDSCH transmissionのみを行う複数のセルの順序は、図4を用いて説明したSPS HARQ-ACKのCBの構築手順の順序を再利用してよい。例えば、TB based SPS PDSCH transmissionのみを行う複数のセルの順序は、最初に、サービングセルのセルインデックスの順に基づき、次に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。例示的には、TB based SPS PDSCH transmissionのみを行う複数のセルの順序は、最初に、サービングセルのセルインデックスの昇順に基づき、次に、SPS configurationのインデックスの昇順に基づき、次に、DLスロットのインデックスの昇順に基づいてよい。 For example, for the order of multiple cells that perform only TB-based SPS PDSCH transmission, the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4 may be reused. For example, the order of multiple cells that only perform TB based SPS PDSCH transmission is first based on the order of cell index of the serving cell, then based on the order of index of SPS configuration, and then based on order of index of DL slot. good. Illustratively, the order of multiple cells that perform only TB based SPS PDSCH transmission is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then the order of the DL slots. May be based on ascending index order.
 図6は、提案2のオプション2のHARQ-ACK CBの一例を示す図である。オプション2では、図6に示すように、「HARQ-ACK for SPS PDSCH」において、「Cell with only TB based SPS」が最初に存在し、次に、「Cell with only CBG based SPS」が存在する。ここで、「Cell with only TB based SPS」は、TB based SPS PDSCHに対するHARQ-ACKのみを含むフィールドに対応し、「Cell with only CBG based SPS」は、CBG based SPS PDSCHに対するHARQ-ACKのみを含むフィールドに対応してよい。 FIG. 6 is a diagram showing an example of HARQ-ACK CB of Option 2 of Proposal 2. In option 2, as shown in FIG. 6, in "HARQ-ACK for SPS PDSCH", "Cell with only TB based SPS" exists first, and then "Cell with only CBG based SPS" exists. Here, "Cell with only TB based SPS" corresponds to a field that only includes HARQ-ACK for TB based SPS PDSCH, and "Cell with only CBG based SPS" includes only HARQ-ACK for CBG based SPS PDSCH May correspond to the field.
 なお、図6では、「Cell with only TB based SPS」及び「Cell with only CBG based SPS」は、それぞれ、1つである例を示すが、「Cell with only TB based SPS」及び「Cell with only CBG based SPS」は、それぞれ、2つ以上であってもよい。 In addition, in FIG. 6, "Cell with only TB based SPS" and "Cell with only CBG based SPS" each show an example, but "Cell with only TB based SPS" and "Cell with only CBG" based SPS" may be two or more.
 そして、図6に示すように、「Cell with only TB based SPS」に含まれるフィールドの順序は、最初に、「Cell index #i_1」、「Cell index #i_2」というサービングセルのセルインデックスの順に基づいている。そして、「Cell index #i_1」に含まれるフィールドの順序は、「SPS configuration index #j_1」、「SPS configuration index #j_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #j_1」に含まれるセルの順序は、「DL slot index #n_1」、「DL slot index #n_2」と示されるようにDLスロットのインデックスの順に基づいている。 As shown in Figure 6, the order of the fields included in "Cell with only TB based SPS" is first based on the order of the cell index of the serving cell, "Cell index #i_1" and "Cell index #i_2". There is. The order of the fields included in "Cell index #i_1" is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1" and "SPS configuration index #j_2." Next, the order of the cells included in "SPS configuration index #j_1" is based on the order of the DL slot index, as shown by "DL slot index #n_1" and "DL slot index #n_2".
 なお、図6では省略されているが、「Cell index #i_2」に含まれるセルの順序は、SPS configurationのインデックスの順に基づいてよい。また、「SPS configuration index #j_2」に含まれるセルの順序は、DLスロットのインデックスの順に基づいてよい。 Although omitted in FIG. 6, the order of the cells included in "Cell index #i_2" may be based on the order of the index of the SPS configuration. Further, the order of cells included in "SPS configuration index #j_2" may be based on the order of DL slot indexes.
 なお、CBG based SPS PDSCH transmissionのみを行うセルは、複数であってもよい。また、CBG based SPS PDSCH transmissionのみを行うセルは、複数のセルのセットで構成されてよい。CBG based SPS PDSCH transmissionのみを行うセルに複数のセルが含まれる場合のセルの順序については、特に限定されない。例えば、以下のオプション2-1及びオプション2-2の何れかの順序が採用されてよい。 Note that there may be multiple cells that perform only CBG-based SPS PDSCH transmission. Furthermore, a cell that performs only CBG-based SPS PDSCH transmission may be configured as a set of multiple cells. When a plurality of cells are included in a cell that only performs CBG-based SPS PDSCH transmission, the order of the cells is not particularly limited. For example, any of the following options 2-1 and 2-2 may be adopted.
 (オプション2-1)
 オプション2-1では、CBG based SPS PDSCH transmissionのみを行うセルに含まれる複数のフィールドの順序は、既存の順序付けの原則を再利用する。既存の順序付けの原則とは、図4を用いて説明したSPS HARQ-ACKのCBの構築手順の順序であってよい。例えば、CBG based SPS PDSCH transmissionのみを行うセルに含まれる複数のフィールドの順序は、最初に、サービングセルのセルインデックスの順に基づき、次に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。例示的には、CBG based SPS PDSCH transmissionのみを行うセルに含まれる複数のフィールドの順序は、最初に、サービングセルのセルインデックスの昇順に基づき、次に、SPS configurationのインデックスの昇順に基づき、次に、DLスロットのインデックスの昇順に基づいてよい。
(Option 2-1)
In option 2-1, the order of multiple fields included in a cell that only performs CBG based SPS PDSCH transmission reuses the existing ordering principle. The existing ordering principle may be the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4. For example, the order of fields included in a cell that only performs CBG based SPS PDSCH transmission is first based on the order of the cell index of the serving cell, then based on the order of the index of the SPS configuration, and then the order of the index of the DL slot. May be based on the order of Illustratively, the order of multiple fields included in a cell that only performs CBG based SPS PDSCH transmission is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then , may be based on ascending order of DL slot index.
 図7は、提案2のオプション2-1のHARQ-ACK CBの一例を示す図である。オプション2-1では、図6の例と同様に、「HARQ-ACK for SPS PDSCH」において、「Cell with only TB based SPS」が最初に存在し、次に、「Cell with only CBG based SPS」が存在する。ここで、「Cell with only TB based SPS」は、TB based SPS PDSCHに対するHARQ-ACKのみを含むフィールドに対応し、「Cell with only CBG based SPS」は、CBG based SPS PDSCHに対するHARQ-ACKのみを含むフィールドに対応してよい。 FIG. 7 is a diagram showing an example of HARQ-ACK CB of option 2-1 of proposal 2. In option 2-1, in "HARQ-ACK for SPS PDSCH", "Cell with only TB based SPS" exists first, and then "Cell with only CBG based SPS" exists, as in the example in Figure 6. exist. Here, "Cell with only TB based SPS" corresponds to a field that only includes HARQ-ACK for TB based SPS PDSCH, and "Cell with only CBG based SPS" includes only HARQ-ACK for CBG based SPS PDSCH May correspond to the field.
 なお、図7では、「Cell with only TB based SPS」及び「Cell with only CBG based SPS」は、それぞれ、1つである例を示すが、「Cell with only TB based SPS」及び「Cell with only CBG based SPS」は、それぞれ、2つ以上であってもよい。 In addition, in FIG. 7, "Cell with only TB based SPS" and "Cell with only CBG based SPS" each show an example, but "Cell with only TB based SPS" and "Cell with only CBG based SPS" may be two or more.
 そして、図7に示すように、「Cell with only CBG based SPS」に含まれるフィールドの順序は、最初に、「Cell index #i_1」、「Cell index #i_2」というサービングセルのセルインデックスの順に基づいている。そして、「Cell index #i_1」に含まれるフィールドの順序は、「SPS configuration index #j_1」、「SPS configuration index #j_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #j_1」に含まれるフィールドの順序は、「DL slot index #n_1」、「DL slot index #n_2」と示されるようにDLスロットのインデックスの順に基づいている。 As shown in Figure 7, the order of the fields included in "Cell with only CBG based SPS" is first based on the order of the cell index of the serving cell, "Cell index #i_1" and "Cell index #i_2". There is. The order of the fields included in "Cell index #i_1" is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1" and "SPS configuration index #j_2." Next, the order of the fields included in "SPS configuration index #j_1" is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2."
 なお、図7では省略されているが、「Cell index #i_2」に含まれるフィールドの順序は、SPS configurationのインデックスの順に基づいてよい。また、「SPS configuration index #j_2」に含まれるフィールドの順序は、DLスロットのインデックスの順に基づいてよい。 Although omitted in FIG. 7, the order of the fields included in "Cell index #i_2" may be based on the order of the SPS configuration index. Further, the order of the fields included in “SPS configuration index #j_2” may be based on the order of the DL slot index.
 (オプション2-2)
 オプション2-2では、CBG based SPS PDSCH transmissionを行うセルに含まれる複数のフィールドの順序は、最初に、サービングセルのセルインデックスの順に基づいてよい。そして、次に、CBG based SPS PDSCH transmissionを行うセルに含まれる複数のフィールドの順序は、先に、TB based transmissionのSPS configurationに対応するフィールドが並び、後に、CBG based transmissionのSPS configurationに対応するフィールドが並ぶ。この場合、或るサービングセルのセルインデックスに対応するフィールドの中では、先に、TB based transmissionのSPS configurationのフィールドが並び、次に、CBG based transmissionのSPS configurationのフィールドが並ぶ。
(Option 2-2)
In option 2-2, the order of fields included in a cell performing CBG based SPS PDSCH transmission may be initially based on the order of the cell index of the serving cell. Next, the order of multiple fields included in a cell that performs CBG based SPS PDSCH transmission is that fields corresponding to the SPS configuration of TB based transmission are arranged first, and then fields corresponding to the SPS configuration of CBG based transmission are arranged. The fields are lined up. In this case, among the fields corresponding to the cell index of a certain serving cell, the SPS configuration field for TB based transmission is arranged first, and then the SPS configuration field for CBG based transmission is arranged next.
 TB based transmissionの或るSPS configurationのインデックスにおいては、既存の順序付けの原則が再利用されてもよい。既存の順序付けの原則とは、図4を用いて説明したSPS HARQ-ACKのCBの構築手順の順序であってよい。例えば、TB based transmissionの或るSPS configurationのインデックスに対応するフィールドの中のフィールドの順序は、最初に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。例示的には、TB based transmissionの或るSPS configurationのインデックスに対応するフィールドの中のフィールドの順序は、最初に、SPS configurationのインデックスの昇順に基づき、次に、DLスロットのインデックスの昇順に基づいてよい。 In the index of certain SPS configurations of TB based transmission, existing ordering principles may be reused. The existing ordering principle may be the order of the SPS HARQ-ACK CB construction procedure described using FIG. 4. For example, the order of fields among the fields corresponding to an index of a certain SPS configuration of a TB based transmission may be based first on the order of the index of the SPS configuration and then on the order of the index of the DL slot. Illustratively, the order of the fields within the fields corresponding to the index of a certain SPS configuration of a TB based transmission is first based on the ascending index of the SPS configuration, and then based on the ascending index of the DL slot. It's fine.
 図8は、提案2のオプション2-2のHARQ-ACK CBの一例を示す図である。オプション2-2では、図8に示すように、「HARQ-ACK for SPS PDSCH」において、「Cell with only TB based SPS」が最初に存在し、次に、「Cell with CBG based SPS」が存在する。図7において「Cell with only CBG based SPS」が、図8では、「Cell with CBG based SPS」に置き換わっている。ここで、「Cell with only TB based SPS」は、TB based SPS PDSCHに対するHARQ-ACKのみを含むフィールドに対応し、「Cell with CBG based SPS」は、CBG based SPS PDSCHに対するHARQ-ACKを含むフィールドに対応してよい。 FIG. 8 is a diagram showing an example of HARQ-ACK CB of option 2-2 of proposal 2. In option 2-2, as shown in Figure 8, in "HARQ-ACK for SPS PDSCH", "Cell with only TB based SPS" exists first, and then "Cell with CBG based SPS" exists. . "Cell with only CBG based SPS" in FIG. 7 is replaced with "Cell with CBG based SPS" in FIG. 8. Here, "Cell with only TB based SPS" corresponds to the field that contains only HARQ-ACK for TB based SPS PDSCH, and "Cell with CBG based SPS" corresponds to the field that contains HARQ-ACK for CBG based SPS PDSCH. You can handle it.
 なお、図8では、「Cell with only TB based SPS」及び「Cell with CBG based SPS」は、それぞれ、1つである例を示すが、「Cell with only TB based SPS」及び「Cell with CBG based SPS」は、それぞれ、2つ以上であってもよい。 In addition, in FIG. 8, "Cell with only TB based SPS" and "Cell with CBG based SPS" each show an example, but "Cell with only TB based SPS" and "Cell with CBG based SPS" ” may be two or more.
 そして、図8に示すように、「Cell with CBG based SPS」に含まれるフィールドの順序は、最初に、「Cell index #i_1」、「Cell index #i_2」というサービングセルのセルインデックスの順に基づいている。そして、「Cell index #i_1」に対応するフィールドにおいて、先に、「TB based SPS configuration」が並び、後に、「CBG based SPS configuration」が並ぶ。ここで、「TB based SPS configuration」は、TB based transmissionのSPS configurationに対応し、「CBG based SPS configuration」は、CBG based transmissionのSPS configurationに対応する。 As shown in Figure 8, the order of the fields included in "Cell with CBG based SPS" is first based on the order of the cell index of the serving cell, "Cell index #i_1" and then "Cell index #i_2". . In the field corresponding to "Cell index #i_1", "TB based SPS configuration" is listed first, followed by "CBG based SPS configuration". Here, "TB based SPS configuration" corresponds to SPS configuration of TB based transmission, and "CBG based SPS configuration" corresponds to SPS configuration of CBG based transmission.
 次に、「TB based SPS configuration」に含まれるフィールドの順序は、「SPS configuration index #j_1」、「SPS configuration index #j_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #j_1」に含まれるセルの順序は、「DL slot index #m_1」、「DL slot index #m_2」と示されるようにDLスロットのインデックスの順に基づいている。 Next, the order of the fields included in "TB based SPS configuration" is based on the order of the index of SPS configuration, as shown in "SPS configuration index #j_1" and "SPS configuration index #j_2". Next, the order of the cells included in "SPS configuration index #j_1" is based on the order of the DL slot index, as shown by "DL slot index #m_1" and "DL slot index #m_2".
 なお、図8では省略されているが、「Cell index #i_2」において、「Cell index #i_1」と同様に、「TB based SPS configuration」が並び、後に、「CBG based SPS configuration」が並んでよい。また、「SPS configuration index #j_2」に含まれるフィールドの順序は、DLスロットのインデックスの順に基づいてよい。 Although it is omitted in Figure 8, in "Cell index #i_2", "TB based SPS configuration" may be listed in the same way as in "Cell index #i_1", followed by "CBG based SPS configuration". . Further, the order of the fields included in “SPS configuration index #j_2” may be based on the order of the DL slot index.
 なお、図8では省略されている「CBG based SPS configuration」に含まれるセルの順序は、特に、限定されない。例えば、以下のオプション2-2A及びオプション2-2Bの何れかの順序が採用されてよい。 Note that the order of cells included in "CBG based SPS configuration", which is omitted in FIG. 8, is not particularly limited. For example, any order of option 2-2A and option 2-2B below may be adopted.
 (オプション2-2A)
 オプション2-2Aでは、「CBG based SPS configuration」に含まれるフィールドの順序は、先に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。例えば、SPS configurationのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。また、DLスロットのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。
(Option 2-2A)
In option 2-2A, the order of the fields included in "CBG based SPS configuration" may be based first on the index order of the SPS configuration and then on the order of the DL slot index. For example, the order of the SPS configuration indexes may be in ascending order or in descending order. Further, the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
 図9は、提案2のオプション2-2Aの一例を示す図である。図9には、図8と同様に、「TB based SPS configuration」が並び、後に、「CBG based SPS configuration」が並ぶ。なお、図9に示される「TB based SPS configuration」と「CBG based SPS configuration」とは、図8と同様に、或るサービングセルのセルインデックスに対応するフィールド(例えば、「Cell index #i_1」に対応するフィールド)に含まれてよい。 FIG. 9 is a diagram showing an example of option 2-2A of proposal 2. In FIG. 9, as in FIG. 8, "TB based SPS configuration" is listed, followed by "CBG based SPS configuration". Note that "TB based SPS configuration" and "CBG based SPS configuration" shown in FIG. 9 are fields corresponding to the cell index of a certain serving cell (for example, corresponding to "Cell index #i_1") field).
 図9に示すように、「CBG based SPS configuration」に含まれるフィールドの順序は、「SPS configuration index #k_1」、「SPS configuration index #k_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #k_1」に含まれるフィールドの順序は、「DL slot index #n_1」、「DL slot index #n_2」と示されるようにDLスロットのインデックスの順に基づいている。 As shown in Figure 9, the order of the fields included in "CBG based SPS configuration" is based on the order of the SPS configuration index, as shown in "SPS configuration index #k_1", "SPS configuration index #k_2", and so on. There is. Next, the order of the fields included in "SPS configuration index #k_1" is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2."
 なお、図9では省略されているが、「SPS configuration index #j_2」に含まれるフィールドの順序は、DLスロットのインデックスの順に基づいてよい。例えば、SPS configurationのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。また、DLスロットのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。 Although omitted in FIG. 9, the order of the fields included in "SPS configuration index #j_2" may be based on the order of the DL slot index. For example, the order of the SPS configuration index may be ascending index order or descending index order. Further, the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
 (オプション2-2B)
 オプション2-2Bでは、「CBG based SPS configuration」に含まれるフィールドの順序は、先に、HARQ-ACK CBに関する特定の数の順に基づき、次に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。例えば、HARQ-ACKに関する特定の数の順は、HARQ-ACKに関する特定の数の昇順であってもよいし、降順であってもよい。また、SPS configurationのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。また、DLスロットのインデックスの順は、インデックスの昇順であってもよいし、降順であってもよい。
(Option 2-2B)
In option 2-2B, the order of the fields included in "CBG based SPS configuration" is first based on the specific number order for the HARQ-ACK CB, then based on the index order of the SPS configuration, and then based on the order of the index of the DL May be based on slot index order. For example, the order of the specific numbers regarding HARQ-ACK may be in ascending order or in descending order of the specific numbers regarding HARQ-ACK. Further, the order of the indexes of the SPS configuration may be in ascending order of the index or may be in descending order. Further, the order of the indexes of the DL slots may be in ascending order of the indexes or may be in descending order.
 ここで、HARQ-ACK CBに関する特定の数とは、例えば、CBGの数であってもよいし、TB毎のCBGの数であってもよいし、HARQ-ACKビットの数であってもよい。例えば、CBGの数は、SPS configurationに対するPDSCH毎のCBGの数である。例えば、TB毎のCBGの数は、SPS configurationに対するPDSCH毎のTB毎のCBGの数である。CBGの数は、CBGの最大の数に置き換えられてもよい。例えば、HARQ-ACKビットの数は、SPS configurationに対するPDSCH毎のHARQ-ACKビットの数である。 Here, the specific number regarding HARQ-ACK CB may be, for example, the number of CBGs, the number of CBGs per TB, or the number of HARQ-ACK bits. . For example, the number of CBGs is the number of CBGs per PDSCH for the SPS configuration. For example, the number of CBGs per TB is the number of CBGs per TB per PDSCH for the SPS configuration. The number of CBGs may be replaced by the maximum number of CBGs. For example, the number of HARQ-ACK bits is the number of HARQ-ACK bits per PDSCH for the SPS configuration.
 図10は、提案2のオプション2-2Bの一例を示す図である。図10には、図8と同様に、「TB based SPS configuration」が並び、後に、「CBG based SPS configuration」が並ぶ。なお、図10に示される「TB based SPS configuration」と「CBG based SPS configuration」とは、図8と同様に、或るサービングセルのセルインデックスに対応するフィールド(例えば、「Cell index #i_1」に対応するフィールド)に含まれてよい。 FIG. 10 is a diagram showing an example of option 2-2B of proposal 2. In FIG. 10, similarly to FIG. 8, "TB based SPS configuration" is lined up, followed by "CBG based SPS configuration". Note that "TB based SPS configuration" and "CBG based SPS configuration" shown in FIG. 10 are fields corresponding to the cell index of a certain serving cell (for example, corresponding to "Cell index #i_1") field).
 図10に示すように、「CBG based SPS configuration」には、「SPS configuration with (maximum) N_1 CBGs」、「SPS configuration with (maximum) N_1 CBGs」と示されるセルが、順に並ぶ。ここで、「SPS configuration with (maximum) N_1 CBGs」は、SPS configurationに対するCBGの最大数がN_1であるフィールドに対応し、「SPS configuration with (maximum) N_2 CBGs」は、SPS configurationに対するCBGの最大数がN_2であるフィールドに対応する。なお、例示的に、CBGの最大数の昇順である場合、N_2は、N_1よりも大きくてよい。 As shown in FIG. 10, cells indicated as "SPS configuration with (maximum) N_1 CBGs" and "SPS configuration with (maximum) N_1 CBGs" are arranged in order in "CBG based SPS configuration". Here, "SPS configuration with (maximum) N_1 CBGs" corresponds to the field where the maximum number of CBGs for the SPS configuration is N_1 and "SPS configuration with (maximum) N_2 CBGs" corresponds to the field where the maximum number of CBGs for the SPS configuration is N_1 corresponds to the field where is N_2. Note that, for example, in the case of ascending order of the maximum number of CBGs, N_2 may be larger than N_1.
 次に、「SPS configuration with (maximum) N_1 CBGs」に含まれるフィールドの順序は、「SPS configuration index #k_1」、「SPS configuration index #k_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #k_1」に含まれるセルの順序は、「DL slot index #n_1」、「DL slot index #n_2」と示されるようにDLスロットのインデックスの順に基づいている。 The order of the fields in "SPS configuration with (maximum) N_1 CBGs" is then based on the order of the SPS configuration index, as shown in "SPS configuration index #k_1", "SPS configuration index #k_2", and so on. There is. Next, the order of the cells included in "SPS configuration index #k_1" is based on the order of the DL slot index, as indicated by "DL slot index #n_1" and "DL slot index #n_2."
 (オプション3)
 オプション3では、先に、サービングセルのセルインデックスに基づいて順序付けるが、同一のセル内の順序付けにおいて、TB based SPS configurationに対応するフィールドが、CBG based SPS configurationに対応するフィールドよりも前に存在する。そして、TB based SPS configurationにおいて、SPS configurationのインデックスの順に順序付けられ、次に、DLスロットのインデックスの順に順序付けられる。また、CBG based SPS configurationにおいて、SPS configurationのインデックスの順に順序付けられ、次に、DLスロットのインデックスの順に順序付けられる。
(Option 3)
In option 3, the order is first based on the cell index of the serving cell, but the field corresponding to TB based SPS configuration exists before the field corresponding to CBG based SPS configuration in the ordering within the same cell. . In the TB based SPS configuration, they are ordered in the order of the index of the SPS configuration, and then in the order of the index of the DL slot. Furthermore, in the CBG based SPS configuration, the order is placed in the order of the index of the SPS configuration, and then in the order of the index of the DL slot.
 図11は、提案2のオプション3の一例を示す図である。図11の「HARQ-ACK for SPS PDSCH」の中のフィールドの順序は、最初に、サービングセルのセルインデックスの順に基づいている。そして、「Cell index #i_1」において、「TB based SPS configuration」が、「CBG based SPS configuration」よりも前に存在している。「TB based SPS configuration」及び「CBG based SPS configuration」は、セルインデックスが#i_1であるフィールドに含まれる。そして、「TB based SPS configuration」に含まれるフィールドの順序は、「SPS configuration index #j_1」、「SPS configuration index #j_2」と示されるように、SPS configurationのインデックスの順に基づいている。次に、「SPS configuration index #j_1」に含まれるフィールドの順序は、「DL slot index #m_1」、「DL slot index #m_2」と示されるようにDLスロットのインデックスの順に基づいている。 FIG. 11 is a diagram showing an example of option 3 of proposal 2. The order of the fields in "HARQ-ACK for SPS PDSCH" in FIG. 11 is first based on the order of the cell index of the serving cell. In "Cell index #i_1", "TB based SPS configuration" exists before "CBG based SPS configuration". “TB based SPS configuration” and “CBG based SPS configuration” are included in the field whose cell index is #i_1. The order of the fields included in "TB based SPS configuration" is based on the order of the SPS configuration index, as shown in "SPS configuration index #j_1" and "SPS configuration index #j_2". Next, the order of the fields included in "SPS configuration index #j_1" is based on the order of the DL slot index, as indicated by "DL slot index #m_1" and "DL slot index #m_2."
 なお、図11では省略されているが、「CBG based SPS configuration」に含まれるフィールドの順序は、「TB based SPS configuration」に含まれるフィールドの順序と同様であってよい。例えば、「CBG based SPS configuration」に含まれるフィールドの順序は、先に、SPS configurationのインデックスの順に基づき、次に、DLスロットのインデックスの順に基づいてよい。 Although omitted in FIG. 11, the order of fields included in "CBG based SPS configuration" may be the same as the order of fields included in "TB based SPS configuration". For example, the order of the fields included in “CBG based SPS configuration” may be based first on the order of the index of the SPS configuration and then on the order of the index of the DL slot.
 オプション3と、オプション2との相違点について説明する。上述したように、オプション2では、図6にて、TB based SPS PDSCH transmissionのみを行うセルに対応する「Cell with only TB based SPS」と、CBG based SPS PDSCH transmissionのみを行うセルに対応する「Cell with only CBG based SPS」と示したように、セルの動作の違いが先に考慮されて分類された後、それぞれのセルのインデックスの順に順序付けられる。一方で、オプション3では、セルインデックスの順に基づいて順序付けを行う場合に、セルの違いが考慮されない。 The differences between option 3 and option 2 will be explained. As mentioned above, in option 2, in Figure 6, "Cell with only TB based SPS" corresponds to a cell that performs only TB based SPS PDSCH transmission, and "Cell with only TB based SPS" corresponds to a cell that performs only CBG based SPS PDSCH transmission. Differences in cell behavior are first taken into account and classified, and then ordered according to the index of each cell, as shown in “only CBG based SPS”. On the other hand, option 3 does not take cell differences into account when ordering based on the order of cell indexes.
 (オプション4)
 上述したオプション1~3では、SPS PDSCHに対するcodebook(「HARQ-ACK for SPS PDSCH」というcodebook)に、TB based SPS PDSCHに対するHARQ-ACK、及び、CBG based SPS PDSCHに対するHARQ-ACKの一方又は両方が含まれる例を示した。オプション4では、TB based SPS PDSCHに対するsub-codebookとCBG based SPS PDSCHに対するsub-codebookとが、区別される。TB based SPS PDSCHに対するsub-codebookには、TB based SPS PDSCHに対するHARQ-ACKが含まれる。CBG based SPS PDSCHに対するsub-codebookには、CBG based SPS PDSCHに対するHARQ-ACKが含まれる。
(Option 4)
In options 1 to 3 above, the codebook for SPS PDSCH (codebook "HARQ-ACK for SPS PDSCH") includes one or both of HARQ-ACK for TB based SPS PDSCH and HARQ-ACK for CBG based SPS PDSCH. Included examples are shown. In option 4, a sub-codebook for TB based SPS PDSCH and a sub-codebook for CBG based SPS PDSCH are distinguished. The sub-codebook for TB based SPS PDSCH includes HARQ-ACK for TB based SPS PDSCH. The sub-codebook for CBG based SPS PDSCH includes HARQ-ACK for CBG based SPS PDSCH.
 TB based SPS PDSCHに対するsub-codebookは、TB based SPS sub-codebookと記載されてもよいし、他の表記で記載されてもよい。CBG based SPS PDSCHに対するsub-codebookは、CBG based SPS sub-codebookと記載されてもよいし、他の表記で記載されてもよい。 The sub-codebook for TB based SPS PDSCH may be written as TB based SPS sub-codebook, or may be written in other notations. The sub-codebook for CBG based SPS PDSCH may be written as CBG based SPS sub-codebook, or may be written using other notations.
 TB based SPS PDSCHに対するsub-codebookと、CBG based SPS PDSCHに対するsub-codebookと、TB based DG PDSCHに対するsub-codebookと、CBG based DG PDSCHに対するsub-codebookとの位置関係(例えば、順序)は、特に、限定されない。例えば、以下のオプション4-1とオプション4-2の何れかが採用されてもよい。 The positional relationship (for example, order) of the sub-codebook for TB based SPS PDSCH, the sub-codebook for CBG based SPS PDSCH, the sub-codebook for TB based DG PDSCH, and the sub-codebook for CBG based DG PDSCH is particularly , but not limited to. For example, either option 4-1 or option 4-2 below may be adopted.
 (オプション4-1)
 オプション4-1では、TB based SPS PDSCHに対するsub-codebookと、CBG based SPS PDSCHに対するsub-codebookとが、DG PDSCHに対するcodebookの後に追加される。DG PDSCHに対するcodebookは、TB based DG PDSCHに対するcodebookと、CBG based DG PDSCHに対するcodebookとの両方に対応する。DG PDSCHに対するcodebookには、DG PDSCHに対するHARQ-ACKが含まれる。別言すると、TB based SPS PDSCHに対するsub-codebookと、CBG based SPS PDSCHに対するsub-codebookとは、DG PDSCHに対するHARQ-ACK(DG HARQ-ACKと称されてもよい)の後に追加される。
(Option 4-1)
In option 4-1, the sub-codebook for TB based SPS PDSCH and the sub-codebook for CBG based SPS PDSCH are added after the codebook for DG PDSCH. The codebook for DG PDSCH corresponds to both the codebook for TB based DG PDSCH and the codebook for CBG based DG PDSCH. The codebook for DG PDSCH includes HARQ-ACK for DG PDSCH. In other words, the sub-codebook for TB based SPS PDSCH and the sub-codebook for CBG based SPS PDSCH are added after the HARQ-ACK for DG PDSCH (which may be referred to as DG HARQ-ACK).
 オプション4-1では、DG PDSCHに対するcodebookの後に、SPS PDSCHに対するsub-codebookが追加される構成が採られてもよい。オプション4-1では、例示的に、TB based DG PDSCHに対するcodebookが、最初に並び、その後に、CBG based DG PDSCHに対するcodebookと、TB based SPS PDSCHに対するsub-codebookと、CBG based SPS PDSCHに対するsub-codebookとが、順に並ぶ。 In option 4-1, a configuration may be adopted in which a sub-codebook for SPS PDSCH is added after the codebook for DG PDSCH. In option 4-1, for example, the codebook for TB based DG PDSCH is arranged first, followed by the codebook for CBG based DG PDSCH, the sub-codebook for TB based SPS PDSCH, and the sub-codebook for CBG based SPS PDSCH. codebooks are arranged in order.
 (オプション4-2)
 オプション4-2では、TB based SPS PDSCHに対するsub-codebookが、TB based DG PDSCHに対するcodebookの後に追加され、CBG based SPS PDSCHに対するsub-codebookが、CBG based DG PDSCHに対するcodebookの後に追加される。この場合、TB based SPS PDSCHに対するsub-codebookは、CBG based DG PDSCHに対するcodebookの前に追加されてもよい。
(Option 4-2)
In option 4-2, the sub-codebook for TB based SPS PDSCH is added after the codebook for TB based DG PDSCH, and the sub-codebook for CBG based SPS PDSCH is added after the codebook for CBG based DG PDSCH. In this case, the sub-codebook for TB based SPS PDSCH may be added before the codebook for CBG based DG PDSCH.
 オプション4-2は、TB based PDSCHに対するsub-codebookの後に、CBG based PDSCHに対するsub-codebookが追加される構成が採られてもよい。オプション4-2では、例示的に、TB based DG PDSCHに対するcodebookが、最初に並び、その後に、TB based SPS PDSCHに対するsub-codebookと、CBG based DG PDSCHに対するcodebookと、CBG based SPS PDSCHに対するsub-codebookとが、順に並ぶ。 Option 4-2 may adopt a configuration in which a sub-codebook for CBG based PDSCH is added after the sub-codebook for TB based PDSCH. In option 4-2, for example, the codebook for TB based DG PDSCH is arranged first, followed by the sub-codebook for TB based SPS PDSCH, the codebook for CBG based DG PDSCH, and the sub-codebook for CBG based SPS PDSCH. codebooks are arranged in order.
 図12は、提案2のオプション4の一例を示す図である。図12には、上述したオプション4-1、オプション4-2のそれぞれのCBにおける順序の例が示される。 FIG. 12 is a diagram showing an example of option 4 of proposal 2. FIG. 12 shows an example of the order in the CB of each of the above-mentioned options 4-1 and 4-2.
 図12のオプション4-1の例では、図5と同様に、HARQ-ACK CBにおいて、「HARQ-ACK for TB based DG PDSCH」と、「HARQ-ACK for CBG based DG PDSCH」とが、先に並び、「HARQ-ACK for CBG based DG PDSCH」の後に、「HARQ-ACK for TB based SPS PDSCH」と、「HARQ-ACK for CBG based SPS PDSCH」とが並ぶ。 In the example of option 4-1 in Figure 12, similar to Figure 5, in the HARQ-ACK CB, "HARQ-ACK for TB based DG PDSCH" and "HARQ-ACK for CBG based DG PDSCH" are placed first. "HARQ-ACK for CBG based DG PDSCH" is followed by "HARQ-ACK for TB based SPS PDSCH" and "HARQ-ACK for CBG based SPS PDSCH".
 なお、オプション4の構成において、TB based SPS sub-codebookと、CBG based SPS sub-codebookの構築方法は、特に、限定されない。例えば、TB based SPS sub-codebookの構築において、オプション2及び/又は3に示した方法の何れかが利用されてもよい。また、CBG based SPS sub-codebookの構築において、オプション2及び/又は3に示した方法の何れかが利用されてもよい。  Note that in the configuration of option 4, the construction method of the TB based SPS sub-codebook and the CBG based SPS sub-codebook is not particularly limited. For example, in constructing a TB based SPS sub-codebook, any of the methods shown in options 2 and/or 3 may be utilized. Also, in constructing the CBG based SPS sub-codebook, any of the methods shown in options 2 and/or 3 may be used.​
 (提案2のHARQ-ACKビット数について)
 上述した提案2の各オプションにおいて、TB based SPS configurationに対して、SPS PDSCHあたりのHARQ-ACKビット数は、1である。
(About the number of HARQ-ACK bits in proposal 2)
In each option of Proposal 2 described above, the number of HARQ-ACK bits per SPS PDSCH is 1 for the TB based SPS configuration.
 上述した提案2の各オプションにおいて、CBG based SPS configurationに対して、SPS PDSCHあたりのHARQ-ACKビット数、または、TBあたりのHARQ-ACKビット数は、Mである。Mは、0以上の整数であってよい。また、Mは、以下のAlt.1~Alt.3の何れかによって規定されてよい。 In each option of Proposal 2 described above, the number of HARQ-ACK bits per SPS PDSCH or the number of HARQ-ACK bits per TB is M for the CBG based SPS configuration. M may be an integer greater than or equal to 0. Further, M may be defined by any of Alt.1 to Alt.3 below.
 (Alt.1)
 Alt.1では、Mは、全てのサービングセルの全てのCBG based SPS configurationに対して、同じであってよい。
(Alt.1)
In Alt.1, M may be the same for all CBG based SPS configurations of all serving cells.
 Alt.1では、Mは、特定の値のセットの中の最大値であってよい。例えば、特定の値のセットは、全てのサービングセルのSPSに対するCBGの数(またはCBGの最大の数)のセットである。また、例えば、特定の値のセットは、全てのサービングセル、かつ、各セルの全てのCBG based SPS configurationのSPSに対するCBGの数(またはCBGの最大の数)のセットである。 In Alt.1, M may be the maximum value in a particular set of values. For example, the specific set of values is the set of number of CBGs (or maximum number of CBGs) for SPS of all serving cells. Also, for example, the specific set of values is a set of the number of CBGs (or the maximum number of CBGs) for the SPS of all serving cells and all CBG-based SPS configurations of each cell.
 なお、特定の値のセットは、これらに限定されなくてよい。また、特定の値のセットに含まれる値の数は、1以上であってよい。 Note that the set of specific values does not have to be limited to these. Further, the number of values included in the specific value set may be one or more.
 なお、Alt.1では、Mは、特定の値のセットの中の最大値である例に限らない。Mは、特定の値のセットに基づいて決定される値であってよい。Mは、特定の値のセットの中の最小値、平均値、及び、中央値の何れか1つであってもよい。あるいは、Mは、特定の値のセットに含まれる値、及び/又は、含まれる値の数に基づく演算処理によって規定されてもよい。 Note that in Alt.1, M is not limited to the maximum value in a specific set of values. M may be a value determined based on a specific set of values. M may be one of the minimum value, average value, and median value in a particular set of values. Alternatively, M may be defined by arithmetic processing based on the values included in a specific value set and/or the number of included values.
 (Alt.2)
 Alt.2では、Mは、同一のサービングセルのCBG based SPS configurationに対しては、同じ値であってよい。この場合、Mは、互いに異なるサービングセルのCBG based SPS configurationに対しては、異なってもよいし、同じであってもよい。
(Alt.2)
In Alt.2, M may be the same value for CBG based SPS configurations of the same serving cell. In this case, M may be different or the same for CBG based SPS configurations of different serving cells.
 Alt.2では、各サービングセルにおいて、Mは、特定の値のセットの中の最大値であってよい。例えば、当該特定の値のセットは、或るセルに対してコンフィギュアされたSPSに対するCBGの数(またはCBGの最大の数)のセットである。上述した提案1のオプション1が適用された場合、当該特定の値のセットが、或るセルに対してコンフィギュアされたSPSに対するCBGの数(またはCBGの最大の数)のセットであってもよい。 In Alt.2, in each serving cell, M may be the maximum value among a certain set of values. For example, the particular set of values is a set of the number of CBGs (or maximum number of CBGs) for SPS configured for a certain cell. If option 1 of proposal 1 above is applied, even if the particular set of values is the set of number of CBGs (or maximum number of CBGs) for SPS configured for a certain cell. good.
 また、例えば、或るセルにおける当該特定の値のセットは、当該セルの全てのCBG based SPS configurationのSPSに対するCBGの数(またはCBGの最大の数)のセットである。上述した提案1のオプション2が適用された場合、当該特定の値のセットが、当該セルの全てのCBG based SPS configurationのSPSに対するCBGの数(またはCBGの最大の数)のセットであってよい。 Also, for example, the set of specific values in a certain cell is a set of the number of CBGs (or the maximum number of CBGs) for SPS of all CBG-based SPS configurations of the cell. If option 2 of proposal 1 above is applied, the set of specific values may be the set of the number of CBGs (or the maximum number of CBGs) for the SPS of all CBG-based SPS configurations of the cell. .
 なお、特定の値のセットは、これらに限定されなくてよい。また、特定の値のセットに含まれる値の数は、1以上であってよい。 Note that the set of specific values does not have to be limited to these. Further, the number of values included in the specific value set may be one or more.
 (Alt.3)
 Alt.3では、Mは、同一のサービングセルのCBG based SPS configurationのそれぞれに対して、互いに異なってもよいし、同じであってよい。また、Mは、互いに異なるサービングセルのCBG based SPS configurationのそれぞれに対しては、互いに異なってもよいし、同じであってもよい。
(Alt.3)
In Alt.3, M may be different from each other or the same for each CBG based SPS configuration of the same serving cell. Furthermore, M may be different or the same for each of the CBG based SPS configurations of different serving cells.
 各サービングセルの各CBG based SPS configurationに対して、Mは、SPS configurationに対するCBGの数(または、CBGの最大の数)であってよい。 For each CBG-based SPS configuration of each serving cell, M may be the number of CBGs (or the maximum number of CBGs) for the SPS configuration.
 (効果)
 以上、説明した提案2によれば、CBG based SPS PDSCHに対するHARQ-ACKを含むHARQ-ACK CBが、適切な形式で構築できるため、HARQ-ACKのフィードバックが効率良く行うことができる。例えば、CBG based SPS PDSCH transmissionが、或るセルにおいて実行された場合に、CBG based SPS PDSCHに対するHARQ-ACKが、他のPDSCH(例えば、TB based SPS PDSCH、及び/又は、DG PDSCH)に対するHARQ-ACKと区別されてHARQ-ACK CBに含まれる。このようなHARQ-ACK CBを受信した基地局は、適切な再送制御等を行うことができるため、通信効率を向上させることができる。
(effect)
According to Proposal 2 described above, the HARQ-ACK CB including the HARQ-ACK for the CBG based SPS PDSCH can be constructed in an appropriate format, so the feedback of the HARQ-ACK can be efficiently performed. For example, if CBG based SPS PDSCH transmission is performed in a certain cell, HARQ-ACK for CBG based SPS PDSCH may be It is distinguished from ACK and included in HARQ-ACK CB. A base station that receives such a HARQ-ACK CB can perform appropriate retransmission control, etc., thereby improving communication efficiency.
 なお、上述した提案2の各オプションにおいて昇順であると説明した順序の例は、降順に置き換えられてもよい。また、提案2の各オプションにおいて、昇順と降順とが混在していてもよい。例えば、或る複数のセルの順序が、SPS configurationのインデックスの昇順、及び、DLスロットの降順に基づいてもよい。 Note that the example of the order described as ascending order in each option of proposal 2 described above may be replaced with descending order. Further, in each option of proposal 2, ascending order and descending order may be mixed. For example, the order of a plurality of cells may be based on the ascending order of the SPS configuration index and the descending order of the DL slots.
 また、HARQ-ACK CBは、端末によって生成されるが、上述した提案2の何れの構築手順を用いて生成されるかは、端末によって決定されてもよいし、基地局によって指示されてもよいし、仕様により規定されてもよい。 Furthermore, although the HARQ-ACK CB is generated by the terminal, which construction procedure in Proposal 2 above is used to generate it may be determined by the terminal or may be instructed by the base station. However, it may be defined by the specifications.
 <提案3>
 提案3では、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の動的/適応的な更新について提案する。
<Proposal 3>
Proposal 3 proposes dynamic/adaptive updating of the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
 端末20は、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用を、基地局10の指示に従って動的に更新してもよく、予め設定された半静的なパターンに従って適応的に更新してもよい。 The terminal 20 may dynamically update the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH according to instructions from the base station 10, or update the application of CBG based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH according to instructions from the base station 10. It may be updated adaptively according to a semi-static pattern.
 (1)動的な更新
 以下、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用を動的に更新する場合の、(1-1)更新の指示方法および(1-2)更新の対象となるSPS/CG configurationの範囲について説明する。
(1) Dynamic update Below, (1-1) update instruction method and (1- 2) Explain the range of SPS/CG configuration that is subject to update.
 (1-1)更新の指示方法
 本願では、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の動的な更新の指示方法について、以下のオプションを提案する。
(1-1) Update instruction method In this application, the following describes how to instruct dynamic update of application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. Suggest options.
 (Opt. 1)DCIによる指示
 基地局10は、端末20に対して、DCIにより、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。この場合、以下のバリエーションが考えられる。
(Opt. 1) Instructions by DCI The base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH to the terminal 20 by DCI. may be instructed. In this case, the following variations are possible.
 (Opt. 1-1)
 新規のDCIフォーマットが用意され、基地局10は、この新規のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。この場合、新規のDCIフォーマットは、新規のRNTI(Radio Network Temporary Identifier)を有していてもよく、新規のRNTIを有さず既存のRNTIを有していてもよい。
(Opt. 1-1)
A new DCI format is prepared, and the base station 10 uses this new DCI format to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. You can instruct updates. In this case, the new DCI format may have a new RNTI (Radio Network Temporary Identifier), or may have an existing RNTI without a new RNTI.
 (Opt. 1-2)
 あるいは、基地局10は、新規のRNTIを有する既存のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。
(Opt. 1-2)
Alternatively, the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using an existing DCI format with a new RNTI. You may give instructions.
 (Opt. 1-3)
 あるいは、基地局10は、既存のRNTIを有する既存のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。
(Opt. 1-3)
Alternatively, the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using an existing DCI format with an existing RNTI. You may give instructions.
 (Opt. 1-3A)
 この場合、新規のフィールドが設けられ、当該新規のフィールドに、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を示す情報が書き込まれてもよい。また、当該新規のフィールドは、複数であってもよい。
(Opt. 1-3A)
In this case, a new field may be provided, and information indicating update of application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission may be written in the new field. Further, there may be a plurality of new fields.
 (Opt. 1-3B)
 あるいは、既存のフィールドの内の未使用のフィールドに、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を示す情報が書き込まれてもよい。また、当該未使用のフィールドは、複数であってもよい。この場合、既存の未使用フィールドの内の特定のフィールドの値は、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用を動的に更新する目的で、DCIフォーマットを再解釈するかどうかを示すために使用される。端末20は、DCIフォーマットの再解釈により、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を判断することができる。
(Opt. 1-3B)
Alternatively, information indicating an update of the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission may be written in an unused field among the existing fields. Further, there may be a plurality of unused fields. In this case, the values of certain fields among the existing unused fields may be used to re-format the DCI format for the purpose of dynamically updating the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission. Used to indicate whether or not to interpret. The terminal 20 can determine whether to update the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission by reinterpreting the DCI format.
 (Opt 2)MAC CEによる指示
 基地局10は、端末20に対して、MAC CEにより、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。この場合、以下のバリエーションが考えられる。
(Opt 2) Instructions by MAC CE The base station 10 instructs the terminal 20, by MAC CE, of application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. You can instruct updates. In this case, the following variations are possible.
 (Opt. 2-1)
 新規のMAC CEが用意され、基地局10は、この新規のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。
(Opt. 2-1)
A new MAC CE is prepared, and the base station 10 uses this new MAC CE to apply CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH. You can instruct updates.
 (Opt. 2-2)
 あるいは、基地局10は、新規のオクテットを有する既存のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。
(Opt. 2-2)
Alternatively, the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using the existing MAC CE with new octets. You may give instructions.
 (Opt. 2-3)
 あるいは、基地局10は、既存のオクテットを有する既存のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してよい。この場合、予約ビットは、MAC CEを、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの更新目的と解釈するかどうかを示すために使用される。
(Opt. 2-3)
Alternatively, the base station 10 updates the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission to SPS PDSCH/CG PUSCH using the existing MAC CE with existing octets. You may give instructions. In this case, the reserved bit is used to indicate whether the MAC CE is interpreted for the purpose of updating CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission.
 (1-2)更新の対象となるSPS/CG configurationの範囲
 本願では、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用が更新されるSPS/CG configurationの範囲について提案する。
(1-2) Range of SPS/CG configurations subject to update In this application, we propose the range of SPS/CG configurations to which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is updated. do.
 (Alt 1)
 CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用が動的に更新される範囲は、1つのDCI/MAC CEによる、SPS/CG configuration毎であってもよい。
(Alt 1)
The range in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is dynamically updated may be for each SPS/CG configuration by one DCI/MAC CE.
 この場合、基地局10は、端末20に対して、対象のSPS/CG configurationを示すインデックスにより、当該SPS/CG configurationにおけるCBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の更新を指示してもよい。 In this case, the base station 10 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission in the SPS/CG configuration to the terminal 20 using an index indicating the target SPS/CG configuration. You may also instruct the update of .
 (Alt 1-1)
 当該インデックスは、DCIまたはMAC CEのフィールド/ビットで端末20に明示的に示されてもよい。
(Alt 1-1)
The index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
 (Alt 1-2)
 あるいは、当該インデックスは、端末20に暗黙的に示さてもよい。例えば、MAC CEにより、SPS PDSCHのパラメータの動的な更新を示す場合、対象のSPS configurationのインデックスは、MAC CEを伝達するSPS PDSCH occasionのSPS configurationのインデックスである。
(Alt 1-2)
Alternatively, the index may be implicitly indicated to the terminal 20. For example, when indicating dynamic updating of SPS PDSCH parameters by MAC CE, the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
 (Alt 2)
 CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用が動的に更新される範囲は、1つのDCI/MAC CEによるすべての(アクティベートされた)SPS/CG configurationであってもよい。
(Alt 2)
The scope in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is dynamically updated is for all (activated) SPS/CG configurations by one DCI/MAC CE. Good too.
 (Alt 2-1)
 この場合、すべてのSPS/CG configurationに共通の指示フィールド/ビットが設定されてもよい。
(Alt 2-1)
In this case, common indication fields/bits may be set for all SPS/CG configurations.
 (Alt 2-2)
 あるいは、すべてのSPS/CG configurationに個別の指示フィールド/ビットが設定されてもよい。
(Alt 2-2)
Alternatively, a separate indication field/bit may be set for every SPS/CG configuration.
 (Alt 3)
 CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用が動的に更新される範囲は、1つのDCI/MAC CEによる、SPS/CG configurationのグループ毎であってもよい。
(Alt 3)
The range in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is dynamically updated may be for each group of SPS/CG configuration by one DCI/MAC CE.
 (Alt 3-1A)
 この場合、SPS/CG configurationのグループに対する共通の指示フィールド/ビットが設定されてもよい。
(Alt 3-1A)
In this case, a common indication field/bit for the group of SPS/CG configurations may be set.
 (Alt 3-1B)
 あるいは、SPS/CG configurationのグループに対する個別の指示フィールド/ビットが設定されてもよい。
(Alt 3-1B)
Alternatively, separate indication fields/bits for groups of SPS/CG configurations may be set.
 また、この場合、基地局10は、端末20に対して、対象のSPS/CG configurationのグループを示すインデックスにより、当該SPS/CG configurationにおけるCBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用の動的な更新を指示してもよい。 In this case, the base station 10 informs the terminal 20 of the CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG transmission in the SPS/CG configuration, using an index indicating the group of the target SPS/CG configuration. Dynamic updating of the application of PUSCH transmission may be instructed.
 (Alt 3-2A)
 当該インデックスは、DCIまたはMAC CEのフィールド/ビットで端末20に明示的に示されてもよい。
(Alt 3-2A)
The index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
 (Alt 3-2B)
 あるいは、当該インデックスは、端末20に暗黙的に示さてもよい。例えば、MAC CEにより、SPS PDSCHのパラメータの動的な更新を示す場合、対象のSPS configurationのインデックスは、MAC CEを伝達するSPS PDSCH occasionのSPS configurationのインデックスである。
(Alt 3-2B)
Alternatively, the index may be implicitly indicated to the terminal 20. For example, when indicating dynamic updating of SPS PDSCH parameters by MAC CE, the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
 (2)半静的なパターンに基づく更新
 以下、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionの適用を、半静的なパターンに基づいて更新する場合について説明する。
(2) Update based on semi-static pattern Hereinafter, a case will be described in which the application of CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission is updated based on a semi-static pattern.
 (Alt 1)
 Alt 1では、端末20は、SPS/CG occasionのインデックス値に基づいて、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionを適用する。
(Alt 1)
In Alt 1, the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission based on the index value of SPS/CG occasion.
 例えば、端末20は、SPS/CGoccasionのインデックス値Nが、N mod X1 = {Y1_1, Y1_2, ...}を満たす場合にはCBG based SPS PDSCH/CG PUSCH transmissionを適用し、N mod X1 = {Y2_1, Y2_2, ...}を満たす場合にはTB based SPS PDSCH/CG PUSCH transmissionを適用してよい。ここで、Nは1以上の整数、X1は2以上の整数、Y1_1, Y1_2, ...及びY2_1, Y2_2, ...は、それぞれ、1以上かつ(X1-1)以下の整数であって、互いに異なる数である。 For example, if the index value N of SPS/CGoccasion satisfies N mod X1 = {Y1_1, Y1_2, ...}, the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission, and N mod X1 = { If Y2_1, Y2_2, ...} is satisfied, TB based SPS PDSCH/CG PUSCH transmission may be applied. Here, N is an integer greater than or equal to 1, X1 is an integer greater than or equal to 2, and Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are integers greater than or equal to 1 and less than or equal to (X1-1), respectively. , are different numbers from each other.
 なお、上記X1、Y1_1、Y1_2、Y2_1、Y2_2等の値は、仕様等で予め規定されてもよく、あるいは、RRC等の上位レイヤシグナリングによって端末20に通知されてもよい。 Note that the values of X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
 仕様で予め規定する場合、XRサービス毎に、異なる値の組み合わせを規定してもよい。また、上位レイヤシグナリングにより通知する場合、XRサービス毎、及び/又は、SPS/CG configuration毎に、異なる値の組み合わせを構成してもよい。 If predefined in the specifications, different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
 (Alt 2)
 Alt 2では、端末20は、SPS/CG occasionのスロットのインデックス値に基づいて、CBG based SPS PDSCH/CG PUSCH transmissionあるいはTB based SPS PDSCH/CG PUSCH transmissionを適用する。
(Alt 2)
In Alt 2, the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission or TB based SPS PDSCH/CG PUSCH transmission based on the index value of the slot of SPS/CG occasion.
 例えば、端末20は、SPS/CGoccasionのスロットのインデックス値Mが、M mod X1 = {Y1_1, Y1_2, ...}を満たす場合にはCBG based SPS PDSCH/CG PUSCH transmissionを適用し、M mod X1 = {Y2_1, Y2_2, ...}を満たす場合にはTB based SPS PDSCH/CG PUSCH transmissionを適用してよい。ここで、Mは1以上の整数、X1は2以上の整数、Y1_1, Y1_2, ...及びY2_1, Y2_2, ...は、それぞれ、0以上かつ(X1-1)以下のいずれかの整数であって、互いに異なる数である。 For example, if the index value M of the SPS/CGoccasion slot satisfies M mod X1 = {Y1_1, Y1_2, ...}, the terminal 20 applies CBG based SPS PDSCH/CG PUSCH transmission, and M mod = {Y2_1, Y2_2, ...}, TB based SPS PDSCH/CG PUSCH transmission may be applied. Here, M is an integer greater than or equal to 1, X1 is an integer greater than or equal to 2, and Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are each an integer greater than or equal to 0 and less than or equal to (X1-1). and are different numbers from each other.
 なお、上記X1、Y1_1、Y1_2、Y2_1、Y2_2等の値は、仕様等で予め規定されてもよく、あるいは、RRC等の上位レイヤシグナリングによって端末20に通知されてもよい。 Note that the values of X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
 仕様で予め規定する場合、XRサービス毎に、異なる値の組み合わせを規定してもよい。また、上位レイヤシグナリングにより通知する場合、XRサービス毎、及び/又は、SPS/CG configuration毎に、異なる値の組み合わせを構成してもよい。 If predefined in the specifications, different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
 (3)更新によるHARK-ACK CBの影響
 以下、CBG based SPS PDSCH transmissionあるいはTB based SPS PDSCH transmissionの適用を動的に更新した場合に、可能性のあるHARQ-ACK CBの影響について説明する。
(3) Impact of update on HARQ-ACK CB The following describes the possible impact on HARQ-ACK CB when the application of CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission is dynamically updated.
 (3-1)
 上記の提案2の少なくともオプション1、オプション2-1で説明したHARQ-ACK CBは、CBG based SPS PDSCH transmissionあるいはTB based SPS PDSCH transmissionの適用を動的に更新した場合も、そのまま再利用され得る。
(3-1)
The HARQ-ACK CB described in at least Option 1 and Option 2-1 of Proposal 2 above can be reused as is even when the application of CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission is dynamically updated.
 (3-2)
 また、上記の提案2のオプション2-2、オプション3のSPS HARQ-ACKビットの順序も再利用され得る。ただし、SPS configurationが「TB based SPS configuration」または「CBG based SPS configuration」に含まれるべきかは、明確にされる必要がある。この点について、以下のオルタネーションを提案する。
(3-2)
Also, the order of the SPS HARQ-ACK bits in Option 2-2 and Option 3 of Proposal 2 above may be reused. However, it needs to be clarified whether SPS configuration should be included in "TB based SPS configuration" or "CBG based SPS configuration". Regarding this point, we propose the following alternatives.
 (Alt 1)
 Alt 1では、端末20は、1つのSPS configurationを、「TB based SPS configuration」部分と「CBG based SPS configuration」部分のいずれかにのみ含めてもよい。
(Alt 1)
In Alt 1, the terminal 20 may include one SPS configuration only in either the "TB based SPS configuration" part or the "CBG based SPS configuration" part.
 (Alt 1-1)
 端末20は、SPS configurationで、CBG based SPS PDSCH transmissionを有効にしているか否かに基づいて、当該SPS configurationを含める部分を判断してもよい。
(Alt 1-1)
The terminal 20 may determine which portion includes the SPS configuration based on whether CBG based SPS PDSCH transmission is enabled in the SPS configuration.
 例えば、SPS configurationに対してCBG based SPS PDSCH transmissionが有効である場合、HARQ-ACK CBで報告されるHARQ-ACKを有するSPS configurationの現在のSPS PDSCHがCBG based SPS PDSCH transmissionかTB based SPS PDSCH transmissionかにかかわらず、端末20は、当該SPS configurationを、「CBG based SPS configuration」に含めてもよい。また、端末20は、それ以外の場合には、当該SPS configurationを、「TB based SPS configuration」に含めてもよい。 For example, if CBG based SPS PDSCH transmission is enabled for an SPS configuration, then the current SPS PDSCH of the SPS configuration with HARQ-ACK reported in the HARQ-ACK CB is either CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission Regardless, the terminal 20 may include the SPS configuration in the "CBG based SPS configuration". In addition, the terminal 20 may include the SPS configuration in the "TB based SPS configuration" in other cases.
 (Alt 1-2)
 また、端末20は、HARQ-ACK CBで報告するHARQ-ACKのSPS configurationの、SPS PDSCHに対するCBG based SPS PDSCH transmissionまたはTB based SPS PDSCH transmissionの有無に基づいて、当該SPS configurationを含める部分を判断してもよい。
(Alt 1-2)
Furthermore, the terminal 20 determines the part to include the SPS configuration of HARQ-ACK reported in the HARQ-ACK CB, based on the presence or absence of CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission for SPS PDSCH. It's okay.
 例えば、HARQ-ACK PUCCHで報告されるべきSPS configurationの少なくとも1つのSPS PDSCHにおけるCBG based SPS PDSCH transmissionまたはTB based SPS PDSCH transmissionに対するHARQ-ACKがある場合、当該SPS configurationは、「CBG/TB based SPS configuration」の対象である。そして、端末20は、同一のHARQ-ACK PUCCHに含まれるHARQ-ACKを有するSPS configurationのSPS PDSCHを、TB based SPS PDSCH transmissionや、同一のHARQ-ACK CBに報告すべきHARQ-ACKを有するSPS configurationがあるかどうかにかかわらず、「CBG/TB based SPS configuration」ブロックの中で報告する。また、端末20は、それ以外の場合には、当該SPS configurationを「TB/CBG based SPS configuration」に含めてもよい。すなわち、CBG based SPS PDSCH transmissionに対するHARQ-ACKがある場合には、SPS configurationのSPS PDSCHをCBG based SPS configurationブロックの中で報告し、当該HARQ-ACKがない場合には、SPS configurationのSPS PDSCHをTB based SPS configurationブロックの中で報告する。同様に、TB based SPS PDSCH transmissionに対するHARQ-ACKがある場合には、SPS configurationのSPS PDSCHをTB based SPS configurationブロックの中で報告し、当該HARQ-ACKがない場合には、SPS configurationのSPS PDSCHをCBG based SPS configurationブロックの中で報告する。 For example, if there is a HARQ-ACK for CBG based SPS PDSCH transmission or TB based SPS PDSCH transmission in at least one SPS PDSCH of an SPS configuration to be reported in HARQ-ACK PUCCH, then that SPS configuration is configuration”. Then, the terminal 20 transmits the SPS PDSCH of the SPS configuration with the HARQ-ACK included in the same HARQ-ACK PUCCH to the TB based SPS PDSCH transmission or the SPS with the HARQ-ACK that should be reported to the same HARQ-ACK CB. Report in the "CBG/TB based SPS configuration" block, regardless of whether there is a configuration. In addition, the terminal 20 may include the SPS configuration in the "TB/CBG based SPS configuration" in other cases. That is, if there is a HARQ-ACK for CBG based SPS PDSCH transmission, the SPS PDSCH of the SPS configuration is reported in the CBG based SPS configuration block, and if there is no HARQ-ACK, the SPS PDSCH of the SPS configuration is reported. Report within a TB based SPS configuration block. Similarly, if there is a HARQ-ACK for TB based SPS PDSCH transmission, the SPS PDSCH of the SPS configuration is reported in the TB based SPS configuration block, and if there is no HARQ-ACK, the SPS PDSCH of the SPS configuration is reported. in a CBG based SPS configuration block.
 (Alt 2)
 Alt 2では、端末20は、HARQ-ACK CBで報告されるべきHARQ-ACKを有するSPS configurationのTB based SPS PDSCHおよびCBG based SPS PDSCHがある場合、当該SPS configurationを、「TB based SPS configuration」部分と「CBG based SPS configuration」部分の両方に含めてもよい。
(Alt 2)
In Alt 2, if there is a TB based SPS PDSCH and a CBG based SPS PDSCH of an SPS configuration that has HARQ-ACK to be reported in the HARQ-ACK CB, the terminal 20 converts the SPS configuration into the "TB based SPS configuration" part. and “CBG based SPS configuration” part.
 例えば、「TB based SPS configuration」部分にSPS configurationを含める場合、TB based SPS PDSCH transmissionを有するSPS PDSCHのみのHARQ-ACKが含まれる。また、「TB based SPS configuration」部分にSPS configurationを含める場合、CBG based SPS PDSCH transmissionを有するSPS PDSCHのみのHARQ-ACKが含まれる。 For example, when including SPS configuration in the "TB based SPS configuration" part, HARQ-ACK of only SPS PDSCH with TB based SPS PDSCH transmission is included. In addition, when including SPS configuration in the "TB based SPS configuration" part, HARQ-ACK only for SPS PDSCH with CBG based SPS PDSCH transmission is included.
 (3-3)
 また、上記の提案2のオプション4で説明したように、別々のsub-codebookも再利用されてもよい。ただし、SPS PDSCHのHARQ-ACKが、TB based sub-codebookに含まれるかCBG based sub-codebookに含まれるかは明確にされる必要がある。この点について、以下のオルタネーションを提案する。
(3-3)
Separate sub-codebooks may also be reused, as described in option 4 of proposal 2 above. However, it needs to be clarified whether SPS PDSCH HARQ-ACK is included in the TB based sub-codebook or the CBG based sub-codebook. Regarding this point, we propose the following alternatives.
 (Alt 1)
 Alt 1では、端末20は、同一のPUCCHで報告された同一のSPS configurationのSPS PDSCHに対するHARQ-ACKを、同一のsub-codebookに含める。
(Alt 1)
In Alt 1, the terminal 20 includes HARQ-ACKs for SPS PDSCHs of the same SPS configuration reported on the same PUCCH in the same sub-codebook.
 (Alt 1-1)
 端末20は、SPS configurationでCBG based SPS PDSCH/CG PUSCH transmissionが有効になっているか否かに基づいて、SPS PDSCHのHARQ-ACKを、TB based sub-codebookに含めるかCBG based sub-codebookに含めるかを設定する。
(Alt 1-1)
The terminal 20 includes SPS PDSCH HARQ-ACK in the TB based sub-codebook or in the CBG based sub-codebook based on whether CBG based SPS PDSCH/CG PUSCH transmission is enabled in the SPS configuration. set.
 例えば、SPS configurationに対してCBG based SPS PDSCH/CG PUSCH transmissionが有効である場合、SPS configurationの現在のSPS PDSCHがCBG based SPS PDSCH transmissionであるかTB based SPS PDSCH transmissionであるかにかかわらず、端末20は、SPS PDSCHのHARQ-ACKをCBG based sub-codebookに含める。それ以外の場合には、端末20は、SPS PDSCHのHARQ-ACKをTB based sub-codebookに含める。 For example, if CBG based SPS PDSCH/CG PUSCH transmission is enabled for an SPS configuration, the terminal 20 includes HARQ-ACK of SPS PDSCH in the CBG based sub-codebook. Otherwise, the terminal 20 includes the HARQ-ACK of the SPS PDSCH in the TB based sub-codebook.
 (Alt 1-2)
 端末20は、HARQ-ACK CBで報告されるべきHARQ-ACKを有するSPS configurationの、SPS PDSCHに対するCBG based SPS PDSCH transmission/TB based SPS PDSCH transmissionがあるか否かに基づいて、SPS PDSCHのHARQ-ACKを、TB based sub-codebookに含めるかCBG based sub-codebookに含めるかを設定する。
(Alt 1-2)
The terminal 20 determines the HARQ-ACK of the SPS PDSCH based on whether there is a CBG based SPS PDSCH transmission/TB based SPS PDSCH transmission for the SPS PDSCH in the SPS configuration that has the HARQ-ACK that should be reported in the HARQ-ACK CB. Set whether to include ACK in TB based sub-codebook or CBG based sub-codebook.
 例えば、HARQ-ACK PUCCHで報告されるべき少なくとも1つのSPS PDSCHに対するCBG based SPS PDSCH transmissionがある場合、端末20は、SPS configurationのSPS PDSCHに対するHARQ-ACKを、CBG based sub-codebookに含める。それ以外の場合には、端末20は、SPS PDSCHに対するHARQ-ACKを、TB based sub-codebookに含める。 For example, if there is a CBG based SPS PDSCH transmission for at least one SPS PDSCH to be reported in the HARQ-ACK PUCCH, the terminal 20 includes the HARQ-ACK for the SPS PDSCH in the SPS configuration in the CBG based sub-codebook. Otherwise, the terminal 20 includes HARQ-ACK for SPS PDSCH in the TB based sub-codebook.
 逆に、HARQ-ACK PUCCHで報告されるべき少なくとも1つのSPS PDSCHに対するTB based SPS PDSCH transmissionがある場合、端末20は、SPS configurationのSPS PDSCHに対するHARQ-ACKを、TB based sub-codebookに含める。それ以外の場合には、端末20は、SPS PDSCHに対するHARQ-ACKを、CBG based sub-codebookに含める。 Conversely, if there is a TB based SPS PDSCH transmission for at least one SPS PDSCH to be reported in the HARQ-ACK PUCCH, the terminal 20 includes the HARQ-ACK for the SPS PDSCH of the SPS configuration in the TB based sub-codebook. Otherwise, the terminal 20 includes HARQ-ACK for SPS PDSCH in the CBG based sub-codebook.
 (Alt 2)
 Alt 2では、端末20は、同一のPUCCHで報告された同一のSPS configurationのSPS PDSCHに対するHARQ-ACKを、別々のsub-codebookに含める。
(Alt 2)
In Alt 2, the terminal 20 includes HARQ-ACKs for SPS PDSCHs of the same SPS configuration reported on the same PUCCH in separate sub-codebooks.
 例えば、端末20は、TB based SPS PDSCH transmissionのSPS PDSCHに対するHARQ-ACKを、TB based sub-codebookに含め、CBG based SPS PDSCH transmissionのSPS PDSCHに対するHARQ-ACKを、CBG based sub-codebookに含める。 For example, the terminal 20 includes HARQ-ACK for SPS PDSCH of TB based SPS PDSCH transmission in the TB based sub-codebook, and includes HARQ-ACK for SPS PDSCH of CBG based SPS PDSCH transmission in the CBG based sub-codebook.
 (4)SPS PDSCH毎のHARQ-ACKビットの数
 端末20は、SPS configurationがCBG based SPS PDSCH transmissionに対して有効である場合、TB based SPS PDSCH transmissionまたはCBG based SPS PDSCH transmissionの変更を考慮してSPS PDSCH毎のHARQ-ACKビットの数を設定する。
(4) Number of HARQ-ACK bits for each SPS PDSCH If the SPS configuration is valid for CBG based SPS PDSCH transmission, the terminal 20 takes into account the change in TB based SPS PDSCH transmission or CBG based SPS PDSCH transmission. Set the number of HARQ-ACK bits for each SPS PDSCH.
 例えば、SPS configurationのCBG based SPS PDSCHについては、提案2で説明したCBG based SPS configurationのHARQ-ACKビット数を再利用して、HARQ-ACKビット数(すなわちMビット)を設定してもよい。 For example, for the CBG based SPS PDSCH in the SPS configuration, the number of HARQ-ACK bits in the CBG based SPS configuration described in Proposal 2 may be reused to set the number of HARQ-ACK bits (i.e., M bits).
 また、SPS configurationのTB based SPS PDSCHについては、CBG based SPS configurationのHARQ-ACKビット数を1ビットまたはMビット(すなわち、同一のSPS configurationのCBG based SPS DSCHのHARQ-ACKビット数と同じに)設定してもよい。 Also, for TB based SPS PDSCH in SPS configuration, set the number of HARQ-ACK bits in CBG based SPS configuration to 1 bit or M bits (i.e., the same as the number of HARQ-ACK bits in CBG based SPS DSCH in the same SPS configuration). May be set.
 以下、Alt 1、Alt 2の具体例について、図13を用いて説明する。 Hereinafter, specific examples of Alt 1 and Alt 2 will be explained using FIG. 13.
 上記のAlt 1-1またはAlt 1-2では、図13において、CBG based SPS configuration部分にSPS config#1が含まれる。また2つのスロットの中の両方のSPS PDSCHは、SPS config#1の位置にある。 In Alt 1-1 or Alt 1-2 above, in FIG. 13, SPS config#1 is included in the CBG based SPS configuration part. Also, both SPS PDSCHs in the two slots are in the position of SPS config#1.
 また、上記のAlt 2では、図13において、TB based SPS configuration部分とCBG based SPS configuration部分の両方にSPS config#1が含まれる。TB based SPS configuration部分では、最初のPDSCHスロットのみがSPS config#1の位置に存在する。また、CBG based SPS configuration部分では、2番目のPDSCHスロットのみがSPS config#1の位置に存在する。 In addition, in Alt 2 above, SPS config#1 is included in both the TB based SPS configuration part and the CBG based SPS configuration part in FIG. 13. In the TB based SPS configuration part, only the first PDSCH slot exists in the SPS config#1 position. Further, in the CBG based SPS configuration part, only the second PDSCH slot exists at the position of SPS config#1.
 (効果)
 以上、説明した提案3によれば、SPS PDSCH/CG PUSCHにおいて、CBG based transmissionとTB based transmissionのいずれかを適用する場合に、これらの動的/適応的な更新を行うことができる。CBG based SPS PDSCH/CG PUSCH transmissionを適用している場合に、基地局10の指示に従って、動的に、TB based SPS PDSCH/CG PUSCH transmissionの適用に切り替えてもよい。また、予め設定された半静的なパターンに従って、CBG based SPS PDSCH/CG PUSCH transmissionとTB based SPS PDSCH/CG PUSCH transmissionとを適応的に切り替えて適用してもよい。
(effect)
According to Proposal 3 described above, when applying either CBG based transmission or TB based transmission to SPS PDSCH/CG PUSCH, it is possible to perform dynamic/adaptive updating of these. When CBG based SPS PDSCH/CG PUSCH transmission is applied, the application may be dynamically switched to TB based SPS PDSCH/CG PUSCH transmission according to instructions from the base station 10. Further, CBG based SPS PDSCH/CG PUSCH transmission and TB based SPS PDSCH/CG PUSCH transmission may be adaptively switched and applied according to a preset semi-static pattern.
 <提案4>
 提案4では、SPS PDSCHまたはCG PUSCHにおいて1 TB当たり最大2つのコードワードをサポートする場合に、端末20が、SPS PDSCH/CG PUSCHに対して、single-codewordとtwo-codewordのどちらを適用するかを設定するための判断基準について提案する。
<Proposal 4>
In Proposal 4, when supporting up to two codewords per 1 TB in SPS PDSCH or CG PUSCH, whether the terminal 20 applies single-codeword or two-codeword to SPS PDSCH/CG PUSCH. We propose the criteria for setting the criteria.
 提案4の具体例として、以下のオルタネーションを提案する。 As a specific example of Proposal 4, we propose the following alternation.
 (Alt 1)
 Alt 1では、端末20が、SPS/CG configuration毎に設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)または全てのSPS/CG configurationに設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)、例えば、maxNrofCodeWordsSpsPdsch/maxNrofCodeWordsCgPuschに基づいて、SPS/CG configurationに対してsingle-codewordとtwo-codewordのどちらを適用するかを設定する。
(Alt 1)
In Alt 1, the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations. Based on upper layer parameters (RRC parameters) that are information, for example, maxNrofCodeWordsSpsPdsch/maxNrofCodeWordsCgPusch, it is set whether to apply single-codeword or two-codeword to the SPS/CG configuration.
 例えば、端末20は、maxNrofCodeWordsSpsPdschがtwo-codewordを示す場合には、SPS configurationについてtwo-codewordを受信し、それ以外の場合には、single-codewordを受信してもよい。同様に、端末20は、maxNrofCodeWordsCgPuschがtwo-codewordを示す場合には、CG configurationについてtwo-codewordを送信し、それ以外の場合には、single-codewordを送信してもよい。 For example, if maxNrofCodeWordsSpsPdsch indicates two-codeword, the terminal 20 may receive two-codeword for the SPS configuration, and otherwise may receive single-codeword. Similarly, the terminal 20 may transmit two-codewords for the CG configuration if maxNrofCodeWordsCgPusch indicates two-codewords, and otherwise transmit single-codewords.
 (Alt 2)
 Alt 2では、端末20が、SPS/CG configuration毎に設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)または全てのSPS/CG configurationに設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)とactivation DCIフォーマットの組み合わせに基づいて、SPS/CG configurationに対してsingle-codewordとtwo-codewordのどちらを適用するかを設定する。
(Alt 2)
In Alt 2, the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations. Based on the combination of upper layer parameters (RRC parameters) and activation DCI format, it is set whether to apply single-codeword or two-codeword to the SPS/CG configuration.
 例えば、端末20は、maxNrofCodeWordsSpsPdschがtwo-codewordを示し、かつ、activation DCIフォーマットの特定のフィールドが特定のDCIフォーマット(例えば、DCI 1_1)を示す場合には、SPS configurationについてtwo-codewordを受信し、それ以外の場合には、single-codewordを受信してもよい。同様に、端末20は、maxNrofCodeWordsCgPuschがtwo-codewordを示し、かつ、activation DCIフォーマットの特定のフィールドが特定のDCIフォーマット(例えば、DCI 1_1)を示す場合には、CG configurationについてtwo-codewordを送信し、それ以外の場合には、single-codewordを送信してもよい。 For example, the terminal 20 receives a two-codeword for the SPS configuration if maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field of the activation DCI format indicates a specific DCI format (e.g., DCI 1_1); In other cases, a single-codeword may be received. Similarly, the terminal 20 sends two-codeword for CG configuration if maxNrofCodeWordsCgPusch indicates two-codeword and a specific field of activation DCI format indicates a specific DCI format (e.g., DCI 1_1). , otherwise a single-codeword may be sent.
 あるいは、端末20は、maxNrofCodeWordsSpsPdschがtwo-codewordを示すこと、および、activation DCIフォーマットの特定のフィールドが特定のDCIフォーマット(例えば、DCI 1_1)を示すことの少なくとも一方が満たされる場合には、SPS configurationについてtwo-codewordを受信し、それ以外の場合には、single-codewordを受信してもよい。同様に、端末20は、maxNrofCodeWordsCgPuschがtwo-codewordを示すこと、および、activation DCIフォーマットの特定のフィールドが特定のDCIフォーマット(例えば、DCI 1_1)を示すことの少なくとも一方が満たされる場合には、CG configurationについてtwo-codewordを送信し、それ以外の場合には、single-codewordを送信してもよい。 Alternatively, if at least one of maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field of the activation DCI format indicates a specific DCI format (for example, DCI 1_1), the terminal 20 configures the SPS configuration A two-codeword may be received for each case, and a single-codeword may be received for all other cases. Similarly, if at least one of maxNrofCodeWordsCgPusch indicates two-codeword and a specific field of the activation DCI format indicates a specific DCI format (e.g., DCI 1_1), the terminal 20 uses the CG Two-codewords may be sent for configuration, and single-codewords may be sent in other cases.
 (Alt 3)
 Alt 3では、端末20が、SPS/CG configuration毎に設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)または全てのSPS/CG configurationに設定された最大コードワード数の設定情報である上位レイヤパラメータ(RRCパラメータ)とactivation DCIにおけるDCIフィールドの組み合わせに基づいて、SPS/CG configurationに対してsingle-codewordとtwo-codewordのどちらを適用するかを設定する。
(Alt 3)
In Alt 3, the terminal 20 uses upper layer parameters (RRC parameters) that are setting information for the maximum number of codewords set for each SPS/CG configuration or settings for the maximum number of codewords set for all SPS/CG configurations. Set whether to apply single-codeword or two-codeword to the SPS/CG configuration based on the combination of upper layer parameters (RRC parameters) that are information and DCI field in activation DCI.
 例えば、端末20は、maxNrofCodeWordsSpsPdschがtwo-codewordを示し、かつ、activation DCI内の特定のフィールドがtwo-codewordの有効化を示す場合には、SPS configurationについてtwo-codewordを受信し、それ以外の場合には、single-codewordを受信してもよい。同様に、端末20は、maxNrofCodeWordsCgPuschがtwo-codewordを示し、かつ、activation DCI内の特定のフィールドがtwo-codewordの有効化を示す場合には、CG configurationについてtwo-codewordを送信し、それ以外の場合には、single-codewordを送信してもよい。 For example, the terminal 20 will receive two-codeword for the SPS configuration if maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword, otherwise may receive a single-codeword. Similarly, if maxNrofCodeWordsCgPusch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword, the terminal 20 sends two-codeword for the CG configuration; In some cases, a single-codeword may be sent.
 あるいは、端末20は、maxNrofCodeWordsSpsPdschがtwo-codewordを示すこと、および、activation DCI内の特定のフィールドがtwo-codewordの有効化を示すことの少なくとも一方が満たされる場合には、SPS configurationについてtwo-codewordを受信し、それ以外の場合には、single-codewordを受信してもよい。同様に、端末20は、maxNrofCodeWordsCgPuschがtwo-codewordを示すこと、および、activation DCI内の特定のフィールドがtwo-codewordの有効化を示すことの少なくとも一方が満たされる場合には、CG configurationについてtwo-codewordを送信し、それ以外の場合には、single-codewordを送信してもよい。 Alternatively, if at least one of maxNrofCodeWordsSpsPdsch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword is satisfied, then the terminal 20 configures two-codeword for the SPS configuration. otherwise, a single-codeword may be received. Similarly, if at least one of maxNrofCodeWordsCgPusch indicates two-codeword and a specific field in the activation DCI indicates activation of two-codeword is satisfied, the terminal 20 determines that the CG configuration is two-codeword. codeword, otherwise a single-codeword may be sent.
 なお、activation DCI内の特定のフィールドは、新規のDCIフィールド、既存のDCIフィールド、または、予め定義された値を示すフィールドの組み合わせ(例えば、MCSフィールドとRVフィールド)であってもよい。 Note that the specific field within the activation DCI may be a new DCI field, an existing DCI field, or a combination of fields indicating predefined values (for example, the MCS field and the RV field).
 端末20が、two-codeword送信を伴うSPS/CG configurationを設定した場合、activation DCIの中の第1TBおよび第2TBのMCS/NDI/RVフィールドは、SPS PDSCH/CG PUSCHの各コードワードに対してそれぞれ適用される。 If the terminal 20 configures SPS/CG configuration with two-codeword transmission, the MCS/NDI/RV fields of the 1st TB and 2nd TB in the activation DCI are set for each codeword of SPS PDSCH/CG PUSCH. Each applies.
 (効果)
 以上、説明した提案4によれば、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもtwo-codewordをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。
(effect)
According to Proposal 4 explained above, two-codeword can be supported even in SPS PDSCH/CG PUSCH, which is quasi-static scheduling, so it is possible to reduce retransmission frequency, reduce delay, improve transmission efficiency, and Reliability can be ensured.
 <提案5>
 提案5では、2つのトランスポートブロック(2-TB)を適用したSPS PDSCHにおけるHARQ-ACK CBについて、例えば、2-TB based SPS PDSCHに対するHARQ-ACK CBについて説明する。なお、2-TBは、2-codeword(CW)と置き換えられてもよい。
<Proposal 5>
Proposal 5 describes HARQ-ACK CB in SPS PDSCH to which two transport blocks (2-TB) are applied, for example, HARQ-ACK CB for 2-TB based SPS PDSCH. Note that 2-TB may be replaced with 2-codeword (CW).
 (オプション1)
 オプション1では、図4を用いて説明したSPS HARQ-ACKのCBの構築手順が、2-TB based SPS PDSCHに対するHARQ-ACKのCBの構築手順に再利用される。ここで、HARQ-ACKビット数のみが、2-TB based SPS PDSCHに対するHARQ-ACK CBと1-TB based SPS PDSCHに対するHARQ-ACK CBとの間で異なってよい。別言すると、HARQ-ACKビット数が、2-TB based SPS PDSCHに対するHARQ-ACK CBと1-TB based SPS PDSCHに対するHARQ-ACK CBとの間で異なる一方で、HARQ-ACKビット数以外の要素は、2-TB based SPS PDSCHに対するHARQ-ACK CBと1-TB based SPS PDSCHに対するHARQ-ACK CBとの間で共通であってよい。HARQ-ACKビット数以外の要素には、例えば、CBを構成するフィールド(又はフィールドに含まれるHARQ-ACK)の順番に関する取り決めが含まれる。
(Option 1)
In option 1, the SPS HARQ-ACK CB construction procedure described using FIG. 4 is reused as the HARQ-ACK CB construction procedure for 2-TB based SPS PDSCH. Here, only the number of HARQ-ACK bits may differ between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH. In other words, while the number of HARQ-ACK bits differs between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH, factors other than the number of HARQ-ACK bits may be common between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH. Elements other than the number of HARQ-ACK bits include, for example, a convention regarding the order of fields (or HARQ-ACKs included in the fields) constituting the CB.
 2-TB SPS HARQ-ACK CBにおけるSPS HARQ-ACKビットの順序(フィールドの順序)は、最初に、サービングセルのセルインデックスの昇順に基づき、次に、SPS configurationのインデックスの昇順に基づき、次に、DLスロットのインデックスの昇順に基づいてよい。2-TB based SPS PDSCHに対するHARQ-ACK CBと1-TB based SPS PDSCHに対するHARQ-ACK CBとの間で、このSPS HARQ-ACKビットの順序が、共通であってもよい。 The SPS HARQ-ACK bit order (field order) in the 2-TB SPS HARQ-ACK CB is first based on the ascending cell index of the serving cell, then based on the ascending index of the SPS configuration, and then: May be based on ascending order of DL slot index. The order of the SPS HARQ-ACK bits may be the same between the HARQ-ACK CB for 2-TB based SPS PDSCH and the HARQ-ACK CB for 1-TB based SPS PDSCH.
 (オプション2)
 提案5のオプション2では、提案2のオプション2と同様の順序が採用されてよい。例えば、提案5のオプション2では、提案2のオプション2において、「TB based SPS configuration」を「single-codeword based SPS configuration」に置き換え、「CBG based SPS configuration」を「two-codeword based SPS configuration」に置き換えた構成が採られてよい。
(Option 2)
Option 2 of proposal 5 may adopt a similar order as option 2 of proposal 2. For example, in option 2 of proposal 5, in option 2 of proposal 2, "TB based SPS configuration" is replaced with "single-codeword based SPS configuration" and "CBG based SPS configuration" is replaced with "two-codeword based SPS configuration". A replaced configuration may be adopted.
 (オプション3)
 提案5のオプション3では、提案2のオプション3と同様の順序が採用されてよい。例えば、提案5のオプション3では、提案2のオプション3において、「TB based SPS configuration」を「single-codeword based SPS configuration」に置き換え、「CBG based SPS configuration」を「two-codeword based SPS configuration」に置き換えた構成が採られてよい。
(Option 3)
Option 3 of proposal 5 may adopt a similar order as option 3 of proposal 2. For example, in option 3 of proposal 5, in option 3 of proposal 2, "TB based SPS configuration" is replaced with "single-codeword based SPS configuration", and "CBG based SPS configuration" is replaced with "two-codeword based SPS configuration". A replaced configuration may be adopted.
 (提案5のHARQ-ACKビット数について)
 上述した提案5の各オプションにおいて、SPS PDSCH毎のHARQ-ACKビット数について説明する。このSPS PDSCH毎のHARQ-ACKビット数は、以下のAlt.1~Alt.3の何れかによって規定されてよい。
(About the number of HARQ-ACK bits in proposal 5)
The number of HARQ-ACK bits for each SPS PDSCH in each option of Proposal 5 described above will be explained. The number of HARQ-ACK bits for each SPS PDSCH may be defined by any of Alt.1 to Alt.3 below.
 (Alt.1)
 Alt.1では、SPS PDSCH毎のHARQ-ACKビット数は、全てのセルの全てのSPS PDSCHに対して、同じ値であってよい。全てのセルにわたって最大で2 codewordの送信を行うようにコンフィギュアされたSPS PDSCHが少なくとも1つ存在する場合、任意のセルの任意のSPS PDSCHに対するHARQ-ACKビット数は、2であってよい。そうでない場合、任意のセルの任意のSPS PDSCHに対するHARQ-ACKビット数は、1であってよい。そうでない場合とは、例えば、全てのセルにわたって最大で2 codewordの送信を行うようにコンフィギュアされたSPS PDSCHが1つも存在しない場合であってよい。
(Alt.1)
In Alt.1, the number of HARQ-ACK bits per SPS PDSCH may be the same value for all SPS PDSCHs in all cells. The number of HARQ-ACK bits for any SPS PDSCH in any cell may be 2 if there is at least one SPS PDSCH configured to transmit at most 2 codewords across all cells. Otherwise, the number of HARQ-ACK bits for any SPS PDSCH in any cell may be 1. This may not be the case, for example, if there is no SPS PDSCH configured to transmit a maximum of 2 codewords across all cells.
 (Alt.2)
 Alt.2では、SPS PDSCH毎のHARQ-ACKビット数は、同一のサービングセルのSPS configurationに対しては、同じ値であってよい。この場合、Mは、互いに異なるサービングセルのSPS configurationに対しては、異なってもよいし、同じであってもよい。或るセルにおいて、最大で2 codewordの送信を行うようにコンフィギュアされたSPS PDSCHが少なくとも1つ存在する場合、当該セルの任意のSPS PDSCHに対するHARQ-ACKビット数は、2であってよい。そうでない場合、当該セルの任意のSPS PDSCHに対するHARQ-ACKビット数は、1であってよい。そうでない場合とは、例えば、当該セルにおいて最大で2 codewordの送信を行うようにコンフィギュアされたSPS PDSCHが1つも存在しない場合であってよい。
(Alt.2)
In Alt.2, the number of HARQ-ACK bits for each SPS PDSCH may have the same value for SPS configurations of the same serving cell. In this case, M may be different or the same for SPS configurations of different serving cells. If there is at least one SPS PDSCH configured to transmit a maximum of two codewords in a certain cell, the number of HARQ-ACK bits for any SPS PDSCH in the cell may be two. Otherwise, the number of HARQ-ACK bits for any SPS PDSCH of the cell may be 1. A case where this is not the case may be, for example, a case where there is no SPS PDSCH configured to transmit a maximum of two codewords in the cell.
 (Alt.3)
 Alt.3では、SPS PDSCH毎のHARQ-ACKビット数は、互いに異なるSPS configurationに対して、互いに異なってもよいし、同じであってもよい。例えば、SPS configurationが、最大で2 codewordの送信を行うようにコンフィギュアされた場合、当該SPS configurationのSPS PDSCHに対するHARQ-ACKビット数は、2であってよい。そうでない場合、当該SPS configurationのSPS PDSCHに対するHARQ-ACKビット数は、1であってよい。そうでない場合とは、例えば、SPS configurationが、最大で2 codewordの送信を行うようにコンフィギュアされていない場合であってよい。
(Alt.3)
In Alt.3, the number of HARQ-ACK bits for each SPS PDSCH may be different or the same for different SPS configurations. For example, if an SPS configuration is configured to transmit a maximum of 2 codewords, the number of HARQ-ACK bits for the SPS PDSCH of the SPS configuration may be 2. Otherwise, the number of HARQ-ACK bits for the SPS PDSCH of the SPS configuration may be 1. Otherwise, for example, the SPS configuration may not be configured to transmit a maximum of 2 codewords.
 (効果)
 以上、説明した提案5によれば、2-TB SPS PDSCHにおけるHARQ-ACKを含むHARQ-ACK CBが、適切な形式で構築できるため、HARQ-ACKのフィードバックが効率良く行うことができる。例えば、異なるTB数のSPS PDSCH transmissionが、或るセルにおいて実行された場合に、2 TB SPS PDSCH transmissionに対するHARQ-ACKが、他のPDSCH(例えば、1 TB based SPS PDSCH、及び/又は、DG PDSCH)に対するHARQ-ACKと区別されてHARQ-ACK CBに含まれる。このようなHARQ-ACK CBを受信した基地局は、適切な再送制御等を行うことができるため、通信効率を向上させることができる。
(effect)
According to Proposal 5 described above, a HARQ-ACK CB including HARQ-ACK in a 2-TB SPS PDSCH can be constructed in an appropriate format, so that feedback of HARQ-ACK can be performed efficiently. For example, if different TB numbers of SPS PDSCH transmissions are performed in a cell, HARQ-ACK for 2 TB SPS PDSCH transmission may ) and is included in the HARQ-ACK CB. A base station that receives such a HARQ-ACK CB can perform appropriate retransmission control, etc., thereby improving communication efficiency.
 また、HARQ-ACK CBは、端末によって生成されるが、上述した提案5の何れの構築手順を用いて生成されるかは、端末によって決定されてもよいし、基地局によって指示されてもよいし、仕様により規定されてもよい。 Furthermore, although the HARQ-ACK CB is generated by the terminal, which construction procedure in Proposal 5 above is used to generate it may be determined by the terminal or may be instructed by the base station. However, it may be defined by the specifications.
 <提案6>
 提案6では、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の動的/適応的な更新について提案する。
<Proposal 6>
Proposal 6 proposes dynamic/adaptive updating of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
 端末20は、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用を、基地局10の指示に従って動的に更新してもよく、予め設定された半静的なパターンに従って適応的に更新してもよい。 The terminal 20 may dynamically update the application of a single-codeword or two-codeword to the SPS PDSCH/CG PUSCH according to instructions from the base station 10, or may update the application of a single-codeword or two-codeword to the SPS PDSCH/CG PUSCH adaptively according to a preset semi-static pattern. May be updated.
 (1)動的な更新
 以下、single-codewordあるいはtwo-codewordの適用を動的に更新する場合の、(1-1)更新の指示方法および(1-2)更新の対象となるSPS/CG configurationの範囲について説明する。
(1) Dynamic update Below, when dynamically updating the application of single-codeword or two-codeword, (1-1) update instruction method and (1-2) SPS/CG to be updated. The range of configuration will be explained.
 (1-1)更新の指示方法
 本願では、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の動的な更新の指示方法について、以下のオプションを提案する。
(1-1) Method of instructing update In this application, the following options are proposed for a method of instructing dynamic update of application of single-codeword or two-codeword to SPS PDSCH/CG PUSCH.
 (Opt. 1)DCIによる指示
 基地局10は、端末20に対して、DCIにより、SPS PDSCH/CG PUSCHに対するsingle-codewordあるいはtwo-codewordの適用の更新を指示してよい。この場合、以下のバリエーションが考えられる。
(Opt. 1) Instruction by DCI The base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword to SPS PDSCH/CG PUSCH by using DCI. In this case, the following variations are possible.
 (Opt. 1-1)
 新規のDCIフォーマットが用意され、基地局10は、この新規のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。この場合、新規のDCIフォーマットは、新規のRNTI(Radio Network Temporary Identifier)を有していてもよく、新規のRNTIを有さず既存のRNTIを有していてもよい。
(Opt. 1-1)
A new DCI format is prepared, and the base station 10 may use this new DCI format to instruct the update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH. In this case, the new DCI format may have a new RNTI (Radio Network Temporary Identifier), or may have an existing RNTI without a new RNTI.
 (Opt. 1-2)
 あるいは、基地局10は、新規のRNTIを有する既存のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。
(Opt. 1-2)
Alternatively, the base station 10 may use the existing DCI format with a new RNTI to indicate the update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
 (Opt. 1-3)
 あるいは、基地局10は、既存のRNTIを有する既存のDCIフォーマットを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。
(Opt. 1-3)
Alternatively, the base station 10 may use the existing DCI format with the existing RNTI to indicate the update of single-codeword or two-codeword application for the SPS PDSCH/CG PUSCH.
 (Opt. 1-3A)
 この場合、新規のフィールドが設けられ、当該新規のフィールドに、single-codewordあるいはtwo-codewordの適用の更新を示す情報が書き込まれてもよい。また、当該新規のフィールドは、複数であってもよい。
(Opt. 1-3A)
In this case, a new field may be provided, and information indicating update of application of single-codeword or two-codeword may be written in the new field. Further, there may be a plurality of new fields.
 (Opt. 1-3B)
 あるいは、既存のフィールドの内の未使用のフィールドに、single-codewordあるいはtwo-codewordの適用の更新を示す情報が書き込まれてもよい。また、当該未使用のフィールドは、複数であってもよい。この場合、既存の未使用フィールドの内の特定のフィールドの値は、single-codewordあるいはtwo-codewordの適用を動的に更新する目的で、DCIフォーマットを再解釈するかどうかを示すために使用される。端末20は、DCIフォーマットの再解釈により、single-codewordあるいはtwo-codewordの適用の更新を判断することができる。
(Opt. 1-3B)
Alternatively, information indicating the update of the application of a single-codeword or two-codeword may be written into an unused field among the existing fields. Further, there may be a plurality of unused fields. In this case, the value of a particular field among the existing unused fields is used to indicate whether to reinterpret the DCI format for the purpose of dynamically updating single-codeword or two-codeword applications. Ru. The terminal 20 can determine whether to update the application of a single-codeword or two-codeword by reinterpreting the DCI format.
 (Opt 2)MAC CEによる指示
 基地局10は、端末20に対して、MAC CEにより、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。この場合、以下のバリエーションが考えられる。
(Opt 2) Instruction by MAC CE The base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword to SPS PDSCH/CG PUSCH by using MAC CE. In this case, the following variations are possible.
 (Opt. 2-1)
 新規のMAC CEが用意され、基地局10は、この新規のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。
(Opt. 2-1)
A new MAC CE is prepared, and the base station 10 may use this new MAC CE to instruct update of single-codeword or two-codeword application to SPS PDSCH/CG PUSCH.
 (Opt. 2-2)
 あるいは、基地局10は、新規のオクテットを有する既存のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。
(Opt. 2-2)
Alternatively, the base station 10 may use the existing MAC CE with new octets to indicate update of single-codeword or two-codeword application for SPS PDSCH/CG PUSCH.
 (Opt. 2-3)
 あるいは、基地局10は、既存のオクテットを有する既存のMAC CEを使用して、SPS PDSCH/CG PUSCHに対する、single-codewordあるいはtwo-codewordの適用の更新を指示してよい。この場合、予約ビットは、MAC CEを、single-codewordあるいはtwo-codewordの更新目的と解釈するかどうかを示すために使用される。
(Opt. 2-3)
Alternatively, the base station 10 may use the existing MAC CE with existing octets to indicate the update of single-codeword or two-codeword application for the SPS PDSCH/CG PUSCH. In this case, reserved bits are used to indicate whether the MAC CE is interpreted for single-codeword or two-codeword update purposes.
 (1-2)更新の対象となるSPS/CG configurationの範囲
 本願では、single-codewordあるいはtwo-codewordの適用が更新されるSPS/CG configurationの範囲について提案する。
(1-2) Range of SPS/CG configuration to be updated This application proposes the range of SPS/CG configuration to which the application of single-codeword or two-codeword is updated.
 (Alt 1)
 single-codewordあるいはtwo-codewordの適用が動的に更新される範囲は、1つのDCI/MAC CEによる、SPS/CG configuration毎であってもよい。
(Alt 1)
The range in which the application of single-codeword or two-codeword is dynamically updated may be for each SPS/CG configuration by one DCI/MAC CE.
 この場合、基地局10は、端末20に対して、対象のSPS/CG configurationを示すインデックスにより、当該SPS/CG configurationにおけるsingle-codewordあるいはtwo-codewordの適用の更新を指示してもよい。 In this case, the base station 10 may instruct the terminal 20 to update the application of single-codeword or two-codeword in the target SPS/CG configuration using an index indicating the target SPS/CG configuration.
 (Alt 1-1)
 当該インデックスは、DCIまたはMAC CEのフィールド/ビットで端末20に明示的に示されてもよい。
(Alt 1-1)
The index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
 (Alt 1-2)
 あるいは、当該インデックスは、端末20に暗黙的に示さてもよい。例えば、MAC CEにより、SPS PDSCHのパラメータの動的な更新を示す場合、対象のSPS configurationのインデックスは、MAC CEを伝達するSPS PDSCH occasionのSPS configurationのインデックスである。
(Alt 1-2)
Alternatively, the index may be implicitly indicated to the terminal 20. For example, when indicating dynamic updating of SPS PDSCH parameters by MAC CE, the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
 (Alt 2)
 single-codewordあるいはtwo-codewordの適用が動的に更新される範囲は、1つのDCI/MAC CEによるすべての(アクティベートされた)SPS/CG configurationであってもよい。
(Alt 2)
The range in which the application of single-codeword or two-codeword is dynamically updated may be all (activated) SPS/CG configurations by one DCI/MAC CE.
 (Alt 2-1)
 この場合、すべてのSPS/CG configurationに共通の指示フィールド/ビットが設定されてもよい。
(Alt 2-1)
In this case, common indication fields/bits may be set for all SPS/CG configurations.
 (Alt 2-2)
 あるいは、すべてのSPS/CG configurationに個別の指示フィールド/ビットが設定されてもよい。
(Alt 2-2)
Alternatively, a separate indication field/bit may be set for every SPS/CG configuration.
 (Alt 3)
 single-codewordあるいはtwo-codewordの適用が動的に更新される範囲は、1つのDCI/MAC CEによる、SPS/CG configurationのグループ毎であってもよい。
(Alt 3)
The range in which the application of single-codeword or two-codeword is dynamically updated may be for each group of SPS/CG configuration by one DCI/MAC CE.
 (Alt 3-1A)
 この場合、SPS/CG configurationのグループに対する共通の指示フィールド/ビットが設定されてもよい。
(Alt 3-1A)
In this case, a common indication field/bit for the group of SPS/CG configurations may be set.
 (Alt 3-1B)
 あるいは、SPS/CG configurationのグループに対する個別の指示フィールド/ビットが設定されてもよい。
(Alt 3-1B)
Alternatively, separate indication fields/bits for groups of SPS/CG configurations may be set.
 また、この場合、基地局10は、端末20に対して、対象のSPS/CG configurationのグループを示すインデックスにより、当該SPS/CG configurationにおけるsingle-codewordあるいはtwo-codewordの適用の動的な更新を指示してもよい。 Additionally, in this case, the base station 10 dynamically updates the application of single-codeword or two-codeword in the SPS/CG configuration to the terminal 20 using the index indicating the group of the target SPS/CG configuration. You may give instructions.
 (Alt 3-2A)
 当該インデックスは、DCIまたはMAC CEのフィールド/ビットで端末20に明示的に示されてもよい。
(Alt 3-2A)
The index may be explicitly indicated to the terminal 20 in a field/bit of the DCI or MAC CE.
 (Alt 3-2B)
 あるいは、当該インデックスは、端末20に暗黙的に示さてもよい。例えば、MAC CEにより、SPS PDSCHのパラメータの動的な更新を示す場合、対象のSPS configurationのインデックスは、MAC CEを伝達するSPS PDSCH occasionのSPS configurationのインデックスである。
(Alt 3-2B)
Alternatively, the index may be implicitly indicated to the terminal 20. For example, when indicating dynamic updating of SPS PDSCH parameters by MAC CE, the target SPS configuration index is the SPS configuration index of the SPS PDSCH occasion that conveys the MAC CE.
 (2)半静的なパターンに基づく更新
 以下、single-codewordあるいはtwo-codewordの適用を、半静的なパターンに基づいて更新する場合について説明する。
(2) Update based on semi-static pattern Below, we will explain the case where the application of single-codeword or two-codeword is updated based on semi-static pattern.
 (Alt 1)
 Alt 1では、端末20は、SPS/CG occasionのインデックス値に基づいて、single-codewordあるいはtwo-codewordを適用する。
(Alt 1)
In Alt 1, the terminal 20 applies a single-codeword or two-codeword based on the index value of SPS/CG occasion.
 例えば、端末20は、SPS/CG occasionのインデックス値Nが、N mod X1 = {Y1_1, Y1_2, ...}を満たす場合にはsingle-codewordを適用し、N mod X1 = {Y2_1, Y2_2, ...}を満たす場合にはtwo-codewordを適用してよい。ここで、Nは1以上の整数、X1は2以上の整数、Y1_1, Y1_2, ...及びY2_1, Y2_2, ...は、それぞれ、1以上かつ(X1-1)以下の整数であって、互いに異なる数である。 For example, the terminal 20 applies a single-codeword when the index value N of the SPS/CG occasion satisfies N mod X1 = {Y1_1, Y1_2, ...}, and N mod X1 = {Y2_1, Y2_2, ...}, two-codeword may be applied. Here, N is an integer greater than or equal to 1, X1 is an integer greater than or equal to 2, and Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are integers greater than or equal to 1 and less than or equal to (X1-1), respectively. , are different numbers from each other.
 なお、上記X1、Y1_1、Y1_2、Y2_1、Y2_2等の値は、仕様等で予め規定されてもよく、あるいは、RRC等の上位レイヤシグナリングによって端末20に通知されてもよい。 Note that the values of X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
 仕様で予め規定する場合、XRサービス毎に、異なる値の組み合わせを規定してもよい。また、上位レイヤシグナリングにより通知する場合、XRサービス毎、及び/又は、SPS/CG configuration毎に、異なる値の組み合わせを構成してもよい。 If predefined in the specifications, different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
 (Alt 2)
 Alt 2では、端末20は、SPS/CG occasionのスロットのインデックス値に基づいて、single-codewordあるいはtwo-codewordを適用する。
(Alt 2)
In Alt 2, the terminal 20 applies a single-codeword or two-codeword based on the index value of the SPS/CG occasion slot.
 例えば、端末20は、SPS/CG occasionのスロットのインデックス値Mが、M mod X1 = {Y1_1, Y1_2, ...}を満たす場合にはsingle-codewordを適用し、M mod X1 = {Y2_1, Y2_2, ...}を満たす場合にはtwo-codewordを適用してよい。ここで、Mは1以上の整数、X1は2以上の整数、Y1_1, Y1_2, ...及びY2_1, Y2_2, ...は、それぞれ、0以上かつ(X1-1)以下のいずれかの整数であって、互いに異なる数である。 For example, the terminal 20 applies a single-codeword when the index value M of the SPS/CG occasion slot satisfies M mod X1 = {Y1_1, Y1_2, ...}, and M mod X1 = {Y2_1, Two-codeword may be applied if Y2_2, ...} is satisfied. Here, M is an integer greater than or equal to 1, X1 is an integer greater than or equal to 2, and Y1_1, Y1_2, ... and Y2_1, Y2_2, ... are each an integer greater than or equal to 0 and less than or equal to (X1-1). and are different numbers from each other.
 なお、上記X1、Y1_1、Y1_2、Y2_1、Y2_2等の値は、仕様等で予め規定されてもよく、あるいは、RRC等の上位レイヤシグナリングによって端末20に通知されてもよい。 Note that the values of X1, Y1_1, Y1_2, Y2_1, Y2_2, etc. may be defined in advance in specifications or the like, or may be notified to the terminal 20 by upper layer signaling such as RRC.
 仕様で予め規定する場合、XRサービス毎に、異なる値の組み合わせを規定してもよい。また、上位レイヤシグナリングにより通知する場合、XRサービス毎、及び/又は、SPS/CG configuration毎に、異なる値の組み合わせを構成してもよい。 If predefined in the specifications, different combinations of values may be defined for each XR service. Furthermore, when notification is made by upper layer signaling, different combinations of values may be configured for each XR service and/or each SPS/CG configuration.
 (3)更新によるHARK-ACK CBの影響
 Rel-15/16のHARQ-ACK CBのコンストラクションでは、(サービングセル上で)最大two-codewordの送信が有効な場合、実際にスケジュールされたPDSCHがsingle-TB送信であるのかtwo-TB送信であるのかにかかわらず、two-TBのHARQ-ACK位置が予約される。したがって、single-codewordとtwo-codewordのSPS送信の動的更新について異なる動作をさらに考慮する必要はない。すなわち、提案5で説明したHARQ-ACK CBが、再利用される可能性が最も高いと考えられる。
(3) Impact of updates on HARQ-ACK CB In the construction of HARQ-ACK CB in Rel-15/16, when maximum two-codeword transmission is enabled (on the serving cell), the actually scheduled PDSCH is Regardless of whether it is a TB or two-TB transmission, two-TB HARQ-ACK positions are reserved. Therefore, there is no need to further consider the different behavior for dynamic updates of single-codeword and two-codeword SPS transmissions. In other words, it is considered that the HARQ-ACK CB described in Proposal 5 has the highest possibility of being reused.
 (効果)
 以上、説明した提案6によれば、SPS PDSCH/CG PUSCHにおいて、single-codewordとtwo-codewordのいずれかを適用する場合に、これらの動的/適応的な更新を行うことができる。例えば、single-codewordを適用している場合に、基地局10の指示に従って、動的に、two-codewordの適用に切り替えてもよい。また、予め設定された半静的なパターンに従って、single-codewordとtwo-codewordとを適応的に切り替えて適用してもよい。
(effect)
According to Proposal 6 described above, when applying either a single-codeword or two-codeword in SPS PDSCH/CG PUSCH, these can be dynamically/adaptive updated. For example, when a single-codeword is applied, the application may be dynamically switched to a two-codeword according to an instruction from the base station 10. Furthermore, single-codeword and two-codeword may be adaptively switched and applied according to a preset semi-static pattern.
 (バリエーション)
 また、上述では、1つの設定に関して、複数の選択肢の何れかが適用されることを示した。例えば、複数のオプションのどれが適用されるか、及び/又は、複数の選択肢のどれが適用されるかについては、以下の方法で決定されてよい。
 ・上位レイヤのパラメータによって設定される。
 ・UEがUE capability(ies)として報告する。
 ・仕様書に記載されている。
 ・上位レイヤパラメータの設定と、報告されたUE capabilityとを基に決定される。
 ・上記の決定の2つ以上の組み合わせによって決定される。
 なお、上位レイヤのパラメータとは、RRCパラメータであってもよいし、MAC CE (Media Access Control Control Element)であってもよいし、これらの組合せであってもよい。
(variation)
Furthermore, in the above description, it has been shown that one of a plurality of options is applied to one setting. For example, which of a plurality of options and/or which of a plurality of choices is applied may be determined in the following manner.
- Set by upper layer parameters.
- UE reports as UE capability(ies).
- Described in the specifications.
- Determined based on upper layer parameter settings and reported UE capability.
- Determined by a combination of two or more of the above decisions.
Note that the upper layer parameters may be RRC parameters, MAC CE (Media Access Control Control Element), or a combination thereof.
 なお、端末は、CBG based SPS transmissionと、two-codeword SPS transmissionとが同時に有効になることを想定しないことが可能である。別言すると、端末は、CBG based SPS transmissionと、two-codeword SPS transmissionとの一方が有効になった場合、他方が有効になることを想定しなくてよい。また、端末は、CBG based SPS transmissionと、two-codeword SPS transmissionとが同時に有効になることを想定してもよい。 Note that it is possible for the terminal not to assume that CBG based SPS transmission and two-codeword SPS transmission are enabled at the same time. In other words, if one of CBG based SPS transmission and two-codeword SPS transmission is enabled, the terminal does not have to assume that the other will be enabled. Additionally, the terminal may assume that CBG based SPS transmission and two-codeword SPS transmission are enabled at the same time.
 なお、端末は、CBG based CG PUSCH transmissionと、two-codeword CG PUSCH transmissionとが同時に有効になることを想定しないことが可能である。別言すると、端末は、CBG based CG PUSCH transmissionと、two-codeword CG PUSCH transmissionとの一方が有効になった場合、他方が有効になることを想定しなくてよい。また、端末は、CBG based CG PUSCH transmissionと、two-codeword CG PUSCH transmissionとが同時に有効になることを想定してもよい。 Note that the terminal may not assume that CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission are enabled at the same time. In other words, if one of CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission is enabled, the terminal does not need to assume that the other will be enabled. Furthermore, the terminal may assume that CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission are enabled at the same time.
 また、CBG based SPS transmissionと、two-codeword SPS transmissionとが、同時にサポートされてもよい。two codeword SPS transmissionとCBG based transmissionとを同時に有効化した場合のSPS PDSCHに対するHARQ-ACKビットの数は、2×Mであってよい。ここで、Mは、例えば、上述した提案2において示したHARQ-ACKビットの数のMと同様に決定されてよい。あるいは、two codeword SPS transmissionとCBG based transmissionとを同時に有効化した場合のSPS PDSCHに対するHARQ-ACKビットの数は、提案2において示したCBG based transmissionに対するHARQ-ACKビット数と、提案5において示したtwo codeword SPS transmissionに対するHARQ-ACKビット数とに基づいて決定されてもよい。 Additionally, CBG based SPS transmission and two-codeword SPS transmission may be supported simultaneously. The number of HARQ-ACK bits for SPS PDSCH when two codewords SPS transmission and CBG based transmission are enabled at the same time may be 2×M. Here, M may be determined in the same manner as the number M of HARQ-ACK bits shown in Proposal 2 above, for example. Alternatively, the number of HARQ-ACK bits for SPS PDSCH when two codeword SPS transmission and CBG-based transmission are enabled at the same time is the number of HARQ-ACK bits for CBG-based transmission shown in Proposal 2 and the number of HARQ-ACK bits for CBG-based transmission shown in Proposal 5. It may be determined based on two codewords and the number of HARQ-ACK bits for SPS transmission.
 また、CBG based CG PUSCH transmissionと、two-codeword CG PUSCH transmissionとが同時にサポートされてもよい。 Additionally, CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission may be supported simultaneously.
 <UE capability>
 UEの能力を示すUE capabilityでは、以下のUEの能力を示す情報が含まれてよい。なお、UEの能力を示す情報は、UEの能力を定義する情報に相当してよい。なお、以下の1つの項目を示す1つのUE capabilityが通知されてもよいし、複数の項目を示す1つのUE capabilityが通知されてもよい。
 ・UEが、CBG based SPS PDSCH transmissionをサポートするか否かを定義する情報。
 ・UEが、CBG based CG PUSCH transmissionをサポートするか否かを定義する情報。
 ・UEが、two-codeword SPS PDSCH transmissionをサポートするか否かを定義する情報。
 ・UEが、two-codeword CG PUSCH transmissionをサポートするか否かを定義する情報。
 ・UEが、CBG based SPS PDSCH transmission及びtwo-codeword SPS PDSCH transmissionを同時に有効にすることをサポートするか否かを定義する情報。
 ・UEが、CBG based CG PUSCH transmission及びtwo-codeword CG PUSCH transmissionを同時に有効にすることをサポートするか否かを定義する情報。
<UE capability>
The UE capability indicating the capability of the UE may include the following information indicating the capability of the UE. Note that the information indicating the capability of the UE may correspond to information defining the capability of the UE. Note that one UE capability indicating one of the following items may be notified, or one UE capability indicating multiple items may be notified.
- Information defining whether the UE supports CBG based SPS PDSCH transmission.
- Information that defines whether the UE supports CBG based CG PUSCH transmission.
- Information defining whether the UE supports two-codeword SPS PDSCH transmission.
- Information defining whether the UE supports two-codeword CG PUSCH transmission.
- Information defining whether the UE supports enabling CBG based SPS PDSCH transmission and two-codeword SPS PDSCH transmission simultaneously.
- Information defining whether the UE supports enabling CBG based CG PUSCH transmission and two-codeword CG PUSCH transmission at the same time.
 以上、本開示について説明した。なお、上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。 The present disclosure has been described above. Note that the division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another. may be applied to the matters described in the section (unless they conflict with each other).
 <ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
<Hardware configuration, etc.>
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本開示の一実施の形態に係る基地局100及び端末200のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure. The base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103、203などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-mentioned control units 103, 203, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100の制御部103、端末200の制御部203などは、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201及び送信部202などは、通信装置1004によって実現されてもよい。通信装置1004は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, the above-mentioned transmitting section 101, receiving section 102, receiving section 201, transmitting section 202, etc. may be realized by the communication device 1004. The communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 (実施の形態の補足)
 以上、本開示の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局100及び端末200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本開示の実施の形態に従って基地局100が有するプロセッサにより動作するソフトウェア及び本開示の実施の形態に従って端末200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present disclosure have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 <情報の通知、シグナリング>
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<Information notification, signaling>
Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 <適用システム>
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<Applicable system>
Each aspect/embodiment described in this disclosure applies to LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer, decimal, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems and systems that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 <処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<Processing procedures, etc.>
The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 <基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<Base station operation>
The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). In the above example, there is one network node other than the base station, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 <入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<Input/output direction>
Information etc. (see the item <Information, Signal>) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 <入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<Handling of input/output information, etc.>
The input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 <判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<Judgment method>
Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 <態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わないこと)によって行われてもよい。
<Variations of aspects, etc.>
Each aspect/embodiment described in this disclosure may be used alone, may be used in combination, or may be switched and used in accordance with execution. Furthermore, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, by not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 <ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
<Software>
Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 <情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
<Information, signals>
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 <システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<System, network>
As used in this disclosure, the terms "system" and "network" are used interchangeably.
 <パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
<Parameter, channel name>
In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 <基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
<Base station>
In this disclosure, "Base Station (BS),""wireless base station,""fixedstation,""NodeB,""eNodeB(eNB),""gNodeB(gNB),"""accesspoint","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup"," The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).The term "cell" or "sector" refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 <移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
<Mobile station>
In this disclosure, terms such as "Mobile Station (MS),""userterminal,""User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 <基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
<Base station/mobile station>
At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 200 may have the functions that the base station 100 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 100 may have the functions that the terminal 200 described above has.
 図15に車両2001の構成例を示す。図15に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施の形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 15 shows an example of the configuration of the vehicle 2001. As shown in FIG. 15, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, (display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2029との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021~2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021~2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態のまとめ)
 以上、説明したように、本開示の一態様によれば、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、TB(Transport Block)基準で行うかCBG(Code Block Group)基準で行うかの設定を制御する制御部と、前記制御部の設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う送受信部と、を具備する端末が提供される。
(Summary of embodiments)
As described above, according to one aspect of the present disclosure, transmission of CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or reception of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is a control unit that controls the setting of whether to perform based on Block) or CBG (Code Block Group); and a transmitting/receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit. A terminal is provided that includes the following.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 一実施例では、前記制御部は、上位レイヤパラメータに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記TB基準で行うか前記CBG基準で行うかの設定を制御してもよい。本実施例によれば、基地局と協働して、TB基準で行うかCBG基準で行うかの設定を制御できる。 In one embodiment, the control unit may control the setting of whether to transmit the CG PUSCH and/or receive the SPS PDSCH based on the TB standard or the CBG standard based on upper layer parameters. good. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use the TB standard or the CBG standard.
 一実施例では、前記制御部は、上位レイヤパラメータ及び/又はactivation DCI(Downlink Control Information)のフォーマットあるいはDCIフィールドに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記TB基準で行うか前記CBG基準で行うかの設定を制御してよい。本実施例によれば、基地局と協働して、TB基準で行うかCBG基準で行うかの設定を制御できる。 In one embodiment, the control unit controls the transmission of the CG PUSCH and/or the reception of the SPS PDSCH based on the TB standard based on upper layer parameters and/or the format or DCI field of activation DCI (Downlink Control Information). You may control the settings as to whether this is done or based on the CBG standard. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use the TB standard or the CBG standard.
 一実施例では、前記制御部は、設定した前記TB基準あるいは前記CBG基準を動的/適応的に更新してよい。本実施例によれば、SPS PDSCH/CG PUSCHにおいてCBG based transmissionとTB based transmissionのいずれかを適用する場合に、これらの動的/適応的な更新を行うことができる。 In one embodiment, the control unit may dynamically/adaptively update the set TB standard or the CBG standard. According to the present embodiment, when applying either CBG based transmission or TB based transmission in SPS PDSCH/CG PUSCH, these can be dynamically/adaptive updated.
 また、本開示の一態様によれば、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、TB(Transport Block)基準で行うかCBG(Code Block Group)基準で行うかを設定する制御部と、前記設定を示す情報を通知する送信部と、を具備する基地局が提供される。 Further, according to one aspect of the present disclosure, transmission of CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or reception of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is performed on a TB (Transport Block) basis. A base station is provided that includes a control unit that configures whether the data is to be transmitted or based on a CBG (Code Block Group) standard, and a transmitter that notifies information indicating the setting.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 また、本開示の一態様によれば、Extended Reality(XR)のデータを送受信する端末が、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、TB(Transport Block)基準で行うかCBG(Code Block Group)基準で行うかを設定し、前記設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う、無線通信方法が提供される。 Further, according to one aspect of the present disclosure, a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel). ) on the basis of TB (Transport Block) or CBG (Code Block Group), and transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings. A communication method is provided.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 また、本開示の一態様によれば、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかの設定を制御する制御部と、前記制御部の設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う送受信部と、を具備する端末が提供される。 Further, according to one aspect of the present disclosure, transmission of CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or reception of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is performed using a single-codeword or two-codeword. A terminal is provided that includes a control unit that controls settings for codewords, and a transmitting and receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 一実施例では、前記制御部は、上位レイヤパラメータに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記single-codewordで行うか前記two-codewordで行うかの設定を制御してもよい。本実施例によれば、基地局と協働して、single-codewordで行うかCBG基準で行うかの設定を制御できる。 In one embodiment, the control unit controls settings of whether to transmit the CG PUSCH and/or receive the SPS PDSCH using the single-codeword or the two-codeword based on upper layer parameters. It's okay. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use a single-codeword or based on the CBG standard.
 一実施例では、前記制御部は、上位レイヤパラメータ及び/又はactivation DCI(Downlink Control Information)のフォーマットあるいはDCIフィールドに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記single-codewordで行うか前記two-codewordで行うかの設定を制御してよい。本実施例によれば、基地局と協働して、single-codewordで行うかCBG基準で行うかの設定を制御できる。 In one embodiment, the control unit controls the transmission of the CG PUSCH and/or the reception of the SPS PDSCH based on the upper layer parameters and/or the format or DCI field of activation DCI (Downlink Control Information). You may control the setting of whether to perform this with or with the above-mentioned two-codeword. According to this embodiment, in cooperation with the base station, it is possible to control the setting of whether to use a single-codeword or based on the CBG standard.
 一実施例では、前記制御部は、設定した前記single-codewordあるいは前記two-codewordを動的/適応的に更新してよい。本実施例によれば、SPS PDSCH/CG PUSCHにおいてsingle-codewordとtwo-codewordのいずれかを適用する場合に、これらの動的/適応的な更新を行うことができる。 In one embodiment, the control unit may dynamically/adaptively update the set single-codeword or two-codeword. According to this embodiment, when applying either a single-codeword or two-codeword in SPS PDSCH/CG PUSCH, these can be dynamically/adaptive updated.
 また、本開示の一態様によれば、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかを設定する制御部と、前記設定を示す情報を通知する送信部と、を具備する基地局が提供される。 Further, according to one aspect of the present disclosure, transmission of CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or reception of SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) is performed using a single-codeword or two-codeword. A base station is provided that includes a control unit that sets whether to perform the codeword, and a transmitter that notifies information indicating the setting.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 また、本開示の一態様によれば、Extended Reality(XR)のデータを送受信する端末が、CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかを設定し、前記設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う、無線通信方法が提供される。 Further, according to one aspect of the present disclosure, a terminal that transmits and receives Extended Reality (XR) data transmits a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel). ) is set as whether to be received using a single-codeword or two-codeword, and based on the setting, the CG PUSCH is transmitted and/or the SPS PDSCH is received.
 上記構成により、準静的なスケジューリングであるSPS PDSCH/CG PUSCHにおいてもCBG based transmissionをサポートできるので、再送頻度を小さくすることができ、低遅延化、送信効率の向上及び信頼性の確保を図ることができる。 With the above configuration, CBG based transmission can be supported even in SPS PDSCH/CG PUSCH, which has quasi-static scheduling, so the retransmission frequency can be reduced, reducing delay, improving transmission efficiency, and ensuring reliability. be able to.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答を、前記送信信号の送信方法に応じた形式で生成する制御部と、前記確認応答を送信する送信部と、を備える端末が提供される。 Further, according to one aspect of the present disclosure, a control unit that generates an acknowledgment for a transmission signal transmitted based on quasi-static scheduling in a format according to a transmission method of the transmission signal; A terminal is provided, including a transmitter that transmits data.
 上記構成により、準静的なスケジューリング(例えば、SPS)に基づいて送信された送信信号の送信方法が、CBGを適用する方法か、TBを適用する方法かに応じて、確認応答(例えば、HARQ-ACK CB)を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。なお、上述した実施の形態において、送信信号の送信方法の例は、CBGを適用する方法と、TBを適用する方法とであったが、本開示はこれらに限定されない。 With the above configuration, depending on whether the transmission method of a transmission signal transmitted based on quasi-static scheduling (e.g. SPS) is a method applying CBG or a method applying TB, an acknowledgment response (e.g. HARQ -ACK CB) can be constructed in an appropriate format, HARQ-ACK feedback and retransmission control based on HARQ-ACK can be appropriately performed, and communication efficiency can be improved. Note that in the embodiments described above, examples of the transmission method of the transmission signal are a method of applying CBG and a method of applying TB, but the present disclosure is not limited to these.
 一実施例では、前記制御部は、前記送信方法を使用したセルに応じて区別された形式を有する前記確認応答を生成してもよい。本実施例によれば、サービングセルを、TB based SPS PDSCH transmissionを行うセルと、CBG based SPS PDSCH transmissionを行うセルとに分類した上で、HARQ-ACK CBにおいて、分類したセルのそれぞれに対応するHARQ-ACKを区別した形式でHARQ-ACK CBを構築できる。これにより、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 In one embodiment, the control unit may generate the acknowledgment in a differentiated format depending on the cell using the transmission method. According to this embodiment, the serving cells are classified into cells that perform TB based SPS PDSCH transmission and cells that perform CBG based SPS PDSCH transmission, and then, in HARQ-ACK CB, the HARQ corresponding to each of the classified cells is -HARQ-ACK CB can be constructed in a format that differentiates ACK. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
 一実施例では、前記確認応答は、前記送信方法のうち、第1の送信方法を使用し、第2の送信方法を使用しない第1のセルと、前記第1の送信方法を使用せず、前記第2の送信方法を使用する第2のセルとに区別された形式を有してもよい。本実施例によれば、サービングセルを、TB based SPS PDSCH transmissionのみを行うセル(例えば、TB based SPS PDSCH transmissionを行い、CBG based SPS PDSCH transmissionを行わないセル)と、CBG based SPS PDSCH transmissionのみを行うセル(例えば、TB based SPS PDSCH transmissionを行わず、CBG based SPS PDSCH transmissionを行うセル)と、に分類した上で、HARQ-ACK CBにおいて、分類したセルのそれぞれに対応するHARQ-ACKを区別した形式でHARQ-ACK CBを構築できる。これにより、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 In one embodiment, the acknowledgment includes a first cell that uses a first transmission method and does not use a second transmission method among the transmission methods, and a first cell that does not use the first transmission method; The second cell using the second transmission method may have a different format. According to this embodiment, the serving cell is a cell that performs only TB based SPS PDSCH transmission (for example, a cell that performs TB based SPS PDSCH transmission and does not perform CBG based SPS PDSCH transmission), and a cell that performs only CBG based SPS PDSCH transmission. cells (for example, cells that do not perform TB based SPS PDSCH transmission but perform CBG based SPS PDSCH transmission), and in the HARQ-ACK CB, distinguish HARQ-ACK corresponding to each classified cell. You can build a HARQ-ACK CB in the format. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
 一実施例では、前記確認応答は、第1の送信方法を使用し、第2の送信方法を使用しない第3のセルと、前記第1の送信方法及び前記第2の送信方法の少なくとも1つを使用する第4のセルとに区別された形式を有してもよい。本実施例によれば、サービングセルを、TB based SPS PDSCH transmissionのみを行うセル(例えば、TB based SPS PDSCH transmissionを行い、CBG based SPS PDSCH transmissionを行わないセル)と、そうではないセル(例えば、TB based SPS PDSCH transmissionと、CBG based SPS PDSCH transmissionとの少なくとも一方を行うセル)と、に分類した上で、HARQ-ACK CBにおいて、分類したセルのそれぞれに対応するHARQ-ACKを区別した形式でHARQ-ACK CBを構築できる。これにより、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 In one embodiment, the acknowledgment includes a third cell using a first transmission method and not using a second transmission method, and at least one of the first transmission method and the second transmission method. It may have a format differentiated into a fourth cell using . According to this embodiment, the serving cell is divided into a cell that performs only TB based SPS PDSCH transmission (for example, a cell that performs TB based SPS PDSCH transmission but not CBG based SPS PDSCH transmission) and a cell that does not perform this (for example, a cell that performs TB based SPS PDSCH transmission). based SPS PDSCH transmission and CBG based SPS PDSCH transmission (cells that perform at least one of CBG based SPS PDSCH transmission), and then in HARQ-ACK CB, HARQ -ACK CB can be constructed. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答であって、前記送信信号の送信方法に応じた形式を有する確認応答を受信する受信部と、前記確認応答に基づいて再送を制御する制御部と、を備える基地局が提供される。 Further, according to one aspect of the present disclosure, the receiving unit receives an acknowledgment for a transmission signal transmitted based on quasi-static scheduling, the acknowledgment having a format according to a transmission method of the transmission signal. and a control unit that controls retransmission based on the acknowledgment.
 上記構成により、準静的なスケジューリングに基づいて送信された送信信号の送信方法が、CBGを適用する方法か、TBを適用する方法かに応じて、確認応答を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 With the above configuration, the acknowledgment can be constructed in an appropriate format depending on whether the transmission method of the transmission signal transmitted based on quasi-static scheduling is applying CBG or applying TB. Since HARQ-ACK feedback and retransmission control based on HARQ-ACK can be appropriately performed, communication efficiency can be improved.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答を、前記送信信号の送信方法に応じた形式で生成し、前記確認応答を送信する、無線通信方法が提供される。 Further, according to one aspect of the present disclosure, an acknowledgment for a transmission signal transmitted based on quasi-static scheduling is generated in a format according to a transmission method of the transmission signal, and the acknowledgment is transmitted. A wireless communication method is provided.
 上記構成により、準静的なスケジューリングに基づいて送信された送信信号の送信方法が、CBGを適用する方法か、TBを適用する方法かに応じて、確認応答を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 With the above configuration, the acknowledgment can be constructed in an appropriate format depending on whether the transmission method of the transmission signal transmitted based on quasi-static scheduling is applying CBG or applying TB. Since HARQ-ACK feedback and retransmission control based on HARQ-ACK can be appropriately performed, communication efficiency can be improved.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答を、前記送信信号のトランスポートブロックの数に応じた形式で生成する制御部と、前記確認応答を送信する送信部と、を備える端末が提供される。 Further, according to one aspect of the present disclosure, the control unit generates an acknowledgment response to a transmission signal transmitted based on quasi-static scheduling in a format according to the number of transport blocks of the transmission signal; A terminal is provided, including a transmitter that transmits an acknowledgment.
 上記構成により、準静的なスケジューリング(例えば、SPS)に基づいて送信された送信信号のトランスポートブロック(TB)の数に応じて、確認応答(例えば、HARQ-ACK CB)を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 The above configuration allows acknowledgments (e.g. HARQ-ACK CB) to be sent in an appropriate format depending on the number of transport blocks (TB) of transmitted signals based on quasi-static scheduling (e.g. SPS). As a result, it is possible to appropriately perform HARQ-ACK feedback and retransmission control based on HARQ-ACK, thereby improving communication efficiency.
 一実施例では、前記制御部は、前記トランスポートブロックの数を使用したセルに応じて区別された形式を有する前記確認応答を生成してもよい。本実施例によれば、サービングセルを、使用するTBの数に応じて分類した上で、HARQ-ACK CBにおいて、分類したセルのそれぞれに対応するHARQ-ACKを区別した形式でHARQ-ACK CBを構築できる。これにより、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。なお、上述した実施の形態において、TBの数は1又は2であったが、本開示はこれらに限定されない。例えば、TBの数は、3以上であってもよい。 In one embodiment, the control unit may generate the acknowledgment having a differentiated format depending on a cell using the number of transport blocks. According to this embodiment, the serving cells are classified according to the number of TBs used, and then the HARQ-ACK CB is transmitted in a format that distinguishes HARQ-ACKs corresponding to each of the classified cells. Can be built. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved. Note that in the embodiments described above, the number of TBs was 1 or 2, but the present disclosure is not limited thereto. For example, the number of TBs may be 3 or more.
 一実施例では、前記確認応答は、第1のトランスポートブロックの数を使用する第1のセルと、前記第1のトランスポートブロックの数と異なる第2のトランスポートブロックの数を使用する第2のセルとに区別された形式を有してもよい。本実施例によれば、サービングセルを、1つのTBを使用するセル(例えば、1 TB based SPS PDSCH transmissionを行うセル)と、2つのTBを使用するセル(例えば、2 TB based SPS PDSCH transmissionを行うセル)とに分類した上で、HARQ-ACK CBにおいて、分類したセルのそれぞれに対応するHARQ-ACKを区別した形式でHARQ-ACK CBを構築できる。これにより、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 In one embodiment, the acknowledgment includes a first cell using a first number of transport blocks and a second cell using a second number of transport blocks different from the first number of transport blocks. It may have a format differentiated into two cells. According to this embodiment, the serving cell is divided into a cell that uses 1 TB (for example, a cell that performs 1 TB based SPS PDSCH transmission) and a cell that uses 2 TB (for example, a cell that performs 2 TB based SPS PDSCH transmission). The HARQ-ACK CB can be constructed in a format that differentiates the HARQ-ACK corresponding to each of the classified cells. Thereby, feedback of HARQ-ACK and retransmission control based on HARQ-ACK can be appropriately performed, so communication efficiency can be improved.
 一実施例では、前記送信方法のうち、第1のトランスポートブロックの数の前記送信信号に対する確認応答のサイズは、第2のトランスポートブロックの数の前記送信信号に対する確認応答のサイズ以下であってもよい。本実施例によれば、サービングセルを、1つのTBを使用する1 TB based SPS PDSCHに対するHARQ-ACKのサイズが、2つのTBを使用する2 TB based SPS PDSCHに対するHARQ-ACKよりも小さいサイズに調整されるため、HARQ-ACK CBにおいて、送信されたデータのサイズに応じてHARQ-ACK CBを構築できる。これにより、送信されたデータのサイズに応じたHARQ-ACKのフィードバックを適切に行うことができるため、通信効率を向上させることができる。 In one embodiment, in the transmission method, a size of an acknowledgment for the transmitted signal of a first number of transport blocks is less than or equal to a size of an acknowledgment for the transmitted signal of a second number of transport blocks. It's okay. According to this embodiment, the serving cell is adjusted such that the size of the HARQ-ACK for a 1 TB based SPS PDSCH using 1 TB is smaller than the HARQ-ACK size for a 2 TB based SPS PDSCH using 2 TB. Therefore, HARQ-ACK CB can be constructed according to the size of the transmitted data. Thereby, it is possible to appropriately perform HARQ-ACK feedback according to the size of the transmitted data, thereby improving communication efficiency.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答であって、前記送信信号のトランスポートブロックの数に応じた形式を有する確認応答を受信する受信部と、前記確認応答に基づいて再送を制御する制御部と、を備える基地局が提供される。 Further, according to one aspect of the present disclosure, an acknowledgment for a transmission signal transmitted based on quasi-static scheduling, the acknowledgment having a format according to the number of transport blocks of the transmission signal is received. and a control unit that controls retransmission based on the acknowledgment.
 上記構成により、準静的なスケジューリングに基づいて送信された送信信号のトランスポートブロックの数に応じて、確認応答を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 With the above configuration, the acknowledgment can be constructed in an appropriate format according to the number of transport blocks of the transmitted signal transmitted based on quasi-static scheduling, so that feedback of HARQ-ACK and retransmission based on HARQ-ACK can be achieved. Since control can be performed appropriately, communication efficiency can be improved.
 また、本開示の一態様によれば、準静的なスケジューリングに基づいて送信された送信信号に対する確認応答を、前記送信信号のトランスポートブロックの数に応じた形式で生成し、前記確認応答を送信する、無線通信方法が提供される。 Further, according to one aspect of the present disclosure, an acknowledgment for a transmission signal transmitted based on quasi-static scheduling is generated in a format according to the number of transport blocks of the transmission signal, and the acknowledgment is A wireless communication method is provided for transmitting.
 上記構成により、準静的なスケジューリングに基づいて送信された送信信号のトランスポートブロックの数に応じて、確認応答を適切な形式で構築できるので、HARQ-ACKのフィードバックとHARQ-ACKに基づく再送制御を適切に行うことができるため、通信効率を向上させることができる。 With the above configuration, the acknowledgment can be constructed in an appropriate format according to the number of transport blocks of the transmitted signal transmitted based on quasi-static scheduling, so that feedback of HARQ-ACK and retransmission based on HARQ-ACK can be achieved. Since control can be performed appropriately, communication efficiency can be improved.
 <用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
<Meaning and interpretation of terms>
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, mean any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 <参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<Reference signal>
The reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
 <「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<Meaning of “based on”>
As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 <「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<“first”, “second”>
As used in this disclosure, any reference to elements using the designations "first,""second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 <手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<Means>
"Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 <オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<Open format>
Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 <TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
<Time units such as TTI, frequency units such as RB, radio frame configuration>
A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 <最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<Maximum transmission power>
"Maximum transmit power" as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
 <冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<Article>
In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 <「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
<“Different”>
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示は、無線通信システムに有用である。 The present disclosure is useful for wireless communication systems.
 10 基地局
 20 端末
 101,202 送信部
 102、201 受信部
 103,203 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 
10 base station 20 terminal 101, 202 transmitter 102, 201 receiver 103, 203 controller 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device

Claims (6)

  1.  CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかの設定を制御する制御部と、
     前記制御部の設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う送受信部と、
     を具備する端末。
    A control unit that controls the setting of whether to transmit CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or receive SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) using single-codeword or two-codeword. and,
    a transmitting/receiving unit that transmits the CG PUSCH and/or receives the SPS PDSCH based on the settings of the control unit;
    A terminal equipped with.
  2.  前記制御部は、上位レイヤパラメータに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記single-codewordで行うか前記two-codewordで行うかの設定を制御する、
     請求項1に記載の端末。
    The control unit controls settings of whether to transmit the CG PUSCH and/or receive the SPS PDSCH using the single-codeword or the two-codeword, based on upper layer parameters.
    The terminal according to claim 1.
  3.  前記制御部は、上位レイヤパラメータ及び/又はactivation DCI(Downlink Control Information)のフォーマットあるいはDCIフィールドに基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を、前記single-codewordで行うか前記two-codewordで行うかの設定を制御する、
     請求項1に記載の端末。
    The control unit transmits the CG PUSCH and/or receives the SPS PDSCH using the single-codeword or the two -Control what settings are done with codeword,
    The terminal according to claim 1.
  4.  前記制御部は、設定した前記single-codewordあるいは前記two-codewordを動的/適応的に更新する、
     請求項1に記載の端末。
    The control unit dynamically/adaptively updates the set single-codeword or the two-codeword.
    The terminal according to claim 1.
  5.  CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかを設定する制御部と、
     前記設定を示す情報を通知する送信部と、
     を具備する基地局。
    A control unit that sets whether to transmit a CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or receive an SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) using a single-codeword or two-codeword;
    a transmitting unit that notifies information indicating the settings;
    A base station equipped with.
  6.  Extended Reality(XR)のデータを送受信する端末が、
     CG PUSCH(Configured Grant Physical Uplink Schered Channel)の送信、及び/又はSPS PDSCH(Semi-Persistent Scheduling Downlink Shared Channel)の受信を、single-codewordで行うかtwo-codewordで行うかを設定し、
     前記設定に基づいて、前記CG PUSCHの送信及び/又はSPS PDSCHの受信を行う、
     無線通信方法。
    The terminal that sends and receives Extended Reality (XR) data is
    Set whether to transmit CG PUSCH (Configured Grant Physical Uplink Schered Channel) and/or receive SPS PDSCH (Semi-Persistent Scheduling Downlink Shared Channel) using single-codeword or two-codeword,
    transmitting the CG PUSCH and/or receiving the SPS PDSCH based on the settings;
    Wireless communication method.
PCT/JP2022/022404 2022-06-01 2022-06-01 Terminal, base station, and wireless communication method WO2023233603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022404 WO2023233603A1 (en) 2022-06-01 2022-06-01 Terminal, base station, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022404 WO2023233603A1 (en) 2022-06-01 2022-06-01 Terminal, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2023233603A1 true WO2023233603A1 (en) 2023-12-07

Family

ID=89026192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022404 WO2023233603A1 (en) 2022-06-01 2022-06-01 Terminal, base station, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2023233603A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095359A (en) * 2010-09-29 2012-05-17 Sharp Corp Mobile station device, base station device, integrated circuit, and communication method
US20150195072A1 (en) * 2012-07-16 2015-07-09 Lg Electronics Inc. Method and apparatus for transmitting reception confirmation in wireless communication system
JP2018502478A (en) * 2014-11-07 2018-01-25 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting group message to terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095359A (en) * 2010-09-29 2012-05-17 Sharp Corp Mobile station device, base station device, integrated circuit, and communication method
US20150195072A1 (en) * 2012-07-16 2015-07-09 Lg Electronics Inc. Method and apparatus for transmitting reception confirmation in wireless communication system
JP2018502478A (en) * 2014-11-07 2018-01-25 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting group message to terminal

Similar Documents

Publication Publication Date Title
WO2023233603A1 (en) Terminal, base station, and wireless communication method
WO2023233602A1 (en) Terminal, base station, and wireless communication method
WO2023233601A1 (en) Terminal, base station, and wireless communication method
WO2023233604A1 (en) Terminal, base station, and wireless communication method
WO2023209914A1 (en) Terminal and wireless communication method
WO2023243064A1 (en) Terminal, base station, and wireless communication method
WO2023223761A1 (en) Terminal and communication method
WO2023105597A1 (en) Terminal and communication method
WO2024106467A1 (en) Terminal and wireless communication method
WO2024034138A1 (en) Terminal, wireless base station, and wireless communication method
WO2024106463A1 (en) Terminal and wireless communication method
WO2023210010A1 (en) Terminal and communication method
WO2024106418A1 (en) Terminal, base station, and communication method
WO2023203625A1 (en) Terminal, base station, and communication method
WO2023203626A1 (en) Terminal, base station, and communication method
WO2023209780A1 (en) Terminal and communication method
WO2023112290A1 (en) Terminal and communication method
WO2023112289A1 (en) Terminal and communication method
WO2024034084A1 (en) Terminal, base station, and communication method
WO2023112287A1 (en) Terminal and communication method
WO2023112288A1 (en) Terminal and communication method
WO2024023990A1 (en) Communication device and communication method
WO2023209779A1 (en) Terminal and communication method
WO2023210013A1 (en) Terminal, base station, and communication method
WO2024023989A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944886

Country of ref document: EP

Kind code of ref document: A1